code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
from collections import deque
from math import floor
from random import random
from time import time
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self )-> List[Any]:
'''simple docstring'''
__UpperCamelCase = {}
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1 )-> Any:
'''simple docstring'''
if self.graph.get(SCREAMING_SNAKE_CASE_ ):
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
__UpperCamelCase = [[w, v]]
if not self.graph.get(SCREAMING_SNAKE_CASE_ ):
__UpperCamelCase = []
def A__ ( self )-> List[str]:
'''simple docstring'''
return list(self.graph )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> List[Any]:
'''simple docstring'''
if self.graph.get(SCREAMING_SNAKE_CASE_ ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_=-2 , SCREAMING_SNAKE_CASE_=-1 )-> int:
'''simple docstring'''
if s == d:
return []
__UpperCamelCase = []
__UpperCamelCase = []
if s == -2:
__UpperCamelCase = list(self.graph )[0]
stack.append(SCREAMING_SNAKE_CASE_ )
visited.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__UpperCamelCase = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(SCREAMING_SNAKE_CASE_ )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
__UpperCamelCase = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(SCREAMING_SNAKE_CASE_ ) != 0:
__UpperCamelCase = stack[len(SCREAMING_SNAKE_CASE_ ) - 1]
else:
__UpperCamelCase = ss
# check if se have reached the starting point
if len(SCREAMING_SNAKE_CASE_ ) == 0:
return visited
def A__ ( self , SCREAMING_SNAKE_CASE_=-1 )-> int:
'''simple docstring'''
if c == -1:
__UpperCamelCase = floor(random() * 10000 ) + 10
for i in range(SCREAMING_SNAKE_CASE_ ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
__UpperCamelCase = floor(random() * c ) + 1
if n != i:
self.add_pair(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 )
def A__ ( self , SCREAMING_SNAKE_CASE_=-2 )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = deque()
__UpperCamelCase = []
if s == -2:
__UpperCamelCase = list(self.graph )[0]
d.append(SCREAMING_SNAKE_CASE_ )
visited.append(SCREAMING_SNAKE_CASE_ )
while d:
__UpperCamelCase = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = 0
for x in self.graph:
for y in self.graph[x]:
if y[1] == u:
count += 1
return count
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> List[str]:
'''simple docstring'''
return len(self.graph[u] )
def A__ ( self , SCREAMING_SNAKE_CASE_=-2 )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = []
__UpperCamelCase = []
if s == -2:
__UpperCamelCase = list(self.graph )[0]
stack.append(SCREAMING_SNAKE_CASE_ )
visited.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = s
__UpperCamelCase = []
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__UpperCamelCase = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
__UpperCamelCase = node[1]
break
# check if all the children are visited
if s == ss:
sorted_nodes.append(stack.pop() )
if len(SCREAMING_SNAKE_CASE_ ) != 0:
__UpperCamelCase = stack[len(SCREAMING_SNAKE_CASE_ ) - 1]
else:
__UpperCamelCase = ss
# check if se have reached the starting point
if len(SCREAMING_SNAKE_CASE_ ) == 0:
return sorted_nodes
def A__ ( self )-> str:
'''simple docstring'''
__UpperCamelCase = []
__UpperCamelCase = []
__UpperCamelCase = list(self.graph )[0]
stack.append(SCREAMING_SNAKE_CASE_ )
visited.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = -2
__UpperCamelCase = []
__UpperCamelCase = s
__UpperCamelCase = False
__UpperCamelCase = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__UpperCamelCase = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
__UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
__UpperCamelCase = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
__UpperCamelCase = True
if len(SCREAMING_SNAKE_CASE_ ) != 0:
__UpperCamelCase = stack[len(SCREAMING_SNAKE_CASE_ ) - 1]
else:
__UpperCamelCase = False
indirect_parents.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = s
__UpperCamelCase = ss
# check if se have reached the starting point
if len(SCREAMING_SNAKE_CASE_ ) == 0:
return list(SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> List[Any]:
'''simple docstring'''
__UpperCamelCase = []
__UpperCamelCase = []
__UpperCamelCase = list(self.graph )[0]
stack.append(SCREAMING_SNAKE_CASE_ )
visited.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = -2
__UpperCamelCase = []
__UpperCamelCase = s
__UpperCamelCase = False
__UpperCamelCase = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__UpperCamelCase = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
__UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
__UpperCamelCase = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
__UpperCamelCase = True
if len(SCREAMING_SNAKE_CASE_ ) != 0:
__UpperCamelCase = stack[len(SCREAMING_SNAKE_CASE_ ) - 1]
else:
__UpperCamelCase = False
indirect_parents.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = s
__UpperCamelCase = ss
# check if se have reached the starting point
if len(SCREAMING_SNAKE_CASE_ ) == 0:
return False
def A__ ( self , SCREAMING_SNAKE_CASE_=-2 , SCREAMING_SNAKE_CASE_=-1 )-> Dict:
'''simple docstring'''
__UpperCamelCase = time()
self.dfs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = time()
return end - begin
def A__ ( self , SCREAMING_SNAKE_CASE_=-2 )-> int:
'''simple docstring'''
__UpperCamelCase = time()
self.bfs(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = time()
return end - begin
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self )-> Dict:
'''simple docstring'''
__UpperCamelCase = {}
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1 )-> str:
'''simple docstring'''
if self.graph.get(SCREAMING_SNAKE_CASE_ ):
# if there already is a edge
if self.graph[u].count([w, v] ) == 0:
self.graph[u].append([w, v] )
else:
# if u does not exist
__UpperCamelCase = [[w, v]]
# add the other way
if self.graph.get(SCREAMING_SNAKE_CASE_ ):
# if there already is a edge
if self.graph[v].count([w, u] ) == 0:
self.graph[v].append([w, u] )
else:
# if u does not exist
__UpperCamelCase = [[w, u]]
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> Any:
'''simple docstring'''
if self.graph.get(SCREAMING_SNAKE_CASE_ ):
for _ in self.graph[u]:
if _[1] == v:
self.graph[u].remove(SCREAMING_SNAKE_CASE_ )
# the other way round
if self.graph.get(SCREAMING_SNAKE_CASE_ ):
for _ in self.graph[v]:
if _[1] == u:
self.graph[v].remove(SCREAMING_SNAKE_CASE_ )
def A__ ( self , SCREAMING_SNAKE_CASE_=-2 , SCREAMING_SNAKE_CASE_=-1 )-> Optional[Any]:
'''simple docstring'''
if s == d:
return []
__UpperCamelCase = []
__UpperCamelCase = []
if s == -2:
__UpperCamelCase = list(self.graph )[0]
stack.append(SCREAMING_SNAKE_CASE_ )
visited.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = s
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__UpperCamelCase = s
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
if node[1] == d:
visited.append(SCREAMING_SNAKE_CASE_ )
return visited
else:
stack.append(node[1] )
visited.append(node[1] )
__UpperCamelCase = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
if len(SCREAMING_SNAKE_CASE_ ) != 0:
__UpperCamelCase = stack[len(SCREAMING_SNAKE_CASE_ ) - 1]
else:
__UpperCamelCase = ss
# check if se have reached the starting point
if len(SCREAMING_SNAKE_CASE_ ) == 0:
return visited
def A__ ( self , SCREAMING_SNAKE_CASE_=-1 )-> Tuple:
'''simple docstring'''
if c == -1:
__UpperCamelCase = floor(random() * 10000 ) + 10
for i in range(SCREAMING_SNAKE_CASE_ ):
# every vertex has max 100 edges
for _ in range(floor(random() * 102 ) + 1 ):
__UpperCamelCase = floor(random() * c ) + 1
if n != i:
self.add_pair(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1 )
def A__ ( self , SCREAMING_SNAKE_CASE_=-2 )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = deque()
__UpperCamelCase = []
if s == -2:
__UpperCamelCase = list(self.graph )[0]
d.append(SCREAMING_SNAKE_CASE_ )
visited.append(SCREAMING_SNAKE_CASE_ )
while d:
__UpperCamelCase = d.popleft()
if len(self.graph[s] ) != 0:
for node in self.graph[s]:
if visited.count(node[1] ) < 1:
d.append(node[1] )
visited.append(node[1] )
return visited
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Any:
'''simple docstring'''
return len(self.graph[u] )
def A__ ( self )-> Tuple:
'''simple docstring'''
__UpperCamelCase = []
__UpperCamelCase = []
__UpperCamelCase = list(self.graph )[0]
stack.append(SCREAMING_SNAKE_CASE_ )
visited.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = -2
__UpperCamelCase = []
__UpperCamelCase = s
__UpperCamelCase = False
__UpperCamelCase = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__UpperCamelCase = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
__UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ) - 1
while len_stack >= 0:
if stack[len_stack] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
anticipating_nodes.add(stack[len_stack] )
len_stack -= 1
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
__UpperCamelCase = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
__UpperCamelCase = True
if len(SCREAMING_SNAKE_CASE_ ) != 0:
__UpperCamelCase = stack[len(SCREAMING_SNAKE_CASE_ ) - 1]
else:
__UpperCamelCase = False
indirect_parents.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = s
__UpperCamelCase = ss
# check if se have reached the starting point
if len(SCREAMING_SNAKE_CASE_ ) == 0:
return list(SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> str:
'''simple docstring'''
__UpperCamelCase = []
__UpperCamelCase = []
__UpperCamelCase = list(self.graph )[0]
stack.append(SCREAMING_SNAKE_CASE_ )
visited.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = -2
__UpperCamelCase = []
__UpperCamelCase = s
__UpperCamelCase = False
__UpperCamelCase = set()
while True:
# check if there is any non isolated nodes
if len(self.graph[s] ) != 0:
__UpperCamelCase = s
for node in self.graph[s]:
if (
visited.count(node[1] ) > 0
and node[1] != parent
and indirect_parents.count(node[1] ) > 0
and not on_the_way_back
):
__UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ) - 1
while len_stack_minus_one >= 0:
if stack[len_stack_minus_one] == node[1]:
anticipating_nodes.add(node[1] )
break
else:
return True
if visited.count(node[1] ) < 1:
stack.append(node[1] )
visited.append(node[1] )
__UpperCamelCase = node[1]
break
# check if all the children are visited
if s == ss:
stack.pop()
__UpperCamelCase = True
if len(SCREAMING_SNAKE_CASE_ ) != 0:
__UpperCamelCase = stack[len(SCREAMING_SNAKE_CASE_ ) - 1]
else:
__UpperCamelCase = False
indirect_parents.append(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = s
__UpperCamelCase = ss
# check if se have reached the starting point
if len(SCREAMING_SNAKE_CASE_ ) == 0:
return False
def A__ ( self )-> int:
'''simple docstring'''
return list(self.graph )
def A__ ( self , SCREAMING_SNAKE_CASE_=-2 , SCREAMING_SNAKE_CASE_=-1 )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = time()
self.dfs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = time()
return end - begin
def A__ ( self , SCREAMING_SNAKE_CASE_=-2 )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = time()
self.bfs(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = time()
return end - begin
| 328 |
'''simple docstring'''
__lowerCAmelCase = [
(1_000, 'M'),
(900, 'CM'),
(500, 'D'),
(400, 'CD'),
(100, 'C'),
(90, 'XC'),
(50, 'L'),
(40, 'XL'),
(10, 'X'),
(9, 'IX'),
(5, 'V'),
(4, 'IV'),
(1, 'I'),
]
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000}
_snake_case = 0
_snake_case = 0
while place < len(_SCREAMING_SNAKE_CASE ):
if (place + 1 < len(_SCREAMING_SNAKE_CASE )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = []
for arabic, roman in ROMAN:
((_snake_case), (_snake_case)) = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
result.append(roman * factor )
if number == 0:
break
return "".join(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 0 |
"""simple docstring"""
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 10_00 ) -> Dict:
'''simple docstring'''
lowercase_ = 2**power
lowercase_ = 0
while n:
lowercase_ , lowercase_ = r + n % 10, n // 10
return r
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 136 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__lowerCAmelCase = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = ['PerceiverFeatureExtractor']
__lowerCAmelCase = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 | 0 |
"""simple docstring"""
import datasets
from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py
__lowercase = """\\n@INPROCEEDINGS{Papineni02bleu:a,\n author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu},\n title = {BLEU: a Method for Automatic Evaluation of Machine Translation},\n booktitle = {},\n year = {2002},\n pages = {311--318}\n}\n@inproceedings{lin-och-2004-orange,\n title = \"{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation\",\n author = \"Lin, Chin-Yew and\n Och, Franz Josef\",\n booktitle = \"{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics\",\n month = \"aug 23{--}aug 27\",\n year = \"2004\",\n address = \"Geneva, Switzerland\",\n publisher = \"COLING\",\n url = \"https://www.aclweb.org/anthology/C04-1072\",\n pages = \"501--507\",\n}\n"""
__lowercase = """\\nBLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another.\nQuality is considered to be the correspondence between a machine\'s output and that of a human: \"the closer a machine translation is to a professional human translation,\nthe better it is\" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and\nremains one of the most popular automated and inexpensive metrics.\n\nScores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations.\nThose scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness\nare not taken into account[citation needed].\n\nBLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1\nrepresenting more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the\nreference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional\nreference translations will increase the BLEU score.\n"""
__lowercase = """\nComputes BLEU score of translated segments against one or more references.\nArgs:\n predictions: list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n max_order: Maximum n-gram order to use when computing BLEU score.\n smooth: Whether or not to apply Lin et al. 2004 smoothing.\nReturns:\n \'bleu\': bleu score,\n \'precisions\': geometric mean of n-gram precisions,\n \'brevity_penalty\': brevity penalty,\n \'length_ratio\': ratio of lengths,\n \'translation_length\': translation_length,\n \'reference_length\': reference_length\nExamples:\n\n >>> predictions = [\n ... [\"hello\", \"there\", \"general\", \"kenobi\"], # tokenized prediction of the first sample\n ... [\"foo\", \"bar\", \"foobar\"] # tokenized prediction of the second sample\n ... ]\n >>> references = [\n ... [[\"hello\", \"there\", \"general\", \"kenobi\"], [\"hello\", \"there\", \"!\"]], # tokenized references for the first sample (2 references)\n ... [[\"foo\", \"bar\", \"foobar\"]] # tokenized references for the second sample (1 reference)\n ... ]\n >>> bleu = datasets.load_metric(\"bleu\")\n >>> results = bleu.compute(predictions=predictions, references=references)\n >>> print(results[\"bleu\"])\n 1.0\n"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION )
class _A ( datasets.Metric ):
"""simple docstring"""
def __snake_case ( self : Dict):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token") , id="sequence"),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token") , id="sequence") , id="references"),
}) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[
"https://en.wikipedia.org/wiki/BLEU",
"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213",
] , )
def __snake_case ( self : str , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Any=4 , __UpperCAmelCase : int=False):
a : Union[str, Any] = compute_bleu(
reference_corpus=__UpperCAmelCase , translation_corpus=__UpperCAmelCase , max_order=__UpperCAmelCase , smooth=__UpperCAmelCase)
((a) , (a) , (a) , (a) , (a) , (a)) : Optional[Any] = score
return {
"bleu": bleu,
"precisions": precisions,
"brevity_penalty": bp,
"length_ratio": ratio,
"translation_length": translation_length,
"reference_length": reference_length,
}
| 40 |
'''simple docstring'''
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__lowerCAmelCase = 'platform'
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ):
if attention_mask is None:
_snake_case = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
_snake_case = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
_snake_case = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=99 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , ) -> Union[str, Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = seq_length
_snake_case = is_training
_snake_case = use_labels
_snake_case = vocab_size
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = max_position_embeddings
_snake_case = eos_token_id
_snake_case = pad_token_id
_snake_case = bos_token_id
_snake_case = initializer_range
def lowercase (self ) -> str:
_snake_case = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
_snake_case = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
_snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 )
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase , )
_snake_case = prepare_blenderbot_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
return config, inputs_dict
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.prepare_config_and_inputs()
return config, inputs_dict
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict:
_snake_case = 20
_snake_case = model_class_name(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] )
_snake_case, _snake_case = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase )
_snake_case = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
_snake_case = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_snake_case = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_snake_case = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase , )
_snake_case = model.decode(UpperCAmelCase , UpperCAmelCase )
_snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]:
_snake_case = 20
_snake_case = model_class_name(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] )
_snake_case, _snake_case = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_snake_case = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase )
_snake_case = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_snake_case = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_snake_case = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = model.decode(UpperCAmelCase , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase )
_snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = 99
def lowercase (self ) -> Any:
_snake_case = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
_snake_case = input_ids.shape[0]
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def lowercase (self ) -> Optional[Any]:
_snake_case, _snake_case, _snake_case = self._get_config_and_data()
_snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase )
_snake_case = lm_model(input_ids=UpperCAmelCase )
_snake_case = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase )
def lowercase (self ) -> int:
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
_snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase )
_snake_case = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
_snake_case = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
_snake_case = lm_model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase )
_snake_case = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase )
def lowercase (self ) -> Tuple:
_snake_case = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
_snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 )
_snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum()
_snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(UpperCAmelCase , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class _lowerCAmelCase ( __snake_case , unittest.TestCase , __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = True
lowerCAmelCase_ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowerCAmelCase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def lowercase (self ) -> Any:
_snake_case = FlaxBlenderbotModelTester(self )
def lowercase (self ) -> str:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_snake_case = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
_snake_case = model_class(UpperCAmelCase )
@jax.jit
def encode_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
return model.encode(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )
with self.subTest("""JIT Enabled""" ):
_snake_case = encode_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_snake_case = encode_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def lowercase (self ) -> str:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_snake_case = model_class(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
_snake_case = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
return model.decode(
decoder_input_ids=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , encoder_outputs=UpperCAmelCase , )
with self.subTest("""JIT Enabled""" ):
_snake_case = decode_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_snake_case = decode_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowercase (self ) -> Any:
for model_class_name in self.all_model_classes:
_snake_case = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
_snake_case = np.ones((1, 1) ) * model.config.eos_token_id
_snake_case = model(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" )
@slow
def lowercase (self ) -> Dict:
_snake_case = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25}
_snake_case = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True}
_snake_case = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=UpperCAmelCase )
_snake_case = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" )
_snake_case = ["""Sam"""]
_snake_case = tokenizer(UpperCAmelCase , return_tensors="""jax""" )
_snake_case = model.generate(**UpperCAmelCase , **UpperCAmelCase )
_snake_case = """Sam is a great name. It means \"sun\" in Gaelic."""
