code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import argparse
import logging
from collections import namedtuple
import torch
from model_bertabs import BertAbsSummarizer
from models.model_builder import AbsSummarizer # The authors' implementation
from transformers import BertTokenizer
logging.basicConfig(level=logging.INFO)
__magic_name__: Dict = logging.getLogger(__name__)
__magic_name__: Dict = "Hello world! cécé herlolip"
__magic_name__: int = namedtuple(
"BertAbsConfig",
[
"temp_dir",
"large",
"use_bert_emb",
"finetune_bert",
"encoder",
"share_emb",
"max_pos",
"enc_layers",
"enc_hidden_size",
"enc_heads",
"enc_ff_size",
"enc_dropout",
"dec_layers",
"dec_hidden_size",
"dec_heads",
"dec_ff_size",
"dec_dropout",
],
)
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
__magic_name__ : Any = BertAbsConfig(
temp_dir=""".""", finetune_bert=_A, large=_A, share_emb=_A, use_bert_emb=_A, encoder="""bert""", max_pos=512, enc_layers=6, enc_hidden_size=512, enc_heads=8, enc_ff_size=512, enc_dropout=0.2, dec_layers=6, dec_hidden_size=768, dec_heads=8, dec_ff_size=2048, dec_dropout=0.2, )
__magic_name__ : int = torch.load(_A, lambda _A, _A : storage )
__magic_name__ : str = AbsSummarizer(_A, torch.device("""cpu""" ), _A )
original.eval()
__magic_name__ : Optional[int] = BertAbsSummarizer(_A, torch.device("""cpu""" ) )
new_model.eval()
# -------------------
# Convert the weights
# -------------------
logging.info("""convert the model""" )
new_model.bert.load_state_dict(original.bert.state_dict() )
new_model.decoder.load_state_dict(original.decoder.state_dict() )
new_model.generator.load_state_dict(original.generator.state_dict() )
# ----------------------------------
# Make sure the outpus are identical
# ----------------------------------
logging.info("""Make sure that the models' outputs are identical""" )
__magic_name__ : Tuple = BertTokenizer.from_pretrained("""bert-base-uncased""" )
# prepare the model inputs
__magic_name__ : Tuple = tokenizer.encode("""This is sample éàalj'-.""" )
encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_A )) )
__magic_name__ : str = torch.tensor(_A ).unsqueeze(0 )
__magic_name__ : Tuple = tokenizer.encode("""This is sample 3 éàalj'-.""" )
decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(_A )) )
__magic_name__ : str = torch.tensor(_A ).unsqueeze(0 )
# failsafe to make sure the weights reset does not affect the
# loaded weights.
assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0
# forward pass
__magic_name__ : str = encoder_input_ids
__magic_name__ : Dict = decoder_input_ids
__magic_name__ : Union[str, Any] = None
__magic_name__ : Union[str, Any] = None
__magic_name__ : Any = None
__magic_name__ : Dict = None
__magic_name__ : Any = None
# The original model does not apply the geneator layer immediatly but rather in
# the beam search (where it combines softmax + linear layer). Since we already
# apply the softmax in our generation process we only apply the linear layer here.
# We make sure that the outputs of the full stack are identical
__magic_name__ : Any = original(_A, _A, _A, _A, _A, _A, _A )[0]
__magic_name__ : str = original.generator(_A )
__magic_name__ : str = new_model(
_A, _A, _A, _A, _A )[0]
__magic_name__ : List[str] = new_model.generator(_A )
__magic_name__ : str = torch.max(torch.abs(output_converted_model - output_original_model ) ).item()
print("""Maximum absolute difference beween weights: {:.2f}""".format(_A ) )
__magic_name__ : Union[str, Any] = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item()
print("""Maximum absolute difference beween weights: {:.2f}""".format(_A ) )
__magic_name__ : str = torch.allclose(_A, _A, atol=1e-3 )
if are_identical:
logging.info("""all weights are equal up to 1e-3""" )
else:
raise ValueError("""the weights are different. The new model is likely different from the original one.""" )
# The model has been saved with torch.save(model) and this is bound to the exact
# directory structure. We save the state_dict instead.
logging.info("""saving the model's state dictionary""" )
torch.save(
new_model.state_dict(), """./bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin""" )
if __name__ == "__main__":
__magic_name__: Dict = argparse.ArgumentParser()
parser.add_argument(
"--bertabs_checkpoint_path",
default=None,
type=str,
required=True,
help="Path the official PyTorch dump.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the output PyTorch model.",
)
__magic_name__: List[Any] = parser.parse_args()
convert_bertabs_checkpoints(
args.bertabs_checkpoint_path,
args.pytorch_dump_folder_path,
)
| 342 |
import doctest
from collections import deque
import numpy as np
class snake_case__ :
def __init__( self ) -> None:
__magic_name__ : Any = [2, 1, 2, -1]
__magic_name__ : Tuple = [1, 2, 3, 4]
def __magic_name__ ( self ) -> list[float]:
__magic_name__ : Optional[Any] = len(self.first_signal )
__magic_name__ : Dict = len(self.second_signal )
__magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ )
# create a zero matrix of max_length x max_length
__magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(lowerCAmelCase__ ):
__magic_name__ : List[str] = deque(self.second_signal )
rotated_signal.rotate(lowerCAmelCase__ )
for j, item in enumerate(lowerCAmelCase__ ):
matrix[i][j] += item
# multiply the matrix with the first signal
__magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(lowerCAmelCase__ , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 342 | 1 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__magic_name__: Optional[Any] = {
"configuration_trajectory_transformer": [
"TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TrajectoryTransformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__: str = [
"TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TrajectoryTransformerModel",
"TrajectoryTransformerPreTrainedModel",
"load_tf_weights_in_trajectory_transformer",
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
__magic_name__: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 342 |
from math import factorial
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
if successes > trials:
raise ValueError("""successes must be lower or equal to trials""" )
if trials < 0 or successes < 0:
raise ValueError("""the function is defined for non-negative integers""" )
if not isinstance(_A, _A ) or not isinstance(_A, _A ):
raise ValueError("""the function is defined for non-negative integers""" )
if not 0 < prob < 1:
raise ValueError("""prob has to be in range of 1 - 0""" )
__magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes))
# Calculate the binomial coefficient: n! / k!(n-k)!
__magic_name__ : Any = float(factorial(_A ) )
coefficient /= factorial(_A ) * factorial(trials - successes )
return probability * coefficient
if __name__ == "__main__":
from doctest import testmod
testmod()
print("Probability of 2 successes out of 4 trails")
print("with probability of 0.75 is:", end=" ")
print(binomial_distribution(2, 4, 0.75))
| 342 | 1 |
import os
# Precomputes a list of the 100 first triangular numbers
__magic_name__: Optional[Any] = [int(0.5 * n * (n + 1)) for n in range(1, 101)]
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : Optional[Any] = os.path.dirname(os.path.realpath(_A ) )
__magic_name__ : Tuple = os.path.join(_A, """words.txt""" )
__magic_name__ : int = """"""
with open(_A ) as f:
__magic_name__ : int = f.readline()
__magic_name__ : Any = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )]
__magic_name__ : Optional[Any] = [
word
for word in [sum(ord(_A ) - 64 for x in word ) for word in words]
if word in TRIANGULAR_NUMBERS
]
return len(_A )
if __name__ == "__main__":
print(solution())
| 342 |
from __future__ import annotations
def UpperCamelCase ( _A ): # This function is recursive
"""simple docstring"""
__magic_name__ : str = len(_A )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
__magic_name__ : Dict = array[0]
__magic_name__ : Optional[Any] = False
__magic_name__ : Tuple = 1
__magic_name__ : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
__magic_name__ : Union[str, Any] = True
__magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]]
__magic_name__ : Dict = longest_subsequence(_A )
if len(_A ) > len(_A ):
__magic_name__ : Tuple = temp_array
else:
i += 1
__magic_name__ : Any = [element for element in array[1:] if element >= pivot]
__magic_name__ : Dict = [pivot, *longest_subsequence(_A )]
if len(_A ) > len(_A ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 | 1 |
from __future__ import annotations
import unittest
from transformers import DebertaVaConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
TFDebertaVaModel,
)
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__="None" , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , ) -> List[Any]:
__magic_name__ : Union[str, Any] = parent
__magic_name__ : Dict = batch_size
__magic_name__ : Any = seq_length
__magic_name__ : Dict = is_training
__magic_name__ : str = use_input_mask
__magic_name__ : Tuple = use_token_type_ids
__magic_name__ : Union[str, Any] = use_labels
__magic_name__ : Union[str, Any] = vocab_size
__magic_name__ : int = hidden_size
__magic_name__ : int = num_hidden_layers
__magic_name__ : Union[str, Any] = num_attention_heads
__magic_name__ : str = intermediate_size
__magic_name__ : Any = hidden_act
__magic_name__ : List[Any] = hidden_dropout_prob
__magic_name__ : Tuple = attention_probs_dropout_prob
__magic_name__ : int = max_position_embeddings
__magic_name__ : Dict = type_vocab_size
__magic_name__ : int = type_sequence_label_size
__magic_name__ : List[Any] = initializer_range
__magic_name__ : Optional[int] = num_labels
__magic_name__ : Union[str, Any] = num_choices
__magic_name__ : Union[str, Any] = relative_attention
__magic_name__ : Dict = position_biased_input
__magic_name__ : Union[str, Any] = pos_att_type
__magic_name__ : str = scope
def __magic_name__ ( self ) -> str:
__magic_name__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ : List[str] = None
if self.use_input_mask:
__magic_name__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
__magic_name__ : Dict = None
if self.use_token_type_ids:
__magic_name__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ : Any = None
__magic_name__ : int = None
__magic_name__ : Dict = None
if self.use_labels:
__magic_name__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ : Optional[int] = DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=lowerCAmelCase__ , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict:
__magic_name__ : int = TFDebertaVaModel(config=lowerCAmelCase__ )
__magic_name__ : Optional[int] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
__magic_name__ : List[str] = [input_ids, input_mask]
__magic_name__ : Tuple = model(lowerCAmelCase__ )
__magic_name__ : List[str] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : Any = TFDebertaVaForMaskedLM(config=lowerCAmelCase__ )
__magic_name__ : List[Any] = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
__magic_name__ : int = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : Dict = self.num_labels
__magic_name__ : List[Any] = TFDebertaVaForSequenceClassification(config=lowerCAmelCase__ )
__magic_name__ : Dict = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
__magic_name__ : List[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any:
__magic_name__ : Dict = self.num_labels
__magic_name__ : Any = TFDebertaVaForTokenClassification(config=lowerCAmelCase__ )
__magic_name__ : Tuple = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
__magic_name__ : str = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : List[Any] = TFDebertaVaForQuestionAnswering(config=lowerCAmelCase__ )
__magic_name__ : Optional[Any] = {
"""input_ids""": input_ids,
"""attention_mask""": input_mask,
"""token_type_ids""": token_type_ids,
}
__magic_name__ : Union[str, Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __magic_name__ ( self ) -> Dict:
__magic_name__ : List[str] = self.prepare_config_and_inputs()
(
(
__magic_name__
) ,(
__magic_name__
) ,(
__magic_name__
) ,(
__magic_name__
) ,(
__magic_name__
) ,(
__magic_name__
) ,(
__magic_name__
) ,
) : Optional[int] = config_and_inputs
__magic_name__ : List[str] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : int = (
(
TFDebertaVaModel,
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
)
if is_tf_available()
else ()
)
lowercase__ : str = (
{
'''feature-extraction''': TFDebertaVaModel,
'''fill-mask''': TFDebertaVaForMaskedLM,
'''question-answering''': TFDebertaVaForQuestionAnswering,
'''text-classification''': TFDebertaVaForSequenceClassification,
'''token-classification''': TFDebertaVaForTokenClassification,
'''zero-shot''': TFDebertaVaForSequenceClassification,
}
if is_tf_available()
else {}
)
lowercase__ : Optional[Any] = False
lowercase__ : Any = False
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : Optional[int] = TFDebertaVaModelTester(self )
__magic_name__ : Tuple = ConfigTester(self , config_class=lowerCAmelCase__ , hidden_size=37 )
def __magic_name__ ( self ) -> List[str]:
self.config_tester.run_common_tests()
def __magic_name__ ( self ) -> int:
__magic_name__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Any:
__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase__ )
@slow
def __magic_name__ ( self ) -> str:
__magic_name__ : List[Any] = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" )
self.assertIsNotNone(lowerCAmelCase__ )
@require_tf
class snake_case__ ( unittest.TestCase ):
@unittest.skip(reason="""Model not available yet""" )
def __magic_name__ ( self ) -> List[Any]:
pass
@slow
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : int = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" )
__magic_name__ : Tuple = tf.constant([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] )
__magic_name__ : int = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
__magic_name__ : Optional[int] = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0]
__magic_name__ : Union[str, Any] = tf.constant(
[[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] )
tf.debugging.assert_near(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1e-4 )
| 342 |
import argparse
import os
import re
__magic_name__: Optional[Any] = "src/transformers/models/auto"
# re pattern that matches mapping introductions:
# SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict
__magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict")
# re pattern that matches identifiers in mappings
__magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"")
def UpperCamelCase ( _A, _A = False ):
"""simple docstring"""
with open(_A, """r""", encoding="""utf-8""" ) as f:
__magic_name__ : Any = f.read()
__magic_name__ : List[Any] = content.split("""\n""" )
__magic_name__ : List[str] = []
__magic_name__ : Union[str, Any] = 0
while line_idx < len(_A ):
if _re_intro_mapping.search(lines[line_idx] ) is not None:
__magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8
# Start of a new mapping!
while not lines[line_idx].startswith(""" """ * indent + """(""" ):
new_lines.append(lines[line_idx] )
line_idx += 1
__magic_name__ : List[Any] = []
while lines[line_idx].strip() != "]":
# Blocks either fit in one line or not
if lines[line_idx].strip() == "(":
__magic_name__ : List[str] = line_idx
while not lines[line_idx].startswith(""" """ * indent + """)""" ):
line_idx += 1
blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) )
else:
blocks.append(lines[line_idx] )
line_idx += 1
# Sort blocks by their identifiers
__magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] )
new_lines += blocks
else:
new_lines.append(lines[line_idx] )
line_idx += 1
if overwrite:
with open(_A, """w""", encoding="""utf-8""" ) as f:
f.write("""\n""".join(_A ) )
elif "\n".join(_A ) != content:
return True
def UpperCamelCase ( _A = False ):
"""simple docstring"""
__magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )]
__magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames]
if not overwrite and any(_A ):
__magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d]
raise ValueError(
f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix'
""" this.""" )
if __name__ == "__main__":
__magic_name__: List[str] = argparse.ArgumentParser()
parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.")
__magic_name__: List[str] = parser.parse_args()
sort_all_auto_mappings(not args.check_only)
| 342 | 1 |
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
__magic_name__: Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
__magic_name__: List[str] = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n"
class snake_case__ ( unittest.TestCase ):
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : Any = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) )
__magic_name__ : List[Any] = self.diffusers_dir
shutil.copy(
os.path.join(lowerCAmelCase__ , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , )
def __magic_name__ ( self ) -> str:
__magic_name__ : Dict = """src/diffusers"""
shutil.rmtree(self.diffusers_dir )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ) -> Any:
__magic_name__ : Any = comment + F'\nclass {class_name}(nn.Module):\n' + class_code
if overwrite_result is not None:
__magic_name__ : Tuple = comment + F'\nclass {class_name}(nn.Module):\n' + overwrite_result
__magic_name__ : Dict = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 )
__magic_name__ : Dict = black.format_str(lowerCAmelCase__ , mode=lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = os.path.join(self.diffusers_dir , """new_code.py""" )
with open(lowerCAmelCase__ , """w""" , newline="""\n""" ) as f:
f.write(lowerCAmelCase__ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase__ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase__ )
with open(lowerCAmelCase__ , """r""" ) as f:
self.assertTrue(f.read() , lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : Optional[Any] = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self ) -> Dict:
# Base copy consistency
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , )
# With no empty line at the end
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , lowerCAmelCase__ , )
# Copy consistency with rename
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , lowerCAmelCase__ ) , )
# Copy consistency with a really long name
__magic_name__ : Dict = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"""
self.check_copy_consistency(
F'# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}' , F'{long_class_name}SchedulerOutput' , re.sub("""Bert""" , lowerCAmelCase__ , lowerCAmelCase__ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , lowerCAmelCase__ , overwrite_result=re.sub("""DDPM""" , """Test""" , lowerCAmelCase__ ) , )
| 342 |
__magic_name__: str = [0, 2, 4, 6, 8]
__magic_name__: Optional[int] = [1, 3, 5, 7, 9]
def UpperCamelCase ( _A, _A, _A, _A ):
"""simple docstring"""
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1, -1, -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
__magic_name__ : List[Any] = 0
for digit in range(10 ):
__magic_name__ : Optional[int] = digit
result += reversible_numbers(
0, (remainder + 2 * digit) // 10, _A, _A )
return result
__magic_name__ : str = 0
for digita in range(10 ):
__magic_name__ : Optional[Any] = digita
if (remainder + digita) % 2 == 0:
__magic_name__ : Tuple = ODD_DIGITS
else:
__magic_name__ : str = EVEN_DIGITS
for digita in other_parity_digits:
__magic_name__ : Tuple = digita
result += reversible_numbers(
remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, )
return result
def UpperCamelCase ( _A = 9 ):
"""simple docstring"""
__magic_name__ : List[str] = 0
for length in range(1, max_power + 1 ):
result += reversible_numbers(_A, 0, [0] * length, _A )
return result
if __name__ == "__main__":
print(F"""{solution() = }""")
| 342 | 1 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_gpta import GPTaTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
__magic_name__: int = logging.get_logger(__name__)
__magic_name__: int = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
__magic_name__: Tuple = {
"vocab_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json",
},
"merges_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt",
},
"tokenizer_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json",
},
}
__magic_name__: Tuple = {
"gpt2": 1_024,
"gpt2-medium": 1_024,
"gpt2-large": 1_024,
"gpt2-xl": 1_024,
"distilgpt2": 1_024,
}
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : Optional[Any] = VOCAB_FILES_NAMES
lowercase__ : Any = PRETRAINED_VOCAB_FILES_MAP
lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ : Tuple = ['''input_ids''', '''attention_mask''']
lowercase__ : int = GPTaTokenizer
def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__="<|endoftext|>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Optional[int]:
super().__init__(
lowerCAmelCase__ , lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , )
__magic_name__ : int = kwargs.pop("""add_bos_token""" , lowerCAmelCase__ )
__magic_name__ : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase__ ) != add_prefix_space:
__magic_name__ : Any = getattr(lowerCAmelCase__ , pre_tok_state.pop("""type""" ) )
__magic_name__ : List[Any] = add_prefix_space
__magic_name__ : Union[str, Any] = pre_tok_class(**lowerCAmelCase__ )
__magic_name__ : Dict = add_prefix_space
def __magic_name__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> BatchEncoding:
__magic_name__ : Optional[Any] = kwargs.get("""is_split_into_words""" , lowerCAmelCase__ )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ )
def __magic_name__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> BatchEncoding:
__magic_name__ : List[Any] = kwargs.get("""is_split_into_words""" , lowerCAmelCase__ )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._encode_plus(*lowerCAmelCase__ , **lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]:
__magic_name__ : Any = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ )
return tuple(lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> List[int]:
__magic_name__ : Optional[Any] = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [self.eos_token_id] )
if len(lowerCAmelCase__ ) > self.model_max_length:
__magic_name__ : int = input_ids[-self.model_max_length :]
return input_ids
| 342 |
def UpperCamelCase ( _A ):
"""simple docstring"""
if not all(x.isalpha() for x in string ):
raise ValueError("""String must only contain alphabetic characters.""" )
__magic_name__ : int = sorted(string.lower() )
return len(_A ) == len(set(_A ) )
if __name__ == "__main__":
__magic_name__: Dict = input("Enter a string ").strip()
__magic_name__: Union[str, Any] = is_isogram(input_str)
print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
| 342 | 1 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str:
__magic_name__ : Optional[int] = parent
__magic_name__ : Any = batch_size
__magic_name__ : Union[str, Any] = image_size
__magic_name__ : Optional[int] = patch_size
__magic_name__ : Union[str, Any] = num_channels
__magic_name__ : str = embed_dim
__magic_name__ : int = hidden_sizes
__magic_name__ : Union[str, Any] = depths
__magic_name__ : List[str] = num_heads
__magic_name__ : str = window_size
__magic_name__ : Optional[Any] = mlp_ratio
__magic_name__ : Dict = qkv_bias
__magic_name__ : Dict = hidden_dropout_prob
__magic_name__ : Optional[Any] = attention_probs_dropout_prob
__magic_name__ : List[Any] = drop_path_rate
__magic_name__ : Optional[Any] = hidden_act
__magic_name__ : int = use_absolute_embeddings
__magic_name__ : Dict = patch_norm
__magic_name__ : Tuple = layer_norm_eps
__magic_name__ : List[str] = initializer_range
__magic_name__ : Optional[int] = is_training
__magic_name__ : Optional[Any] = scope
__magic_name__ : Union[str, Any] = use_labels
__magic_name__ : Optional[Any] = type_sequence_label_size
__magic_name__ : Union[str, Any] = encoder_stride
__magic_name__ : List[Any] = out_features
__magic_name__ : Union[str, Any] = out_indices
def __magic_name__ ( self ) -> str:
__magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__magic_name__ : Optional[Any] = None
if self.use_labels:
__magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : Dict = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self ) -> List[Any]:
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Optional[int] = model(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Tuple = model(lowerCAmelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
__magic_name__ : Optional[Any] = None
__magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Union[str, Any] = model(lowerCAmelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : str = model(lowerCAmelCase__ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__magic_name__ : Optional[int] = 1
__magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__magic_name__ : List[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : int = self.type_sequence_label_size
__magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__magic_name__ : Optional[int] = 1
__magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__magic_name__ : Dict = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __magic_name__ ( self ) -> int:
__magic_name__ : int = self.prepare_config_and_inputs()
__magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs
__magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : str = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
lowercase__ : Any = (
{'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification}
if is_torch_available()
else {}
)
lowercase__ : Dict = False
lowercase__ : Dict = False
lowercase__ : int = False
lowercase__ : Tuple = False
lowercase__ : Optional[Any] = False
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Optional[Any] = FocalNetModelTester(self )
__magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __magic_name__ ( self ) -> List[str]:
return
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ )
@unittest.skip(reason="""FocalNet does not use inputs_embeds""" )
def __magic_name__ ( self ) -> List[str]:
pass
@unittest.skip(reason="""FocalNet does not use feedforward chunking""" )
def __magic_name__ ( self ) -> List[Any]:
pass
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
__magic_name__ : Dict = model_class(lowerCAmelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__magic_name__ : Dict = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
__magic_name__ : str = model_class(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Tuple = [*signature.parameters.keys()]
__magic_name__ : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict:
__magic_name__ : List[Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : Optional[Any] = outputs.hidden_states
__magic_name__ : Union[str, Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
# FocalNet has a different seq_length
__magic_name__ : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__magic_name__ : str = outputs.reshaped_hidden_states
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape
__magic_name__ : Union[str, Any] = (
reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __magic_name__ ( self ) -> str:
__magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
__magic_name__ : List[Any] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : Optional[Any] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self ) -> str:
__magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[Any] = 3
__magic_name__ : Union[str, Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__magic_name__ : Dict = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
__magic_name__ : Optional[int] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : str = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) )
@slow
def __magic_name__ ( self ) -> Union[str, Any]:
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ )
for model_class in self.all_model_classes:
__magic_name__ : Any = model_class(config=lowerCAmelCase__ )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class snake_case__ ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self ) -> Optional[int]:
# TODO update organization
return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None
@slow
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = self.default_image_processor
__magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
__magic_name__ : List[Any] = model(**lowerCAmelCase__ )
# verify the logits
__magic_name__ : Union[str, Any] = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
__magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 )
@require_torch
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else ()
lowercase__ : Optional[int] = FocalNetConfig
lowercase__ : Dict = False
def __magic_name__ ( self ) -> int:
__magic_name__ : Dict = FocalNetModelTester(self )
| 342 |
import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
"The `inpainting.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionInpaintPipeline` instead."
)
| 342 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__magic_name__: Tuple = {
"configuration_clap": [
"CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClapAudioConfig",
"ClapConfig",
"ClapTextConfig",
],
"processing_clap": ["ClapProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__: Union[str, Any] = [
"CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClapModel",
"ClapPreTrainedModel",
"ClapTextModel",
"ClapTextModelWithProjection",
"ClapAudioModel",
"ClapAudioModelWithProjection",
]
__magic_name__: Optional[Any] = ["ClapFeatureExtractor"]
if TYPE_CHECKING:
from .configuration_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioConfig,
ClapConfig,
ClapTextConfig,
)
from .processing_clap import ClapProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clap import ClapFeatureExtractor
from .modeling_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioModel,
ClapAudioModelWithProjection,
ClapModel,
ClapPreTrainedModel,
ClapTextModel,
ClapTextModelWithProjection,
)
else:
import sys
__magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 342 |
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class snake_case__ ( unittest.TestCase ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]:
__magic_name__ : str = parent
__magic_name__ : Dict = do_resize
__magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88}
__magic_name__ : Union[str, Any] = size_divisor
__magic_name__ : Union[str, Any] = do_rescale
__magic_name__ : Dict = rescale_factor
__magic_name__ : Union[str, Any] = do_normalize
__magic_name__ : List[str] = do_center_crop
__magic_name__ : Tuple = image_mean
__magic_name__ : Tuple = image_std
__magic_name__ : Tuple = do_pad
__magic_name__ : int = batch_size
__magic_name__ : List[Any] = num_channels
__magic_name__ : int = min_resolution
__magic_name__ : str = max_resolution
def __magic_name__ ( self ) -> str:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int:
if not batched:
__magic_name__ : Dict = self.size["""shortest_edge"""]
__magic_name__ : List[str] = image_inputs[0]
if isinstance(lowerCAmelCase__ , Image.Image ):
__magic_name__ ,__magic_name__ : List[Any] = image.size
else:
__magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2]
__magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ )
if h < w:
__magic_name__ ,__magic_name__ : str = size, scale * w
else:
__magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size
__magic_name__ : Tuple = int((13_33 / 8_00) * size )
if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size:
__magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = newh * scale
__magic_name__ : Any = neww * scale
__magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 )
__magic_name__ ,__magic_name__ : int = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
__magic_name__ : Union[str, Any] = []
for image in image_inputs:
__magic_name__ ,__magic_name__ : int = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0]
__magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : Any = BridgeTowerImageProcessingTester(self )
@property
def __magic_name__ ( self ) -> List[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def __magic_name__ ( self ) -> Any:
__magic_name__ : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) )
def __magic_name__ ( self ) -> Optional[int]:
pass
def __magic_name__ ( self ) -> Tuple:
# Initialize image processor
__magic_name__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
__magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __magic_name__ ( self ) -> Tuple:
# Initialize image processor
__magic_name__ : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
__magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __magic_name__ ( self ) -> str:
# Initialize image processor
__magic_name__ : int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
__magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 342 | 1 |
from __future__ import annotations
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : Union[str, Any] = 0.00
__magic_name__ : List[str] = 0
for resistor in resistors:
if resistor <= 0:
__magic_name__ : Optional[Any] = f'Resistor at index {index} has a negative or zero value!'
raise ValueError(_A )
first_sum += 1 / float(_A )
index += 1
return 1 / first_sum
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : int = 0.00
__magic_name__ : List[Any] = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
__magic_name__ : Any = f'Resistor at index {index} has a negative value!'
raise ValueError(_A )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__magic_name__: Tuple = {
"configuration_clap": [
"CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClapAudioConfig",
"ClapConfig",
"ClapTextConfig",
],
"processing_clap": ["ClapProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__: Union[str, Any] = [
"CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClapModel",
"ClapPreTrainedModel",
"ClapTextModel",
"ClapTextModelWithProjection",
"ClapAudioModel",
"ClapAudioModelWithProjection",
]
__magic_name__: Optional[Any] = ["ClapFeatureExtractor"]
if TYPE_CHECKING:
from .configuration_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioConfig,
ClapConfig,
ClapTextConfig,
)
from .processing_clap import ClapProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clap import ClapFeatureExtractor
from .modeling_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioModel,
ClapAudioModelWithProjection,
ClapModel,
ClapPreTrainedModel,
ClapTextModel,
ClapTextModelWithProjection,
)
else:
import sys
__magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 342 | 1 |
import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class snake_case__ ( unittest.TestCase ):
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : List[Any] = ["""a""", """b""", """c"""]
# Defaults to last layer if both are None
__magic_name__ ,__magic_name__ : Union[str, Any] = get_aligned_output_features_output_indices(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , ["""c"""] )
self.assertEqual(lowerCAmelCase__ , [2] )
# Out indices set to match out features
__magic_name__ ,__magic_name__ : int = get_aligned_output_features_output_indices(["""a""", """c"""] , lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , ["""a""", """c"""] )
self.assertEqual(lowerCAmelCase__ , [0, 2] )
# Out features set to match out indices
__magic_name__ ,__magic_name__ : Optional[int] = get_aligned_output_features_output_indices(lowerCAmelCase__ , [0, 2] , lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , ["""a""", """c"""] )
self.assertEqual(lowerCAmelCase__ , [0, 2] )
# Out features selected from negative indices
__magic_name__ ,__magic_name__ : Dict = get_aligned_output_features_output_indices(lowerCAmelCase__ , [-3, -1] , lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , ["""a""", """c"""] )
self.assertEqual(lowerCAmelCase__ , [-3, -1] )
def __magic_name__ ( self ) -> Union[str, Any]:
# Stage names must be set
with self.assertRaises(lowerCAmelCase__ ):
verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , lowerCAmelCase__ )
# Out features must be a list
with self.assertRaises(lowerCAmelCase__ ):
verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""] )
# Out features must be a subset of stage names
with self.assertRaises(lowerCAmelCase__ ):
verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""] )
# Out indices must be a list or tuple
with self.assertRaises(lowerCAmelCase__ ):
verify_out_features_out_indices(lowerCAmelCase__ , 0 , ["""a""", """b"""] )
# Out indices must be a subset of stage names
with self.assertRaises(lowerCAmelCase__ ):
verify_out_features_out_indices(lowerCAmelCase__ , (0, 1) , ["""a"""] )
# Out features and out indices must be the same length
with self.assertRaises(lowerCAmelCase__ ):
verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""] )
# Out features should match out indices
with self.assertRaises(lowerCAmelCase__ ):
verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""] )
# Out features and out indices should be in order
with self.assertRaises(lowerCAmelCase__ ):
verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""] )
# Check passes with valid inputs
verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""] )
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ : Optional[Any] = BackboneMixin()
__magic_name__ : int = ["""a""", """b""", """c"""]
__magic_name__ : List[str] = ["""a""", """c"""]
__magic_name__ : Union[str, Any] = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ["""a""", """c"""] )
self.assertEqual(backbone.out_indices , [0, 2] )
# Check out features and indices are updated correctly
__magic_name__ : str = ["""a""", """b"""]
self.assertEqual(backbone.out_features , ["""a""", """b"""] )
self.assertEqual(backbone.out_indices , [0, 1] )
__magic_name__ : Optional[int] = [-3, -1]
self.assertEqual(backbone.out_features , ["""a""", """c"""] )
self.assertEqual(backbone.out_indices , [-3, -1] )
| 342 |
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__magic_name__: Dict = logging.get_logger(__name__)
__magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all BART models at https://huggingface.co/models?filter=bart
__magic_name__: Optional[Any] = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
}
__magic_name__: List[Any] = {
"facebook/bart-base": 1_024,
"facebook/bart-large": 1_024,
"facebook/bart-large-mnli": 1_024,
"facebook/bart-large-cnn": 1_024,
"facebook/bart-large-xsum": 1_024,
"yjernite/bart_eli5": 1_024,
}
@lru_cache()
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : Any = (
list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) )
)
__magic_name__ : Any = bs[:]
__magic_name__ : Dict = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_A )
cs.append(2**8 + n )
n += 1
__magic_name__ : List[str] = [chr(_A ) for n in cs]
return dict(zip(_A, _A ) )
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : str = set()
__magic_name__ : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__magic_name__ : List[Any] = char
return pairs
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES
lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask''']
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict:
__magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
__magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
__magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
__magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
__magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
__magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , )
with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle:
__magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ )
__magic_name__ : Any = {v: k for k, v in self.encoder.items()}
__magic_name__ : Tuple = errors # how to handle errors in decoding
__magic_name__ : Tuple = bytes_to_unicode()
__magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle:
__magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1]
__magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges]
__magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
__magic_name__ : str = {}
__magic_name__ : int = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
@property
def __magic_name__ ( self ) -> Optional[Any]:
return len(self.encoder )
def __magic_name__ ( self ) -> Optional[int]:
return dict(self.encoder , **self.added_tokens_encoder )
def __magic_name__ ( self , lowerCAmelCase__ ) -> str:
if token in self.cache:
return self.cache[token]
__magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ )
if not pairs:
return token
while True:
__magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
__magic_name__ ,__magic_name__ : List[str] = bigram
__magic_name__ : Any = []
__magic_name__ : Any = 0
while i < len(lowerCAmelCase__ ):
try:
__magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__magic_name__ : Optional[Any] = j
if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__magic_name__ : str = tuple(lowerCAmelCase__ )
__magic_name__ : Optional[int] = new_word
if len(lowerCAmelCase__ ) == 1:
break
else:
__magic_name__ : List[str] = get_pairs(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ )
__magic_name__ : str = word
return word
def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : str = []
for token in re.findall(self.pat , lowerCAmelCase__ ):
__magic_name__ : List[Any] = """""".join(
self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) )
return bpe_tokens
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.decoder.get(lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Any:
__magic_name__ : Tuple = """""".join(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors )
return text
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
__magic_name__ : Tuple = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
__magic_name__ : List[str] = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" )
__magic_name__ : Optional[Any] = 0
with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
""" Please check that the tokenizer is not corrupted!""" )
__magic_name__ : Optional[int] = token_index
writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" )
index += 1
return vocab_file, merge_file
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__magic_name__ : List[str] = [self.cls_token_id]
__magic_name__ : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
__magic_name__ : Dict = [self.sep_token_id]
__magic_name__ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()):
__magic_name__ : List[Any] = """ """ + text
return (text, kwargs)
| 342 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTConfig,
MobileViTForImageClassification,
MobileViTForSemanticSegmentation,
MobileViTImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
__magic_name__: Optional[int] = logging.get_logger(__name__)
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : str = MobileViTConfig()
# size of the architecture
if "mobilevit_s" in mobilevit_name:
__magic_name__ : str = [144, 192, 240]
__magic_name__ : Optional[Any] = [16, 32, 64, 96, 128, 160, 640]
elif "mobilevit_xs" in mobilevit_name:
__magic_name__ : List[str] = [96, 120, 144]
__magic_name__ : Dict = [16, 32, 48, 64, 80, 96, 384]
elif "mobilevit_xxs" in mobilevit_name:
__magic_name__ : List[Any] = [64, 80, 96]
__magic_name__ : Any = [16, 16, 24, 48, 64, 80, 320]
__magic_name__ : List[str] = 0.05
__magic_name__ : Dict = 2.0
if mobilevit_name.startswith("""deeplabv3_""" ):
__magic_name__ : Optional[Any] = 512
__magic_name__ : List[Any] = 16
__magic_name__ : List[str] = 21
__magic_name__ : int = """pascal-voc-id2label.json"""
else:
__magic_name__ : Optional[Any] = 1000
__magic_name__ : Optional[Any] = """imagenet-1k-id2label.json"""
__magic_name__ : Tuple = """huggingface/label-files"""
__magic_name__ : str = json.load(open(hf_hub_download(_A, _A, repo_type="""dataset""" ), """r""" ) )
__magic_name__ : Optional[int] = {int(_A ): v for k, v in idalabel.items()}
__magic_name__ : Any = idalabel
__magic_name__ : Dict = {v: k for k, v in idalabel.items()}
return config
def UpperCamelCase ( _A, _A=False ):
"""simple docstring"""
for i in range(1, 6 ):
if f'layer_{i}.' in name:
__magic_name__ : Optional[int] = name.replace(f'layer_{i}.', f'encoder.layer.{i - 1}.' )
if "conv_1." in name:
__magic_name__ : Optional[int] = name.replace("""conv_1.""", """conv_stem.""" )
if ".block." in name:
__magic_name__ : Optional[int] = name.replace(""".block.""", """.""" )
if "exp_1x1" in name:
__magic_name__ : int = name.replace("""exp_1x1""", """expand_1x1""" )
if "red_1x1" in name:
__magic_name__ : Any = name.replace("""red_1x1""", """reduce_1x1""" )
if ".local_rep.conv_3x3." in name:
__magic_name__ : Optional[Any] = name.replace(""".local_rep.conv_3x3.""", """.conv_kxk.""" )
if ".local_rep.conv_1x1." in name:
__magic_name__ : Union[str, Any] = name.replace(""".local_rep.conv_1x1.""", """.conv_1x1.""" )
if ".norm." in name:
__magic_name__ : List[str] = name.replace(""".norm.""", """.normalization.""" )
if ".conv." in name:
__magic_name__ : List[Any] = name.replace(""".conv.""", """.convolution.""" )
if ".conv_proj." in name:
__magic_name__ : str = name.replace(""".conv_proj.""", """.conv_projection.""" )
for i in range(0, 2 ):
for j in range(0, 4 ):
if f'.{i}.{j}.' in name:
__magic_name__ : List[str] = name.replace(f'.{i}.{j}.', f'.{i}.layer.{j}.' )
for i in range(2, 6 ):
for j in range(0, 4 ):
if f'.{i}.{j}.' in name:
__magic_name__ : Tuple = name.replace(f'.{i}.{j}.', f'.{i}.' )
if "expand_1x1" in name:
__magic_name__ : Dict = name.replace("""expand_1x1""", """downsampling_layer.expand_1x1""" )
if "conv_3x3" in name:
__magic_name__ : Union[str, Any] = name.replace("""conv_3x3""", """downsampling_layer.conv_3x3""" )
if "reduce_1x1" in name:
__magic_name__ : Union[str, Any] = name.replace("""reduce_1x1""", """downsampling_layer.reduce_1x1""" )
for i in range(2, 5 ):
if f'.global_rep.{i}.weight' in name:
__magic_name__ : Union[str, Any] = name.replace(f'.global_rep.{i}.weight', """.layernorm.weight""" )
if f'.global_rep.{i}.bias' in name:
__magic_name__ : Any = name.replace(f'.global_rep.{i}.bias', """.layernorm.bias""" )
if ".global_rep." in name:
__magic_name__ : int = name.replace(""".global_rep.""", """.transformer.""" )
if ".pre_norm_mha.0." in name:
__magic_name__ : Union[str, Any] = name.replace(""".pre_norm_mha.0.""", """.layernorm_before.""" )
if ".pre_norm_mha.1.out_proj." in name:
__magic_name__ : List[str] = name.replace(""".pre_norm_mha.1.out_proj.""", """.attention.output.dense.""" )
if ".pre_norm_ffn.0." in name:
__magic_name__ : Dict = name.replace(""".pre_norm_ffn.0.""", """.layernorm_after.""" )
if ".pre_norm_ffn.1." in name:
__magic_name__ : Union[str, Any] = name.replace(""".pre_norm_ffn.1.""", """.intermediate.dense.""" )
if ".pre_norm_ffn.4." in name:
__magic_name__ : Dict = name.replace(""".pre_norm_ffn.4.""", """.output.dense.""" )
if ".transformer." in name:
__magic_name__ : List[Any] = name.replace(""".transformer.""", """.transformer.layer.""" )
if ".aspp_layer." in name:
__magic_name__ : str = name.replace(""".aspp_layer.""", """.""" )
if ".aspp_pool." in name:
__magic_name__ : Any = name.replace(""".aspp_pool.""", """.""" )
if "seg_head." in name:
__magic_name__ : List[Any] = name.replace("""seg_head.""", """segmentation_head.""" )
if "segmentation_head.classifier.classifier." in name:
__magic_name__ : Any = name.replace("""segmentation_head.classifier.classifier.""", """segmentation_head.classifier.""" )
if "classifier.fc." in name:
__magic_name__ : Any = name.replace("""classifier.fc.""", """classifier.""" )
elif (not base_model) and ("segmentation_head." not in name):
__magic_name__ : Optional[int] = """mobilevit.""" + name
return name
def UpperCamelCase ( _A, _A, _A=False ):
"""simple docstring"""
if base_model:
__magic_name__ : str = """"""
else:
__magic_name__ : List[str] = """mobilevit."""
for key in orig_state_dict.copy().keys():
__magic_name__ : str = orig_state_dict.pop(_A )
if key[:8] == "encoder.":
__magic_name__ : Dict = key[8:]
if "qkv" in key:
__magic_name__ : List[str] = key.split(""".""" )
__magic_name__ : str = int(key_split[0][6:] ) - 1
__magic_name__ : Any = int(key_split[3] )
__magic_name__ : int = model.get_submodule(f'{model_prefix}encoder.layer.{layer_num}' )
__magic_name__ : int = layer.transformer.layer[transformer_num].attention.attention.all_head_size
__magic_name__ : str = (
f'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.'
)
if "weight" in key:
__magic_name__ : Tuple = val[:dim, :]
__magic_name__ : Union[str, Any] = val[dim : dim * 2, :]
__magic_name__ : Any = val[-dim:, :]
else:
__magic_name__ : Tuple = val[:dim]
__magic_name__ : str = val[dim : dim * 2]
__magic_name__ : List[str] = val[-dim:]
else:
__magic_name__ : Any = val
return orig_state_dict
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : str = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__magic_name__ : Optional[int] = Image.open(requests.get(_A, stream=_A ).raw )
return im
@torch.no_grad()
def UpperCamelCase ( _A, _A, _A, _A=False ):
"""simple docstring"""
__magic_name__ : Tuple = get_mobilevit_config(_A )
# load original state_dict
__magic_name__ : Optional[int] = torch.load(_A, map_location="""cpu""" )
# load 🤗 model
if mobilevit_name.startswith("""deeplabv3_""" ):
__magic_name__ : Tuple = MobileViTForSemanticSegmentation(_A ).eval()
else:
__magic_name__ : Dict = MobileViTForImageClassification(_A ).eval()
__magic_name__ : str = convert_state_dict(_A, _A )
model.load_state_dict(_A )
# Check outputs on an image, prepared by MobileViTImageProcessor
__magic_name__ : Any = MobileViTImageProcessor(crop_size=config.image_size, size=config.image_size + 32 )
__magic_name__ : Optional[int] = image_processor(images=prepare_img(), return_tensors="""pt""" )
__magic_name__ : Union[str, Any] = model(**_A )
__magic_name__ : str = outputs.logits
if mobilevit_name.startswith("""deeplabv3_""" ):
assert logits.shape == (1, 21, 32, 32)
if mobilevit_name == "deeplabv3_mobilevit_s":
__magic_name__ : Dict = torch.tensor(
[
[[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]],
[[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]],
[[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xs":
__magic_name__ : Optional[int] = torch.tensor(
[
[[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]],
[[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]],
[[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]],
] )
elif mobilevit_name == "deeplabv3_mobilevit_xxs":
__magic_name__ : int = torch.tensor(
[
[[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]],
[[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]],
[[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]],
] )
else:
raise ValueError(f'Unknown mobilevit_name: {mobilevit_name}' )
assert torch.allclose(logits[0, :3, :3, :3], _A, atol=1e-4 )
else:
assert logits.shape == (1, 1000)
if mobilevit_name == "mobilevit_s":
__magic_name__ : Any = torch.tensor([-0.9866, 0.2392, -1.1241] )
elif mobilevit_name == "mobilevit_xs":
__magic_name__ : int = torch.tensor([-2.4761, -0.9399, -1.9587] )
elif mobilevit_name == "mobilevit_xxs":
__magic_name__ : Any = torch.tensor([-1.9364, -1.2327, -0.4653] )
else:
raise ValueError(f'Unknown mobilevit_name: {mobilevit_name}' )
assert torch.allclose(logits[0, :3], _A, atol=1e-4 )
Path(_A ).mkdir(exist_ok=_A )
print(f'Saving model {mobilevit_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(_A )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(_A )
if push_to_hub:
__magic_name__ : Dict = {
"""mobilevit_s""": """mobilevit-small""",
"""mobilevit_xs""": """mobilevit-x-small""",
"""mobilevit_xxs""": """mobilevit-xx-small""",
"""deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""",
"""deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""",
"""deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""",
}
print("""Pushing to the hub...""" )
__magic_name__ : Optional[Any] = model_mapping[mobilevit_name]
image_processor.push_to_hub(_A, organization="""apple""" )
model.push_to_hub(_A, organization="""apple""" )
if __name__ == "__main__":
__magic_name__: Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--mobilevit_name",
default="mobilevit_s",
type=str,
help=(
"Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',"
" 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'."
),
)
parser.add_argument(
"--checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
__magic_name__: int = parser.parse_args()
convert_movilevit_checkpoint(
args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
)
| 342 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str:
__magic_name__ : Optional[int] = parent
__magic_name__ : Any = batch_size
__magic_name__ : Union[str, Any] = image_size
__magic_name__ : Optional[int] = patch_size
__magic_name__ : Union[str, Any] = num_channels
__magic_name__ : str = embed_dim
__magic_name__ : int = hidden_sizes
__magic_name__ : Union[str, Any] = depths
__magic_name__ : List[str] = num_heads
__magic_name__ : str = window_size
__magic_name__ : Optional[Any] = mlp_ratio
__magic_name__ : Dict = qkv_bias
__magic_name__ : Dict = hidden_dropout_prob
__magic_name__ : Optional[Any] = attention_probs_dropout_prob
__magic_name__ : List[Any] = drop_path_rate
__magic_name__ : Optional[Any] = hidden_act
__magic_name__ : int = use_absolute_embeddings
__magic_name__ : Dict = patch_norm
__magic_name__ : Tuple = layer_norm_eps
__magic_name__ : List[str] = initializer_range
__magic_name__ : Optional[int] = is_training
__magic_name__ : Optional[Any] = scope
__magic_name__ : Union[str, Any] = use_labels
__magic_name__ : Optional[Any] = type_sequence_label_size
__magic_name__ : Union[str, Any] = encoder_stride
__magic_name__ : List[Any] = out_features
__magic_name__ : Union[str, Any] = out_indices
def __magic_name__ ( self ) -> str:
__magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__magic_name__ : Optional[Any] = None
if self.use_labels:
__magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : Dict = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self ) -> List[Any]:
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Optional[int] = model(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Tuple = model(lowerCAmelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
__magic_name__ : Optional[Any] = None
__magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Union[str, Any] = model(lowerCAmelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : str = model(lowerCAmelCase__ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__magic_name__ : Optional[int] = 1
__magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__magic_name__ : List[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : int = self.type_sequence_label_size
__magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__magic_name__ : Optional[int] = 1
__magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__magic_name__ : Dict = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __magic_name__ ( self ) -> int:
__magic_name__ : int = self.prepare_config_and_inputs()
__magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs
__magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : str = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
lowercase__ : Any = (
{'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification}
if is_torch_available()
else {}
)
lowercase__ : Dict = False
lowercase__ : Dict = False
lowercase__ : int = False
lowercase__ : Tuple = False
lowercase__ : Optional[Any] = False
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Optional[Any] = FocalNetModelTester(self )
__magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __magic_name__ ( self ) -> List[str]:
return
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ )
@unittest.skip(reason="""FocalNet does not use inputs_embeds""" )
def __magic_name__ ( self ) -> List[str]:
pass
@unittest.skip(reason="""FocalNet does not use feedforward chunking""" )
def __magic_name__ ( self ) -> List[Any]:
pass
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
__magic_name__ : Dict = model_class(lowerCAmelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__magic_name__ : Dict = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
__magic_name__ : str = model_class(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Tuple = [*signature.parameters.keys()]
__magic_name__ : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict:
__magic_name__ : List[Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : Optional[Any] = outputs.hidden_states
__magic_name__ : Union[str, Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
# FocalNet has a different seq_length
__magic_name__ : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__magic_name__ : str = outputs.reshaped_hidden_states
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape
__magic_name__ : Union[str, Any] = (
reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __magic_name__ ( self ) -> str:
__magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
__magic_name__ : List[Any] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : Optional[Any] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self ) -> str:
__magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[Any] = 3
__magic_name__ : Union[str, Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__magic_name__ : Dict = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
__magic_name__ : Optional[int] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : str = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) )
@slow
def __magic_name__ ( self ) -> Union[str, Any]:
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ )
for model_class in self.all_model_classes:
__magic_name__ : Any = model_class(config=lowerCAmelCase__ )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class snake_case__ ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self ) -> Optional[int]:
# TODO update organization
return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None
@slow
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = self.default_image_processor
__magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
__magic_name__ : List[Any] = model(**lowerCAmelCase__ )
# verify the logits
__magic_name__ : Union[str, Any] = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
__magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 )
@require_torch
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else ()
lowercase__ : Optional[int] = FocalNetConfig
lowercase__ : Dict = False
def __magic_name__ ( self ) -> int:
__magic_name__ : Dict = FocalNetModelTester(self )
| 342 | 1 |
import argparse
import glob
import logging
import os
import time
from argparse import Namespace
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from torch.utils.data import DataLoader, TensorDataset
from transformers import glue_compute_metrics as compute_metrics
from transformers import glue_convert_examples_to_features as convert_examples_to_features
from transformers import glue_output_modes, glue_tasks_num_labels
from transformers import glue_processors as processors
__magic_name__: Dict = logging.getLogger(__name__)
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : Any = '''sequence-classification'''
def __init__( self , lowerCAmelCase__ ) -> str:
if type(lowerCAmelCase__ ) == dict:
__magic_name__ : Tuple = Namespace(**lowerCAmelCase__ )
__magic_name__ : Optional[int] = glue_output_modes[hparams.task]
__magic_name__ : str = glue_tasks_num_labels[hparams.task]
super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , self.mode )
def __magic_name__ ( self , **lowerCAmelCase__ ) -> Any:
return self.model(**lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str:
__magic_name__ : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
__magic_name__ : Optional[Any] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None
__magic_name__ : Optional[Any] = self(**lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = outputs[0]
__magic_name__ : List[Any] = self.trainer.lr_schedulers[0]["""scheduler"""]
__magic_name__ : int = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]}
return {"loss": loss, "log": tensorboard_logs}
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : Tuple = self.hparams
__magic_name__ : str = processors[args.task]()
__magic_name__ : int = processor.get_labels()
for mode in ["train", "dev"]:
__magic_name__ : Tuple = self._feature_file(lowerCAmelCase__ )
if os.path.exists(lowerCAmelCase__ ) and not args.overwrite_cache:
logger.info("""Loading features from cached file %s""" , lowerCAmelCase__ )
else:
logger.info("""Creating features from dataset file at %s""" , args.data_dir )
__magic_name__ : List[str] = (
processor.get_dev_examples(args.data_dir )
if mode == """dev"""
else processor.get_train_examples(args.data_dir )
)
__magic_name__ : str = convert_examples_to_features(
lowerCAmelCase__ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , )
logger.info("""Saving features into cached file %s""" , lowerCAmelCase__ )
torch.save(lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> DataLoader:
__magic_name__ : List[Any] = """dev""" if mode == """test""" else mode
__magic_name__ : List[Any] = self._feature_file(lowerCAmelCase__ )
logger.info("""Loading features from cached file %s""" , lowerCAmelCase__ )
__magic_name__ : Optional[int] = torch.load(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long )
__magic_name__ : Tuple = torch.tensor([f.attention_mask for f in features] , dtype=torch.long )
__magic_name__ : str = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long )
if self.hparams.glue_output_mode == "classification":
__magic_name__ : Optional[Any] = torch.tensor([f.label for f in features] , dtype=torch.long )
elif self.hparams.glue_output_mode == "regression":
__magic_name__ : Optional[Any] = torch.tensor([f.label for f in features] , dtype=torch.float )
return DataLoader(
TensorDataset(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]:
__magic_name__ : Dict = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]}
if self.config.model_type not in ["distilbert", "bart"]:
__magic_name__ : Tuple = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None
__magic_name__ : Optional[Any] = self(**lowerCAmelCase__ )
__magic_name__ ,__magic_name__ : Optional[Any] = outputs[:2]
__magic_name__ : Optional[int] = logits.detach().cpu().numpy()
__magic_name__ : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def __magic_name__ ( self , lowerCAmelCase__ ) -> tuple:
__magic_name__ : Optional[int] = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item()
__magic_name__ : Union[str, Any] = np.concatenate([x["""pred"""] for x in outputs] , axis=0 )
if self.hparams.glue_output_mode == "classification":
__magic_name__ : Optional[int] = np.argmax(lowerCAmelCase__ , axis=1 )
elif self.hparams.glue_output_mode == "regression":
__magic_name__ : Tuple = np.squeeze(lowerCAmelCase__ )
__magic_name__ : Any = np.concatenate([x["""target"""] for x in outputs] , axis=0 )
__magic_name__ : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )]
__magic_name__ : List[str] = [[] for _ in range(out_label_ids.shape[0] )]
__magic_name__ : str = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , lowerCAmelCase__ , lowerCAmelCase__ )}
__magic_name__ : Union[str, Any] = dict(results.items() )
__magic_name__ : Tuple = results
return ret, preds_list, out_label_list
def __magic_name__ ( self , lowerCAmelCase__ ) -> dict:
__magic_name__ ,__magic_name__ ,__magic_name__ : int = self._eval_end(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = ret["""log"""]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def __magic_name__ ( self , lowerCAmelCase__ ) -> dict:
__magic_name__ ,__magic_name__ ,__magic_name__ : Optional[int] = self._eval_end(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = ret["""log"""]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def __magic_name__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]:
BaseTransformer.add_model_specific_args(lowerCAmelCase__ , lowerCAmelCase__ )
parser.add_argument(
"""--max_seq_length""" , default=1_28 , type=lowerCAmelCase__ , help=(
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
) , )
parser.add_argument(
"""--task""" , default="""""" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="""The GLUE task to run""" , )
parser.add_argument(
"""--gpus""" , default=0 , type=lowerCAmelCase__ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , )
parser.add_argument(
"""--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" )
return parser
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : List[Any] = argparse.ArgumentParser()
add_generic_args(_A, os.getcwd() )
__magic_name__ : Optional[int] = GLUETransformer.add_model_specific_args(_A, os.getcwd() )
__magic_name__ : int = parser.parse_args()
# If output_dir not provided, a folder will be generated in pwd
if args.output_dir is None:
__magic_name__ : str = os.path.join(
"""./results""", f'{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}', )
os.makedirs(args.output_dir )
__magic_name__ : int = GLUETransformer(_A )
__magic_name__ : str = generic_train(_A, _A )
# Optionally, predict on dev set and write to output_dir
if args.do_predict:
__magic_name__ : Tuple = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt""" ), recursive=_A ) )
__magic_name__ : Any = model.load_from_checkpoint(checkpoints[-1] )
return trainer.test(_A )
if __name__ == "__main__":
main()
| 342 |
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]:
__magic_name__ : int = parent
__magic_name__ : Tuple = batch_size
__magic_name__ : int = image_size
__magic_name__ : str = num_channels
__magic_name__ : Dict = patch_size
__magic_name__ : Tuple = num_frames
__magic_name__ : List[Any] = is_training
__magic_name__ : List[Any] = use_labels
__magic_name__ : Dict = hidden_size
__magic_name__ : List[Any] = num_hidden_layers
__magic_name__ : str = num_attention_heads
__magic_name__ : List[Any] = intermediate_size
__magic_name__ : Dict = hidden_act
__magic_name__ : List[Any] = hidden_dropout_prob
__magic_name__ : Union[str, Any] = attention_probs_dropout_prob
__magic_name__ : Tuple = attention_type
__magic_name__ : List[str] = initializer_range
__magic_name__ : Optional[Any] = scope
__magic_name__ : Tuple = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__magic_name__ : str = (image_size // patch_size) ** 2
__magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Optional[Any] = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__magic_name__ : str = None
if self.use_labels:
__magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels )
__magic_name__ : Optional[Any] = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self ) -> str:
__magic_name__ : Dict = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__magic_name__ : Optional[Any] = self.num_labels
return config
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Optional[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any:
__magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : List[Any] = model(lowerCAmelCase__ )
# verify the logits shape
__magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ )
def __magic_name__ ( self ) -> Any:
__magic_name__ : Union[str, Any] = self.prepare_config_and_inputs()
__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs
__magic_name__ : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowercase__ : Union[str, Any] = (
{'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowercase__ : int = False
lowercase__ : str = False
lowercase__ : Tuple = False
lowercase__ : Any = False
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : List[Any] = TimesformerModelTester(self )
__magic_name__ : List[str] = ConfigTester(
self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]:
__magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ )
if return_labels:
if model_class in get_values(lowerCAmelCase__ ):
__magic_name__ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ )
return inputs_dict
def __magic_name__ ( self ) -> List[str]:
self.config_tester.run_common_tests()
@unittest.skip(reason="""TimeSformer does not use inputs_embeds""" )
def __magic_name__ ( self ) -> str:
pass
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : List[Any] = model_class(lowerCAmelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__magic_name__ : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) )
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Dict = model_class(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Optional[int] = [*signature.parameters.keys()]
__magic_name__ : Any = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ )
@slow
def __magic_name__ ( self ) -> Optional[int]:
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
if not self.has_attentions:
pass
else:
__magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[int] = True
for model_class in self.all_model_classes:
__magic_name__ : Tuple = self.model_tester.seq_length
__magic_name__ : int = self.model_tester.num_frames
__magic_name__ : Any = True
__magic_name__ : Tuple = False
__magic_name__ : Optional[int] = True
__magic_name__ : str = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : List[str] = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__magic_name__ : Optional[Any] = True
__magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : int = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__magic_name__ : Union[str, Any] = len(lowerCAmelCase__ )
# Check attention is always last and order is fine
__magic_name__ : str = True
__magic_name__ : Optional[Any] = True
__magic_name__ : int = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) )
__magic_name__ : Union[str, Any] = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def __magic_name__ ( self ) -> Any:
def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
__magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : Optional[Any] = outputs.hidden_states
__magic_name__ : str = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
__magic_name__ : str = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Optional[Any] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : Union[str, Any] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : List[Any] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" )
__magic_name__ : List[str] = np.load(_A )
return list(_A )
@require_torch
@require_vision
class snake_case__ ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self ) -> Optional[Any]:
# logits were tested with a different mean and std, so we use the same here
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to(
lowerCAmelCase__ )
__magic_name__ : str = self.default_image_processor
__magic_name__ : Any = prepare_video()
__magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
__magic_name__ : int = model(**lowerCAmelCase__ )
# verify the logits
__magic_name__ : Optional[int] = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
| 342 | 1 |
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
_enforce_args(_A, _A )
if n == 0:
return 0
__magic_name__ : List[Any] = float("""-inf""" )
for i in range(1, n + 1 ):
__magic_name__ : Any = max(
_A, prices[i - 1] + naive_cut_rod_recursive(n - i, _A ) )
return max_revue
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
_enforce_args(_A, _A )
__magic_name__ : Optional[int] = [float("""-inf""" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(_A, _A, _A )
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
__magic_name__ : Optional[int] = float("""-inf""" )
for i in range(1, n + 1 ):
__magic_name__ : Optional[int] = max(
_A, prices[i - 1] + _top_down_cut_rod_recursive(n - i, _A, _A ), )
__magic_name__ : Optional[Any] = max_revenue
return max_rev[n]
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
_enforce_args(_A, _A )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
__magic_name__ : Dict = [float("""-inf""" ) for _ in range(n + 1 )]
__magic_name__ : str = 0
for i in range(1, n + 1 ):
__magic_name__ : int = max_rev[i]
for j in range(1, i + 1 ):
__magic_name__ : Union[str, Any] = max(_A, prices[j - 1] + max_rev[i - j] )
__magic_name__ : Tuple = max_revenue_i
return max_rev[n]
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
if n < 0:
__magic_name__ : Any = f'n must be greater than or equal to 0. Got n = {n}'
raise ValueError(_A )
if n > len(_A ):
__magic_name__ : List[Any] = (
"""Each integral piece of rod must have a corresponding price. """
f'Got n = {n} but length of prices = {len(_A )}'
)
raise ValueError(_A )
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : Dict = [6, 10, 12, 15, 20, 23]
__magic_name__ : Union[str, Any] = len(_A )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
__magic_name__ : List[Any] = 36
__magic_name__ : Tuple = top_down_cut_rod(_A, _A )
__magic_name__ : Union[str, Any] = bottom_up_cut_rod(_A, _A )
__magic_name__ : Optional[int] = naive_cut_rod_recursive(_A, _A )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 342 |
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : List[Any] = [0] * len(_A )
__magic_name__ : List[str] = []
__magic_name__ : List[str] = [1] * len(_A )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(_A ) ):
if indegree[i] == 0:
queue.append(_A )
while queue:
__magic_name__ : Dict = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
__magic_name__ : int = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(_A )
print(max(_A ) )
# Adjacency list of Graph
__magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 342 | 1 |
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
__magic_name__: List[Any] = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n"
__magic_name__: str = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n"
__magic_name__: int = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class snake_case__ ( datasets.Metric ):
def __magic_name__ ( self ) -> Any:
if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ):
raise ImportWarning(
"""To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"""
"""You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[
"""https://github.com/m-popovic/chrF""",
] , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = CHRF.CHAR_ORDER , lowerCAmelCase__ = CHRF.WORD_ORDER , lowerCAmelCase__ = CHRF.BETA , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , ) -> Any:
__magic_name__ : Any = len(references[0] )
if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ):
raise ValueError("""Sacrebleu requires the same number of references for each prediction""" )
__magic_name__ : int = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )]
__magic_name__ : Optional[int] = CHRF(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : List[Any] = sb_chrf.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
}
| 342 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class snake_case__ ( unittest.TestCase ):
def __magic_name__ ( self ) -> str:
__magic_name__ : Tuple = """ylacombe/bark-small"""
__magic_name__ : List[str] = tempfile.mkdtemp()
__magic_name__ : Optional[Any] = """en_speaker_1"""
__magic_name__ : Union[str, Any] = """This is a test string"""
__magic_name__ : Optional[int] = """speaker_embeddings_path.json"""
__magic_name__ : Any = """speaker_embeddings"""
def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]:
return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ )
def __magic_name__ ( self ) -> Optional[Any]:
shutil.rmtree(self.tmpdirname )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Optional[Any] = self.get_tokenizer()
__magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ )
processor.save_pretrained(self.tmpdirname )
__magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : Optional[int] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
__magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__magic_name__ : str = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def __magic_name__ ( self ) -> Any:
__magic_name__ : List[str] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
__magic_name__ : Union[str, Any] = 35
__magic_name__ : List[Any] = 2
__magic_name__ : Dict = 8
__magic_name__ : Tuple = {
"""semantic_prompt""": np.ones(lowerCAmelCase__ ),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
__magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
__magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" )
np.savez(lowerCAmelCase__ , **lowerCAmelCase__ )
__magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ )
__magic_name__ : List[Any] = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
__magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset )
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : str = self.get_tokenizer()
__magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ )
__magic_name__ : Optional[Any] = processor(text=self.input_string )
__magic_name__ : List[Any] = tokenizer(
self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 342 | 1 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
__magic_name__: Optional[int] = logging.get_logger(__name__)
__magic_name__: int = [
("bert.bert", "visual_bert"),
("bert.cls", "cls"),
("bert.classifier", "cls"),
("token_type_embeddings_visual", "visual_token_type_embeddings"),
("position_embeddings_visual", "visual_position_embeddings"),
("projection", "visual_projection"),
]
__magic_name__: List[str] = [
"nlvr2_coco_pre_trained.th",
"nlvr2_fine_tuned.th",
"nlvr2_pre_trained.th",
"vcr_coco_pre_train.th",
"vcr_fine_tune.th",
"vcr_pre_train.th",
"vqa_coco_pre_trained.th",
"vqa_fine_tuned.th",
"vqa_pre_trained.th",
]
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : List[str] = torch.load(_A, map_location="""cpu""" )
return sd
def UpperCamelCase ( _A, _A, _A=rename_keys_prefix ):
"""simple docstring"""
__magic_name__ : Optional[Any] = OrderedDict()
__magic_name__ : int = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
__magic_name__ : Union[str, Any] = key
for name_pair in rename_keys_prefix:
__magic_name__ : str = new_key.replace(name_pair[0], name_pair[1] )
__magic_name__ : Union[str, Any] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
__magic_name__ : Tuple = new_d["""cls.predictions.bias"""]
return new_d
@torch.no_grad()
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
assert (
checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS
), f'The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'
# Get Config
if "pre" in checkpoint_path:
__magic_name__ : str = """pretraining"""
if "vcr" in checkpoint_path:
__magic_name__ : Tuple = {"""visual_embedding_dim""": 512}
elif "vqa_advanced" in checkpoint_path:
__magic_name__ : Union[str, Any] = {"""visual_embedding_dim""": 2048}
elif "vqa" in checkpoint_path:
__magic_name__ : Dict = {"""visual_embedding_dim""": 2048}
elif "nlvr" in checkpoint_path:
__magic_name__ : Any = {"""visual_embedding_dim""": 1024}
else:
raise NotImplementedError(f'No implementation found for `{checkpoint_path}`.' )
else:
if "vcr" in checkpoint_path:
__magic_name__ : str = {"""visual_embedding_dim""": 512}
__magic_name__ : int = """multichoice"""
elif "vqa_advanced" in checkpoint_path:
__magic_name__ : Optional[int] = {"""visual_embedding_dim""": 2048}
__magic_name__ : Optional[int] = """vqa_advanced"""
elif "vqa" in checkpoint_path:
__magic_name__ : Dict = {"""visual_embedding_dim""": 2048, """num_labels""": 3129}
__magic_name__ : Any = """vqa"""
elif "nlvr" in checkpoint_path:
__magic_name__ : Optional[int] = {
"""visual_embedding_dim""": 1024,
"""num_labels""": 2,
}
__magic_name__ : Tuple = """nlvr"""
__magic_name__ : Tuple = VisualBertConfig(**_A )
# Load State Dict
__magic_name__ : int = load_state_dict(_A )
__magic_name__ : Optional[Any] = get_new_dict(_A, _A )
if model_type == "pretraining":
__magic_name__ : Union[str, Any] = VisualBertForPreTraining(_A )
elif model_type == "vqa":
__magic_name__ : Union[str, Any] = VisualBertForQuestionAnswering(_A )
elif model_type == "nlvr":
__magic_name__ : str = VisualBertForVisualReasoning(_A )
elif model_type == "multichoice":
__magic_name__ : str = VisualBertForMultipleChoice(_A )
model.load_state_dict(_A )
# Save Checkpoints
Path(_A ).mkdir(exist_ok=_A )
model.save_pretrained(_A )
if __name__ == "__main__":
__magic_name__: Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("orig_checkpoint_path", type=str, help="A path to .th on local filesystem.")