_snake_case = tokenizer.batch_decode(UpperCAmelCase , **UpperCAmelCase )
assert generated_txt[0].strip() == tgt_text | 341 | 0 |
from __future__ import annotations
import unittest
from transformers import DebertaVaConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
TFDebertaVaModel,
)
class _A :
def __init__( self : Tuple , _A : str , _A : Dict=13 , _A : str=7 , _A : List[Any]=True , _A : List[str]=True , _A : Any=True , _A : int=True , _A : List[Any]=99 , _A : Dict=32 , _A : Dict=2 , _A : int=4 , _A : int=37 , _A : str="gelu" , _A : Tuple=0.1 , _A : str=0.1 , _A : Dict=512 , _A : Any=16 , _A : int=2 , _A : Any=0.02 , _A : str=False , _A : str=True , _A : int="None" , _A : Optional[int]=3 , _A : Optional[Any]=4 , _A : Any=None , ) -> Optional[int]:
"""simple docstring"""
lowercase : int = parent
lowercase : Dict = batch_size
lowercase : Union[str, Any] = seq_length
lowercase : Optional[Any] = is_training
lowercase : List[str] = use_input_mask
lowercase : Dict = use_token_type_ids
lowercase : List[str] = use_labels
lowercase : str = vocab_size
lowercase : Union[str, Any] = hidden_size
lowercase : List[Any] = num_hidden_layers
lowercase : str = num_attention_heads
lowercase : List[Any] = intermediate_size
lowercase : Tuple = hidden_act
lowercase : List[str] = hidden_dropout_prob
lowercase : str = attention_probs_dropout_prob
lowercase : int = max_position_embeddings
lowercase : int = type_vocab_size
lowercase : str = type_sequence_label_size
lowercase : Tuple = initializer_range
lowercase : Any = num_labels
lowercase : int = num_choices
lowercase : str = relative_attention
lowercase : str = position_biased_input
lowercase : Union[str, Any] = pos_att_type
lowercase : int = scope
def __a ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase : Dict = None
if self.use_input_mask:
lowercase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
lowercase : Union[str, Any] = None
if self.use_token_type_ids:
lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
lowercase : Tuple = None
lowercase : List[Any] = None
lowercase : List[Any] = None
if self.use_labels:
lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowercase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowercase : List[str] = DebertaVaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=_A , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __a ( self : Tuple , _A : str , _A : Optional[Any] , _A : Dict , _A : Tuple , _A : Dict , _A : Dict , _A : Dict ) -> int:
"""simple docstring"""
lowercase : List[Any] = TFDebertaVaModel(config=_A )
lowercase : Tuple = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
lowercase : List[str] = [input_ids, input_mask]
lowercase : Union[str, Any] = model(_A )
lowercase : Any = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __a ( self : List[str] , _A : Tuple , _A : Optional[Any] , _A : Union[str, Any] , _A : Union[str, Any] , _A : List[str] , _A : str , _A : Union[str, Any] ) -> List[str]:
"""simple docstring"""
lowercase : List[str] = TFDebertaVaForMaskedLM(config=_A )
lowercase : int = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : int = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __a ( self : List[Any] , _A : Any , _A : Tuple , _A : int , _A : Optional[Any] , _A : Tuple , _A : Any , _A : Tuple ) -> Optional[int]:
"""simple docstring"""
lowercase : Tuple = self.num_labels
lowercase : Any = TFDebertaVaForSequenceClassification(config=_A )
lowercase : Dict = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : str = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self : str , _A : List[Any] , _A : Union[str, Any] , _A : Optional[Any] , _A : int , _A : Optional[int] , _A : List[str] , _A : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase : List[str] = self.num_labels
lowercase : str = TFDebertaVaForTokenClassification(config=_A )
lowercase : List[str] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : List[str] = model(_A )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __a ( self : str , _A : Tuple , _A : str , _A : Union[str, Any] , _A : List[Any] , _A : Tuple , _A : Tuple , _A : Union[str, Any] ) -> Optional[Any]:
"""simple docstring"""
lowercase : Any = TFDebertaVaForQuestionAnswering(config=_A )
lowercase : List[str] = {
'''input_ids''': input_ids,
'''attention_mask''': input_mask,
'''token_type_ids''': token_type_ids,
}
lowercase : Any = model(_A )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def __a ( self : str ) -> Optional[Any]:
"""simple docstring"""
lowercase : Optional[Any] = self.prepare_config_and_inputs()
(
(
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) , (
lowercase
) ,
) : Tuple = config_and_inputs
lowercase : Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_tf
class _A ( __snake_case , __snake_case , unittest.TestCase ):
_UpperCamelCase : Optional[Any] = (
(
TFDebertaVaModel,
TFDebertaVaForMaskedLM,
TFDebertaVaForQuestionAnswering,
TFDebertaVaForSequenceClassification,
TFDebertaVaForTokenClassification,
)
if is_tf_available()
else ()
)
_UpperCamelCase : Optional[int] = (
{
'''feature-extraction''': TFDebertaVaModel,
'''fill-mask''': TFDebertaVaForMaskedLM,
'''question-answering''': TFDebertaVaForQuestionAnswering,
'''text-classification''': TFDebertaVaForSequenceClassification,
'''token-classification''': TFDebertaVaForTokenClassification,
'''zero-shot''': TFDebertaVaForSequenceClassification,
}
if is_tf_available()
else {}
)
_UpperCamelCase : Union[str, Any] = False
_UpperCamelCase : Union[str, Any] = False
def __a ( self : Optional[int] ) -> str:
"""simple docstring"""
lowercase : str = TFDebertaVaModelTester(self )
lowercase : str = ConfigTester(self , config_class=_A , hidden_size=37 )
def __a ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def __a ( self : Optional[int] ) -> Optional[int]:
"""simple docstring"""
lowercase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def __a ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_A )
def __a ( self : str ) -> Dict:
"""simple docstring"""
lowercase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_A )
def __a ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
lowercase : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_A )
def __a ( self : List[str] ) -> int:
"""simple docstring"""
lowercase : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_A )
@slow
def __a ( self : Tuple ) -> List[Any]:
"""simple docstring"""
lowercase : Union[str, Any] = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' )
self.assertIsNotNone(_A )
@require_tf
class _A ( unittest.TestCase ):
@unittest.skip(reason='''Model not available yet''' )
def __a ( self : Optional[Any] ) -> Any:
"""simple docstring"""
pass
@slow
def __a ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
lowercase : int = TFDebertaVaModel.from_pretrained('''kamalkraj/deberta-v2-xlarge''' )
lowercase : Dict = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] )
lowercase : int = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] )
lowercase : Union[str, Any] = model(_A , attention_mask=_A )[0]
lowercase : Optional[int] = tf.constant(
[[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] )
tf.debugging.assert_near(output[:, 1:4, 1:4] , _A , atol=1E-4 ) | 308 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=10 , UpperCAmelCase=3 , UpperCAmelCase=32 * 4 , UpperCAmelCase=32 * 6 , UpperCAmelCase=4 , UpperCAmelCase=32 , ) -> Optional[Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = is_training
_snake_case = use_auxiliary_loss
_snake_case = num_queries
_snake_case = num_channels
_snake_case = min_size
_snake_case = max_size
_snake_case = num_labels
_snake_case = mask_feature_size
def lowercase (self ) -> str:
_snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
UpperCAmelCase )
_snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase )
_snake_case = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase ) > 0.5
).float()
_snake_case = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase ) > 0.5).long()
_snake_case = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def lowercase (self ) -> Tuple:
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig(
decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , )
def lowercase (self ) -> Optional[Any]:
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.prepare_config_and_inputs()
_snake_case = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int:
_snake_case = output.encoder_hidden_states
_snake_case = output.pixel_decoder_hidden_states
_snake_case = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(UpperCAmelCase ) , config.decoder_config.decoder_layers )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]:
with torch.no_grad():
_snake_case = MaskFormerModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
_snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase )
_snake_case = model(UpperCAmelCase , output_hidden_states=UpperCAmelCase )
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(UpperCAmelCase , UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]:
_snake_case = MaskFormerForInstanceSegmentation(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
def comm_check_on_output(UpperCAmelCase ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
_snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase )
_snake_case = model(UpperCAmelCase )
comm_check_on_output(UpperCAmelCase )
_snake_case = model(
pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase )
comm_check_on_output(UpperCAmelCase )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
lowerCAmelCase_ = (
{"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def lowercase (self ) -> int:
_snake_case = MaskFormerModelTester(self )
_snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase )
def lowercase (self ) -> int:
self.config_tester.run_common_tests()
def lowercase (self ) -> List[Any]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase )
def lowercase (self ) -> Any:
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase )
@unittest.skip(reason="""MaskFormer does not use inputs_embeds""" )
def lowercase (self ) -> Optional[Any]:
pass
@unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" )
def lowercase (self ) -> Optional[int]:
pass
@unittest.skip(reason="""MaskFormer is not a generative model""" )
def lowercase (self ) -> int:
pass
@unittest.skip(reason="""MaskFormer does not use token embeddings""" )
def lowercase (self ) -> Optional[int]:
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def lowercase (self ) -> Optional[Any]:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowercase (self ) -> Tuple:
pass
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase )
_snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case = [*signature.parameters.keys()]
_snake_case = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
@slow
def lowercase (self ) -> int:
for model_name in ["facebook/maskformer-swin-small-coco"]:
_snake_case = MaskFormerModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def lowercase (self ) -> Tuple:
_snake_case = (self.model_tester.min_size,) * 2
_snake_case = {
"""pixel_values""": torch.randn((2, 3, *size) , device=UpperCAmelCase ),
"""mask_labels""": torch.randn((2, 10, *size) , device=UpperCAmelCase ),
"""class_labels""": torch.zeros(2 , 10 , device=UpperCAmelCase ).long(),
}
_snake_case = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCAmelCase )
_snake_case = model(**UpperCAmelCase )
self.assertTrue(outputs.loss is not None )
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase ).to(UpperCAmelCase )
_snake_case = model(**UpperCAmelCase , output_attentions=UpperCAmelCase )
self.assertTrue(outputs.attentions is not None )
def lowercase (self ) -> Tuple:
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
_snake_case = self.all_model_classes[1]
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.train()
_snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ).loss
loss.backward()
def lowercase (self ) -> List[str]:
# only MaskFormerForInstanceSegmentation has the loss
_snake_case = self.all_model_classes[1]
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
_snake_case = True
_snake_case = True
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.train()
_snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase )
_snake_case = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
_snake_case = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
_snake_case = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
_snake_case = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=UpperCAmelCase )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__lowerCAmelCase = 1E-4
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowercase (self ) -> Optional[int]:
return (
MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" )
if is_vision_available()
else None
)
def lowercase (self ) -> str:
_snake_case = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(UpperCAmelCase )
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.tensor(
[[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
_snake_case = torch.tensor(
[[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
_snake_case = torch.tensor(
[[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> List[str]:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
# masks_queries_logits
_snake_case = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_snake_case = [
[-1.373_7124, -1.772_4937, -1.936_4233],
[-1.597_7281, -1.986_7939, -2.152_3695],
[-1.579_5398, -1.926_9832, -2.09_3942],
]
_snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
# class_queries_logits
_snake_case = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_snake_case = torch.tensor(
[
[1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0],
[3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0],
[1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0],
] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> List[Any]:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
# masks_queries_logits
_snake_case = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_snake_case = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]]
_snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
# class_queries_logits
_snake_case = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_snake_case = torch.tensor(
[[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> Tuple:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , )
_snake_case = inputs["""pixel_values"""].to(UpperCAmelCase )
_snake_case = [el.to(UpperCAmelCase ) for el in inputs["""mask_labels"""]]
_snake_case = [el.to(UpperCAmelCase ) for el in inputs["""class_labels"""]]
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
self.assertTrue(outputs.loss is not None ) | 341 | 0 |
"""simple docstring"""
import collections
import os
import re
from pathlib import Path
A_ : List[Any] = "src/transformers"
# Matches is_xxx_available()
A_ : Optional[Any] = re.compile(R"is\_([a-z_]*)_available()")
# Catches a one-line _import_struct = {xxx}
A_ : Dict = re.compile(R"^_import_structure\s+=\s+\{([^\}]+)\}")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
A_ : str = re.compile(R"\s+\"\S*\":\s+\[([^\]]*)\]")
# Catches a line if not is_foo_available
A_ : Tuple = re.compile(R"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)")
# Catches a line _import_struct["bla"].append("foo")
A_ : Optional[Any] = re.compile(R"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
A_ : Any = re.compile(R"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]")
# Catches a line with an object between quotes and a comma: "MyModel",
A_ : int = re.compile(R"^\s+\"([^\"]+)\",")
# Catches a line with objects between brackets only: ["foo", "bar"],
A_ : Any = re.compile(R"^\s+\[([^\]]+)\]")
# Catches a line with from foo import bar, bla, boo
A_ : Optional[Any] = re.compile(R"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
# Catches a line with try:
A_ : Tuple = re.compile(R"^\s*try:")
# Catches a line with else:
A_ : Optional[Any] = re.compile(R"^\s*else:")
def A ( snake_case__ ):
'''simple docstring'''
if _re_test_backend.search(_SCREAMING_SNAKE_CASE ) is None:
return None
SCREAMING_SNAKE_CASE__ = [b[0] for b in _re_backend.findall(_SCREAMING_SNAKE_CASE )]
backends.sort()
return "_and_".join(_SCREAMING_SNAKE_CASE )
def A ( snake_case__ ):
'''simple docstring'''
with open(_SCREAMING_SNAKE_CASE , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
SCREAMING_SNAKE_CASE__ = f.readlines()
SCREAMING_SNAKE_CASE__ = 0
while line_index < len(_SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith("""_import_structure = {""" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(_SCREAMING_SNAKE_CASE ):
return None
# First grab the objects without a specific backend in _import_structure
SCREAMING_SNAKE_CASE__ = []
while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None:
SCREAMING_SNAKE_CASE__ = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ):
SCREAMING_SNAKE_CASE__ = _re_one_line_import_struct.search(_SCREAMING_SNAKE_CASE ).groups()[0]
SCREAMING_SNAKE_CASE__ = re.findall(R"""\[([^\]]+)\]""" , _SCREAMING_SNAKE_CASE )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(""", """ )] )
line_index += 1
continue
SCREAMING_SNAKE_CASE__ = _re_import_struct_key_value.search(_SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
SCREAMING_SNAKE_CASE__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(_SCREAMING_SNAKE_CASE ) > 0]
objects.extend(_SCREAMING_SNAKE_CASE )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
line_index += 1
SCREAMING_SNAKE_CASE__ = {"""none""": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("""if TYPE_CHECKING""" ):
# If the line is an if not is_backend_available, we grab all objects associated.
SCREAMING_SNAKE_CASE__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
SCREAMING_SNAKE_CASE__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
SCREAMING_SNAKE_CASE__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ):
SCREAMING_SNAKE_CASE__ = lines[line_index]
if _re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_import_struct_add_one.search(_SCREAMING_SNAKE_CASE ).groups()[0] )
elif _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ) is not None:
SCREAMING_SNAKE_CASE__ = _re_import_struct_add_many.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(""", """ )
SCREAMING_SNAKE_CASE__ = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0]
objects.extend(_SCREAMING_SNAKE_CASE )
elif _re_between_brackets.search(_SCREAMING_SNAKE_CASE ) is not None:
SCREAMING_SNAKE_CASE__ = _re_between_brackets.search(_SCREAMING_SNAKE_CASE ).groups()[0].split(""", """ )
SCREAMING_SNAKE_CASE__ = [obj[1:-1] for obj in imports if len(_SCREAMING_SNAKE_CASE ) > 0]
objects.extend(_SCREAMING_SNAKE_CASE )
elif _re_quote_object.search(_SCREAMING_SNAKE_CASE ) is not None:
objects.append(_re_quote_object.search(_SCREAMING_SNAKE_CASE ).groups()[0] )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
elif line.startswith(""" """ * 12 + """\"""" ):
objects.append(line[13:-3] )
line_index += 1
SCREAMING_SNAKE_CASE__ = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
SCREAMING_SNAKE_CASE__ = []
while (
line_index < len(_SCREAMING_SNAKE_CASE )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("""else""" )
):
SCREAMING_SNAKE_CASE__ = lines[line_index]
SCREAMING_SNAKE_CASE__ = _re_import.search(_SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
SCREAMING_SNAKE_CASE__ = {"""none""": objects}
# Let's continue with backend-specific objects
while line_index < len(_SCREAMING_SNAKE_CASE ):
# If the line is an if is_backend_available, we grab all objects associated.
SCREAMING_SNAKE_CASE__ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
SCREAMING_SNAKE_CASE__ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
SCREAMING_SNAKE_CASE__ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ):
SCREAMING_SNAKE_CASE__ = lines[line_index]
SCREAMING_SNAKE_CASE__ = _re_import.search(_SCREAMING_SNAKE_CASE )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 12 ):
objects.append(line[12:-2] )
line_index += 1
SCREAMING_SNAKE_CASE__ = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def A ( snake_case__ , snake_case__ ):
'''simple docstring'''
def find_duplicates(snake_case__ ):
return [k for k, v in collections.Counter(_SCREAMING_SNAKE_CASE ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
SCREAMING_SNAKE_CASE__ = []
for key in import_dict_objects.keys():
SCREAMING_SNAKE_CASE__ = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
SCREAMING_SNAKE_CASE__ = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
SCREAMING_SNAKE_CASE__ = """base imports""" if key == """none""" else f"""{key} backend"""
errors.append(f"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def A ( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = []
for root, _, files in os.walk(_SCREAMING_SNAKE_CASE ):
if "__init__.py" in files:
SCREAMING_SNAKE_CASE__ = os.path.join(_SCREAMING_SNAKE_CASE , """__init__.py""" )
SCREAMING_SNAKE_CASE__ = parse_init(_SCREAMING_SNAKE_CASE )
if objects is not None:
SCREAMING_SNAKE_CASE__ = analyze_results(*_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) > 0:
SCREAMING_SNAKE_CASE__ = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append("""\n""".join(_SCREAMING_SNAKE_CASE ) )
if len(_SCREAMING_SNAKE_CASE ) > 0:
raise ValueError("""\n\n""".join(_SCREAMING_SNAKE_CASE ) )
def A ( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = []
for path, directories, files in os.walk(_SCREAMING_SNAKE_CASE ):
for folder in directories:
# Ignore private modules
if folder.startswith("""_""" ):
directories.remove(_SCREAMING_SNAKE_CASE )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(_SCREAMING_SNAKE_CASE ) / folder).glob("""*.py""" ) ) ) == 0:
continue
SCREAMING_SNAKE_CASE__ = str((Path(_SCREAMING_SNAKE_CASE ) / folder).relative_to(_SCREAMING_SNAKE_CASE ) )
SCREAMING_SNAKE_CASE__ = short_path.replace(os.path.sep , """.""" )
submodules.append(_SCREAMING_SNAKE_CASE )
for fname in files:
if fname == "__init__.py":
continue
SCREAMING_SNAKE_CASE__ = str((Path(_SCREAMING_SNAKE_CASE ) / fname).relative_to(_SCREAMING_SNAKE_CASE ) )
SCREAMING_SNAKE_CASE__ = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" )
if len(submodule.split(""".""" ) ) == 1:
submodules.append(_SCREAMING_SNAKE_CASE )
return submodules
A_ : Any = [
"convert_pytorch_checkpoint_to_tf2",
"modeling_flax_pytorch_utils",
"models.esm.openfold_utils",
]
def A ( ):
'''simple docstring'''
from transformers.utils import direct_transformers_import
SCREAMING_SNAKE_CASE__ = direct_transformers_import(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE__ = set(transformers._import_structure.keys() )
# This contains all the base keys of the _import_structure object defined in the init, but if the user is missing
# some optional dependencies, they may not have all of them. Thus we read the init to read all additions and
# (potentiall re-) add them.
with open(os.path.join(_SCREAMING_SNAKE_CASE , """__init__.py""" ) , """r""" ) as f:
SCREAMING_SNAKE_CASE__ = f.read()
import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , _SCREAMING_SNAKE_CASE ) ) )
SCREAMING_SNAKE_CASE__ = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in import_structure_keys
]
if len(_SCREAMING_SNAKE_CASE ) > 0:
SCREAMING_SNAKE_CASE__ = """\n""".join(f"""- {module}""" for module in module_not_registered )
raise ValueError(
"""The following submodules are not properly registed in the main init of Transformers:\n"""
f"""{list_of_modules}\n"""
"""Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 165 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self , UpperCAmelCase ) -> Union[str, Any]:
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ):
_snake_case = model_result["""result"""][batch_size][sequence_length]
self.assertIsNotNone(UpperCAmelCase )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Dict:
_snake_case = """sgugger/tiny-distilbert-classification"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , only_pretrain_model=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Optional[Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , torchscript=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , fpaa=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Union[str, Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
# set architectures equal to `None`
_snake_case = None
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" )
def lowercase (self ) -> Tuple:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=UpperCAmelCase , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> Union[str, Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Dict:
_snake_case = """sshleifer/tinier_bart"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Any:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> int:
_snake_case = """sshleifer/tinier_bart"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> str:
_snake_case = """sshleifer/tiny-gpt2"""
with tempfile.TemporaryDirectory() as tmp_dir:
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , save_to_csv=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(UpperCAmelCase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(UpperCAmelCase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(UpperCAmelCase , """train_time.csv""" ) , env_info_csv_file=os.path.join(UpperCAmelCase , """env.csv""" ) , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """env.csv""" ) ).exists() )
def lowercase (self ) -> int:
_snake_case = """sshleifer/tiny-gpt2"""
def _check_summary_is_not_empty(UpperCAmelCase ):
self.assertTrue(hasattr(UpperCAmelCase , """sequential""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """cumulative""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """current""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """total""" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase , """log.txt""" ) , log_print=UpperCAmelCase , trace_memory_line_by_line=UpperCAmelCase , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """log.txt""" ) ).exists() ) | 341 | 0 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCAmelCase__ = {
"""configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""],
"""feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""],
"""processing_mctct""": ["""MCTCTProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ = [
"""MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MCTCTForCTC""",
"""MCTCTModel""",
"""MCTCTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 68 |
'''simple docstring'''
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
if len(_SCREAMING_SNAKE_CASE ) == 0:
return []
_snake_case, _snake_case = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE )
_snake_case = int(max_value - min_value ) + 1
_snake_case = [[] for _ in range(_SCREAMING_SNAKE_CASE )]
for i in my_list:
buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE )
return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15] | 341 | 0 |
'''simple docstring'''
from __future__ import annotations
def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> List[str]:
_snake_case = []
_snake_case = []
_snake_case = 0
_snake_case = sum(_SCREAMING_SNAKE_CASE )
create_state_space_tree(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return result
def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A , __A , __A , ) -> Any:
if sum(_SCREAMING_SNAKE_CASE ) > max_sum or (remaining_nums_sum + sum(_SCREAMING_SNAKE_CASE )) < max_sum:
return
if sum(_SCREAMING_SNAKE_CASE ) == max_sum:
result.append(_SCREAMING_SNAKE_CASE )
return
for index in range(_SCREAMING_SNAKE_CASE , len(_SCREAMING_SNAKE_CASE ) ):
create_state_space_tree(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index + 1 , [*path, nums[index]] , _SCREAMING_SNAKE_CASE , remaining_nums_sum - nums[index] , )
lowercase : Optional[int] = [3, 34, 4, 12, 5, 2]
lowercase : Optional[int] = 9
lowercase : int = generate_sum_of_subsets_soln(nums, max_sum)
print(*result)
| 42 |
'''simple docstring'''
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
__lowerCAmelCase = logging.get_logger(__name__)
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase=None ) -> int:
if not conversation_id:
_snake_case = uuid.uuida()
if past_user_inputs is None:
_snake_case = []
if generated_responses is None:
_snake_case = []
_snake_case = conversation_id
_snake_case = past_user_inputs
_snake_case = generated_responses
_snake_case = text
def __eq__(self , UpperCAmelCase ) -> Dict:
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def lowercase (self , UpperCAmelCase , UpperCAmelCase = False ) -> int:
if self.new_user_input:
if overwrite:
logger.warning(
f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """
f"""with: \"{text}\".""" )
_snake_case = text
else:
logger.warning(
f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """
f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" )
else:
_snake_case = text
def lowercase (self ) -> int:
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
_snake_case = None
def lowercase (self , UpperCAmelCase ) -> Any:
self.generated_responses.append(UpperCAmelCase )
def lowercase (self ) -> List[str]:
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__(self ) -> Optional[int]:
_snake_case = f"""Conversation id: {self.uuid} \n"""
for is_user, text in self.iter_texts():
_snake_case = """user""" if is_user else """bot"""
output += f"""{name} >> {text} \n"""
return output
@add_end_docstrings(
__snake_case , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , )
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
if self.tokenizer.pad_token_id is None:
_snake_case = self.tokenizer.eos_token
def lowercase (self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Dict:
_snake_case = {}
_snake_case = {}
_snake_case = {}
if min_length_for_response is not None:
_snake_case = min_length_for_response
if minimum_tokens is not None:
_snake_case = minimum_tokens
if "max_length" in generate_kwargs:
_snake_case = generate_kwargs["""max_length"""]
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
_snake_case = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(UpperCAmelCase )
return preprocess_params, forward_params, postprocess_params
def __call__(self , UpperCAmelCase , UpperCAmelCase=0 , **UpperCAmelCase ) -> Union[str, Any]:
_snake_case = super().__call__(UpperCAmelCase , num_workers=UpperCAmelCase , **UpperCAmelCase )
if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) == 1:
return outputs[0]
return outputs
def lowercase (self , UpperCAmelCase , UpperCAmelCase=32 ) -> Dict[str, Any]:
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" )
if conversation.new_user_input is None:
raise ValueError(
f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """
"""Add user inputs with the conversation's `add_user_input` method""" )
if hasattr(self.tokenizer , """_build_conversation_input_ids""" ):
_snake_case = self.tokenizer._build_conversation_input_ids(UpperCAmelCase )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
_snake_case = self._legacy_parse_and_tokenize(UpperCAmelCase )
if self.framework == "pt":
_snake_case = torch.LongTensor([input_ids] )
elif self.framework == "tf":
_snake_case = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def lowercase (self , UpperCAmelCase , UpperCAmelCase=10 , **UpperCAmelCase ) -> Optional[int]:
_snake_case = generate_kwargs.get("""max_length""" , self.model.config.max_length )
_snake_case = model_inputs["""input_ids"""].shape[1]
if max_length - minimum_tokens < n:
logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" )
_snake_case = max_length - minimum_tokens
_snake_case = model_inputs["""input_ids"""][:, -trim:]
if "attention_mask" in model_inputs:
_snake_case = model_inputs["""attention_mask"""][:, -trim:]
_snake_case = model_inputs.pop("""conversation""" )
_snake_case = max_length
_snake_case = self.model.generate(**UpperCAmelCase , **UpperCAmelCase )
if self.model.config.is_encoder_decoder:
_snake_case = 1
else:
_snake_case = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def lowercase (self , UpperCAmelCase , UpperCAmelCase=True ) -> List[str]:
_snake_case = model_outputs["""output_ids"""]
_snake_case = self.tokenizer.decode(
output_ids[0] , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , )
_snake_case = model_outputs["""conversation"""]
conversation.mark_processed()
conversation.append_response(UpperCAmelCase )
return conversation
def lowercase (self , UpperCAmelCase ) -> Dict:
_snake_case = self.tokenizer.eos_token_id
_snake_case = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
if len(UpperCAmelCase ) > self.tokenizer.model_max_length:
_snake_case = input_ids[-self.tokenizer.model_max_length :]
return input_ids | 341 | 0 |
import argparse
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.'''
)
parser.add_argument(
'''--original_config_file''',
type=str,
required=True,
help='''The YAML config file corresponding to the original architecture.''',
)
parser.add_argument(
'''--num_in_channels''',
default=None,
type=int,
help='''The number of input channels. If `None` number of input channels will be automatically inferred.''',
)
parser.add_argument(
'''--image_size''',
default=512,
type=int,
help=(
'''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'''
''' Base. Use 768 for Stable Diffusion v2.'''
),
)
parser.add_argument(
'''--extract_ema''',
action='''store_true''',
help=(
'''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'''
''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'''
''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'''
),
)
parser.add_argument(
'''--upcast_attention''',
action='''store_true''',
help=(
'''Whether the attention computation should always be upcasted. This is necessary when running stable'''
''' diffusion 2.1.'''
),
)
parser.add_argument(
'''--from_safetensors''',
action='''store_true''',
help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''',
)
parser.add_argument(
'''--to_safetensors''',
action='''store_true''',
help='''Whether to store pipeline in safetensors format or not.''',
)
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''')
def __UpperCAmelCase ( __a : Any ) -> Optional[int]:
"""simple docstring"""
if string == "True":
return True
elif string == "False":
return False
else:
raise ValueError(F"""could not parse string as bool {string}""" )
parser.add_argument(
'''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool
)
parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int)
a__ = parser.parse_args()
a__ = download_controlnet_from_original_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
extract_ema=args.extract_ema,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
use_linear_projection=args.use_linear_projection,
cross_attention_dim=args.cross_attention_dim,
)
controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 235 |
'''simple docstring'''
from math import factorial, radians
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 18 , _SCREAMING_SNAKE_CASE = 10 ):
_snake_case = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0)
# Converting from degrees to radians
_snake_case = radians(_SCREAMING_SNAKE_CASE )
_snake_case = angle_in_radians
_snake_case = 3
_snake_case = -1
for _ in range(_SCREAMING_SNAKE_CASE ):
result += (b * (angle_in_radians**a)) / factorial(_SCREAMING_SNAKE_CASE )
_snake_case = -b # One positive term and the next will be negative and so on...
a += 2 # Increased by 2 for every term.
return round(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__import__('doctest').testmod() | 341 | 0 |
import math
from collections.abc import Callable
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str:
_lowercase : List[str] = xa
_lowercase : int = xa
while True:
if x_n == x_na or function(_SCREAMING_SNAKE_CASE ) == function(_SCREAMING_SNAKE_CASE ):
raise ZeroDivisionError('float division by zero, could not find root' )
_lowercase : Tuple = x_na - (
function(_SCREAMING_SNAKE_CASE ) / ((function(_SCREAMING_SNAKE_CASE ) - function(_SCREAMING_SNAKE_CASE )) / (x_na - x_n))
)
if abs(x_na - x_na ) < 10**-5:
return x_na
_lowercase : Tuple = x_na
_lowercase : Tuple = x_na
def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]:
return math.pow(_SCREAMING_SNAKE_CASE , 3 ) - (2 * x) - 5
if __name__ == "__main__":
print(intersection(f, 3, 3.5))
| 21 |
'''simple docstring'''
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
__lowerCAmelCase = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
__lowerCAmelCase = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n'
__lowerCAmelCase = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
'''simple docstring'''
def lowercase (self ) -> Tuple:
if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ):
raise ImportWarning(
"""To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"""
"""You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[
"""https://github.com/m-popovic/chrF""",
] , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = CHRF.CHAR_ORDER , UpperCAmelCase = CHRF.WORD_ORDER , UpperCAmelCase = CHRF.BETA , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , ) -> int:
_snake_case = len(references[0] )
if any(len(UpperCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError("""Sacrebleu requires the same number of references for each prediction""" )
_snake_case = [[refs[i] for refs in references] for i in range(UpperCAmelCase )]
_snake_case = CHRF(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
_snake_case = sb_chrf.corpus_score(UpperCAmelCase , UpperCAmelCase )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
} | 341 | 0 |
'''simple docstring'''
import argparse
import torch
from torch import nn
from transformers import MBartConfig, MBartForConditionalGeneration
def a ( __a ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase__ :Dict = [
'''encoder.version''',
'''decoder.version''',
'''model.encoder.version''',
'''model.decoder.version''',
'''_float_tensor''',
'''decoder.output_projection.weight''',
]
for k in ignore_keys:
state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def a ( __a ) -> Dict:
'''simple docstring'''
UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = emb.weight.shape
UpperCamelCase__ :List[Any] = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE )
UpperCamelCase__ :str = emb.weight.data
return lin_layer
def a ( __a , __a="facebook/mbart-large-en-ro" , __a=False , __a=False ) -> Union[str, Any]:
'''simple docstring'''
UpperCamelCase__ :Dict = torch.load(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''model''']
remove_ignore_keys_(_SCREAMING_SNAKE_CASE )
UpperCamelCase__ :int = state_dict['''encoder.embed_tokens.weight'''].shape[0]
UpperCamelCase__ :Dict = MBartConfig.from_pretrained(_SCREAMING_SNAKE_CASE , vocab_size=_SCREAMING_SNAKE_CASE )
if mbart_aa and finetuned:
UpperCamelCase__ :Optional[Any] = '''relu'''
UpperCamelCase__ :Tuple = state_dict['''decoder.embed_tokens.weight''']
UpperCamelCase__ :Union[str, Any] = MBartForConditionalGeneration(_SCREAMING_SNAKE_CASE )
model.model.load_state_dict(_SCREAMING_SNAKE_CASE )
if finetuned:
UpperCamelCase__ :int = make_linear_from_emb(model.model.shared )
return model
if __name__ == "__main__":
__snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.'''
)
parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument(
'''--hf_config''',
default='''facebook/mbart-large-cc25''',
type=str,
help='''Which huggingface architecture to use: mbart-large''',
)
parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''')
parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''')
__snake_case = parser.parse_args()
__snake_case = convert_fairseq_mbart_checkpoint_from_disk(
args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa
)
model.save_pretrained(args.pytorch_dump_folder_path) | 97 |
'''simple docstring'''
from scipy.stats import spearmanr
import datasets
__lowerCAmelCase = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n'
__lowerCAmelCase = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n'
__lowerCAmelCase = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
'''simple docstring'''
def lowercase (self ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]:
_snake_case = spearmanr(UpperCAmelCase , UpperCAmelCase )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]} | 341 | 0 |
from __future__ import annotations
import queue
class _lowercase :
"""simple docstring"""
def __init__( self : List[Any] , __lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : str = data
lowerCamelCase__ : Union[str, Any] = None
lowerCamelCase__ : Optional[Any] = None
def lowercase_ ( ):
"""simple docstring"""
print("\n********Press N to stop entering at any point of time********\n" )
lowerCamelCase__ : List[Any] = input("Enter the value of the root node: " ).strip().lower()
lowerCamelCase__ : List[str] = queue.Queue()
lowerCamelCase__ : Union[str, Any] = TreeNode(int(_SCREAMING_SNAKE_CASE ) )
q.put(_SCREAMING_SNAKE_CASE )
while not q.empty():
lowerCamelCase__ : List[str] = q.get()
lowerCamelCase__ : Dict = F"Enter the left node of {node_found.data}: "
lowerCamelCase__ : List[Any] = input(_SCREAMING_SNAKE_CASE ).strip().lower() or "n"
if check == "n":
return tree_node
lowerCamelCase__ : int = TreeNode(int(_SCREAMING_SNAKE_CASE ) )
lowerCamelCase__ : Any = left_node
q.put(_SCREAMING_SNAKE_CASE )
lowerCamelCase__ : int = F"Enter the right node of {node_found.data}: "
lowerCamelCase__ : Union[str, Any] = input(_SCREAMING_SNAKE_CASE ).strip().lower() or "n"
if check == "n":
return tree_node
lowerCamelCase__ : Union[str, Any] = TreeNode(int(_SCREAMING_SNAKE_CASE ) )
lowerCamelCase__ : str = right_node
q.put(_SCREAMING_SNAKE_CASE )
raise
def lowercase_ ( _A : Optional[Any] ):
"""simple docstring"""
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node:
return
print(node.data , end="," )
pre_order(node.left )
pre_order(node.right )
def lowercase_ ( _A : int ):
"""simple docstring"""
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node:
return
in_order(node.left )
print(node.data , end="," )
in_order(node.right )
def lowercase_ ( _A : List[str] ):
"""simple docstring"""
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end="," )
def lowercase_ ( _A : Optional[int] ):
"""simple docstring"""
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node:
return
lowerCamelCase__ : int = queue.Queue()
q.put(_SCREAMING_SNAKE_CASE )
while not q.empty():
lowerCamelCase__ : Tuple = q.get()
print(node_dequeued.data , end="," )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def lowercase_ ( _A : Optional[int] ):
"""simple docstring"""
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node:
return
lowerCamelCase__ : List[Any] = queue.Queue()
q.put(_SCREAMING_SNAKE_CASE )
while not q.empty():
lowerCamelCase__ : Optional[int] = []
while not q.empty():
lowerCamelCase__ : int = q.get()
print(node_dequeued.data , end="," )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(_SCREAMING_SNAKE_CASE )
def lowercase_ ( _A : Any ):
"""simple docstring"""
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node:
return
lowerCamelCase__ : str = []
lowerCamelCase__ : Union[str, Any] = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end="," )
stack.append(_SCREAMING_SNAKE_CASE )
lowerCamelCase__ : str = n.left
# end of while means current node doesn't have left child
lowerCamelCase__ : Dict = stack.pop()
# start to traverse its right child
lowerCamelCase__ : Union[str, Any] = n.right
def lowercase_ ( _A : Dict ):
"""simple docstring"""
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node:
return
lowerCamelCase__ : Union[str, Any] = []
lowerCamelCase__ : List[str] = node
while n or stack:
while n:
stack.append(_SCREAMING_SNAKE_CASE )
lowerCamelCase__ : str = n.left
lowerCamelCase__ : Optional[Any] = stack.pop()
print(n.data , end="," )
lowerCamelCase__ : Union[str, Any] = n.right
def lowercase_ ( _A : List[str] ):
"""simple docstring"""
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not node:
return
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = [], []
lowerCamelCase__ : Any = node
stacka.append(_SCREAMING_SNAKE_CASE )
while stacka: # to find the reversed order of post order, store it in stack2
lowerCamelCase__ : str = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(_SCREAMING_SNAKE_CASE )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end="," )
def lowercase_ ( _A : Tuple = "" , _A : Dict=50 , _A : Union[str, Any]="*" ):
"""simple docstring"""
if not s:
return "\n" + width * char
lowerCamelCase__ , lowerCamelCase__ : List[str] = divmod(width - len(_SCREAMING_SNAKE_CASE ) - 2 , 2 )
return F"{left * char} {s} {(left + extra) * char}"
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("Binary Tree Traversals"))
A : List[Any] = build_tree()
print(prompt("Pre Order Traversal"))
pre_order(node)
print(prompt() + "\n")
print(prompt("In Order Traversal"))
in_order(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal"))
post_order(node)
print(prompt() + "\n")
print(prompt("Level Order Traversal"))
level_order(node)
print(prompt() + "\n")
print(prompt("Actual Level Order Traversal"))
level_order_actual(node)
print("*" * 50 + "\n")
print(prompt("Pre Order Traversal - Iteration Version"))
pre_order_iter(node)
print(prompt() + "\n")
print(prompt("In Order Traversal - Iteration Version"))
in_order_iter(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal - Iteration Version"))
post_order_iter(node)
print(prompt())
| 184 |
'''simple docstring'''
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[2, 2, 3, 2] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=3 , UpperCAmelCase=None , ) -> List[Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = image_size
_snake_case = num_channels
_snake_case = num_stages
_snake_case = hidden_sizes
_snake_case = depths
_snake_case = is_training
_snake_case = use_labels
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = type_sequence_label_size
_snake_case = initializer_range
_snake_case = out_features
_snake_case = num_labels
_snake_case = scope
_snake_case = num_stages
def lowercase (self ) -> List[Any]:
_snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case = None
if self.use_labels:
_snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_snake_case = self.get_config()
return config, pixel_values, labels
def lowercase (self ) -> Tuple:
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def lowercase (self ) -> Any:
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str:
_snake_case = UperNetForSemanticSegmentation(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
_snake_case = model(UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def lowercase (self ) -> Tuple:
_snake_case = self.prepare_config_and_inputs()
(
(
_snake_case
), (
_snake_case
), (
_snake_case
),
) = config_and_inputs
_snake_case = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
lowerCAmelCase_ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {}
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def lowercase (self ) -> Optional[Any]:
_snake_case = UperNetModelTester(self )
_snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def lowercase (self ) -> str:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase (self ) -> Union[str, Any]:
return
def lowercase (self ) -> Union[str, Any]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase )
_snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case = [*signature.parameters.keys()]
_snake_case = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def lowercase (self ) -> int:
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase )
@unittest.skip(reason="""UperNet does not use inputs_embeds""" )
def lowercase (self ) -> int:
pass
@unittest.skip(reason="""UperNet does not support input and output embeddings""" )
def lowercase (self ) -> List[str]:
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def lowercase (self ) -> Union[str, Any]:
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def lowercase (self ) -> Union[str, Any]:
pass
@require_torch_multi_gpu
@unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def lowercase (self ) -> str:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowercase (self ) -> int:
pass
def lowercase (self ) -> List[str]:
def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
_snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
_snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_snake_case = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case = _config_zero_init(UpperCAmelCase )
_snake_case = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
_snake_case = model_class(config=UpperCAmelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip(reason="""UperNet does not have tied weights""" )
def lowercase (self ) -> Optional[Any]:
pass
@slow
def lowercase (self ) -> Tuple:
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = hf_hub_download(
repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" )
_snake_case = Image.open(_SCREAMING_SNAKE_CASE ).convert("""RGB""" )
return image
@require_torch
@require_vision
@slow
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self ) -> Any:
_snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" )
_snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCAmelCase )
_snake_case = prepare_img()
_snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
_snake_case = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
def lowercase (self ) -> Any:
_snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" )
_snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCAmelCase )
_snake_case = prepare_img()
_snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
_snake_case = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) | 341 | 0 |
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class SCREAMING_SNAKE_CASE__ ( __snake_case ):
"""simple docstring"""
_snake_case = 0
_snake_case = False
_snake_case = 3.0
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self )-> List[str]:
'''simple docstring'''
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} )
self.assertDictEqual(MockClass(a=2 , b=SCREAMING_SNAKE_CASE_ ).to_kwargs() , {'''a''': 2, '''b''': True} )
self.assertDictEqual(MockClass(a=2 , c=2.2_5 ).to_kwargs() , {'''a''': 2, '''c''': 2.2_5} )
@require_cuda
def A__ ( self )-> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = GradScalerKwargs(init_scale=1024 , growth_factor=2 )
AcceleratorState._reset_state()
__UpperCamelCase = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
__UpperCamelCase = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1_0_2_4.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 2000 )
self.assertEqual(scaler._enabled , SCREAMING_SNAKE_CASE_ )
@require_multi_gpu
def A__ ( self )-> List[Any]:
'''simple docstring'''
__UpperCamelCase = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )]
execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() )
if __name__ == "__main__":
lowercase__ : Optional[int] = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True)
lowercase__ : List[str] = Accelerator(kwargs_handlers=[ddp_scaler])
lowercase__ : Optional[int] = torch.nn.Linear(1_0_0, 2_0_0)
lowercase__ : int = accelerator.prepare(model)
# Check the values changed in kwargs
lowercase__ : Any = ""
lowercase__ : List[Any] = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4)
if observed_bucket_cap_map != 1_5:
error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 328 |
'''simple docstring'''
import argparse
from collections import defaultdict
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = f"""{file}_{class_name}_{test_name}"""
done_test[_id] += 1
with open(_SCREAMING_SNAKE_CASE , """r""" ) as f:
_snake_case = f.readlines()
_snake_case = f"""class {class_name}("""
_snake_case = f"""{4 * " "}def {test_name}("""
_snake_case = f"""{8 * " "}{correct_line.split()[0]}"""
_snake_case = f"""{16 * " "}{correct_line.split()[0]}"""
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = 0
_snake_case = 0
_snake_case = []
for line in lines:
if line.startswith(_SCREAMING_SNAKE_CASE ):
_snake_case = True
elif in_class and line.startswith(_SCREAMING_SNAKE_CASE ):
_snake_case = True
elif in_class and in_func and (line.startswith(_SCREAMING_SNAKE_CASE ) or line.startswith(_SCREAMING_SNAKE_CASE )):
_snake_case = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
_snake_case = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
_snake_case = True
if in_class and in_func and in_line and insert_line:
new_lines.append(f"""{spaces * " "}{correct_line}""" )
_snake_case = _snake_case = _snake_case = _snake_case = False
else:
new_lines.append(_SCREAMING_SNAKE_CASE )
with open(_SCREAMING_SNAKE_CASE , """w""" ) as f:
for line in new_lines:
f.write(_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ):
if fail is not None:
with open(_SCREAMING_SNAKE_CASE , """r""" ) as f:
_snake_case = {l.strip() for l in f.readlines()}
else:
_snake_case = None
with open(_SCREAMING_SNAKE_CASE , """r""" ) as f:
_snake_case = f.readlines()
_snake_case = defaultdict(_SCREAMING_SNAKE_CASE )
for line in correct_lines:
_snake_case, _snake_case, _snake_case, _snake_case = line.split(""";""" )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument('--correct_filename', help='filename of tests with expected result')
parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None)
__lowerCAmelCase = parser.parse_args()
main(args.correct_filename, args.fail_filename) | 341 | 0 |
"""simple docstring"""
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
UpperCAmelCase : str = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n"
UpperCAmelCase : List[str] = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n"
UpperCAmelCase : Optional[int] = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
def _UpperCAmelCase ( self : int):
"""simple docstring"""
if version.parse(scb.__version__) < version.parse("""1.4.12"""):
raise ImportWarning(
"""To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"""
"""You can install it with `pip install \"sacrebleu>=1.4.12\"`.""")
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence"""),
"""references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""") , id="""references"""),
}) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[
"""https://github.com/m-popovic/chrF""",
] , )
def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Union[str, Any] = CHRF.CHAR_ORDER , lowerCAmelCase_ : Optional[int] = CHRF.WORD_ORDER , lowerCAmelCase_ : Any = CHRF.BETA , lowerCAmelCase_ : Dict = False , lowerCAmelCase_ : Dict = False , lowerCAmelCase_ : str = False , ):
"""simple docstring"""
lowercase_ = len(references[0])
if any(len(lowerCAmelCase_) != references_per_prediction for refs in references):
raise ValueError("""Sacrebleu requires the same number of references for each prediction""")
lowercase_ = [[refs[i] for refs in references] for i in range(lowerCAmelCase_)]
lowercase_ = CHRF(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_)
lowercase_ = sb_chrf.corpus_score(lowerCAmelCase_ , lowerCAmelCase_)
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
}
| 136 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__lowerCAmelCase = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 | 0 |
"""simple docstring"""
from math import isclose, sqrt
def lowercase ( A_ , A_ , A_ )-> int:
'''simple docstring'''
a : str = point_y / 4 / point_x
a : str = 2 * normal_gradient / (1 + normal_gradient * normal_gradient)
a : List[str] = (1 - normal_gradient * normal_gradient) / (
1 + normal_gradient * normal_gradient
)
a : Optional[Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient)
# to find the next point, solve the simultaeneous equations:
# y^2 + 4x^2 = 100
# y - b = m * (x - a)
# ==> A x^2 + B x + C = 0
a : Optional[Any] = outgoing_gradient**2 + 4
a : Optional[Any] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x)
a : List[str] = (point_y - outgoing_gradient * point_x) ** 2 - 100
a : Dict = (
-linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
a : Optional[int] = (
-linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term )
) / (2 * quadratic_term)
# two solutions, one of which is our input point
a : int = x_minus if isclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else x_plus
a : Any = point_y + outgoing_gradient * (next_x - point_x)
return next_x, next_y, outgoing_gradient
def lowercase ( A_ = 1.4 , A_ = -9.6 )-> Dict:
'''simple docstring'''
a : List[str] = 0
a : Optional[Any] = first_x_coord
a : Union[str, Any] = first_y_coord
a : Tuple = (1_0.1 - point_y) / (0.0 - point_x)
while not (-0.0_1 <= point_x <= 0.0_1 and point_y > 0):
a , a , a : List[Any] = next_point(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
num_reflections += 1
return num_reflections
if __name__ == "__main__":
print(f'''{solution() = }''')
| 40 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__lowerCAmelCase = logging.get_logger(__name__)
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = ["pixel_values"]
def __init__(self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
super().__init__(**UpperCAmelCase )
_snake_case = size if size is not None else {"""height""": 256, """width""": 256}
_snake_case = get_size_dict(UpperCAmelCase )
_snake_case = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
_snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" )
_snake_case = do_resize
_snake_case = size
_snake_case = resample
_snake_case = do_center_crop
_snake_case = crop_size
_snake_case = do_rescale
_snake_case = rescale_factor
_snake_case = do_normalize
_snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
_snake_case = get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return resize(
UpperCAmelCase , size=(size["""height"""], size["""width"""]) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
_snake_case = get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return center_crop(UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]:
return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image:
_snake_case = do_resize if do_resize is not None else self.do_resize
_snake_case = resample if resample is not None else self.resample
_snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop
_snake_case = do_rescale if do_rescale is not None else self.do_rescale
_snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor
_snake_case = do_normalize if do_normalize is not None else self.do_normalize
_snake_case = image_mean if image_mean is not None else self.image_mean
_snake_case = image_std if image_std is not None else self.image_std
_snake_case = size if size is not None else self.size
_snake_case = get_size_dict(UpperCAmelCase )
_snake_case = crop_size if crop_size is not None else self.crop_size
_snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" )
_snake_case = make_list_of_images(UpperCAmelCase )
if not valid_images(UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
_snake_case = [to_numpy_array(UpperCAmelCase ) for image in images]
if do_resize:
_snake_case = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images]
if do_center_crop:
_snake_case = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images]
if do_rescale:
_snake_case = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images]
if do_normalize:
_snake_case = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images]
_snake_case = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images]
_snake_case = {"""pixel_values""": images}
return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) | 341 | 0 |
def snake_case( __magic_name__ ) -> int:
'''simple docstring'''
lowercase : Any = int(_SCREAMING_SNAKE_CASE )
if decimal in (0, 1): # Exit cases for the recursion
return str(_SCREAMING_SNAKE_CASE )
lowercase , lowercase : List[str] = divmod(_SCREAMING_SNAKE_CASE , 2 )
return binary_recursive(_SCREAMING_SNAKE_CASE ) + str(_SCREAMING_SNAKE_CASE )
def snake_case( __magic_name__ ) -> Tuple:
'''simple docstring'''
lowercase : int = str(_SCREAMING_SNAKE_CASE ).strip()
if not number:
raise ValueError('''No input value was provided''' )
lowercase : Tuple = '''-''' if number.startswith('''-''' ) else ''''''
lowercase : str = number.lstrip('''-''' )
if not number.isnumeric():
raise ValueError('''Input value is not an integer''' )
return F"""{negative}0b{binary_recursive(int(_SCREAMING_SNAKE_CASE ) )}"""
if __name__ == "__main__":
from doctest import testmod
testmod() | 308 |
'''simple docstring'''
__lowerCAmelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
# Make sure the supplied data is a bytes-like object
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = f"""a bytes-like object is required, not '{data.__class__.__name__}'"""
raise TypeError(_SCREAMING_SNAKE_CASE )
_snake_case = """""".join(bin(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data )
_snake_case = len(_SCREAMING_SNAKE_CASE ) % 6 != 0
if padding_needed:
# The padding that will be added later
_snake_case = b"""=""" * ((6 - len(_SCREAMING_SNAKE_CASE ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(_SCREAMING_SNAKE_CASE ) % 6)
else:
_snake_case = b""""""
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 6 ) ).encode()
+ padding
)
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = (
"""argument should be a bytes-like object or ASCII string, """
f"""not '{encoded_data.__class__.__name__}'"""
)
raise TypeError(_SCREAMING_SNAKE_CASE )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
try:
_snake_case = encoded_data.decode("""utf-8""" )
except UnicodeDecodeError:
raise ValueError("""base64 encoded data should only contain ASCII characters""" )
_snake_case = encoded_data.count("""=""" )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(_SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
_snake_case = encoded_data[:-padding]
_snake_case = """""".join(
bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
_snake_case = """""".join(
bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )
_snake_case = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 8 )
]
return bytes(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 0 |
"""simple docstring"""
from __future__ import annotations
from sys import maxsize
from typing import Generic, TypeVar
A_ : Optional[Any] = TypeVar("T")
def A ( snake_case__ ):
'''simple docstring'''
return (position - 1) // 2
def A ( snake_case__ ):
'''simple docstring'''
return (2 * position) + 1
def A ( snake_case__ ):
'''simple docstring'''
return (2 * position) + 2
class lowerCamelCase (Generic[T] ):
def __init__( self : Optional[Any] ) -> None:
SCREAMING_SNAKE_CASE__ = []
SCREAMING_SNAKE_CASE__ = {}
SCREAMING_SNAKE_CASE__ = 0
def __len__( self : List[str] ) -> int:
return self.elements
def __repr__( self : int ) -> str:
return str(self.heap )
def SCREAMING_SNAKE_CASE ( self : str ) -> bool:
# Check if the priority queue is empty
return self.elements == 0
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Dict ) -> None:
# Add an element with given priority to the queue
self.heap.append((elem, weight) )
SCREAMING_SNAKE_CASE__ = self.elements
self.elements += 1
self._bubble_up(__UpperCAmelCase )
def SCREAMING_SNAKE_CASE ( self : Tuple ) -> T:
# Remove and return the element with lowest weight (highest priority)
if self.elements > 1:
self._swap_nodes(0 , self.elements - 1 )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.heap.pop()
del self.position_map[elem]
self.elements -= 1