parser.add_argument("pytorch_dump_folder_path", type=str, help="Path to the output PyTorch model.")
__magic_name__: Optional[int] = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 342 |
import unittest
import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class snake_case__ ( unittest.TestCase ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]:
__magic_name__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18}
__magic_name__ : str = parent
__magic_name__ : Any = batch_size
__magic_name__ : Any = num_channels
__magic_name__ : List[str] = image_size
__magic_name__ : Tuple = min_resolution
__magic_name__ : Union[str, Any] = max_resolution
__magic_name__ : List[str] = do_resize
__magic_name__ : Optional[Any] = size
__magic_name__ : Optional[Any] = do_normalize
__magic_name__ : Any = image_mean
__magic_name__ : List[str] = image_std
def __magic_name__ ( self ) -> List[str]:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Any = DPTImageProcessor if is_vision_available() else None
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : Dict = DPTImageProcessingTester(self )
@property
def __magic_name__ ( self ) -> Union[str, Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) )
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
__magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def __magic_name__ ( self ) -> str:
# Initialize image_processing
__magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
__magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __magic_name__ ( self ) -> Tuple:
# Initialize image_processing
__magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__magic_name__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
__magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __magic_name__ ( self ) -> Optional[Any]:
# Initialize image_processing
__magic_name__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
__magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__magic_name__ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 342 | 1 |
import math_equivalence # From: git+https://github.com/hendrycks/math.git
import datasets
__magic_name__: str = "\\n@article{hendrycksmath2021,\n title={Measuring Mathematical Problem Solving With the MATH Dataset},\n author={Dan Hendrycks\n and Collin Burns\n and Saurav Kadavath\n and Akul Arora\n and Steven Basart\n and Eric Tang\n and Dawn Song\n and Jacob Steinhardt},\n journal={arXiv preprint arXiv:2103.03874},\n year={2021}\n}\n"
__magic_name__: Optional[Any] = "\\nThis metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.\nIt first canonicalizes the inputs (e.g., converting \"1/2\" to \"\\frac{1}{2}\") and then computes accuracy.\n"
__magic_name__: int = r"\nCalculates accuracy after canonicalizing inputs.\n\nArgs:\n predictions: list of predictions to score. Each prediction\n is a string that contains natural language and LaTex.\n references: list of reference for each prediction. Each\n reference is a string that contains natural language\n and LaTex.\nReturns:\n accuracy: accuracy after canonicalizing inputs\n (e.g., converting \"1/2\" to \"\\frac{1}{2}\")\n\nExamples:\n >>> metric = datasets.load_metric(\"competition_math\")\n >>> results = metric.compute(references=[\"\\frac{1}{2}\"], predictions=[\"1/2\"])\n >>> print(results)\n {'accuracy': 1.0}\n"
@datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class snake_case__ ( datasets.Metric ):
def __magic_name__ ( self ) -> Tuple:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" ),
"""references""": datasets.Value("""string""" ),
} ) , homepage="""https://github.com/hendrycks/math""" , codebase_urls=["""https://github.com/hendrycks/math"""] , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : Union[str, Any] = 0.0
for i, j in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
n_correct += 1.0 if math_equivalence.is_equiv(lowerCAmelCase__ , lowerCAmelCase__ ) else 0.0
__magic_name__ : str = n_correct / len(lowerCAmelCase__ )
return {
"accuracy": accuracy,
}
| 342 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
__magic_name__: Tuple = {
"Acehnese Arabic": "ace_Arab",
"Acehnese Latin": "ace_Latn",
"Mesopotamian Arabic": "acm_Arab",
"Ta'izzi-Adeni Arabic": "acq_Arab",
"Tunisian Arabic": "aeb_Arab",
"Afrikaans": "afr_Latn",
"South Levantine Arabic": "ajp_Arab",
"Akan": "aka_Latn",
"Amharic": "amh_Ethi",
"North Levantine Arabic": "apc_Arab",
"Modern Standard Arabic": "arb_Arab",
"Modern Standard Arabic Romanized": "arb_Latn",
"Najdi Arabic": "ars_Arab",
"Moroccan Arabic": "ary_Arab",
"Egyptian Arabic": "arz_Arab",
"Assamese": "asm_Beng",
"Asturian": "ast_Latn",
"Awadhi": "awa_Deva",
"Central Aymara": "ayr_Latn",
"South Azerbaijani": "azb_Arab",
"North Azerbaijani": "azj_Latn",
"Bashkir": "bak_Cyrl",
"Bambara": "bam_Latn",
"Balinese": "ban_Latn",
"Belarusian": "bel_Cyrl",
"Bemba": "bem_Latn",
"Bengali": "ben_Beng",
"Bhojpuri": "bho_Deva",
"Banjar Arabic": "bjn_Arab",
"Banjar Latin": "bjn_Latn",
"Standard Tibetan": "bod_Tibt",
"Bosnian": "bos_Latn",
"Buginese": "bug_Latn",
"Bulgarian": "bul_Cyrl",
"Catalan": "cat_Latn",
"Cebuano": "ceb_Latn",
"Czech": "ces_Latn",
"Chokwe": "cjk_Latn",
"Central Kurdish": "ckb_Arab",
"Crimean Tatar": "crh_Latn",
"Welsh": "cym_Latn",
"Danish": "dan_Latn",
"German": "deu_Latn",
"Southwestern Dinka": "dik_Latn",
"Dyula": "dyu_Latn",
"Dzongkha": "dzo_Tibt",
"Greek": "ell_Grek",
"English": "eng_Latn",
"Esperanto": "epo_Latn",
"Estonian": "est_Latn",
"Basque": "eus_Latn",
"Ewe": "ewe_Latn",
"Faroese": "fao_Latn",
"Fijian": "fij_Latn",
"Finnish": "fin_Latn",
"Fon": "fon_Latn",
"French": "fra_Latn",
"Friulian": "fur_Latn",
"Nigerian Fulfulde": "fuv_Latn",
"Scottish Gaelic": "gla_Latn",
"Irish": "gle_Latn",
"Galician": "glg_Latn",
"Guarani": "grn_Latn",
"Gujarati": "guj_Gujr",
"Haitian Creole": "hat_Latn",
"Hausa": "hau_Latn",
"Hebrew": "heb_Hebr",
"Hindi": "hin_Deva",
"Chhattisgarhi": "hne_Deva",
"Croatian": "hrv_Latn",
"Hungarian": "hun_Latn",
"Armenian": "hye_Armn",
"Igbo": "ibo_Latn",
"Ilocano": "ilo_Latn",
"Indonesian": "ind_Latn",
"Icelandic": "isl_Latn",
"Italian": "ita_Latn",
"Javanese": "jav_Latn",
"Japanese": "jpn_Jpan",
"Kabyle": "kab_Latn",
"Jingpho": "kac_Latn",
"Kamba": "kam_Latn",
"Kannada": "kan_Knda",
"Kashmiri Arabic": "kas_Arab",
"Kashmiri Devanagari": "kas_Deva",
"Georgian": "kat_Geor",
"Central Kanuri Arabic": "knc_Arab",
"Central Kanuri Latin": "knc_Latn",
"Kazakh": "kaz_Cyrl",
"Kabiyè": "kbp_Latn",
"Kabuverdianu": "kea_Latn",
"Khmer": "khm_Khmr",
"Kikuyu": "kik_Latn",
"Kinyarwanda": "kin_Latn",
"Kyrgyz": "kir_Cyrl",
"Kimbundu": "kmb_Latn",
"Northern Kurdish": "kmr_Latn",
"Kikongo": "kon_Latn",
"Korean": "kor_Hang",
"Lao": "lao_Laoo",
"Ligurian": "lij_Latn",
"Limburgish": "lim_Latn",
"Lingala": "lin_Latn",
"Lithuanian": "lit_Latn",
"Lombard": "lmo_Latn",
"Latgalian": "ltg_Latn",
"Luxembourgish": "ltz_Latn",
"Luba-Kasai": "lua_Latn",
"Ganda": "lug_Latn",
"Luo": "luo_Latn",
"Mizo": "lus_Latn",
"Standard Latvian": "lvs_Latn",
"Magahi": "mag_Deva",
"Maithili": "mai_Deva",
"Malayalam": "mal_Mlym",
"Marathi": "mar_Deva",
"Minangkabau Arabic ": "min_Arab",
"Minangkabau Latin": "min_Latn",
"Macedonian": "mkd_Cyrl",
"Plateau Malagasy": "plt_Latn",
"Maltese": "mlt_Latn",
"Meitei Bengali": "mni_Beng",
"Halh Mongolian": "khk_Cyrl",
"Mossi": "mos_Latn",
"Maori": "mri_Latn",
"Burmese": "mya_Mymr",
"Dutch": "nld_Latn",
"Norwegian Nynorsk": "nno_Latn",
"Norwegian Bokmål": "nob_Latn",
"Nepali": "npi_Deva",
"Northern Sotho": "nso_Latn",
"Nuer": "nus_Latn",
"Nyanja": "nya_Latn",
"Occitan": "oci_Latn",
"West Central Oromo": "gaz_Latn",
"Odia": "ory_Orya",
"Pangasinan": "pag_Latn",
"Eastern Panjabi": "pan_Guru",
"Papiamento": "pap_Latn",
"Western Persian": "pes_Arab",
"Polish": "pol_Latn",
"Portuguese": "por_Latn",
"Dari": "prs_Arab",
"Southern Pashto": "pbt_Arab",
"Ayacucho Quechua": "quy_Latn",
"Romanian": "ron_Latn",
"Rundi": "run_Latn",
"Russian": "rus_Cyrl",
"Sango": "sag_Latn",
"Sanskrit": "san_Deva",
"Santali": "sat_Olck",
"Sicilian": "scn_Latn",
"Shan": "shn_Mymr",
"Sinhala": "sin_Sinh",
"Slovak": "slk_Latn",
"Slovenian": "slv_Latn",
"Samoan": "smo_Latn",
"Shona": "sna_Latn",
"Sindhi": "snd_Arab",
"Somali": "som_Latn",
"Southern Sotho": "sot_Latn",
"Spanish": "spa_Latn",
"Tosk Albanian": "als_Latn",
"Sardinian": "srd_Latn",
"Serbian": "srp_Cyrl",
"Swati": "ssw_Latn",
"Sundanese": "sun_Latn",
"Swedish": "swe_Latn",
"Swahili": "swh_Latn",
"Silesian": "szl_Latn",
"Tamil": "tam_Taml",
"Tatar": "tat_Cyrl",
"Telugu": "tel_Telu",
"Tajik": "tgk_Cyrl",
"Tagalog": "tgl_Latn",
"Thai": "tha_Thai",
"Tigrinya": "tir_Ethi",
"Tamasheq Latin": "taq_Latn",
"Tamasheq Tifinagh": "taq_Tfng",
"Tok Pisin": "tpi_Latn",
"Tswana": "tsn_Latn",
"Tsonga": "tso_Latn",
"Turkmen": "tuk_Latn",
"Tumbuka": "tum_Latn",
"Turkish": "tur_Latn",
"Twi": "twi_Latn",
"Central Atlas Tamazight": "tzm_Tfng",
"Uyghur": "uig_Arab",
"Ukrainian": "ukr_Cyrl",
"Umbundu": "umb_Latn",
"Urdu": "urd_Arab",
"Northern Uzbek": "uzn_Latn",
"Venetian": "vec_Latn",
"Vietnamese": "vie_Latn",
"Waray": "war_Latn",
"Wolof": "wol_Latn",
"Xhosa": "xho_Latn",
"Eastern Yiddish": "ydd_Hebr",
"Yoruba": "yor_Latn",
"Yue Chinese": "yue_Hant",
"Chinese Simplified": "zho_Hans",
"Chinese Traditional": "zho_Hant",
"Standard Malay": "zsm_Latn",
"Zulu": "zul_Latn",
}
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M'''
lowercase__ : List[Any] = (
'''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should '''
'''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, '''
'''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in '''
'''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.'''
)
lowercase__ : List[str] = '''translator'''
lowercase__ : Optional[Any] = AutoTokenizer
lowercase__ : int = AutoModelForSeqaSeqLM
lowercase__ : List[Any] = LANGUAGE_CODES
lowercase__ : str = ['''text''', '''text''', '''text''']
lowercase__ : Any = ['''text''']
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]:
if src_lang not in self.lang_to_code:
raise ValueError(F'{src_lang} is not a supported language.' )
if tgt_lang not in self.lang_to_code:
raise ValueError(F'{tgt_lang} is not a supported language.' )
__magic_name__ : Tuple = self.lang_to_code[src_lang]
__magic_name__ : Dict = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.model.generate(**lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
| 342 | 1 |
import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
__magic_name__: str = {
"cola": 2,
"mnli": 3,
"mrpc": 2,
"sst-2": 2,
"sts-b": 1,
"qqp": 2,
"qnli": 2,
"rte": 2,
"wnli": 2,
}
logging.set_verbosity_info()
def UpperCamelCase ( _A, _A, _A, _A=None ):
"""simple docstring"""
__magic_name__ : Optional[Any] = XLNetConfig.from_json_file(_A )
__magic_name__ : str = finetuning_task.lower() if finetuning_task is not None else """"""
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(f'Building PyTorch XLNetForSequenceClassification model from configuration: {config}' )
__magic_name__ : List[Any] = finetuning_task
__magic_name__ : List[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task]
__magic_name__ : Optional[Any] = XLNetForSequenceClassification(_A )
elif "squad" in finetuning_task:
__magic_name__ : Optional[Any] = finetuning_task
__magic_name__ : Union[str, Any] = XLNetForQuestionAnswering(_A )
else:
__magic_name__ : List[str] = XLNetLMHeadModel(_A )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(_A, _A, _A )
# Save pytorch-model
__magic_name__ : Tuple = os.path.join(_A, _A )
__magic_name__ : List[Any] = os.path.join(_A, _A )
print(f'Save PyTorch model to {os.path.abspath(_A )}' )
torch.save(model.state_dict(), _A )
print(f'Save configuration file to {os.path.abspath(_A )}' )
with open(_A, """w""", encoding="""utf-8""" ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__magic_name__: List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--xlnet_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained XLNet model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=str,
required=True,
help="Path to the folder to store the PyTorch model or dataset/vocab.",
)
parser.add_argument(
"--finetuning_task",
default=None,
type=str,
help="Name of a task on which the XLNet TensorFlow model was fine-tuned",
)
__magic_name__: str = parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| 342 |
import math
class snake_case__ :
def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1
__magic_name__ : Tuple = n
__magic_name__ : Union[str, Any] = [
[math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ )
] # adjacency matrix for weight
__magic_name__ : List[Any] = [
[math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ )
] # dp[i][j] stores minimum distance from i to j
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : Dict = w
def __magic_name__ ( self ) -> Optional[int]:
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
__magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str:
return self.dp[u][v]
if __name__ == "__main__":
__magic_name__: Dict = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 342 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
__magic_name__: Dict = {
"configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"]
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__: str = ["ConvNextFeatureExtractor"]
__magic_name__: Union[str, Any] = ["ConvNextImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__: Optional[int] = [
"CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"ConvNextForImageClassification",
"ConvNextModel",
"ConvNextPreTrainedModel",
"ConvNextBackbone",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__: int = [
"TFConvNextForImageClassification",
"TFConvNextModel",
"TFConvNextPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_convnext import ConvNextFeatureExtractor
from .image_processing_convnext import ConvNextImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convnext import (
CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvNextBackbone,
ConvNextForImageClassification,
ConvNextModel,
ConvNextPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel
else:
import sys
__magic_name__: List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 342 |
from __future__ import annotations
import math
import random
from collections.abc import Collection
from typing import overload
class snake_case__ :
def __init__( self , lowerCAmelCase__ = None ) -> None:
if components is None:
__magic_name__ : Any = []
__magic_name__ : List[str] = list(lowerCAmelCase__ )
def __len__( self ) -> int:
return len(self.__components )
def __str__( self ) -> str:
return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")"
def __add__( self , lowerCAmelCase__ ) -> Vector:
__magic_name__ : Dict = len(self )
if size == len(lowerCAmelCase__ ):
__magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return Vector(lowerCAmelCase__ )
else:
raise Exception("""must have the same size""" )
def __sub__( self , lowerCAmelCase__ ) -> Vector:
__magic_name__ : int = len(self )
if size == len(lowerCAmelCase__ ):
__magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return Vector(lowerCAmelCase__ )
else: # error case
raise Exception("""must have the same size""" )
@overload
def __mul__( self , lowerCAmelCase__ ) -> Vector:
...
@overload
def __mul__( self , lowerCAmelCase__ ) -> float:
...
def __mul__( self , lowerCAmelCase__ ) -> float | Vector:
if isinstance(lowerCAmelCase__ , (float, int) ):
__magic_name__ : Optional[Any] = [c * other for c in self.__components]
return Vector(lowerCAmelCase__ )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ):
__magic_name__ : Optional[Any] = len(self )
__magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return sum(lowerCAmelCase__ )
else: # error case
raise Exception("""invalid operand!""" )
def __magic_name__ ( self ) -> Vector:
return Vector(self.__components )
def __magic_name__ ( self , lowerCAmelCase__ ) -> float:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ):
return self.__components[i]
else:
raise Exception("""index out of range""" )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
assert -len(self.__components ) <= pos < len(self.__components )
__magic_name__ : Optional[int] = value
def __magic_name__ ( self ) -> float:
if len(self.__components ) == 0:
raise Exception("""Vector is empty""" )
__magic_name__ : Dict = [c**2 for c in self.__components]
return math.sqrt(sum(lowerCAmelCase__ ) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float:
__magic_name__ : Optional[Any] = self * other
__magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length()
if deg:
return math.degrees(math.acos(num / den ) )
else:
return math.acos(num / den )
def UpperCamelCase ( _A ):
"""simple docstring"""
assert isinstance(_A, _A )
return Vector([0] * dimension )
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
assert isinstance(_A, _A ) and (isinstance(_A, _A ))
__magic_name__ : Union[str, Any] = [0] * dimension
__magic_name__ : Optional[int] = 1
return Vector(_A )
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
assert (
isinstance(_A, _A )
and isinstance(_A, _A )
and (isinstance(_A, (int, float) ))
)
return x * scalar + y
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
random.seed(_A )
__magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )]
return Vector(_A )
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
__magic_name__ : Dict = matrix
__magic_name__ : Tuple = w
__magic_name__ : Union[str, Any] = h
def __str__( self ) -> str:
__magic_name__ : Dict = """"""
for i in range(self.__height ):
ans += "|"
for j in range(self.__width ):
if j < self.__width - 1:
ans += str(self.__matrix[i][j] ) + ","
else:
ans += str(self.__matrix[i][j] ) + "|\n"
return ans
def __add__( self , lowerCAmelCase__ ) -> Matrix:
if self.__width == other.width() and self.__height == other.height():
__magic_name__ : Tuple = []
for i in range(self.__height ):
__magic_name__ : Tuple = [
self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ )
for j in range(self.__width )
]
matrix.append(lowerCAmelCase__ )
return Matrix(lowerCAmelCase__ , self.__width , self.__height )
else:
raise Exception("""matrix must have the same dimension!""" )
def __sub__( self , lowerCAmelCase__ ) -> Matrix:
if self.__width == other.width() and self.__height == other.height():
__magic_name__ : Optional[Any] = []
for i in range(self.__height ):
__magic_name__ : int = [
self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ )
for j in range(self.__width )
]
matrix.append(lowerCAmelCase__ )
return Matrix(lowerCAmelCase__ , self.__width , self.__height )
else:
raise Exception("""matrices must have the same dimension!""" )
@overload
def __mul__( self , lowerCAmelCase__ ) -> Matrix:
...
@overload
def __mul__( self , lowerCAmelCase__ ) -> Vector:
...
def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector
if len(lowerCAmelCase__ ) == self.__width:
__magic_name__ : Tuple = zero_vector(self.__height )
for i in range(self.__height ):
__magic_name__ : Optional[int] = [
self.__matrix[i][j] * other.component(lowerCAmelCase__ )
for j in range(self.__width )
]
ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) )
return ans
else:
raise Exception(
"""vector must have the same size as the """
"""number of columns of the matrix!""" )
elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar
__magic_name__ : Any = [
[self.__matrix[i][j] * other for j in range(self.__width )]
for i in range(self.__height )
]
return Matrix(lowerCAmelCase__ , self.__width , self.__height )
return None
def __magic_name__ ( self ) -> int:
return self.__height
def __magic_name__ ( self ) -> int:
return self.__width
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float:
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else:
raise Exception("""change_component: indices out of bounds""" )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
if 0 <= x < self.__height and 0 <= y < self.__width:
__magic_name__ : List[Any] = value
else:
raise Exception("""change_component: indices out of bounds""" )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float:
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
__magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(lowerCAmelCase__ ) ):
__magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :]
return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant()
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float:
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ )
else:
raise Exception("""Indices out of bounds""" )
def __magic_name__ ( self ) -> float:
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
if self.__height < 1:
raise Exception("""Matrix has no element""" )
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
__magic_name__ : str = [
self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width )
]
return sum(lowerCAmelCase__ )
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )]
return Matrix(_A, _A, _A )
def UpperCamelCase ( _A, _A, _A, _A ):
"""simple docstring"""
random.seed(_A )
__magic_name__ : list[list[float]] = [
[random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A )
]
return Matrix(_A, _A, _A )
| 342 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__magic_name__: List[str] = logging.get_logger(__name__)
__magic_name__: Optional[int] = {
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json",
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json",
"xlm-roberta-large-finetuned-conll02-dutch": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll02-spanish": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll03-english": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json"
),
"xlm-roberta-large-finetuned-conll03-german": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json"
),
}
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : str = '''xlm-roberta'''
def __init__( self , lowerCAmelCase__=3_05_22 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-1_2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Union[str, Any]:
super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
__magic_name__ : List[str] = vocab_size
__magic_name__ : List[str] = hidden_size
__magic_name__ : str = num_hidden_layers
__magic_name__ : List[Any] = num_attention_heads
__magic_name__ : Any = hidden_act
__magic_name__ : Dict = intermediate_size
__magic_name__ : Any = hidden_dropout_prob
__magic_name__ : List[str] = attention_probs_dropout_prob
__magic_name__ : Any = max_position_embeddings
__magic_name__ : Optional[int] = type_vocab_size
__magic_name__ : Any = initializer_range
__magic_name__ : int = layer_norm_eps
__magic_name__ : Optional[int] = position_embedding_type
__magic_name__ : List[Any] = use_cache
__magic_name__ : List[Any] = classifier_dropout
class snake_case__ ( _lowerCAmelCase ):
@property
def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
__magic_name__ : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__magic_name__ : Optional[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 342 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
__magic_name__: str = logging.get_logger(__name__)
__magic_name__: int = "▁"
__magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"}
__magic_name__: List[str] = {
"vocab_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model"
),
}
}
__magic_name__: Tuple = {
"facebook/nllb-200-distilled-600M": 1_024,
}
# fmt: off
__magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"]
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : str = VOCAB_FILES_NAMES
lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__ : str = ['''input_ids''', '''attention_mask''']
lowercase__ : List[int] = []
lowercase__ : List[int] = []
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int:
# Mask token behave like a normal word, i.e. include the space before it
__magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
__magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
__magic_name__ : Optional[Any] = legacy_behaviour
super().__init__(
bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , )
__magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowerCAmelCase__ ) )
__magic_name__ : List[Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a'
# spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s'
# Mimic fairseq token-to-id alignment for the first 4 token
__magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__magic_name__ : List[Any] = 1
__magic_name__ : Dict = len(self.sp_model )
__magic_name__ : int = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ )
}
__magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()}
__magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
__magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
__magic_name__ : List[str] = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
__magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn"""
__magic_name__ : Any = self.lang_code_to_id[self._src_lang]
__magic_name__ : Optional[int] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self ) -> Any:
__magic_name__ : List[Any] = self.__dict__.copy()
__magic_name__ : int = None
__magic_name__ : Optional[int] = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , lowerCAmelCase__ ) -> Any:
__magic_name__ : Any = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__magic_name__ : Any = {}
__magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def __magic_name__ ( self ) -> str:
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def __magic_name__ ( self ) -> str:
return self._src_lang
@src_lang.setter
def __magic_name__ ( self , lowerCAmelCase__ ) -> None:
__magic_name__ : Tuple = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
__magic_name__ : Optional[int] = [1] * len(self.prefix_tokens )
__magic_name__ : Any = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones
return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
__magic_name__ : str = [self.sep_token_id]
__magic_name__ : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]:
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
__magic_name__ : Dict = src_lang
__magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ )
__magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ )
__magic_name__ : Tuple = tgt_lang_id
return inputs
def __magic_name__ ( self ) -> int:
__magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]:
return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __magic_name__ ( self , lowerCAmelCase__ ) -> str:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip()
return out_string
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
__magic_name__ : List[Any] = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase__ , """wb""" ) as fi:
__magic_name__ : List[str] = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase__ )
return (out_vocab_file,)
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding:
__magic_name__ : List[str] = src_lang
__magic_name__ : Dict = tgt_lang
return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ )
def __magic_name__ ( self ) -> str:
return self.set_src_lang_special_tokens(self.src_lang )
def __magic_name__ ( self ) -> List[str]:
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __magic_name__ ( self , lowerCAmelCase__ ) -> None:
__magic_name__ : Optional[int] = self.lang_code_to_id[src_lang]
if self.legacy_behaviour:
__magic_name__ : List[str] = []
__magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code]
else:
__magic_name__ : str = [self.cur_lang_code]
__magic_name__ : List[Any] = [self.eos_token_id]
def __magic_name__ ( self , lowerCAmelCase__ ) -> None:
__magic_name__ : List[str] = self.lang_code_to_id[lang]
if self.legacy_behaviour:
__magic_name__ : List[str] = []
__magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code]
else:
__magic_name__ : Optional[int] = [self.cur_lang_code]
__magic_name__ : Union[str, Any] = [self.eos_token_id]
| 342 | 1 |
from __future__ import annotations
from collections import deque
from collections.abc import Iterator
from dataclasses import dataclass
@dataclass
class snake_case__ :
lowercase__ : int
lowercase__ : int
class snake_case__ :
def __init__( self , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : list[list[Edge]] = [[] for _ in range(lowerCAmelCase__ )]
__magic_name__ : Optional[int] = size
def __getitem__( self , lowerCAmelCase__ ) -> Iterator[Edge]:
return iter(self._graph[vertex] )
@property
def __magic_name__ ( self ) -> int:
return self._size
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int:
if weight not in (0, 1):
raise ValueError("""Edge weight must be either 0 or 1.""" )
if to_vertex < 0 or to_vertex >= self.size:
raise ValueError("""Vertex indexes must be in [0; size).""" )
self._graph[from_vertex].append(Edge(lowerCAmelCase__ , lowerCAmelCase__ ) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int | None:
__magic_name__ : int = deque([start_vertex] )
__magic_name__ : list[int | None] = [None] * self.size
__magic_name__ : Optional[Any] = 0
while queue:
__magic_name__ : Optional[int] = queue.popleft()
__magic_name__ : str = distances[current_vertex]
if current_distance is None:
continue
for edge in self[current_vertex]:
__magic_name__ : str = current_distance + edge.weight
__magic_name__ : Any = distances[edge.destination_vertex]
if (
isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
and new_distance >= dest_vertex_distance
):
continue
__magic_name__ : Tuple = new_distance
if edge.weight == 0:
queue.appendleft(edge.destination_vertex )
else:
queue.append(edge.destination_vertex )
if distances[finish_vertex] is None:
raise ValueError("""No path from start_vertex to finish_vertex.""" )
return distances[finish_vertex]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 |
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
__magic_name__ : Dict = MobileBertConfig.from_json_file(_A )
print(f'Building PyTorch model from configuration: {config}' )
__magic_name__ : Tuple = MobileBertForPreTraining(_A )
# Load weights from tf checkpoint
__magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict(), _A )
if __name__ == "__main__":
__magic_name__: Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--mobilebert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained MobileBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__magic_name__: Dict = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 342 | 1 |
from maths.is_square_free import is_square_free
from maths.prime_factors import prime_factors
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : Union[str, Any] = prime_factors(_A )
if is_square_free(_A ):
return -1 if len(_A ) % 2 else 1
return 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 |
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Optional[Any] = MgpstrTokenizer
lowercase__ : int = False
lowercase__ : Any = {}
lowercase__ : Optional[int] = False
def __magic_name__ ( self ) -> Optional[Any]:
super().setUp()
# fmt: off
__magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
__magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
__magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" )
def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]:
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]:
__magic_name__ : List[str] = """tester"""
__magic_name__ : int = """tester"""
return input_text, output_text
@unittest.skip("""MGP-STR always lower cases letters.""" )
def __magic_name__ ( self ) -> str:
pass
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
__magic_name__ : Dict = """[SPECIAL_TOKEN]"""
tokenizer.add_special_tokens({"""cls_token""": special_token} )
__magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , 1 )
__magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
self.assertTrue(special_token not in decoded )
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ : int = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
__magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ )
__magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ )
__magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertNotEqual(len(lowerCAmelCase__ ) , 0 )
__magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ )
@unittest.skip("""MGP-STR tokenizer only handles one sequence.""" )
def __magic_name__ ( self ) -> Tuple:
pass
@unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" )
def __magic_name__ ( self ) -> Optional[Any]:
pass
| 342 | 1 |
from __future__ import annotations
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
__magic_name__ : Union[str, Any] = list(range(len(_A ) ) )
__magic_name__ : Dict = [v / w for v, w in zip(_A, _A )]
index.sort(key=lambda _A : ratio[i], reverse=_A )
__magic_name__ : float = 0
__magic_name__ : list[float] = [0] * len(_A )
for i in index:
if weight[i] <= capacity:
__magic_name__ : Optional[int] = 1
max_value += value[i]
capacity -= weight[i]
else:
__magic_name__ : int = capacity / weight[i]
max_value += value[i] * capacity / weight[i]
break
return max_value, fractions
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 |
import re
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" )
if match := re.search(_A, _A ):
return match.string == phone
return False
if __name__ == "__main__":
print(indian_phone_validator("+918827897895"))
| 342 | 1 |
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class snake_case__ ( unittest.TestCase ):
@parameterized.expand([(None,), ("""foo.json""",)] )
def __magic_name__ ( self , lowerCAmelCase__ ) -> int:
__magic_name__ : Optional[int] = GenerationConfig(
do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowerCAmelCase__ , config_name=lowerCAmelCase__ )
__magic_name__ : Any = GenerationConfig.from_pretrained(lowerCAmelCase__ , config_name=lowerCAmelCase__ )
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , lowerCAmelCase__ )
self.assertEqual(loaded_config.temperature , 0.7 )
self.assertEqual(loaded_config.length_penalty , 1.0 )
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] )
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 50 )
self.assertEqual(loaded_config.max_length , 20 )
self.assertEqual(loaded_config.max_time , lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : List[str] = AutoConfig.from_pretrained("""gpt2""" )
__magic_name__ : List[Any] = GenerationConfig.from_model_config(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id )
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id )
def __magic_name__ ( self ) -> int:
__magic_name__ : List[Any] = GenerationConfig()
__magic_name__ : Tuple = {
"""max_new_tokens""": 10_24,
"""foo""": """bar""",
}
__magic_name__ : Optional[int] = copy.deepcopy(lowerCAmelCase__ )
__magic_name__ : int = generation_config.update(**lowerCAmelCase__ )
# update_kwargs was not modified (no side effects)
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 10_24 )
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(lowerCAmelCase__ , {"""foo""": """bar"""} )
def __magic_name__ ( self ) -> str:
__magic_name__ : Tuple = GenerationConfig()
__magic_name__ : Optional[Any] = """bar"""
with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir:
generation_config.save_pretrained(lowerCAmelCase__ )
__magic_name__ : str = GenerationConfig.from_pretrained(lowerCAmelCase__ )
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , """bar""" )
__magic_name__ : Any = GenerationConfig.from_model_config(lowerCAmelCase__ )
assert not hasattr(lowerCAmelCase__ , """foo""" ) # no new kwargs should be initialized if from config
def __magic_name__ ( self ) -> str:
__magic_name__ : Union[str, Any] = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0 )
self.assertEqual(default_config.do_sample , lowerCAmelCase__ )
self.assertEqual(default_config.num_beams , 1 )
__magic_name__ : List[str] = GenerationConfig(
do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7 )
self.assertEqual(config.do_sample , lowerCAmelCase__ )
self.assertEqual(config.num_beams , 1 )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowerCAmelCase__ )
__magic_name__ : int = GenerationConfig.from_pretrained(lowerCAmelCase__ , temperature=1.0 )
self.assertEqual(loaded_config.temperature , 1.0 )
self.assertEqual(loaded_config.do_sample , lowerCAmelCase__ )
self.assertEqual(loaded_config.num_beams , 1 ) # default value
@is_staging_test
class snake_case__ ( unittest.TestCase ):
@classmethod
def __magic_name__ ( cls ) -> Any:
__magic_name__ : Optional[int] = TOKEN
HfFolder.save_token(lowerCAmelCase__ )
@classmethod
def __magic_name__ ( cls ) -> List[str]:
try:
delete_repo(token=cls._token , repo_id="""test-generation-config""" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" )
except HTTPError:
pass
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : Union[str, Any] = GenerationConfig(
do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("""test-generation-config""" , use_auth_token=self._token )
__magic_name__ : int = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="""test-generation-config""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowerCAmelCase__ , repo_id="""test-generation-config""" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
__magic_name__ : Any = GenerationConfig.from_pretrained(F'{USER}/test-generation-config' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Any = GenerationConfig(
do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token )
__magic_name__ : List[str] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# Reset repo
delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowerCAmelCase__ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token )
__magic_name__ : Dict = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
| 342 |
import doctest
from collections import deque
import numpy as np
class snake_case__ :
def __init__( self ) -> None:
__magic_name__ : Any = [2, 1, 2, -1]
__magic_name__ : Tuple = [1, 2, 3, 4]
def __magic_name__ ( self ) -> list[float]:
__magic_name__ : Optional[Any] = len(self.first_signal )
__magic_name__ : Dict = len(self.second_signal )
__magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ )
# create a zero matrix of max_length x max_length
__magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(lowerCAmelCase__ ):
__magic_name__ : List[str] = deque(self.second_signal )
rotated_signal.rotate(lowerCAmelCase__ )
for j, item in enumerate(lowerCAmelCase__ ):
matrix[i][j] += item
# multiply the matrix with the first signal
__magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(lowerCAmelCase__ , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 342 | 1 |
from __future__ import annotations
import math
def UpperCamelCase ( _A, _A, _A, _A, _A ):
"""simple docstring"""
if depth < 0:
raise ValueError("""Depth cannot be less than 0""" )
if len(_A ) == 0:
raise ValueError("""Scores cannot be empty""" )
if depth == height:
return scores[node_index]
if is_max:
return max(
minimax(depth + 1, node_index * 2, _A, _A, _A ), minimax(depth + 1, node_index * 2 + 1, _A, _A, _A ), )
return min(
minimax(depth + 1, node_index * 2, _A, _A, _A ), minimax(depth + 1, node_index * 2 + 1, _A, _A, _A ), )
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : str = [90, 23, 6, 33, 21, 65, 123, 34423]
__magic_name__ : Dict = math.log(len(_A ), 2 )
print("""Optimal value : """, end="""""" )
print(minimax(0, 0, _A, _A, _A ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 342 |
from math import factorial
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
if successes > trials:
raise ValueError("""successes must be lower or equal to trials""" )
if trials < 0 or successes < 0:
raise ValueError("""the function is defined for non-negative integers""" )
if not isinstance(_A, _A ) or not isinstance(_A, _A ):
raise ValueError("""the function is defined for non-negative integers""" )
if not 0 < prob < 1:
raise ValueError("""prob has to be in range of 1 - 0""" )
__magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes))
# Calculate the binomial coefficient: n! / k!(n-k)!
__magic_name__ : Any = float(factorial(_A ) )
coefficient /= factorial(_A ) * factorial(trials - successes )
return probability * coefficient
if __name__ == "__main__":
from doctest import testmod
testmod()
print("Probability of 2 successes out of 4 trails")
print("with probability of 0.75 is:", end=" ")
print(binomial_distribution(2, 4, 0.75))
| 342 | 1 |
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
__magic_name__: int = [
"cross_validation.py",
"gradient_accumulation.py",
"local_sgd.py",
"multi_process_metrics.py",
"memory.py",
"automatic_gradient_accumulation.py",
"fsdp_with_peak_mem_tracking.py",
"deepspeed_with_config_support.py",
"megatron_lm_gpt_pretraining.py",
]
class snake_case__ ( unittest.TestCase ):
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None ) -> Tuple:
__magic_name__ : Optional[Any] = None
__magic_name__ : List[Any] = os.path.abspath(os.path.join("""examples""" , """by_feature""" ) )
__magic_name__ : int = os.path.abspath("""examples""" )
for item in os.listdir(lowerCAmelCase__ ):
if item not in EXCLUDE_EXAMPLES:
__magic_name__ : List[str] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ )
if os.path.isfile(lowerCAmelCase__ ) and ".py" in item_path:
with self.subTest(
tested_script=lowerCAmelCase__ , feature_script=lowerCAmelCase__ , tested_section="""main()""" if parser_only else """training_function()""" , ):
__magic_name__ : Optional[int] = compare_against_test(
os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : Optional[int] = """\n""".join(lowerCAmelCase__ )
if special_strings is not None:
for string in special_strings:
__magic_name__ : List[str] = diff.replace(lowerCAmelCase__ , """""" )
self.assertEqual(lowerCAmelCase__ , """""" )
def __magic_name__ ( self ) -> int:
self.one_complete_example("""complete_nlp_example.py""" , lowerCAmelCase__ )
self.one_complete_example("""complete_nlp_example.py""" , lowerCAmelCase__ )
def __magic_name__ ( self ) -> str:
__magic_name__ : Dict = os.path.abspath(os.path.join("""examples""" , """cv_example.py""" ) )
__magic_name__ : List[Any] = [
""" """ * 16 + """{\n\n""",
""" """ * 20 + """\"accuracy\": eval_metric[\"accuracy\"],\n\n""",
""" """ * 20 + """\"f1\": eval_metric[\"f1\"],\n\n""",
""" """ * 20 + """\"train_loss\": total_loss.item() / len(train_dataloader),\n\n""",
""" """ * 20 + """\"epoch\": epoch,\n\n""",
""" """ * 16 + """},\n\n""",
""" """ * 16 + """step=epoch,\n""",
""" """ * 12,
""" """ * 8 + """for step, batch in enumerate(active_dataloader):\n""",
]
self.one_complete_example("""complete_cv_example.py""" , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.one_complete_example("""complete_cv_example.py""" , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
@mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''1'''} )
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : List[Any] = False
@classmethod
def __magic_name__ ( cls ) -> Tuple:
super().setUpClass()
__magic_name__ : Tuple = tempfile.mkdtemp()
__magic_name__ : Any = os.path.join(cls._tmpdir , """default_config.yml""" )
write_basic_config(save_location=cls.configPath )
__magic_name__ : Dict = ["""accelerate""", """launch""", """--config_file""", cls.configPath]
@classmethod
def __magic_name__ ( cls ) -> str:
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def __magic_name__ ( self ) -> int:
__magic_name__ : Optional[int] = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """epoch_0""" ) ) )
def __magic_name__ ( self ) -> Any:
__magic_name__ : List[Any] = F'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split()
__magic_name__ : int = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , """step_2""" ) ) )
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : int = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0" )}\n '.split()
__magic_name__ : Optional[Any] = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__ )
self.assertNotIn("""epoch 0:""" , lowerCAmelCase__ )
self.assertIn("""epoch 1:""" , lowerCAmelCase__ )
def __magic_name__ ( self ) -> str:
__magic_name__ : Dict = F'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2" )}\n '.split()
__magic_name__ : Tuple = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__ )
if torch.cuda.is_available():
__magic_name__ : List[str] = torch.cuda.device_count()
else:
__magic_name__ : str = 1
if num_processes > 1:
self.assertNotIn("""epoch 0:""" , lowerCAmelCase__ )
self.assertIn("""epoch 1:""" , lowerCAmelCase__ )
else:
self.assertIn("""epoch 0:""" , lowerCAmelCase__ )
self.assertIn("""epoch 1:""" , lowerCAmelCase__ )
@slow
def __magic_name__ ( self ) -> int:
__magic_name__ : Optional[Any] = """
examples/by_feature/cross_validation.py
--num_folds 2
""".split()
with mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """0"""} ):
__magic_name__ : Any = run_command(self._launch_args + testargs , return_stdout=lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = re.findall("""({.+})""" , lowerCAmelCase__ )
__magic_name__ : Any = [r for r in results if """accuracy""" in r][-1]
__magic_name__ : Optional[Any] = ast.literal_eval(lowerCAmelCase__ )
self.assertGreaterEqual(results["""accuracy"""] , 0.7_5 )
def __magic_name__ ( self ) -> str:
__magic_name__ : str = ["""examples/by_feature/multi_process_metrics.py"""]
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} )
def __magic_name__ ( self ) -> Optional[int]:
with tempfile.TemporaryDirectory() as tmpdir:
__magic_name__ : Optional[int] = F'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , """tracking""" ) ) )
def __magic_name__ ( self ) -> int:
__magic_name__ : int = ["""examples/by_feature/gradient_accumulation.py"""]
run_command(self._launch_args + testargs )
def __magic_name__ ( self ) -> str:
__magic_name__ : Union[str, Any] = ["""examples/by_feature/local_sgd.py"""]
run_command(self._launch_args + testargs )
| 342 |
from __future__ import annotations
def UpperCamelCase ( _A ): # This function is recursive
"""simple docstring"""
__magic_name__ : str = len(_A )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
__magic_name__ : Dict = array[0]
__magic_name__ : Optional[Any] = False
__magic_name__ : Tuple = 1
__magic_name__ : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
__magic_name__ : Union[str, Any] = True
__magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]]
__magic_name__ : Dict = longest_subsequence(_A )
if len(_A ) > len(_A ):
__magic_name__ : Tuple = temp_array
else:
i += 1
__magic_name__ : Any = [element for element in array[1:] if element >= pivot]
__magic_name__ : Dict = [pivot, *longest_subsequence(_A )]
if len(_A ) > len(_A ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 | 1 |
import math
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__magic_name__: Dict = logging.get_logger(__name__)
__magic_name__: Optional[int] = {
"facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json",
# See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio
}
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : Tuple = '''data2vec-audio'''
def __init__( self , lowerCAmelCase__=32 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__="gelu" , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , lowerCAmelCase__=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__=(10, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__=False , lowerCAmelCase__=16 , lowerCAmelCase__=19 , lowerCAmelCase__=5 , lowerCAmelCase__=0.0_5 , lowerCAmelCase__=10 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0 , lowerCAmelCase__=10 , lowerCAmelCase__=0 , lowerCAmelCase__="sum" , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=2_56 , lowerCAmelCase__=(5_12, 5_12, 5_12, 5_12, 15_00) , lowerCAmelCase__=(5, 3, 3, 1, 1) , lowerCAmelCase__=(1, 2, 3, 1, 1) , lowerCAmelCase__=5_12 , lowerCAmelCase__=0 , lowerCAmelCase__=1 , lowerCAmelCase__=2 , lowerCAmelCase__=False , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Tuple:
super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ )
__magic_name__ : List[str] = hidden_size
__magic_name__ : Any = feat_extract_activation
__magic_name__ : Tuple = list(lowerCAmelCase__ )
__magic_name__ : str = list(lowerCAmelCase__ )
__magic_name__ : Tuple = list(lowerCAmelCase__ )
__magic_name__ : List[str] = conv_bias
__magic_name__ : List[str] = num_conv_pos_embeddings
__magic_name__ : Tuple = num_conv_pos_embedding_groups
__magic_name__ : List[Any] = conv_pos_kernel_size
__magic_name__ : int = len(self.conv_dim )
__magic_name__ : Optional[int] = num_hidden_layers
__magic_name__ : Dict = intermediate_size
__magic_name__ : Union[str, Any] = hidden_act
__magic_name__ : Any = num_attention_heads
__magic_name__ : Optional[int] = hidden_dropout
__magic_name__ : int = attention_dropout
__magic_name__ : int = activation_dropout
__magic_name__ : Optional[Any] = feat_proj_dropout
__magic_name__ : int = final_dropout
__magic_name__ : Any = layerdrop
__magic_name__ : Optional[int] = layer_norm_eps
__magic_name__ : List[Any] = initializer_range
__magic_name__ : List[str] = vocab_size
__magic_name__ : List[Any] = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__magic_name__ : Optional[int] = mask_time_prob
__magic_name__ : Tuple = mask_time_length
__magic_name__ : Any = mask_time_min_masks
__magic_name__ : List[Any] = mask_feature_prob
__magic_name__ : List[str] = mask_feature_length
__magic_name__ : List[str] = mask_feature_min_masks
# ctc loss
__magic_name__ : Optional[Any] = ctc_loss_reduction
__magic_name__ : Dict = ctc_zero_infinity
# adapter
__magic_name__ : List[str] = add_adapter
__magic_name__ : Any = adapter_kernel_size
__magic_name__ : Tuple = adapter_stride
__magic_name__ : Any = num_adapter_layers
__magic_name__ : Any = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__magic_name__ : Dict = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__magic_name__ : Any = list(lowerCAmelCase__ )
__magic_name__ : Tuple = list(lowerCAmelCase__ )
__magic_name__ : Tuple = list(lowerCAmelCase__ )
__magic_name__ : List[str] = xvector_output_dim
@property
def __magic_name__ ( self ) -> Tuple:
return math.prod(self.conv_stride )
| 342 |
import argparse
import os
import re
__magic_name__: Optional[Any] = "src/transformers/models/auto"
# re pattern that matches mapping introductions:
# SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict
__magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict")
# re pattern that matches identifiers in mappings
__magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"")
def UpperCamelCase ( _A, _A = False ):
"""simple docstring"""
with open(_A, """r""", encoding="""utf-8""" ) as f:
__magic_name__ : Any = f.read()
__magic_name__ : List[Any] = content.split("""\n""" )
__magic_name__ : List[str] = []
__magic_name__ : Union[str, Any] = 0
while line_idx < len(_A ):
if _re_intro_mapping.search(lines[line_idx] ) is not None:
__magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8
# Start of a new mapping!
while not lines[line_idx].startswith(""" """ * indent + """(""" ):
new_lines.append(lines[line_idx] )
line_idx += 1
__magic_name__ : List[Any] = []
while lines[line_idx].strip() != "]":
# Blocks either fit in one line or not
if lines[line_idx].strip() == "(":
__magic_name__ : List[str] = line_idx
while not lines[line_idx].startswith(""" """ * indent + """)""" ):
line_idx += 1
blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) )
else:
blocks.append(lines[line_idx] )
line_idx += 1
# Sort blocks by their identifiers
__magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] )
new_lines += blocks
else:
new_lines.append(lines[line_idx] )
line_idx += 1
if overwrite:
with open(_A, """w""", encoding="""utf-8""" ) as f:
f.write("""\n""".join(_A ) )
elif "\n".join(_A ) != content:
return True
def UpperCamelCase ( _A = False ):
"""simple docstring"""
__magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )]
__magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames]
if not overwrite and any(_A ):
__magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d]
raise ValueError(
f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix'
""" this.""" )
if __name__ == "__main__":
__magic_name__: List[str] = argparse.ArgumentParser()
parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.")
__magic_name__: List[str] = parser.parse_args()
sort_all_auto_mappings(not args.check_only)
| 342 | 1 |
from math import ceil
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
__magic_name__ : Optional[Any] = list(range(0, _A ) )
__magic_name__ : Optional[int] = [item for sublist in list(device_map.values() ) for item in sublist]
# Duplicate check
__magic_name__ : List[Any] = []
for i in device_map_blocks:
if device_map_blocks.count(_A ) > 1 and i not in duplicate_blocks:
duplicate_blocks.append(_A )
# Missing blocks
__magic_name__ : List[str] = [i for i in blocks if i not in device_map_blocks]
__magic_name__ : Dict = [i for i in device_map_blocks if i not in blocks]
if len(_A ) != 0:
raise ValueError(
"""Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device."""