if self.elements > 0:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.heap[0]
self._bubble_down(__UpperCAmelCase )
return elem
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] ) -> None:
# Update the weight of the given key
SCREAMING_SNAKE_CASE__ = self.position_map[elem]
SCREAMING_SNAKE_CASE__ = (elem, weight)
if position > 0:
SCREAMING_SNAKE_CASE__ = get_parent_position(__UpperCAmelCase )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.heap[parent_position]
if parent_weight > weight:
self._bubble_up(__UpperCAmelCase )
else:
self._bubble_down(__UpperCAmelCase )
else:
self._bubble_down(__UpperCAmelCase )
def SCREAMING_SNAKE_CASE ( self : List[Any] , __UpperCAmelCase : Dict ) -> None:
# Place a node at the proper position (upward movement) [to be used internally
# only]
SCREAMING_SNAKE_CASE__ = self.position_map[elem]
if curr_pos == 0:
return None
SCREAMING_SNAKE_CASE__ = get_parent_position(__UpperCAmelCase )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.heap[curr_pos]
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.heap[parent_position]
if parent_weight > weight:
self._swap_nodes(__UpperCAmelCase , __UpperCAmelCase )
return self._bubble_up(__UpperCAmelCase )
return None
def SCREAMING_SNAKE_CASE ( self : Optional[int] , __UpperCAmelCase : Tuple ) -> None:
# Place a node at the proper position (downward movement) [to be used
# internally only]
SCREAMING_SNAKE_CASE__ = self.position_map[elem]
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.heap[curr_pos]
SCREAMING_SNAKE_CASE__ = get_child_left_position(__UpperCAmelCase )
SCREAMING_SNAKE_CASE__ = get_child_right_position(__UpperCAmelCase )
if child_left_position < self.elements and child_right_position < self.elements:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.heap[child_left_position]
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.heap[child_right_position]
if child_right_weight < child_left_weight and child_right_weight < weight:
self._swap_nodes(__UpperCAmelCase , __UpperCAmelCase )
return self._bubble_down(__UpperCAmelCase )
if child_left_position < self.elements:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.heap[child_left_position]
if child_left_weight < weight:
self._swap_nodes(__UpperCAmelCase , __UpperCAmelCase )
return self._bubble_down(__UpperCAmelCase )
else:
return None
if child_right_position < self.elements:
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self.heap[child_right_position]
if child_right_weight < weight:
self._swap_nodes(__UpperCAmelCase , __UpperCAmelCase )
return self._bubble_down(__UpperCAmelCase )
return None
def SCREAMING_SNAKE_CASE ( self : str , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] ) -> None:
# Swap the nodes at the given positions
SCREAMING_SNAKE_CASE__ = self.heap[nodea_pos][0]
SCREAMING_SNAKE_CASE__ = self.heap[nodea_pos][0]
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = (
self.heap[nodea_pos],
self.heap[nodea_pos],
)
SCREAMING_SNAKE_CASE__ = nodea_pos
SCREAMING_SNAKE_CASE__ = nodea_pos
class lowerCamelCase (Generic[T] ):
def __init__( self : Optional[Any] ) -> None:
SCREAMING_SNAKE_CASE__ = {}
SCREAMING_SNAKE_CASE__ = 0
def __repr__( self : Any ) -> str:
return str(self.connections )
def __len__( self : List[Any] ) -> int:
return self.nodes
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __UpperCAmelCase : Optional[int] ) -> None:
# Add a node in the graph if it is not in the graph
if node not in self.connections:
SCREAMING_SNAKE_CASE__ = {}
self.nodes += 1
def SCREAMING_SNAKE_CASE ( self : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : str ) -> None:
# Add an edge between 2 nodes in the graph
self.add_node(__UpperCAmelCase )
self.add_node(__UpperCAmelCase )
SCREAMING_SNAKE_CASE__ = weight
SCREAMING_SNAKE_CASE__ = weight
def A ( snake_case__ , ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = {node: maxsize for node in graph.connections}
SCREAMING_SNAKE_CASE__ = {node: None for node in graph.connections}
SCREAMING_SNAKE_CASE__ = MinPriorityQueue()
for node, weight in dist.items():
priority_queue.push(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if priority_queue.is_empty():
return dist, parent
# initialization
SCREAMING_SNAKE_CASE__ = priority_queue.extract_min()
SCREAMING_SNAKE_CASE__ = 0
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
SCREAMING_SNAKE_CASE__ = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] )
SCREAMING_SNAKE_CASE__ = node
# running prim's algorithm
while not priority_queue.is_empty():
SCREAMING_SNAKE_CASE__ = priority_queue.extract_min()
for neighbour in graph.connections[node]:
if dist[neighbour] > dist[node] + graph.connections[node][neighbour]:
SCREAMING_SNAKE_CASE__ = dist[node] + graph.connections[node][neighbour]
priority_queue.update_key(_SCREAMING_SNAKE_CASE , dist[neighbour] )
SCREAMING_SNAKE_CASE__ = node
return dist, parent
| 165 |
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if discount_rate < 0:
raise ValueError("""Discount rate cannot be negative""" )
if not cash_flows:
raise ValueError("""Cash flows list cannot be empty""" )
_snake_case = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_SCREAMING_SNAKE_CASE ) )
return round(_SCREAMING_SNAKE_CASE , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 0 |
from jiwer import compute_measures
import datasets
lowerCAmelCase__ = """\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n"""
lowerCAmelCase__ = """\\nWord error rate (WER) is a common metric of the performance of an automatic speech recognition system.\n\nThe general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort.\n\nThis problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate.\n\nWord error rate can then be computed as:\n\nWER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct words,\nN is the number of words in the reference (N=S+D+C).\n\nThis value indicates the average number of errors per reference word. The lower the value, the better the\nperformance of the ASR system with a WER of 0 being a perfect score.\n"""
lowerCAmelCase__ = """\nCompute WER score of transcribed segments against references.\n\nArgs:\n references: List of references for each speech input.\n predictions: List of transcriptions to score.\n concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively.\n\nReturns:\n (float): the word error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> wer = datasets.load_metric(\"wer\")\n >>> wer_score = wer.compute(predictions=predictions, references=references)\n >>> print(wer_score)\n 0.5\n"""
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a__ ( datasets.Metric ):
"""simple docstring"""
def UpperCamelCase ( self ) -> List[str]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/jitsi/jiwer/"] , reference_urls=[
"https://en.wikipedia.org/wiki/Word_error_rate",
] , )
def UpperCamelCase ( self , lowercase=None , lowercase=None , lowercase=False ) -> Dict:
'''simple docstring'''
if concatenate_texts:
return compute_measures(lowercase , lowercase )["wer"]
else:
A__ = 0
A__ = 0
for prediction, reference in zip(lowercase , lowercase ):
A__ = compute_measures(lowercase , lowercase )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total
| 68 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__lowerCAmelCase = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 | 0 |
'''simple docstring'''
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
lowercase : Optional[int] = {
"distilbert": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
"roberta": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
"bert": (BertConfig, BertForMaskedLM, BertTokenizer),
"gpt2": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def SCREAMING_SNAKE_CASE__ ( __A ) -> List[str]:
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Optional[int]:
if args.student_type == "roberta":
_snake_case = False
elif args.student_type == "gpt2":
_snake_case = False
def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> str:
if args.student_type == "roberta":
_snake_case = False
def SCREAMING_SNAKE_CASE__ ( ) -> Dict:
_snake_case = argparse.ArgumentParser(description='Training' )
parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' )
parser.add_argument(
'--dump_path' , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The output directory (log, checkpoints, parameters, etc.)' )
parser.add_argument(
'--data_file' , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , )
parser.add_argument(
'--student_type' , type=_SCREAMING_SNAKE_CASE , choices=['distilbert', 'roberta', 'gpt2'] , required=_SCREAMING_SNAKE_CASE , help='The student type (DistilBERT, RoBERTa).' , )
parser.add_argument('--student_config' , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='Path to the student configuration.' )
parser.add_argument(
'--student_pretrained_weights' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help='Load student initialization checkpoint.' )
parser.add_argument(
'--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_SCREAMING_SNAKE_CASE , help='Teacher type (BERT, RoBERTa).' )
parser.add_argument('--teacher_name' , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The teacher model.' )
parser.add_argument('--temperature' , default=2.0 , type=_SCREAMING_SNAKE_CASE , help='Temperature for the softmax temperature.' )
parser.add_argument(
'--alpha_ce' , default=0.5 , type=_SCREAMING_SNAKE_CASE , help='Linear weight for the distillation loss. Must be >=0.' )
parser.add_argument(
'--alpha_mlm' , default=0.0 , type=_SCREAMING_SNAKE_CASE , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , )
parser.add_argument('--alpha_clm' , default=0.5 , type=_SCREAMING_SNAKE_CASE , help='Linear weight for the CLM loss. Must be >=0.' )
parser.add_argument('--alpha_mse' , default=0.0 , type=_SCREAMING_SNAKE_CASE , help='Linear weight of the MSE loss. Must be >=0.' )
parser.add_argument(
'--alpha_cos' , default=0.0 , type=_SCREAMING_SNAKE_CASE , help='Linear weight of the cosine embedding loss. Must be >=0.' )
parser.add_argument(
'--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' )
parser.add_argument(
'--mlm_mask_prop' , default=0.1_5 , type=_SCREAMING_SNAKE_CASE , help='Proportion of tokens for which we need to make a prediction.' , )
parser.add_argument('--word_mask' , default=0.8 , type=_SCREAMING_SNAKE_CASE , help='Proportion of tokens to mask out.' )
parser.add_argument('--word_keep' , default=0.1 , type=_SCREAMING_SNAKE_CASE , help='Proportion of tokens to keep.' )
parser.add_argument('--word_rand' , default=0.1 , type=_SCREAMING_SNAKE_CASE , help='Proportion of tokens to randomly replace.' )
parser.add_argument(
'--mlm_smoothing' , default=0.7 , type=_SCREAMING_SNAKE_CASE , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , )
parser.add_argument('--token_counts' , type=_SCREAMING_SNAKE_CASE , help='The token counts in the data_file for MLM.' )
parser.add_argument(
'--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , )
parser.add_argument(
'--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , )
parser.add_argument(
'--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , )
parser.add_argument('--n_epoch' , type=_SCREAMING_SNAKE_CASE , default=3 , help='Number of pass on the whole dataset.' )
parser.add_argument('--batch_size' , type=_SCREAMING_SNAKE_CASE , default=5 , help='Batch size (for each process).' )
parser.add_argument(
'--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , )
parser.add_argument(
'--gradient_accumulation_steps' , type=_SCREAMING_SNAKE_CASE , default=50 , help='Gradient accumulation for larger training batches.' , )
parser.add_argument('--warmup_prop' , default=0.0_5 , type=_SCREAMING_SNAKE_CASE , help='Linear warmup proportion.' )
parser.add_argument('--weight_decay' , default=0.0 , type=_SCREAMING_SNAKE_CASE , help='Weight decay if we apply some.' )
parser.add_argument('--learning_rate' , default=5e-4 , type=_SCREAMING_SNAKE_CASE , help='The initial learning rate for Adam.' )
parser.add_argument('--adam_epsilon' , default=1e-6 , type=_SCREAMING_SNAKE_CASE , help='Epsilon for Adam optimizer.' )
parser.add_argument('--max_grad_norm' , default=5.0 , type=_SCREAMING_SNAKE_CASE , help='Max gradient norm.' )
parser.add_argument('--initializer_range' , default=0.0_2 , type=_SCREAMING_SNAKE_CASE , help='Random initialization range.' )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=_SCREAMING_SNAKE_CASE , default='O1' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_gpu' , type=_SCREAMING_SNAKE_CASE , default=1 , help='Number of GPUs in the node.' )
parser.add_argument('--local_rank' , type=_SCREAMING_SNAKE_CASE , default=-1 , help='Distributed training - Local rank' )
parser.add_argument('--seed' , type=_SCREAMING_SNAKE_CASE , default=56 , help='Random seed' )
parser.add_argument('--log_interval' , type=_SCREAMING_SNAKE_CASE , default=500 , help='Tensorboard logging interval.' )
parser.add_argument('--checkpoint_interval' , type=_SCREAMING_SNAKE_CASE , default=4_000 , help='Checkpoint interval.' )
_snake_case = parser.parse_args()
sanity_checks(_SCREAMING_SNAKE_CASE )
# ARGS #
init_gpu_params(_SCREAMING_SNAKE_CASE )
set_seed(_SCREAMING_SNAKE_CASE )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'
' itUse `--force` if you want to overwrite it' )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F'Experiment will be dumped and logged in {args.dump_path}' )
# SAVE PARAMS #
logger.info(F'Param: {args}' )
with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f:
json.dump(vars(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , indent=4 )
git_log(args.dump_path )
_snake_case , _snake_case , _snake_case = MODEL_CLASSES[args.student_type]
_snake_case , _snake_case , _snake_case = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
_snake_case = teacher_tokenizer_class.from_pretrained(args.teacher_name )
_snake_case = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
_snake_case = tokenizer.all_special_tokens.index(_SCREAMING_SNAKE_CASE )
_snake_case = tokenizer.all_special_ids[idx]
logger.info(F'Special tokens {special_tok_ids}' )
_snake_case = special_tok_ids
_snake_case = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F'Loading data from {args.data_file}' )
with open(args.data_file , 'rb' ) as fp:
_snake_case = pickle.load(_SCREAMING_SNAKE_CASE )
if args.mlm:
logger.info(F'Loading token counts from {args.token_counts} (already pre-computed)' )
with open(args.token_counts , 'rb' ) as fp:
_snake_case = pickle.load(_SCREAMING_SNAKE_CASE )
_snake_case = np.maximum(_SCREAMING_SNAKE_CASE , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
_snake_case = 0.0 # do not predict special tokens
_snake_case = torch.from_numpy(_SCREAMING_SNAKE_CASE )
else:
_snake_case = None
_snake_case = LmSeqsDataset(params=_SCREAMING_SNAKE_CASE , data=_SCREAMING_SNAKE_CASE )
logger.info('Data loader created.' )
# STUDENT #
logger.info(F'Loading student config from {args.student_config}' )
_snake_case = student_config_class.from_pretrained(args.student_config )
_snake_case = True
if args.student_pretrained_weights is not None:
logger.info(F'Loading pretrained weights from {args.student_pretrained_weights}' )
_snake_case = student_model_class.from_pretrained(args.student_pretrained_weights , config=_SCREAMING_SNAKE_CASE )
else:
_snake_case = student_model_class(_SCREAMING_SNAKE_CASE )
if args.n_gpu > 0:
student.to(F'cuda:{args.local_rank}' )
logger.info('Student loaded.' )
# TEACHER #
_snake_case = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_SCREAMING_SNAKE_CASE )
if args.n_gpu > 0:
teacher.to(F'cuda:{args.local_rank}' )
logger.info(F'Teacher loaded from {args.teacher_name}.' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
_snake_case = Distiller(
params=_SCREAMING_SNAKE_CASE , dataset=_SCREAMING_SNAKE_CASE , token_probs=_SCREAMING_SNAKE_CASE , student=_SCREAMING_SNAKE_CASE , teacher=_SCREAMING_SNAKE_CASE )
distiller.train()
logger.info('Let\'s go get some drinks.' )
if __name__ == "__main__":
main()
| 42 |
'''simple docstring'''
import os
from typing import Dict, List, Tuple, TypeVar, Union
__lowerCAmelCase = TypeVar('T')
__lowerCAmelCase = Union[List[T], Tuple[T, ...]]
__lowerCAmelCase = Union[T, List[T], Dict[str, T]]
__lowerCAmelCase = Union[str, bytes, os.PathLike] | 341 | 0 |
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , _a , _a , _a ) -> Union[str, Any]:
_a : Tuple = name
_a : Optional[int] = value
_a : Union[str, Any] = weight
def __repr__( self ) -> Optional[Any]:
return F"""{self.__class__.__name__}({self.name}, {self.value}, {self.weight})"""
def __lowercase ( self ) -> int:
return self.value
def __lowercase ( self ) -> Dict:
return self.name
def __lowercase ( self ) -> str:
return self.weight
def __lowercase ( self ) -> Optional[int]:
return self.value / self.weight
def __UpperCAmelCase ( __a : Optional[Any] ,__a : List[str] ,__a : Union[str, Any] ) -> str:
"""simple docstring"""
_a : Optional[Any] = []
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
menu.append(Things(name[i] ,value[i] ,weight[i] ) )
return menu
def __UpperCAmelCase ( __a : Optional[Any] ,__a : Union[str, Any] ,__a : List[Any] ) -> Optional[Any]:
"""simple docstring"""
_a : Optional[int] = sorted(_SCREAMING_SNAKE_CASE ,key=_SCREAMING_SNAKE_CASE ,reverse=_SCREAMING_SNAKE_CASE )
_a : Dict = []
_a , _a : int = 0.0, 0.0
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
if (total_cost + items_copy[i].get_weight()) <= max_cost:
result.append(items_copy[i] )
total_cost += items_copy[i].get_weight()
total_value += items_copy[i].get_value()
return (result, total_value)
def __UpperCAmelCase ( ) -> Dict:
"""simple docstring"""
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 235 |
'''simple docstring'''
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) -> int:
_snake_case = data
_snake_case = previous
_snake_case = next_node
def __str__(self ) -> str:
return f"""{self.data}"""
def lowercase (self ) -> int:
return self.data
def lowercase (self ) -> Dict:
return self.next
def lowercase (self ) -> Union[str, Any]:
return self.previous
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase ) -> List[str]:
_snake_case = head
def __iter__(self ) -> Optional[Any]:
return self
def lowercase (self ) -> str:
if not self.current:
raise StopIteration
else:
_snake_case = self.current.get_data()
_snake_case = self.current.get_next()
return value
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self ) -> Optional[int]:
_snake_case = None # First node in list
_snake_case = None # Last node in list
def __str__(self ) -> Optional[int]:
_snake_case = self.head
_snake_case = []
while current is not None:
nodes.append(current.get_data() )
_snake_case = current.get_next()
return " ".join(str(UpperCAmelCase ) for node in nodes )
def __contains__(self , UpperCAmelCase ) -> int:
_snake_case = self.head
while current:
if current.get_data() == value:
return True
_snake_case = current.get_next()
return False
def __iter__(self ) -> Union[str, Any]:
return LinkedListIterator(self.head )
def lowercase (self ) -> str:
if self.head:
return self.head.get_data()
return None
def lowercase (self ) -> List[Any]:
if self.tail:
return self.tail.get_data()
return None
def lowercase (self , UpperCAmelCase ) -> None:
if self.head is None:
_snake_case = node
_snake_case = node
else:
self.insert_before_node(self.head , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> None:
if self.head is None:
self.set_head(UpperCAmelCase )
else:
self.insert_after_node(self.tail , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> None:
_snake_case = Node(UpperCAmelCase )
if self.head is None:
self.set_head(UpperCAmelCase )
else:
self.set_tail(UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = node
_snake_case = node.previous
if node.get_previous() is None:
_snake_case = node_to_insert
else:
_snake_case = node_to_insert
_snake_case = node_to_insert
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = node
_snake_case = node.next
if node.get_next() is None:
_snake_case = node_to_insert
else:
_snake_case = node_to_insert
_snake_case = node_to_insert
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = 1
_snake_case = Node(UpperCAmelCase )
_snake_case = self.head
while node:
if current_position == position:
self.insert_before_node(UpperCAmelCase , UpperCAmelCase )
return
current_position += 1
_snake_case = node.next
self.insert_after_node(self.tail , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> Node:
_snake_case = self.head
while node:
if node.get_data() == item:
return node
_snake_case = node.get_next()
raise Exception("""Node not found""" )
def lowercase (self , UpperCAmelCase ) -> Optional[int]:
if (node := self.get_node(UpperCAmelCase )) is not None:
if node == self.head:
_snake_case = self.head.get_next()
if node == self.tail:
_snake_case = self.tail.get_previous()
self.remove_node_pointers(UpperCAmelCase )
@staticmethod
def lowercase (UpperCAmelCase ) -> None:
if node.get_next():
_snake_case = node.previous
if node.get_previous():
_snake_case = node.next
_snake_case = None
_snake_case = None
def lowercase (self ) -> Dict:
return self.head is None
def __SCREAMING_SNAKE_CASE ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 0 |
from random import randint
from tempfile import TemporaryFile
import numpy as np
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str:
_lowercase : Union[str, Any] = 0
if start < end:
_lowercase : List[Any] = randint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_lowercase : Optional[Any] = a[end]
_lowercase : Optional[Any] = a[pivot]
_lowercase : List[Any] = temp
_lowercase , _lowercase : Optional[int] = _in_place_partition(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
count += _in_place_quick_sort(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , p - 1 )
count += _in_place_quick_sort(_SCREAMING_SNAKE_CASE , p + 1 , _SCREAMING_SNAKE_CASE )
return count
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]:
_lowercase : Optional[Any] = 0
_lowercase : Dict = randint(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_lowercase : Dict = a[end]
_lowercase : Any = a[pivot]
_lowercase : str = temp
_lowercase : Optional[int] = start - 1
for index in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
_lowercase : Optional[int] = new_pivot_index + 1
_lowercase : Dict = a[new_pivot_index]
_lowercase : int = a[index]
_lowercase : List[Any] = temp
_lowercase : str = a[new_pivot_index + 1]
_lowercase : Optional[int] = a[end]
_lowercase : Dict = temp
return new_pivot_index + 1, count
SCREAMING_SNAKE_CASE : Any = TemporaryFile()
SCREAMING_SNAKE_CASE : Tuple = 100 # 1000 elements are to be sorted
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = 0, 1 # mean and standard deviation
SCREAMING_SNAKE_CASE : Tuple = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
SCREAMING_SNAKE_CASE : Optional[Any] = np.load(outfile)
SCREAMING_SNAKE_CASE : Any = len(M) - 1
SCREAMING_SNAKE_CASE : Optional[int] = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)
| 21 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
__lowerCAmelCase = 8
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ):
_snake_case = x.device
_snake_case = (x * 255).int().clamp(0 , 255 )
_snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c h w -> b c 1 h w""" )
_snake_case = ((x & mask) != 0).float()
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c d h w -> b (c d) h w""" )
_snake_case = bits * 2 - 1
return bits
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ):
_snake_case = x.device
_snake_case = (x > 0).int()
_snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE , dtype=torch.intaa )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b (c d) h w -> b c d h w""" , d=8 )
_snake_case = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" )
return (dec / 255).clamp(0.0 , 1.0 )
def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ):
if self.num_inference_steps is None:
raise ValueError(
"""Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
_snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
_snake_case = self.alphas_cumprod[timestep]
_snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
_snake_case = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
_snake_case = self.bit_scale
if self.config.clip_sample:
_snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
_snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_snake_case = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
_snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
_snake_case = model_output.device if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else """cpu"""
_snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE )
_snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ** 0.5 * eta * noise
_snake_case = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="epsilon" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ):
_snake_case = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
_snake_case, _snake_case = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 )
else:
_snake_case = None
# 1. compute alphas, betas
_snake_case = self.alphas_cumprod[t]
_snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one
_snake_case = 1 - alpha_prod_t
_snake_case = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
_snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
_snake_case = model_output
else:
raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" )
# 3. Clip "predicted x_0"
_snake_case = self.bit_scale
if self.config.clip_sample:
_snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
_snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_snake_case = 0
if t > 0:
_snake_case = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_SCREAMING_SNAKE_CASE ).to(model_output.device )
_snake_case = (self._get_variance(_SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE ) ** 0.5) * noise
_snake_case = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE )
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1.0 , ) -> Tuple:
super().__init__()
_snake_case = bit_scale
_snake_case = (
ddim_bit_scheduler_step if isinstance(UpperCAmelCase , UpperCAmelCase ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase )
@torch.no_grad()
def __call__(self , UpperCAmelCase = 256 , UpperCAmelCase = 256 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = "pil" , UpperCAmelCase = True , **UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]:
_snake_case = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=UpperCAmelCase , )
_snake_case = decimal_to_bits(UpperCAmelCase ) * self.bit_scale
_snake_case = latents.to(self.device )
self.scheduler.set_timesteps(UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
_snake_case = self.unet(UpperCAmelCase , UpperCAmelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
_snake_case = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample
_snake_case = bits_to_decimal(UpperCAmelCase )
if output_type == "pil":
_snake_case = self.numpy_to_pil(UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCAmelCase ) | 341 | 0 |
'''simple docstring'''
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401
from coval.conll import reader, util
from coval.eval import evaluator
import datasets
__snake_case = datasets.logging.get_logger(__name__)
__snake_case = '''\\n@InProceedings{moosavi2019minimum,\n author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube},\n title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection},\n year = {2019},\n booktitle = {Proceedings of the 57th Annual Meeting of\n the Association for Computational Linguistics (Volume 1: Long Papers)},\n publisher = {Association for Computational Linguistics},\n address = {Florence, Italy},\n}\n\n@inproceedings{10.3115/1072399.1072405,\nauthor = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette},\ntitle = {A Model-Theoretic Coreference Scoring Scheme},\nyear = {1995},\nisbn = {1558604022},\npublisher = {Association for Computational Linguistics},\naddress = {USA},\nurl = {https://doi.org/10.3115/1072399.1072405},\ndoi = {10.3115/1072399.1072405},\nbooktitle = {Proceedings of the 6th Conference on Message Understanding},\npages = {45–52},\nnumpages = {8},\nlocation = {Columbia, Maryland},\nseries = {MUC6 ’95}\n}\n\n@INPROCEEDINGS{Bagga98algorithmsfor,\n author = {Amit Bagga and Breck Baldwin},\n title = {Algorithms for Scoring Coreference Chains},\n booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference},\n year = {1998},\n pages = {563--566}\n}\n\n@INPROCEEDINGS{Luo05oncoreference,\n author = {Xiaoqiang Luo},\n title = {On coreference resolution performance metrics},\n booktitle = {In Proc. of HLT/EMNLP},\n year = {2005},\n pages = {25--32},\n publisher = {URL}\n}\n\n@inproceedings{moosavi-strube-2016-coreference,\n title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric",\n author = "Moosavi, Nafise Sadat and\n Strube, Michael",\n booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",\n month = aug,\n year = "2016",\n address = "Berlin, Germany",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/P16-1060",\n doi = "10.18653/v1/P16-1060",\n pages = "632--642",\n}\n\n'''
__snake_case = '''\\nCoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which\nimplements of the common evaluation metrics including MUC [Vilain et al, 1995],\nB-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005],\nLEA [Moosavi and Strube, 2016] and the averaged CoNLL score\n(the average of the F1 values of MUC, B-cubed and CEAFe)\n[Denis and Baldridge, 2009a; Pradhan et al., 2011].\n\nThis wrapper of CoVal currently only work with CoNLL line format:\nThe CoNLL format has one word per line with all the annotation for this word in column separated by spaces:\nColumn Type Description\n1 Document ID This is a variation on the document filename\n2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc.\n3 Word number\n4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release.\n5 Part-of-Speech\n6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column.\n7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-"\n8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7.\n9 Word sense This is the word sense of the word in Column 3.\n10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data.\n11 Named Entities These columns identifies the spans representing various named entities.\n12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7.\nN Coreference Coreference chain information encoded in a parenthesis structure.\nMore informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html\n\nDetails on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md\n\nCoVal code was written by @ns-moosavi.\nSome parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py\nThe test suite is taken from https://github.com/conll/reference-coreference-scorers/\nMention evaluation and the test suite are added by @andreasvc.\nParsing CoNLL files is developed by Leo Born.\n'''
__snake_case = '''\nCalculates coreference evaluation metrics.\nArgs:\n predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format.\n Each prediction is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format.\n Each reference is a word with its annotations as a string made of columns joined with spaces.\n Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation)\n See the details on the format in the description of the metric.\n keep_singletons: After extracting all mentions of key or system files,\n mentions whose corresponding coreference chain is of size one,\n are considered as singletons. The default evaluation mode will include\n singletons in evaluations if they are included in the key or the system files.\n By setting \'keep_singletons=False\', all singletons in the key and system files\n will be excluded from the evaluation.\n NP_only: Most of the recent coreference resolvers only resolve NP mentions and\n leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs.\n min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans.\n Minimum spans are determined using the MINA algorithm.\n\nReturns:\n \'mentions\': mentions\n \'muc\': MUC metric [Vilain et al, 1995]\n \'bcub\': B-cubed [Bagga and Baldwin, 1998]\n \'ceafe\': CEAFe [Luo et al., 2005]\n \'lea\': LEA [Moosavi and Strube, 2016]\n \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe)\n\nExamples:\n\n >>> coval = datasets.load_metric(\'coval\')\n >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\',\n ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\',\n ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\',\n ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\',\n ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\',\n ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\']\n >>> references = [words]\n >>> predictions = [words]\n >>> results = coval.compute(predictions=predictions, references=references)\n >>> print(results) # doctest:+ELLIPSIS\n {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0}\n'''
def a ( __a , __a , __a=False , __a=False , __a=True , __a=False , __a="dummy_doc" ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase__ :Optional[int] = {doc: key_lines}
UpperCamelCase__ :Optional[int] = {doc: sys_lines}
UpperCamelCase__ :Any = {}
UpperCamelCase__ :Optional[Any] = 0
UpperCamelCase__ :List[str] = 0
UpperCamelCase__ :Dict = 0
UpperCamelCase__ :Optional[int] = 0
UpperCamelCase__ :Tuple = 0
UpperCamelCase__ :Optional[int] = 0
UpperCamelCase__ , UpperCamelCase__ :List[Any] = reader.get_doc_mentions(_SCREAMING_SNAKE_CASE , key_doc_lines[doc] , _SCREAMING_SNAKE_CASE )
key_singletons_num += singletons_num
if NP_only or min_span:
UpperCamelCase__ :Dict = reader.set_annotated_parse_trees(_SCREAMING_SNAKE_CASE , key_doc_lines[doc] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCamelCase__ , UpperCamelCase__ :str = reader.get_doc_mentions(_SCREAMING_SNAKE_CASE , sys_doc_lines[doc] , _SCREAMING_SNAKE_CASE )
sys_singletons_num += singletons_num
if NP_only or min_span:
UpperCamelCase__ :Any = reader.set_annotated_parse_trees(_SCREAMING_SNAKE_CASE , key_doc_lines[doc] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if remove_nested:
UpperCamelCase__ , UpperCamelCase__ :List[Any] = reader.remove_nested_coref_mentions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
key_nested_coref_num += nested_mentions
key_removed_nested_clusters += removed_clusters
UpperCamelCase__ , UpperCamelCase__ :List[str] = reader.remove_nested_coref_mentions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
sys_nested_coref_num += nested_mentions
sys_removed_nested_clusters += removed_clusters
UpperCamelCase__ :str = reader.get_mention_assignments(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCamelCase__ :List[str] = reader.get_mention_assignments(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCamelCase__ :Any = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster)
if remove_nested:
logger.info(
'''Number of removed nested coreferring mentions in the key '''
f'''annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}''' )
logger.info(
'''Number of resulting singleton clusters in the key '''
f'''annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}''' )
if not keep_singletons:
logger.info(
f'''{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system '''
'''files, respectively''' )
return doc_coref_infos
def a ( __a , __a , __a , __a , __a , __a , __a ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase__ :str = get_coref_infos(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
UpperCamelCase__ :str = {}
UpperCamelCase__ :Tuple = 0
UpperCamelCase__ :Optional[int] = 0
for name, metric in metrics:
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = evaluator.evaluate_documents(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , beta=1 )
if name in ["muc", "bcub", "ceafe"]:
conll += fa
conll_subparts_num += 1
output_scores.update({f'''{name}/recall''': recall, f'''{name}/precision''': precision, f'''{name}/f1''': fa} )
logger.info(
name.ljust(10 ) , f'''Recall: {recall * 100:.2f}''' , f''' Precision: {precision * 100:.2f}''' , f''' F1: {fa * 100:.2f}''' , )
if conll_subparts_num == 3:
UpperCamelCase__ :Dict = (conll / 3) * 100
logger.info(f'''CoNLL score: {conll:.2f}''' )
output_scores.update({'''conll_score''': conll} )
return output_scores
def a ( __a ) -> str:
'''simple docstring'''
UpperCamelCase__ :Optional[Any] = False
for line in key_lines:
if not line.startswith('''#''' ):
if len(line.split() ) > 6:
UpperCamelCase__ :Tuple = line.split()[5]
if not parse_col == "-":
UpperCamelCase__ :Tuple = True
break
else:
break
return has_gold_parse
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase ( datasets.Metric ):
"""simple docstring"""
def lowerCAmelCase__ ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''string''' ) ),
'''references''': datasets.Sequence(datasets.Value('''string''' ) ),
} ) , codebase_urls=['''https://github.com/ns-moosavi/coval'''] , reference_urls=[
'''https://github.com/ns-moosavi/coval''',
'''https://www.aclweb.org/anthology/P16-1060''',
'''http://www.conll.cemantix.org/2012/data.html''',
] , )
def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=False ):
'''simple docstring'''
UpperCamelCase__ :int = [
('''mentions''', evaluator.mentions),
('''muc''', evaluator.muc),
('''bcub''', evaluator.b_cubed),
('''ceafe''', evaluator.ceafe),
('''lea''', evaluator.lea),
]
if min_span:
UpperCamelCase__ :Dict = util.check_gold_parse_annotation(UpperCamelCase_ )
if not has_gold_parse:
raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' )
# util.parse_key_file(key_file)
# key_file = key_file + ".parsed"
UpperCamelCase__ :Optional[Any] = evaluate(
key_lines=UpperCamelCase_ , sys_lines=UpperCamelCase_ , metrics=UpperCamelCase_ , NP_only=UpperCamelCase_ , remove_nested=UpperCamelCase_ , keep_singletons=UpperCamelCase_ , min_span=UpperCamelCase_ , )
return score | 97 |
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 10**9 ):
_snake_case = 1
_snake_case = 2
_snake_case = 0
_snake_case = 0
_snake_case = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
_snake_case = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(f'''{solution() = }''') | 341 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
is_valid_image,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
A : List[Any] = logging.get_logger(__name__)
def lowercase_ ( _A : Optional[int] ):
"""simple docstring"""
if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ):
return videos
elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ):
return [videos]
elif is_valid_image(_SCREAMING_SNAKE_CASE ):
return [[videos]]
raise ValueError(F"Could not make batched video from {videos}" )
class _lowercase ( __snake_case):
"""simple docstring"""
A__ = ["pixel_values"]
def __init__( self : str , __lowerCamelCase : str = True , __lowerCamelCase : Dict = None , __lowerCamelCase : Optional[int] = PILImageResampling.BILINEAR , __lowerCamelCase : str = True , __lowerCamelCase : Optional[Any] = None , __lowerCamelCase : str = True , __lowerCamelCase : Optional[Any] = 1 / 255 , __lowerCamelCase : List[Any] = True , __lowerCamelCase : List[Any] = None , __lowerCamelCase : List[str] = None , **__lowerCamelCase : List[str] , ):
'''simple docstring'''
super().__init__(**__lowerCamelCase )
lowerCamelCase__ : str = size if size is not None else {"shortest_edge": 224}
lowerCamelCase__ : Optional[Any] = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase )
lowerCamelCase__ : List[Any] = crop_size if crop_size is not None else {"height": 224, "width": 224}
lowerCamelCase__ : Dict = get_size_dict(__lowerCamelCase , param_name="crop_size" )
lowerCamelCase__ : Optional[Any] = do_resize
lowerCamelCase__ : Dict = size
lowerCamelCase__ : int = do_center_crop
lowerCamelCase__ : int = crop_size
lowerCamelCase__ : Optional[Any] = resample
lowerCamelCase__ : List[str] = do_rescale
lowerCamelCase__ : Any = rescale_factor
lowerCamelCase__ : List[str] = do_normalize
lowerCamelCase__ : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCamelCase__ : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Tuple = PILImageResampling.BILINEAR , __lowerCamelCase : Optional[Any] = None , **__lowerCamelCase : Any , ):
'''simple docstring'''
lowerCamelCase__ : Optional[int] = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase )
if "shortest_edge" in size:
lowerCamelCase__ : Union[str, Any] = get_resize_output_image_size(__lowerCamelCase , size["shortest_edge"] , default_to_square=__lowerCamelCase )
elif "height" in size and "width" in size:
lowerCamelCase__ : str = (size["height"], size["width"])
else:
raise ValueError(f"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" )
return resize(__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict = None , **__lowerCamelCase : Tuple , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = get_size_dict(__lowerCamelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"Size must have 'height' and 'width' as keys. Got {size.keys()}" )
return center_crop(__lowerCamelCase , size=(size["height"], size["width"]) , data_format=__lowerCamelCase , **__lowerCamelCase )
def lowerCAmelCase ( self : Any , __lowerCamelCase : List[str] , __lowerCamelCase : int , __lowerCamelCase : List[str] = None , **__lowerCamelCase : Union[str, Any] , ):
'''simple docstring'''
return rescale(__lowerCamelCase , scale=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any = None , **__lowerCamelCase : int , ):
'''simple docstring'''
return normalize(__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase , data_format=__lowerCamelCase , **__lowerCamelCase )
def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Tuple = None , __lowerCamelCase : Any = None , __lowerCamelCase : Tuple = None , __lowerCamelCase : str = None , __lowerCamelCase : Any = None , __lowerCamelCase : Any = None , __lowerCamelCase : Dict = None , __lowerCamelCase : Dict = None , __lowerCamelCase : Any = ChannelDimension.FIRST , ):
'''simple docstring'''
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True." )
if do_center_crop and crop_size is None:
raise ValueError("Crop size must be specified if do_center_crop is True." )
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True." )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True." )
# All transformations expect numpy arrays.
lowerCamelCase__ : int = to_numpy_array(__lowerCamelCase )
if do_resize:
lowerCamelCase__ : Optional[Any] = self.resize(image=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase )
if do_center_crop:
lowerCamelCase__ : Dict = self.center_crop(__lowerCamelCase , size=__lowerCamelCase )
if do_rescale:
lowerCamelCase__ : Dict = self.rescale(image=__lowerCamelCase , scale=__lowerCamelCase )
if do_normalize:
lowerCamelCase__ : Dict = self.normalize(image=__lowerCamelCase , mean=__lowerCamelCase , std=__lowerCamelCase )
lowerCamelCase__ : Union[str, Any] = to_channel_dimension_format(__lowerCamelCase , __lowerCamelCase )
return image
def lowerCAmelCase ( self : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict = None , __lowerCamelCase : Any = None , __lowerCamelCase : Tuple = None , __lowerCamelCase : Union[str, Any] = None , __lowerCamelCase : List[str] = None , __lowerCamelCase : int = None , __lowerCamelCase : List[Any] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Tuple = None , __lowerCamelCase : Union[str, Any] = None , __lowerCamelCase : str = None , __lowerCamelCase : Optional[Any] = ChannelDimension.FIRST , **__lowerCamelCase : Union[str, Any] , ):
'''simple docstring'''
lowerCamelCase__ : str = do_resize if do_resize is not None else self.do_resize
lowerCamelCase__ : List[str] = resample if resample is not None else self.resample
lowerCamelCase__ : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop
lowerCamelCase__ : Dict = do_rescale if do_rescale is not None else self.do_rescale
lowerCamelCase__ : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCamelCase__ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize
lowerCamelCase__ : Optional[Any] = image_mean if image_mean is not None else self.image_mean
lowerCamelCase__ : Optional[int] = image_std if image_std is not None else self.image_std
lowerCamelCase__ : List[str] = size if size is not None else self.size
lowerCamelCase__ : List[Any] = get_size_dict(__lowerCamelCase , default_to_square=__lowerCamelCase )
lowerCamelCase__ : Optional[int] = crop_size if crop_size is not None else self.crop_size
lowerCamelCase__ : Any = get_size_dict(__lowerCamelCase , param_name="crop_size" )
if not valid_images(__lowerCamelCase ):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray." )
lowerCamelCase__ : Optional[int] = make_batched(__lowerCamelCase )
lowerCamelCase__ : Optional[int] = [
[
self._preprocess_image(
image=__lowerCamelCase , do_resize=__lowerCamelCase , size=__lowerCamelCase , resample=__lowerCamelCase , do_center_crop=__lowerCamelCase , crop_size=__lowerCamelCase , do_rescale=__lowerCamelCase , rescale_factor=__lowerCamelCase , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , data_format=__lowerCamelCase , )
for img in video
]
for video in videos
]
lowerCamelCase__ : Optional[Any] = {"pixel_values": videos}
return BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
| 184 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = {
'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json',
'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json',
'microsoft/deberta-v2-xlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'
),
'microsoft/deberta-v2-xxlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'
),
}
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = "deberta-v2"
def __init__(self , UpperCAmelCase=128100 , UpperCAmelCase=1536 , UpperCAmelCase=24 , UpperCAmelCase=24 , UpperCAmelCase=6144 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-7 , UpperCAmelCase=False , UpperCAmelCase=-1 , UpperCAmelCase=0 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=0 , UpperCAmelCase="gelu" , **UpperCAmelCase , ) -> List[str]:
super().__init__(**UpperCAmelCase )
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = max_position_embeddings
_snake_case = type_vocab_size
_snake_case = initializer_range
_snake_case = relative_attention
_snake_case = max_relative_positions
_snake_case = pad_token_id
_snake_case = position_biased_input
# Backwards compatibility
if type(UpperCAmelCase ) == str:
_snake_case = [x.strip() for x in pos_att_type.lower().split("""|""" )]
_snake_case = pos_att_type
_snake_case = vocab_size
_snake_case = layer_norm_eps
_snake_case = kwargs.get("""pooler_hidden_size""" , UpperCAmelCase )
_snake_case = pooler_dropout
_snake_case = pooler_hidden_act
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
@property
def lowercase (self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_snake_case = {0: """batch""", 1: """sequence"""}
if self._config.type_vocab_size > 0:
return OrderedDict(
[("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] )
else:
return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] )
@property
def lowercase (self ) -> int:
return 12
def lowercase (self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 3 , UpperCAmelCase = 40 , UpperCAmelCase = 40 , UpperCAmelCase = None , ) -> Mapping[str, Any]:
_snake_case = super().generate_dummy_inputs(preprocessor=UpperCAmelCase , framework=UpperCAmelCase )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs | 341 | 0 |
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def A_ ( snake_case : Any , snake_case : str , snake_case : Optional[int] ) -> Tuple:
'''simple docstring'''
if gpta_config_file == "":
__UpperCamelCase = GPTaConfig()
else:
__UpperCamelCase = GPTaConfig.from_json_file(_SCREAMING_SNAKE_CASE )
__UpperCamelCase = GPTaModel(_SCREAMING_SNAKE_CASE )
# Load weights from numpy
load_tf_weights_in_gpta(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Save pytorch-model
__UpperCamelCase = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME
__UpperCamelCase = pytorch_dump_folder_path + '''/''' + CONFIG_NAME
print(f"Save PyTorch model to {pytorch_weights_dump_path}" )
torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE )
print(f"Save configuration file to {pytorch_config_dump_path}" )
with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowercase__ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--gpt2_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--gpt2_config_file",
default="",
type=str,
help=(
"An optional config json file corresponding to the pre-trained OpenAI model. \n"
"This specifies the model architecture."