""" These attention blocks were specified more than once: """ + str(_A ) )
if len(_A ) != 0:
raise ValueError(
"""There are attention blocks for this model that are not specified in the device_map. Add these attention """
"""blocks to a device on the device_map: """ + str(_A ) )
if len(_A ) != 0:
raise ValueError(
"""The device_map contains more attention blocks than this model has. Remove these from the device_map:"""
+ str(_A ) )
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
__magic_name__ : Any = list(range(_A ) )
__magic_name__ : Union[str, Any] = int(ceil(n_layers / len(_A ) ) )
__magic_name__ : Optional[int] = [layers[i : i + n_blocks] for i in range(0, _A, _A )]
return dict(zip(_A, _A ) )
| 342 |
__magic_name__: str = [0, 2, 4, 6, 8]
__magic_name__: Optional[int] = [1, 3, 5, 7, 9]
def UpperCamelCase ( _A, _A, _A, _A ):
"""simple docstring"""
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1, -1, -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
__magic_name__ : List[Any] = 0
for digit in range(10 ):
__magic_name__ : Optional[int] = digit
result += reversible_numbers(
0, (remainder + 2 * digit) // 10, _A, _A )
return result
__magic_name__ : str = 0
for digita in range(10 ):
__magic_name__ : Optional[Any] = digita
if (remainder + digita) % 2 == 0:
__magic_name__ : Tuple = ODD_DIGITS
else:
__magic_name__ : str = EVEN_DIGITS
for digita in other_parity_digits:
__magic_name__ : Tuple = digita
result += reversible_numbers(
remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, )
return result
def UpperCamelCase ( _A = 9 ):
"""simple docstring"""
__magic_name__ : List[str] = 0
for length in range(1, max_power + 1 ):
result += reversible_numbers(_A, 0, [0] * length, _A )
return result
if __name__ == "__main__":
print(F"""{solution() = }""")
| 342 | 1 |
__magic_name__: Optional[Any] = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
__magic_name__: int = [{"type": "code", "content": INSTALL_CONTENT}]
__magic_name__: Optional[int] = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 342 |
def UpperCamelCase ( _A ):
"""simple docstring"""
if not all(x.isalpha() for x in string ):
raise ValueError("""String must only contain alphabetic characters.""" )
__magic_name__ : int = sorted(string.lower() )
return len(_A ) == len(set(_A ) )
if __name__ == "__main__":
__magic_name__: Dict = input("Enter a string ").strip()
__magic_name__: Union[str, Any] = is_isogram(input_str)
print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
| 342 | 1 |
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig
from transformers.utils import logging
logging.set_verbosity_info()
__magic_name__: Optional[Any] = logging.get_logger(__name__)
def UpperCamelCase ( _A ):
"""simple docstring"""
if "resnet-50" in model_name:
__magic_name__ : Dict = ResNetConfig.from_pretrained("""microsoft/resnet-50""" )
elif "resnet-101" in model_name:
__magic_name__ : Union[str, Any] = ResNetConfig.from_pretrained("""microsoft/resnet-101""" )
else:
raise ValueError("""Model name should include either resnet50 or resnet101""" )
__magic_name__ : Union[str, Any] = DetrConfig(use_timm_backbone=_A, backbone_config=_A )
# set label attributes
__magic_name__ : List[str] = """panoptic""" in model_name
if is_panoptic:
__magic_name__ : Tuple = 250
else:
__magic_name__ : Tuple = 91
__magic_name__ : Optional[Any] = """huggingface/label-files"""
__magic_name__ : Optional[Any] = """coco-detection-id2label.json"""
__magic_name__ : Optional[int] = json.load(open(hf_hub_download(_A, _A, repo_type="""dataset""" ), """r""" ) )
__magic_name__ : Optional[int] = {int(_A ): v for k, v in idalabel.items()}
__magic_name__ : List[Any] = idalabel
__magic_name__ : Dict = {v: k for k, v in idalabel.items()}
return config, is_panoptic
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : List[str] = []
# stem
# fmt: off
rename_keys.append(("""backbone.0.body.conv1.weight""", """backbone.conv_encoder.model.embedder.embedder.convolution.weight""") )
rename_keys.append(("""backbone.0.body.bn1.weight""", """backbone.conv_encoder.model.embedder.embedder.normalization.weight""") )
rename_keys.append(("""backbone.0.body.bn1.bias""", """backbone.conv_encoder.model.embedder.embedder.normalization.bias""") )
rename_keys.append(("""backbone.0.body.bn1.running_mean""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_mean""") )
rename_keys.append(("""backbone.0.body.bn1.running_var""", """backbone.conv_encoder.model.embedder.embedder.normalization.running_var""") )
# stages
for stage_idx in range(len(config.backbone_config.depths ) ):
for layer_idx in range(config.backbone_config.depths[stage_idx] ):
# shortcut
if layer_idx == 0:
rename_keys.append(
(
f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight',
f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight',
) )
rename_keys.append(
(
f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight',
f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight',
) )
rename_keys.append(
(
f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias',
f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias',
) )
rename_keys.append(
(
f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean',
f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean',
) )
rename_keys.append(
(
f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var',
f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var',
) )
# 3 convs
for i in range(3 ):
rename_keys.append(
(
f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight',
f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight',
) )
rename_keys.append(
(
f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight',
f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight',
) )
rename_keys.append(
(
f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias',
f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias',
) )
rename_keys.append(
(
f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean',
f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean',
) )
rename_keys.append(
(
f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var',
f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var',
) )
# fmt: on
for i in range(config.encoder_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(
f'transformer.encoder.layers.{i}.self_attn.out_proj.weight',
f'encoder.layers.{i}.self_attn.out_proj.weight',
) )
rename_keys.append(
(f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') )
rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight') )
rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias') )
rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight') )
rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias') )
rename_keys.append(
(f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') )
rename_keys.append(
(f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias') )
rename_keys.append(
(f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight') )
rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias') )
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(
f'transformer.decoder.layers.{i}.self_attn.out_proj.weight',
f'decoder.layers.{i}.self_attn.out_proj.weight',
) )
rename_keys.append(
(f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') )
rename_keys.append(
(
f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight',
f'decoder.layers.{i}.encoder_attn.out_proj.weight',
) )
rename_keys.append(
(
f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias',
f'decoder.layers.{i}.encoder_attn.out_proj.bias',
) )
rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight') )
rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias') )
rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight') )
rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias') )
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') )
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias') )
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') )
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') )
rename_keys.append(
(f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight') )
rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias') )
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
("""input_proj.weight""", """input_projection.weight"""),
("""input_proj.bias""", """input_projection.bias"""),
("""query_embed.weight""", """query_position_embeddings.weight"""),
("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""),
("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""),
("""class_embed.weight""", """class_labels_classifier.weight"""),
("""class_embed.bias""", """class_labels_classifier.bias"""),
("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""),
("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""),
("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""),
("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""),
("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""),
("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""),
] )
return rename_keys
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
__magic_name__ : Union[str, Any] = state_dict.pop(_A )
__magic_name__ : List[str] = val
def UpperCamelCase ( _A, _A=False ):
"""simple docstring"""
__magic_name__ : Any = """"""
if is_panoptic:
__magic_name__ : Optional[Any] = """detr."""
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
__magic_name__ : str = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' )
__magic_name__ : Optional[Any] = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' )
# next, add query, keys and values (in that order) to the state dict
__magic_name__ : Any = in_proj_weight[:256, :]
__magic_name__ : Dict = in_proj_bias[:256]
__magic_name__ : Tuple = in_proj_weight[256:512, :]
__magic_name__ : Union[str, Any] = in_proj_bias[256:512]
__magic_name__ : Dict = in_proj_weight[-256:, :]
__magic_name__ : List[Any] = in_proj_bias[-256:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6 ):
# read in weights + bias of input projection layer of self-attention
__magic_name__ : str = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' )
__magic_name__ : List[str] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' )
# next, add query, keys and values (in that order) to the state dict
__magic_name__ : int = in_proj_weight[:256, :]
__magic_name__ : int = in_proj_bias[:256]
__magic_name__ : str = in_proj_weight[256:512, :]
__magic_name__ : Tuple = in_proj_bias[256:512]
__magic_name__ : int = in_proj_weight[-256:, :]
__magic_name__ : Any = in_proj_bias[-256:]
# read in weights + bias of input projection layer of cross-attention
__magic_name__ : Any = state_dict.pop(
f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' )
__magic_name__ : int = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' )
# next, add query, keys and values (in that order) of cross-attention to the state dict
__magic_name__ : Any = in_proj_weight_cross_attn[:256, :]
__magic_name__ : List[str] = in_proj_bias_cross_attn[:256]
__magic_name__ : Union[str, Any] = in_proj_weight_cross_attn[256:512, :]
__magic_name__ : Any = in_proj_bias_cross_attn[256:512]
__magic_name__ : Any = in_proj_weight_cross_attn[-256:, :]
__magic_name__ : List[Any] = in_proj_bias_cross_attn[-256:]
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg"""
__magic_name__ : Dict = Image.open(requests.get(_A, stream=_A ).raw )
return im
@torch.no_grad()
def UpperCamelCase ( _A, _A=None, _A=False ):
"""simple docstring"""
__magic_name__ ,__magic_name__ : Optional[int] = get_detr_config(_A )
# load original model from torch hub
__magic_name__ : Optional[Any] = {
"""detr-resnet-50""": """detr_resnet50""",
"""detr-resnet-101""": """detr_resnet101""",
}
logger.info(f'Converting model {model_name}...' )
__magic_name__ : str = torch.hub.load("""facebookresearch/detr""", model_name_to_original_name[model_name], pretrained=_A ).eval()
__magic_name__ : List[Any] = detr.state_dict()
# rename keys
for src, dest in create_rename_keys(_A ):
if is_panoptic:
__magic_name__ : str = """detr.""" + src
rename_key(_A, _A, _A )
# query, key and value matrices need special treatment
read_in_q_k_v(_A, is_panoptic=_A )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
__magic_name__ : List[str] = """detr.model.""" if is_panoptic else """model."""
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith("""detr""" )
and not key.startswith("""class_labels_classifier""" )
and not key.startswith("""bbox_predictor""" )
):
__magic_name__ : Tuple = state_dict.pop(_A )
__magic_name__ : Optional[Any] = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
__magic_name__ : Dict = state_dict.pop(_A )
__magic_name__ : Union[str, Any] = val
elif key.startswith("""bbox_attention""" ) or key.startswith("""mask_head""" ):
continue
else:
__magic_name__ : str = state_dict.pop(_A )
__magic_name__ : List[Any] = val
else:
if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ):
__magic_name__ : Union[str, Any] = state_dict.pop(_A )
__magic_name__ : Any = val
# finally, create HuggingFace model and load state dict
__magic_name__ : str = DetrForSegmentation(_A ) if is_panoptic else DetrForObjectDetection(_A )
model.load_state_dict(_A )
model.eval()
# verify our conversion on an image
__magic_name__ : Any = """coco_panoptic""" if is_panoptic else """coco_detection"""
__magic_name__ : Optional[Any] = DetrImageProcessor(format=_A )
__magic_name__ : Optional[int] = processor(images=prepare_img(), return_tensors="""pt""" )
__magic_name__ : Dict = encoding["""pixel_values"""]
__magic_name__ : List[Any] = detr(_A )
__magic_name__ : str = model(_A )
assert torch.allclose(outputs.logits, original_outputs["""pred_logits"""], atol=1e-3 )
assert torch.allclose(outputs.pred_boxes, original_outputs["""pred_boxes"""], atol=1e-3 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks, original_outputs["""pred_masks"""], atol=1e-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
# Save model and image processor
logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' )
Path(_A ).mkdir(exist_ok=_A )
model.save_pretrained(_A )
processor.save_pretrained(_A )
if push_to_hub:
# Upload model and image processor to the hub
logger.info("""Uploading PyTorch model and image processor to the hub...""" )
model.push_to_hub(f'nielsr/{model_name}' )
processor.push_to_hub(f'nielsr/{model_name}' )
if __name__ == "__main__":
__magic_name__: Dict = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
default="detr-resnet-50",
type=str,
choices=["detr-resnet-50", "detr-resnet-101"],
help="Name of the DETR model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument("--push_to_hub", action="store_true", help="Whether to push the model to the hub or not.")
__magic_name__: int = parser.parse_args()
convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 342 |
import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
"The `inpainting.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionInpaintPipeline` instead."
)
| 342 | 1 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
__magic_name__: str = logging.get_logger(__name__)
@add_end_docstrings(_lowerCAmelCase )
class snake_case__ ( _lowerCAmelCase ):
def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]:
super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
requires_backends(self , """vision""" )
self.check_model_type(
TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING
if self.framework == """tf"""
else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING )
def __magic_name__ ( self , lowerCAmelCase__=None ) -> Tuple:
__magic_name__ : Optional[int] = {}
if top_k is not None:
__magic_name__ : Any = top_k
return {}, {}, postprocess_params
def __call__( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]:
return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]:
__magic_name__ : Union[str, Any] = load_image(lowerCAmelCase__ )
__magic_name__ : int = self.image_processor(images=lowerCAmelCase__ , return_tensors=self.framework )
return model_inputs
def __magic_name__ ( self , lowerCAmelCase__ ) -> Any:
__magic_name__ : Tuple = self.model(**lowerCAmelCase__ )
return model_outputs
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=5 ) -> str:
if top_k > self.model.config.num_labels:
__magic_name__ : Tuple = self.model.config.num_labels
if self.framework == "pt":
__magic_name__ : Dict = model_outputs.logits.softmax(-1 )[0]
__magic_name__ ,__magic_name__ : List[str] = probs.topk(lowerCAmelCase__ )
elif self.framework == "tf":
__magic_name__ : Union[str, Any] = stable_softmax(model_outputs.logits , axis=-1 )[0]
__magic_name__ : Tuple = tf.math.top_k(lowerCAmelCase__ , k=lowerCAmelCase__ )
__magic_name__ ,__magic_name__ : Optional[Any] = topk.values.numpy(), topk.indices.numpy()
else:
raise ValueError(F'Unsupported framework: {self.framework}' )
__magic_name__ : Union[str, Any] = scores.tolist()
__magic_name__ : Optional[Any] = ids.tolist()
return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase__ , lowerCAmelCase__ )]
| 342 |
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class snake_case__ ( unittest.TestCase ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]:
__magic_name__ : str = parent
__magic_name__ : Dict = do_resize
__magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88}
__magic_name__ : Union[str, Any] = size_divisor
__magic_name__ : Union[str, Any] = do_rescale
__magic_name__ : Dict = rescale_factor
__magic_name__ : Union[str, Any] = do_normalize
__magic_name__ : List[str] = do_center_crop
__magic_name__ : Tuple = image_mean
__magic_name__ : Tuple = image_std
__magic_name__ : Tuple = do_pad
__magic_name__ : int = batch_size
__magic_name__ : List[Any] = num_channels
__magic_name__ : int = min_resolution
__magic_name__ : str = max_resolution
def __magic_name__ ( self ) -> str:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int:
if not batched:
__magic_name__ : Dict = self.size["""shortest_edge"""]
__magic_name__ : List[str] = image_inputs[0]
if isinstance(lowerCAmelCase__ , Image.Image ):
__magic_name__ ,__magic_name__ : List[Any] = image.size
else:
__magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2]
__magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ )
if h < w:
__magic_name__ ,__magic_name__ : str = size, scale * w
else:
__magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size
__magic_name__ : Tuple = int((13_33 / 8_00) * size )
if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size:
__magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = newh * scale
__magic_name__ : Any = neww * scale
__magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 )
__magic_name__ ,__magic_name__ : int = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
__magic_name__ : Union[str, Any] = []
for image in image_inputs:
__magic_name__ ,__magic_name__ : int = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0]
__magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : Any = BridgeTowerImageProcessingTester(self )
@property
def __magic_name__ ( self ) -> List[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def __magic_name__ ( self ) -> Any:
__magic_name__ : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) )
def __magic_name__ ( self ) -> Optional[int]:
pass
def __magic_name__ ( self ) -> Tuple:
# Initialize image processor
__magic_name__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
__magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __magic_name__ ( self ) -> Tuple:
# Initialize image processor
__magic_name__ : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
__magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __magic_name__ ( self ) -> str:
# Initialize image processor
__magic_name__ : int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
__magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 342 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__magic_name__: str = logging.get_logger(__name__)
__magic_name__: Tuple = {
"weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json",
}
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : Any = '''roc_bert'''
def __init__( self , lowerCAmelCase__=3_05_22 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-1_2 , lowerCAmelCase__=True , lowerCAmelCase__=0 , lowerCAmelCase__="absolute" , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=7_68 , lowerCAmelCase__=9_10 , lowerCAmelCase__=5_12 , lowerCAmelCase__=2_48_58 , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> str:
__magic_name__ : Any = vocab_size
__magic_name__ : Union[str, Any] = max_position_embeddings
__magic_name__ : int = hidden_size
__magic_name__ : Union[str, Any] = num_hidden_layers
__magic_name__ : Any = num_attention_heads
__magic_name__ : Dict = intermediate_size
__magic_name__ : Any = hidden_act
__magic_name__ : Optional[int] = hidden_dropout_prob
__magic_name__ : str = attention_probs_dropout_prob
__magic_name__ : str = initializer_range
__magic_name__ : List[str] = type_vocab_size
__magic_name__ : Optional[int] = layer_norm_eps
__magic_name__ : Tuple = use_cache
__magic_name__ : Tuple = enable_pronunciation
__magic_name__ : Union[str, Any] = enable_shape
__magic_name__ : Optional[int] = pronunciation_embed_dim
__magic_name__ : List[Any] = pronunciation_vocab_size
__magic_name__ : int = shape_embed_dim
__magic_name__ : Union[str, Any] = shape_vocab_size
__magic_name__ : List[Any] = concat_input
__magic_name__ : str = position_embedding_type
__magic_name__ : Optional[int] = classifier_dropout
super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
| 342 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__magic_name__: Tuple = {
"configuration_clap": [
"CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClapAudioConfig",
"ClapConfig",
"ClapTextConfig",
],
"processing_clap": ["ClapProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__: Union[str, Any] = [
"CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClapModel",
"ClapPreTrainedModel",
"ClapTextModel",
"ClapTextModelWithProjection",
"ClapAudioModel",
"ClapAudioModelWithProjection",
]
__magic_name__: Optional[Any] = ["ClapFeatureExtractor"]
if TYPE_CHECKING:
from .configuration_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioConfig,
ClapConfig,
ClapTextConfig,
)
from .processing_clap import ClapProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clap import ClapFeatureExtractor
from .modeling_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioModel,
ClapAudioModelWithProjection,
ClapModel,
ClapPreTrainedModel,
ClapTextModel,
ClapTextModelWithProjection,
)
else:
import sys
__magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 342 | 1 |
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def UpperCamelCase ( _A, _A, _A, _A, _A=True, _A="pt" ):
"""simple docstring"""
__magic_name__ : List[Any] = {"""add_prefix_space""": True} if isinstance(_A, _A ) and not line.startswith(""" """ ) else {}
__magic_name__ : List[str] = padding_side
return tokenizer(
[line], max_length=_A, padding="""max_length""" if pad_to_max_length else None, truncation=_A, return_tensors=_A, add_special_tokens=_A, **_A, )
def UpperCamelCase ( _A, _A, _A=None, ):
"""simple docstring"""
__magic_name__ : List[Any] = input_ids.ne(_A ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class snake_case__ ( _lowerCAmelCase ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="train" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="" , ) -> int:
super().__init__()
__magic_name__ : int = Path(lowerCAmelCase__ ).joinpath(type_path + """.source""" )
__magic_name__ : Union[str, Any] = Path(lowerCAmelCase__ ).joinpath(type_path + """.target""" )
__magic_name__ : int = self.get_char_lens(self.src_file )
__magic_name__ : Any = max_source_length
__magic_name__ : str = max_target_length
assert min(self.src_lens ) > 0, F'found empty line in {self.src_file}'
__magic_name__ : Any = tokenizer
__magic_name__ : Any = prefix
if n_obs is not None:
__magic_name__ : Optional[int] = self.src_lens[:n_obs]
__magic_name__ : Optional[int] = src_lang
__magic_name__ : Optional[Any] = tgt_lang
def __len__( self ) -> int:
return len(self.src_lens )
def __getitem__( self , lowerCAmelCase__ ) -> Dict[str, torch.Tensor]:
__magic_name__ : List[str] = index + 1 # linecache starts at 1
__magic_name__ : Tuple = self.prefix + linecache.getline(str(self.src_file ) , lowerCAmelCase__ ).rstrip("""\n""" )
__magic_name__ : List[Any] = linecache.getline(str(self.tgt_file ) , lowerCAmelCase__ ).rstrip("""\n""" )
assert source_line, F'empty source line for index {index}'
assert tgt_line, F'empty tgt line for index {index}'
# Need to add eos token manually for T5
if isinstance(self.tokenizer , lowerCAmelCase__ ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
__magic_name__ : Tuple = (
self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer
)
__magic_name__ : Optional[int] = self.tokenizer.generator if isinstance(self.tokenizer , lowerCAmelCase__ ) else self.tokenizer
__magic_name__ : Tuple = encode_line(lowerCAmelCase__ , lowerCAmelCase__ , self.max_source_length , """right""" )
__magic_name__ : int = encode_line(lowerCAmelCase__ , lowerCAmelCase__ , self.max_target_length , """right""" )
__magic_name__ : Optional[Any] = source_inputs["""input_ids"""].squeeze()
__magic_name__ : Optional[Any] = target_inputs["""input_ids"""].squeeze()
__magic_name__ : int = source_inputs["""attention_mask"""].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def __magic_name__ ( lowerCAmelCase__ ) -> Optional[Any]:
return [len(lowerCAmelCase__ ) for x in Path(lowerCAmelCase__ ).open().readlines()]
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict[str, torch.Tensor]:
__magic_name__ : Dict = torch.stack([x["""input_ids"""] for x in batch] )
__magic_name__ : str = torch.stack([x["""attention_mask"""] for x in batch] )
__magic_name__ : List[str] = torch.stack([x["""decoder_input_ids"""] for x in batch] )
__magic_name__ : Optional[int] = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer , lowerCAmelCase__ )
else self.tokenizer.pad_token_id
)
__magic_name__ : int = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer , lowerCAmelCase__ )
else self.tokenizer.pad_token_id
)
__magic_name__ : int = trim_batch(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ ,__magic_name__ : Tuple = trim_batch(lowerCAmelCase__ , lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )
__magic_name__ : int = {
"""input_ids""": source_ids,
"""attention_mask""": source_mask,
"""decoder_input_ids""": y,
}
return batch
__magic_name__: int = getLogger(__name__)
def UpperCamelCase ( _A ):
"""simple docstring"""
return list(itertools.chain.from_iterable(_A ) )
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : str = get_git_info()
save_json(_A, os.path.join(_A, """git_log.json""" ) )
def UpperCamelCase ( _A, _A, _A=4, **_A ):
"""simple docstring"""
with open(_A, """w""" ) as f:
json.dump(_A, _A, indent=_A, **_A )
def UpperCamelCase ( _A ):
"""simple docstring"""
with open(_A ) as f:
return json.load(_A )
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : List[str] = git.Repo(search_parent_directories=_A )
__magic_name__ : Optional[Any] = {
"""repo_id""": str(_A ),
"""repo_sha""": str(repo.head.object.hexsha ),
"""repo_branch""": str(repo.active_branch ),
"""hostname""": str(socket.gethostname() ),
}
return repo_infos
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
return list(map(_A, _A ) )
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
with open(_A, """wb""" ) as f:
return pickle.dump(_A, _A )
def UpperCamelCase ( _A ):
"""simple docstring"""
def remove_articles(_A ):
return re.sub(R"""\b(a|an|the)\b""", """ """, _A )
def white_space_fix(_A ):
return " ".join(text.split() )
def remove_punc(_A ):
__magic_name__ : Optional[Any] = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_A ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_A ) ) ) )
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
__magic_name__ : List[Any] = normalize_answer(_A ).split()
__magic_name__ : Any = normalize_answer(_A ).split()
__magic_name__ : Optional[Any] = Counter(_A ) & Counter(_A )
__magic_name__ : int = sum(common.values() )
if num_same == 0:
return 0
__magic_name__ : str = 1.0 * num_same / len(_A )
__magic_name__ : int = 1.0 * num_same / len(_A )
__magic_name__ : str = (2 * precision * recall) / (precision + recall)
return fa
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
return normalize_answer(_A ) == normalize_answer(_A )
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
assert len(_A ) == len(_A )
__magic_name__ : Tuple = 0
for hypo, pred in zip(_A, _A ):
em += exact_match_score(_A, _A )
if len(_A ) > 0:
em /= len(_A )
return {"em": em}
def UpperCamelCase ( _A ):
"""simple docstring"""
return model_prefix.startswith("""rag""" )
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
__magic_name__ : Optional[int] = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
__magic_name__ : Dict = """dropout_rate"""
for p in extra_params:
if getattr(_A, _A, _A ):
if not hasattr(_A, _A ) and not hasattr(_A, equivalent_param[p] ):
logger.info("""config doesn't have a `{}` attribute""".format(_A ) )
delattr(_A, _A )
continue
__magic_name__ : Tuple = p if hasattr(_A, _A ) else equivalent_param[p]
setattr(_A, _A, getattr(_A, _A ) )
delattr(_A, _A )
return hparams, config
| 342 |
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__magic_name__: Dict = logging.get_logger(__name__)
__magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all BART models at https://huggingface.co/models?filter=bart
__magic_name__: Optional[Any] = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
}
__magic_name__: List[Any] = {
"facebook/bart-base": 1_024,
"facebook/bart-large": 1_024,
"facebook/bart-large-mnli": 1_024,
"facebook/bart-large-cnn": 1_024,
"facebook/bart-large-xsum": 1_024,
"yjernite/bart_eli5": 1_024,
}
@lru_cache()
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : Any = (
list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) )
)
__magic_name__ : Any = bs[:]
__magic_name__ : Dict = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_A )
cs.append(2**8 + n )
n += 1
__magic_name__ : List[str] = [chr(_A ) for n in cs]
return dict(zip(_A, _A ) )
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : str = set()
__magic_name__ : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__magic_name__ : List[Any] = char
return pairs
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES
lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask''']
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict:
__magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
__magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
__magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
__magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
__magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
__magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , )
with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle:
__magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ )
__magic_name__ : Any = {v: k for k, v in self.encoder.items()}
__magic_name__ : Tuple = errors # how to handle errors in decoding
__magic_name__ : Tuple = bytes_to_unicode()
__magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle:
__magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1]
__magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges]
__magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
__magic_name__ : str = {}
__magic_name__ : int = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
@property
def __magic_name__ ( self ) -> Optional[Any]:
return len(self.encoder )
def __magic_name__ ( self ) -> Optional[int]:
return dict(self.encoder , **self.added_tokens_encoder )
def __magic_name__ ( self , lowerCAmelCase__ ) -> str:
if token in self.cache:
return self.cache[token]
__magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ )
if not pairs:
return token
while True:
__magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
__magic_name__ ,__magic_name__ : List[str] = bigram
__magic_name__ : Any = []
__magic_name__ : Any = 0
while i < len(lowerCAmelCase__ ):
try:
__magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__magic_name__ : Optional[Any] = j
if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__magic_name__ : str = tuple(lowerCAmelCase__ )
__magic_name__ : Optional[int] = new_word
if len(lowerCAmelCase__ ) == 1:
break
else:
__magic_name__ : List[str] = get_pairs(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ )
__magic_name__ : str = word
return word
def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : str = []
for token in re.findall(self.pat , lowerCAmelCase__ ):
__magic_name__ : List[Any] = """""".join(
self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) )
return bpe_tokens
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.decoder.get(lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Any:
__magic_name__ : Tuple = """""".join(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors )
return text
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
__magic_name__ : Tuple = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
__magic_name__ : List[str] = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" )
__magic_name__ : Optional[Any] = 0
with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
""" Please check that the tokenizer is not corrupted!""" )
__magic_name__ : Optional[int] = token_index
writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" )
index += 1
return vocab_file, merge_file
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__magic_name__ : List[str] = [self.cls_token_id]
__magic_name__ : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
__magic_name__ : Dict = [self.sep_token_id]
__magic_name__ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()):
__magic_name__ : List[Any] = """ """ + text
return (text, kwargs)
| 342 | 1 |
import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
"The `inpainting.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionInpaintPipeline` instead."
)
| 342 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str:
__magic_name__ : Optional[int] = parent
__magic_name__ : Any = batch_size
__magic_name__ : Union[str, Any] = image_size
__magic_name__ : Optional[int] = patch_size
__magic_name__ : Union[str, Any] = num_channels
__magic_name__ : str = embed_dim
__magic_name__ : int = hidden_sizes
__magic_name__ : Union[str, Any] = depths
__magic_name__ : List[str] = num_heads
__magic_name__ : str = window_size
__magic_name__ : Optional[Any] = mlp_ratio
__magic_name__ : Dict = qkv_bias
__magic_name__ : Dict = hidden_dropout_prob
__magic_name__ : Optional[Any] = attention_probs_dropout_prob
__magic_name__ : List[Any] = drop_path_rate
__magic_name__ : Optional[Any] = hidden_act
__magic_name__ : int = use_absolute_embeddings
__magic_name__ : Dict = patch_norm
__magic_name__ : Tuple = layer_norm_eps
__magic_name__ : List[str] = initializer_range
__magic_name__ : Optional[int] = is_training
__magic_name__ : Optional[Any] = scope
__magic_name__ : Union[str, Any] = use_labels
__magic_name__ : Optional[Any] = type_sequence_label_size
__magic_name__ : Union[str, Any] = encoder_stride
__magic_name__ : List[Any] = out_features
__magic_name__ : Union[str, Any] = out_indices
def __magic_name__ ( self ) -> str:
__magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__magic_name__ : Optional[Any] = None
if self.use_labels:
__magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : Dict = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self ) -> List[Any]:
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Optional[int] = model(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Tuple = model(lowerCAmelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
__magic_name__ : Optional[Any] = None
__magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Union[str, Any] = model(lowerCAmelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : str = model(lowerCAmelCase__ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__magic_name__ : Optional[int] = 1
__magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__magic_name__ : List[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : int = self.type_sequence_label_size
__magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__magic_name__ : Optional[int] = 1
__magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__magic_name__ : Dict = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __magic_name__ ( self ) -> int:
__magic_name__ : int = self.prepare_config_and_inputs()
__magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs
__magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : str = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
lowercase__ : Any = (
{'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification}
if is_torch_available()
else {}
)
lowercase__ : Dict = False
lowercase__ : Dict = False
lowercase__ : int = False
lowercase__ : Tuple = False
lowercase__ : Optional[Any] = False
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Optional[Any] = FocalNetModelTester(self )
__magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __magic_name__ ( self ) -> List[str]:
return
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ )
@unittest.skip(reason="""FocalNet does not use inputs_embeds""" )
def __magic_name__ ( self ) -> List[str]:
pass
@unittest.skip(reason="""FocalNet does not use feedforward chunking""" )
def __magic_name__ ( self ) -> List[Any]:
pass
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
__magic_name__ : Dict = model_class(lowerCAmelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__magic_name__ : Dict = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
__magic_name__ : str = model_class(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Tuple = [*signature.parameters.keys()]
__magic_name__ : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict:
__magic_name__ : List[Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : Optional[Any] = outputs.hidden_states
__magic_name__ : Union[str, Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
# FocalNet has a different seq_length
__magic_name__ : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__magic_name__ : str = outputs.reshaped_hidden_states
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape
__magic_name__ : Union[str, Any] = (
reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __magic_name__ ( self ) -> str:
__magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
__magic_name__ : List[Any] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : Optional[Any] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self ) -> str:
__magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[Any] = 3
__magic_name__ : Union[str, Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__magic_name__ : Dict = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
__magic_name__ : Optional[int] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : str = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) )
@slow
def __magic_name__ ( self ) -> Union[str, Any]:
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ )
for model_class in self.all_model_classes:
__magic_name__ : Any = model_class(config=lowerCAmelCase__ )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class snake_case__ ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self ) -> Optional[int]:
# TODO update organization
return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None
@slow
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = self.default_image_processor
__magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
__magic_name__ : List[Any] = model(**lowerCAmelCase__ )
# verify the logits
__magic_name__ : Union[str, Any] = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
__magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 )
@require_torch
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else ()
lowercase__ : Optional[int] = FocalNetConfig
lowercase__ : Dict = False
def __magic_name__ ( self ) -> int:
__magic_name__ : Dict = FocalNetModelTester(self )
| 342 | 1 |
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__magic_name__: Tuple = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
@require_tokenizers
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Dict = XLMRobertaTokenizer
lowercase__ : int = XLMRobertaTokenizerFast
lowercase__ : List[Any] = True
lowercase__ : List[Any] = True
def __magic_name__ ( self ) -> str:
super().setUp()
# We have a SentencePiece fixture for testing
__magic_name__ : int = XLMRobertaTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Optional[int] = """<pad>"""
__magic_name__ : List[str] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def __magic_name__ ( self ) -> Any:
__magic_name__ : Any = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<s>""" )
self.assertEqual(vocab_keys[1] , """<pad>""" )
self.assertEqual(vocab_keys[-1] , """<mask>""" )
self.assertEqual(len(lowerCAmelCase__ ) , 10_02 )
def __magic_name__ ( self ) -> str:
self.assertEqual(self.get_tokenizer().vocab_size , 10_02 )
def __magic_name__ ( self ) -> str:
__magic_name__ : List[Any] = XLMRobertaTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ )
__magic_name__ : Optional[int] = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(lowerCAmelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
__magic_name__ : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
__magic_name__ : Dict = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
__magic_name__ : Optional[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertListEqual(
lowerCAmelCase__ , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
def __magic_name__ ( self ) -> Optional[int]:
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
__magic_name__ : List[str] = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
__magic_name__ : int = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
__magic_name__ : Tuple = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
__magic_name__ : Optional[int] = tempfile.mkdtemp()
__magic_name__ : Any = tokenizer_r.save_pretrained(lowerCAmelCase__ )
__magic_name__ : List[Any] = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
__magic_name__ : Any = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f )
self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Checks everything loads correctly in the same way
__magic_name__ : int = tokenizer_r.from_pretrained(lowerCAmelCase__ )
__magic_name__ : List[Any] = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(lowerCAmelCase__ )
# Save tokenizer rust, legacy_format=True
__magic_name__ : Tuple = tempfile.mkdtemp()
__magic_name__ : Optional[Any] = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ )
__magic_name__ : Optional[Any] = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it save with the same files
self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Checks everything loads correctly in the same way
__magic_name__ : int = tokenizer_r.from_pretrained(lowerCAmelCase__ )
__magic_name__ : Any = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
shutil.rmtree(lowerCAmelCase__ )
# Save tokenizer rust, legacy_format=False
__magic_name__ : Union[str, Any] = tempfile.mkdtemp()
__magic_name__ : str = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ )
__magic_name__ : Any = tokenizer_p.save_pretrained(lowerCAmelCase__ )
# Checks it saved the tokenizer.json file
self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
__magic_name__ : List[str] = tokenizer_r.from_pretrained(lowerCAmelCase__ )
__magic_name__ : Any = tokenizer_p.from_pretrained(lowerCAmelCase__ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
shutil.rmtree(lowerCAmelCase__ )
@cached_property
def __magic_name__ ( self ) -> str:
return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" )
def __magic_name__ ( self ) -> Optional[int]:
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(lowerCAmelCase__ , f.name )
__magic_name__ : Union[str, Any] = XLMRobertaTokenizer(f.name , keep_accents=lowerCAmelCase__ )
__magic_name__ : Optional[int] = pickle.dumps(lowerCAmelCase__ )
pickle.loads(lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
if not self.test_rust_tokenizer:
return
__magic_name__ : Tuple = self.get_tokenizer()
__magic_name__ : int = self.get_rust_tokenizer()
__magic_name__ : Dict = """I was born in 92000, and this is falsé."""
__magic_name__ : List[str] = tokenizer.tokenize(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = rust_tokenizer.tokenize(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : int = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : Dict = self.get_rust_tokenizer()
__magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ )
__magic_name__ : List[Any] = rust_tokenizer.encode(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@slow
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Union[str, Any] = """Hello World!"""
__magic_name__ : str = [0, 3_53_78, 66_61, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) )
@slow
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Any = (
"""This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will"""
""" add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth"""
)
__magic_name__ : List[Any] = [
0,
32_93,
83,
10,
45_52,
49_89,
79_86,
6_78,
10,
59_15,
1_11,
17_94_59,
12_48_50,
4,
60_44,
2_37,
12,
6,
5,
6,
4,
67_80,
7_05,
15,
13_88,
44,
3_78,
1_01_14,
7_11,
1_52,
20,
6,
5,
2_23_76,
6_42,
12_21,
1_51_90,
3_41_53,
4_50,
56_08,
9_59,
11_19,
5_77_02,
1_36,
1_86,
47,
10_98,
2_93_67,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
60_44,
2_37,
62_84,
5_09_01,
5_28,
31,
90,
34,
9_27,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) )
@slow
def __magic_name__ ( self ) -> List[str]:
# fmt: off
__magic_name__ : Any = {"""input_ids""": [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
| 342 |
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]:
__magic_name__ : int = parent
__magic_name__ : Tuple = batch_size
__magic_name__ : int = image_size
__magic_name__ : str = num_channels
__magic_name__ : Dict = patch_size
__magic_name__ : Tuple = num_frames
__magic_name__ : List[Any] = is_training
__magic_name__ : List[Any] = use_labels
__magic_name__ : Dict = hidden_size
__magic_name__ : List[Any] = num_hidden_layers
__magic_name__ : str = num_attention_heads
__magic_name__ : List[Any] = intermediate_size
__magic_name__ : Dict = hidden_act
__magic_name__ : List[Any] = hidden_dropout_prob
__magic_name__ : Union[str, Any] = attention_probs_dropout_prob
__magic_name__ : Tuple = attention_type
__magic_name__ : List[str] = initializer_range
__magic_name__ : Optional[Any] = scope
__magic_name__ : Tuple = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__magic_name__ : str = (image_size // patch_size) ** 2
__magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Optional[Any] = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__magic_name__ : str = None
if self.use_labels:
__magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels )
__magic_name__ : Optional[Any] = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self ) -> str:
__magic_name__ : Dict = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__magic_name__ : Optional[Any] = self.num_labels
return config
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Optional[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any:
__magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : List[Any] = model(lowerCAmelCase__ )
# verify the logits shape
__magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ )
def __magic_name__ ( self ) -> Any:
__magic_name__ : Union[str, Any] = self.prepare_config_and_inputs()
__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs
__magic_name__ : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowercase__ : Union[str, Any] = (
{'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowercase__ : int = False
lowercase__ : str = False
lowercase__ : Tuple = False
lowercase__ : Any = False
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : List[Any] = TimesformerModelTester(self )
__magic_name__ : List[str] = ConfigTester(
self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]:
__magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ )
if return_labels:
if model_class in get_values(lowerCAmelCase__ ):
__magic_name__ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ )
return inputs_dict
def __magic_name__ ( self ) -> List[str]:
self.config_tester.run_common_tests()
@unittest.skip(reason="""TimeSformer does not use inputs_embeds""" )
def __magic_name__ ( self ) -> str:
pass
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : List[Any] = model_class(lowerCAmelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__magic_name__ : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) )
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Dict = model_class(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Optional[int] = [*signature.parameters.keys()]
__magic_name__ : Any = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ )
@slow
def __magic_name__ ( self ) -> Optional[int]:
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
if not self.has_attentions:
pass
else:
__magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[int] = True
for model_class in self.all_model_classes:
__magic_name__ : Tuple = self.model_tester.seq_length
__magic_name__ : int = self.model_tester.num_frames
__magic_name__ : Any = True
__magic_name__ : Tuple = False
__magic_name__ : Optional[int] = True
__magic_name__ : str = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : List[str] = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__magic_name__ : Optional[Any] = True
__magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : int = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__magic_name__ : Union[str, Any] = len(lowerCAmelCase__ )
# Check attention is always last and order is fine
__magic_name__ : str = True
__magic_name__ : Optional[Any] = True
__magic_name__ : int = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) )
__magic_name__ : Union[str, Any] = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def __magic_name__ ( self ) -> Any:
def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
__magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : Optional[Any] = outputs.hidden_states
__magic_name__ : str = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
__magic_name__ : str = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Optional[Any] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : Union[str, Any] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : List[Any] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" )
__magic_name__ : List[str] = np.load(_A )
return list(_A )
@require_torch
@require_vision
class snake_case__ ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self ) -> Optional[Any]:
# logits were tested with a different mean and std, so we use the same here
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to(
lowerCAmelCase__ )
__magic_name__ : str = self.default_image_processor
__magic_name__ : Any = prepare_video()
__magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
__magic_name__ : int = model(**lowerCAmelCase__ )
# verify the logits
__magic_name__ : Optional[int] = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
| 342 | 1 |
import json
import os
from typing import Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
__magic_name__: int = logging.get_logger(__name__)
__magic_name__: List[Any] = {"vocab_file": "vocab.json"}
__magic_name__: str = {
"vocab_file": {
"mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json",
}
}
__magic_name__: Union[str, Any] = {"mgp-str": 27}
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : Dict = VOCAB_FILES_NAMES
lowercase__ : str = PRETRAINED_VOCAB_FILES_MAP
lowercase__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="[GO]" , lowerCAmelCase__="[GO]" , lowerCAmelCase__="[s]" , lowerCAmelCase__="[GO]" , **lowerCAmelCase__ ) -> int:
super().__init__(
unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle:
__magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = {v: k for k, v in self.vocab.items()}
@property
def __magic_name__ ( self ) -> List[str]:
return len(self.vocab )
def __magic_name__ ( self ) -> Optional[Any]:
return dict(self.vocab , **self.added_tokens_encoder )
def __magic_name__ ( self , lowerCAmelCase__ ) -> int:
__magic_name__ : Any = []
for s in text:
char_tokens.extend(lowerCAmelCase__ )
return char_tokens
def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]:
return self.vocab.get(lowerCAmelCase__ , self.vocab.get(self.unk_token ) )
def __magic_name__ ( self , lowerCAmelCase__ ) -> int:
return self.decoder.get(lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase__ ):
logger.error("""Vocabulary path ({}) should be a directory""".format(lowerCAmelCase__ ) )
return
__magic_name__ : Tuple = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" )
return (vocab_file,)
| 342 |
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : List[Any] = [0] * len(_A )
__magic_name__ : List[str] = []
__magic_name__ : List[str] = [1] * len(_A )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(_A ) ):
if indegree[i] == 0:
queue.append(_A )
while queue:
__magic_name__ : Dict = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
__magic_name__ : int = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(_A )
print(max(_A ) )
# Adjacency list of Graph
__magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 342 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_rembert import RemBertTokenizer
else:
__magic_name__: int = None
__magic_name__: Any = logging.get_logger(__name__)
__magic_name__: str = {"vocab_file": "sentencepiece.model", "tokenizer_file": "tokenizer.json"}
__magic_name__: Optional[Any] = {
"vocab_file": {
"google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model",
},
"tokenizer_file": {
"google/rembert": "https://huggingface.co/google/rembert/resolve/main/tokenizer.json",
},
}
__magic_name__: Any = {
"google/rembert": 256,
}
__magic_name__: List[Any] = "▁"
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : List[Any] = VOCAB_FILES_NAMES
lowercase__ : int = PRETRAINED_VOCAB_FILES_MAP
lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ : Dict = RemBertTokenizer
def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[MASK]" , **lowerCAmelCase__ , ) -> Any:
# Mask token behave like a normal word, i.e. include the space before it
__magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , remove_space=lowerCAmelCase__ , keep_accents=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , **lowerCAmelCase__ , )
__magic_name__ : int = do_lower_case
__magic_name__ : Optional[Any] = remove_space
__magic_name__ : Tuple = keep_accents
__magic_name__ : Union[str, Any] = vocab_file
__magic_name__ : Dict = False if not self.vocab_file else True
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
__magic_name__ : Optional[int] = [self.sep_token_id]
__magic_name__ : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"""You should not supply a second sequence if the provided sequence of """
"""ids is already formatted with special tokens for the model.""" )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
__magic_name__ : Union[str, Any] = [self.sep_token_id]
__magic_name__ : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase__ ):
logger.error("""Vocabulary path ({}) should be a directory""".format(lowerCAmelCase__ ) )
return
__magic_name__ : Any = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ):
copyfile(self.vocab_file , lowerCAmelCase__ )
return (out_vocab_file,)
| 342 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class snake_case__ ( unittest.TestCase ):
def __magic_name__ ( self ) -> str:
__magic_name__ : Tuple = """ylacombe/bark-small"""
__magic_name__ : List[str] = tempfile.mkdtemp()
__magic_name__ : Optional[Any] = """en_speaker_1"""
__magic_name__ : Union[str, Any] = """This is a test string"""
__magic_name__ : Optional[int] = """speaker_embeddings_path.json"""
__magic_name__ : Any = """speaker_embeddings"""
def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]:
return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ )
def __magic_name__ ( self ) -> Optional[Any]:
shutil.rmtree(self.tmpdirname )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Optional[Any] = self.get_tokenizer()
__magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ )
processor.save_pretrained(self.tmpdirname )
__magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : Optional[int] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
__magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__magic_name__ : str = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def __magic_name__ ( self ) -> Any:
__magic_name__ : List[str] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
__magic_name__ : Union[str, Any] = 35
__magic_name__ : List[Any] = 2
__magic_name__ : Dict = 8
__magic_name__ : Tuple = {
"""semantic_prompt""": np.ones(lowerCAmelCase__ ),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
__magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
__magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" )
np.savez(lowerCAmelCase__ , **lowerCAmelCase__ )
__magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ )
__magic_name__ : List[Any] = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
__magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset )
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : str = self.get_tokenizer()
__magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ )
__magic_name__ : Optional[Any] = processor(text=self.input_string )
__magic_name__ : List[Any] = tokenizer(
self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 342 | 1 |
import numpy as np
import torch
from torch.utils.data import DataLoader
from accelerate.utils.dataclasses import DistributedType
class snake_case__ :
def __init__( self , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=64 , lowerCAmelCase__=None ) -> Any:
__magic_name__ : Optional[Any] = np.random.default_rng(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = length
__magic_name__ : Any = rng.normal(size=(length,) ).astype(np.floataa )
__magic_name__ : Optional[Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa )
def __len__( self ) -> Optional[int]:
return self.length
def __getitem__( self , lowerCAmelCase__ ) -> int:
return {"x": self.x[i], "y": self.y[i]}
class snake_case__ ( torch.nn.Module ):
def __init__( self , lowerCAmelCase__=0 , lowerCAmelCase__=0 , lowerCAmelCase__=False ) -> str:
super().__init__()
__magic_name__ : Union[str, Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__magic_name__ : List[Any] = torch.nn.Parameter(torch.tensor([2, 3] ).float() )
__magic_name__ : Union[str, Any] = True
def __magic_name__ ( self , lowerCAmelCase__=None ) -> Optional[Any]:
if self.first_batch:
print(F'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__magic_name__ : Tuple = False
return x * self.a[0] + self.b[0]
class snake_case__ ( torch.nn.Module ):
def __init__( self , lowerCAmelCase__=0 , lowerCAmelCase__=0 , lowerCAmelCase__=False ) -> List[Any]:
super().__init__()
__magic_name__ : Optional[Any] = torch.nn.Parameter(torch.tensor(lowerCAmelCase__ ).float() )
__magic_name__ : str = torch.nn.Parameter(torch.tensor(lowerCAmelCase__ ).float() )
__magic_name__ : int = True
def __magic_name__ ( self , lowerCAmelCase__=None ) -> Any:
if self.first_batch:
print(F'Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}' )
__magic_name__ : Dict = False
return x * self.a + self.b
def UpperCamelCase ( _A, _A = 16 ):
"""simple docstring"""
from datasets import load_dataset
from transformers import AutoTokenizer
__magic_name__ : Optional[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" )
__magic_name__ : Optional[int] = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""}
__magic_name__ : Optional[Any] = load_dataset("""csv""", data_files=_A )
__magic_name__ : Tuple = datasets["""train"""].unique("""label""" )
__magic_name__ : List[str] = {v: i for i, v in enumerate(_A )}
def tokenize_function(_A ):
# max_length=None => use the model max length (it's actually the default)
__magic_name__ : List[Any] = tokenizer(
examples["""sentence1"""], examples["""sentence2"""], truncation=_A, max_length=_A, padding="""max_length""" )
if "label" in examples:
__magic_name__ : List[Any] = [label_to_id[l] for l in examples["""label"""]]
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
__magic_name__ : int = datasets.map(
_A, batched=_A, remove_columns=["""sentence1""", """sentence2""", """label"""], )
def collate_fn(_A ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(_A, padding="""max_length""", max_length=128, return_tensors="""pt""" )
return tokenizer.pad(_A, padding="""longest""", return_tensors="""pt""" )
# Instantiate dataloaders.
__magic_name__ : Tuple = DataLoader(tokenized_datasets["""train"""], shuffle=_A, collate_fn=_A, batch_size=2 )
__magic_name__ : List[Any] = DataLoader(tokenized_datasets["""validation"""], shuffle=_A, collate_fn=_A, batch_size=1 )
return train_dataloader, eval_dataloader
| 342 |
import unittest
import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class snake_case__ ( unittest.TestCase ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]:
__magic_name__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18}
__magic_name__ : str = parent
__magic_name__ : Any = batch_size
__magic_name__ : Any = num_channels
__magic_name__ : List[str] = image_size
__magic_name__ : Tuple = min_resolution
__magic_name__ : Union[str, Any] = max_resolution
__magic_name__ : List[str] = do_resize
__magic_name__ : Optional[Any] = size
__magic_name__ : Optional[Any] = do_normalize
__magic_name__ : Any = image_mean
__magic_name__ : List[str] = image_std
def __magic_name__ ( self ) -> List[str]:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Any = DPTImageProcessor if is_vision_available() else None
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : Dict = DPTImageProcessingTester(self )
@property
def __magic_name__ ( self ) -> Union[str, Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) )
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
__magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def __magic_name__ ( self ) -> str:
# Initialize image_processing
__magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
__magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __magic_name__ ( self ) -> Tuple:
# Initialize image_processing
__magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__magic_name__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
__magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __magic_name__ ( self ) -> Optional[Any]:
# Initialize image_processing
__magic_name__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
__magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__magic_name__ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 342 | 1 |
import math
import random
def UpperCamelCase ( _A, _A = False ):
"""simple docstring"""
if deriv:
return value * (1 - value)
return 1 / (1 + math.exp(-value ))
# Initial Value
__magic_name__: Optional[int] = 0.02
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
__magic_name__ : Optional[int] = float(2 * (random.randint(1, 100 )) - 1 )
for _ in range(_A ):
# Forward propagation
__magic_name__ : Union[str, Any] = sigmoid_function(INITIAL_VALUE * weight )
# How much did we miss?
__magic_name__ : List[str] = (expected / 100) - layer_a
# Error delta
__magic_name__ : Optional[Any] = layer_1_error * sigmoid_function(_A, _A )
# Update weight
weight += INITIAL_VALUE * layer_1_delta
return layer_a * 100
if __name__ == "__main__":
import doctest
doctest.testmod()
__magic_name__: str = int(input("Expected value: "))
__magic_name__: str = int(input("Number of propagations: "))
print(forward_propagation(expected, number_propagations))
| 342 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
__magic_name__: Tuple = {
"Acehnese Arabic": "ace_Arab",
"Acehnese Latin": "ace_Latn",
"Mesopotamian Arabic": "acm_Arab",
"Ta'izzi-Adeni Arabic": "acq_Arab",
"Tunisian Arabic": "aeb_Arab",
"Afrikaans": "afr_Latn",
"South Levantine Arabic": "ajp_Arab",
"Akan": "aka_Latn",
"Amharic": "amh_Ethi",
"North Levantine Arabic": "apc_Arab",
"Modern Standard Arabic": "arb_Arab",
"Modern Standard Arabic Romanized": "arb_Latn",
"Najdi Arabic": "ars_Arab",
"Moroccan Arabic": "ary_Arab",
"Egyptian Arabic": "arz_Arab",
"Assamese": "asm_Beng",
"Asturian": "ast_Latn",
"Awadhi": "awa_Deva",
"Central Aymara": "ayr_Latn",
"South Azerbaijani": "azb_Arab",
"North Azerbaijani": "azj_Latn",
"Bashkir": "bak_Cyrl",
"Bambara": "bam_Latn",
"Balinese": "ban_Latn",
"Belarusian": "bel_Cyrl",
"Bemba": "bem_Latn",
"Bengali": "ben_Beng",
"Bhojpuri": "bho_Deva",
"Banjar Arabic": "bjn_Arab",
"Banjar Latin": "bjn_Latn",
"Standard Tibetan": "bod_Tibt",
"Bosnian": "bos_Latn",
"Buginese": "bug_Latn",
"Bulgarian": "bul_Cyrl",
"Catalan": "cat_Latn",
"Cebuano": "ceb_Latn",
"Czech": "ces_Latn",
"Chokwe": "cjk_Latn",
"Central Kurdish": "ckb_Arab",
"Crimean Tatar": "crh_Latn",
"Welsh": "cym_Latn",
"Danish": "dan_Latn",
"German": "deu_Latn",
"Southwestern Dinka": "dik_Latn",
"Dyula": "dyu_Latn",
"Dzongkha": "dzo_Tibt",
"Greek": "ell_Grek",
"English": "eng_Latn",
"Esperanto": "epo_Latn",
"Estonian": "est_Latn",
"Basque": "eus_Latn",
"Ewe": "ewe_Latn",
"Faroese": "fao_Latn",
"Fijian": "fij_Latn",
"Finnish": "fin_Latn",
"Fon": "fon_Latn",
"French": "fra_Latn",
"Friulian": "fur_Latn",
"Nigerian Fulfulde": "fuv_Latn",
"Scottish Gaelic": "gla_Latn",
"Irish": "gle_Latn",
"Galician": "glg_Latn",
"Guarani": "grn_Latn",
"Gujarati": "guj_Gujr",
"Haitian Creole": "hat_Latn",
"Hausa": "hau_Latn",
"Hebrew": "heb_Hebr",
"Hindi": "hin_Deva",
"Chhattisgarhi": "hne_Deva",
"Croatian": "hrv_Latn",
"Hungarian": "hun_Latn",
"Armenian": "hye_Armn",
"Igbo": "ibo_Latn",
"Ilocano": "ilo_Latn",
"Indonesian": "ind_Latn",
"Icelandic": "isl_Latn",
"Italian": "ita_Latn",
"Javanese": "jav_Latn",
"Japanese": "jpn_Jpan",
"Kabyle": "kab_Latn",
"Jingpho": "kac_Latn",
"Kamba": "kam_Latn",
"Kannada": "kan_Knda",
"Kashmiri Arabic": "kas_Arab",
"Kashmiri Devanagari": "kas_Deva",
"Georgian": "kat_Geor",
"Central Kanuri Arabic": "knc_Arab",
"Central Kanuri Latin": "knc_Latn",
"Kazakh": "kaz_Cyrl",
"Kabiyè": "kbp_Latn",
"Kabuverdianu": "kea_Latn",
"Khmer": "khm_Khmr",
"Kikuyu": "kik_Latn",
"Kinyarwanda": "kin_Latn",
"Kyrgyz": "kir_Cyrl",
"Kimbundu": "kmb_Latn",
"Northern Kurdish": "kmr_Latn",
"Kikongo": "kon_Latn",
"Korean": "kor_Hang",
"Lao": "lao_Laoo",
"Ligurian": "lij_Latn",
"Limburgish": "lim_Latn",
"Lingala": "lin_Latn",
"Lithuanian": "lit_Latn",
"Lombard": "lmo_Latn",
"Latgalian": "ltg_Latn",
"Luxembourgish": "ltz_Latn",
"Luba-Kasai": "lua_Latn",
"Ganda": "lug_Latn",
"Luo": "luo_Latn",
"Mizo": "lus_Latn",
"Standard Latvian": "lvs_Latn",
"Magahi": "mag_Deva",
"Maithili": "mai_Deva",
"Malayalam": "mal_Mlym",
"Marathi": "mar_Deva",
"Minangkabau Arabic ": "min_Arab",
"Minangkabau Latin": "min_Latn",
"Macedonian": "mkd_Cyrl",
"Plateau Malagasy": "plt_Latn",
"Maltese": "mlt_Latn",
"Meitei Bengali": "mni_Beng",
"Halh Mongolian": "khk_Cyrl",
"Mossi": "mos_Latn",
"Maori": "mri_Latn",
"Burmese": "mya_Mymr",
"Dutch": "nld_Latn",
"Norwegian Nynorsk": "nno_Latn",
"Norwegian Bokmål": "nob_Latn",
"Nepali": "npi_Deva",
"Northern Sotho": "nso_Latn",
"Nuer": "nus_Latn",
"Nyanja": "nya_Latn",
"Occitan": "oci_Latn",
"West Central Oromo": "gaz_Latn",
"Odia": "ory_Orya",
"Pangasinan": "pag_Latn",
"Eastern Panjabi": "pan_Guru",
"Papiamento": "pap_Latn",
"Western Persian": "pes_Arab",
"Polish": "pol_Latn",
"Portuguese": "por_Latn",
"Dari": "prs_Arab",
"Southern Pashto": "pbt_Arab",
"Ayacucho Quechua": "quy_Latn",
"Romanian": "ron_Latn",
"Rundi": "run_Latn",
"Russian": "rus_Cyrl",
"Sango": "sag_Latn",
"Sanskrit": "san_Deva",
"Santali": "sat_Olck",
"Sicilian": "scn_Latn",
"Shan": "shn_Mymr",
"Sinhala": "sin_Sinh",
"Slovak": "slk_Latn",
"Slovenian": "slv_Latn",
"Samoan": "smo_Latn",
"Shona": "sna_Latn",
"Sindhi": "snd_Arab",
"Somali": "som_Latn",
"Southern Sotho": "sot_Latn",
"Spanish": "spa_Latn",
"Tosk Albanian": "als_Latn",
"Sardinian": "srd_Latn",
"Serbian": "srp_Cyrl",
"Swati": "ssw_Latn",
"Sundanese": "sun_Latn",
"Swedish": "swe_Latn",
"Swahili": "swh_Latn",
"Silesian": "szl_Latn",
"Tamil": "tam_Taml",
"Tatar": "tat_Cyrl",
"Telugu": "tel_Telu",
"Tajik": "tgk_Cyrl",
"Tagalog": "tgl_Latn",
"Thai": "tha_Thai",
"Tigrinya": "tir_Ethi",
"Tamasheq Latin": "taq_Latn",
"Tamasheq Tifinagh": "taq_Tfng",
"Tok Pisin": "tpi_Latn",
"Tswana": "tsn_Latn",
"Tsonga": "tso_Latn",
"Turkmen": "tuk_Latn",
"Tumbuka": "tum_Latn",
"Turkish": "tur_Latn",
"Twi": "twi_Latn",
"Central Atlas Tamazight": "tzm_Tfng",
"Uyghur": "uig_Arab",
"Ukrainian": "ukr_Cyrl",
"Umbundu": "umb_Latn",
"Urdu": "urd_Arab",
"Northern Uzbek": "uzn_Latn",
"Venetian": "vec_Latn",
"Vietnamese": "vie_Latn",
"Waray": "war_Latn",
"Wolof": "wol_Latn",
"Xhosa": "xho_Latn",
"Eastern Yiddish": "ydd_Hebr",
"Yoruba": "yor_Latn",
"Yue Chinese": "yue_Hant",
"Chinese Simplified": "zho_Hans",
"Chinese Traditional": "zho_Hant",
"Standard Malay": "zsm_Latn",
"Zulu": "zul_Latn",
}
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M'''
lowercase__ : List[Any] = (
'''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should '''
'''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, '''
'''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in '''
'''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.'''
)
lowercase__ : List[str] = '''translator'''
lowercase__ : Optional[Any] = AutoTokenizer
lowercase__ : int = AutoModelForSeqaSeqLM
lowercase__ : List[Any] = LANGUAGE_CODES
lowercase__ : str = ['''text''', '''text''', '''text''']
lowercase__ : Any = ['''text''']
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]:
if src_lang not in self.lang_to_code:
raise ValueError(F'{src_lang} is not a supported language.' )
if tgt_lang not in self.lang_to_code:
raise ValueError(F'{tgt_lang} is not a supported language.' )
__magic_name__ : Tuple = self.lang_to_code[src_lang]
__magic_name__ : Dict = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.model.generate(**lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
| 342 | 1 |
def UpperCamelCase ( _A, _A, _A, _A ):
"""simple docstring"""
global f # a global dp table for knapsack
if f[i][j] < 0:
if j < wt[i - 1]:
__magic_name__ : int = mf_knapsack(i - 1, _A, _A, _A )
else:
__magic_name__ : Tuple = max(
mf_knapsack(i - 1, _A, _A, _A ), mf_knapsack(i - 1, _A, _A, j - wt[i - 1] ) + val[i - 1], )
__magic_name__ : List[Any] = val
return f[i][j]
def UpperCamelCase ( _A, _A, _A, _A ):
"""simple docstring"""
__magic_name__ : List[str] = [[0] * (w + 1) for _ in range(n + 1 )]
for i in range(1, n + 1 ):
for w_ in range(1, w + 1 ):
if wt[i - 1] <= w_:
__magic_name__ : List[str] = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]], dp[i - 1][w_] )
else:
__magic_name__ : Optional[Any] = dp[i - 1][w_]
return dp[n][w_], dp
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
if not (isinstance(_A, (list, tuple) ) and isinstance(_A, (list, tuple) )):
raise ValueError(
"""Both the weights and values vectors must be either lists or tuples""" )
__magic_name__ : Any = len(_A )
if num_items != len(_A ):
__magic_name__ : int = (
"""The number of weights must be the same as the number of values.\n"""
f'But got {num_items} weights and {len(_A )} values'
)
raise ValueError(_A )
for i in range(_A ):
if not isinstance(wt[i], _A ):
__magic_name__ : Any = (
"""All weights must be integers but got weight of """
f'type {type(wt[i] )} at index {i}'
)
raise TypeError(_A )
__magic_name__ ,__magic_name__ : Any = knapsack(_A, _A, _A, _A )
__magic_name__ : set = set()
_construct_solution(_A, _A, _A, _A, _A )
return optimal_val, example_optional_set
def UpperCamelCase ( _A, _A, _A, _A, _A ):
"""simple docstring"""
if i > 0 and j > 0:
if dp[i - 1][j] == dp[i][j]:
_construct_solution(_A, _A, i - 1, _A, _A )
else:
optimal_set.add(_A )
_construct_solution(_A, _A, i - 1, j - wt[i - 1], _A )
if __name__ == "__main__":
__magic_name__: int = [3, 2, 4, 4]
__magic_name__: Tuple = [4, 3, 2, 3]
__magic_name__: Optional[int] = 4
__magic_name__: Dict = 6
__magic_name__: Dict = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)]
__magic_name__ , __magic_name__: Union[str, Any] = knapsack(w, wt, val, n)
print(optimal_solution)
print(mf_knapsack(n, wt, val, w)) # switched the n and w
# testing the dynamic programming problem with example
# the optimal subset for the above example are items 3 and 4
__magic_name__ , __magic_name__: Tuple = knapsack_with_example_solution(w, wt, val)
assert optimal_solution == 8
assert optimal_subset == {3, 4}
print("optimal_value = ", optimal_solution)
print("An optimal subset corresponding to the optimal value", optimal_subset)
| 342 |
import math
class snake_case__ :
def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1
__magic_name__ : Tuple = n
__magic_name__ : Union[str, Any] = [
[math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ )
] # adjacency matrix for weight
__magic_name__ : List[Any] = [
[math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ )
] # dp[i][j] stores minimum distance from i to j
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : Dict = w
def __magic_name__ ( self ) -> Optional[int]:
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
__magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str:
return self.dp[u][v]
if __name__ == "__main__":
__magic_name__: Dict = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 342 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__magic_name__: Optional[Any] = {
"configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__: Union[str, Any] = [
"MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST",
"MegatronBertForCausalLM",
"MegatronBertForMaskedLM",
"MegatronBertForMultipleChoice",
"MegatronBertForNextSentencePrediction",
"MegatronBertForPreTraining",
"MegatronBertForQuestionAnswering",
"MegatronBertForSequenceClassification",
"MegatronBertForTokenClassification",
"MegatronBertModel",
"MegatronBertPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
__magic_name__: List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 342 |
from __future__ import annotations
import math
import random
from collections.abc import Collection
from typing import overload
class snake_case__ :
def __init__( self , lowerCAmelCase__ = None ) -> None:
if components is None:
__magic_name__ : Any = []
__magic_name__ : List[str] = list(lowerCAmelCase__ )
def __len__( self ) -> int:
return len(self.__components )
def __str__( self ) -> str:
return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")"
def __add__( self , lowerCAmelCase__ ) -> Vector:
__magic_name__ : Dict = len(self )
if size == len(lowerCAmelCase__ ):
__magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return Vector(lowerCAmelCase__ )
else:
raise Exception("""must have the same size""" )
def __sub__( self , lowerCAmelCase__ ) -> Vector:
__magic_name__ : int = len(self )
if size == len(lowerCAmelCase__ ):
__magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return Vector(lowerCAmelCase__ )
else: # error case
raise Exception("""must have the same size""" )
@overload
def __mul__( self , lowerCAmelCase__ ) -> Vector:
...
@overload
def __mul__( self , lowerCAmelCase__ ) -> float:
...
def __mul__( self , lowerCAmelCase__ ) -> float | Vector:
if isinstance(lowerCAmelCase__ , (float, int) ):
__magic_name__ : Optional[Any] = [c * other for c in self.__components]
return Vector(lowerCAmelCase__ )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ):
__magic_name__ : Optional[Any] = len(self )
__magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return sum(lowerCAmelCase__ )
else: # error case
raise Exception("""invalid operand!""" )
def __magic_name__ ( self ) -> Vector:
return Vector(self.__components )
def __magic_name__ ( self , lowerCAmelCase__ ) -> float:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ):
return self.__components[i]
else:
raise Exception("""index out of range""" )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
assert -len(self.__components ) <= pos < len(self.__components )
__magic_name__ : Optional[int] = value
def __magic_name__ ( self ) -> float:
if len(self.__components ) == 0:
raise Exception("""Vector is empty""" )
__magic_name__ : Dict = [c**2 for c in self.__components]
return math.sqrt(sum(lowerCAmelCase__ ) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float:
__magic_name__ : Optional[Any] = self * other
__magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length()
if deg:
return math.degrees(math.acos(num / den ) )
else:
return math.acos(num / den )
def UpperCamelCase ( _A ):
"""simple docstring"""
assert isinstance(_A, _A )
return Vector([0] * dimension )
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
assert isinstance(_A, _A ) and (isinstance(_A, _A ))
__magic_name__ : Union[str, Any] = [0] * dimension
__magic_name__ : Optional[int] = 1
return Vector(_A )
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
assert (
isinstance(_A, _A )
and isinstance(_A, _A )
and (isinstance(_A, (int, float) ))
)
return x * scalar + y
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
random.seed(_A )
__magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )]
return Vector(_A )
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
__magic_name__ : Dict = matrix
__magic_name__ : Tuple = w
__magic_name__ : Union[str, Any] = h
def __str__( self ) -> str:
__magic_name__ : Dict = """"""
for i in range(self.__height ):
ans += "|"
for j in range(self.__width ):
if j < self.__width - 1:
ans += str(self.__matrix[i][j] ) + ","
else:
ans += str(self.__matrix[i][j] ) + "|\n"
return ans
def __add__( self , lowerCAmelCase__ ) -> Matrix:
if self.__width == other.width() and self.__height == other.height():
__magic_name__ : Tuple = []
for i in range(self.__height ):
__magic_name__ : Tuple = [
self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ )
for j in range(self.__width )
]
matrix.append(lowerCAmelCase__ )
return Matrix(lowerCAmelCase__ , self.__width , self.__height )
else:
raise Exception("""matrix must have the same dimension!""" )
def __sub__( self , lowerCAmelCase__ ) -> Matrix:
if self.__width == other.width() and self.__height == other.height():
__magic_name__ : Optional[Any] = []
for i in range(self.__height ):
__magic_name__ : int = [
self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ )
for j in range(self.__width )
]
matrix.append(lowerCAmelCase__ )
return Matrix(lowerCAmelCase__ , self.__width , self.__height )
else:
raise Exception("""matrices must have the same dimension!""" )
@overload
def __mul__( self , lowerCAmelCase__ ) -> Matrix:
...
@overload
def __mul__( self , lowerCAmelCase__ ) -> Vector:
...
def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector
if len(lowerCAmelCase__ ) == self.__width:
__magic_name__ : Tuple = zero_vector(self.__height )
for i in range(self.__height ):
__magic_name__ : Optional[int] = [
self.__matrix[i][j] * other.component(lowerCAmelCase__ )
for j in range(self.__width )
]
ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) )
return ans
else:
raise Exception(
"""vector must have the same size as the """
"""number of columns of the matrix!""" )
elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar
__magic_name__ : Any = [
[self.__matrix[i][j] * other for j in range(self.__width )]
for i in range(self.__height )
]
return Matrix(lowerCAmelCase__ , self.__width , self.__height )
return None
def __magic_name__ ( self ) -> int:
return self.__height
def __magic_name__ ( self ) -> int:
return self.__width
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float:
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else:
raise Exception("""change_component: indices out of bounds""" )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
if 0 <= x < self.__height and 0 <= y < self.__width:
__magic_name__ : List[Any] = value
else:
raise Exception("""change_component: indices out of bounds""" )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float:
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
__magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(lowerCAmelCase__ ) ):
__magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :]
return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant()
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float:
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ )
else:
raise Exception("""Indices out of bounds""" )
def __magic_name__ ( self ) -> float:
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
if self.__height < 1:
raise Exception("""Matrix has no element""" )
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
__magic_name__ : str = [
self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width )
]
return sum(lowerCAmelCase__ )
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )]
return Matrix(_A, _A, _A )
def UpperCamelCase ( _A, _A, _A, _A ):
"""simple docstring"""
random.seed(_A )
__magic_name__ : list[list[float]] = [
[random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A )
]
return Matrix(_A, _A, _A )
| 342 | 1 |
from __future__ import annotations
__magic_name__: Union[str, Any] = []
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
for i in range(len(_A ) ):
if board[row][i] == 1:
return False
for i in range(len(_A ) ):
if board[i][column] == 1:
return False
for i, j in zip(range(_A, -1, -1 ), range(_A, -1, -1 ) ):
if board[i][j] == 1:
return False
for i, j in zip(range(_A, -1, -1 ), range(_A, len(_A ) ) ):
if board[i][j] == 1:
return False
return True
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
if row >= len(_A ):
solution.append(_A )
printboard(_A )
print()
return True
for i in range(len(_A ) ):
if is_safe(_A, _A, _A ):
__magic_name__ : Union[str, Any] = 1
solve(_A, row + 1 )
__magic_name__ : List[Any] = 0
return False
def UpperCamelCase ( _A ):
"""simple docstring"""
for i in range(len(_A ) ):
for j in range(len(_A ) ):
if board[i][j] == 1:
print("""Q""", end=""" """ )
else:
print(""".""", end=""" """ )
print()
# n=int(input("The no. of queens"))
__magic_name__: str = 8
__magic_name__: Optional[int] = [[0 for i in range(n)] for j in range(n)]
solve(board, 0)
print("The total no. of solutions are :", len(solution))
| 342 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
__magic_name__: str = logging.get_logger(__name__)
__magic_name__: int = "▁"
__magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"}
__magic_name__: List[str] = {
"vocab_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model"
),
}
}
__magic_name__: Tuple = {
"facebook/nllb-200-distilled-600M": 1_024,
}
# fmt: off
__magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"]
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : str = VOCAB_FILES_NAMES
lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__ : str = ['''input_ids''', '''attention_mask''']
lowercase__ : List[int] = []
lowercase__ : List[int] = []
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int:
# Mask token behave like a normal word, i.e. include the space before it
__magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
__magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
__magic_name__ : Optional[Any] = legacy_behaviour
super().__init__(
bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , )
__magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowerCAmelCase__ ) )
__magic_name__ : List[Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a'
# spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s'
# Mimic fairseq token-to-id alignment for the first 4 token
__magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__magic_name__ : List[Any] = 1
__magic_name__ : Dict = len(self.sp_model )
__magic_name__ : int = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ )
}
__magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()}
__magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
__magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
__magic_name__ : List[str] = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
__magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn"""
__magic_name__ : Any = self.lang_code_to_id[self._src_lang]
__magic_name__ : Optional[int] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self ) -> Any:
__magic_name__ : List[Any] = self.__dict__.copy()
__magic_name__ : int = None
__magic_name__ : Optional[int] = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , lowerCAmelCase__ ) -> Any:
__magic_name__ : Any = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__magic_name__ : Any = {}
__magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def __magic_name__ ( self ) -> str:
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def __magic_name__ ( self ) -> str:
return self._src_lang
@src_lang.setter
def __magic_name__ ( self , lowerCAmelCase__ ) -> None:
__magic_name__ : Tuple = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
__magic_name__ : Optional[int] = [1] * len(self.prefix_tokens )
__magic_name__ : Any = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones
return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
__magic_name__ : str = [self.sep_token_id]
__magic_name__ : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]:
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
__magic_name__ : Dict = src_lang
__magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ )
__magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ )
__magic_name__ : Tuple = tgt_lang_id
return inputs
def __magic_name__ ( self ) -> int:
__magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]:
return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __magic_name__ ( self , lowerCAmelCase__ ) -> str:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip()
return out_string
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
__magic_name__ : List[Any] = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase__ , """wb""" ) as fi:
__magic_name__ : List[str] = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase__ )
return (out_vocab_file,)
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding:
__magic_name__ : List[str] = src_lang
__magic_name__ : Dict = tgt_lang
return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ )
def __magic_name__ ( self ) -> str:
return self.set_src_lang_special_tokens(self.src_lang )
def __magic_name__ ( self ) -> List[str]:
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __magic_name__ ( self , lowerCAmelCase__ ) -> None:
__magic_name__ : Optional[int] = self.lang_code_to_id[src_lang]
if self.legacy_behaviour:
__magic_name__ : List[str] = []
__magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code]
else:
__magic_name__ : str = [self.cur_lang_code]
__magic_name__ : List[Any] = [self.eos_token_id]
def __magic_name__ ( self , lowerCAmelCase__ ) -> None:
__magic_name__ : List[str] = self.lang_code_to_id[lang]
if self.legacy_behaviour:
__magic_name__ : List[str] = []
__magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code]
else:
__magic_name__ : Optional[int] = [self.cur_lang_code]
__magic_name__ : Union[str, Any] = [self.eos_token_id]
| 342 | 1 |
import importlib
import sys
from argparse import REMAINDER, ArgumentParser
from pathlib import Path
import torch_xla.distributed.xla_multiprocessing as xmp
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : Any = ArgumentParser(
description=(
"""PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes"""
) )
# Optional arguments for the launch helper
parser.add_argument("""--num_cores""", type=_A, default=1, help="""Number of TPU cores to use (1 or 8).""" )
# positional
parser.add_argument(
"""training_script""", type=_A, help=(
"""The full path to the single TPU training """
"""program/script to be launched in parallel, """
"""followed by all the arguments for the """
"""training script"""
), )
# rest from the training program
parser.add_argument("""training_script_args""", nargs=_A )
return parser.parse_args()
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : Union[str, Any] = parse_args()
# Import training_script as a module.
__magic_name__ : int = Path(args.training_script )
sys.path.append(str(script_fpath.parent.resolve() ) )
__magic_name__ : Optional[Any] = script_fpath.stem
__magic_name__ : int = importlib.import_module(_A )
# Patch sys.argv
__magic_name__ : Union[str, Any] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )]
xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores )
if __name__ == "__main__":
main()
| 342 |
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
__magic_name__ : Dict = MobileBertConfig.from_json_file(_A )
print(f'Building PyTorch model from configuration: {config}' )
__magic_name__ : Tuple = MobileBertForPreTraining(_A )
# Load weights from tf checkpoint
__magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict(), _A )
if __name__ == "__main__":
__magic_name__: Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--mobilebert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained MobileBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__magic_name__: Dict = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 342 | 1 |
from __future__ import annotations
def UpperCamelCase ( _A ): # This function is recursive
"""simple docstring"""
__magic_name__ : str = len(_A )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
__magic_name__ : Dict = array[0]
__magic_name__ : Optional[Any] = False
__magic_name__ : Tuple = 1
__magic_name__ : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
__magic_name__ : Union[str, Any] = True
__magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]]
__magic_name__ : Dict = longest_subsequence(_A )
if len(_A ) > len(_A ):
__magic_name__ : Tuple = temp_array
else:
i += 1
__magic_name__ : Any = [element for element in array[1:] if element >= pivot]
__magic_name__ : Dict = [pivot, *longest_subsequence(_A )]
if len(_A ) > len(_A ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 |
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Optional[Any] = MgpstrTokenizer
lowercase__ : int = False
lowercase__ : Any = {}
lowercase__ : Optional[int] = False
def __magic_name__ ( self ) -> Optional[Any]:
super().setUp()
# fmt: off
__magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
__magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
__magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" )
def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]:
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]:
__magic_name__ : List[str] = """tester"""
__magic_name__ : int = """tester"""
return input_text, output_text
@unittest.skip("""MGP-STR always lower cases letters.""" )
def __magic_name__ ( self ) -> str:
pass
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
__magic_name__ : Dict = """[SPECIAL_TOKEN]"""
tokenizer.add_special_tokens({"""cls_token""": special_token} )
__magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , 1 )
__magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
self.assertTrue(special_token not in decoded )
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ : int = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
__magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ )
__magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ )
__magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertNotEqual(len(lowerCAmelCase__ ) , 0 )
__magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ )
@unittest.skip("""MGP-STR tokenizer only handles one sequence.""" )
def __magic_name__ ( self ) -> Tuple:
pass
@unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" )
def __magic_name__ ( self ) -> Optional[Any]:
pass
| 342 | 1 |
import inspect
import unittest
from transformers import YolosConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import YolosForObjectDetection, YolosModel
from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=[30, 30] , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=3 , lowerCAmelCase__=None , lowerCAmelCase__=8 , lowerCAmelCase__=10 , ) -> int:
__magic_name__ : Union[str, Any] = parent
__magic_name__ : Tuple = batch_size
__magic_name__ : Any = image_size
__magic_name__ : int = patch_size
__magic_name__ : Optional[int] = num_channels
__magic_name__ : List[Any] = is_training
__magic_name__ : Union[str, Any] = use_labels
__magic_name__ : List[str] = hidden_size
__magic_name__ : str = num_hidden_layers
__magic_name__ : Optional[int] = num_attention_heads
__magic_name__ : List[str] = intermediate_size
__magic_name__ : int = hidden_act
__magic_name__ : List[Any] = hidden_dropout_prob
__magic_name__ : str = attention_probs_dropout_prob
__magic_name__ : int = type_sequence_label_size
__magic_name__ : int = initializer_range
__magic_name__ : Union[str, Any] = num_labels
__magic_name__ : Dict = scope
__magic_name__ : Any = n_targets
__magic_name__ : Any = num_detection_tokens
# we set the expected sequence length (which is used in several tests)
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens
__magic_name__ : Optional[int] = (image_size[1] // patch_size) * (image_size[0] // patch_size)
__magic_name__ : Union[str, Any] = num_patches + 1 + self.num_detection_tokens
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] )
__magic_name__ : Dict = None
if self.use_labels:
# labels is a list of Dict (each Dict being the labels for a given example in the batch)
__magic_name__ : str = []
for i in range(self.batch_size ):
__magic_name__ : Any = {}
__magic_name__ : str = torch.randint(
high=self.num_labels , size=(self.n_targets,) , device=lowerCAmelCase__ )
__magic_name__ : Dict = torch.rand(self.n_targets , 4 , device=lowerCAmelCase__ )
labels.append(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self ) -> Dict:
return YolosConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict:
__magic_name__ : List[Any] = YolosModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : int = model(lowerCAmelCase__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : Optional[Any] = YolosForObjectDetection(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Optional[int] = model(pixel_values=lowerCAmelCase__ )
__magic_name__ : Optional[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
__magic_name__ : List[Any] = model(pixel_values=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) )
self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) )
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ : Union[str, Any] = self.prepare_config_and_inputs()
__magic_name__ ,__magic_name__ ,__magic_name__ : Optional[Any] = config_and_inputs
__magic_name__ : Dict = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Dict = (YolosModel, YolosForObjectDetection) if is_torch_available() else ()
lowercase__ : Tuple = (
{'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {}
)
lowercase__ : Optional[Any] = False
lowercase__ : Optional[Any] = False
lowercase__ : Optional[Any] = False
lowercase__ : int = False
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int:
__magic_name__ : Dict = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ )
if return_labels:
if model_class.__name__ == "YolosForObjectDetection":
__magic_name__ : str = []
for i in range(self.model_tester.batch_size ):
__magic_name__ : Any = {}
__magic_name__ : Union[str, Any] = torch.ones(
size=(self.model_tester.n_targets,) , device=lowerCAmelCase__ , dtype=torch.long )
__magic_name__ : Dict = torch.ones(
self.model_tester.n_targets , 4 , device=lowerCAmelCase__ , dtype=torch.float )
labels.append(lowerCAmelCase__ )
__magic_name__ : List[str] = labels
return inputs_dict
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : List[Any] = YolosModelTester(self )
__magic_name__ : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 )
def __magic_name__ ( self ) -> int:
self.config_tester.run_common_tests()
def __magic_name__ ( self ) -> Optional[Any]:
# YOLOS does not use inputs_embeds
pass
def __magic_name__ ( self ) -> Any:
__magic_name__ ,__magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : str = model_class(lowerCAmelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__magic_name__ : Any = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) )
def __magic_name__ ( self ) -> int:
__magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Tuple = model_class(lowerCAmelCase__ )
__magic_name__ : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Tuple = [*signature.parameters.keys()]
__magic_name__ : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ ,__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Tuple = True
# in YOLOS, the seq_len is different
__magic_name__ : Optional[Any] = self.model_tester.expected_seq_len
for model_class in self.all_model_classes:
__magic_name__ : int = True
__magic_name__ : str = False
__magic_name__ : Optional[Any] = True
__magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : List[str] = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__magic_name__ : str = True
__magic_name__ : str = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : Any = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
__magic_name__ : Optional[int] = len(lowerCAmelCase__ )
# Check attention is always last and order is fine
__magic_name__ : Dict = True
__magic_name__ : Optional[Any] = True
__magic_name__ : Optional[int] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : str = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : Dict = 1
self.assertEqual(out_len + added_hidden_states , len(lowerCAmelCase__ ) )
__magic_name__ : Dict = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def __magic_name__ ( self ) -> str:
def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
__magic_name__ : List[str] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : Tuple = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : List[Any] = outputs.hidden_states
__magic_name__ : Any = getattr(
self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
# YOLOS has a different seq_length
__magic_name__ : Tuple = self.model_tester.expected_seq_len
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Any = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : List[str] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_object_detection(*lowerCAmelCase__ )
@slow
def __magic_name__ ( self ) -> str:
for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : Optional[int] = YolosModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class snake_case__ ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self ) -> str:
return AutoImageProcessor.from_pretrained("""hustvl/yolos-small""" ) if is_vision_available() else None
@slow
def __magic_name__ ( self ) -> Dict:
__magic_name__ : int = YolosForObjectDetection.from_pretrained("""hustvl/yolos-small""" ).to(lowerCAmelCase__ )
__magic_name__ : List[Any] = self.default_image_processor
__magic_name__ : Tuple = prepare_img()
__magic_name__ : Dict = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
__magic_name__ : int = model(inputs.pixel_values )
# verify outputs
__magic_name__ : Optional[int] = torch.Size((1, 1_00, 92) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
__magic_name__ : List[Any] = torch.tensor(
[[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=lowerCAmelCase__ , )
__magic_name__ : str = torch.tensor(
[[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
# verify postprocessing
__magic_name__ : int = image_processor.post_process_object_detection(
lowerCAmelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0]
__magic_name__ : Any = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(lowerCAmelCase__ )
__magic_name__ : List[Any] = [75, 75, 17, 63, 17]
__magic_name__ : int = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(lowerCAmelCase__ )
self.assertEqual(len(results["""scores"""] ) , 5 )
self.assertTrue(torch.allclose(results["""scores"""] , lowerCAmelCase__ , atol=1e-4 ) )
self.assertSequenceEqual(results["""labels"""].tolist() , lowerCAmelCase__ )
self.assertTrue(torch.allclose(results["""boxes"""][0, :] , lowerCAmelCase__ ) )
| 342 |
import re
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" )
if match := re.search(_A, _A ):
return match.string == phone
return False
if __name__ == "__main__":
print(indian_phone_validator("+918827897895"))
| 342 | 1 |
from pathlib import Path
from typing import List
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import get_tests_dir, is_tool_test
from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
__magic_name__: str = ["text", "image", "audio"]
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : Any = []
for input_type in input_types:
if input_type == "text":
inputs.append("""Text input""" )
elif input_type == "image":
inputs.append(
Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((512, 512) ) )
elif input_type == "audio":
inputs.append(torch.ones(3000 ) )
elif isinstance(_A, _A ):
inputs.append(create_inputs(_A ) )
else:
raise ValueError(f'Invalid type requested: {input_type}' )
return inputs
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : Dict = []
for output in outputs:
if isinstance(_A, (str, AgentText) ):
output_types.append("""text""" )
elif isinstance(_A, (Image.Image, AgentImage) ):
output_types.append("""image""" )
elif isinstance(_A, (torch.Tensor, AgentAudio) ):
output_types.append("""audio""" )
else:
raise ValueError(f'Invalid output: {output}' )
return output_types
@is_tool_test
class snake_case__ :
def __magic_name__ ( self ) -> List[str]:
self.assertTrue(hasattr(self.tool , """inputs""" ) )
self.assertTrue(hasattr(self.tool , """outputs""" ) )
__magic_name__ : Any = self.tool.inputs
for _input in inputs:
if isinstance(_input , lowerCAmelCase__ ):
for __input in _input:
self.assertTrue(__input in authorized_types )
else:
self.assertTrue(_input in authorized_types )
__magic_name__ : str = self.tool.outputs
for _output in outputs:
self.assertTrue(_output in authorized_types )
def __magic_name__ ( self ) -> Any:
__magic_name__ : Tuple = create_inputs(self.tool.inputs )
__magic_name__ : Optional[Any] = self.tool(*lowerCAmelCase__ )
# There is a single output
if len(self.tool.outputs ) == 1:
__magic_name__ : Dict = [outputs]
self.assertListEqual(output_types(lowerCAmelCase__ ) , self.tool.outputs )
def __magic_name__ ( self ) -> Dict:
self.assertTrue(hasattr(self.tool , """description""" ) )
self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) )
self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) )
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Union[str, Any] = create_inputs(self.tool.inputs )
__magic_name__ : Optional[int] = self.tool(*lowerCAmelCase__ )
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
__magic_name__ : Tuple = [outputs]
self.assertEqual(len(lowerCAmelCase__ ) , len(self.tool.outputs ) )
for output, output_type in zip(lowerCAmelCase__ , self.tool.outputs ):
__magic_name__ : List[Any] = AGENT_TYPE_MAPPING[output_type]
self.assertTrue(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) )
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : Union[str, Any] = create_inputs(self.tool.inputs )
__magic_name__ : Any = []
for _input, input_type in zip(lowerCAmelCase__ , self.tool.inputs ):
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] )
else:
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) )
# Should not raise an error
__magic_name__ : Optional[int] = self.tool(*lowerCAmelCase__ )
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
__magic_name__ : Dict = [outputs]
self.assertEqual(len(lowerCAmelCase__ ) , len(self.tool.outputs ) )
| 342 |
import doctest
from collections import deque
import numpy as np
class snake_case__ :
def __init__( self ) -> None:
__magic_name__ : Any = [2, 1, 2, -1]
__magic_name__ : Tuple = [1, 2, 3, 4]
def __magic_name__ ( self ) -> list[float]:
__magic_name__ : Optional[Any] = len(self.first_signal )
__magic_name__ : Dict = len(self.second_signal )
__magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ )
# create a zero matrix of max_length x max_length
__magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(lowerCAmelCase__ ):
__magic_name__ : List[str] = deque(self.second_signal )
rotated_signal.rotate(lowerCAmelCase__ )
for j, item in enumerate(lowerCAmelCase__ ):
matrix[i][j] += item
# multiply the matrix with the first signal
__magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(lowerCAmelCase__ , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 342 | 1 |
import doctest
from collections import deque
import numpy as np
class snake_case__ :
def __init__( self ) -> None:
__magic_name__ : Any = [2, 1, 2, -1]
__magic_name__ : Tuple = [1, 2, 3, 4]
def __magic_name__ ( self ) -> list[float]:
__magic_name__ : Optional[Any] = len(self.first_signal )
__magic_name__ : Dict = len(self.second_signal )
__magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ )
# create a zero matrix of max_length x max_length
__magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(lowerCAmelCase__ ):
__magic_name__ : List[str] = deque(self.second_signal )
rotated_signal.rotate(lowerCAmelCase__ )
for j, item in enumerate(lowerCAmelCase__ ):
matrix[i][j] += item
# multiply the matrix with the first signal
__magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(lowerCAmelCase__ , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 342 |
from math import factorial
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
if successes > trials:
raise ValueError("""successes must be lower or equal to trials""" )
if trials < 0 or successes < 0:
raise ValueError("""the function is defined for non-negative integers""" )
if not isinstance(_A, _A ) or not isinstance(_A, _A ):
raise ValueError("""the function is defined for non-negative integers""" )
if not 0 < prob < 1:
raise ValueError("""prob has to be in range of 1 - 0""" )
__magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes))
# Calculate the binomial coefficient: n! / k!(n-k)!
__magic_name__ : Any = float(factorial(_A ) )
coefficient /= factorial(_A ) * factorial(trials - successes )
return probability * coefficient
if __name__ == "__main__":
from doctest import testmod
testmod()
print("Probability of 2 successes out of 4 trails")
print("with probability of 0.75 is:", end=" ")
print(binomial_distribution(2, 4, 0.75))
| 342 | 1 |
from scipy.stats import spearmanr
import datasets
__magic_name__: str = "\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n"
__magic_name__: List[Any] = "\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {'spearmanr': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric(\"spearmanr\")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results['spearmanr'])\n -0.7\n >>> print(round(results['spearmanr_pvalue'], 2))\n 0.19\n"
__magic_name__: Tuple = r"\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class snake_case__ ( datasets.Metric ):
def __magic_name__ ( self ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Union[str, Any]:
__magic_name__ : str = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 342 |
from __future__ import annotations
def UpperCamelCase ( _A ): # This function is recursive
"""simple docstring"""
__magic_name__ : str = len(_A )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
__magic_name__ : Dict = array[0]
__magic_name__ : Optional[Any] = False
__magic_name__ : Tuple = 1
__magic_name__ : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
__magic_name__ : Union[str, Any] = True
__magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]]
__magic_name__ : Dict = longest_subsequence(_A )
if len(_A ) > len(_A ):
__magic_name__ : Tuple = temp_array
else:
i += 1
__magic_name__ : Any = [element for element in array[1:] if element >= pivot]
__magic_name__ : Dict = [pivot, *longest_subsequence(_A )]
if len(_A ) > len(_A ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 | 1 |
import argparse
import struct
import unittest
class snake_case__ :
def __init__( self , lowerCAmelCase__ ) -> None:
__magic_name__ : int = data
# Initialize hash values
__magic_name__ : Optional[Any] = [
0X6a_09_e6_67,
0Xbb_67_ae_85,
0X3c_6e_f3_72,
0Xa5_4f_f5_3a,
0X51_0e_52_7f,
0X9b_05_68_8c,
0X1f_83_d9_ab,
0X5b_e0_cd_19,
]
# Initialize round constants
__magic_name__ : int = [
0X42_8a_2f_98,
0X71_37_44_91,
0Xb5_c0_fb_cf,
0Xe9_b5_db_a5,
0X39_56_c2_5b,
0X59_f1_11_f1,
0X92_3f_82_a4,
0Xab_1c_5e_d5,
0Xd8_07_aa_98,
0X12_83_5b_01,
0X24_31_85_be,
0X55_0c_7d_c3,
0X72_be_5d_74,
0X80_de_b1_fe,
0X9b_dc_06_a7,
0Xc1_9b_f1_74,
0Xe4_9b_69_c1,
0Xef_be_47_86,
0X0f_c1_9d_c6,
0X24_0c_a1_cc,
0X2d_e9_2c_6f,
0X4a_74_84_aa,
0X5c_b0_a9_dc,
0X76_f9_88_da,
0X98_3e_51_52,
0Xa8_31_c6_6d,
0Xb0_03_27_c8,
0Xbf_59_7f_c7,
0Xc6_e0_0b_f3,
0Xd5_a7_91_47,
0X06_ca_63_51,
0X14_29_29_67,
0X27_b7_0a_85,
0X2e_1b_21_38,
0X4d_2c_6d_fc,
0X53_38_0d_13,
0X65_0a_73_54,
0X76_6a_0a_bb,
0X81_c2_c9_2e,
0X92_72_2c_85,
0Xa2_bf_e8_a1,
0Xa8_1a_66_4b,
0Xc2_4b_8b_70,
0Xc7_6c_51_a3,
0Xd1_92_e8_19,
0Xd6_99_06_24,
0Xf4_0e_35_85,
0X10_6a_a0_70,
0X19_a4_c1_16,
0X1e_37_6c_08,
0X27_48_77_4c,
0X34_b0_bc_b5,
0X39_1c_0c_b3,
0X4e_d8_aa_4a,
0X5b_9c_ca_4f,
0X68_2e_6f_f3,
0X74_8f_82_ee,
0X78_a5_63_6f,
0X84_c8_78_14,
0X8c_c7_02_08,
0X90_be_ff_fa,
0Xa4_50_6c_eb,
0Xbe_f9_a3_f7,
0Xc6_71_78_f2,
]
__magic_name__ : List[str] = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def __magic_name__ ( lowerCAmelCase__ ) -> bytes:
__magic_name__ : Optional[int] = b"""\x80""" + (b"""\x00""" * (63 - (len(lowerCAmelCase__ ) + 8) % 64))
__magic_name__ : Dict = struct.pack(""">Q""" , (len(lowerCAmelCase__ ) * 8) )
return data + padding + big_endian_integer
def __magic_name__ ( self ) -> None:
# Convert into blocks of 64 bytes
__magic_name__ : str = [
self.preprocessed_data[x : x + 64]
for x in range(0 , len(self.preprocessed_data ) , 64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
__magic_name__ : Any = list(struct.unpack(""">16L""" , lowerCAmelCase__ ) )
# add 48 0-ed integers
words += [0] * 48
__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Dict = self.hashes
for index in range(0 , 64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
__magic_name__ : List[str] = (
self.ror(words[index - 15] , 7 )
^ self.ror(words[index - 15] , 18 )
^ (words[index - 15] >> 3)
)
__magic_name__ : Dict = (
self.ror(words[index - 2] , 17 )
^ self.ror(words[index - 2] , 19 )
^ (words[index - 2] >> 10)
)
__magic_name__ : Optional[Any] = (
words[index - 16] + sa + words[index - 7] + sa
) % 0X1_00_00_00_00
# Compression
__magic_name__ : List[Any] = self.ror(lowerCAmelCase__ , 6 ) ^ self.ror(lowerCAmelCase__ , 11 ) ^ self.ror(lowerCAmelCase__ , 25 )
__magic_name__ : Union[str, Any] = (e & f) ^ ((~e & 0Xff_ff_ff_ff) & g)
__magic_name__ : List[str] = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0X1_00_00_00_00
__magic_name__ : Union[str, Any] = self.ror(lowerCAmelCase__ , 2 ) ^ self.ror(lowerCAmelCase__ , 13 ) ^ self.ror(lowerCAmelCase__ , 22 )
__magic_name__ : Dict = (a & b) ^ (a & c) ^ (b & c)
__magic_name__ : str = (sa + maj) % 0X1_00_00_00_00
__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : str = (
g,
f,
e,
((d + tempa) % 0X1_00_00_00_00),
c,
b,
a,
((tempa + tempa) % 0X1_00_00_00_00),
)
__magic_name__ : Optional[Any] = [a, b, c, d, e, f, g, h]
# Modify final values
__magic_name__ : Dict = [
((element + mutated_hash_values[index]) % 0X1_00_00_00_00)
for index, element in enumerate(self.hashes )
]
__magic_name__ : List[str] = """""".join([hex(lowerCAmelCase__ )[2:].zfill(8 ) for value in self.hashes] )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int:
return 0Xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations)
class snake_case__ ( unittest.TestCase ):
def __magic_name__ ( self ) -> None:
import hashlib
__magic_name__ : List[str] = bytes("""Test String""" , """utf-8""" )
self.assertEqual(SHAaaa(lowerCAmelCase__ ).hash , hashlib.shaaaa(lowerCAmelCase__ ).hexdigest() )
def UpperCamelCase ( ):
"""simple docstring"""
import doctest
doctest.testmod()
__magic_name__ : str = argparse.ArgumentParser()
parser.add_argument(
"""-s""", """--string""", dest="""input_string""", default="""Hello World!! Welcome to Cryptography""", help="""Hash the string""", )
parser.add_argument(
"""-f""", """--file""", dest="""input_file""", help="""Hash contents of a file""" )
__magic_name__ : int = parser.parse_args()
__magic_name__ : Optional[int] = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file, """rb""" ) as f:
__magic_name__ : int = f.read()
else:
__magic_name__ : Optional[int] = bytes(_A, """utf-8""" )
print(SHAaaa(_A ).hash )
if __name__ == "__main__":
main()
| 342 |
import argparse
import os
import re
__magic_name__: Optional[Any] = "src/transformers/models/auto"
# re pattern that matches mapping introductions:
# SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict
__magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict")
# re pattern that matches identifiers in mappings
__magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"")
def UpperCamelCase ( _A, _A = False ):
"""simple docstring"""
with open(_A, """r""", encoding="""utf-8""" ) as f:
__magic_name__ : Any = f.read()
__magic_name__ : List[Any] = content.split("""\n""" )
__magic_name__ : List[str] = []
__magic_name__ : Union[str, Any] = 0
while line_idx < len(_A ):
if _re_intro_mapping.search(lines[line_idx] ) is not None:
__magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8
# Start of a new mapping!
while not lines[line_idx].startswith(""" """ * indent + """(""" ):
new_lines.append(lines[line_idx] )
line_idx += 1
__magic_name__ : List[Any] = []
while lines[line_idx].strip() != "]":
# Blocks either fit in one line or not
if lines[line_idx].strip() == "(":
__magic_name__ : List[str] = line_idx
while not lines[line_idx].startswith(""" """ * indent + """)""" ):
line_idx += 1
blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) )
else:
blocks.append(lines[line_idx] )
line_idx += 1
# Sort blocks by their identifiers
__magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] )
new_lines += blocks
else:
new_lines.append(lines[line_idx] )
line_idx += 1
if overwrite:
with open(_A, """w""", encoding="""utf-8""" ) as f:
f.write("""\n""".join(_A ) )
elif "\n".join(_A ) != content:
return True
def UpperCamelCase ( _A = False ):
"""simple docstring"""
__magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )]
__magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames]
if not overwrite and any(_A ):
__magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d]
raise ValueError(
f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix'
""" this.""" )
if __name__ == "__main__":
__magic_name__: List[str] = argparse.ArgumentParser()
parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.")
__magic_name__: List[str] = parser.parse_args()
sort_all_auto_mappings(not args.check_only)
| 342 | 1 |
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
if len(_A ) != len(_A ):
raise ValueError("""The length of profit and weight must be same.""" )
if max_weight <= 0:
raise ValueError("""max_weight must greater than zero.""" )
if any(p < 0 for p in profit ):
raise ValueError("""Profit can not be negative.""" )
if any(w < 0 for w in weight ):
raise ValueError("""Weight can not be negative.""" )
# List created to store profit gained for the 1kg in case of each weight
# respectively. Calculate and append profit/weight for each element.
__magic_name__ : Optional[int] = [p / w for p, w in zip(_A, _A )]
# Creating a copy of the list and sorting profit/weight in ascending order
__magic_name__ : Union[str, Any] = sorted(_A )
# declaring useful variables
__magic_name__ : Dict = len(_A )
__magic_name__ : Any = 0
__magic_name__ : Optional[int] = 0
__magic_name__ : Union[str, Any] = 0
# loop till the total weight do not reach max limit e.g. 15 kg and till i<length
while limit <= max_weight and i < length:
# flag value for encountered greatest element in sorted_profit_by_weight
__magic_name__ : Dict = sorted_profit_by_weight[length - i - 1]
__magic_name__ : str = profit_by_weight.index(_A )
__magic_name__ : Tuple = -1
# check if the weight encountered is less than the total weight
# encountered before.
if max_weight - limit >= weight[index]:
limit += weight[index]
# Adding profit gained for the given weight 1 ===
# weight[index]/weight[index]
gain += 1 * profit[index]
else:
# Since the weight encountered is greater than limit, therefore take the
# required number of remaining kgs and calculate profit for it.
# weight remaining / weight[index]
gain += (max_weight - limit) / weight[index] * profit[index]
break
i += 1
return gain
if __name__ == "__main__":
print(
"Input profits, weights, and then max_weight (all positive ints) separated by "
"spaces."
)
__magic_name__: List[str] = [int(x) for x in input("Input profits separated by spaces: ").split()]
__magic_name__: Union[str, Any] = [int(x) for x in input("Input weights separated by spaces: ").split()]
__magic_name__: List[str] = int(input("Max weight allowed: "))
# Function Call
calc_profit(profit, weight, max_weight)
| 342 |
__magic_name__: str = [0, 2, 4, 6, 8]
__magic_name__: Optional[int] = [1, 3, 5, 7, 9]
def UpperCamelCase ( _A, _A, _A, _A ):
"""simple docstring"""
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1, -1, -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
__magic_name__ : List[Any] = 0
for digit in range(10 ):
__magic_name__ : Optional[int] = digit
result += reversible_numbers(
0, (remainder + 2 * digit) // 10, _A, _A )
return result
__magic_name__ : str = 0
for digita in range(10 ):
__magic_name__ : Optional[Any] = digita
if (remainder + digita) % 2 == 0:
__magic_name__ : Tuple = ODD_DIGITS
else:
__magic_name__ : str = EVEN_DIGITS
for digita in other_parity_digits:
__magic_name__ : Tuple = digita
result += reversible_numbers(
remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, )
return result
def UpperCamelCase ( _A = 9 ):
"""simple docstring"""
__magic_name__ : List[str] = 0
for length in range(1, max_power + 1 ):
result += reversible_numbers(_A, 0, [0] * length, _A )
return result
if __name__ == "__main__":
print(F"""{solution() = }""")
| 342 | 1 |
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments
from transformers.testing_utils import TestCasePlus, require_torch, slow
from transformers.utils import is_datasets_available
if is_datasets_available():
import datasets
class snake_case__ ( _lowerCAmelCase ):
@slow
@require_torch
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : Dict = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" )
__magic_name__ : Optional[Any] = BertTokenizer.from_pretrained("""bert-base-uncased""" )
__magic_name__ : Optional[Any] = bertabert.config.encoder.vocab_size
__magic_name__ : str = tokenizer.sep_token_id
__magic_name__ : Optional[int] = tokenizer.cls_token_id
__magic_name__ : List[Any] = 1_28
__magic_name__ : Any = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" )
__magic_name__ : Tuple = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" )
__magic_name__ : List[Any] = train_dataset.select(range(32 ) )
__magic_name__ : Optional[Any] = val_dataset.select(range(16 ) )
__magic_name__ : str = 4
def _map_to_encoder_decoder_inputs(lowerCAmelCase__ ):
# Tokenizer will automatically set [BOS] <text> [EOS]
__magic_name__ : List[str] = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=lowerCAmelCase__ , max_length=5_12 )
__magic_name__ : Tuple = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=lowerCAmelCase__ , max_length=1_28 )
__magic_name__ : Optional[int] = inputs.input_ids
__magic_name__ : int = inputs.attention_mask
__magic_name__ : Union[str, Any] = outputs.input_ids
__magic_name__ : Optional[Any] = outputs.input_ids.copy()
__magic_name__ : str = [
[-1_00 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""]
]
__magic_name__ : int = outputs.attention_mask
assert all(len(lowerCAmelCase__ ) == 5_12 for x in inputs.input_ids )
assert all(len(lowerCAmelCase__ ) == 1_28 for x in outputs.input_ids )
return batch
def _compute_metrics(lowerCAmelCase__ ):
__magic_name__ : Any = pred.label_ids
__magic_name__ : Union[str, Any] = pred.predictions
# all unnecessary tokens are removed
__magic_name__ : Tuple = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
__magic_name__ : Any = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
__magic_name__ : str = sum([int(pred_str[i] == label_str[i] ) for i in range(len(lowerCAmelCase__ ) )] ) / len(lowerCAmelCase__ )
return {"accuracy": accuracy}
# map train dataset
__magic_name__ : Optional[Any] = train_dataset.map(
_map_to_encoder_decoder_inputs , batched=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , remove_columns=["""article""", """highlights"""] , )
train_dataset.set_format(
type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , )
# same for validation dataset
__magic_name__ : Dict = val_dataset.map(
_map_to_encoder_decoder_inputs , batched=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , remove_columns=["""article""", """highlights"""] , )
val_dataset.set_format(
type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , )
__magic_name__ : Optional[Any] = self.get_auto_remove_tmp_dir()
__magic_name__ : List[str] = SeqaSeqTrainingArguments(
output_dir=lowerCAmelCase__ , per_device_train_batch_size=lowerCAmelCase__ , per_device_eval_batch_size=lowerCAmelCase__ , predict_with_generate=lowerCAmelCase__ , evaluation_strategy="""steps""" , do_train=lowerCAmelCase__ , do_eval=lowerCAmelCase__ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , )
# instantiate trainer
__magic_name__ : Union[str, Any] = SeqaSeqTrainer(
model=lowerCAmelCase__ , args=lowerCAmelCase__ , compute_metrics=_compute_metrics , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , )
# start training
trainer.train()
| 342 |
def UpperCamelCase ( _A ):
"""simple docstring"""
if not all(x.isalpha() for x in string ):
raise ValueError("""String must only contain alphabetic characters.""" )
__magic_name__ : int = sorted(string.lower() )
return len(_A ) == len(set(_A ) )
if __name__ == "__main__":
__magic_name__: Dict = input("Enter a string ").strip()
__magic_name__: Union[str, Any] = is_isogram(input_str)
print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
| 342 | 1 |
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
__magic_name__: int = [
# tf -> hf
("/", "."),
("layer_", "layers."),
("kernel", "weight"),
("beta", "bias"),
("gamma", "weight"),
("pegasus", "model"),
]
__magic_name__: Optional[Any] = [
(".output.dense", ".fc2"),
("intermediate.LayerNorm", "final_layer_norm"),
("intermediate.dense", "fc1"),
]
__magic_name__: List[Any] = (
INIT_COMMON
+ [
("attention.self.LayerNorm", "self_attn_layer_norm"),
("attention.output.dense", "self_attn.out_proj"),
("attention.self", "self_attn"),
("attention.encdec.LayerNorm", "encoder_attn_layer_norm"),
("attention.encdec_output.dense", "encoder_attn.out_proj"),
("attention.encdec", "encoder_attn"),
("key", "k_proj"),
("value", "v_proj"),
("query", "q_proj"),
("decoder.LayerNorm", "decoder.layernorm_embedding"),
]
+ END_COMMON
)
__magic_name__: Union[str, Any] = (
INIT_COMMON
+ [
("embeddings.word_embeddings", "shared.weight"),
("embeddings.position_embeddings", "embed_positions.weight"),
("attention.self.LayerNorm", "self_attn_layer_norm"),
("attention.output.dense", "self_attn.output"),
("attention.self", "self_attn.self"),
("encoder.LayerNorm", "encoder.layernorm_embedding"),
]
+ END_COMMON
)
__magic_name__: Optional[int] = [
"encdec/key/bias",
"encdec/query/bias",
"encdec/value/bias",
"self/key/bias",
"self/query/bias",
"self/value/bias",
"encdec_output/dense/bias",
"attention/output/dense/bias",
]
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
for tf_name, hf_name in patterns:
__magic_name__ : Any = k.replace(_A, _A )
return k
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
__magic_name__ : Tuple = BigBirdPegasusConfig(**_A )
__magic_name__ : Tuple = BigBirdPegasusForConditionalGeneration(_A )
__magic_name__ : str = torch_model.state_dict()
__magic_name__ : int = {}
# separating decoder weights
__magic_name__ : Union[str, Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("""pegasus/decoder""" )}
__magic_name__ : List[Any] = {k: tf_weights[k] for k in tf_weights if not k.startswith("""pegasus/decoder""" )}
for k, v in tqdm(decoder_weights.items(), """tf -> hf conversion""" ):
__magic_name__ : Optional[Any] = [k.endswith(_A ) for ending in KEYS_TO_IGNORE]
if any(_A ):
continue
__magic_name__ : Dict = DECODER_PATTERNS
__magic_name__ : Any = rename_state_dict_key(_A, _A )
if new_k not in state_dict:
raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' )
if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ):
__magic_name__ : Tuple = v.T
__magic_name__ : Tuple = torch.from_numpy(_A )
assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'
for k, v in tqdm(remaining_weights.items(), """tf -> hf conversion""" ):
__magic_name__ : Tuple = [k.endswith(_A ) for ending in KEYS_TO_IGNORE]
if any(_A ):
continue
__magic_name__ : Optional[Any] = REMAINING_PATTERNS
__magic_name__ : int = rename_state_dict_key(_A, _A )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(f'could not find new key {new_k} in state dict. (converted from {k})' )
if any(True if i in k else False for i in ["""dense""", """query""", """key""", """value"""] ):
__magic_name__ : Optional[Any] = v.T
__magic_name__ : Any = torch.from_numpy(_A )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, f'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}'
__magic_name__ : List[Any] = mapping["""model.embed_positions.weight"""]
__magic_name__ : List[Any] = mapping.pop("""model.embed_positions.weight""" )
__magic_name__ ,__magic_name__ : Tuple = torch_model.load_state_dict(_A, strict=_A )
__magic_name__ : List[Any] = [
k
for k in missing
if k
not in [
"""final_logits_bias""",
"""model.encoder.embed_tokens.weight""",
"""model.decoder.embed_tokens.weight""",
"""lm_head.weight""",
]
]
assert unexpected_missing == [], f'no matches found for the following torch keys {unexpected_missing}'
assert extra == [], f'no matches found for the following tf keys {extra}'
return torch_model
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : Optional[Any] = tf.train.list_variables(_A )
__magic_name__ : Optional[Any] = {}
__magic_name__ : Any = ["""global_step"""]
for name, shape in tqdm(_A, desc="""converting tf checkpoint to dict""" ):
__magic_name__ : Optional[int] = any(pat in name for pat in ignore_name )
if skip_key:
continue
__magic_name__ : Union[str, Any] = tf.train.load_variable(_A, _A )
__magic_name__ : Tuple = array
return tf_weights
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
__magic_name__ : Union[str, Any] = get_tf_weights_as_numpy(_A )
__magic_name__ : Tuple = convert_bigbird_pegasus(_A, _A )
torch_model.save_pretrained(_A )
if __name__ == "__main__":
__magic_name__: Union[str, Any] = argparse.ArgumentParser()
parser.add_argument("--tf_ckpt_path", type=str, help="passed to tf.train.list_variables")
parser.add_argument("--save_dir", default=None, type=str, help="Path to the output PyTorch model.")
__magic_name__: str = parser.parse_args()
__magic_name__: Optional[int] = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 342 |
import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
"The `inpainting.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionInpaintPipeline` instead."