),
)
lowercase__ : Tuple = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 328 |
'''simple docstring'''
__lowerCAmelCase = [
(1_000, 'M'),
(900, 'CM'),
(500, 'D'),
(400, 'CD'),
(100, 'C'),
(90, 'XC'),
(50, 'L'),
(40, 'XL'),
(10, 'X'),
(9, 'IX'),
(5, 'V'),
(4, 'IV'),
(1, 'I'),
]
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000}
_snake_case = 0
_snake_case = 0
while place < len(_SCREAMING_SNAKE_CASE ):
if (place + 1 < len(_SCREAMING_SNAKE_CASE )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = []
for arabic, roman in ROMAN:
((_snake_case), (_snake_case)) = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
result.append(roman * factor )
if number == 0:
break
return "".join(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 0 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=__snake_case )
class SCREAMING_SNAKE_CASE__ ( __snake_case ):
lowercase__ = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True} )
lowercase__ = Features({"text": Value("string" )} )
lowercase__ = Features({} )
lowercase__ = "text"
@property
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
return {self.text_column: "text"}
| 136 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__lowerCAmelCase = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = ['PerceiverFeatureExtractor']
__lowerCAmelCase = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 | 0 |
"""simple docstring"""
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _A ( __snake_case ,unittest.TestCase ):
"""simple docstring"""
UpperCAmelCase : Union[str, Any] = MgpstrTokenizer
UpperCAmelCase : Tuple = False
UpperCAmelCase : Dict = {}
UpperCAmelCase : str = False
def __snake_case ( self : Tuple):
super().setUp()
# fmt: off
a : Optional[int] = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
a : Tuple = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase))))
a : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file , "w" , encoding="utf-8") as fp:
fp.write(json.dumps(__UpperCAmelCase) + "\n")
def __snake_case ( self : List[str] , **__UpperCAmelCase : Union[str, Any]):
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase)
def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : Dict):
a : List[Any] = "tester"
a : str = "tester"
return input_text, output_text
@unittest.skip("MGP-STR always lower cases letters.")
def __snake_case ( self : Optional[Any]):
pass
def __snake_case ( self : Optional[int]):
a : Optional[int] = self.get_tokenizers(do_lower_case=__UpperCAmelCase)
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}'''):
a : str = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token})
a : int = tokenizer.encode([special_token] , add_special_tokens=__UpperCAmelCase)
self.assertEqual(len(__UpperCAmelCase) , 1)
a : Optional[int] = tokenizer.decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase)
self.assertTrue(special_token not in decoded)
def __snake_case ( self : List[Any]):
a : Any = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}'''):
a , a : str = self.get_input_output_texts(__UpperCAmelCase)
a : Optional[Any] = tokenizer.tokenize(__UpperCAmelCase)
a : Optional[Any] = tokenizer.convert_tokens_to_ids(__UpperCAmelCase)
a : List[str] = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase)
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase)
a : int = tokenizer.convert_ids_to_tokens(__UpperCAmelCase)
self.assertNotEqual(len(__UpperCAmelCase) , 0)
a : Optional[int] = tokenizer.decode(__UpperCAmelCase)
self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase)
self.assertEqual(text_a.replace(" " , "") , __UpperCAmelCase)
@unittest.skip("MGP-STR tokenizer only handles one sequence.")
def __snake_case ( self : Optional[int]):
pass
@unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer")
def __snake_case ( self : Dict):
pass
| 40 |
'''simple docstring'''
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__lowerCAmelCase = 'platform'
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ):
if attention_mask is None:
_snake_case = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
_snake_case = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
_snake_case = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=99 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , ) -> Union[str, Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = seq_length
_snake_case = is_training
_snake_case = use_labels
_snake_case = vocab_size
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = max_position_embeddings
_snake_case = eos_token_id
_snake_case = pad_token_id
_snake_case = bos_token_id
_snake_case = initializer_range
def lowercase (self ) -> str:
_snake_case = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
_snake_case = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
_snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 )
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase , )
_snake_case = prepare_blenderbot_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
return config, inputs_dict
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.prepare_config_and_inputs()
return config, inputs_dict
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict:
_snake_case = 20
_snake_case = model_class_name(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] )
_snake_case, _snake_case = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase )
_snake_case = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
_snake_case = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_snake_case = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_snake_case = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase , )
_snake_case = model.decode(UpperCAmelCase , UpperCAmelCase )
_snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]:
_snake_case = 20
_snake_case = model_class_name(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] )
_snake_case, _snake_case = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_snake_case = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase )
_snake_case = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_snake_case = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_snake_case = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = model.decode(UpperCAmelCase , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase )
_snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = 99
def lowercase (self ) -> Any:
_snake_case = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
_snake_case = input_ids.shape[0]
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def lowercase (self ) -> Optional[Any]:
_snake_case, _snake_case, _snake_case = self._get_config_and_data()
_snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase )
_snake_case = lm_model(input_ids=UpperCAmelCase )
_snake_case = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase )
def lowercase (self ) -> int:
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
_snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase )
_snake_case = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
_snake_case = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
_snake_case = lm_model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase )
_snake_case = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase )
def lowercase (self ) -> Tuple:
_snake_case = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
_snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 )
_snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum()
_snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(UpperCAmelCase , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class _lowerCAmelCase ( __snake_case , unittest.TestCase , __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = True
lowerCAmelCase_ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowerCAmelCase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def lowercase (self ) -> Any:
_snake_case = FlaxBlenderbotModelTester(self )
def lowercase (self ) -> str:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_snake_case = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
_snake_case = model_class(UpperCAmelCase )
@jax.jit
def encode_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
return model.encode(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )
with self.subTest("""JIT Enabled""" ):
_snake_case = encode_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_snake_case = encode_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def lowercase (self ) -> str:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_snake_case = model_class(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
_snake_case = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
return model.decode(
decoder_input_ids=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , encoder_outputs=UpperCAmelCase , )
with self.subTest("""JIT Enabled""" ):
_snake_case = decode_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_snake_case = decode_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowercase (self ) -> Any:
for model_class_name in self.all_model_classes:
_snake_case = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
_snake_case = np.ones((1, 1) ) * model.config.eos_token_id
_snake_case = model(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" )
@slow
def lowercase (self ) -> Dict:
_snake_case = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25}
_snake_case = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True}
_snake_case = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=UpperCAmelCase )
_snake_case = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" )
_snake_case = ["""Sam"""]
_snake_case = tokenizer(UpperCAmelCase , return_tensors="""jax""" )
_snake_case = model.generate(**UpperCAmelCase , **UpperCAmelCase )
_snake_case = """Sam is a great name. It means \"sun\" in Gaelic."""
_snake_case = tokenizer.batch_decode(UpperCAmelCase , **UpperCAmelCase )
assert generated_txt[0].strip() == tgt_text | 341 | 0 |
import os
from tempfile import TemporaryDirectory
from unittest import TestCase
import pytest
from absl.testing import parameterized
from datasets import config
from datasets.arrow_reader import HF_GCP_BASE_URL
from datasets.builder import DatasetBuilder
from datasets.dataset_dict import IterableDatasetDict
from datasets.iterable_dataset import IterableDataset
from datasets.load import dataset_module_factory, import_main_class
from datasets.utils.file_utils import cached_path
lowerCAmelCase_ = [
{'dataset': 'wikipedia', 'config_name': '20220301.de'},
{'dataset': 'wikipedia', 'config_name': '20220301.en'},
{'dataset': 'wikipedia', 'config_name': '20220301.fr'},
{'dataset': 'wikipedia', 'config_name': '20220301.frr'},
{'dataset': 'wikipedia', 'config_name': '20220301.it'},
{'dataset': 'wikipedia', 'config_name': '20220301.simple'},
{'dataset': 'snli', 'config_name': 'plain_text'},
{'dataset': 'eli5', 'config_name': 'LFQA_reddit'},
{'dataset': 'wiki40b', 'config_name': 'en'},
{'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.compressed'},
{'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.nq.no_index'},
{'dataset': 'wiki_dpr', 'config_name': 'psgs_w100.multiset.no_index'},
{'dataset': 'natural_questions', 'config_name': 'default'},
]
def snake_case( __magic_name__=True ) -> int:
'''simple docstring'''
if with_config:
return [
{
"testcase_name": d["dataset"] + "/" + d["config_name"],
"dataset": d["dataset"],
"config_name": d["config_name"],
}
for d in DATASETS_ON_HF_GCP
]
else:
return [
{"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP}
]
@parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__snake_case ) )
class _A ( __snake_case ):
_UpperCamelCase : Dict = None
_UpperCamelCase : Union[str, Any] = None
def __a ( self : Optional[Any] , _A : Optional[Any] , _A : List[str] ) -> Dict:
"""simple docstring"""
with TemporaryDirectory() as tmp_dir:
lowercase : int = dataset_module_factory(_A , cache_dir=_A )
lowercase : Tuple = import_main_class(dataset_module.module_path , dataset=_A )
lowercase : List[str] = builder_cls(
cache_dir=_A , config_name=_A , hash=dataset_module.hash , )
lowercase : List[Any] = '''/'''.join(
[
HF_GCP_BASE_URL,
builder_instance._relative_data_dir(with_hash=_A ).replace(os.sep , '''/''' ),
config.DATASET_INFO_FILENAME,
] )
lowercase : Optional[int] = cached_path(_A , cache_dir=_A )
self.assertTrue(os.path.exists(_A ) )
@pytest.mark.integration
def snake_case( __magic_name__ ) -> Tuple:
'''simple docstring'''
lowercase : Tuple = tmp_path_factory.mktemp('''test_hf_gcp''' ) / '''test_wikipedia_simple'''
lowercase : Dict = dataset_module_factory('''wikipedia''' , cache_dir=_SCREAMING_SNAKE_CASE )
lowercase : Union[str, Any] = import_main_class(dataset_module.module_path )
lowercase : Union[str, Any] = builder_cls(
cache_dir=_SCREAMING_SNAKE_CASE , config_name='''20220301.frr''' , hash=dataset_module.hash , )
# use the HF cloud storage, not the original download_and_prepare that uses apache-beam
lowercase : Union[str, Any] = None
builder_instance.download_and_prepare()
lowercase : Union[str, Any] = builder_instance.as_dataset()
assert ds
@pytest.mark.integration
def snake_case( __magic_name__ ) -> Tuple:
'''simple docstring'''
lowercase : Optional[int] = dataset_module_factory('''wikipedia''' , cache_dir=_SCREAMING_SNAKE_CASE )
lowercase : int = import_main_class(dataset_module.module_path , dataset=_SCREAMING_SNAKE_CASE )
lowercase : int = builder_cls(
cache_dir=_SCREAMING_SNAKE_CASE , config_name='''20220301.frr''' , hash=dataset_module.hash , )
lowercase : List[Any] = builder_instance.as_streaming_dataset()
assert ds
assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert "train" in ds
assert isinstance(ds['''train'''] , _SCREAMING_SNAKE_CASE )
assert next(iter(ds['''train'''] ) ) | 308 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=10 , UpperCAmelCase=3 , UpperCAmelCase=32 * 4 , UpperCAmelCase=32 * 6 , UpperCAmelCase=4 , UpperCAmelCase=32 , ) -> Optional[Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = is_training
_snake_case = use_auxiliary_loss
_snake_case = num_queries
_snake_case = num_channels
_snake_case = min_size
_snake_case = max_size
_snake_case = num_labels
_snake_case = mask_feature_size
def lowercase (self ) -> str:
_snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
UpperCAmelCase )
_snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase )
_snake_case = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase ) > 0.5
).float()
_snake_case = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase ) > 0.5).long()
_snake_case = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def lowercase (self ) -> Tuple:
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig(
decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , )
def lowercase (self ) -> Optional[Any]:
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.prepare_config_and_inputs()
_snake_case = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int:
_snake_case = output.encoder_hidden_states
_snake_case = output.pixel_decoder_hidden_states
_snake_case = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(UpperCAmelCase ) , config.decoder_config.decoder_layers )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]:
with torch.no_grad():
_snake_case = MaskFormerModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
_snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase )
_snake_case = model(UpperCAmelCase , output_hidden_states=UpperCAmelCase )
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(UpperCAmelCase , UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]:
_snake_case = MaskFormerForInstanceSegmentation(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
def comm_check_on_output(UpperCAmelCase ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
_snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase )
_snake_case = model(UpperCAmelCase )
comm_check_on_output(UpperCAmelCase )
_snake_case = model(
pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase )
comm_check_on_output(UpperCAmelCase )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
lowerCAmelCase_ = (
{"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def lowercase (self ) -> int:
_snake_case = MaskFormerModelTester(self )
_snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase )
def lowercase (self ) -> int:
self.config_tester.run_common_tests()
def lowercase (self ) -> List[Any]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase )
def lowercase (self ) -> Any:
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase )
@unittest.skip(reason="""MaskFormer does not use inputs_embeds""" )
def lowercase (self ) -> Optional[Any]:
pass
@unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" )
def lowercase (self ) -> Optional[int]:
pass
@unittest.skip(reason="""MaskFormer is not a generative model""" )
def lowercase (self ) -> int:
pass
@unittest.skip(reason="""MaskFormer does not use token embeddings""" )
def lowercase (self ) -> Optional[int]:
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def lowercase (self ) -> Optional[Any]:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowercase (self ) -> Tuple:
pass
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase )
_snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case = [*signature.parameters.keys()]
_snake_case = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
@slow
def lowercase (self ) -> int:
for model_name in ["facebook/maskformer-swin-small-coco"]:
_snake_case = MaskFormerModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def lowercase (self ) -> Tuple:
_snake_case = (self.model_tester.min_size,) * 2
_snake_case = {
"""pixel_values""": torch.randn((2, 3, *size) , device=UpperCAmelCase ),
"""mask_labels""": torch.randn((2, 10, *size) , device=UpperCAmelCase ),
"""class_labels""": torch.zeros(2 , 10 , device=UpperCAmelCase ).long(),
}
_snake_case = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCAmelCase )
_snake_case = model(**UpperCAmelCase )
self.assertTrue(outputs.loss is not None )
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase ).to(UpperCAmelCase )
_snake_case = model(**UpperCAmelCase , output_attentions=UpperCAmelCase )
self.assertTrue(outputs.attentions is not None )
def lowercase (self ) -> Tuple:
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
_snake_case = self.all_model_classes[1]
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.train()
_snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ).loss
loss.backward()
def lowercase (self ) -> List[str]:
# only MaskFormerForInstanceSegmentation has the loss
_snake_case = self.all_model_classes[1]
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
_snake_case = True
_snake_case = True
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.train()
_snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase )
_snake_case = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
_snake_case = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
_snake_case = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
_snake_case = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=UpperCAmelCase )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__lowerCAmelCase = 1E-4
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowercase (self ) -> Optional[int]:
return (
MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" )
if is_vision_available()
else None
)
def lowercase (self ) -> str:
_snake_case = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(UpperCAmelCase )
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.tensor(
[[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
_snake_case = torch.tensor(
[[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
_snake_case = torch.tensor(
[[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> List[str]:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
# masks_queries_logits
_snake_case = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_snake_case = [
[-1.373_7124, -1.772_4937, -1.936_4233],
[-1.597_7281, -1.986_7939, -2.152_3695],
[-1.579_5398, -1.926_9832, -2.09_3942],
]
_snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
# class_queries_logits
_snake_case = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_snake_case = torch.tensor(
[
[1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0],
[3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0],
[1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0],
] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> List[Any]:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
# masks_queries_logits
_snake_case = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_snake_case = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]]
_snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
# class_queries_logits
_snake_case = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_snake_case = torch.tensor(
[[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> Tuple:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , )
_snake_case = inputs["""pixel_values"""].to(UpperCAmelCase )
_snake_case = [el.to(UpperCAmelCase ) for el in inputs["""mask_labels"""]]
_snake_case = [el.to(UpperCAmelCase ) for el in inputs["""class_labels"""]]
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
self.assertTrue(outputs.loss is not None ) | 341 | 0 |
"""simple docstring"""
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
A_ : List[str] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=False , ):
'''simple docstring'''
output_path.parent.mkdir(parents=_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=_SCREAMING_SNAKE_CASE , output_names=_SCREAMING_SNAKE_CASE , dynamic_axes=_SCREAMING_SNAKE_CASE , do_constant_folding=_SCREAMING_SNAKE_CASE , use_external_data_format=_SCREAMING_SNAKE_CASE , enable_onnx_checker=_SCREAMING_SNAKE_CASE , opset_version=_SCREAMING_SNAKE_CASE , )
else:
export(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , f=output_path.as_posix() , input_names=_SCREAMING_SNAKE_CASE , output_names=_SCREAMING_SNAKE_CASE , dynamic_axes=_SCREAMING_SNAKE_CASE , do_constant_folding=_SCREAMING_SNAKE_CASE , opset_version=_SCREAMING_SNAKE_CASE , )
@torch.no_grad()
def A ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
SCREAMING_SNAKE_CASE__ = """cuda"""
elif fpaa and not torch.cuda.is_available():
raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" )
else:
SCREAMING_SNAKE_CASE__ = """cpu"""
SCREAMING_SNAKE_CASE__ = Path(_SCREAMING_SNAKE_CASE )
# VAE DECODER
SCREAMING_SNAKE_CASE__ = AutoencoderKL.from_pretrained(model_path + """/vae""" )