)
| 342 | 1 |
import warnings
from .generation import TFGenerationMixin
class snake_case__ ( _lowerCAmelCase ):
# warning at import time
warnings.warn(
'''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will '''
'''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , _lowerCAmelCase , )
| 342 |
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class snake_case__ ( unittest.TestCase ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]:
__magic_name__ : str = parent
__magic_name__ : Dict = do_resize
__magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88}
__magic_name__ : Union[str, Any] = size_divisor
__magic_name__ : Union[str, Any] = do_rescale
__magic_name__ : Dict = rescale_factor
__magic_name__ : Union[str, Any] = do_normalize
__magic_name__ : List[str] = do_center_crop
__magic_name__ : Tuple = image_mean
__magic_name__ : Tuple = image_std
__magic_name__ : Tuple = do_pad
__magic_name__ : int = batch_size
__magic_name__ : List[Any] = num_channels
__magic_name__ : int = min_resolution
__magic_name__ : str = max_resolution
def __magic_name__ ( self ) -> str:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int:
if not batched:
__magic_name__ : Dict = self.size["""shortest_edge"""]
__magic_name__ : List[str] = image_inputs[0]
if isinstance(lowerCAmelCase__ , Image.Image ):
__magic_name__ ,__magic_name__ : List[Any] = image.size
else:
__magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2]
__magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ )
if h < w:
__magic_name__ ,__magic_name__ : str = size, scale * w
else:
__magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size
__magic_name__ : Tuple = int((13_33 / 8_00) * size )
if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size:
__magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = newh * scale
__magic_name__ : Any = neww * scale
__magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 )
__magic_name__ ,__magic_name__ : int = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
__magic_name__ : Union[str, Any] = []
for image in image_inputs:
__magic_name__ ,__magic_name__ : int = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0]
__magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : Any = BridgeTowerImageProcessingTester(self )
@property
def __magic_name__ ( self ) -> List[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def __magic_name__ ( self ) -> Any:
__magic_name__ : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) )
def __magic_name__ ( self ) -> Optional[int]:
pass
def __magic_name__ ( self ) -> Tuple:
# Initialize image processor
__magic_name__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
__magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __magic_name__ ( self ) -> Tuple:
# Initialize image processor
__magic_name__ : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
__magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __magic_name__ ( self ) -> str:
# Initialize image processor
__magic_name__ : int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
__magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 342 | 1 |
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
__magic_name__: str = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n"
__magic_name__: int = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n"
__magic_name__: Optional[Any] = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class snake_case__ ( datasets.Metric ):
def __magic_name__ ( self ) -> int:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/google-research/google-research/tree/master/rouge"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/ROUGE_(metric)""",
"""https://github.com/google-research/google-research/tree/master/rouge""",
] , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=False ) -> Dict:
if rouge_types is None:
__magic_name__ : Tuple = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""]
__magic_name__ : List[str] = rouge_scorer.RougeScorer(rouge_types=lowerCAmelCase__ , use_stemmer=lowerCAmelCase__ )
if use_aggregator:
__magic_name__ : Union[str, Any] = scoring.BootstrapAggregator()
else:
__magic_name__ : Union[str, Any] = []
for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
__magic_name__ : str = scorer.score(lowerCAmelCase__ , lowerCAmelCase__ )
if use_aggregator:
aggregator.add_scores(lowerCAmelCase__ )
else:
scores.append(lowerCAmelCase__ )
if use_aggregator:
__magic_name__ : List[str] = aggregator.aggregate()
else:
__magic_name__ : List[str] = {}
for key in scores[0]:
__magic_name__ : List[Any] = [score[key] for score in scores]
return result
| 342 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__magic_name__: Tuple = {
"configuration_clap": [
"CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClapAudioConfig",
"ClapConfig",
"ClapTextConfig",
],
"processing_clap": ["ClapProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__: Union[str, Any] = [
"CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClapModel",
"ClapPreTrainedModel",
"ClapTextModel",
"ClapTextModelWithProjection",
"ClapAudioModel",
"ClapAudioModelWithProjection",
]
__magic_name__: Optional[Any] = ["ClapFeatureExtractor"]
if TYPE_CHECKING:
from .configuration_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioConfig,
ClapConfig,
ClapTextConfig,
)
from .processing_clap import ClapProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clap import ClapFeatureExtractor
from .modeling_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioModel,
ClapAudioModelWithProjection,
ClapModel,
ClapPreTrainedModel,
ClapTextModel,
ClapTextModelWithProjection,
)
else:
import sys
__magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 342 | 1 |
from ..utils import DummyObject, requires_backends
class snake_case__ ( metaclass=_lowerCAmelCase ):
lowercase__ : Tuple = ['''onnx''']
def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str:
requires_backends(self , ["""onnx"""] )
@classmethod
def __magic_name__ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any:
requires_backends(cls , ["""onnx"""] )
@classmethod
def __magic_name__ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str:
requires_backends(cls , ["""onnx"""] )
| 342 |
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__magic_name__: Dict = logging.get_logger(__name__)
__magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all BART models at https://huggingface.co/models?filter=bart
__magic_name__: Optional[Any] = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
}
__magic_name__: List[Any] = {
"facebook/bart-base": 1_024,
"facebook/bart-large": 1_024,
"facebook/bart-large-mnli": 1_024,
"facebook/bart-large-cnn": 1_024,
"facebook/bart-large-xsum": 1_024,
"yjernite/bart_eli5": 1_024,
}
@lru_cache()
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : Any = (
list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) )
)
__magic_name__ : Any = bs[:]
__magic_name__ : Dict = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_A )
cs.append(2**8 + n )
n += 1
__magic_name__ : List[str] = [chr(_A ) for n in cs]
return dict(zip(_A, _A ) )
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : str = set()
__magic_name__ : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__magic_name__ : List[Any] = char
return pairs
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES
lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask''']
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict:
__magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
__magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
__magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
__magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
__magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
__magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , )
with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle:
__magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ )
__magic_name__ : Any = {v: k for k, v in self.encoder.items()}
__magic_name__ : Tuple = errors # how to handle errors in decoding
__magic_name__ : Tuple = bytes_to_unicode()
__magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle:
__magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1]
__magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges]
__magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
__magic_name__ : str = {}
__magic_name__ : int = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
@property
def __magic_name__ ( self ) -> Optional[Any]:
return len(self.encoder )
def __magic_name__ ( self ) -> Optional[int]:
return dict(self.encoder , **self.added_tokens_encoder )
def __magic_name__ ( self , lowerCAmelCase__ ) -> str:
if token in self.cache:
return self.cache[token]
__magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ )
if not pairs:
return token
while True:
__magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
__magic_name__ ,__magic_name__ : List[str] = bigram
__magic_name__ : Any = []
__magic_name__ : Any = 0
while i < len(lowerCAmelCase__ ):
try:
__magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__magic_name__ : Optional[Any] = j
if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__magic_name__ : str = tuple(lowerCAmelCase__ )
__magic_name__ : Optional[int] = new_word
if len(lowerCAmelCase__ ) == 1:
break
else:
__magic_name__ : List[str] = get_pairs(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ )
__magic_name__ : str = word
return word
def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : str = []
for token in re.findall(self.pat , lowerCAmelCase__ ):
__magic_name__ : List[Any] = """""".join(
self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) )
return bpe_tokens
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.decoder.get(lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Any:
__magic_name__ : Tuple = """""".join(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors )
return text
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
__magic_name__ : Tuple = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
__magic_name__ : List[str] = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" )
__magic_name__ : Optional[Any] = 0
with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
""" Please check that the tokenizer is not corrupted!""" )
__magic_name__ : Optional[int] = token_index
writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" )
index += 1
return vocab_file, merge_file
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__magic_name__ : List[str] = [self.cls_token_id]
__magic_name__ : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
__magic_name__ : Dict = [self.sep_token_id]
__magic_name__ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()):
__magic_name__ : List[Any] = """ """ + text
return (text, kwargs)
| 342 | 1 |
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
__magic_name__: Dict = ["small", "medium", "large"]
__magic_name__: Tuple = "lm_head.decoder.weight"
__magic_name__: List[str] = "lm_head.weight"
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
__magic_name__ : int = torch.load(_A )
__magic_name__ : Union[str, Any] = d.pop(_A )
os.makedirs(_A, exist_ok=_A )
torch.save(_A, os.path.join(_A, _A ) )
if __name__ == "__main__":
__magic_name__: Any = argparse.ArgumentParser()
parser.add_argument("--dialogpt_path", default=".", type=str)
__magic_name__: Dict = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
__magic_name__: int = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""")
__magic_name__: Optional[int] = F"""./DialoGPT-{MODEL}"""
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 342 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str:
__magic_name__ : Optional[int] = parent
__magic_name__ : Any = batch_size
__magic_name__ : Union[str, Any] = image_size
__magic_name__ : Optional[int] = patch_size
__magic_name__ : Union[str, Any] = num_channels
__magic_name__ : str = embed_dim
__magic_name__ : int = hidden_sizes
__magic_name__ : Union[str, Any] = depths
__magic_name__ : List[str] = num_heads
__magic_name__ : str = window_size
__magic_name__ : Optional[Any] = mlp_ratio
__magic_name__ : Dict = qkv_bias
__magic_name__ : Dict = hidden_dropout_prob
__magic_name__ : Optional[Any] = attention_probs_dropout_prob
__magic_name__ : List[Any] = drop_path_rate
__magic_name__ : Optional[Any] = hidden_act
__magic_name__ : int = use_absolute_embeddings
__magic_name__ : Dict = patch_norm
__magic_name__ : Tuple = layer_norm_eps
__magic_name__ : List[str] = initializer_range
__magic_name__ : Optional[int] = is_training
__magic_name__ : Optional[Any] = scope
__magic_name__ : Union[str, Any] = use_labels
__magic_name__ : Optional[Any] = type_sequence_label_size
__magic_name__ : Union[str, Any] = encoder_stride
__magic_name__ : List[Any] = out_features
__magic_name__ : Union[str, Any] = out_indices
def __magic_name__ ( self ) -> str:
__magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__magic_name__ : Optional[Any] = None
if self.use_labels:
__magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : Dict = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self ) -> List[Any]:
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Optional[int] = model(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Tuple = model(lowerCAmelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
__magic_name__ : Optional[Any] = None
__magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Union[str, Any] = model(lowerCAmelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : str = model(lowerCAmelCase__ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__magic_name__ : Optional[int] = 1
__magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__magic_name__ : List[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : int = self.type_sequence_label_size
__magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__magic_name__ : Optional[int] = 1
__magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__magic_name__ : Dict = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __magic_name__ ( self ) -> int:
__magic_name__ : int = self.prepare_config_and_inputs()
__magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs
__magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : str = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
lowercase__ : Any = (
{'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification}
if is_torch_available()
else {}
)
lowercase__ : Dict = False
lowercase__ : Dict = False
lowercase__ : int = False
lowercase__ : Tuple = False
lowercase__ : Optional[Any] = False
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Optional[Any] = FocalNetModelTester(self )
__magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __magic_name__ ( self ) -> List[str]:
return
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ )
@unittest.skip(reason="""FocalNet does not use inputs_embeds""" )
def __magic_name__ ( self ) -> List[str]:
pass
@unittest.skip(reason="""FocalNet does not use feedforward chunking""" )
def __magic_name__ ( self ) -> List[Any]:
pass
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
__magic_name__ : Dict = model_class(lowerCAmelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__magic_name__ : Dict = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
__magic_name__ : str = model_class(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Tuple = [*signature.parameters.keys()]
__magic_name__ : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict:
__magic_name__ : List[Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : Optional[Any] = outputs.hidden_states
__magic_name__ : Union[str, Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
# FocalNet has a different seq_length
__magic_name__ : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__magic_name__ : str = outputs.reshaped_hidden_states
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape
__magic_name__ : Union[str, Any] = (
reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __magic_name__ ( self ) -> str:
__magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
__magic_name__ : List[Any] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : Optional[Any] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self ) -> str:
__magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[Any] = 3
__magic_name__ : Union[str, Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__magic_name__ : Dict = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
__magic_name__ : Optional[int] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : str = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) )
@slow
def __magic_name__ ( self ) -> Union[str, Any]:
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ )
for model_class in self.all_model_classes:
__magic_name__ : Any = model_class(config=lowerCAmelCase__ )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class snake_case__ ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self ) -> Optional[int]:
# TODO update organization
return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None
@slow
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = self.default_image_processor
__magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
__magic_name__ : List[Any] = model(**lowerCAmelCase__ )
# verify the logits
__magic_name__ : Union[str, Any] = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
__magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 )
@require_torch
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else ()
lowercase__ : Optional[int] = FocalNetConfig
lowercase__ : Dict = False
def __magic_name__ ( self ) -> int:
__magic_name__ : Dict = FocalNetModelTester(self )
| 342 | 1 |
import itertools
import os
import random
import tempfile
import unittest
import numpy as np
from datasets import load_dataset
from transformers import is_speech_available
from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
if is_speech_available():
from transformers import WhisperFeatureExtractor
if is_torch_available():
import torch
__magic_name__: int = random.Random()
def UpperCamelCase ( _A, _A=1.0, _A=None, _A=None ):
"""simple docstring"""
if rng is None:
__magic_name__ : str = global_rng
__magic_name__ : Tuple = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
@require_torch
@require_torchaudio
class snake_case__ ( unittest.TestCase ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=4_00 , lowerCAmelCase__=20_00 , lowerCAmelCase__=10 , lowerCAmelCase__=1_60 , lowerCAmelCase__=8 , lowerCAmelCase__=0.0 , lowerCAmelCase__=40_00 , lowerCAmelCase__=False , lowerCAmelCase__=True , ) -> Any:
__magic_name__ : Union[str, Any] = parent
__magic_name__ : List[str] = batch_size
__magic_name__ : int = min_seq_length
__magic_name__ : Optional[Any] = max_seq_length
__magic_name__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
__magic_name__ : List[Any] = padding_value
__magic_name__ : Tuple = sampling_rate
__magic_name__ : Optional[int] = return_attention_mask
__magic_name__ : List[Any] = do_normalize
__magic_name__ : Optional[Any] = feature_size
__magic_name__ : Optional[int] = chunk_length
__magic_name__ : Tuple = hop_length
def __magic_name__ ( self ) -> Optional[Any]:
return {
"feature_size": self.feature_size,
"hop_length": self.hop_length,
"chunk_length": self.chunk_length,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def __magic_name__ ( self , lowerCAmelCase__=False , lowerCAmelCase__=False ) -> Optional[int]:
def _flatten(lowerCAmelCase__ ):
return list(itertools.chain(*lowerCAmelCase__ ) )
if equal_length:
__magic_name__ : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )]
else:
# make sure that inputs increase in size
__magic_name__ : List[str] = [
floats_list((x, self.feature_size) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
__magic_name__ : str = [np.asarray(lowerCAmelCase__ ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Union[str, Any] = WhisperFeatureExtractor if is_speech_available() else None
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ : int = WhisperFeatureExtractionTester(self )
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
__magic_name__ : int = feat_extract_first.save_pretrained(lowerCAmelCase__ )[0]
check_json_file_has_correct_format(lowerCAmelCase__ )
__magic_name__ : int = self.feature_extraction_class.from_pretrained(lowerCAmelCase__ )
__magic_name__ : List[Any] = feat_extract_first.to_dict()
__magic_name__ : int = feat_extract_second.to_dict()
__magic_name__ : Union[str, Any] = feat_extract_first.mel_filters
__magic_name__ : int = feat_extract_second.mel_filters
self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self ) -> int:
__magic_name__ : str = self.feature_extraction_class(**self.feat_extract_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
__magic_name__ : Union[str, Any] = os.path.join(lowerCAmelCase__ , """feat_extract.json""" )
feat_extract_first.to_json_file(lowerCAmelCase__ )
__magic_name__ : Optional[int] = self.feature_extraction_class.from_json_file(lowerCAmelCase__ )
__magic_name__ : str = feat_extract_first.to_dict()
__magic_name__ : int = feat_extract_second.to_dict()
__magic_name__ : Tuple = feat_extract_first.mel_filters
__magic_name__ : Union[str, Any] = feat_extract_second.mel_filters
self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[str]:
# Tests that all call wrap to encode_plus and batch_encode_plus
__magic_name__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
__magic_name__ : List[Any] = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )]
__magic_name__ : Any = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs]
# Test feature size
__magic_name__ : Dict = feature_extractor(lowerCAmelCase__ , padding="""max_length""" , return_tensors="""np""" ).input_features
self.assertTrue(input_features.ndim == 3 )
self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames )
self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size )
# Test not batched input
__magic_name__ : Tuple = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features
__magic_name__ : Dict = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features
self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) )
# Test batched
__magic_name__ : Union[str, Any] = feature_extractor(lowerCAmelCase__ , return_tensors="""np""" ).input_features
__magic_name__ : Tuple = feature_extractor(lowerCAmelCase__ , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
__magic_name__ : List[str] = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)]
__magic_name__ : str = np.asarray(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = feature_extractor(lowerCAmelCase__ , return_tensors="""np""" ).input_features
__magic_name__ : Union[str, Any] = feature_extractor(lowerCAmelCase__ , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) )
# Test truncation required
__magic_name__ : Dict = [floats_list((1, x) )[0] for x in range(2_00 , (feature_extractor.n_samples + 5_00) , 2_00 )]
__magic_name__ : Any = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs]
__magic_name__ : List[Any] = [x[: feature_extractor.n_samples] for x in speech_inputs]
__magic_name__ : List[Any] = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs_truncated]
__magic_name__ : Any = feature_extractor(lowerCAmelCase__ , return_tensors="""np""" ).input_features
__magic_name__ : str = feature_extractor(lowerCAmelCase__ , return_tensors="""np""" ).input_features
for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) )
def __magic_name__ ( self ) -> Dict:
import torch
__magic_name__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__magic_name__ : Optional[int] = np.random.rand(1_00 , 32 ).astype(np.floataa )
__magic_name__ : Union[str, Any] = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
__magic_name__ : Dict = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" )
self.assertTrue(np_processed.input_features.dtype == np.floataa )
__magic_name__ : Optional[Any] = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" )
self.assertTrue(pt_processed.input_features.dtype == torch.floataa )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Any:
__magic_name__ : Optional[int] = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" )
# automatic decoding with librispeech
__magic_name__ : Optional[int] = ds.sort("""id""" ).select(range(lowerCAmelCase__ ) )[:num_samples]["""audio"""]
return [x["array"] for x in speech_samples]
def __magic_name__ ( self ) -> List[Any]:
# fmt: off
__magic_name__ : int = torch.tensor(
[
0.1_1_9_3, -0.0_9_4_6, -0.1_0_9_8, -0.0_1_9_6, 0.0_2_2_5, -0.0_6_9_0, -0.1_7_3_6, 0.0_9_5_1,
0.0_9_7_1, -0.0_8_1_7, -0.0_7_0_2, 0.0_1_6_2, 0.0_2_6_0, 0.0_0_1_7, -0.0_1_9_2, -0.1_6_7_8,
0.0_7_0_9, -0.1_8_6_7, -0.0_6_5_5, -0.0_2_7_4, -0.0_2_3_4, -0.1_8_8_4, -0.0_5_1_6, -0.0_5_5_4,
-0.0_2_7_4, -0.1_4_2_5, -0.1_4_2_3, 0.0_8_3_7, 0.0_3_7_7, -0.0_8_5_4
] )
# fmt: on
__magic_name__ : List[Any] = self._load_datasamples(1 )
__magic_name__ : Optional[int] = WhisperFeatureExtractor()
__magic_name__ : Any = feature_extractor(lowerCAmelCase__ , return_tensors="""pt""" ).input_features
self.assertEqual(input_features.shape , (1, 80, 30_00) )
self.assertTrue(torch.allclose(input_features[0, 0, :30] , lowerCAmelCase__ , atol=1e-4 ) )
def __magic_name__ ( self ) -> int:
__magic_name__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
__magic_name__ : Any = self._load_datasamples(1 )[0]
__magic_name__ : List[Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_55_35 # Rescale to [0, 65535] to show issue
__magic_name__ : Dict = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowerCAmelCase__ )[0]
self.assertTrue(np.all(np.mean(lowerCAmelCase__ ) < 1e-3 ) )
self.assertTrue(np.all(np.abs(np.var(lowerCAmelCase__ ) - 1 ) < 1e-3 ) )
| 342 |
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]:
__magic_name__ : int = parent
__magic_name__ : Tuple = batch_size
__magic_name__ : int = image_size
__magic_name__ : str = num_channels
__magic_name__ : Dict = patch_size
__magic_name__ : Tuple = num_frames
__magic_name__ : List[Any] = is_training
__magic_name__ : List[Any] = use_labels
__magic_name__ : Dict = hidden_size
__magic_name__ : List[Any] = num_hidden_layers
__magic_name__ : str = num_attention_heads
__magic_name__ : List[Any] = intermediate_size
__magic_name__ : Dict = hidden_act
__magic_name__ : List[Any] = hidden_dropout_prob
__magic_name__ : Union[str, Any] = attention_probs_dropout_prob
__magic_name__ : Tuple = attention_type
__magic_name__ : List[str] = initializer_range
__magic_name__ : Optional[Any] = scope
__magic_name__ : Tuple = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__magic_name__ : str = (image_size // patch_size) ** 2
__magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Optional[Any] = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__magic_name__ : str = None
if self.use_labels:
__magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels )
__magic_name__ : Optional[Any] = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self ) -> str:
__magic_name__ : Dict = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__magic_name__ : Optional[Any] = self.num_labels
return config
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Optional[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any:
__magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : List[Any] = model(lowerCAmelCase__ )
# verify the logits shape
__magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ )
def __magic_name__ ( self ) -> Any:
__magic_name__ : Union[str, Any] = self.prepare_config_and_inputs()
__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs
__magic_name__ : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowercase__ : Union[str, Any] = (
{'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowercase__ : int = False
lowercase__ : str = False
lowercase__ : Tuple = False
lowercase__ : Any = False
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : List[Any] = TimesformerModelTester(self )
__magic_name__ : List[str] = ConfigTester(
self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]:
__magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ )
if return_labels:
if model_class in get_values(lowerCAmelCase__ ):
__magic_name__ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ )
return inputs_dict
def __magic_name__ ( self ) -> List[str]:
self.config_tester.run_common_tests()
@unittest.skip(reason="""TimeSformer does not use inputs_embeds""" )
def __magic_name__ ( self ) -> str:
pass
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : List[Any] = model_class(lowerCAmelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__magic_name__ : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) )
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Dict = model_class(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Optional[int] = [*signature.parameters.keys()]
__magic_name__ : Any = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ )
@slow
def __magic_name__ ( self ) -> Optional[int]:
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
if not self.has_attentions:
pass
else:
__magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[int] = True
for model_class in self.all_model_classes:
__magic_name__ : Tuple = self.model_tester.seq_length
__magic_name__ : int = self.model_tester.num_frames
__magic_name__ : Any = True
__magic_name__ : Tuple = False
__magic_name__ : Optional[int] = True
__magic_name__ : str = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : List[str] = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__magic_name__ : Optional[Any] = True
__magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : int = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__magic_name__ : Union[str, Any] = len(lowerCAmelCase__ )
# Check attention is always last and order is fine
__magic_name__ : str = True
__magic_name__ : Optional[Any] = True
__magic_name__ : int = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) )
__magic_name__ : Union[str, Any] = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def __magic_name__ ( self ) -> Any:
def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
__magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : Optional[Any] = outputs.hidden_states
__magic_name__ : str = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
__magic_name__ : str = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Optional[Any] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : Union[str, Any] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : List[Any] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" )
__magic_name__ : List[str] = np.load(_A )
return list(_A )
@require_torch
@require_vision
class snake_case__ ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self ) -> Optional[Any]:
# logits were tested with a different mean and std, so we use the same here
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to(
lowerCAmelCase__ )
__magic_name__ : str = self.default_image_processor
__magic_name__ : Any = prepare_video()
__magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
__magic_name__ : int = model(**lowerCAmelCase__ )
# verify the logits
__magic_name__ : Optional[int] = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
| 342 | 1 |
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
__magic_name__ : Dict = MobileBertConfig.from_json_file(_A )
print(f'Building PyTorch model from configuration: {config}' )
__magic_name__ : Tuple = MobileBertForPreTraining(_A )
# Load weights from tf checkpoint
__magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict(), _A )
if __name__ == "__main__":
__magic_name__: Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--mobilebert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained MobileBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__magic_name__: Dict = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 342 |
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : List[Any] = [0] * len(_A )
__magic_name__ : List[str] = []
__magic_name__ : List[str] = [1] * len(_A )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(_A ) ):
if indegree[i] == 0:
queue.append(_A )
while queue:
__magic_name__ : Dict = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
__magic_name__ : int = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(_A )
print(max(_A ) )
# Adjacency list of Graph
__magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 342 | 1 |
from collections.abc import Callable
import numpy as np
def UpperCamelCase ( _A, _A, _A, _A, _A ):
"""simple docstring"""
__magic_name__ : Dict = int(np.ceil((x_end - xa) / step_size ) )
__magic_name__ : Optional[int] = np.zeros((n + 1,) )
__magic_name__ : Union[str, Any] = ya
__magic_name__ : Union[str, Any] = xa
for k in range(_A ):
__magic_name__ : str = y[k] + step_size * ode_func(_A, y[k] )
__magic_name__ : List[Any] = y[k] + (
(step_size / 2) * (ode_func(_A, y[k] ) + ode_func(x + step_size, _A ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class snake_case__ ( unittest.TestCase ):
def __magic_name__ ( self ) -> str:
__magic_name__ : Tuple = """ylacombe/bark-small"""
__magic_name__ : List[str] = tempfile.mkdtemp()
__magic_name__ : Optional[Any] = """en_speaker_1"""
__magic_name__ : Union[str, Any] = """This is a test string"""
__magic_name__ : Optional[int] = """speaker_embeddings_path.json"""
__magic_name__ : Any = """speaker_embeddings"""
def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]:
return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ )
def __magic_name__ ( self ) -> Optional[Any]:
shutil.rmtree(self.tmpdirname )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Optional[Any] = self.get_tokenizer()
__magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ )
processor.save_pretrained(self.tmpdirname )
__magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : Optional[int] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
__magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__magic_name__ : str = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def __magic_name__ ( self ) -> Any:
__magic_name__ : List[str] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
__magic_name__ : Union[str, Any] = 35
__magic_name__ : List[Any] = 2
__magic_name__ : Dict = 8
__magic_name__ : Tuple = {
"""semantic_prompt""": np.ones(lowerCAmelCase__ ),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
__magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
__magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" )
np.savez(lowerCAmelCase__ , **lowerCAmelCase__ )
__magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ )
__magic_name__ : List[Any] = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
__magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset )
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : str = self.get_tokenizer()
__magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ )
__magic_name__ : Optional[Any] = processor(text=self.input_string )
__magic_name__ : List[Any] = tokenizer(
self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 342 | 1 |
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
if a < 0 or b < 0:
raise ValueError("""the value of both inputs must be positive""" )
__magic_name__ : List[str] = str(bin(_A ) )[2:] # remove the leading "0b"
__magic_name__ : int = str(bin(_A ) )[2:] # remove the leading "0b"
__magic_name__ : Tuple = max(len(_A ), len(_A ) )
return "0b" + "".join(
str(int(char_a != char_b ) )
for char_a, char_b in zip(a_binary.zfill(_A ), b_binary.zfill(_A ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 |
import unittest
import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class snake_case__ ( unittest.TestCase ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]:
__magic_name__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18}
__magic_name__ : str = parent
__magic_name__ : Any = batch_size
__magic_name__ : Any = num_channels
__magic_name__ : List[str] = image_size
__magic_name__ : Tuple = min_resolution
__magic_name__ : Union[str, Any] = max_resolution
__magic_name__ : List[str] = do_resize
__magic_name__ : Optional[Any] = size
__magic_name__ : Optional[Any] = do_normalize
__magic_name__ : Any = image_mean
__magic_name__ : List[str] = image_std
def __magic_name__ ( self ) -> List[str]:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Any = DPTImageProcessor if is_vision_available() else None
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : Dict = DPTImageProcessingTester(self )
@property
def __magic_name__ ( self ) -> Union[str, Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) )
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
__magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def __magic_name__ ( self ) -> str:
# Initialize image_processing
__magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
__magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __magic_name__ ( self ) -> Tuple:
# Initialize image_processing
__magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__magic_name__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
__magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __magic_name__ ( self ) -> Optional[Any]:
# Initialize image_processing
__magic_name__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
__magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__magic_name__ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 342 | 1 |
import math
import os
import sys
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : Dict = """"""
try:
with open(_A, """rb""" ) as binary_file:
__magic_name__ : Tuple = binary_file.read()
for dat in data:
__magic_name__ : Optional[Any] = f'{dat:08b}'
result += curr_byte
return result
except OSError:
print("""File not accessible""" )
sys.exit()
def UpperCamelCase ( _A, _A, _A, _A ):
"""simple docstring"""
lexicon.pop(_A )
__magic_name__ : str = last_match_id
if math.loga(_A ).is_integer():
for curr_key in lexicon:
__magic_name__ : Optional[Any] = """0""" + lexicon[curr_key]
__magic_name__ : int = bin(_A )[2:]
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : Tuple = {"""0""": """0""", """1""": """1"""}
__magic_name__ ,__magic_name__ : Optional[Any] = """""", """"""
__magic_name__ : List[Any] = len(_A )
for i in range(len(_A ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
__magic_name__ : int = lexicon[curr_string]
result += last_match_id
add_key_to_lexicon(_A, _A, _A, _A )
index += 1
__magic_name__ : List[Any] = """"""
while curr_string != "" and curr_string not in lexicon:
curr_string += "0"
if curr_string != "":
__magic_name__ : Dict = lexicon[curr_string]
result += last_match_id
return result
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
__magic_name__ : Optional[int] = os.path.getsize(_A )
__magic_name__ : Optional[int] = bin(_A )[2:]
__magic_name__ : int = len(_A )
return "0" * (length_length - 1) + file_length_binary + compressed
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
__magic_name__ : List[str] = 8
try:
with open(_A, """wb""" ) as opened_file:
__magic_name__ : List[Any] = [
to_write[i : i + byte_length]
for i in range(0, len(_A ), _A )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append("""10000000""" )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array:
opened_file.write(int(_A, 2 ).to_bytes(1, byteorder="""big""" ) )
except OSError:
print("""File not accessible""" )
sys.exit()
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
__magic_name__ : str = read_file_binary(_A )
__magic_name__ : Tuple = compress_data(_A )
__magic_name__ : str = add_file_length(_A, _A )
write_file_binary(_A, _A )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 342 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
__magic_name__: Tuple = {
"Acehnese Arabic": "ace_Arab",
"Acehnese Latin": "ace_Latn",
"Mesopotamian Arabic": "acm_Arab",
"Ta'izzi-Adeni Arabic": "acq_Arab",
"Tunisian Arabic": "aeb_Arab",
"Afrikaans": "afr_Latn",
"South Levantine Arabic": "ajp_Arab",
"Akan": "aka_Latn",
"Amharic": "amh_Ethi",
"North Levantine Arabic": "apc_Arab",
"Modern Standard Arabic": "arb_Arab",
"Modern Standard Arabic Romanized": "arb_Latn",
"Najdi Arabic": "ars_Arab",
"Moroccan Arabic": "ary_Arab",
"Egyptian Arabic": "arz_Arab",
"Assamese": "asm_Beng",
"Asturian": "ast_Latn",
"Awadhi": "awa_Deva",
"Central Aymara": "ayr_Latn",
"South Azerbaijani": "azb_Arab",
"North Azerbaijani": "azj_Latn",
"Bashkir": "bak_Cyrl",
"Bambara": "bam_Latn",
"Balinese": "ban_Latn",
"Belarusian": "bel_Cyrl",
"Bemba": "bem_Latn",
"Bengali": "ben_Beng",
"Bhojpuri": "bho_Deva",
"Banjar Arabic": "bjn_Arab",
"Banjar Latin": "bjn_Latn",
"Standard Tibetan": "bod_Tibt",
"Bosnian": "bos_Latn",
"Buginese": "bug_Latn",
"Bulgarian": "bul_Cyrl",
"Catalan": "cat_Latn",
"Cebuano": "ceb_Latn",
"Czech": "ces_Latn",
"Chokwe": "cjk_Latn",
"Central Kurdish": "ckb_Arab",
"Crimean Tatar": "crh_Latn",
"Welsh": "cym_Latn",
"Danish": "dan_Latn",
"German": "deu_Latn",
"Southwestern Dinka": "dik_Latn",
"Dyula": "dyu_Latn",
"Dzongkha": "dzo_Tibt",
"Greek": "ell_Grek",
"English": "eng_Latn",
"Esperanto": "epo_Latn",
"Estonian": "est_Latn",
"Basque": "eus_Latn",
"Ewe": "ewe_Latn",
"Faroese": "fao_Latn",
"Fijian": "fij_Latn",
"Finnish": "fin_Latn",
"Fon": "fon_Latn",
"French": "fra_Latn",
"Friulian": "fur_Latn",
"Nigerian Fulfulde": "fuv_Latn",
"Scottish Gaelic": "gla_Latn",
"Irish": "gle_Latn",
"Galician": "glg_Latn",
"Guarani": "grn_Latn",
"Gujarati": "guj_Gujr",
"Haitian Creole": "hat_Latn",
"Hausa": "hau_Latn",
"Hebrew": "heb_Hebr",
"Hindi": "hin_Deva",
"Chhattisgarhi": "hne_Deva",
"Croatian": "hrv_Latn",
"Hungarian": "hun_Latn",
"Armenian": "hye_Armn",
"Igbo": "ibo_Latn",
"Ilocano": "ilo_Latn",
"Indonesian": "ind_Latn",
"Icelandic": "isl_Latn",
"Italian": "ita_Latn",
"Javanese": "jav_Latn",
"Japanese": "jpn_Jpan",
"Kabyle": "kab_Latn",
"Jingpho": "kac_Latn",
"Kamba": "kam_Latn",
"Kannada": "kan_Knda",
"Kashmiri Arabic": "kas_Arab",
"Kashmiri Devanagari": "kas_Deva",
"Georgian": "kat_Geor",
"Central Kanuri Arabic": "knc_Arab",
"Central Kanuri Latin": "knc_Latn",
"Kazakh": "kaz_Cyrl",
"Kabiyè": "kbp_Latn",
"Kabuverdianu": "kea_Latn",
"Khmer": "khm_Khmr",
"Kikuyu": "kik_Latn",
"Kinyarwanda": "kin_Latn",
"Kyrgyz": "kir_Cyrl",
"Kimbundu": "kmb_Latn",
"Northern Kurdish": "kmr_Latn",
"Kikongo": "kon_Latn",
"Korean": "kor_Hang",
"Lao": "lao_Laoo",
"Ligurian": "lij_Latn",
"Limburgish": "lim_Latn",
"Lingala": "lin_Latn",
"Lithuanian": "lit_Latn",
"Lombard": "lmo_Latn",
"Latgalian": "ltg_Latn",
"Luxembourgish": "ltz_Latn",
"Luba-Kasai": "lua_Latn",
"Ganda": "lug_Latn",
"Luo": "luo_Latn",
"Mizo": "lus_Latn",
"Standard Latvian": "lvs_Latn",
"Magahi": "mag_Deva",
"Maithili": "mai_Deva",
"Malayalam": "mal_Mlym",
"Marathi": "mar_Deva",
"Minangkabau Arabic ": "min_Arab",
"Minangkabau Latin": "min_Latn",
"Macedonian": "mkd_Cyrl",
"Plateau Malagasy": "plt_Latn",
"Maltese": "mlt_Latn",
"Meitei Bengali": "mni_Beng",
"Halh Mongolian": "khk_Cyrl",
"Mossi": "mos_Latn",
"Maori": "mri_Latn",
"Burmese": "mya_Mymr",
"Dutch": "nld_Latn",
"Norwegian Nynorsk": "nno_Latn",
"Norwegian Bokmål": "nob_Latn",
"Nepali": "npi_Deva",
"Northern Sotho": "nso_Latn",
"Nuer": "nus_Latn",
"Nyanja": "nya_Latn",
"Occitan": "oci_Latn",
"West Central Oromo": "gaz_Latn",
"Odia": "ory_Orya",
"Pangasinan": "pag_Latn",
"Eastern Panjabi": "pan_Guru",
"Papiamento": "pap_Latn",
"Western Persian": "pes_Arab",
"Polish": "pol_Latn",
"Portuguese": "por_Latn",
"Dari": "prs_Arab",
"Southern Pashto": "pbt_Arab",
"Ayacucho Quechua": "quy_Latn",
"Romanian": "ron_Latn",
"Rundi": "run_Latn",
"Russian": "rus_Cyrl",
"Sango": "sag_Latn",
"Sanskrit": "san_Deva",
"Santali": "sat_Olck",
"Sicilian": "scn_Latn",
"Shan": "shn_Mymr",
"Sinhala": "sin_Sinh",
"Slovak": "slk_Latn",
"Slovenian": "slv_Latn",
"Samoan": "smo_Latn",
"Shona": "sna_Latn",
"Sindhi": "snd_Arab",
"Somali": "som_Latn",
"Southern Sotho": "sot_Latn",
"Spanish": "spa_Latn",
"Tosk Albanian": "als_Latn",
"Sardinian": "srd_Latn",
"Serbian": "srp_Cyrl",
"Swati": "ssw_Latn",
"Sundanese": "sun_Latn",
"Swedish": "swe_Latn",
"Swahili": "swh_Latn",
"Silesian": "szl_Latn",
"Tamil": "tam_Taml",
"Tatar": "tat_Cyrl",
"Telugu": "tel_Telu",
"Tajik": "tgk_Cyrl",
"Tagalog": "tgl_Latn",
"Thai": "tha_Thai",
"Tigrinya": "tir_Ethi",
"Tamasheq Latin": "taq_Latn",
"Tamasheq Tifinagh": "taq_Tfng",
"Tok Pisin": "tpi_Latn",
"Tswana": "tsn_Latn",
"Tsonga": "tso_Latn",
"Turkmen": "tuk_Latn",
"Tumbuka": "tum_Latn",
"Turkish": "tur_Latn",
"Twi": "twi_Latn",
"Central Atlas Tamazight": "tzm_Tfng",
"Uyghur": "uig_Arab",
"Ukrainian": "ukr_Cyrl",
"Umbundu": "umb_Latn",
"Urdu": "urd_Arab",
"Northern Uzbek": "uzn_Latn",
"Venetian": "vec_Latn",
"Vietnamese": "vie_Latn",
"Waray": "war_Latn",
"Wolof": "wol_Latn",
"Xhosa": "xho_Latn",
"Eastern Yiddish": "ydd_Hebr",
"Yoruba": "yor_Latn",
"Yue Chinese": "yue_Hant",
"Chinese Simplified": "zho_Hans",
"Chinese Traditional": "zho_Hant",
"Standard Malay": "zsm_Latn",
"Zulu": "zul_Latn",
}
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M'''
lowercase__ : List[Any] = (
'''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should '''
'''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, '''
'''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in '''
'''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.'''
)
lowercase__ : List[str] = '''translator'''
lowercase__ : Optional[Any] = AutoTokenizer
lowercase__ : int = AutoModelForSeqaSeqLM
lowercase__ : List[Any] = LANGUAGE_CODES
lowercase__ : str = ['''text''', '''text''', '''text''']
lowercase__ : Any = ['''text''']
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]:
if src_lang not in self.lang_to_code:
raise ValueError(F'{src_lang} is not a supported language.' )
if tgt_lang not in self.lang_to_code:
raise ValueError(F'{tgt_lang} is not a supported language.' )
__magic_name__ : Tuple = self.lang_to_code[src_lang]
__magic_name__ : Dict = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.model.generate(**lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
| 342 | 1 |
from ..utils import DummyObject, requires_backends
class snake_case__ ( metaclass=_lowerCAmelCase ):
lowercase__ : List[Any] = ['''torch''', '''transformers''', '''onnx''']
def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict:
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def __magic_name__ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int:
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def __magic_name__ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]:
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class snake_case__ ( metaclass=_lowerCAmelCase ):
lowercase__ : Any = ['''torch''', '''transformers''', '''onnx''']
def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Union[str, Any]:
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def __magic_name__ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int:
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def __magic_name__ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple:
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class snake_case__ ( metaclass=_lowerCAmelCase ):
lowercase__ : str = ['''torch''', '''transformers''', '''onnx''']
def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]:
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def __magic_name__ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple:
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def __magic_name__ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int:
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class snake_case__ ( metaclass=_lowerCAmelCase ):
lowercase__ : Any = ['''torch''', '''transformers''', '''onnx''']
def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]:
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def __magic_name__ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int:
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def __magic_name__ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any:
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class snake_case__ ( metaclass=_lowerCAmelCase ):
lowercase__ : Optional[int] = ['''torch''', '''transformers''', '''onnx''']
def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]:
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def __magic_name__ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str:
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def __magic_name__ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]:
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
class snake_case__ ( metaclass=_lowerCAmelCase ):
lowercase__ : Tuple = ['''torch''', '''transformers''', '''onnx''']
def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]:
requires_backends(self , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def __magic_name__ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Any:
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
@classmethod
def __magic_name__ ( cls , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int:
requires_backends(cls , ["""torch""", """transformers""", """onnx"""] )
| 342 |
import math
class snake_case__ :
def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1
__magic_name__ : Tuple = n
__magic_name__ : Union[str, Any] = [
[math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ )
] # adjacency matrix for weight
__magic_name__ : List[Any] = [
[math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ )
] # dp[i][j] stores minimum distance from i to j
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : Dict = w
def __magic_name__ ( self ) -> Optional[int]:
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
__magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str:
return self.dp[u][v]
if __name__ == "__main__":
__magic_name__: Dict = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 342 | 1 |
import argparse
import torch
from datasets import load_dataset
from donut import DonutModel
from transformers import (
DonutImageProcessor,
DonutProcessor,
DonutSwinConfig,
DonutSwinModel,
MBartConfig,
MBartForCausalLM,
VisionEncoderDecoderModel,
XLMRobertaTokenizerFast,
)
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : Optional[Any] = model.config
__magic_name__ : List[str] = DonutSwinConfig(
image_size=original_config.input_size, patch_size=4, depths=original_config.encoder_layer, num_heads=[4, 8, 16, 32], window_size=original_config.window_size, embed_dim=128, )
__magic_name__ : Tuple = MBartConfig(
is_decoder=_A, is_encoder_decoder=_A, add_cross_attention=_A, decoder_layers=original_config.decoder_layer, max_position_embeddings=original_config.max_position_embeddings, vocab_size=len(
model.decoder.tokenizer ), scale_embedding=_A, add_final_layer_norm=_A, )
return encoder_config, decoder_config
def UpperCamelCase ( _A ):
"""simple docstring"""
if "encoder.model" in name:
__magic_name__ : Dict = name.replace("""encoder.model""", """encoder""" )
if "decoder.model" in name:
__magic_name__ : List[str] = name.replace("""decoder.model""", """decoder""" )
if "patch_embed.proj" in name:
__magic_name__ : str = name.replace("""patch_embed.proj""", """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
__magic_name__ : int = name.replace("""patch_embed.norm""", """embeddings.norm""" )
if name.startswith("""encoder""" ):
if "layers" in name:
__magic_name__ : Dict = """encoder.""" + name
if "attn.proj" in name:
__magic_name__ : str = name.replace("""attn.proj""", """attention.output.dense""" )
if "attn" in name and "mask" not in name:
__magic_name__ : str = name.replace("""attn""", """attention.self""" )
if "norm1" in name:
__magic_name__ : str = name.replace("""norm1""", """layernorm_before""" )
if "norm2" in name:
__magic_name__ : Optional[int] = name.replace("""norm2""", """layernorm_after""" )
if "mlp.fc1" in name:
__magic_name__ : Union[str, Any] = name.replace("""mlp.fc1""", """intermediate.dense""" )
if "mlp.fc2" in name:
__magic_name__ : int = name.replace("""mlp.fc2""", """output.dense""" )
if name == "encoder.norm.weight":
__magic_name__ : List[str] = """encoder.layernorm.weight"""
if name == "encoder.norm.bias":
__magic_name__ : Union[str, Any] = """encoder.layernorm.bias"""
return name
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
__magic_name__ : Any = orig_state_dict.pop(_A )
if "qkv" in key:
__magic_name__ : Any = key.split(""".""" )
__magic_name__ : str = int(key_split[3] )
__magic_name__ : int = int(key_split[5] )
__magic_name__ : Tuple = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size
if "weight" in key:
__magic_name__ : Tuple = val[:dim, :]
__magic_name__ : Dict = val[dim : dim * 2, :]
__magic_name__ : Optional[int] = val[-dim:, :]
else:
__magic_name__ : int = val[:dim]
__magic_name__ : Optional[Any] = val[dim : dim * 2]
__magic_name__ : Dict = val[-dim:]
elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]:
# HuggingFace implementation doesn't use attn_mask buffer
# and model doesn't use final LayerNorms for the encoder
pass
else:
__magic_name__ : Optional[Any] = val
return orig_state_dict
def UpperCamelCase ( _A, _A=None, _A=False ):
"""simple docstring"""
__magic_name__ : List[str] = DonutModel.from_pretrained(_A ).eval()
# load HuggingFace model
__magic_name__ ,__magic_name__ : List[str] = get_configs(_A )
__magic_name__ : Any = DonutSwinModel(_A )
__magic_name__ : Any = MBartForCausalLM(_A )
__magic_name__ : List[Any] = VisionEncoderDecoderModel(encoder=_A, decoder=_A )
model.eval()
__magic_name__ : Dict = original_model.state_dict()
__magic_name__ : str = convert_state_dict(_A, _A )
model.load_state_dict(_A )
# verify results on scanned document
__magic_name__ : Union[str, Any] = load_dataset("""hf-internal-testing/example-documents""" )
__magic_name__ : List[Any] = dataset["""test"""][0]["""image"""].convert("""RGB""" )
__magic_name__ : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained(_A, from_slow=_A )
__magic_name__ : Dict = DonutImageProcessor(
do_align_long_axis=original_model.config.align_long_axis, size=original_model.config.input_size[::-1] )
__magic_name__ : Union[str, Any] = DonutProcessor(_A, _A )
__magic_name__ : Union[str, Any] = processor(_A, return_tensors="""pt""" ).pixel_values
if model_name == "naver-clova-ix/donut-base-finetuned-docvqa":
__magic_name__ : Optional[int] = """<s_docvqa><s_question>{user_input}</s_question><s_answer>"""
__magic_name__ : Tuple = """When is the coffee break?"""
__magic_name__ : Tuple = task_prompt.replace("""{user_input}""", _A )
elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip":
__magic_name__ : Tuple = """<s_rvlcdip>"""
elif model_name in [
"naver-clova-ix/donut-base-finetuned-cord-v1",
"naver-clova-ix/donut-base-finetuned-cord-v1-2560",
]:
__magic_name__ : List[Any] = """<s_cord>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2":
__magic_name__ : str = """s_cord-v2>"""
elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket":
__magic_name__ : List[Any] = """<s_zhtrainticket>"""
elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]:
# use a random prompt
__magic_name__ : Any = """hello world"""
else:
raise ValueError("""Model name not supported""" )
__magic_name__ : List[str] = original_model.decoder.tokenizer(_A, add_special_tokens=_A, return_tensors="""pt""" )[
"""input_ids"""
]
__magic_name__ : int = original_model.encoder.model.patch_embed(_A )
__magic_name__ ,__magic_name__ : List[str] = model.encoder.embeddings(_A )
assert torch.allclose(_A, _A, atol=1e-3 )
# verify encoder hidden states
__magic_name__ : Optional[Any] = original_model.encoder(_A )
__magic_name__ : List[str] = model.encoder(_A ).last_hidden_state
assert torch.allclose(_A, _A, atol=1e-2 )
# verify decoder hidden states
__magic_name__ : str = original_model(_A, _A, _A ).logits
__magic_name__ : Union[str, Any] = model(_A, decoder_input_ids=_A ).logits
assert torch.allclose(_A, _A, atol=1e-3 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'Saving model and processor to {pytorch_dump_folder_path}' )
model.save_pretrained(_A )
processor.save_pretrained(_A )
if push_to_hub:
model.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1], commit_message="""Update model""" )
processor.push_to_hub("""nielsr/""" + model_name.split("""/""" )[-1], commit_message="""Update model""" )
if __name__ == "__main__":
__magic_name__: Tuple = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="naver-clova-ix/donut-base-finetuned-docvqa",
required=False,
type=str,
help="Name of the original model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
required=False,
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the converted model and processor to the 🤗 hub.",
)
__magic_name__: Optional[Any] = parser.parse_args()
convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 342 |
from __future__ import annotations
import math
import random
from collections.abc import Collection
from typing import overload
class snake_case__ :
def __init__( self , lowerCAmelCase__ = None ) -> None:
if components is None:
__magic_name__ : Any = []
__magic_name__ : List[str] = list(lowerCAmelCase__ )
def __len__( self ) -> int:
return len(self.__components )
def __str__( self ) -> str:
return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")"
def __add__( self , lowerCAmelCase__ ) -> Vector:
__magic_name__ : Dict = len(self )
if size == len(lowerCAmelCase__ ):
__magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return Vector(lowerCAmelCase__ )
else:
raise Exception("""must have the same size""" )
def __sub__( self , lowerCAmelCase__ ) -> Vector:
__magic_name__ : int = len(self )
if size == len(lowerCAmelCase__ ):
__magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return Vector(lowerCAmelCase__ )
else: # error case
raise Exception("""must have the same size""" )
@overload
def __mul__( self , lowerCAmelCase__ ) -> Vector:
...
@overload
def __mul__( self , lowerCAmelCase__ ) -> float:
...
def __mul__( self , lowerCAmelCase__ ) -> float | Vector:
if isinstance(lowerCAmelCase__ , (float, int) ):
__magic_name__ : Optional[Any] = [c * other for c in self.__components]
return Vector(lowerCAmelCase__ )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ):
__magic_name__ : Optional[Any] = len(self )
__magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return sum(lowerCAmelCase__ )
else: # error case
raise Exception("""invalid operand!""" )
def __magic_name__ ( self ) -> Vector:
return Vector(self.__components )
def __magic_name__ ( self , lowerCAmelCase__ ) -> float:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ):
return self.__components[i]
else:
raise Exception("""index out of range""" )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
assert -len(self.__components ) <= pos < len(self.__components )
__magic_name__ : Optional[int] = value
def __magic_name__ ( self ) -> float:
if len(self.__components ) == 0:
raise Exception("""Vector is empty""" )
__magic_name__ : Dict = [c**2 for c in self.__components]
return math.sqrt(sum(lowerCAmelCase__ ) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float:
__magic_name__ : Optional[Any] = self * other
__magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length()
if deg:
return math.degrees(math.acos(num / den ) )
else:
return math.acos(num / den )
def UpperCamelCase ( _A ):
"""simple docstring"""
assert isinstance(_A, _A )
return Vector([0] * dimension )
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
assert isinstance(_A, _A ) and (isinstance(_A, _A ))
__magic_name__ : Union[str, Any] = [0] * dimension
__magic_name__ : Optional[int] = 1
return Vector(_A )
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
assert (
isinstance(_A, _A )
and isinstance(_A, _A )
and (isinstance(_A, (int, float) ))
)
return x * scalar + y
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
random.seed(_A )
__magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )]
return Vector(_A )
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
__magic_name__ : Dict = matrix
__magic_name__ : Tuple = w
__magic_name__ : Union[str, Any] = h
def __str__( self ) -> str:
__magic_name__ : Dict = """"""
for i in range(self.__height ):
ans += "|"
for j in range(self.__width ):
if j < self.__width - 1:
ans += str(self.__matrix[i][j] ) + ","
else:
ans += str(self.__matrix[i][j] ) + "|\n"
return ans
def __add__( self , lowerCAmelCase__ ) -> Matrix:
if self.__width == other.width() and self.__height == other.height():
__magic_name__ : Tuple = []
for i in range(self.__height ):
__magic_name__ : Tuple = [
self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ )
for j in range(self.__width )
]
matrix.append(lowerCAmelCase__ )
return Matrix(lowerCAmelCase__ , self.__width , self.__height )
else:
raise Exception("""matrix must have the same dimension!""" )
def __sub__( self , lowerCAmelCase__ ) -> Matrix:
if self.__width == other.width() and self.__height == other.height():
__magic_name__ : Optional[Any] = []
for i in range(self.__height ):
__magic_name__ : int = [
self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ )
for j in range(self.__width )
]
matrix.append(lowerCAmelCase__ )
return Matrix(lowerCAmelCase__ , self.__width , self.__height )
else:
raise Exception("""matrices must have the same dimension!""" )
@overload
def __mul__( self , lowerCAmelCase__ ) -> Matrix:
...
@overload
def __mul__( self , lowerCAmelCase__ ) -> Vector:
...
def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector
if len(lowerCAmelCase__ ) == self.__width:
__magic_name__ : Tuple = zero_vector(self.__height )
for i in range(self.__height ):
__magic_name__ : Optional[int] = [
self.__matrix[i][j] * other.component(lowerCAmelCase__ )
for j in range(self.__width )
]
ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) )
return ans
else:
raise Exception(
"""vector must have the same size as the """
"""number of columns of the matrix!""" )
elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar
__magic_name__ : Any = [
[self.__matrix[i][j] * other for j in range(self.__width )]
for i in range(self.__height )
]
return Matrix(lowerCAmelCase__ , self.__width , self.__height )
return None
def __magic_name__ ( self ) -> int:
return self.__height
def __magic_name__ ( self ) -> int:
return self.__width
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float:
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else:
raise Exception("""change_component: indices out of bounds""" )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
if 0 <= x < self.__height and 0 <= y < self.__width:
__magic_name__ : List[Any] = value
else:
raise Exception("""change_component: indices out of bounds""" )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float:
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
__magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(lowerCAmelCase__ ) ):
__magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :]
return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant()
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float:
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ )
else:
raise Exception("""Indices out of bounds""" )
def __magic_name__ ( self ) -> float:
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
if self.__height < 1:
raise Exception("""Matrix has no element""" )
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
__magic_name__ : str = [
self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width )
]
return sum(lowerCAmelCase__ )
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )]
return Matrix(_A, _A, _A )
def UpperCamelCase ( _A, _A, _A, _A ):
"""simple docstring"""
random.seed(_A )
__magic_name__ : list[list[float]] = [
[random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A )
]
return Matrix(_A, _A, _A )
| 342 | 1 |
def UpperCamelCase ( _A ):
"""simple docstring"""
assert isinstance(_A, _A ), f'The input value of [n={number}] is not an integer'
if number == 1:
return 2
elif number < 1:
__magic_name__ : str = f'The input value of [n={number}] has to be > 0'
raise ValueError(_A )
else:
__magic_name__ : str = sylvester(number - 1 )
__magic_name__ : Union[str, Any] = num - 1
__magic_name__ : Optional[Any] = num
return lower * upper + 1
if __name__ == "__main__":
print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
| 342 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
__magic_name__: str = logging.get_logger(__name__)
__magic_name__: int = "▁"
__magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"}
__magic_name__: List[str] = {
"vocab_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model"
),
}
}
__magic_name__: Tuple = {
"facebook/nllb-200-distilled-600M": 1_024,
}
# fmt: off
__magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"]
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : str = VOCAB_FILES_NAMES
lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__ : str = ['''input_ids''', '''attention_mask''']
lowercase__ : List[int] = []
lowercase__ : List[int] = []
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int:
# Mask token behave like a normal word, i.e. include the space before it
__magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
__magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
__magic_name__ : Optional[Any] = legacy_behaviour
super().__init__(
bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , )
__magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowerCAmelCase__ ) )
__magic_name__ : List[Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a'
# spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s'
# Mimic fairseq token-to-id alignment for the first 4 token
__magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__magic_name__ : List[Any] = 1
__magic_name__ : Dict = len(self.sp_model )
__magic_name__ : int = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ )
}
__magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()}
__magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
__magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
__magic_name__ : List[str] = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
__magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn"""
__magic_name__ : Any = self.lang_code_to_id[self._src_lang]
__magic_name__ : Optional[int] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self ) -> Any:
__magic_name__ : List[Any] = self.__dict__.copy()
__magic_name__ : int = None
__magic_name__ : Optional[int] = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , lowerCAmelCase__ ) -> Any:
__magic_name__ : Any = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__magic_name__ : Any = {}
__magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def __magic_name__ ( self ) -> str:
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def __magic_name__ ( self ) -> str:
return self._src_lang
@src_lang.setter
def __magic_name__ ( self , lowerCAmelCase__ ) -> None:
__magic_name__ : Tuple = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
__magic_name__ : Optional[int] = [1] * len(self.prefix_tokens )
__magic_name__ : Any = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones
return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
__magic_name__ : str = [self.sep_token_id]
__magic_name__ : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]:
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
__magic_name__ : Dict = src_lang
__magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ )
__magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ )
__magic_name__ : Tuple = tgt_lang_id
return inputs
def __magic_name__ ( self ) -> int:
__magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]:
return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __magic_name__ ( self , lowerCAmelCase__ ) -> str:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip()
return out_string
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
__magic_name__ : List[Any] = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase__ , """wb""" ) as fi:
__magic_name__ : List[str] = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase__ )
return (out_vocab_file,)
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding:
__magic_name__ : List[str] = src_lang
__magic_name__ : Dict = tgt_lang
return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ )
def __magic_name__ ( self ) -> str:
return self.set_src_lang_special_tokens(self.src_lang )
def __magic_name__ ( self ) -> List[str]:
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __magic_name__ ( self , lowerCAmelCase__ ) -> None:
__magic_name__ : Optional[int] = self.lang_code_to_id[src_lang]
if self.legacy_behaviour:
__magic_name__ : List[str] = []
__magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code]
else:
__magic_name__ : str = [self.cur_lang_code]
__magic_name__ : List[Any] = [self.eos_token_id]
def __magic_name__ ( self , lowerCAmelCase__ ) -> None:
__magic_name__ : List[str] = self.lang_code_to_id[lang]
if self.legacy_behaviour:
__magic_name__ : List[str] = []
__magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code]
else:
__magic_name__ : Optional[int] = [self.cur_lang_code]
__magic_name__ : Union[str, Any] = [self.eos_token_id]
| 342 | 1 |
import os
import tempfile
import unittest
from transformers import FlaubertConfig, is_torch_available
from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
FlaubertForMultipleChoice,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertModel,
FlaubertWithLMHeadModel,
)
from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST
class snake_case__ ( _lowerCAmelCase ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=2 , lowerCAmelCase__=99 , lowerCAmelCase__=0 , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=12 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__="last" , lowerCAmelCase__=None , lowerCAmelCase__=None , ) -> Tuple:
__magic_name__ : Optional[int] = parent
__magic_name__ : Tuple = batch_size
__magic_name__ : List[str] = seq_length
__magic_name__ : List[Any] = is_training
__magic_name__ : str = use_input_lengths
__magic_name__ : List[Any] = use_token_type_ids
__magic_name__ : str = use_labels
__magic_name__ : Union[str, Any] = gelu_activation
__magic_name__ : Dict = sinusoidal_embeddings
__magic_name__ : Dict = causal
__magic_name__ : Tuple = asm
__magic_name__ : Dict = n_langs
__magic_name__ : Any = vocab_size
__magic_name__ : int = n_special
__magic_name__ : List[str] = hidden_size
__magic_name__ : Tuple = num_hidden_layers
__magic_name__ : str = num_attention_heads
__magic_name__ : Any = hidden_dropout_prob
__magic_name__ : Tuple = attention_probs_dropout_prob
__magic_name__ : Any = max_position_embeddings
__magic_name__ : str = type_vocab_size
__magic_name__ : List[Any] = type_sequence_label_size
__magic_name__ : Any = initializer_range
__magic_name__ : int = num_labels
__magic_name__ : Any = num_choices
__magic_name__ : List[Any] = summary_type
__magic_name__ : Dict = use_proj
__magic_name__ : Optional[int] = scope
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ : Dict = random_attention_mask([self.batch_size, self.seq_length] )
__magic_name__ : Optional[int] = None
if self.use_input_lengths:
__magic_name__ : int = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
__magic_name__ : Any = None
if self.use_token_type_ids:
__magic_name__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
__magic_name__ : str = None
__magic_name__ : int = None
__magic_name__ : int = None
if self.use_labels:
__magic_name__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ : int = ids_tensor([self.batch_size] , 2 ).float()
__magic_name__ : Optional[int] = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ : Any = self.get_config()
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def __magic_name__ ( self ) -> Tuple:
return FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> List[str]:
__magic_name__ : Optional[int] = FlaubertModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Optional[int] = model(lowerCAmelCase__ , lengths=lowerCAmelCase__ , langs=lowerCAmelCase__ )
__magic_name__ : List[str] = model(lowerCAmelCase__ , langs=lowerCAmelCase__ )
__magic_name__ : List[str] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Tuple:
__magic_name__ : int = FlaubertWithLMHeadModel(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : int = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Optional[int]:
__magic_name__ : List[str] = FlaubertForQuestionAnsweringSimple(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Union[str, Any] = model(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = model(lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Union[str, Any]:
__magic_name__ : Optional[Any] = FlaubertForQuestionAnswering(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : str = model(lowerCAmelCase__ )
__magic_name__ : Tuple = model(
lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , cls_index=lowerCAmelCase__ , is_impossible=lowerCAmelCase__ , p_mask=lowerCAmelCase__ , )
__magic_name__ : int = model(
lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , cls_index=lowerCAmelCase__ , is_impossible=lowerCAmelCase__ , )
((__magic_name__) ,) : str = result_with_labels.to_tuple()
__magic_name__ : Optional[Any] = model(lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ )
((__magic_name__) ,) : Union[str, Any] = result_with_labels.to_tuple()
self.parent.assertEqual(result_with_labels.loss.shape , () )
self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) )
self.parent.assertEqual(
result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(
result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) )
self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> List[Any]:
__magic_name__ : Optional[int] = FlaubertForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : List[str] = model(lowerCAmelCase__ )
__magic_name__ : Dict = model(lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Any:
__magic_name__ : List[str] = self.num_labels
__magic_name__ : Union[str, Any] = FlaubertForTokenClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Dict:
__magic_name__ : int = self.num_choices
__magic_name__ : Union[str, Any] = FlaubertForMultipleChoice(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__magic_name__ : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__magic_name__ : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__magic_name__ : List[str] = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ : Dict = self.prepare_config_and_inputs()
(
(
__magic_name__
) ,(
__magic_name__
) ,(
__magic_name__
) ,(
__magic_name__
) ,(
__magic_name__
) ,(
__magic_name__
) ,(
__magic_name__
) ,(
__magic_name__
) ,(
__magic_name__
) ,
) : List[str] = config_and_inputs
__magic_name__ : Optional[Any] = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""lengths""": input_lengths,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Dict = (
(
FlaubertModel,
FlaubertWithLMHeadModel,
FlaubertForQuestionAnswering,
FlaubertForQuestionAnsweringSimple,
FlaubertForSequenceClassification,
FlaubertForTokenClassification,
FlaubertForMultipleChoice,
)
if is_torch_available()
else ()
)
lowercase__ : Optional[int] = (
{
'''feature-extraction''': FlaubertModel,
'''fill-mask''': FlaubertWithLMHeadModel,
'''question-answering''': FlaubertForQuestionAnsweringSimple,
'''text-classification''': FlaubertForSequenceClassification,
'''token-classification''': FlaubertForTokenClassification,
'''zero-shot''': FlaubertForSequenceClassification,
}
if is_torch_available()
else {}
)
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any:
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Optional[Any]:
__magic_name__ : Optional[int] = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ )
if return_labels:
if model_class.__name__ == "FlaubertForQuestionAnswering":
__magic_name__ : List[str] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ )
__magic_name__ : List[Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ )
return inputs_dict
def __magic_name__ ( self ) -> int:
__magic_name__ : Any = FlaubertModelTester(self )
__magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , emb_dim=37 )
def __magic_name__ ( self ) -> Optional[int]:
self.config_tester.run_common_tests()
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Any:
__magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> str:
__magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_simple_qa(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> str:
__magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Any:
__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_token_classif(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_multiple_choice(*lowerCAmelCase__ )
@slow
def __magic_name__ ( self ) -> Optional[Any]:
for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : Optional[int] = FlaubertModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@slow
@require_torch_gpu
def __magic_name__ ( self ) -> Dict:
__magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
# FlauBertForMultipleChoice behaves incorrectly in JIT environments.
if model_class == FlaubertForMultipleChoice:
return
__magic_name__ : List[Any] = True
__magic_name__ : Any = model_class(config=lowerCAmelCase__ )
__magic_name__ : Dict = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : Dict = torch.jit.trace(
lowerCAmelCase__ , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) )
with tempfile.TemporaryDirectory() as tmp:
torch.jit.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , """traced_model.pt""" ) )
__magic_name__ : Tuple = torch.jit.load(os.path.join(lowerCAmelCase__ , """traced_model.pt""" ) , map_location=lowerCAmelCase__ )
loaded(inputs_dict["""input_ids"""].to(lowerCAmelCase__ ) , inputs_dict["""attention_mask"""].to(lowerCAmelCase__ ) )
@require_torch
class snake_case__ ( unittest.TestCase ):
@slow
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : Union[str, Any] = FlaubertModel.from_pretrained("""flaubert/flaubert_base_cased""" )
__magic_name__ : str = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] )
with torch.no_grad():
__magic_name__ : Union[str, Any] = model(lowerCAmelCase__ )[0]
__magic_name__ : List[str] = torch.Size((1, 11, 7_68) )
self.assertEqual(output.shape , lowerCAmelCase__ )
__magic_name__ : List[str] = torch.tensor(
[[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
| 342 |
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
__magic_name__ : Dict = MobileBertConfig.from_json_file(_A )
print(f'Building PyTorch model from configuration: {config}' )
__magic_name__ : Tuple = MobileBertForPreTraining(_A )
# Load weights from tf checkpoint
__magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict(), _A )
if __name__ == "__main__":
__magic_name__: Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--mobilebert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained MobileBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__magic_name__: Dict = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 342 | 1 |
import math
__magic_name__: Union[str, Any] = 10
__magic_name__: Union[str, Any] = 7
__magic_name__: Tuple = BALLS_PER_COLOUR * NUM_COLOURS
def UpperCamelCase ( _A = 20 ):
"""simple docstring"""
__magic_name__ : str = math.comb(_A, _A )
__magic_name__ : Optional[int] = math.comb(NUM_BALLS - BALLS_PER_COLOUR, _A )
__magic_name__ : Tuple = NUM_COLOURS * (1 - missing_colour / total)
return f'{result:.9f}'
if __name__ == "__main__":
print(solution(20))
| 342 |
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Optional[Any] = MgpstrTokenizer
lowercase__ : int = False
lowercase__ : Any = {}
lowercase__ : Optional[int] = False
def __magic_name__ ( self ) -> Optional[Any]:
super().setUp()
# fmt: off
__magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
__magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
__magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" )
def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]:
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]:
__magic_name__ : List[str] = """tester"""
__magic_name__ : int = """tester"""
return input_text, output_text
@unittest.skip("""MGP-STR always lower cases letters.""" )
def __magic_name__ ( self ) -> str:
pass
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
__magic_name__ : Dict = """[SPECIAL_TOKEN]"""
tokenizer.add_special_tokens({"""cls_token""": special_token} )
__magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , 1 )
__magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
self.assertTrue(special_token not in decoded )
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ : int = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
__magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ )
__magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ )
__magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertNotEqual(len(lowerCAmelCase__ ) , 0 )
__magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ )
@unittest.skip("""MGP-STR tokenizer only handles one sequence.""" )
def __magic_name__ ( self ) -> Tuple:
pass
@unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" )
def __magic_name__ ( self ) -> Optional[Any]:
pass
| 342 | 1 |
import logging
import math
from functools import partial
from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union
import torch
from .tensor_utils import tensor_tree_map, tree_map
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : Union[str, Any] = []
if isinstance(_A, _A ):
for v in tree.values():
shapes.extend(_fetch_dims(_A ) )
elif isinstance(_A, (list, tuple) ):
for t in tree:
shapes.extend(_fetch_dims(_A ) )
elif isinstance(_A, torch.Tensor ):
shapes.append(tree.shape )
else:
raise ValueError("""Not supported""" )
return shapes
@torch.jit.ignore
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
__magic_name__ : Tuple = []
for d in reversed(_A ):
idx.append(flat_idx % d )
__magic_name__ : Any = flat_idx // d
return tuple(reversed(_A ) )
@torch.jit.ignore
def UpperCamelCase ( _A, _A, _A, _A = None, _A = None, ):
"""simple docstring"""
def reduce_edge_list(_A ) -> None:
__magic_name__ : str = True
for i in range(len(_A ) ):
__magic_name__ : Optional[Any] = -1 * (i + 1)
l[reversed_idx] &= tally
__magic_name__ : Optional[Any] = l[reversed_idx]
if start_edges is None:
__magic_name__ : List[Any] = [s == 0 for s in start]
reduce_edge_list(_A )
if end_edges is None:
__magic_name__ : Union[str, Any] = [e == (d - 1) for e, d in zip(_A, _A )]
reduce_edge_list(_A )
# Base cases. Either start/end are empty and we're done, or the final,
# one-dimensional tensor can be simply sliced
if len(_A ) == 0:
return [()]
elif len(_A ) == 1:
return [(slice(start[0], end[0] + 1 ),)]
__magic_name__ : List[Tuple[slice, ...]] = []
__magic_name__ : List[slice] = []
# Dimensions common to start and end can be selected directly
for s, e in zip(_A, _A ):
if s == e:
path_list.append(slice(_A, s + 1 ) )
else:
break
__magic_name__ : Tuple[slice, ...] = tuple(_A )
__magic_name__ : List[Any] = len(_A )
# start == end, and we're done
if divergence_idx == len(_A ):
return [path]
def upper() -> Tuple[Tuple[slice, ...], ...]:
assert start_edges is not None
assert end_edges is not None
__magic_name__ : Dict = start[divergence_idx]
return tuple(
path + (slice(_A, sdi + 1 ),) + s
for s in _get_minimal_slice_set(
start[divergence_idx + 1 :], [d - 1 for d in dims[divergence_idx + 1 :]], dims[divergence_idx + 1 :], start_edges=start_edges[divergence_idx + 1 :], end_edges=[True for _ in end_edges[divergence_idx + 1 :]], ) )
def lower() -> Tuple[Tuple[slice, ...], ...]:
assert start_edges is not None
assert end_edges is not None
__magic_name__ : Dict = end[divergence_idx]
return tuple(
path + (slice(_A, edi + 1 ),) + s
for s in _get_minimal_slice_set(
[0 for _ in start[divergence_idx + 1 :]], end[divergence_idx + 1 :], dims[divergence_idx + 1 :], start_edges=[True for _ in start_edges[divergence_idx + 1 :]], end_edges=end_edges[divergence_idx + 1 :], ) )
# If both start and end are at the edges of the subtree rooted at
# divergence_idx, we can just select the whole subtree at once
if start_edges[divergence_idx] and end_edges[divergence_idx]:
slices.append(path + (slice(start[divergence_idx], end[divergence_idx] + 1 ),) )
# If just start is at the edge, we can grab almost all of the subtree,
# treating only the ragged bottom edge as an edge case
elif start_edges[divergence_idx]:
slices.append(path + (slice(start[divergence_idx], end[divergence_idx] ),) )
slices.extend(lower() )
# Analogous to the previous case, but the top is ragged this time
elif end_edges[divergence_idx]:
slices.extend(upper() )
slices.append(path + (slice(start[divergence_idx] + 1, end[divergence_idx] + 1 ),) )
# If both sides of the range are ragged, we need to handle both sides
# separately. If there's contiguous meat in between them, we can index it
# in one big chunk
else:
slices.extend(upper() )
__magic_name__ : Optional[Any] = end[divergence_idx] - start[divergence_idx]
if middle_ground > 1:
slices.append(path + (slice(start[divergence_idx] + 1, end[divergence_idx] ),) )
slices.extend(lower() )
return slices
@torch.jit.ignore
def UpperCamelCase ( _A, _A, _A, _A ):
"""simple docstring"""
__magic_name__ : int = t.shape[:no_batch_dims]
__magic_name__ : Union[str, Any] = list(_flat_idx_to_idx(_A, _A ) )
# _get_minimal_slice_set is inclusive
__magic_name__ : Dict = list(_flat_idx_to_idx(flat_end - 1, _A ) )
# Get an ordered list of slices to perform
__magic_name__ : Any = _get_minimal_slice_set(
_A, _A, _A, )
__magic_name__ : Optional[int] = [t[s] for s in slices]
return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] )
def UpperCamelCase ( _A, _A, _A, _A, _A = False, _A = None, _A = False, ):
"""simple docstring"""
if not (len(_A ) > 0):
raise ValueError("""Must provide at least one input""" )
__magic_name__ : Tuple = [shape[:no_batch_dims] for shape in _fetch_dims(_A )]
__magic_name__ : Optional[int] = tuple([max(_A ) for s in zip(*_A )] )
def _prep_inputs(_A ) -> torch.Tensor:
if not low_mem:
if not sum(t.shape[:no_batch_dims] ) == no_batch_dims:
__magic_name__ : int = t.expand(orig_batch_dims + t.shape[no_batch_dims:] )
__magic_name__ : str = t.reshape(-1, *t.shape[no_batch_dims:] )
else:
__magic_name__ : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] )
return t
__magic_name__ : Dict[str, Any] = tensor_tree_map(_prep_inputs, _A )
__magic_name__ : List[str] = None
if _out is not None:
__magic_name__ : Optional[Any] = tensor_tree_map(lambda _A : t.view([-1] + list(t.shape[no_batch_dims:] ) ), _out )
__magic_name__ : Optional[Any] = 1
for d in orig_batch_dims:
flat_batch_dim *= d
__magic_name__ : Dict = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0)
def _select_chunk(_A ) -> torch.Tensor:
return t[i : i + chunk_size] if t.shape[0] != 1 else t
__magic_name__ : Optional[int] = 0
__magic_name__ : Tuple = prepped_outputs
for _ in range(_A ):
# Chunk the input
if not low_mem:
__magic_name__ : Optional[int] = _select_chunk
else:
__magic_name__ : List[str] = partial(
_chunk_slice, flat_start=_A, flat_end=min(_A, i + chunk_size ), no_batch_dims=len(_A ), )
__magic_name__ : Dict[str, Any] = tensor_tree_map(_A, _A )
# Run the layer on the chunk
__magic_name__ : List[Any] = layer(**_A )
# Allocate space for the output
if out is None:
__magic_name__ : str = tensor_tree_map(lambda _A : t.new_zeros((flat_batch_dim,) + t.shape[1:] ), _A )
# Put the chunk in its pre-allocated space
if isinstance(_A, _A ):
def assign(_A, _A ) -> None:
for k, v in da.items():
if isinstance(_A, _A ):
assign(_A, da[k] )
else:
if _add_into_out:
v[i : i + chunk_size] += da[k]
else:
__magic_name__ : Optional[int] = da[k]
assign(_A, _A )
elif isinstance(_A, _A ):
for xa, xa in zip(_A, _A ):
if _add_into_out:
xa[i : i + chunk_size] += xa
else:
__magic_name__ : Any = xa
elif isinstance(_A, torch.Tensor ):
if _add_into_out:
out[i : i + chunk_size] += output_chunk
else:
__magic_name__ : int = output_chunk
else:
raise ValueError("""Not supported""" )
i += chunk_size
__magic_name__ : Optional[Any] = tensor_tree_map(lambda _A : t.view(orig_batch_dims + t.shape[1:] ), _A )
return out
class snake_case__ :
def __init__( self , lowerCAmelCase__ = 5_12 , ) -> Optional[Any]:
__magic_name__ : str = max_chunk_size
__magic_name__ : Optional[int] = None
__magic_name__ : Optional[tuple] = None
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int:
logging.info("""Tuning chunk size...""" )
if min_chunk_size >= self.max_chunk_size:
return min_chunk_size
__magic_name__ : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )]
__magic_name__ : Tuple = [c for c in candidates if c > min_chunk_size]
__magic_name__ : Dict = [min_chunk_size] + candidates
candidates[-1] += 4
def test_chunk_size(lowerCAmelCase__ ) -> bool:
try:
with torch.no_grad():
fn(*lowerCAmelCase__ , chunk_size=lowerCAmelCase__ )
return True
except RuntimeError:
return False
__magic_name__ : Optional[Any] = 0
__magic_name__ : int = len(lowerCAmelCase__ ) - 1
while i > min_viable_chunk_size_index:
__magic_name__ : Optional[Any] = test_chunk_size(candidates[i] )
if not viable:
__magic_name__ : List[str] = (min_viable_chunk_size_index + i) // 2
else:
__magic_name__ : Tuple = i
__magic_name__ : int = (i + len(lowerCAmelCase__ ) - 1) // 2
return candidates[min_viable_chunk_size_index]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> bool:
__magic_name__ : str = True
for aa, aa in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
assert type(lowerCAmelCase__ ) == type(lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , (list, tuple) ):
consistent &= self._compare_arg_caches(lowerCAmelCase__ , lowerCAmelCase__ )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
__magic_name__ : Any = [v for _, v in sorted(aa.items() , key=lambda lowerCAmelCase__ : x[0] )]
__magic_name__ : Dict = [v for _, v in sorted(aa.items() , key=lambda lowerCAmelCase__ : x[0] )]
consistent &= self._compare_arg_caches(lowerCAmelCase__ , lowerCAmelCase__ )
else:
consistent &= aa == aa
return consistent
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> int:
__magic_name__ : List[str] = True
__magic_name__ : tuple = tree_map(lambda lowerCAmelCase__ : a.shape if isinstance(lowerCAmelCase__ , torch.Tensor ) else a , lowerCAmelCase__ , lowerCAmelCase__ )
if self.cached_arg_data is not None:
# If args have changed shape/value, we need to re-tune
assert len(self.cached_arg_data ) == len(lowerCAmelCase__ )
__magic_name__ : List[Any] = self._compare_arg_caches(self.cached_arg_data , lowerCAmelCase__ )
else:
# Otherwise, we can reuse the precomputed value
__magic_name__ : Dict = False
if not consistent:
__magic_name__ : Union[str, Any] = self._determine_favorable_chunk_size(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , )
__magic_name__ : Any = arg_data
assert self.cached_chunk_size is not None
return self.cached_chunk_size
| 342 |
import re
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" )
if match := re.search(_A, _A ):
return match.string == phone
return False
if __name__ == "__main__":
print(indian_phone_validator("+918827897895"))
| 342 | 1 |
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
__magic_name__: Optional[int] = logging.get_logger(__name__)
class snake_case__ :
def __init__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=None ) -> List[str]:
if not conversation_id:
__magic_name__ : Optional[Any] = uuid.uuida()
if past_user_inputs is None:
__magic_name__ : Optional[int] = []
if generated_responses is None:
__magic_name__ : Any = []
__magic_name__ : uuid.UUID = conversation_id
__magic_name__ : List[str] = past_user_inputs
__magic_name__ : List[str] = generated_responses
__magic_name__ : Optional[str] = text
def __eq__( self , lowerCAmelCase__ ) -> Optional[Any]:
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> Optional[Any]:
if self.new_user_input:
if overwrite:
logger.warning(
F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten '
F'with: "{text}".' )
__magic_name__ : int = text
else:
logger.warning(
F'User input added while unprocessed input was existing: "{self.new_user_input}" new input '
F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' )
else:
__magic_name__ : Any = text
def __magic_name__ ( self ) -> Union[str, Any]:
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
__magic_name__ : List[str] = None
def __magic_name__ ( self , lowerCAmelCase__ ) -> List[Any]:
self.generated_responses.append(lowerCAmelCase__ )
def __magic_name__ ( self ) -> str:
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__( self ) -> Dict:
__magic_name__ : str = F'Conversation id: {self.uuid} \n'
for is_user, text in self.iter_texts():
__magic_name__ : List[Any] = """user""" if is_user else """bot"""
output += F'{name} >> {text} \n'
return output
@add_end_docstrings(
_lowerCAmelCase , r'''
min_length_for_response (`int`, *optional*, defaults to 32):
The minimum length (in number of tokens) for a response.
minimum_tokens (`int`, *optional*, defaults to 10):
The minimum length of tokens to leave for a response.
''' , )
class snake_case__ ( _lowerCAmelCase ):
def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]:
super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
if self.tokenizer.pad_token_id is None:
__magic_name__ : str = self.tokenizer.eos_token
def __magic_name__ ( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> List[Any]:
__magic_name__ : Tuple = {}
__magic_name__ : str = {}
__magic_name__ : List[str] = {}
if min_length_for_response is not None:
__magic_name__ : List[str] = min_length_for_response
if minimum_tokens is not None:
__magic_name__ : Union[str, Any] = minimum_tokens
if "max_length" in generate_kwargs:
__magic_name__ : Any = generate_kwargs["""max_length"""]
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
__magic_name__ : Optional[int] = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(lowerCAmelCase__ )
return preprocess_params, forward_params, postprocess_params
def __call__( self , lowerCAmelCase__ , lowerCAmelCase__=0 , **lowerCAmelCase__ ) -> List[str]:
__magic_name__ : Optional[Any] = super().__call__(lowerCAmelCase__ , num_workers=lowerCAmelCase__ , **lowerCAmelCase__ )
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) == 1:
return outputs[0]
return outputs
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=32 ) -> Dict[str, Any]:
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" )
if conversation.new_user_input is None:
raise ValueError(
F'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. '
"""Add user inputs with the conversation's `add_user_input` method""" )
if hasattr(self.tokenizer , """_build_conversation_input_ids""" ):
__magic_name__ : Dict = self.tokenizer._build_conversation_input_ids(lowerCAmelCase__ )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
__magic_name__ : str = self._legacy_parse_and_tokenize(lowerCAmelCase__ )
if self.framework == "pt":
__magic_name__ : List[Any] = torch.LongTensor([input_ids] )
elif self.framework == "tf":
__magic_name__ : List[Any] = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=10 , **lowerCAmelCase__ ) -> str:
__magic_name__ : str = generate_kwargs.get("""max_length""" , self.model.config.max_length )
__magic_name__ : List[str] = model_inputs["""input_ids"""].shape[1]
if max_length - minimum_tokens < n:
logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' )
__magic_name__ : List[str] = max_length - minimum_tokens
__magic_name__ : Optional[int] = model_inputs["""input_ids"""][:, -trim:]
if "attention_mask" in model_inputs:
__magic_name__ : Optional[int] = model_inputs["""attention_mask"""][:, -trim:]
__magic_name__ : List[str] = model_inputs.pop("""conversation""" )
__magic_name__ : Dict = max_length
__magic_name__ : List[Any] = self.model.generate(**lowerCAmelCase__ , **lowerCAmelCase__ )
if self.model.config.is_encoder_decoder:
__magic_name__ : Optional[int] = 1
else:
__magic_name__ : Any = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=True ) -> Optional[int]:
__magic_name__ : Tuple = model_outputs["""output_ids"""]
__magic_name__ : Tuple = self.tokenizer.decode(
output_ids[0] , skip_special_tokens=lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ , )
__magic_name__ : str = model_outputs["""conversation"""]
conversation.mark_processed()
conversation.append_response(lowerCAmelCase__ )
return conversation
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
__magic_name__ : Optional[Any] = self.tokenizer.eos_token_id
__magic_name__ : Optional[int] = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) )
if len(lowerCAmelCase__ ) > self.tokenizer.model_max_length:
__magic_name__ : Dict = input_ids[-self.tokenizer.model_max_length :]
return input_ids
| 342 |
import doctest
from collections import deque
import numpy as np
class snake_case__ :
def __init__( self ) -> None:
__magic_name__ : Any = [2, 1, 2, -1]
__magic_name__ : Tuple = [1, 2, 3, 4]
def __magic_name__ ( self ) -> list[float]:
__magic_name__ : Optional[Any] = len(self.first_signal )
__magic_name__ : Dict = len(self.second_signal )
__magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ )
# create a zero matrix of max_length x max_length
__magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(lowerCAmelCase__ ):
__magic_name__ : List[str] = deque(self.second_signal )
rotated_signal.rotate(lowerCAmelCase__ )
for j, item in enumerate(lowerCAmelCase__ ):
matrix[i][j] += item
# multiply the matrix with the first signal
__magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(lowerCAmelCase__ , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 342 | 1 |
import numpy as np
import datasets
__magic_name__: List[Any] = "\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n"
__magic_name__: List[Any] = "\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n"
__magic_name__: str = "\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {'mahalanobis': array([0.5])}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class snake_case__ ( datasets.Metric ):
def __magic_name__ ( self ) -> List[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""X""": datasets.Sequence(datasets.Value("""float""" , id="""sequence""" ) , id="""X""" ),
} ) , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]:
# convert to numpy arrays
__magic_name__ : str = np.array(lowerCAmelCase__ )
__magic_name__ : Optional[int] = np.array(lowerCAmelCase__ )
# Assert that arrays are 2D
if len(X.shape ) != 2:
raise ValueError("""Expected `X` to be a 2D vector""" )
if len(reference_distribution.shape ) != 2:
raise ValueError("""Expected `reference_distribution` to be a 2D vector""" )
if reference_distribution.shape[0] < 2:
raise ValueError(
"""Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension""" )
# Get mahalanobis distance for each prediction
__magic_name__ : Dict = X - np.mean(lowerCAmelCase__ )
__magic_name__ : List[str] = np.cov(reference_distribution.T )
try:
__magic_name__ : Tuple = np.linalg.inv(lowerCAmelCase__ )
except np.linalg.LinAlgError:
__magic_name__ : Tuple = np.linalg.pinv(lowerCAmelCase__ )
__magic_name__ : Dict = np.dot(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : List[str] = np.dot(lowerCAmelCase__ , X_minus_mu.T ).diagonal()
return {"mahalanobis": mahal_dist}
| 342 |
from math import factorial
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
if successes > trials:
raise ValueError("""successes must be lower or equal to trials""" )
if trials < 0 or successes < 0:
raise ValueError("""the function is defined for non-negative integers""" )
if not isinstance(_A, _A ) or not isinstance(_A, _A ):
raise ValueError("""the function is defined for non-negative integers""" )
if not 0 < prob < 1:
raise ValueError("""prob has to be in range of 1 - 0""" )
__magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes))
# Calculate the binomial coefficient: n! / k!(n-k)!
__magic_name__ : Any = float(factorial(_A ) )
coefficient /= factorial(_A ) * factorial(trials - successes )
return probability * coefficient
if __name__ == "__main__":
from doctest import testmod
testmod()
print("Probability of 2 successes out of 4 trails")
print("with probability of 0.75 is:", end=" ")
print(binomial_distribution(2, 4, 0.75))
| 342 | 1 |
import argparse
import os
import re
__magic_name__: Optional[Any] = "src/transformers/models/auto"
# re pattern that matches mapping introductions:
# SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict
__magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict")
# re pattern that matches identifiers in mappings
__magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"")
def UpperCamelCase ( _A, _A = False ):
"""simple docstring"""
with open(_A, """r""", encoding="""utf-8""" ) as f:
__magic_name__ : Any = f.read()
__magic_name__ : List[Any] = content.split("""\n""" )
__magic_name__ : List[str] = []
__magic_name__ : Union[str, Any] = 0
while line_idx < len(_A ):
if _re_intro_mapping.search(lines[line_idx] ) is not None:
__magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8
# Start of a new mapping!
while not lines[line_idx].startswith(""" """ * indent + """(""" ):
new_lines.append(lines[line_idx] )
line_idx += 1
__magic_name__ : List[Any] = []
while lines[line_idx].strip() != "]":
# Blocks either fit in one line or not
if lines[line_idx].strip() == "(":
__magic_name__ : List[str] = line_idx
while not lines[line_idx].startswith(""" """ * indent + """)""" ):
line_idx += 1
blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) )
else:
blocks.append(lines[line_idx] )
line_idx += 1
# Sort blocks by their identifiers
__magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] )
new_lines += blocks
else:
new_lines.append(lines[line_idx] )
line_idx += 1
if overwrite:
with open(_A, """w""", encoding="""utf-8""" ) as f:
f.write("""\n""".join(_A ) )
elif "\n".join(_A ) != content:
return True
def UpperCamelCase ( _A = False ):
"""simple docstring"""
__magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )]
__magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames]
if not overwrite and any(_A ):
__magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d]
raise ValueError(
f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix'
""" this.""" )
if __name__ == "__main__":
__magic_name__: List[str] = argparse.ArgumentParser()
parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.")
__magic_name__: List[str] = parser.parse_args()
sort_all_auto_mappings(not args.check_only)
| 342 |
from __future__ import annotations
def UpperCamelCase ( _A ): # This function is recursive
"""simple docstring"""
__magic_name__ : str = len(_A )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
__magic_name__ : Dict = array[0]
__magic_name__ : Optional[Any] = False
__magic_name__ : Tuple = 1
__magic_name__ : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
__magic_name__ : Union[str, Any] = True
__magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]]
__magic_name__ : Dict = longest_subsequence(_A )
if len(_A ) > len(_A ):
__magic_name__ : Tuple = temp_array
else:
i += 1
__magic_name__ : Any = [element for element in array[1:] if element >= pivot]
__magic_name__ : Dict = [pivot, *longest_subsequence(_A )]
if len(_A ) > len(_A ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 | 1 |
import unittest
from huggingface_hub import hf_hub_download
from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor
from transformers.pipelines import VideoClassificationPipeline, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_decord,
require_tf,
require_torch,
require_torch_or_tf,
require_vision,
)
from .test_pipelines_common import ANY
@is_pipeline_test
@require_torch_or_tf
@require_vision
@require_decord
class snake_case__ ( unittest.TestCase ):
lowercase__ : List[Any] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]:
__magic_name__ : Optional[Any] = hf_hub_download(
repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" )
__magic_name__ : Dict = VideoClassificationPipeline(model=lowerCAmelCase__ , image_processor=lowerCAmelCase__ , top_k=2 )
__magic_name__ : Optional[Any] = [
example_video_filepath,
"""https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""",
]
return video_classifier, examples
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]:
for example in examples:
__magic_name__ : List[Any] = video_classifier(lowerCAmelCase__ )
self.assertEqual(
lowerCAmelCase__ , [
{"""score""": ANY(lowerCAmelCase__ ), """label""": ANY(lowerCAmelCase__ )},
{"""score""": ANY(lowerCAmelCase__ ), """label""": ANY(lowerCAmelCase__ )},
] , )
@require_torch
def __magic_name__ ( self ) -> Any:
__magic_name__ : Any = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification"""
__magic_name__ : Tuple = VideoMAEFeatureExtractor(
size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} )
__magic_name__ : Any = pipeline(
"""video-classification""" , model=lowerCAmelCase__ , feature_extractor=lowerCAmelCase__ , frame_sampling_rate=4 )
__magic_name__ : Dict = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" )
__magic_name__ : List[Any] = video_classifier(lowerCAmelCase__ , top_k=2 )
self.assertEqual(
nested_simplify(lowerCAmelCase__ , decimals=4 ) , [{"""score""": 0.5_1_9_9, """label""": """LABEL_0"""}, {"""score""": 0.4_8_0_1, """label""": """LABEL_1"""}] , )
__magic_name__ : Optional[int] = video_classifier(
[
video_file_path,
video_file_path,
] , top_k=2 , )
self.assertEqual(
nested_simplify(lowerCAmelCase__ , decimals=4 ) , [
[{"""score""": 0.5_1_9_9, """label""": """LABEL_0"""}, {"""score""": 0.4_8_0_1, """label""": """LABEL_1"""}],
[{"""score""": 0.5_1_9_9, """label""": """LABEL_0"""}, {"""score""": 0.4_8_0_1, """label""": """LABEL_1"""}],
] , )
@require_tf
def __magic_name__ ( self ) -> int:
pass
| 342 |
import argparse
import os
import re
__magic_name__: Optional[Any] = "src/transformers/models/auto"
# re pattern that matches mapping introductions:
# SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict
__magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict")
# re pattern that matches identifiers in mappings
__magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"")
def UpperCamelCase ( _A, _A = False ):
"""simple docstring"""
with open(_A, """r""", encoding="""utf-8""" ) as f:
__magic_name__ : Any = f.read()
__magic_name__ : List[Any] = content.split("""\n""" )
__magic_name__ : List[str] = []
__magic_name__ : Union[str, Any] = 0
while line_idx < len(_A ):
if _re_intro_mapping.search(lines[line_idx] ) is not None:
__magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8
# Start of a new mapping!
while not lines[line_idx].startswith(""" """ * indent + """(""" ):
new_lines.append(lines[line_idx] )
line_idx += 1
__magic_name__ : List[Any] = []
while lines[line_idx].strip() != "]":
# Blocks either fit in one line or not
if lines[line_idx].strip() == "(":
__magic_name__ : List[str] = line_idx
while not lines[line_idx].startswith(""" """ * indent + """)""" ):
line_idx += 1
blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) )
else:
blocks.append(lines[line_idx] )
line_idx += 1
# Sort blocks by their identifiers
__magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] )
new_lines += blocks
else:
new_lines.append(lines[line_idx] )
line_idx += 1
if overwrite:
with open(_A, """w""", encoding="""utf-8""" ) as f:
f.write("""\n""".join(_A ) )
elif "\n".join(_A ) != content:
return True
def UpperCamelCase ( _A = False ):
"""simple docstring"""
__magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )]
__magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames]
if not overwrite and any(_A ):
__magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d]
raise ValueError(
f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix'
""" this.""" )
if __name__ == "__main__":
__magic_name__: List[str] = argparse.ArgumentParser()
parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.")
__magic_name__: List[str] = parser.parse_args()
sort_all_auto_mappings(not args.check_only)
| 342 | 1 |
import datasets
from .evaluate import evaluate
__magic_name__: Tuple = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n"
__magic_name__: Optional[Any] = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n"
__magic_name__: Dict = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class snake_case__ ( datasets.Metric ):
def __magic_name__ ( self ) -> Union[str, Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": {"""id""": datasets.Value("""string""" ), """prediction_text""": datasets.Value("""string""" )},
"""references""": {
"""id""": datasets.Value("""string""" ),
"""answers""": datasets.features.Sequence(
{
"""text""": datasets.Value("""string""" ),
"""answer_start""": datasets.Value("""int32""" ),
} ),
},
} ) , codebase_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , reference_urls=["""https://rajpurkar.github.io/SQuAD-explorer/"""] , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]:
__magic_name__ : str = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions}
__magic_name__ : Union[str, Any] = [
{
"""paragraphs""": [
{
"""qas""": [
{
"""answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]],
"""id""": ref["""id"""],
}
for ref in references
]
}
]
}
]
__magic_name__ : Dict = evaluate(dataset=lowerCAmelCase__ , predictions=lowerCAmelCase__ )
return score
| 342 |
__magic_name__: str = [0, 2, 4, 6, 8]
__magic_name__: Optional[int] = [1, 3, 5, 7, 9]
def UpperCamelCase ( _A, _A, _A, _A ):
"""simple docstring"""
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1, -1, -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
__magic_name__ : List[Any] = 0
for digit in range(10 ):
__magic_name__ : Optional[int] = digit
result += reversible_numbers(
0, (remainder + 2 * digit) // 10, _A, _A )
return result
__magic_name__ : str = 0
for digita in range(10 ):
__magic_name__ : Optional[Any] = digita
if (remainder + digita) % 2 == 0:
__magic_name__ : Tuple = ODD_DIGITS
else:
__magic_name__ : str = EVEN_DIGITS
for digita in other_parity_digits:
__magic_name__ : Tuple = digita
result += reversible_numbers(
remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, )
return result
def UpperCamelCase ( _A = 9 ):
"""simple docstring"""
__magic_name__ : List[str] = 0
for length in range(1, max_power + 1 ):
result += reversible_numbers(_A, 0, [0] * length, _A )
return result
if __name__ == "__main__":
print(F"""{solution() = }""")
| 342 | 1 |
import logging
import os
from typing import List, Tuple
import numpy as np
import psutil
import torch
import torch.distributed as dist
from transformers import RagRetriever
__magic_name__: Optional[int] = logging.getLogger(__name__)
class snake_case__ ( _lowerCAmelCase ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ) -> Optional[int]:
super().__init__(
lowerCAmelCase__ , question_encoder_tokenizer=lowerCAmelCase__ , generator_tokenizer=lowerCAmelCase__ , index=lowerCAmelCase__ , init_retrieval=lowerCAmelCase__ , )
__magic_name__ : Any = None
def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple:
logger.info("""initializing retrieval""" )
# initializing a separate process group for retrieval as the default
# nccl backend doesn't support gather/scatter operations while gloo
# is too slow to replace nccl for the core gpu communication
if dist.is_initialized():
logger.info("""dist initialized""" )
# needs to be set manually
__magic_name__ : Dict = self._infer_socket_ifname()
# avoid clash with the NCCL port
__magic_name__ : Union[str, Any] = str(distributed_port + 1 )
__magic_name__ : Union[str, Any] = dist.new_group(ranks=lowerCAmelCase__ , backend="""gloo""" )
# initialize retriever only on the main worker
if not dist.is_initialized() or self._is_main():
logger.info("""dist not initialized / main""" )
self.index.init_index()
# all processes wait untill the retriever is initialized by the main process
if dist.is_initialized():
torch.distributed.barrier(group=self.process_group )
def __magic_name__ ( self ) -> Union[str, Any]:
return dist.get_rank(group=self.process_group ) == 0
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=torch.floataa ) -> str:
__magic_name__ : Optional[int] = torch.empty(lowerCAmelCase__ , dtype=lowerCAmelCase__ )
dist.scatter(lowerCAmelCase__ , src=0 , scatter_list=lowerCAmelCase__ , group=self.process_group )
return target_tensor
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : Optional[Any] = psutil.net_if_addrs()
# a hacky way to deal with varying network interface names
__magic_name__ : Optional[int] = next((addr for addr in addrs if addr.startswith("""e""" )) , lowerCAmelCase__ )
return ifname
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple[np.ndarray, List[dict]]:
# single GPU training
if not dist.is_initialized():
__magic_name__ ,__magic_name__ : Any = self._main_retrieve(lowerCAmelCase__ , lowerCAmelCase__ )
return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(lowerCAmelCase__ )
# distributed training
__magic_name__ : Union[str, Any] = dist.get_world_size(group=self.process_group )
# gather logic
__magic_name__ : Tuple = None
if self._is_main():
__magic_name__ : List[str] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(lowerCAmelCase__ )]
dist.gather(torch.tensor(lowerCAmelCase__ ) , dst=0 , gather_list=lowerCAmelCase__ , group=self.process_group )
# scatter logic
__magic_name__ : int = question_hidden_states.shape[0]
__magic_name__ : Optional[int] = []
__magic_name__ : Union[str, Any] = []
if self._is_main():
assert len(lowerCAmelCase__ ) == world_size
__magic_name__ ,__magic_name__ : Optional[int] = self._main_retrieve(torch.cat(lowerCAmelCase__ ).numpy() , lowerCAmelCase__ )
__magic_name__ ,__magic_name__ : Optional[int] = torch.tensor(lowerCAmelCase__ ), torch.tensor(lowerCAmelCase__ )
__magic_name__ : Tuple = self._chunk_tensor(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : Tuple = self._chunk_tensor(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : Optional[int] = self._scattered(lowerCAmelCase__ , [n_queries, n_docs] , target_type=torch.intaa )
__magic_name__ : str = self._scattered(lowerCAmelCase__ , [n_queries, n_docs, question_hidden_states.shape[1]] )
return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(lowerCAmelCase__ )
| 342 |
def UpperCamelCase ( _A ):
"""simple docstring"""
if not all(x.isalpha() for x in string ):
raise ValueError("""String must only contain alphabetic characters.""" )
__magic_name__ : int = sorted(string.lower() )
return len(_A ) == len(set(_A ) )
if __name__ == "__main__":
__magic_name__: Dict = input("Enter a string ").strip()
__magic_name__: Union[str, Any] = is_isogram(input_str)
print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
| 342 | 1 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class snake_case__ ( unittest.TestCase ):
@slow
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Any = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" )
__magic_name__ : Any = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__magic_name__ : List[str] = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim
__magic_name__ : Union[str, Any] = torch.tensor(
[[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__magic_name__ : int = model(lowerCAmelCase__ )["""last_hidden_state"""].detach()
self.assertEqual(output.shape , lowerCAmelCase__ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , lowerCAmelCase__ , atol=1e-3 ) )
@slow
def __magic_name__ ( self ) -> int:
__magic_name__ : Tuple = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" )
__magic_name__ : Union[str, Any] = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] )
# The dog is cute and lives in the garden house
__magic_name__ : List[str] = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim
__magic_name__ : Optional[Any] = torch.tensor(
[[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
__magic_name__ : str = model(lowerCAmelCase__ )["""last_hidden_state"""].detach()
self.assertEqual(output.shape , lowerCAmelCase__ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , lowerCAmelCase__ , atol=1e-3 ) )
| 342 |
import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
"The `inpainting.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionInpaintPipeline` instead."
)
| 342 | 1 |
import unittest
import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class snake_case__ ( unittest.TestCase ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]:
__magic_name__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18}
__magic_name__ : str = parent
__magic_name__ : Any = batch_size
__magic_name__ : Any = num_channels
__magic_name__ : List[str] = image_size
__magic_name__ : Tuple = min_resolution
__magic_name__ : Union[str, Any] = max_resolution
__magic_name__ : List[str] = do_resize
__magic_name__ : Optional[Any] = size
__magic_name__ : Optional[Any] = do_normalize
__magic_name__ : Any = image_mean
__magic_name__ : List[str] = image_std
def __magic_name__ ( self ) -> List[str]:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Any = DPTImageProcessor if is_vision_available() else None
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : Dict = DPTImageProcessingTester(self )
@property
def __magic_name__ ( self ) -> Union[str, Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) )
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
__magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def __magic_name__ ( self ) -> str:
# Initialize image_processing
__magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
__magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __magic_name__ ( self ) -> Tuple:
# Initialize image_processing
__magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__magic_name__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
__magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __magic_name__ ( self ) -> Optional[Any]:
# Initialize image_processing
__magic_name__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
__magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__magic_name__ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 342 |
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class snake_case__ ( unittest.TestCase ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]:
__magic_name__ : str = parent
__magic_name__ : Dict = do_resize
__magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88}
__magic_name__ : Union[str, Any] = size_divisor
__magic_name__ : Union[str, Any] = do_rescale
__magic_name__ : Dict = rescale_factor
__magic_name__ : Union[str, Any] = do_normalize
__magic_name__ : List[str] = do_center_crop
__magic_name__ : Tuple = image_mean
__magic_name__ : Tuple = image_std
__magic_name__ : Tuple = do_pad
__magic_name__ : int = batch_size
__magic_name__ : List[Any] = num_channels
__magic_name__ : int = min_resolution
__magic_name__ : str = max_resolution
def __magic_name__ ( self ) -> str:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int:
if not batched:
__magic_name__ : Dict = self.size["""shortest_edge"""]
__magic_name__ : List[str] = image_inputs[0]
if isinstance(lowerCAmelCase__ , Image.Image ):
__magic_name__ ,__magic_name__ : List[Any] = image.size
else:
__magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2]
__magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ )
if h < w:
__magic_name__ ,__magic_name__ : str = size, scale * w
else:
__magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size
__magic_name__ : Tuple = int((13_33 / 8_00) * size )
if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size:
__magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = newh * scale
__magic_name__ : Any = neww * scale
__magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 )
__magic_name__ ,__magic_name__ : int = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
__magic_name__ : Union[str, Any] = []
for image in image_inputs:
__magic_name__ ,__magic_name__ : int = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0]
__magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : Any = BridgeTowerImageProcessingTester(self )
@property
def __magic_name__ ( self ) -> List[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def __magic_name__ ( self ) -> Any:
__magic_name__ : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) )
def __magic_name__ ( self ) -> Optional[int]:
pass
def __magic_name__ ( self ) -> Tuple:
# Initialize image processor
__magic_name__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
__magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __magic_name__ ( self ) -> Tuple:
# Initialize image processor
__magic_name__ : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
__magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __magic_name__ ( self ) -> str:
# Initialize image processor
__magic_name__ : int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
__magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 342 | 1 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : str = '''naver-clova-ix/donut-base-finetuned-docvqa'''
lowercase__ : List[Any] = (
'''This is a tool that answers a question about an document (pdf). It takes an input named `document` which '''
'''should be the document containing the information, as well as a `question` that is the question about the '''
'''document. It returns a text that contains the answer to the question.'''
)
lowercase__ : List[Any] = '''document_qa'''
lowercase__ : int = AutoProcessor
lowercase__ : List[Any] = VisionEncoderDecoderModel
lowercase__ : Optional[int] = ['''image''', '''text''']
lowercase__ : Union[str, Any] = ['''text''']
def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]:
if not is_vision_available():
raise ValueError("""Pillow must be installed to use the DocumentQuestionAnsweringTool.""" )
super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]:
__magic_name__ : str = """<s_docvqa><s_question>{user_input}</s_question><s_answer>"""
__magic_name__ : List[Any] = task_prompt.replace("""{user_input}""" , lowerCAmelCase__ )
__magic_name__ : List[Any] = self.pre_processor.tokenizer(
lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors="""pt""" ).input_ids
__magic_name__ : Any = self.pre_processor(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.model.generate(
inputs["""pixel_values"""].to(self.device ) , decoder_input_ids=inputs["""decoder_input_ids"""].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=lowerCAmelCase__ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=lowerCAmelCase__ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=lowerCAmelCase__ , ).sequences
def __magic_name__ ( self , lowerCAmelCase__ ) -> str:
__magic_name__ : List[str] = self.pre_processor.batch_decode(lowerCAmelCase__ )[0]
__magic_name__ : List[str] = sequence.replace(self.pre_processor.tokenizer.eos_token , """""" )
__magic_name__ : List[str] = sequence.replace(self.pre_processor.tokenizer.pad_token , """""" )
__magic_name__ : List[str] = re.sub(R"""<.*?>""" , """""" , lowerCAmelCase__ , count=1 ).strip() # remove first task start token
__magic_name__ : Optional[Any] = self.pre_processor.tokenajson(lowerCAmelCase__ )
return sequence["answer"]
| 342 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__magic_name__: Tuple = {
"configuration_clap": [
"CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClapAudioConfig",
"ClapConfig",
"ClapTextConfig",
],
"processing_clap": ["ClapProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__: Union[str, Any] = [
"CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClapModel",
"ClapPreTrainedModel",
"ClapTextModel",
"ClapTextModelWithProjection",
"ClapAudioModel",
"ClapAudioModelWithProjection",
]
__magic_name__: Optional[Any] = ["ClapFeatureExtractor"]
if TYPE_CHECKING:
from .configuration_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioConfig,
ClapConfig,
ClapTextConfig,
)
from .processing_clap import ClapProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clap import ClapFeatureExtractor
from .modeling_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioModel,
ClapAudioModelWithProjection,
ClapModel,
ClapPreTrainedModel,
ClapTextModel,
ClapTextModelWithProjection,
)
else:
import sys
__magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 342 | 1 |
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
__magic_name__: Optional[int] = logging.get_logger(__name__)
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : List[Any] = ['''pixel_values''']
def __init__( self , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = 8 , **lowerCAmelCase__ , ) -> None:
super().__init__(**lowerCAmelCase__ )
__magic_name__ : List[str] = do_rescale
__magic_name__ : Dict = rescale_factor
__magic_name__ : Optional[int] = do_pad
__magic_name__ : Dict = pad_size
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__ ) -> np.ndarray:
return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Optional[Any]:
__magic_name__ ,__magic_name__ : List[str] = get_image_size(lowerCAmelCase__ )
__magic_name__ : List[Any] = (old_height // size + 1) * size - old_height
__magic_name__ : Optional[int] = (old_width // size + 1) * size - old_width
return pad(lowerCAmelCase__ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = ChannelDimension.FIRST , **lowerCAmelCase__ , ) -> str:
__magic_name__ : int = do_rescale if do_rescale is not None else self.do_rescale
__magic_name__ : Any = rescale_factor if rescale_factor is not None else self.rescale_factor
__magic_name__ : Optional[int] = do_pad if do_pad is not None else self.do_pad
__magic_name__ : str = pad_size if pad_size is not None else self.pad_size
__magic_name__ : List[Any] = make_list_of_images(lowerCAmelCase__ )
if not valid_images(lowerCAmelCase__ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
# All transformations expect numpy arrays.
__magic_name__ : Any = [to_numpy_array(lowerCAmelCase__ ) for image in images]
if do_rescale:
__magic_name__ : List[str] = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images]
if do_pad:
__magic_name__ : Optional[Any] = [self.pad(lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images]
__magic_name__ : int = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images]
__magic_name__ : Optional[int] = {"""pixel_values""": images}
return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ )
| 342 |
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__magic_name__: Dict = logging.get_logger(__name__)
__magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all BART models at https://huggingface.co/models?filter=bart
__magic_name__: Optional[Any] = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
}
__magic_name__: List[Any] = {
"facebook/bart-base": 1_024,
"facebook/bart-large": 1_024,
"facebook/bart-large-mnli": 1_024,
"facebook/bart-large-cnn": 1_024,
"facebook/bart-large-xsum": 1_024,
"yjernite/bart_eli5": 1_024,
}
@lru_cache()
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : Any = (
list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) )
)
__magic_name__ : Any = bs[:]
__magic_name__ : Dict = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_A )
cs.append(2**8 + n )
n += 1
__magic_name__ : List[str] = [chr(_A ) for n in cs]
return dict(zip(_A, _A ) )
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : str = set()
__magic_name__ : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__magic_name__ : List[Any] = char
return pairs
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES
lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask''']
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict:
__magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
__magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
__magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
__magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
__magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
__magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , )
with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle:
__magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ )
__magic_name__ : Any = {v: k for k, v in self.encoder.items()}
__magic_name__ : Tuple = errors # how to handle errors in decoding
__magic_name__ : Tuple = bytes_to_unicode()
__magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle:
__magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1]
__magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges]
__magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
__magic_name__ : str = {}
__magic_name__ : int = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
@property
def __magic_name__ ( self ) -> Optional[Any]:
return len(self.encoder )
def __magic_name__ ( self ) -> Optional[int]:
return dict(self.encoder , **self.added_tokens_encoder )
def __magic_name__ ( self , lowerCAmelCase__ ) -> str:
if token in self.cache:
return self.cache[token]
__magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ )
if not pairs:
return token
while True:
__magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
__magic_name__ ,__magic_name__ : List[str] = bigram
__magic_name__ : Any = []
__magic_name__ : Any = 0
while i < len(lowerCAmelCase__ ):
try:
__magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__magic_name__ : Optional[Any] = j
if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__magic_name__ : str = tuple(lowerCAmelCase__ )
__magic_name__ : Optional[int] = new_word
if len(lowerCAmelCase__ ) == 1:
break
else:
__magic_name__ : List[str] = get_pairs(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ )
__magic_name__ : str = word
return word
def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : str = []
for token in re.findall(self.pat , lowerCAmelCase__ ):
__magic_name__ : List[Any] = """""".join(
self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) )
return bpe_tokens
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.decoder.get(lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Any:
__magic_name__ : Tuple = """""".join(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors )
return text
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
__magic_name__ : Tuple = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
__magic_name__ : List[str] = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" )
__magic_name__ : Optional[Any] = 0
with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
""" Please check that the tokenizer is not corrupted!""" )
__magic_name__ : Optional[int] = token_index
writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" )
index += 1
return vocab_file, merge_file
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__magic_name__ : List[str] = [self.cls_token_id]
__magic_name__ : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
__magic_name__ : Dict = [self.sep_token_id]
__magic_name__ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()):
__magic_name__ : List[Any] = """ """ + text
return (text, kwargs)
| 342 | 1 |
def UpperCamelCase ( _A, _A, _A, _A, _A ):
"""simple docstring"""
if index == number_of_items:
return 0
__magic_name__ : Union[str, Any] = 0
__magic_name__ : str = 0
__magic_name__ : Optional[int] = knapsack(_A, _A, _A, _A, index + 1 )
if weights[index] <= max_weight:
__magic_name__ : Optional[Any] = values[index] + knapsack(
_A, _A, _A, max_weight - weights[index], index + 1 )
return max(_A, _A )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str:
__magic_name__ : Optional[int] = parent
__magic_name__ : Any = batch_size
__magic_name__ : Union[str, Any] = image_size
__magic_name__ : Optional[int] = patch_size
__magic_name__ : Union[str, Any] = num_channels
__magic_name__ : str = embed_dim
__magic_name__ : int = hidden_sizes
__magic_name__ : Union[str, Any] = depths
__magic_name__ : List[str] = num_heads
__magic_name__ : str = window_size
__magic_name__ : Optional[Any] = mlp_ratio
__magic_name__ : Dict = qkv_bias
__magic_name__ : Dict = hidden_dropout_prob
__magic_name__ : Optional[Any] = attention_probs_dropout_prob
__magic_name__ : List[Any] = drop_path_rate
__magic_name__ : Optional[Any] = hidden_act
__magic_name__ : int = use_absolute_embeddings
__magic_name__ : Dict = patch_norm
__magic_name__ : Tuple = layer_norm_eps
__magic_name__ : List[str] = initializer_range
__magic_name__ : Optional[int] = is_training
__magic_name__ : Optional[Any] = scope
__magic_name__ : Union[str, Any] = use_labels
__magic_name__ : Optional[Any] = type_sequence_label_size
__magic_name__ : Union[str, Any] = encoder_stride
__magic_name__ : List[Any] = out_features
__magic_name__ : Union[str, Any] = out_indices
def __magic_name__ ( self ) -> str:
__magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__magic_name__ : Optional[Any] = None
if self.use_labels:
__magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : Dict = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self ) -> List[Any]:
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Optional[int] = model(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Tuple = model(lowerCAmelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
__magic_name__ : Optional[Any] = None
__magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Union[str, Any] = model(lowerCAmelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : str = model(lowerCAmelCase__ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__magic_name__ : Optional[int] = 1
__magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__magic_name__ : List[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : int = self.type_sequence_label_size
__magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__magic_name__ : Optional[int] = 1
__magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__magic_name__ : Dict = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __magic_name__ ( self ) -> int:
__magic_name__ : int = self.prepare_config_and_inputs()
__magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs
__magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : str = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
lowercase__ : Any = (
{'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification}
if is_torch_available()
else {}
)
lowercase__ : Dict = False
lowercase__ : Dict = False
lowercase__ : int = False
lowercase__ : Tuple = False
lowercase__ : Optional[Any] = False
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Optional[Any] = FocalNetModelTester(self )
__magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __magic_name__ ( self ) -> List[str]:
return
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ )
@unittest.skip(reason="""FocalNet does not use inputs_embeds""" )
def __magic_name__ ( self ) -> List[str]:
pass
@unittest.skip(reason="""FocalNet does not use feedforward chunking""" )
def __magic_name__ ( self ) -> List[Any]:
pass
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
__magic_name__ : Dict = model_class(lowerCAmelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__magic_name__ : Dict = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
__magic_name__ : str = model_class(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Tuple = [*signature.parameters.keys()]
__magic_name__ : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict:
__magic_name__ : List[Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : Optional[Any] = outputs.hidden_states
__magic_name__ : Union[str, Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
# FocalNet has a different seq_length
__magic_name__ : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__magic_name__ : str = outputs.reshaped_hidden_states
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape
__magic_name__ : Union[str, Any] = (
reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __magic_name__ ( self ) -> str:
__magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
__magic_name__ : List[Any] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : Optional[Any] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self ) -> str:
__magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[Any] = 3
__magic_name__ : Union[str, Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__magic_name__ : Dict = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
__magic_name__ : Optional[int] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : str = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) )
@slow
def __magic_name__ ( self ) -> Union[str, Any]:
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ )
for model_class in self.all_model_classes:
__magic_name__ : Any = model_class(config=lowerCAmelCase__ )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class snake_case__ ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self ) -> Optional[int]:
# TODO update organization
return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None
@slow
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = self.default_image_processor
__magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
__magic_name__ : List[Any] = model(**lowerCAmelCase__ )
# verify the logits
__magic_name__ : Union[str, Any] = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
__magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 )
@require_torch
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else ()
lowercase__ : Optional[int] = FocalNetConfig
lowercase__ : Dict = False
def __magic_name__ ( self ) -> int:
__magic_name__ : Dict = FocalNetModelTester(self )
| 342 | 1 |
import itertools
import json
import os
import unittest
from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Union[str, Any] = RobertaTokenizer
lowercase__ : Union[str, Any] = RobertaTokenizerFast
lowercase__ : int = True
lowercase__ : Optional[int] = {'''cls_token''': '''<s>'''}
def __magic_name__ ( self ) -> Optional[Any]:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
__magic_name__ : Optional[Any] = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
]
__magic_name__ : Optional[int] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
__magic_name__ : Dict = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
__magic_name__ : str = {"""unk_token""": """<unk>"""}
__magic_name__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__magic_name__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(lowerCAmelCase__ ) )
def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[Any]:
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def __magic_name__ ( self , **lowerCAmelCase__ ) -> Tuple:
kwargs.update(self.special_tokens_map )
return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> str:
__magic_name__ : Optional[int] = """lower newer"""
__magic_name__ : List[Any] = """lower newer"""
return input_text, output_text
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
__magic_name__ : Tuple = """lower newer"""
__magic_name__ : int = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
__magic_name__ : int = tokenizer.tokenize(lowerCAmelCase__ ) # , add_prefix_space=True)
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : Tuple = tokens + [tokenizer.unk_token]
__magic_name__ : Optional[int] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ )
def __magic_name__ ( self ) -> int:
__magic_name__ : str = self.get_tokenizer()
self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=lowerCAmelCase__ ) , [0, 3_14_14, 2_32, 3_28, 2] )
self.assertListEqual(
tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=lowerCAmelCase__ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , )
@slow
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : Dict = self.tokenizer_class.from_pretrained("""roberta-base""" )
__magic_name__ : List[str] = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCAmelCase__ )
__magic_name__ : List[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCAmelCase__ )
__magic_name__ : Optional[Any] = tokenizer.encode(
"""sequence builders""" , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ )
__magic_name__ : str = tokenizer.encode(
"""sequence builders""" , """multi-sequence build""" , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ )
__magic_name__ : Tuple = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ )
__magic_name__ : int = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def __magic_name__ ( self ) -> str:
__magic_name__ : str = self.get_tokenizer()
__magic_name__ : Any = """Encode this sequence."""
__magic_name__ : int = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]]
# Testing encoder arguments
__magic_name__ : List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ )
__magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : Optional[int] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ )
__magic_name__ : int = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
tokenizer.add_special_tokens({"""bos_token""": """<s>"""} )
__magic_name__ : Tuple = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
__magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Testing spaces after special tokens
__magic_name__ : List[str] = """<mask>"""
tokenizer.add_special_tokens(
{"""mask_token""": AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ )} ) # mask token has a left space
__magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
__magic_name__ : Dict = """Encode <mask> sequence"""
__magic_name__ : Dict = """Encode <mask>sequence"""
__magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ )
__magic_name__ : str = encoded.index(lowerCAmelCase__ )
__magic_name__ : Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : int = tokenizer.encode(lowerCAmelCase__ )
__magic_name__ : str = encoded.index(lowerCAmelCase__ )
__magic_name__ : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self ) -> int:
pass
def __magic_name__ ( self ) -> Optional[int]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
__magic_name__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
__magic_name__ : int = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
__magic_name__ : List[str] = """A, <mask> AllenNLP sentence."""
__magic_name__ : List[Any] = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
__magic_name__ : List[str] = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , )
__magic_name__ : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] )
__magic_name__ : Optional[int] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
lowerCAmelCase__ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
self.assertSequenceEqual(
lowerCAmelCase__ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
def __magic_name__ ( self ) -> List[Any]:
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
__magic_name__ : Dict = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ )
__magic_name__ : Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
__magic_name__ : Dict = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , lowerCAmelCase__ )
self.assertEqual(post_processor_state["""add_prefix_space"""] , lowerCAmelCase__ )
self.assertEqual(post_processor_state["""trim_offsets"""] , lowerCAmelCase__ )
def __magic_name__ ( self ) -> Optional[int]:
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and
# `trim_offsets`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ):
__magic_name__ : Optional[int] = """hello""" # `hello` is a token in the vocabulary of `pretrained_name`
__magic_name__ : int = F'{text_of_1_token} {text_of_1_token}'
__magic_name__ : int = self.rust_tokenizer_class.from_pretrained(
lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ )
__magic_name__ : Dict = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowerCAmelCase__ ) + 1, len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , )
__magic_name__ : Dict = self.rust_tokenizer_class.from_pretrained(
lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ )
__magic_name__ : Dict = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowerCAmelCase__ ) + 1, len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , )
__magic_name__ : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(
lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ )
__magic_name__ : Optional[Any] = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowerCAmelCase__ ), len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , )
__magic_name__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(
lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(lowerCAmelCase__ ), len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , )
__magic_name__ : int = F' {text}'
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
__magic_name__ : int = self.rust_tokenizer_class.from_pretrained(
lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ )
__magic_name__ : Optional[Any] = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCAmelCase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(lowerCAmelCase__ ) + 1, 1 + len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , )
__magic_name__ : Tuple = self.rust_tokenizer_class.from_pretrained(
lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ )
__magic_name__ : Tuple = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCAmelCase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(lowerCAmelCase__ ), 1 + len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , )
__magic_name__ : Tuple = self.rust_tokenizer_class.from_pretrained(
lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ )
__magic_name__ : Tuple = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCAmelCase__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(lowerCAmelCase__ ), 1 + len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , )
| 342 |
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]:
__magic_name__ : int = parent
__magic_name__ : Tuple = batch_size
__magic_name__ : int = image_size
__magic_name__ : str = num_channels
__magic_name__ : Dict = patch_size
__magic_name__ : Tuple = num_frames
__magic_name__ : List[Any] = is_training
__magic_name__ : List[Any] = use_labels
__magic_name__ : Dict = hidden_size
__magic_name__ : List[Any] = num_hidden_layers
__magic_name__ : str = num_attention_heads
__magic_name__ : List[Any] = intermediate_size
__magic_name__ : Dict = hidden_act
__magic_name__ : List[Any] = hidden_dropout_prob
__magic_name__ : Union[str, Any] = attention_probs_dropout_prob
__magic_name__ : Tuple = attention_type
__magic_name__ : List[str] = initializer_range
__magic_name__ : Optional[Any] = scope
__magic_name__ : Tuple = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__magic_name__ : str = (image_size // patch_size) ** 2
__magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Optional[Any] = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__magic_name__ : str = None
if self.use_labels:
__magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels )
__magic_name__ : Optional[Any] = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self ) -> str:
__magic_name__ : Dict = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__magic_name__ : Optional[Any] = self.num_labels
return config
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Optional[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any:
__magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : List[Any] = model(lowerCAmelCase__ )
# verify the logits shape
__magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ )
def __magic_name__ ( self ) -> Any:
__magic_name__ : Union[str, Any] = self.prepare_config_and_inputs()
__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs
__magic_name__ : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowercase__ : Union[str, Any] = (
{'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowercase__ : int = False
lowercase__ : str = False
lowercase__ : Tuple = False
lowercase__ : Any = False
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : List[Any] = TimesformerModelTester(self )
__magic_name__ : List[str] = ConfigTester(
self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]:
__magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ )
if return_labels:
if model_class in get_values(lowerCAmelCase__ ):
__magic_name__ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ )
return inputs_dict
def __magic_name__ ( self ) -> List[str]:
self.config_tester.run_common_tests()
@unittest.skip(reason="""TimeSformer does not use inputs_embeds""" )
def __magic_name__ ( self ) -> str:
pass
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : List[Any] = model_class(lowerCAmelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__magic_name__ : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) )
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Dict = model_class(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Optional[int] = [*signature.parameters.keys()]
__magic_name__ : Any = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ )
@slow
def __magic_name__ ( self ) -> Optional[int]:
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
if not self.has_attentions:
pass
else:
__magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[int] = True
for model_class in self.all_model_classes:
__magic_name__ : Tuple = self.model_tester.seq_length
__magic_name__ : int = self.model_tester.num_frames
__magic_name__ : Any = True
__magic_name__ : Tuple = False
__magic_name__ : Optional[int] = True
__magic_name__ : str = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : List[str] = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__magic_name__ : Optional[Any] = True
__magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : int = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__magic_name__ : Union[str, Any] = len(lowerCAmelCase__ )
# Check attention is always last and order is fine
__magic_name__ : str = True
__magic_name__ : Optional[Any] = True
__magic_name__ : int = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) )
__magic_name__ : Union[str, Any] = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def __magic_name__ ( self ) -> Any:
def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
__magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : Optional[Any] = outputs.hidden_states
__magic_name__ : str = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
__magic_name__ : str = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Optional[Any] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : Union[str, Any] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : List[Any] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" )
__magic_name__ : List[str] = np.load(_A )
return list(_A )
@require_torch
@require_vision
class snake_case__ ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self ) -> Optional[Any]:
# logits were tested with a different mean and std, so we use the same here
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to(
lowerCAmelCase__ )
__magic_name__ : str = self.default_image_processor
__magic_name__ : Any = prepare_video()
__magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
__magic_name__ : int = model(**lowerCAmelCase__ )
# verify the logits
__magic_name__ : Optional[int] = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
| 342 | 1 |
from .dependency_versions_table import deps
from .utils.versions import require_version, require_version_core
# define which module versions we always want to check at run time
# (usually the ones defined in `install_requires` in setup.py)
#
# order specific notes:
# - tqdm must be checked before tokenizers
__magic_name__: Any = [
"python",
"tqdm",
"regex",
"requests",
"packaging",
"filelock",
"numpy",
"tokenizers",
"huggingface-hub",
"safetensors",
"accelerate",
"pyyaml",
]
for pkg in pkgs_to_check_at_runtime:
if pkg in deps:
if pkg == "tokenizers":
# must be loaded here, or else tqdm check may fail
from .utils import is_tokenizers_available
if not is_tokenizers_available():
continue # not required, check version only if installed
elif pkg == "accelerate":
# must be loaded here, or else tqdm check may fail
from .utils import is_accelerate_available
# Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of
# Transformers with PyTorch
if not is_accelerate_available():
continue # not required, check version only if installed
require_version_core(deps[pkg])
else:
raise ValueError(F"""can't find {pkg} in {deps.keys()}, check dependency_versions_table.py""")
def UpperCamelCase ( _A, _A=None ):
"""simple docstring"""
require_version(deps[pkg], _A )
| 342 |
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : List[Any] = [0] * len(_A )
__magic_name__ : List[str] = []
__magic_name__ : List[str] = [1] * len(_A )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(_A ) ):
if indegree[i] == 0:
queue.append(_A )
while queue:
__magic_name__ : Dict = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
__magic_name__ : int = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(_A )
print(max(_A ) )
# Adjacency list of Graph
__magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 342 | 1 |
def UpperCamelCase ( _A = 10**9 ):
"""simple docstring"""
__magic_name__ : int = 1
__magic_name__ : Optional[int] = 2
__magic_name__ : Optional[int] = 0
__magic_name__ : Optional[Any] = 0
__magic_name__ : Tuple = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
__magic_name__ : int = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(F"""{solution() = }""")
| 342 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class snake_case__ ( unittest.TestCase ):
def __magic_name__ ( self ) -> str:
__magic_name__ : Tuple = """ylacombe/bark-small"""
__magic_name__ : List[str] = tempfile.mkdtemp()
__magic_name__ : Optional[Any] = """en_speaker_1"""
__magic_name__ : Union[str, Any] = """This is a test string"""
__magic_name__ : Optional[int] = """speaker_embeddings_path.json"""
__magic_name__ : Any = """speaker_embeddings"""
def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]:
return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ )
def __magic_name__ ( self ) -> Optional[Any]:
shutil.rmtree(self.tmpdirname )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Optional[Any] = self.get_tokenizer()
__magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ )
processor.save_pretrained(self.tmpdirname )
__magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : Optional[int] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
__magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__magic_name__ : str = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def __magic_name__ ( self ) -> Any:
__magic_name__ : List[str] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
__magic_name__ : Union[str, Any] = 35
__magic_name__ : List[Any] = 2
__magic_name__ : Dict = 8
__magic_name__ : Tuple = {
"""semantic_prompt""": np.ones(lowerCAmelCase__ ),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
__magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
__magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" )
np.savez(lowerCAmelCase__ , **lowerCAmelCase__ )
__magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ )
__magic_name__ : List[Any] = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
__magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset )
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : str = self.get_tokenizer()
__magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ )
__magic_name__ : Optional[Any] = processor(text=self.input_string )
__magic_name__ : List[Any] = tokenizer(
self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 342 | 1 |
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class snake_case__ ( _lowerCAmelCase ):
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ : str = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(lowerCAmelCase__ , """tf_padding""" ) )
self.parent.assertTrue(hasattr(lowerCAmelCase__ , """depth_multiplier""" ) )
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=3 , lowerCAmelCase__=32 , lowerCAmelCase__=0.2_5 , lowerCAmelCase__=8 , lowerCAmelCase__=True , lowerCAmelCase__=10_24 , lowerCAmelCase__=32 , lowerCAmelCase__="relu6" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=None , ) -> List[str]:
__magic_name__ : List[Any] = parent
__magic_name__ : List[str] = batch_size
__magic_name__ : Dict = num_channels
__magic_name__ : Optional[Any] = image_size
__magic_name__ : Dict = depth_multiplier
__magic_name__ : Any = min_depth
__magic_name__ : Optional[int] = tf_padding
__magic_name__ : Union[str, Any] = int(last_hidden_size * depth_multiplier )
__magic_name__ : Union[str, Any] = output_stride
__magic_name__ : Optional[Any] = hidden_act
__magic_name__ : List[Any] = classifier_dropout_prob
__magic_name__ : Union[str, Any] = use_labels
__magic_name__ : List[Any] = is_training
__magic_name__ : List[str] = num_labels
__magic_name__ : Optional[int] = initializer_range
__magic_name__ : Optional[Any] = scope
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__magic_name__ : str = None
__magic_name__ : int = None
if self.use_labels:
__magic_name__ : Any = ids_tensor([self.batch_size] , self.num_labels )
__magic_name__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__magic_name__ : List[str] = self.get_config()
return config, pixel_values, labels, pixel_labels
def __magic_name__ ( self ) -> List[str]:
return MobileNetVaConfig(
num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , min_depth=self.min_depth , tf_padding=self.tf_padding , hidden_act=self.hidden_act , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int:
__magic_name__ : int = MobileNetVaModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : List[str] = model(lowerCAmelCase__ )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any:
__magic_name__ : List[str] = self.num_labels
__magic_name__ : Optional[int] = MobileNetVaForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : List[str] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __magic_name__ ( self ) -> int:
__magic_name__ : Union[str, Any] = self.prepare_config_and_inputs()
__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : int = config_and_inputs
__magic_name__ : Union[str, Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : List[str] = (MobileNetVaModel, MobileNetVaForImageClassification) if is_torch_available() else ()
lowercase__ : Dict = (
{'''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification}
if is_torch_available()
else {}
)
lowercase__ : Any = False
lowercase__ : str = False
lowercase__ : str = False
lowercase__ : Dict = False
def __magic_name__ ( self ) -> Any:
__magic_name__ : Optional[Any] = MobileNetVaModelTester(self )
__magic_name__ : Dict = MobileNetVaConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ )
def __magic_name__ ( self ) -> Tuple:
self.config_tester.run_common_tests()
@unittest.skip(reason="""MobileNetV1 does not use inputs_embeds""" )
def __magic_name__ ( self ) -> Optional[Any]:
pass
@unittest.skip(reason="""MobileNetV1 does not support input and output embeddings""" )
def __magic_name__ ( self ) -> List[Any]:
pass
@unittest.skip(reason="""MobileNetV1 does not output attentions""" )
def __magic_name__ ( self ) -> Tuple:
pass
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Tuple = model_class(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : int = [*signature.parameters.keys()]
__magic_name__ : Optional[int] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> str:
def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
__magic_name__ : List[Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : Tuple = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : Tuple = outputs.hidden_states
__magic_name__ : Optional[Any] = 26
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
__magic_name__ ,__magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Optional[int] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : Optional[int] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ )
@slow
def __magic_name__ ( self ) -> Optional[Any]:
for model_name in MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : Optional[int] = MobileNetVaModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class snake_case__ ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self ) -> List[Any]:
return (
MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v1_1.0_224""" ) if is_vision_available() else None
)
@slow
def __magic_name__ ( self ) -> int:
__magic_name__ : Dict = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v1_1.0_224""" ).to(lowerCAmelCase__ )
__magic_name__ : List[Any] = self.default_image_processor
__magic_name__ : str = prepare_img()
__magic_name__ : List[Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
__magic_name__ : Dict = model(**lowerCAmelCase__ )
# verify the logits
__magic_name__ : List[str] = torch.Size((1, 10_01) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
__magic_name__ : int = torch.tensor([-4.1_7_3_9, -1.1_2_3_3, 3.1_2_0_5] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
| 342 |
import unittest
import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class snake_case__ ( unittest.TestCase ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]:
__magic_name__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18}
__magic_name__ : str = parent
__magic_name__ : Any = batch_size
__magic_name__ : Any = num_channels
__magic_name__ : List[str] = image_size
__magic_name__ : Tuple = min_resolution
__magic_name__ : Union[str, Any] = max_resolution
__magic_name__ : List[str] = do_resize
__magic_name__ : Optional[Any] = size
__magic_name__ : Optional[Any] = do_normalize
__magic_name__ : Any = image_mean
__magic_name__ : List[str] = image_std
def __magic_name__ ( self ) -> List[str]:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Any = DPTImageProcessor if is_vision_available() else None
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : Dict = DPTImageProcessingTester(self )
@property
def __magic_name__ ( self ) -> Union[str, Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) )
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
__magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def __magic_name__ ( self ) -> str:
# Initialize image_processing
__magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
__magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __magic_name__ ( self ) -> Tuple:
# Initialize image_processing
__magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__magic_name__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
__magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __magic_name__ ( self ) -> Optional[Any]:
# Initialize image_processing
__magic_name__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
__magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__magic_name__ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 342 | 1 |
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : int = 0
for ch in input_str:
__magic_name__ : Any = ord(_A )
__magic_name__ : List[str] = pow(2, _A )
# If we already turned on bit for current character's unicode
if bitmap >> ch_unicode & 1 == 1:
return False
bitmap |= ch_bit_index_on
return True
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
__magic_name__: Tuple = {
"Acehnese Arabic": "ace_Arab",
"Acehnese Latin": "ace_Latn",
"Mesopotamian Arabic": "acm_Arab",
"Ta'izzi-Adeni Arabic": "acq_Arab",
"Tunisian Arabic": "aeb_Arab",
"Afrikaans": "afr_Latn",
"South Levantine Arabic": "ajp_Arab",
"Akan": "aka_Latn",
"Amharic": "amh_Ethi",
"North Levantine Arabic": "apc_Arab",
"Modern Standard Arabic": "arb_Arab",
"Modern Standard Arabic Romanized": "arb_Latn",
"Najdi Arabic": "ars_Arab",
"Moroccan Arabic": "ary_Arab",
"Egyptian Arabic": "arz_Arab",
"Assamese": "asm_Beng",
"Asturian": "ast_Latn",
"Awadhi": "awa_Deva",
"Central Aymara": "ayr_Latn",
"South Azerbaijani": "azb_Arab",
"North Azerbaijani": "azj_Latn",
"Bashkir": "bak_Cyrl",
"Bambara": "bam_Latn",
"Balinese": "ban_Latn",
"Belarusian": "bel_Cyrl",
"Bemba": "bem_Latn",
"Bengali": "ben_Beng",
"Bhojpuri": "bho_Deva",
"Banjar Arabic": "bjn_Arab",
"Banjar Latin": "bjn_Latn",
"Standard Tibetan": "bod_Tibt",
"Bosnian": "bos_Latn",
"Buginese": "bug_Latn",
"Bulgarian": "bul_Cyrl",
"Catalan": "cat_Latn",
"Cebuano": "ceb_Latn",
"Czech": "ces_Latn",
"Chokwe": "cjk_Latn",
"Central Kurdish": "ckb_Arab",
"Crimean Tatar": "crh_Latn",
"Welsh": "cym_Latn",
"Danish": "dan_Latn",
"German": "deu_Latn",
"Southwestern Dinka": "dik_Latn",
"Dyula": "dyu_Latn",
"Dzongkha": "dzo_Tibt",
"Greek": "ell_Grek",
"English": "eng_Latn",
"Esperanto": "epo_Latn",
"Estonian": "est_Latn",
"Basque": "eus_Latn",
"Ewe": "ewe_Latn",
"Faroese": "fao_Latn",
"Fijian": "fij_Latn",
"Finnish": "fin_Latn",
"Fon": "fon_Latn",
"French": "fra_Latn",
"Friulian": "fur_Latn",
"Nigerian Fulfulde": "fuv_Latn",
"Scottish Gaelic": "gla_Latn",
"Irish": "gle_Latn",
"Galician": "glg_Latn",
"Guarani": "grn_Latn",
"Gujarati": "guj_Gujr",
"Haitian Creole": "hat_Latn",
"Hausa": "hau_Latn",
"Hebrew": "heb_Hebr",
"Hindi": "hin_Deva",
"Chhattisgarhi": "hne_Deva",
"Croatian": "hrv_Latn",
"Hungarian": "hun_Latn",
"Armenian": "hye_Armn",
"Igbo": "ibo_Latn",
"Ilocano": "ilo_Latn",
"Indonesian": "ind_Latn",
"Icelandic": "isl_Latn",
"Italian": "ita_Latn",
"Javanese": "jav_Latn",
"Japanese": "jpn_Jpan",
"Kabyle": "kab_Latn",
"Jingpho": "kac_Latn",
"Kamba": "kam_Latn",
"Kannada": "kan_Knda",
"Kashmiri Arabic": "kas_Arab",
"Kashmiri Devanagari": "kas_Deva",
"Georgian": "kat_Geor",
"Central Kanuri Arabic": "knc_Arab",
"Central Kanuri Latin": "knc_Latn",
"Kazakh": "kaz_Cyrl",
"Kabiyè": "kbp_Latn",
"Kabuverdianu": "kea_Latn",
"Khmer": "khm_Khmr",
"Kikuyu": "kik_Latn",
"Kinyarwanda": "kin_Latn",
"Kyrgyz": "kir_Cyrl",
"Kimbundu": "kmb_Latn",
"Northern Kurdish": "kmr_Latn",
"Kikongo": "kon_Latn",
"Korean": "kor_Hang",
"Lao": "lao_Laoo",
"Ligurian": "lij_Latn",
"Limburgish": "lim_Latn",
"Lingala": "lin_Latn",
"Lithuanian": "lit_Latn",
"Lombard": "lmo_Latn",
"Latgalian": "ltg_Latn",
"Luxembourgish": "ltz_Latn",
"Luba-Kasai": "lua_Latn",
"Ganda": "lug_Latn",
"Luo": "luo_Latn",
"Mizo": "lus_Latn",
"Standard Latvian": "lvs_Latn",
"Magahi": "mag_Deva",
"Maithili": "mai_Deva",
"Malayalam": "mal_Mlym",
"Marathi": "mar_Deva",
"Minangkabau Arabic ": "min_Arab",
"Minangkabau Latin": "min_Latn",
"Macedonian": "mkd_Cyrl",
"Plateau Malagasy": "plt_Latn",
"Maltese": "mlt_Latn",
"Meitei Bengali": "mni_Beng",
"Halh Mongolian": "khk_Cyrl",
"Mossi": "mos_Latn",
"Maori": "mri_Latn",
"Burmese": "mya_Mymr",
"Dutch": "nld_Latn",
"Norwegian Nynorsk": "nno_Latn",
"Norwegian Bokmål": "nob_Latn",
"Nepali": "npi_Deva",
"Northern Sotho": "nso_Latn",
"Nuer": "nus_Latn",
"Nyanja": "nya_Latn",
"Occitan": "oci_Latn",
"West Central Oromo": "gaz_Latn",
"Odia": "ory_Orya",
"Pangasinan": "pag_Latn",
"Eastern Panjabi": "pan_Guru",
"Papiamento": "pap_Latn",
"Western Persian": "pes_Arab",
"Polish": "pol_Latn",
"Portuguese": "por_Latn",
"Dari": "prs_Arab",
"Southern Pashto": "pbt_Arab",
"Ayacucho Quechua": "quy_Latn",
"Romanian": "ron_Latn",
"Rundi": "run_Latn",
"Russian": "rus_Cyrl",
"Sango": "sag_Latn",
"Sanskrit": "san_Deva",
"Santali": "sat_Olck",
"Sicilian": "scn_Latn",
"Shan": "shn_Mymr",
"Sinhala": "sin_Sinh",
"Slovak": "slk_Latn",
"Slovenian": "slv_Latn",
"Samoan": "smo_Latn",
"Shona": "sna_Latn",
"Sindhi": "snd_Arab",
"Somali": "som_Latn",
"Southern Sotho": "sot_Latn",
"Spanish": "spa_Latn",
"Tosk Albanian": "als_Latn",
"Sardinian": "srd_Latn",
"Serbian": "srp_Cyrl",
"Swati": "ssw_Latn",
"Sundanese": "sun_Latn",
"Swedish": "swe_Latn",
"Swahili": "swh_Latn",
"Silesian": "szl_Latn",
"Tamil": "tam_Taml",
"Tatar": "tat_Cyrl",
"Telugu": "tel_Telu",
"Tajik": "tgk_Cyrl",
"Tagalog": "tgl_Latn",
"Thai": "tha_Thai",
"Tigrinya": "tir_Ethi",
"Tamasheq Latin": "taq_Latn",
"Tamasheq Tifinagh": "taq_Tfng",
"Tok Pisin": "tpi_Latn",
"Tswana": "tsn_Latn",
"Tsonga": "tso_Latn",
"Turkmen": "tuk_Latn",
"Tumbuka": "tum_Latn",
"Turkish": "tur_Latn",
"Twi": "twi_Latn",
"Central Atlas Tamazight": "tzm_Tfng",
"Uyghur": "uig_Arab",
"Ukrainian": "ukr_Cyrl",
"Umbundu": "umb_Latn",
"Urdu": "urd_Arab",
"Northern Uzbek": "uzn_Latn",
"Venetian": "vec_Latn",
"Vietnamese": "vie_Latn",
"Waray": "war_Latn",
"Wolof": "wol_Latn",
"Xhosa": "xho_Latn",
"Eastern Yiddish": "ydd_Hebr",
"Yoruba": "yor_Latn",
"Yue Chinese": "yue_Hant",
"Chinese Simplified": "zho_Hans",
"Chinese Traditional": "zho_Hant",
"Standard Malay": "zsm_Latn",
"Zulu": "zul_Latn",
}
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M'''
lowercase__ : List[Any] = (
'''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should '''
'''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, '''
'''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in '''
'''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.'''
)
lowercase__ : List[str] = '''translator'''
lowercase__ : Optional[Any] = AutoTokenizer
lowercase__ : int = AutoModelForSeqaSeqLM
lowercase__ : List[Any] = LANGUAGE_CODES
lowercase__ : str = ['''text''', '''text''', '''text''']
lowercase__ : Any = ['''text''']
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]:
if src_lang not in self.lang_to_code:
raise ValueError(F'{src_lang} is not a supported language.' )
if tgt_lang not in self.lang_to_code:
raise ValueError(F'{tgt_lang} is not a supported language.' )
__magic_name__ : Tuple = self.lang_to_code[src_lang]
__magic_name__ : Dict = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.model.generate(**lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
| 342 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaControlnetImgaImgPipeline,
KandinskyVaaPriorEmbaEmbPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Optional[int] = KandinskyVaaControlnetImgaImgPipeline
lowercase__ : Tuple = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint''']
lowercase__ : List[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint''']
lowercase__ : Optional[Any] = [
'''generator''',
'''height''',
'''width''',
'''strength''',
'''guidance_scale''',
'''num_inference_steps''',
'''return_dict''',
'''guidance_scale''',
'''num_images_per_prompt''',
'''output_type''',
'''return_dict''',
]
lowercase__ : List[str] = False
@property
def __magic_name__ ( self ) -> Dict:
return 32
@property
def __magic_name__ ( self ) -> List[Any]:
return 32
@property
def __magic_name__ ( self ) -> List[Any]:
return self.time_input_dim
@property
def __magic_name__ ( self ) -> Any:
return self.time_input_dim * 4
@property
def __magic_name__ ( self ) -> Union[str, Any]:
return 1_00
@property
def __magic_name__ ( self ) -> Union[str, Any]:
torch.manual_seed(0 )
__magic_name__ : str = {
"""in_channels""": 8,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image_hint""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
__magic_name__ : str = UNetaDConditionModel(**lowerCAmelCase__ )
return model
@property
def __magic_name__ ( self ) -> List[Any]:
return {
"block_out_channels": [32, 32, 64, 64],
"down_block_types": [
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"DownEncoderBlock2D",
"AttnDownEncoderBlock2D",
],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"],
"vq_embed_dim": 4,
}
@property
def __magic_name__ ( self ) -> Dict:
torch.manual_seed(0 )
__magic_name__ : str = VQModel(**self.dummy_movq_kwargs )
return model
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : List[Any] = self.dummy_unet
__magic_name__ : int = self.dummy_movq
__magic_name__ : Union[str, Any] = {
"""num_train_timesteps""": 10_00,
"""beta_schedule""": """linear""",
"""beta_start""": 0.0_0_0_8_5,
"""beta_end""": 0.0_1_2,
"""clip_sample""": False,
"""set_alpha_to_one""": False,
"""steps_offset""": 0,
"""prediction_type""": """epsilon""",
"""thresholding""": False,
}
__magic_name__ : Optional[Any] = DDIMScheduler(**lowerCAmelCase__ )
__magic_name__ : List[str] = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> Optional[Any]:
__magic_name__ : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
__magic_name__ : str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
lowerCAmelCase__ )
# create init_image
__magic_name__ : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
__magic_name__ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 )[0]
__magic_name__ : Dict = Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("""RGB""" ).resize((2_56, 2_56) )
# create hint
__magic_name__ : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ )
if str(lowerCAmelCase__ ).startswith("""mps""" ):
__magic_name__ : Optional[Any] = torch.manual_seed(lowerCAmelCase__ )
else:
__magic_name__ : Dict = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
__magic_name__ : List[str] = {
"""image""": init_image,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""hint""": hint,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 10,
"""guidance_scale""": 7.0,
"""strength""": 0.2,
"""output_type""": """np""",
}
return inputs
def __magic_name__ ( self ) -> Any:
__magic_name__ : Dict = """cpu"""
__magic_name__ : Optional[Any] = self.get_dummy_components()
__magic_name__ : List[str] = self.pipeline_class(**lowerCAmelCase__ )
__magic_name__ : int = pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
__magic_name__ : Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) )
__magic_name__ : Optional[Any] = output.images
__magic_name__ : Optional[int] = pipe(
**self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0]
__magic_name__ : int = image[0, -3:, -3:, -1]
__magic_name__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
__magic_name__ : int = np.array(
[0.5_4_9_8_5_0_3_4, 0.5_5_5_0_9_3_6_5, 0.5_2_5_6_1_5_0_4, 0.5_5_7_0_4_9_4, 0.5_5_9_3_8_1_8, 0.5_2_6_3_9_7_9, 0.5_0_2_8_5_6_4_3, 0.5_0_6_9_8_4_6, 0.5_1_1_9_6_7_3_6] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), F' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
@slow
@require_torch_gpu
class snake_case__ ( unittest.TestCase ):
def __magic_name__ ( self ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Optional[int] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" )
__magic_name__ : List[Any] = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
__magic_name__ : List[Any] = init_image.resize((5_12, 5_12) )
__magic_name__ : Dict = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/hint_image_cat.png""" )
__magic_name__ : Any = torch.from_numpy(np.array(lowerCAmelCase__ ) ).float() / 2_5_5.0
__magic_name__ : Dict = hint.permute(2 , 0 , 1 ).unsqueeze(0 )
__magic_name__ : List[str] = """A robot, 4k photo"""
__magic_name__ : Optional[Any] = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(lowerCAmelCase__ )
__magic_name__ : str = KandinskyVaaControlnetImgaImgPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa )
__magic_name__ : List[Any] = pipeline.to(lowerCAmelCase__ )
pipeline.set_progress_bar_config(disable=lowerCAmelCase__ )
__magic_name__ : int = torch.Generator(device="""cpu""" ).manual_seed(0 )
__magic_name__ ,__magic_name__ : Tuple = pipe_prior(
lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.8_5 , generator=lowerCAmelCase__ , negative_prompt="""""" , ).to_tuple()
__magic_name__ : Union[str, Any] = pipeline(
image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , hint=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type="""np""" , )
__magic_name__ : Union[str, Any] = output.images[0]
assert image.shape == (5_12, 5_12, 3)
assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
| 342 |
import math
class snake_case__ :
def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1
__magic_name__ : Tuple = n
__magic_name__ : Union[str, Any] = [
[math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ )
] # adjacency matrix for weight
__magic_name__ : List[Any] = [
[math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ )
] # dp[i][j] stores minimum distance from i to j
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : Dict = w
def __magic_name__ ( self ) -> Optional[int]:
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
__magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str:
return self.dp[u][v]
if __name__ == "__main__":
__magic_name__: Dict = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 342 | 1 |
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class snake_case__ ( _lowerCAmelCase ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=7 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=99 , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=64 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=16 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=None , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=4 , lowerCAmelCase__=1 , ) -> Optional[Any]:
__magic_name__ : Optional[Any] = parent
__magic_name__ : List[Any] = batch_size
__magic_name__ : Tuple = seq_length
__magic_name__ : str = is_training
__magic_name__ : Optional[int] = use_input_mask
__magic_name__ : Optional[Any] = use_token_type_ids
__magic_name__ : Union[str, Any] = use_labels
__magic_name__ : Union[str, Any] = vocab_size
__magic_name__ : List[Any] = hidden_size
__magic_name__ : Optional[int] = num_hidden_layers
__magic_name__ : Any = num_attention_heads
__magic_name__ : Optional[Any] = intermediate_size
__magic_name__ : List[str] = hidden_act
__magic_name__ : Tuple = hidden_dropout_prob
__magic_name__ : Optional[int] = attention_probs_dropout_prob
__magic_name__ : str = max_position_embeddings
__magic_name__ : List[str] = type_vocab_size
__magic_name__ : Any = type_sequence_label_size
__magic_name__ : Optional[Any] = initializer_range
__magic_name__ : Optional[Any] = num_labels
__magic_name__ : Any = num_choices
__magic_name__ : Optional[int] = scope
__magic_name__ : Tuple = q_groups
__magic_name__ : str = k_groups
__magic_name__ : int = v_groups
__magic_name__ : Dict = post_attention_groups
__magic_name__ : List[str] = intermediate_groups
__magic_name__ : Optional[Any] = output_groups
def __magic_name__ ( self ) -> str:
__magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ : int = None
if self.use_input_mask:
__magic_name__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
__magic_name__ : str = None
__magic_name__ : int = None
__magic_name__ : Union[str, Any] = None
if self.use_labels:
__magic_name__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ : List[str] = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def __magic_name__ ( self ) -> int:
return SqueezeBertConfig(
embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : Optional[int] = SqueezeBertModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : List[Any] = model(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : int = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str:
__magic_name__ : Any = SqueezeBertForMaskedLM(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : List[str] = SqueezeBertForQuestionAnswering(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Tuple = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : str = self.num_labels
__magic_name__ : List[str] = SqueezeBertForSequenceClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Dict = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int:
__magic_name__ : List[str] = self.num_labels
__magic_name__ : Tuple = SqueezeBertForTokenClassification(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Tuple = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict:
__magic_name__ : List[str] = self.num_choices
__magic_name__ : Optional[int] = SqueezeBertForMultipleChoice(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__magic_name__ : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__magic_name__ : str = model(
lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def __magic_name__ ( self ) -> Any:
__magic_name__ : List[Any] = self.prepare_config_and_inputs()
((__magic_name__) ,(__magic_name__) ,(__magic_name__) ,(__magic_name__) ,(__magic_name__) ,(__magic_name__)) : str = config_and_inputs
__magic_name__ : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Dict = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
lowercase__ : Optional[int] = (
{
'''feature-extraction''': SqueezeBertModel,
'''fill-mask''': SqueezeBertForMaskedLM,
'''question-answering''': SqueezeBertForQuestionAnswering,
'''text-classification''': SqueezeBertForSequenceClassification,
'''token-classification''': SqueezeBertForTokenClassification,
'''zero-shot''': SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase__ : Union[str, Any] = False
lowercase__ : Dict = True
lowercase__ : Optional[Any] = False
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : List[str] = SqueezeBertModelTester(self )
__magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , dim=37 )
def __magic_name__ ( self ) -> Any:
self.config_tester.run_common_tests()
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> str:
__magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Dict:
__magic_name__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowerCAmelCase__ )
@slow
def __magic_name__ ( self ) -> List[Any]:
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : Tuple = SqueezeBertModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
@require_sentencepiece
@require_tokenizers
@require_torch
class snake_case__ ( unittest.TestCase ):
@slow
def __magic_name__ ( self ) -> Any:
__magic_name__ : Union[str, Any] = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" )
__magic_name__ : Tuple = torch.tensor([[1, 2_94_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 13, 15_88, 2]] )
__magic_name__ : Optional[int] = model(lowerCAmelCase__ )[0]
__magic_name__ : Dict = torch.Size((1, 3) )
self.assertEqual(output.shape , lowerCAmelCase__ )
__magic_name__ : int = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] )
self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-4 ) )
| 342 |
from __future__ import annotations
import math
import random
from collections.abc import Collection
from typing import overload
class snake_case__ :
def __init__( self , lowerCAmelCase__ = None ) -> None:
if components is None:
__magic_name__ : Any = []
__magic_name__ : List[str] = list(lowerCAmelCase__ )
def __len__( self ) -> int:
return len(self.__components )
def __str__( self ) -> str:
return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")"
def __add__( self , lowerCAmelCase__ ) -> Vector:
__magic_name__ : Dict = len(self )
if size == len(lowerCAmelCase__ ):
__magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return Vector(lowerCAmelCase__ )
else:
raise Exception("""must have the same size""" )
def __sub__( self , lowerCAmelCase__ ) -> Vector:
__magic_name__ : int = len(self )
if size == len(lowerCAmelCase__ ):
__magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return Vector(lowerCAmelCase__ )
else: # error case
raise Exception("""must have the same size""" )
@overload
def __mul__( self , lowerCAmelCase__ ) -> Vector:
...
@overload
def __mul__( self , lowerCAmelCase__ ) -> float:
...
def __mul__( self , lowerCAmelCase__ ) -> float | Vector:
if isinstance(lowerCAmelCase__ , (float, int) ):
__magic_name__ : Optional[Any] = [c * other for c in self.__components]
return Vector(lowerCAmelCase__ )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ):
__magic_name__ : Optional[Any] = len(self )
__magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return sum(lowerCAmelCase__ )
else: # error case
raise Exception("""invalid operand!""" )
def __magic_name__ ( self ) -> Vector:
return Vector(self.__components )
def __magic_name__ ( self , lowerCAmelCase__ ) -> float:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ):
return self.__components[i]
else:
raise Exception("""index out of range""" )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
assert -len(self.__components ) <= pos < len(self.__components )
__magic_name__ : Optional[int] = value
def __magic_name__ ( self ) -> float:
if len(self.__components ) == 0:
raise Exception("""Vector is empty""" )
__magic_name__ : Dict = [c**2 for c in self.__components]
return math.sqrt(sum(lowerCAmelCase__ ) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float:
__magic_name__ : Optional[Any] = self * other
__magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length()
if deg:
return math.degrees(math.acos(num / den ) )
else:
return math.acos(num / den )
def UpperCamelCase ( _A ):
"""simple docstring"""
assert isinstance(_A, _A )
return Vector([0] * dimension )
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
assert isinstance(_A, _A ) and (isinstance(_A, _A ))
__magic_name__ : Union[str, Any] = [0] * dimension
__magic_name__ : Optional[int] = 1
return Vector(_A )
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
assert (
isinstance(_A, _A )
and isinstance(_A, _A )
and (isinstance(_A, (int, float) ))
)
return x * scalar + y
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
random.seed(_A )
__magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )]
return Vector(_A )
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
__magic_name__ : Dict = matrix
__magic_name__ : Tuple = w
__magic_name__ : Union[str, Any] = h
def __str__( self ) -> str:
__magic_name__ : Dict = """"""
for i in range(self.__height ):
ans += "|"
for j in range(self.__width ):
if j < self.__width - 1:
ans += str(self.__matrix[i][j] ) + ","
else:
ans += str(self.__matrix[i][j] ) + "|\n"
return ans
def __add__( self , lowerCAmelCase__ ) -> Matrix:
if self.__width == other.width() and self.__height == other.height():
__magic_name__ : Tuple = []
for i in range(self.__height ):
__magic_name__ : Tuple = [
self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ )
for j in range(self.__width )
]
matrix.append(lowerCAmelCase__ )
return Matrix(lowerCAmelCase__ , self.__width , self.__height )
else:
raise Exception("""matrix must have the same dimension!""" )
def __sub__( self , lowerCAmelCase__ ) -> Matrix:
if self.__width == other.width() and self.__height == other.height():
__magic_name__ : Optional[Any] = []
for i in range(self.__height ):
__magic_name__ : int = [
self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ )
for j in range(self.__width )
]
matrix.append(lowerCAmelCase__ )
return Matrix(lowerCAmelCase__ , self.__width , self.__height )
else:
raise Exception("""matrices must have the same dimension!""" )
@overload
def __mul__( self , lowerCAmelCase__ ) -> Matrix:
...
@overload
def __mul__( self , lowerCAmelCase__ ) -> Vector:
...
def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector
if len(lowerCAmelCase__ ) == self.__width:
__magic_name__ : Tuple = zero_vector(self.__height )
for i in range(self.__height ):
__magic_name__ : Optional[int] = [
self.__matrix[i][j] * other.component(lowerCAmelCase__ )
for j in range(self.__width )
]
ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) )
return ans
else:
raise Exception(
"""vector must have the same size as the """
"""number of columns of the matrix!""" )
elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar
__magic_name__ : Any = [
[self.__matrix[i][j] * other for j in range(self.__width )]
for i in range(self.__height )
]
return Matrix(lowerCAmelCase__ , self.__width , self.__height )
return None
def __magic_name__ ( self ) -> int:
return self.__height
def __magic_name__ ( self ) -> int:
return self.__width
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float:
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else:
raise Exception("""change_component: indices out of bounds""" )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
if 0 <= x < self.__height and 0 <= y < self.__width:
__magic_name__ : List[Any] = value
else:
raise Exception("""change_component: indices out of bounds""" )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float:
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
__magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(lowerCAmelCase__ ) ):
__magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :]
return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant()
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float:
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ )
else:
raise Exception("""Indices out of bounds""" )
def __magic_name__ ( self ) -> float:
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
if self.__height < 1:
raise Exception("""Matrix has no element""" )
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
__magic_name__ : str = [
self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width )
]
return sum(lowerCAmelCase__ )
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )]
return Matrix(_A, _A, _A )
def UpperCamelCase ( _A, _A, _A, _A ):
"""simple docstring"""
random.seed(_A )
__magic_name__ : list[list[float]] = [
[random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A )
]
return Matrix(_A, _A, _A )
| 342 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
__magic_name__: str = logging.get_logger(__name__)
__magic_name__: Optional[int] = {
"kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json",
"kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json",
"kssteven/ibert-roberta-large-mnli": (
"https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json"
),
}
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : int = '''ibert'''
def __init__( self , lowerCAmelCase__=3_05_22 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_12 , lowerCAmelCase__=2 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-1_2 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__="absolute" , lowerCAmelCase__=False , lowerCAmelCase__="none" , **lowerCAmelCase__ , ) -> Dict:
super().__init__(pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
__magic_name__ : List[Any] = vocab_size
__magic_name__ : Union[str, Any] = hidden_size
__magic_name__ : List[str] = num_hidden_layers
__magic_name__ : str = num_attention_heads
__magic_name__ : List[Any] = hidden_act
__magic_name__ : Tuple = intermediate_size
__magic_name__ : List[str] = hidden_dropout_prob
__magic_name__ : Union[str, Any] = attention_probs_dropout_prob
__magic_name__ : Union[str, Any] = max_position_embeddings
__magic_name__ : Any = type_vocab_size
__magic_name__ : str = initializer_range
__magic_name__ : Union[str, Any] = layer_norm_eps
__magic_name__ : List[Any] = position_embedding_type
__magic_name__ : str = quant_mode
__magic_name__ : Any = force_dequant
class snake_case__ ( _lowerCAmelCase ):
@property
def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
__magic_name__ : int = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__magic_name__ : Dict = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 342 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
__magic_name__: str = logging.get_logger(__name__)
__magic_name__: int = "▁"
__magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"}
__magic_name__: List[str] = {
"vocab_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model"
),
}
}
__magic_name__: Tuple = {
"facebook/nllb-200-distilled-600M": 1_024,
}
# fmt: off
__magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"]
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : str = VOCAB_FILES_NAMES
lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__ : str = ['''input_ids''', '''attention_mask''']
lowercase__ : List[int] = []
lowercase__ : List[int] = []
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int:
# Mask token behave like a normal word, i.e. include the space before it
__magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
__magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
__magic_name__ : Optional[Any] = legacy_behaviour
super().__init__(
bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , )
__magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowerCAmelCase__ ) )
__magic_name__ : List[Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a'
# spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s'
# Mimic fairseq token-to-id alignment for the first 4 token
__magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__magic_name__ : List[Any] = 1
__magic_name__ : Dict = len(self.sp_model )
__magic_name__ : int = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ )
}
__magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()}
__magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
__magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
__magic_name__ : List[str] = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
__magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn"""
__magic_name__ : Any = self.lang_code_to_id[self._src_lang]
__magic_name__ : Optional[int] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self ) -> Any:
__magic_name__ : List[Any] = self.__dict__.copy()
__magic_name__ : int = None
__magic_name__ : Optional[int] = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , lowerCAmelCase__ ) -> Any:
__magic_name__ : Any = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__magic_name__ : Any = {}
__magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def __magic_name__ ( self ) -> str:
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def __magic_name__ ( self ) -> str:
return self._src_lang
@src_lang.setter
def __magic_name__ ( self , lowerCAmelCase__ ) -> None:
__magic_name__ : Tuple = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
__magic_name__ : Optional[int] = [1] * len(self.prefix_tokens )
__magic_name__ : Any = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones
return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
__magic_name__ : str = [self.sep_token_id]
__magic_name__ : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]:
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
__magic_name__ : Dict = src_lang
__magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ )
__magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ )
__magic_name__ : Tuple = tgt_lang_id
return inputs
def __magic_name__ ( self ) -> int:
__magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]:
return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __magic_name__ ( self , lowerCAmelCase__ ) -> str:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip()
return out_string
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
__magic_name__ : List[Any] = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase__ , """wb""" ) as fi:
__magic_name__ : List[str] = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase__ )
return (out_vocab_file,)
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding:
__magic_name__ : List[str] = src_lang
__magic_name__ : Dict = tgt_lang
return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ )
def __magic_name__ ( self ) -> str:
return self.set_src_lang_special_tokens(self.src_lang )
def __magic_name__ ( self ) -> List[str]:
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __magic_name__ ( self , lowerCAmelCase__ ) -> None:
__magic_name__ : Optional[int] = self.lang_code_to_id[src_lang]
if self.legacy_behaviour:
__magic_name__ : List[str] = []
__magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code]
else:
__magic_name__ : str = [self.cur_lang_code]
__magic_name__ : List[Any] = [self.eos_token_id]
def __magic_name__ ( self , lowerCAmelCase__ ) -> None:
__magic_name__ : List[str] = self.lang_code_to_id[lang]
if self.legacy_behaviour:
__magic_name__ : List[str] = []
__magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code]
else:
__magic_name__ : Optional[int] = [self.cur_lang_code]
__magic_name__ : Union[str, Any] = [self.eos_token_id]
| 342 | 1 |
from typing import Dict
import numpy as np
import torch
from . import residue_constants as rc
from .tensor_utils import tensor_tree_map, tree_map
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : int = []
__magic_name__ : List[Any] = []
__magic_name__ : Optional[Any] = []
for rt in rc.restypes:
__magic_name__ : str = rc.restype_name_to_atomaa_names[rc.restype_atoa[rt]]
restype_atomaa_to_atomaa_list.append([(rc.atom_order[name] if name else 0) for name in atom_names] )
__magic_name__ : str = {name: i for i, name in enumerate(_A )}
restype_atomaa_to_atomaa_list.append(
[(atom_name_to_idxaa[name] if name in atom_name_to_idxaa else 0) for name in rc.atom_types] )
restype_atomaa_mask_list.append([(1.0 if name else 0.0) for name in atom_names] )
# Add dummy mapping for restype 'UNK'
restype_atomaa_to_atomaa_list.append([0] * 14 )
restype_atomaa_to_atomaa_list.append([0] * 37 )
restype_atomaa_mask_list.append([0.0] * 14 )
__magic_name__ : List[str] = torch.tensor(
_A, dtype=torch.intaa, device=protein["""aatype"""].device, )
__magic_name__ : Dict = torch.tensor(
_A, dtype=torch.intaa, device=protein["""aatype"""].device, )
__magic_name__ : Tuple = torch.tensor(
_A, dtype=torch.floataa, device=protein["""aatype"""].device, )
__magic_name__ : Dict = protein["""aatype"""].to(torch.long )
# create the mapping for (residx, atom14) --> atom37, i.e. an array
# with shape (num_res, 14) containing the atom37 indices for this protein
__magic_name__ : str = restype_atomaa_to_atomaa[protein_aatype]
__magic_name__ : Union[str, Any] = restype_atomaa_mask[protein_aatype]
__magic_name__ : List[Any] = residx_atomaa_mask
__magic_name__ : str = residx_atomaa_to_atomaa.long()
# create the gather indices for mapping back
__magic_name__ : int = restype_atomaa_to_atomaa[protein_aatype]
__magic_name__ : Optional[Any] = residx_atomaa_to_atomaa.long()
# create the corresponding mask
__magic_name__ : List[Any] = torch.zeros([21, 37], dtype=torch.floataa, device=protein["""aatype"""].device )
for restype, restype_letter in enumerate(rc.restypes ):
__magic_name__ : str = rc.restype_atoa[restype_letter]
__magic_name__ : Any = rc.residue_atoms[restype_name]
for atom_name in atom_names:
__magic_name__ : Dict = rc.atom_order[atom_name]
__magic_name__ : List[str] = 1
__magic_name__ : List[Any] = restype_atomaa_mask[protein_aatype]
__magic_name__ : Optional[Any] = residx_atomaa_mask
return protein
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : List[Any] = tree_map(lambda _A : torch.tensor(_A, device=batch["""aatype"""].device ), _A, np.ndarray )
__magic_name__ : Optional[Any] = tensor_tree_map(lambda _A : np.array(_A ), make_atomaa_masks(_A ) )
return out
| 342 |
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
__magic_name__ : Dict = MobileBertConfig.from_json_file(_A )
print(f'Building PyTorch model from configuration: {config}' )
__magic_name__ : Tuple = MobileBertForPreTraining(_A )
# Load weights from tf checkpoint
__magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict(), _A )
if __name__ == "__main__":
__magic_name__: Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--mobilebert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained MobileBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__magic_name__: Dict = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 342 | 1 |
class snake_case__ :
def __init__( self , lowerCAmelCase__ = "" , lowerCAmelCase__ = False ) -> None:
# Mapping from the first character of the prefix of the node
__magic_name__ : dict[str, RadixNode] = {}
# A node will be a leaf if the tree contains its word
__magic_name__ : Any = is_leaf
__magic_name__ : Optional[Any] = prefix
def __magic_name__ ( self , lowerCAmelCase__ ) -> tuple[str, str, str]:
__magic_name__ : Union[str, Any] = 0
for q, w in zip(self.prefix , lowerCAmelCase__ ):
if q != w:
break
x += 1
return self.prefix[:x], self.prefix[x:], word[x:]
def __magic_name__ ( self , lowerCAmelCase__ ) -> None:
for word in words:
self.insert(lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> None:
# Case 1: If the word is the prefix of the node
# Solution: We set the current node as leaf
if self.prefix == word:
__magic_name__ : Any = True
# Case 2: The node has no edges that have a prefix to the word
# Solution: We create an edge from the current node to a new one
# containing the word
elif word[0] not in self.nodes:
__magic_name__ : Optional[int] = RadixNode(prefix=lowerCAmelCase__ , is_leaf=lowerCAmelCase__ )
else:
__magic_name__ : str = self.nodes[word[0]]
__magic_name__ ,__magic_name__ ,__magic_name__ : Optional[Any] = incoming_node.match(
lowerCAmelCase__ )
# Case 3: The node prefix is equal to the matching
# Solution: We insert remaining word on the next node
if remaining_prefix == "":
self.nodes[matching_string[0]].insert(lowerCAmelCase__ )
# Case 4: The word is greater equal to the matching
# Solution: Create a node in between both nodes, change
# prefixes and add the new node for the remaining word
else:
__magic_name__ : int = remaining_prefix
__magic_name__ : Optional[int] = self.nodes[matching_string[0]]
__magic_name__ : List[Any] = RadixNode(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : Dict = aux_node
if remaining_word == "":
__magic_name__ : Optional[Any] = True
else:
self.nodes[matching_string[0]].insert(lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> bool:
__magic_name__ : str = self.nodes.get(word[0] , lowerCAmelCase__ )
if not incoming_node:
return False
else:
__magic_name__ ,__magic_name__ ,__magic_name__ : Any = incoming_node.match(
lowerCAmelCase__ )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# This applies when the word and the prefix are equal
elif remaining_word == "":
return incoming_node.is_leaf
# We have word remaining so we check the next node
else:
return incoming_node.find(lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> bool:
__magic_name__ : Optional[Any] = self.nodes.get(word[0] , lowerCAmelCase__ )
if not incoming_node:
return False
else:
__magic_name__ ,__magic_name__ ,__magic_name__ : Optional[int] = incoming_node.match(
lowerCAmelCase__ )
# If there is remaining prefix, the word can't be on the tree
if remaining_prefix != "":
return False
# We have word remaining so we check the next node
elif remaining_word != "":
return incoming_node.delete(lowerCAmelCase__ )
else:
# If it is not a leaf, we don't have to delete
if not incoming_node.is_leaf:
return False
else:
# We delete the nodes if no edges go from it
if len(incoming_node.nodes ) == 0:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes ) == 1 and not self.is_leaf:
__magic_name__ : List[str] = list(self.nodes.values() )[0]
__magic_name__ : Dict = merging_node.is_leaf
self.prefix += merging_node.prefix
__magic_name__ : List[str] = merging_node.nodes
# If there is more than 1 edge, we just mark it as non-leaf
elif len(incoming_node.nodes ) > 1:
__magic_name__ : Union[str, Any] = False
# If there is 1 edge, we merge it with its child
else:
__magic_name__ : Any = list(incoming_node.nodes.values() )[0]
__magic_name__ : List[str] = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
__magic_name__ : str = merging_node.nodes
return True
def __magic_name__ ( self , lowerCAmelCase__ = 0 ) -> None:
if self.prefix != "":
print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" )
for value in self.nodes.values():
value.print_tree(height + 1 )
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : List[Any] = """banana bananas bandana band apple all beast""".split()
__magic_name__ : int = RadixNode()
root.insert_many(_A )
assert all(root.find(_A ) for word in words )
assert not root.find("""bandanas""" )
assert not root.find("""apps""" )
root.delete("""all""" )
assert not root.find("""all""" )
root.delete("""banana""" )
assert not root.find("""banana""" )
assert root.find("""bananas""" )
return True
def UpperCamelCase ( ):
"""simple docstring"""
assert test_trie()
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : str = RadixNode()
__magic_name__ : str = """banana bananas bandanas bandana band apple all beast""".split()
root.insert_many(_A )
print("""Words:""", _A )
print("""Tree:""" )
root.print_tree()
if __name__ == "__main__":
main()
| 342 |
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Optional[Any] = MgpstrTokenizer
lowercase__ : int = False
lowercase__ : Any = {}
lowercase__ : Optional[int] = False
def __magic_name__ ( self ) -> Optional[Any]:
super().setUp()
# fmt: off
__magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
__magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
__magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" )
def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]:
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]:
__magic_name__ : List[str] = """tester"""
__magic_name__ : int = """tester"""
return input_text, output_text
@unittest.skip("""MGP-STR always lower cases letters.""" )
def __magic_name__ ( self ) -> str:
pass
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
__magic_name__ : Dict = """[SPECIAL_TOKEN]"""
tokenizer.add_special_tokens({"""cls_token""": special_token} )
__magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , 1 )
__magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
self.assertTrue(special_token not in decoded )
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ : int = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
__magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ )
__magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ )
__magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertNotEqual(len(lowerCAmelCase__ ) , 0 )
__magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ )
@unittest.skip("""MGP-STR tokenizer only handles one sequence.""" )
def __magic_name__ ( self ) -> Tuple:
pass
@unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" )
def __magic_name__ ( self ) -> Optional[Any]:
pass
| 342 | 1 |
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : str = DiTPipeline
lowercase__ : List[Any] = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
lowercase__ : int = PipelineTesterMixin.required_optional_params - {
'''latents''',
'''num_images_per_prompt''',
'''callback''',
'''callback_steps''',
}
lowercase__ : List[str] = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
lowercase__ : Dict = False
def __magic_name__ ( self ) -> Any:
torch.manual_seed(0 )
__magic_name__ : Optional[Any] = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCAmelCase__ , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=10_00 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=lowerCAmelCase__ , )
__magic_name__ : List[str] = AutoencoderKL()
__magic_name__ : Any = DDIMScheduler()
__magic_name__ : int = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler}
return components
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> int:
if str(lowerCAmelCase__ ).startswith("""mps""" ):
__magic_name__ : Optional[int] = torch.manual_seed(lowerCAmelCase__ )
else:
__magic_name__ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
__magic_name__ : List[Any] = {
"""class_labels""": [1],
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def __magic_name__ ( self ) -> str:
__magic_name__ : Optional[int] = """cpu"""
__magic_name__ : Any = self.get_dummy_components()
__magic_name__ : List[str] = self.pipeline_class(**lowerCAmelCase__ )
pipe.to(lowerCAmelCase__ )
pipe.set_progress_bar_config(disable=lowerCAmelCase__ )
__magic_name__ : int = self.get_dummy_inputs(lowerCAmelCase__ )
__magic_name__ : Dict = pipe(**lowerCAmelCase__ ).images
__magic_name__ : List[Any] = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
__magic_name__ : List[str] = np.array([0.2_9_4_6, 0.6_6_0_1, 0.4_3_2_9, 0.3_2_9_6, 0.4_1_4_4, 0.5_3_1_9, 0.7_2_7_3, 0.5_0_1_3, 0.4_4_5_7] )
__magic_name__ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(lowerCAmelCase__ , 1e-3 )
def __magic_name__ ( self ) -> Any:
self._test_inference_batch_single_identical(relax_max_difference=lowerCAmelCase__ , expected_max_diff=1e-3 )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def __magic_name__ ( self ) -> Dict:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@require_torch_gpu
@slow
class snake_case__ ( unittest.TestCase ):
def __magic_name__ ( self ) -> Optional[int]:
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : Tuple = torch.manual_seed(0 )
__magic_name__ : Optional[Any] = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" )
pipe.to("""cuda""" )
__magic_name__ : int = ["""vase""", """umbrella""", """white shark""", """white wolf"""]
__magic_name__ : Dict = pipe.get_label_ids(lowerCAmelCase__ )
__magic_name__ : List[str] = pipe(lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=40 , output_type="""np""" ).images
for word, image in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
__magic_name__ : Dict = load_numpy(
F'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' )
assert np.abs((expected_image - image).max() ) < 1e-2
def __magic_name__ ( self ) -> str:
__magic_name__ : Dict = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" )
__magic_name__ : List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to("""cuda""" )
__magic_name__ : List[Any] = ["""vase""", """umbrella"""]
__magic_name__ : Union[str, Any] = pipe.get_label_ids(lowerCAmelCase__ )
__magic_name__ : Optional[int] = torch.manual_seed(0 )
__magic_name__ : Union[str, Any] = pipe(lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=25 , output_type="""np""" ).images
for word, image in zip(lowerCAmelCase__ , lowerCAmelCase__ ):
__magic_name__ : Optional[int] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
F'/dit/{word}_512.npy' )
assert np.abs((expected_image - image).max() ) < 1e-1
| 342 |
import re
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" )
if match := re.search(_A, _A ):
return match.string == phone
return False
if __name__ == "__main__":
print(indian_phone_validator("+918827897895"))
| 342 | 1 |
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
| 342 |
import doctest
from collections import deque
import numpy as np
class snake_case__ :
def __init__( self ) -> None:
__magic_name__ : Any = [2, 1, 2, -1]
__magic_name__ : Tuple = [1, 2, 3, 4]
def __magic_name__ ( self ) -> list[float]:
__magic_name__ : Optional[Any] = len(self.first_signal )
__magic_name__ : Dict = len(self.second_signal )
__magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ )
# create a zero matrix of max_length x max_length
__magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(lowerCAmelCase__ ):
__magic_name__ : List[str] = deque(self.second_signal )
rotated_signal.rotate(lowerCAmelCase__ )
for j, item in enumerate(lowerCAmelCase__ ):
matrix[i][j] += item
# multiply the matrix with the first signal
__magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(lowerCAmelCase__ , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 342 | 1 |
import json
import os
import tempfile
from unittest.mock import patch
import torch
from torch.utils.data import DataLoader, TensorDataset
from accelerate import DistributedType, infer_auto_device_map, init_empty_weights
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState, PartialState
from accelerate.test_utils import require_bnb, require_multi_gpu, slow
from accelerate.test_utils.testing import AccelerateTestCase, require_cuda
from accelerate.utils import patch_environment
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : int = torch.nn.Linear(2, 4 )
__magic_name__ : List[str] = torch.optim.AdamW(model.parameters(), lr=1.0 )
__magic_name__ : Dict = torch.optim.lr_scheduler.OneCycleLR(_A, max_lr=0.01, steps_per_epoch=2, epochs=1 )
__magic_name__ : Tuple = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) )
__magic_name__ : List[Any] = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) )
return model, optimizer, scheduler, train_dl, valid_dl
def UpperCamelCase ( _A ):
"""simple docstring"""
return (model.weight.abs().sum() + model.bias.abs().sum()).item()
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : Union[str, Any] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict()
model.load_state_dict(_A )
class snake_case__ ( _lowerCAmelCase ):
@require_cuda
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : Dict = Accelerator()
assert PartialState._shared_state["_cpu"] is False
assert PartialState._shared_state["device"].type == "cuda"
with self.assertRaises(lowerCAmelCase__ ):
__magic_name__ : List[str] = Accelerator(cpu=lowerCAmelCase__ )
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : Union[str, Any] = Accelerator()
__magic_name__ : List[Any] = GradientState()
assert state.num_steps == 1
__magic_name__ : str = 4
assert state.num_steps == 4
assert state.sync_gradients is True
__magic_name__ : Tuple = False
assert state.sync_gradients is False
GradientState._reset_state()
def __magic_name__ ( self ) -> Any:
__magic_name__ : List[str] = Accelerator()
__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : int = create_components()
(
(
__magic_name__
) ,(
__magic_name__
) ,(
__magic_name__
) ,(
__magic_name__
) ,(
__magic_name__
) ,
) : List[str] = accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.assertTrue(prepared_model in accelerator._models )
self.assertTrue(prepared_optimizer in accelerator._optimizers )
self.assertTrue(prepared_scheduler in accelerator._schedulers )
self.assertTrue(prepared_train_dl in accelerator._dataloaders )
self.assertTrue(prepared_valid_dl in accelerator._dataloaders )
def __magic_name__ ( self ) -> int:
__magic_name__ : Dict = Accelerator()
__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : str = create_components()
accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
accelerator.free_memory()
self.assertTrue(len(accelerator._models ) == 0 )
self.assertTrue(len(accelerator._optimizers ) == 0 )
self.assertTrue(len(accelerator._schedulers ) == 0 )
self.assertTrue(len(accelerator._dataloaders ) == 0 )
def __magic_name__ ( self ) -> Tuple:
PartialState._reset_state()
# Mock torch.cuda.set_device to avoid an exception as the device doesn't exist
def noop(*lowerCAmelCase__ , **lowerCAmelCase__ ):
pass
with patch("""torch.cuda.set_device""" , lowerCAmelCase__ ), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64""" ):
__magic_name__ : List[Any] = Accelerator()
self.assertEqual(str(accelerator.state.device ) , """cuda:64""" )
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : Tuple = Accelerator()
__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Union[str, Any] = create_components()
accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : Optional[Any] = get_signature(lowerCAmelCase__ )
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(lowerCAmelCase__ )
# make sure random weights don't match
load_random_weights(lowerCAmelCase__ )
self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase__ ) ) > 1e-3 )
# make sure loaded weights match
accelerator.load_state(lowerCAmelCase__ )
self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase__ ) ) < 1e-3 )
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ : List[Any] = Accelerator()
__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Optional[Any] = create_components()
accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = get_signature(lowerCAmelCase__ )
# saving hook
def save_config(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
__magic_name__ : str = {"""class_name""": models[0].__class__.__name__}
with open(os.path.join(lowerCAmelCase__ , """data.json""" ) , """w""" ) as f:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
# loading hook
def load_config(lowerCAmelCase__ , lowerCAmelCase__ ):
with open(os.path.join(lowerCAmelCase__ , """data.json""" ) , """r""" ) as f:
__magic_name__ : Dict = json.load(lowerCAmelCase__ )
__magic_name__ : Optional[int] = config["""class_name"""]
__magic_name__ : int = accelerator.register_save_state_pre_hook(lowerCAmelCase__ )
__magic_name__ : List[str] = accelerator.register_load_state_pre_hook(lowerCAmelCase__ )
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(lowerCAmelCase__ )
# make sure random weights don't match with hooks
load_random_weights(lowerCAmelCase__ )
self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase__ ) ) > 1e-3 )
# random class name to verify correct one is loaded
__magic_name__ : int = """random"""
# make sure loaded weights match with hooks
accelerator.load_state(lowerCAmelCase__ )
self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase__ ) ) < 1e-3 )
# mode.class_name is loaded from config
self.assertTrue(model.class_name == model.__class__.__name__ )
# remove hooks
save_hook.remove()
load_hook.remove()
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(lowerCAmelCase__ )
# make sure random weights don't match with hooks removed
load_random_weights(lowerCAmelCase__ )
self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase__ ) ) > 1e-3 )
# random class name to verify correct one is loaded
__magic_name__ : List[Any] = """random"""
# make sure loaded weights match with hooks removed
accelerator.load_state(lowerCAmelCase__ )
self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase__ ) ) < 1e-3 )
# mode.class_name is NOT loaded from config
self.assertTrue(model.class_name != model.__class__.__name__ )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : List[str] = Accelerator()
__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Optional[int] = create_components()
__magic_name__ : Optional[int] = None
# This should work
__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : List[str] = accelerator.prepare(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.assertTrue(dummy_obj is None )
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : Tuple = Accelerator()
__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Dict = create_components()
__magic_name__ : Tuple = [1, 2, 3]
# This should work
__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : List[Any] = accelerator.prepare(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(
getattr(lowerCAmelCase__ , """_is_accelerate_prepared""" , lowerCAmelCase__ ) , lowerCAmelCase__ , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , )
self.assertEqual(
getattr(lowerCAmelCase__ , """_is_accelerate_prepared""" , lowerCAmelCase__ ) , lowerCAmelCase__ , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , )
self.assertEqual(
getattr(lowerCAmelCase__ , """_is_accelerate_prepared""" , lowerCAmelCase__ ) , lowerCAmelCase__ , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , )
self.assertEqual(
getattr(lowerCAmelCase__ , """_is_accelerate_prepared""" , lowerCAmelCase__ ) , lowerCAmelCase__ , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , )
self.assertEqual(
getattr(lowerCAmelCase__ , """_is_accelerate_prepared""" , lowerCAmelCase__ ) , lowerCAmelCase__ , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , )
self.assertEqual(
getattr(lowerCAmelCase__ , """_is_accelerate_prepared""" , lowerCAmelCase__ ) , lowerCAmelCase__ , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , )
@slow
@require_bnb
def __magic_name__ ( self ) -> int:
from transformers import AutoModelForCausalLM
__magic_name__ : Optional[int] = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , load_in_abit=lowerCAmelCase__ , device_map={"""""": 0} , )
__magic_name__ : Any = Accelerator()
# This should work
__magic_name__ : Any = accelerator.prepare(lowerCAmelCase__ )
@slow
@require_bnb
def __magic_name__ ( self ) -> Any:
from transformers import AutoModelForCausalLM
__magic_name__ : Tuple = Accelerator()
with init_empty_weights():
__magic_name__ : Optional[Any] = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , )
model.tie_weights()
__magic_name__ : Optional[int] = infer_auto_device_map(lowerCAmelCase__ )
__magic_name__ : Dict = """cpu"""
__magic_name__ : Any = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , device_map=lowerCAmelCase__ , load_in_abit=lowerCAmelCase__ , llm_inta_enable_fpaa_cpu_offload=lowerCAmelCase__ )
# This should not work and get value error
with self.assertRaises(lowerCAmelCase__ ):
__magic_name__ : Any = accelerator.prepare(lowerCAmelCase__ )
@slow
@require_bnb
@require_multi_gpu
def __magic_name__ ( self ) -> Any:
from transformers import AutoModelForCausalLM
__magic_name__ : Optional[Any] = {"""distributed_type""": DistributedType.MULTI_GPU}
with init_empty_weights():
__magic_name__ : List[Any] = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , )
model.tie_weights()
__magic_name__ : str = infer_auto_device_map(lowerCAmelCase__ )
__magic_name__ : int = 1
__magic_name__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , load_in_abit=lowerCAmelCase__ , device_map=lowerCAmelCase__ , )
__magic_name__ : Any = Accelerator()
# This should not work and get value error
with self.assertRaises(lowerCAmelCase__ ):
__magic_name__ : Optional[Any] = accelerator.prepare(lowerCAmelCase__ )
PartialState._reset_state()
@slow
@require_bnb
@require_multi_gpu
def __magic_name__ ( self ) -> Tuple:
from transformers import AutoModelForCausalLM
with init_empty_weights():
__magic_name__ : Tuple = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , )
__magic_name__ : List[str] = infer_auto_device_map(lowerCAmelCase__ )
__magic_name__ : int = 1
__magic_name__ : List[Any] = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , load_in_abit=lowerCAmelCase__ , device_map=lowerCAmelCase__ , )
__magic_name__ : Optional[Any] = Accelerator()
# This should work
__magic_name__ : Union[str, Any] = accelerator.prepare(lowerCAmelCase__ )
@require_cuda
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Any = torch.nn.Linear(10 , 10 )
__magic_name__ : str = torch.optim.SGD(model.parameters() , lr=0.0_1 )
__magic_name__ : List[str] = Accelerator(cpu=lowerCAmelCase__ )
__magic_name__ : Tuple = accelerator.prepare(lowerCAmelCase__ )
| 342 |
from math import factorial
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
if successes > trials:
raise ValueError("""successes must be lower or equal to trials""" )
if trials < 0 or successes < 0:
raise ValueError("""the function is defined for non-negative integers""" )
if not isinstance(_A, _A ) or not isinstance(_A, _A ):
raise ValueError("""the function is defined for non-negative integers""" )
if not 0 < prob < 1:
raise ValueError("""prob has to be in range of 1 - 0""" )
__magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes))
# Calculate the binomial coefficient: n! / k!(n-k)!
__magic_name__ : Any = float(factorial(_A ) )
coefficient /= factorial(_A ) * factorial(trials - successes )
return probability * coefficient
if __name__ == "__main__":
from doctest import testmod
testmod()
print("Probability of 2 successes out of 4 trails")
print("with probability of 0.75 is:", end=" ")
print(binomial_distribution(2, 4, 0.75))
| 342 | 1 |
from __future__ import annotations
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
__magic_name__ : Optional[int] = 0
__magic_name__ : Tuple = len(_A ) - 1
while i < j:
if nums[i] + nums[j] == target:
return [i, j]
elif nums[i] + nums[j] < target:
__magic_name__ : int = i + 1
else:
__magic_name__ : Any = j - 1
return []
if __name__ == "__main__":
import doctest
doctest.testmod()
print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
| 342 |
from __future__ import annotations
def UpperCamelCase ( _A ): # This function is recursive
"""simple docstring"""
__magic_name__ : str = len(_A )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
__magic_name__ : Dict = array[0]
__magic_name__ : Optional[Any] = False
__magic_name__ : Tuple = 1
__magic_name__ : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
__magic_name__ : Union[str, Any] = True
__magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]]
__magic_name__ : Dict = longest_subsequence(_A )
if len(_A ) > len(_A ):
__magic_name__ : Tuple = temp_array
else:
i += 1
__magic_name__ : Any = [element for element in array[1:] if element >= pivot]
__magic_name__ : Dict = [pivot, *longest_subsequence(_A )]
if len(_A ) > len(_A ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 | 1 |
import copy
import re
class snake_case__ :
lowercase__ : Optional[int] = '''hp'''
lowercase__ : Any = {}
lowercase__ : Any = None
@classmethod
def __magic_name__ ( cls , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]:
__magic_name__ : List[Any] = prefix
__magic_name__ : Tuple = defaults
cls.build_naming_info()
@staticmethod
def __magic_name__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str:
if len(lowerCAmelCase__ ) == 0:
return ""
__magic_name__ : int = None
if any(char.isdigit() for char in word ):
raise Exception(F'Parameters should not contain numbers: \'{word}\' contains a number' )
if word in info["short_word"]:
return info["short_word"][word]
for prefix_len in range(1 , len(lowerCAmelCase__ ) + 1 ):
__magic_name__ : Union[str, Any] = word[:prefix_len]
if prefix in info["reverse_short_word"]:
continue
else:
__magic_name__ : str = prefix
break
if short_word is None:
# Paranoid fallback
def int_to_alphabetic(lowerCAmelCase__ ):
__magic_name__ : List[Any] = """"""
while integer != 0:
__magic_name__ : Tuple = chr(ord("""A""" ) + integer % 10 ) + s
integer //= 10
return s
__magic_name__ : List[Any] = 0
while True:
__magic_name__ : List[Any] = word + """#""" + int_to_alphabetic(lowerCAmelCase__ )
if sword in info["reverse_short_word"]:
continue
else:
__magic_name__ : str = sword
break
__magic_name__ : List[Any] = short_word
__magic_name__ : str = word
return short_word
@staticmethod
def __magic_name__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : Tuple = param_name.split("""_""" )
__magic_name__ : int = [TrialShortNamer.shortname_for_word(lowerCAmelCase__ , lowerCAmelCase__ ) for word in words]
# We try to create a separatorless short name, but if there is a collision we have to fallback
# to a separated short name
__magic_name__ : Tuple = ["""""", """_"""]
for separator in separators:
__magic_name__ : Union[str, Any] = separator.join(lowerCAmelCase__ )
if shortname not in info["reverse_short_param"]:
__magic_name__ : int = shortname
__magic_name__ : Any = param_name
return shortname
return param_name
@staticmethod
def __magic_name__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]:
__magic_name__ : List[Any] = TrialShortNamer.shortname_for_key(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : str = short_name
__magic_name__ : Any = param_name
@classmethod
def __magic_name__ ( cls ) -> Tuple:
if cls.NAMING_INFO is not None:
return
__magic_name__ : int = {
"""short_word""": {},
"""reverse_short_word""": {},
"""short_param""": {},
"""reverse_short_param""": {},
}
__magic_name__ : Union[str, Any] = list(cls.DEFAULTS.keys() )
for k in field_keys:
cls.add_new_param_name(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : Tuple = info
@classmethod
def __magic_name__ ( cls , lowerCAmelCase__ ) -> int:
cls.build_naming_info()
assert cls.PREFIX is not None
__magic_name__ : int = [copy.copy(cls.PREFIX )]
for k, v in params.items():
if k not in cls.DEFAULTS:
raise Exception(F'You should provide a default value for the param name {k} with value {v}' )
if v == cls.DEFAULTS[k]:
# The default value is not added to the name
continue
__magic_name__ : Union[str, Any] = cls.NAMING_INFO["""short_param"""][k]
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
__magic_name__ : List[str] = 1 if v else 0
__magic_name__ : Union[str, Any] = """""" if isinstance(lowerCAmelCase__ , (int, float) ) else """-"""
__magic_name__ : Any = F'{key}{sep}{v}'
name.append(lowerCAmelCase__ )
return "_".join(lowerCAmelCase__ )
@classmethod
def __magic_name__ ( cls , lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : List[str] = repr[len(cls.PREFIX ) + 1 :]
if repr == "":
__magic_name__ : str = []
else:
__magic_name__ : Union[str, Any] = repr.split("""_""" )
__magic_name__ : Any = {}
for value in values:
if "-" in value:
__magic_name__ ,__magic_name__ : Union[str, Any] = value.split("""-""" )
else:
__magic_name__ : int = re.sub("""[0-9.]""" , """""" , lowerCAmelCase__ )
__magic_name__ : Optional[Any] = float(re.sub("""[^0-9.]""" , """""" , lowerCAmelCase__ ) )
__magic_name__ : Optional[Any] = cls.NAMING_INFO["""reverse_short_param"""][p_k]
__magic_name__ : Any = p_v
for k in cls.DEFAULTS:
if k not in parameters:
__magic_name__ : Union[str, Any] = cls.DEFAULTS[k]
return parameters
| 342 |
import argparse
import os
import re
__magic_name__: Optional[Any] = "src/transformers/models/auto"
# re pattern that matches mapping introductions:
# SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict
__magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict")
# re pattern that matches identifiers in mappings
__magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"")
def UpperCamelCase ( _A, _A = False ):
"""simple docstring"""
with open(_A, """r""", encoding="""utf-8""" ) as f:
__magic_name__ : Any = f.read()
__magic_name__ : List[Any] = content.split("""\n""" )
__magic_name__ : List[str] = []
__magic_name__ : Union[str, Any] = 0
while line_idx < len(_A ):
if _re_intro_mapping.search(lines[line_idx] ) is not None:
__magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8
# Start of a new mapping!
while not lines[line_idx].startswith(""" """ * indent + """(""" ):
new_lines.append(lines[line_idx] )
line_idx += 1
__magic_name__ : List[Any] = []
while lines[line_idx].strip() != "]":
# Blocks either fit in one line or not
if lines[line_idx].strip() == "(":
__magic_name__ : List[str] = line_idx
while not lines[line_idx].startswith(""" """ * indent + """)""" ):
line_idx += 1
blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) )
else:
blocks.append(lines[line_idx] )
line_idx += 1
# Sort blocks by their identifiers
__magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] )
new_lines += blocks
else:
new_lines.append(lines[line_idx] )
line_idx += 1
if overwrite:
with open(_A, """w""", encoding="""utf-8""" ) as f:
f.write("""\n""".join(_A ) )
elif "\n".join(_A ) != content:
return True
def UpperCamelCase ( _A = False ):
"""simple docstring"""
__magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )]
__magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames]
if not overwrite and any(_A ):
__magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d]
raise ValueError(
f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix'
""" this.""" )
if __name__ == "__main__":
__magic_name__: List[str] = argparse.ArgumentParser()
parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.")
__magic_name__: List[str] = parser.parse_args()
sort_all_auto_mappings(not args.check_only)
| 342 | 1 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import CLIPImageProcessor, CLIPProcessor
@require_vision
class snake_case__ ( unittest.TestCase ):
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : Any = tempfile.mkdtemp()
# fmt: off
__magic_name__ : Optional[int] = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""]
# fmt: on
__magic_name__ : str = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
__magic_name__ : int = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""]
__magic_name__ : List[Any] = {"""unk_token""": """<unk>"""}
__magic_name__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
__magic_name__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" )
with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write("""\n""".join(lowerCAmelCase__ ) )
__magic_name__ : Tuple = {
"""do_resize""": True,
"""size""": 20,
"""do_center_crop""": True,
"""crop_size""": 18,
"""do_normalize""": True,
"""image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3],
"""image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1],
}
__magic_name__ : List[str] = os.path.join(self.tmpdirname , lowerCAmelCase__ )
with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[Any]:
return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def __magic_name__ ( self , **lowerCAmelCase__ ) -> Dict:
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def __magic_name__ ( self , **lowerCAmelCase__ ) -> str:
return CLIPImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def __magic_name__ ( self ) -> Union[str, Any]:
shutil.rmtree(self.tmpdirname )
def __magic_name__ ( self ) -> Dict:
__magic_name__ : str = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__magic_name__ : int = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def __magic_name__ ( self ) -> int:
__magic_name__ : Any = self.get_tokenizer()
__magic_name__ : Dict = self.get_rust_tokenizer()
__magic_name__ : Union[str, Any] = self.get_image_processor()
__magic_name__ : str = CLIPProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ )
processor_slow.save_pretrained(self.tmpdirname )
__magic_name__ : List[str] = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase__ )
__magic_name__ : int = CLIPProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ )
processor_fast.save_pretrained(self.tmpdirname )
__magic_name__ : List[Any] = CLIPProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() )
self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() )
self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() )
self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase__ )
self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase__ )
self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase__ )
self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : str = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__magic_name__ : str = self.get_image_processor(do_normalize=lowerCAmelCase__ , padding_value=1.0 )
__magic_name__ : Tuple = CLIPProcessor.from_pretrained(
self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase__ , padding_value=1.0 )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , lowerCAmelCase__ )
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ : Union[str, Any] = self.get_image_processor()
__magic_name__ : Any = self.get_tokenizer()
__magic_name__ : Tuple = CLIPProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ )
__magic_name__ : Optional[Any] = self.prepare_image_inputs()
__magic_name__ : Any = image_processor(lowerCAmelCase__ , return_tensors="""np""" )
__magic_name__ : Dict = processor(images=lowerCAmelCase__ , return_tensors="""np""" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : Dict = self.get_image_processor()
__magic_name__ : Dict = self.get_tokenizer()
__magic_name__ : Tuple = CLIPProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ )
__magic_name__ : Dict = """lower newer"""
__magic_name__ : List[str] = processor(text=lowerCAmelCase__ )
__magic_name__ : Tuple = tokenizer(lowerCAmelCase__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : Union[str, Any] = self.get_image_processor()
__magic_name__ : Any = self.get_tokenizer()
__magic_name__ : str = CLIPProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ )
__magic_name__ : List[str] = """lower newer"""
__magic_name__ : int = self.prepare_image_inputs()
__magic_name__ : List[str] = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ )
self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] )
# test if it raises when no input is passed
with pytest.raises(lowerCAmelCase__ ):
processor()
def __magic_name__ ( self ) -> int:
__magic_name__ : Tuple = self.get_image_processor()
__magic_name__ : int = self.get_tokenizer()
__magic_name__ : List[Any] = CLIPProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ )
__magic_name__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
__magic_name__ : str = processor.batch_decode(lowerCAmelCase__ )
__magic_name__ : str = tokenizer.batch_decode(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : Dict = self.get_image_processor()
__magic_name__ : Optional[int] = self.get_tokenizer()
__magic_name__ : Tuple = CLIPProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ )
__magic_name__ : Any = """lower newer"""
__magic_name__ : Any = self.prepare_image_inputs()
__magic_name__ : Optional[int] = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
| 342 |
__magic_name__: str = [0, 2, 4, 6, 8]
__magic_name__: Optional[int] = [1, 3, 5, 7, 9]
def UpperCamelCase ( _A, _A, _A, _A ):
"""simple docstring"""
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1, -1, -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
__magic_name__ : List[Any] = 0
for digit in range(10 ):
__magic_name__ : Optional[int] = digit
result += reversible_numbers(
0, (remainder + 2 * digit) // 10, _A, _A )
return result
__magic_name__ : str = 0
for digita in range(10 ):
__magic_name__ : Optional[Any] = digita
if (remainder + digita) % 2 == 0:
__magic_name__ : Tuple = ODD_DIGITS
else:
__magic_name__ : str = EVEN_DIGITS
for digita in other_parity_digits:
__magic_name__ : Tuple = digita
result += reversible_numbers(
remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, )
return result
def UpperCamelCase ( _A = 9 ):
"""simple docstring"""
__magic_name__ : List[str] = 0
for length in range(1, max_power + 1 ):
result += reversible_numbers(_A, 0, [0] * length, _A )
return result
if __name__ == "__main__":
print(F"""{solution() = }""")
| 342 | 1 |
import logging
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import datasets
import numpy as np
import tensorflow as tf
from transformers import (
AutoConfig,
AutoTokenizer,
EvalPrediction,
HfArgumentParser,
PreTrainedTokenizer,
TFAutoModelForSequenceClassification,
TFTrainer,
TFTrainingArguments,
)
from transformers.utils import logging as hf_logging
hf_logging.set_verbosity_info()
hf_logging.enable_default_handler()
hf_logging.enable_explicit_format()
def UpperCamelCase ( _A, _A, _A, _A, _A, _A = None, ):
"""simple docstring"""
__magic_name__ : int = {}
if train_file is not None:
__magic_name__ : Union[str, Any] = [train_file]
if eval_file is not None:
__magic_name__ : Optional[Any] = [eval_file]
if test_file is not None:
__magic_name__ : Union[str, Any] = [test_file]
__magic_name__ : List[str] = datasets.load_dataset("""csv""", data_files=_A )
__magic_name__ : Union[str, Any] = list(ds[list(files.keys() )[0]].features.keys() )
__magic_name__ : Union[str, Any] = features_name.pop(_A )
__magic_name__ : Dict = list(set(ds[list(files.keys() )[0]][label_name] ) )
__magic_name__ : Tuple = {label: i for i, label in enumerate(_A )}
__magic_name__ : Optional[Any] = tokenizer.model_input_names
__magic_name__ : Any = {}
if len(_A ) == 1:
for k in files.keys():
__magic_name__ : Tuple = ds[k].map(
lambda _A : tokenizer.batch_encode_plus(
example[features_name[0]], truncation=_A, max_length=_A, padding="""max_length""" ), batched=_A, )
elif len(_A ) == 2:
for k in files.keys():
__magic_name__ : str = ds[k].map(
lambda _A : tokenizer.batch_encode_plus(
(example[features_name[0]], example[features_name[1]]), truncation=_A, max_length=_A, padding="""max_length""", ), batched=_A, )
def gen_train():
for ex in transformed_ds[datasets.Split.TRAIN]:
__magic_name__ : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names}
__magic_name__ : int = labelaid[ex[label_name]]
yield (d, label)
def gen_val():
for ex in transformed_ds[datasets.Split.VALIDATION]:
__magic_name__ : Optional[Any] = {k: v for k, v in ex.items() if k in input_names}
__magic_name__ : Dict = labelaid[ex[label_name]]
yield (d, label)
def gen_test():
for ex in transformed_ds[datasets.Split.TEST]:
__magic_name__ : Any = {k: v for k, v in ex.items() if k in input_names}
__magic_name__ : Optional[int] = labelaid[ex[label_name]]
yield (d, label)
__magic_name__ : List[Any] = (
tf.data.Dataset.from_generator(
_A, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), )
if datasets.Split.TRAIN in transformed_ds
else None
)
if train_ds is not None:
__magic_name__ : List[Any] = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) )
__magic_name__ : Union[str, Any] = (
tf.data.Dataset.from_generator(
_A, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), )
if datasets.Split.VALIDATION in transformed_ds
else None
)
if val_ds is not None:
__magic_name__ : Union[str, Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) )
__magic_name__ : Optional[Any] = (
tf.data.Dataset.from_generator(
_A, ({k: tf.intaa for k in input_names}, tf.intaa), ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )), )
if datasets.Split.TEST in transformed_ds
else None
)
if test_ds is not None:
__magic_name__ : str = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) )
return train_ds, val_ds, test_ds, labelaid
__magic_name__: Optional[Any] = logging.getLogger(__name__)
@dataclass
class snake_case__ :
lowercase__ : int = field(metadata={'''help''': '''Which column contains the label'''} )
lowercase__ : str = field(default=_lowerCAmelCase , metadata={'''help''': '''The path of the training file'''} )
lowercase__ : Optional[str] = field(default=_lowerCAmelCase , metadata={'''help''': '''The path of the development file'''} )
lowercase__ : Optional[str] = field(default=_lowerCAmelCase , metadata={'''help''': '''The path of the test file'''} )
lowercase__ : int = field(
default=128 , metadata={
'''help''': (
'''The maximum total input sequence length after tokenization. Sequences longer '''
'''than this will be truncated, sequences shorter will be padded.'''
)
} , )
lowercase__ : bool = field(
default=_lowerCAmelCase , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} )
@dataclass
class snake_case__ :
lowercase__ : str = field(
metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} )
lowercase__ : Optional[str] = field(
default=_lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} )
lowercase__ : Optional[str] = field(
default=_lowerCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} )
lowercase__ : bool = field(default=_lowerCAmelCase , metadata={'''help''': '''Set this flag to use fast tokenization.'''} )
# If you want to tweak more attributes on your tokenizer, you should do it in a distinct script,
# or just modify its tokenizer_config.json.
lowercase__ : Optional[str] = field(
default=_lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , )
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) )
__magic_name__ ,__magic_name__ ,__magic_name__ : Union[str, Any] = parser.parse_args_into_dataclasses()
if (
os.path.exists(training_args.output_dir )
and os.listdir(training_args.output_dir )
and training_args.do_train
and not training_args.overwrite_output_dir
):
raise ValueError(
f'Output directory ({training_args.output_dir}) already exists and is not empty. Use'
""" --overwrite_output_dir to overcome.""" )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO, )
logger.info(
f'n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, '
f'16-bits training: {training_args.fpaa}' )
logger.info(f'Training/evaluation parameters {training_args}' )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__magic_name__ : Optional[Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, )
__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : List[Any] = get_tfds(
train_file=data_args.train_file, eval_file=data_args.dev_file, test_file=data_args.test_file, tokenizer=_A, label_column_id=data_args.label_column_id, max_seq_length=data_args.max_seq_length, )
__magic_name__ : str = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=len(_A ), labelaid=_A, idalabel={id: label for label, id in labelaid.items()}, finetuning_task="""text-classification""", cache_dir=model_args.cache_dir, )
with training_args.strategy.scope():
__magic_name__ : Optional[int] = TFAutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path, from_pt=bool(""".bin""" in model_args.model_name_or_path ), config=_A, cache_dir=model_args.cache_dir, )
def compute_metrics(_A ) -> Dict:
__magic_name__ : Dict = np.argmax(p.predictions, axis=1 )
return {"acc": (preds == p.label_ids).mean()}
# Initialize our Trainer
__magic_name__ : List[str] = TFTrainer(
model=_A, args=_A, train_dataset=_A, eval_dataset=_A, compute_metrics=_A, )
# Training
if training_args.do_train:
trainer.train()
trainer.save_model()
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
__magic_name__ : List[Any] = {}
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
__magic_name__ : Optional[Any] = trainer.evaluate()
__magic_name__ : List[Any] = os.path.join(training_args.output_dir, """eval_results.txt""" )
with open(_A, """w""" ) as writer:
logger.info("""***** Eval results *****""" )
for key, value in result.items():
logger.info(f' {key} = {value}' )
writer.write(f'{key} = {value}\n' )
results.update(_A )
return results
if __name__ == "__main__":
main()
| 342 |
def UpperCamelCase ( _A ):
"""simple docstring"""
if not all(x.isalpha() for x in string ):
raise ValueError("""String must only contain alphabetic characters.""" )
__magic_name__ : int = sorted(string.lower() )
return len(_A ) == len(set(_A ) )
if __name__ == "__main__":
__magic_name__: Dict = input("Enter a string ").strip()
__magic_name__: Union[str, Any] = is_isogram(input_str)
print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
| 342 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
__magic_name__: int = logging.get_logger(__name__)
__magic_name__: Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__magic_name__: int = {
"vocab_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt"
),
"distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt",
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json",
"distilbert-base-uncased-distilled-squad": (
"https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json",
"distilbert-base-cased-distilled-squad": (
"https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json"
),
"distilbert-base-german-cased": (
"https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json"
),
"distilbert-base-multilingual-cased": (
"https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json"
),
},
}
__magic_name__: str = {
"distilbert-base-uncased": 512,
"distilbert-base-uncased-distilled-squad": 512,
"distilbert-base-cased": 512,
"distilbert-base-cased-distilled-squad": 512,
"distilbert-base-german-cased": 512,
"distilbert-base-multilingual-cased": 512,
}
__magic_name__: List[Any] = {
"distilbert-base-uncased": {"do_lower_case": True},
"distilbert-base-uncased-distilled-squad": {"do_lower_case": True},
"distilbert-base-cased": {"do_lower_case": False},
"distilbert-base-cased-distilled-squad": {"do_lower_case": False},
"distilbert-base-german-cased": {"do_lower_case": False},
"distilbert-base-multilingual-cased": {"do_lower_case": False},
}
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES
lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ : str = PRETRAINED_INIT_CONFIGURATION
lowercase__ : Optional[int] = ['''input_ids''', '''attention_mask''']
lowercase__ : List[Any] = DistilBertTokenizer
def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__="[UNK]" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="[PAD]" , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[MASK]" , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> Optional[int]:
super().__init__(
lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , )
__magic_name__ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" , lowerCAmelCase__ ) != do_lower_case
or normalizer_state.get("""strip_accents""" , lowerCAmelCase__ ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase__ ) != tokenize_chinese_chars
):
__magic_name__ : List[str] = getattr(lowerCAmelCase__ , normalizer_state.pop("""type""" ) )
__magic_name__ : List[str] = do_lower_case
__magic_name__ : Any = strip_accents
__magic_name__ : int = tokenize_chinese_chars
__magic_name__ : int = normalizer_class(**lowerCAmelCase__ )
__magic_name__ : str = do_lower_case
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> str:
__magic_name__ : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
__magic_name__ : Optional[Any] = [self.sep_token_id]
__magic_name__ : str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]:
__magic_name__ : Any = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__ )
return tuple(lowerCAmelCase__ )
| 342 |
import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
"The `inpainting.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionInpaintPipeline` instead."
)
| 342 | 1 |
# flake8: noqa
# Lint as: python3
from typing import Dict, List, Optional, Type
from .. import config
from ..utils import logging
from .formatting import (
ArrowFormatter,
CustomFormatter,
Formatter,
PandasFormatter,
PythonFormatter,
TensorFormatter,
format_table,
query_table,
)
from .np_formatter import NumpyFormatter
__magic_name__: int = logging.get_logger(__name__)
__magic_name__: Dict[Optional[str], Type[Formatter]] = {}
__magic_name__: Dict[Optional[str], str] = {}
__magic_name__: Dict[Optional[str], Exception] = {}
def UpperCamelCase ( _A, _A, _A = None, ):
"""simple docstring"""
__magic_name__ : Optional[int] = aliases if aliases is not None else []
if format_type in _FORMAT_TYPES:
logger.warning(
f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' )
__magic_name__ : List[str] = formatter_cls
for alias in set(aliases + [format_type] ):
if alias in _FORMAT_TYPES_ALIASES:
logger.warning(
f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' )
__magic_name__ : Optional[int] = format_type
def UpperCamelCase ( _A, _A, _A = None ):
"""simple docstring"""
__magic_name__ : List[Any] = aliases if aliases is not None else []
for alias in set(aliases + [format_type] ):
__magic_name__ : Optional[Any] = unavailable_error
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
_register_formatter(PythonFormatter, None, aliases=["python"])
_register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"])
_register_formatter(NumpyFormatter, "numpy", aliases=["np"])
_register_formatter(PandasFormatter, "pandas", aliases=["pd"])
_register_formatter(CustomFormatter, "custom")
if config.TORCH_AVAILABLE:
from .torch_formatter import TorchFormatter
_register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"])
else:
__magic_name__: Dict = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.")
_register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"])
if config.TF_AVAILABLE:
from .tf_formatter import TFFormatter
_register_formatter(TFFormatter, "tensorflow", aliases=["tf"])
else:
__magic_name__: str = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.")
_register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"])
if config.JAX_AVAILABLE:
from .jax_formatter import JaxFormatter
_register_formatter(JaxFormatter, "jax", aliases=[])
else:
__magic_name__: int = ValueError("JAX needs to be installed to be able to return JAX arrays.")
_register_unavailable_formatter(_jax_error, "jax", aliases=[])
def UpperCamelCase ( _A ):
"""simple docstring"""
if format_type in _FORMAT_TYPES_ALIASES:
return _FORMAT_TYPES_ALIASES[format_type]
else:
return format_type
def UpperCamelCase ( _A, **_A ):
"""simple docstring"""
__magic_name__ : Tuple = get_format_type_from_alias(_A )
if format_type in _FORMAT_TYPES:
return _FORMAT_TYPES[format_type](**_A )
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
else:
raise ValueError(
f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
| 342 |
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class snake_case__ ( unittest.TestCase ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]:
__magic_name__ : str = parent
__magic_name__ : Dict = do_resize
__magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88}
__magic_name__ : Union[str, Any] = size_divisor
__magic_name__ : Union[str, Any] = do_rescale
__magic_name__ : Dict = rescale_factor
__magic_name__ : Union[str, Any] = do_normalize
__magic_name__ : List[str] = do_center_crop
__magic_name__ : Tuple = image_mean
__magic_name__ : Tuple = image_std
__magic_name__ : Tuple = do_pad
__magic_name__ : int = batch_size
__magic_name__ : List[Any] = num_channels
__magic_name__ : int = min_resolution
__magic_name__ : str = max_resolution
def __magic_name__ ( self ) -> str:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int:
if not batched:
__magic_name__ : Dict = self.size["""shortest_edge"""]
__magic_name__ : List[str] = image_inputs[0]
if isinstance(lowerCAmelCase__ , Image.Image ):
__magic_name__ ,__magic_name__ : List[Any] = image.size
else:
__magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2]
__magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ )
if h < w:
__magic_name__ ,__magic_name__ : str = size, scale * w
else:
__magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size
__magic_name__ : Tuple = int((13_33 / 8_00) * size )
if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size:
__magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = newh * scale
__magic_name__ : Any = neww * scale
__magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 )
__magic_name__ ,__magic_name__ : int = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
__magic_name__ : Union[str, Any] = []
for image in image_inputs:
__magic_name__ ,__magic_name__ : int = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0]
__magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : Any = BridgeTowerImageProcessingTester(self )
@property
def __magic_name__ ( self ) -> List[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def __magic_name__ ( self ) -> Any:
__magic_name__ : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) )
def __magic_name__ ( self ) -> Optional[int]:
pass
def __magic_name__ ( self ) -> Tuple:
# Initialize image processor
__magic_name__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
__magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __magic_name__ ( self ) -> Tuple:
# Initialize image processor
__magic_name__ : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
__magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __magic_name__ ( self ) -> str:
# Initialize image processor
__magic_name__ : int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
__magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 342 | 1 |
def UpperCamelCase ( _A ):
"""simple docstring"""
def merge(_A, _A ) -> list:
def _merge():
while left and right:
yield (left if left[0] <= right[0] else right).pop(0 )
yield from left
yield from right
return list(_merge() )
if len(_A ) <= 1:
return collection
__magic_name__ : str = len(_A ) // 2
return merge(merge_sort(collection[:mid] ), merge_sort(collection[mid:] ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
__magic_name__: List[Any] = input("Enter numbers separated by a comma:\n").strip()
__magic_name__: Optional[int] = [int(item) for item in user_input.split(",")]
print(*merge_sort(unsorted), sep=",")
| 342 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__magic_name__: Tuple = {
"configuration_clap": [
"CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClapAudioConfig",
"ClapConfig",
"ClapTextConfig",
],
"processing_clap": ["ClapProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__: Union[str, Any] = [
"CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClapModel",
"ClapPreTrainedModel",
"ClapTextModel",
"ClapTextModelWithProjection",
"ClapAudioModel",
"ClapAudioModelWithProjection",
]
__magic_name__: Optional[Any] = ["ClapFeatureExtractor"]
if TYPE_CHECKING:
from .configuration_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioConfig,
ClapConfig,
ClapTextConfig,
)
from .processing_clap import ClapProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clap import ClapFeatureExtractor
from .modeling_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioModel,
ClapAudioModelWithProjection,
ClapModel,
ClapPreTrainedModel,
ClapTextModel,
ClapTextModelWithProjection,
)
else:
import sys
__magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 342 | 1 |
def UpperCamelCase ( _A ):
"""simple docstring"""
if not all(x.isalpha() for x in string ):
raise ValueError("""String must only contain alphabetic characters.""" )
__magic_name__ : int = sorted(string.lower() )
return len(_A ) == len(set(_A ) )
if __name__ == "__main__":
__magic_name__: Dict = input("Enter a string ").strip()
__magic_name__: Union[str, Any] = is_isogram(input_str)
print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
| 342 |
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__magic_name__: Dict = logging.get_logger(__name__)
__magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all BART models at https://huggingface.co/models?filter=bart
__magic_name__: Optional[Any] = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
}
__magic_name__: List[Any] = {
"facebook/bart-base": 1_024,
"facebook/bart-large": 1_024,
"facebook/bart-large-mnli": 1_024,
"facebook/bart-large-cnn": 1_024,
"facebook/bart-large-xsum": 1_024,
"yjernite/bart_eli5": 1_024,
}
@lru_cache()
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : Any = (
list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) )
)
__magic_name__ : Any = bs[:]
__magic_name__ : Dict = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_A )
cs.append(2**8 + n )
n += 1
__magic_name__ : List[str] = [chr(_A ) for n in cs]
return dict(zip(_A, _A ) )
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : str = set()
__magic_name__ : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__magic_name__ : List[Any] = char
return pairs
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES
lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask''']
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict:
__magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
__magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
__magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
__magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
__magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
__magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , )
with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle:
__magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ )
__magic_name__ : Any = {v: k for k, v in self.encoder.items()}
__magic_name__ : Tuple = errors # how to handle errors in decoding
__magic_name__ : Tuple = bytes_to_unicode()
__magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle:
__magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1]
__magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges]
__magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
__magic_name__ : str = {}
__magic_name__ : int = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
@property
def __magic_name__ ( self ) -> Optional[Any]:
return len(self.encoder )
def __magic_name__ ( self ) -> Optional[int]:
return dict(self.encoder , **self.added_tokens_encoder )
def __magic_name__ ( self , lowerCAmelCase__ ) -> str:
if token in self.cache:
return self.cache[token]
__magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ )
if not pairs:
return token
while True:
__magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
__magic_name__ ,__magic_name__ : List[str] = bigram
__magic_name__ : Any = []
__magic_name__ : Any = 0
while i < len(lowerCAmelCase__ ):
try:
__magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__magic_name__ : Optional[Any] = j
if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__magic_name__ : str = tuple(lowerCAmelCase__ )
__magic_name__ : Optional[int] = new_word
if len(lowerCAmelCase__ ) == 1:
break
else:
__magic_name__ : List[str] = get_pairs(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ )
__magic_name__ : str = word
return word
def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : str = []
for token in re.findall(self.pat , lowerCAmelCase__ ):
__magic_name__ : List[Any] = """""".join(
self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) )
return bpe_tokens
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.decoder.get(lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Any:
__magic_name__ : Tuple = """""".join(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors )
return text
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
__magic_name__ : Tuple = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
__magic_name__ : List[str] = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" )
__magic_name__ : Optional[Any] = 0
with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
""" Please check that the tokenizer is not corrupted!""" )
__magic_name__ : Optional[int] = token_index
writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" )
index += 1
return vocab_file, merge_file
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__magic_name__ : List[str] = [self.cls_token_id]
__magic_name__ : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
__magic_name__ : Dict = [self.sep_token_id]
__magic_name__ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()):
__magic_name__ : List[Any] = """ """ + text
return (text, kwargs)
| 342 | 1 |
import argparse
import fairseq
import torch
from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging
logging.set_verbosity_info()
__magic_name__: int = logging.get_logger(__name__)
__magic_name__: Tuple = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.k_proj": "encoder.layers.*.attention.k_proj",
"self_attn.v_proj": "encoder.layers.*.attention.v_proj",
"self_attn.q_proj": "encoder.layers.*.attention.q_proj",
"self_attn.out_proj": "encoder.layers.*.attention.out_proj",
"self_attn_layer_norm": "encoder.layers.*.layer_norm",
"fc1": "encoder.layers.*.feed_forward.intermediate_dense",
"fc2": "encoder.layers.*.feed_forward.output_dense",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"encoder.layer_norm_for_extract": "layer_norm_for_extract",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"label_embs_concat": "label_embeddings_concat",
"mask_emb": "masked_spec_embed",
"spk_proj": "speaker_proj",
}
__magic_name__: Optional[Any] = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
"label_embeddings_concat",
"speaker_proj",
"layer_norm_for_extract",
]
def UpperCamelCase ( _A, _A, _A, _A, _A ):
"""simple docstring"""
for attribute in key.split(""".""" ):
__magic_name__ : Any = getattr(_A, _A )
if weight_type is not None:
__magic_name__ : Optional[int] = getattr(_A, _A ).shape
else:
__magic_name__ : Tuple = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be'
f' {value.shape} for {full_name}' )
if weight_type == "weight":
__magic_name__ : Any = value
elif weight_type == "weight_g":
__magic_name__ : Tuple = value
elif weight_type == "weight_v":
__magic_name__ : List[Any] = value
elif weight_type == "bias":
__magic_name__ : Optional[Any] = value
else:
__magic_name__ : List[Any] = value
logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' )
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
__magic_name__ : int = []
__magic_name__ : Dict = fairseq_model.state_dict()
__magic_name__ : Optional[int] = hf_model.unispeech_sat.feature_extractor
for name, value in fairseq_dict.items():
__magic_name__ : Tuple = False
if "conv_layers" in name:
load_conv_layer(
_A, _A, _A, _A, hf_model.config.feat_extract_norm == """group""", )
__magic_name__ : int = True
else:
for key, mapped_key in MAPPING.items():
__magic_name__ : Tuple = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]:
if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key):
# special case since naming is very similar
continue
__magic_name__ : Union[str, Any] = True
if "*" in mapped_key:
__magic_name__ : Tuple = name.split(_A )[0].split(""".""" )[-2]
__magic_name__ : Dict = mapped_key.replace("""*""", _A )
if "weight_g" in name:
__magic_name__ : List[Any] = """weight_g"""
elif "weight_v" in name:
__magic_name__ : Tuple = """weight_v"""
elif "bias" in name:
__magic_name__ : Union[str, Any] = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__magic_name__ : Optional[Any] = """weight"""
else:
__magic_name__ : Union[str, Any] = None
set_recursively(_A, _A, _A, _A, _A )
continue
if not is_used:
unused_weights.append(_A )
logger.warning(f'Unused weights: {unused_weights}' )
def UpperCamelCase ( _A, _A, _A, _A, _A ):
"""simple docstring"""
__magic_name__ : Dict = full_name.split("""conv_layers.""" )[-1]
__magic_name__ : Optional[Any] = name.split(""".""" )
__magic_name__ : List[Any] = int(items[0] )
__magic_name__ : List[str] = int(items[1] )
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' )
__magic_name__ : int = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' )
__magic_name__ : List[str] = value
logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' )
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.' )
__magic_name__ : Optional[Any] = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
f'{full_name} has size {value.shape}, but'
f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' )
__magic_name__ : str = value
logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' )
else:
unused_weights.append(_A )
@torch.no_grad()
def UpperCamelCase ( _A, _A, _A=None, _A=None, _A=True ):
"""simple docstring"""
if config_path is not None:
__magic_name__ : List[str] = UniSpeechSatConfig.from_pretrained(_A )
else:
__magic_name__ : Dict = UniSpeechSatConfig()
__magic_name__ : Dict = """"""
if is_finetuned:
__magic_name__ : Dict = UniSpeechSatForCTC(_A )
else:
__magic_name__ : Dict = UniSpeechSatForPreTraining(_A )
__magic_name__ ,__magic_name__ ,__magic_name__ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path], arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} )
__magic_name__ : str = model[0].eval()
recursively_load_weights(_A, _A )
hf_wavavec.save_pretrained(_A )
if __name__ == "__main__":
__magic_name__: List[str] = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint")
parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
parser.add_argument(
"--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not"
)
__magic_name__: Any = parser.parse_args()
convert_unispeech_sat_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 342 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str:
__magic_name__ : Optional[int] = parent
__magic_name__ : Any = batch_size
__magic_name__ : Union[str, Any] = image_size
__magic_name__ : Optional[int] = patch_size
__magic_name__ : Union[str, Any] = num_channels
__magic_name__ : str = embed_dim
__magic_name__ : int = hidden_sizes
__magic_name__ : Union[str, Any] = depths
__magic_name__ : List[str] = num_heads
__magic_name__ : str = window_size
__magic_name__ : Optional[Any] = mlp_ratio
__magic_name__ : Dict = qkv_bias
__magic_name__ : Dict = hidden_dropout_prob
__magic_name__ : Optional[Any] = attention_probs_dropout_prob
__magic_name__ : List[Any] = drop_path_rate
__magic_name__ : Optional[Any] = hidden_act
__magic_name__ : int = use_absolute_embeddings
__magic_name__ : Dict = patch_norm
__magic_name__ : Tuple = layer_norm_eps
__magic_name__ : List[str] = initializer_range
__magic_name__ : Optional[int] = is_training
__magic_name__ : Optional[Any] = scope
__magic_name__ : Union[str, Any] = use_labels
__magic_name__ : Optional[Any] = type_sequence_label_size
__magic_name__ : Union[str, Any] = encoder_stride
__magic_name__ : List[Any] = out_features
__magic_name__ : Union[str, Any] = out_indices
def __magic_name__ ( self ) -> str:
__magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__magic_name__ : Optional[Any] = None
if self.use_labels:
__magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : Dict = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self ) -> List[Any]:
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Optional[int] = model(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Tuple = model(lowerCAmelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
__magic_name__ : Optional[Any] = None
__magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Union[str, Any] = model(lowerCAmelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : str = model(lowerCAmelCase__ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__magic_name__ : Optional[int] = 1
__magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__magic_name__ : List[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : int = self.type_sequence_label_size
__magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__magic_name__ : Optional[int] = 1
__magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__magic_name__ : Dict = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __magic_name__ ( self ) -> int:
__magic_name__ : int = self.prepare_config_and_inputs()
__magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs
__magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : str = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
lowercase__ : Any = (
{'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification}
if is_torch_available()
else {}
)
lowercase__ : Dict = False
lowercase__ : Dict = False
lowercase__ : int = False
lowercase__ : Tuple = False
lowercase__ : Optional[Any] = False
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Optional[Any] = FocalNetModelTester(self )
__magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __magic_name__ ( self ) -> List[str]:
return
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ )
@unittest.skip(reason="""FocalNet does not use inputs_embeds""" )
def __magic_name__ ( self ) -> List[str]:
pass
@unittest.skip(reason="""FocalNet does not use feedforward chunking""" )
def __magic_name__ ( self ) -> List[Any]:
pass
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
__magic_name__ : Dict = model_class(lowerCAmelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__magic_name__ : Dict = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
__magic_name__ : str = model_class(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Tuple = [*signature.parameters.keys()]
__magic_name__ : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict:
__magic_name__ : List[Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : Optional[Any] = outputs.hidden_states
__magic_name__ : Union[str, Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
# FocalNet has a different seq_length
__magic_name__ : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__magic_name__ : str = outputs.reshaped_hidden_states
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape
__magic_name__ : Union[str, Any] = (
reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __magic_name__ ( self ) -> str:
__magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
__magic_name__ : List[Any] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : Optional[Any] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self ) -> str:
__magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[Any] = 3
__magic_name__ : Union[str, Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__magic_name__ : Dict = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
__magic_name__ : Optional[int] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : str = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) )
@slow
def __magic_name__ ( self ) -> Union[str, Any]:
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ )
for model_class in self.all_model_classes:
__magic_name__ : Any = model_class(config=lowerCAmelCase__ )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class snake_case__ ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self ) -> Optional[int]:
# TODO update organization
return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None
@slow
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = self.default_image_processor
__magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
__magic_name__ : List[Any] = model(**lowerCAmelCase__ )
# verify the logits
__magic_name__ : Union[str, Any] = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
__magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 )
@require_torch
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else ()
lowercase__ : Optional[int] = FocalNetConfig
lowercase__ : Dict = False
def __magic_name__ ( self ) -> int:
__magic_name__ : Dict = FocalNetModelTester(self )
| 342 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__magic_name__: Any = logging.get_logger(__name__)
__magic_name__: List[str] = {
"edbeeching/decision-transformer-gym-hopper-medium": (
"https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json"
),
# See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer
}
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : Any = '''decision_transformer'''
lowercase__ : str = ['''past_key_values''']
lowercase__ : Any = {
'''max_position_embeddings''': '''n_positions''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self , lowerCAmelCase__=17 , lowerCAmelCase__=4 , lowerCAmelCase__=1_28 , lowerCAmelCase__=40_96 , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=10_24 , lowerCAmelCase__=3 , lowerCAmelCase__=1 , lowerCAmelCase__=None , lowerCAmelCase__="relu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=5_02_56 , lowerCAmelCase__=5_02_56 , lowerCAmelCase__=False , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> List[Any]:
__magic_name__ : List[Any] = state_dim
__magic_name__ : Optional[Any] = act_dim
__magic_name__ : List[str] = hidden_size
__magic_name__ : int = max_ep_len
__magic_name__ : Optional[int] = action_tanh
__magic_name__ : Tuple = vocab_size
__magic_name__ : Any = n_positions
__magic_name__ : int = n_layer
__magic_name__ : Optional[Any] = n_head
__magic_name__ : List[str] = n_inner
__magic_name__ : Optional[int] = activation_function
__magic_name__ : Optional[int] = resid_pdrop
__magic_name__ : List[str] = embd_pdrop
__magic_name__ : Tuple = attn_pdrop
__magic_name__ : str = layer_norm_epsilon
__magic_name__ : Any = initializer_range
__magic_name__ : Dict = scale_attn_weights
__magic_name__ : Dict = use_cache
__magic_name__ : List[Any] = scale_attn_by_inverse_layer_idx
__magic_name__ : Dict = reorder_and_upcast_attn
__magic_name__ : List[Any] = bos_token_id
__magic_name__ : Union[str, Any] = eos_token_id
super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
| 342 |
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]:
__magic_name__ : int = parent
__magic_name__ : Tuple = batch_size
__magic_name__ : int = image_size
__magic_name__ : str = num_channels
__magic_name__ : Dict = patch_size
__magic_name__ : Tuple = num_frames
__magic_name__ : List[Any] = is_training
__magic_name__ : List[Any] = use_labels
__magic_name__ : Dict = hidden_size
__magic_name__ : List[Any] = num_hidden_layers
__magic_name__ : str = num_attention_heads
__magic_name__ : List[Any] = intermediate_size
__magic_name__ : Dict = hidden_act
__magic_name__ : List[Any] = hidden_dropout_prob
__magic_name__ : Union[str, Any] = attention_probs_dropout_prob
__magic_name__ : Tuple = attention_type
__magic_name__ : List[str] = initializer_range
__magic_name__ : Optional[Any] = scope
__magic_name__ : Tuple = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__magic_name__ : str = (image_size // patch_size) ** 2
__magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Optional[Any] = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__magic_name__ : str = None
if self.use_labels:
__magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels )
__magic_name__ : Optional[Any] = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self ) -> str:
__magic_name__ : Dict = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__magic_name__ : Optional[Any] = self.num_labels
return config
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Optional[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any:
__magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : List[Any] = model(lowerCAmelCase__ )
# verify the logits shape
__magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ )
def __magic_name__ ( self ) -> Any:
__magic_name__ : Union[str, Any] = self.prepare_config_and_inputs()
__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs
__magic_name__ : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowercase__ : Union[str, Any] = (
{'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowercase__ : int = False
lowercase__ : str = False
lowercase__ : Tuple = False
lowercase__ : Any = False
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : List[Any] = TimesformerModelTester(self )
__magic_name__ : List[str] = ConfigTester(
self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]:
__magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ )
if return_labels:
if model_class in get_values(lowerCAmelCase__ ):
__magic_name__ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ )
return inputs_dict
def __magic_name__ ( self ) -> List[str]:
self.config_tester.run_common_tests()
@unittest.skip(reason="""TimeSformer does not use inputs_embeds""" )
def __magic_name__ ( self ) -> str:
pass
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : List[Any] = model_class(lowerCAmelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__magic_name__ : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) )
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Dict = model_class(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Optional[int] = [*signature.parameters.keys()]
__magic_name__ : Any = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ )
@slow
def __magic_name__ ( self ) -> Optional[int]:
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
if not self.has_attentions:
pass
else:
__magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[int] = True
for model_class in self.all_model_classes:
__magic_name__ : Tuple = self.model_tester.seq_length
__magic_name__ : int = self.model_tester.num_frames
__magic_name__ : Any = True
__magic_name__ : Tuple = False
__magic_name__ : Optional[int] = True
__magic_name__ : str = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : List[str] = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__magic_name__ : Optional[Any] = True
__magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : int = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__magic_name__ : Union[str, Any] = len(lowerCAmelCase__ )
# Check attention is always last and order is fine
__magic_name__ : str = True
__magic_name__ : Optional[Any] = True
__magic_name__ : int = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) )
__magic_name__ : Union[str, Any] = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def __magic_name__ ( self ) -> Any:
def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
__magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : Optional[Any] = outputs.hidden_states
__magic_name__ : str = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
__magic_name__ : str = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Optional[Any] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : Union[str, Any] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : List[Any] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" )
__magic_name__ : List[str] = np.load(_A )
return list(_A )
@require_torch
@require_vision
class snake_case__ ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self ) -> Optional[Any]:
# logits were tested with a different mean and std, so we use the same here
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to(
lowerCAmelCase__ )
__magic_name__ : str = self.default_image_processor
__magic_name__ : Any = prepare_video()
__magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
__magic_name__ : int = model(**lowerCAmelCase__ )
# verify the logits
__magic_name__ : Optional[int] = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
| 342 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.