SCREAMING_SNAKE_CASE__ = vae_decoder.config.latent_channels
# forward only through the decoder part
SCREAMING_SNAKE_CASE__ = vae_decoder.decode
onnx_export(
_SCREAMING_SNAKE_CASE , model_args=(
torch.randn(1 , _SCREAMING_SNAKE_CASE , 25 , 25 ).to(device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ),
False,
) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={
"""latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""},
} , opset=_SCREAMING_SNAKE_CASE , )
del vae_decoder
if __name__ == "__main__":
A_ : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=14,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
A_ : List[str] = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 165 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self , UpperCAmelCase ) -> Union[str, Any]:
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ):
_snake_case = model_result["""result"""][batch_size][sequence_length]
self.assertIsNotNone(UpperCAmelCase )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Dict:
_snake_case = """sgugger/tiny-distilbert-classification"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , only_pretrain_model=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Optional[Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , torchscript=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , fpaa=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Union[str, Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
# set architectures equal to `None`
_snake_case = None
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" )
def lowercase (self ) -> Tuple:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=UpperCAmelCase , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> Union[str, Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Dict:
_snake_case = """sshleifer/tinier_bart"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Any:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> int:
_snake_case = """sshleifer/tinier_bart"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> str:
_snake_case = """sshleifer/tiny-gpt2"""
with tempfile.TemporaryDirectory() as tmp_dir:
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , save_to_csv=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(UpperCAmelCase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(UpperCAmelCase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(UpperCAmelCase , """train_time.csv""" ) , env_info_csv_file=os.path.join(UpperCAmelCase , """env.csv""" ) , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """env.csv""" ) ).exists() )
def lowercase (self ) -> int:
_snake_case = """sshleifer/tiny-gpt2"""
def _check_summary_is_not_empty(UpperCAmelCase ):
self.assertTrue(hasattr(UpperCAmelCase , """sequential""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """cumulative""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """current""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """total""" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase , """log.txt""" ) , log_print=UpperCAmelCase , trace_memory_line_by_line=UpperCAmelCase , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """log.txt""" ) ).exists() ) | 341 | 0 |
import inspect
import unittest
import warnings
from math import ceil, floor
from transformers import LevitConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
LevitForImageClassification,
LevitForImageClassificationWithTeacher,
LevitModel,
)
from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import LevitImageProcessor
class a__ ( __snake_case ):
"""simple docstring"""
def UpperCamelCase ( self ) -> Dict:
'''simple docstring'''
A__ = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(lowercase , "hidden_sizes" ) )
self.parent.assertTrue(hasattr(lowercase , "num_attention_heads" ) )
class a__ :
"""simple docstring"""
def __init__( self , lowercase , lowercase=13 , lowercase=64 , lowercase=3 , lowercase=3 , lowercase=2 , lowercase=1 , lowercase=16 , lowercase=[128, 256, 384] , lowercase=[4, 6, 8] , lowercase=[2, 3, 4] , lowercase=[16, 16, 16] , lowercase=0 , lowercase=[2, 2, 2] , lowercase=[2, 2, 2] , lowercase=0.02 , lowercase=True , lowercase=True , lowercase=2 , ) -> Dict:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = image_size
A__ = num_channels
A__ = kernel_size
A__ = stride
A__ = padding
A__ = hidden_sizes
A__ = num_attention_heads
A__ = depths
A__ = key_dim
A__ = drop_path_rate
A__ = patch_size
A__ = attention_ratio
A__ = mlp_ratio
A__ = initializer_range
A__ = [
["Subsample", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2],
["Subsample", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2],
]
A__ = is_training
A__ = use_labels
A__ = num_labels
A__ = initializer_range
def UpperCamelCase ( self ) -> Optional[Any]:
'''simple docstring'''
A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A__ = None
if self.use_labels:
A__ = ids_tensor([self.batch_size] , self.num_labels )
A__ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase ( self ) -> str:
'''simple docstring'''
return LevitConfig(
image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , )
def UpperCamelCase ( self , lowercase , lowercase , lowercase ) -> Union[str, Any]:
'''simple docstring'''
A__ = LevitModel(config=lowercase )
model.to(lowercase )
model.eval()
A__ = model(lowercase )
A__ = (self.image_size, self.image_size)
A__ , A__ = image_size[0], image_size[1]
for _ in range(4 ):
A__ = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
A__ = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , )
def UpperCamelCase ( self , lowercase , lowercase , lowercase ) -> str:
'''simple docstring'''
A__ = self.num_labels
A__ = LevitForImageClassification(lowercase )
model.to(lowercase )
model.eval()
A__ = model(lowercase , labels=lowercase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase ( self ) -> str:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ = config_and_inputs
A__ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class a__ ( __snake_case , __snake_case , unittest.TestCase ):
"""simple docstring"""
__lowerCamelCase = (
(LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher)
if is_torch_available()
else ()
)
__lowerCamelCase = (
{
'feature-extraction': LevitModel,
'image-classification': (LevitForImageClassification, LevitForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
__lowerCamelCase = False
__lowerCamelCase = False
__lowerCamelCase = False
__lowerCamelCase = False
__lowerCamelCase = False
def UpperCamelCase ( self ) -> Dict:
'''simple docstring'''
A__ = LevitModelTester(self )
A__ = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 )
def UpperCamelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return
@unittest.skip(reason="Levit does not use inputs_embeds" )
def UpperCamelCase ( self ) -> str:
'''simple docstring'''
pass
@unittest.skip(reason="Levit does not support input and output embeddings" )
def UpperCamelCase ( self ) -> List[str]:
'''simple docstring'''
pass
@unittest.skip(reason="Levit does not output attentions" )
def UpperCamelCase ( self ) -> Optional[int]:
'''simple docstring'''
pass
def UpperCamelCase ( self ) -> int:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = model_class(lowercase )
A__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ = [*signature.parameters.keys()]
A__ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , lowercase )
def UpperCamelCase ( self ) -> Tuple:
'''simple docstring'''
def check_hidden_states_output(lowercase , lowercase , lowercase ):
A__ = model_class(lowercase )
model.to(lowercase )
model.eval()
with torch.no_grad():
A__ = model(**self._prepare_for_class(lowercase , lowercase ) )
A__ = outputs.hidden_states
A__ = len(self.model_tester.depths ) + 1
self.assertEqual(len(lowercase ) , lowercase )
A__ = (self.model_tester.image_size, self.model_tester.image_size)
A__ , A__ = image_size[0], image_size[1]
for _ in range(4 ):
A__ = floor(
(
(height + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
A__ = floor(
(
(width + 2 * self.model_tester.padding - self.model_tester.kernel_size)
/ self.model_tester.stride
)
+ 1 )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [
height * width,
self.model_tester.hidden_sizes[0],
] , )
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ = True
check_hidden_states_output(lowercase , lowercase , lowercase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A__ = True
check_hidden_states_output(lowercase , lowercase , lowercase )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def UpperCamelCase ( self ) -> Optional[int]:
'''simple docstring'''
pass
def UpperCamelCase ( self , lowercase , lowercase , lowercase=False ) -> int:
'''simple docstring'''
A__ = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase )
if return_labels:
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def UpperCamelCase ( self ) -> List[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase )
def UpperCamelCase ( self ) -> List[Any]:
'''simple docstring'''
A__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowercase )
def UpperCamelCase ( self ) -> Dict:
'''simple docstring'''
if not self.model_tester.is_training:
return
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = True
for model_class in self.all_model_classes:
# LevitForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(lowercase )
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
A__ = model_class(lowercase )
model.to(lowercase )
model.train()
A__ = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase )
A__ = model(**lowercase ).loss
loss.backward()
def UpperCamelCase ( self ) -> int:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
A__ = False
A__ = True
for model_class in self.all_model_classes:
if model_class in get_values(lowercase ) or not model_class.supports_gradient_checkpointing:
continue
# LevitForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "LevitForImageClassificationWithTeacher":
continue
A__ = model_class(lowercase )
model.gradient_checkpointing_enable()
model.to(lowercase )
model.train()
A__ = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase )
A__ = model(**lowercase ).loss
loss.backward()
def UpperCamelCase ( self ) -> Optional[Any]:
'''simple docstring'''
A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common()
A__ = [
{"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
{"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
{"title": "regression", "num_labels": 1, "dtype": torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(lowercase ),
]
or model_class.__name__ == "LevitForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=F'Testing {model_class} with {problem_type["title"]}' ):
A__ = problem_type["title"]
A__ = problem_type["num_labels"]
A__ = model_class(lowercase )
model.to(lowercase )
model.train()
A__ = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase )
if problem_type["num_labels"] > 1:
A__ = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] )
A__ = inputs["labels"].to(problem_type["dtype"] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=lowercase ) as warning_list:
A__ = model(**lowercase ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
F'Something is going wrong in the regression problem: intercepted {w.message}' )
loss.backward()
@slow
def UpperCamelCase ( self ) -> Any:
'''simple docstring'''
for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ = LevitModel.from_pretrained(lowercase )
self.assertIsNotNone(lowercase )
def lowerCAmelCase__ ( ) -> Any:
'''simple docstring'''
A__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class a__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def UpperCamelCase ( self ) -> List[str]:
'''simple docstring'''
return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def UpperCamelCase ( self ) -> Optional[Any]:
'''simple docstring'''
A__ = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
lowercase )
A__ = self.default_image_processor
A__ = prepare_img()
A__ = image_processor(images=lowercase , return_tensors="pt" ).to(lowercase )
# forward pass
with torch.no_grad():
A__ = model(**lowercase )
# verify the logits
A__ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , lowercase )
A__ = torch.tensor([1.0448, -0.3745, -1.8317] ).to(lowercase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4 ) )
| 68 |
'''simple docstring'''
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
if len(_SCREAMING_SNAKE_CASE ) == 0:
return []
_snake_case, _snake_case = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE )
_snake_case = int(max_value - min_value ) + 1
_snake_case = [[] for _ in range(_SCREAMING_SNAKE_CASE )]
for i in my_list:
buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE )
return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15] | 341 | 0 |
'''simple docstring'''
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPTaLMHeadModel
lowercase : Optional[Any] = logging.getLogger(__name__)
def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> Any:
# save results
if os.path.exists(_SCREAMING_SNAKE_CASE ):
if os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ) and os.path.isfile(
os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) ):
os.remove(os.path.join(_SCREAMING_SNAKE_CASE , 'config.json' ) )
if os.path.exists(os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ) and os.path.isfile(
os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) ):
os.remove(os.path.join(_SCREAMING_SNAKE_CASE , 'pytorch_model.bin' ) )
else:
os.makedirs(_SCREAMING_SNAKE_CASE )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE__ ( __A , __A=False ) -> Dict:
_snake_case = 2
if unlogit:
_snake_case = torch.pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_snake_case = p * torch.log(_SCREAMING_SNAKE_CASE )
_snake_case = 0
return -plogp.sum(dim=-1 )
def SCREAMING_SNAKE_CASE__ ( __A ) -> Any:
logger.info('lv, h >\t' + '\t'.join(F'{x + 1}' for x in range(len(_SCREAMING_SNAKE_CASE ) ) ) )
for row in range(len(_SCREAMING_SNAKE_CASE ) ):
if tensor.dtype != torch.long:
logger.info(F'layer {row + 1}:\t' + '\t'.join(F'{x:.5f}' for x in tensor[row].cpu().data ) )
else:
logger.info(F'layer {row + 1}:\t' + '\t'.join(F'{x:d}' for x in tensor[row].cpu().data ) )
def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A=True , __A=True , __A=None , __A=False ) -> int:
_snake_case , _snake_case = model.config.num_hidden_layers, model.config.num_attention_heads
_snake_case = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device )
_snake_case = torch.zeros(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device )
if head_mask is None:
_snake_case = torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).to(args.device )
head_mask.requires_grad_(requires_grad=_SCREAMING_SNAKE_CASE )
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
_snake_case = None
_snake_case = 0.0
_snake_case = 0.0
for step, inputs in enumerate(tqdm(_SCREAMING_SNAKE_CASE , desc='Iteration' , disable=args.local_rank not in [-1, 0] ) ):
_snake_case = tuple(t.to(args.device ) for t in inputs )
((_snake_case ) , ) = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
_snake_case = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE )
# (loss), lm_logits, presents, (all hidden_states), (attentions)
_snake_case , _snake_case , _snake_case = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(_SCREAMING_SNAKE_CASE ):
_snake_case = entropy(attn.detach() , _SCREAMING_SNAKE_CASE )
attn_entropy[layer] += masked_entropy.sum(-1 ).sum(0 ).sum(0 ).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(_SCREAMING_SNAKE_CASE ).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
_snake_case = 2
_snake_case = torch.pow(torch.pow(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).sum(-1 ) , 1 / exponent )
head_importance /= norm_by_layer.unsqueeze(-1 ) + 1e-20
if not args.dont_normalize_global_importance:
_snake_case = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info('Attention entropies' )
print_ad_tensor(_SCREAMING_SNAKE_CASE )
if compute_importance:
logger.info('Head importance scores' )
print_ad_tensor(_SCREAMING_SNAKE_CASE )
logger.info('Head ranked by importance scores' )
_snake_case = torch.zeros(head_importance.numel() , dtype=torch.long , device=args.device )
_snake_case = torch.arange(
head_importance.numel() , device=args.device )
_snake_case = head_ranks.view_as(_SCREAMING_SNAKE_CASE )
print_ad_tensor(_SCREAMING_SNAKE_CASE )
return attn_entropy, head_importance, total_loss
def SCREAMING_SNAKE_CASE__ ( __A , __A , __A ) -> Union[str, Any]:
_snake_case , _snake_case , _snake_case = compute_heads_importance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE )
_snake_case = 1 / loss # instead of downsteam score use the LM loss
logger.info('Pruning: original score: %f, threshold: %f' , _SCREAMING_SNAKE_CASE , original_score * args.masking_threshold )
_snake_case = torch.ones_like(_SCREAMING_SNAKE_CASE )
_snake_case = max(1 , int(new_head_mask.numel() * args.masking_amount ) )
_snake_case = original_score
while current_score >= original_score * args.masking_threshold:
_snake_case = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
_snake_case = float('Inf' )
_snake_case = head_importance.view(-1 ).sort()[1]
if len(_SCREAMING_SNAKE_CASE ) <= num_to_mask:
print('BREAK BY num_to_mask' )
break
# mask heads
_snake_case = current_heads_to_mask[:num_to_mask]
logger.info('Heads to mask: %s' , str(current_heads_to_mask.tolist() ) )
_snake_case = new_head_mask.view(-1 )
_snake_case = 0.0
_snake_case = new_head_mask.view_as(_SCREAMING_SNAKE_CASE )
_snake_case = new_head_mask.clone().detach()
print_ad_tensor(_SCREAMING_SNAKE_CASE )
# Compute metric and head importance again
_snake_case , _snake_case , _snake_case = compute_heads_importance(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE )
_snake_case = 1 / loss
logger.info(
'Masking: current score: %f, remaining heads %d (%.1f percents)' , _SCREAMING_SNAKE_CASE , new_head_mask.sum() , new_head_mask.sum() / new_head_mask.numel() * 100 , )
logger.info('Final head mask' )
print_ad_tensor(_SCREAMING_SNAKE_CASE )
np.save(os.path.join(args.output_dir , 'head_mask.npy' ) , head_mask.detach().cpu().numpy() )
return head_mask
def SCREAMING_SNAKE_CASE__ ( __A , __A , __A , __A ) -> int:
_snake_case = datetime.now()
_snake_case , _snake_case , _snake_case = compute_heads_importance(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , compute_importance=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE )
_snake_case = 1 / loss
_snake_case = datetime.now() - before_time
_snake_case = sum(p.numel() for p in model.parameters() )
_snake_case = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(_SCREAMING_SNAKE_CASE ) )
}
for k, v in heads_to_prune.items():
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = [
v,
]
assert sum(len(_SCREAMING_SNAKE_CASE ) for h in heads_to_prune.values() ) == (1 - head_mask.long()).sum().item()
model.prune_heads(_SCREAMING_SNAKE_CASE )
_snake_case = sum(p.numel() for p in model.parameters() )
_snake_case = datetime.now()
_snake_case , _snake_case , _snake_case = compute_heads_importance(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , compute_entropy=_SCREAMING_SNAKE_CASE , compute_importance=_SCREAMING_SNAKE_CASE , head_mask=_SCREAMING_SNAKE_CASE , actually_pruned=_SCREAMING_SNAKE_CASE , )
_snake_case = 1 / loss
_snake_case = datetime.now() - before_time
logger.info(
'Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , pruned_num_params / original_num_params * 100 , )
logger.info('Pruning: score with masking: %f score with pruning: %f' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
logger.info('Pruning: speed ratio (original timing / new timing): %f percents' , original_time / new_time * 100 )
save_model(_SCREAMING_SNAKE_CASE , args.output_dir )
def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]:
_snake_case = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--data_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The input data dir. Should contain the .tsv files (or other data files) for the task.' , )
parser.add_argument(
'--model_name_or_path' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--output_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help='The output directory where the model predictions and checkpoints will be written.' , )
# Other parameters
parser.add_argument(
'--config_name' , default='' , type=_SCREAMING_SNAKE_CASE , help='Pretrained config name or path if not the same as model_name_or_path' , )
parser.add_argument(
'--tokenizer_name' , default='' , type=_SCREAMING_SNAKE_CASE , help='Pretrained tokenizer name or path if not the same as model_name_or_path' , )
parser.add_argument(
'--cache_dir' , default=_SCREAMING_SNAKE_CASE , type=_SCREAMING_SNAKE_CASE , help='Where do you want to store the pre-trained models downloaded from s3' , )
parser.add_argument(
'--data_subset' , type=_SCREAMING_SNAKE_CASE , default=-1 , help='If > 0: limit the data to a subset of data_subset instances.' )
parser.add_argument(
'--overwrite_output_dir' , action='store_true' , help='Whether to overwrite data in output directory' )
parser.add_argument(
'--overwrite_cache' , action='store_true' , help='Overwrite the cached training and evaluation sets' )
parser.add_argument(
'--dont_normalize_importance_by_layer' , action='store_true' , help='Don\'t normalize importance score by layers' )
parser.add_argument(
'--dont_normalize_global_importance' , action='store_true' , help='Don\'t normalize all importance scores between 0 and 1' , )
parser.add_argument(
'--try_masking' , action='store_true' , help='Whether to try to mask head until a threshold of accuracy.' )
parser.add_argument(
'--masking_threshold' , default=0.9 , type=_SCREAMING_SNAKE_CASE , help='masking threshold in term of metrics (stop masking when metric < threshold * original metric value).' , )
parser.add_argument(
'--masking_amount' , default=0.1 , type=_SCREAMING_SNAKE_CASE , help='Amount to heads to masking at each masking step.' )
parser.add_argument('--metric_name' , default='acc' , type=_SCREAMING_SNAKE_CASE , help='Metric to use for head masking.' )
parser.add_argument(
'--max_seq_length' , default=128 , type=_SCREAMING_SNAKE_CASE , help=(
'The maximum total input sequence length after WordPiece tokenization. \n'
'Sequences longer than this will be truncated, sequences shorter padded.'
) , )
parser.add_argument('--batch_size' , default=1 , type=_SCREAMING_SNAKE_CASE , help='Batch size.' )
parser.add_argument('--seed' , type=_SCREAMING_SNAKE_CASE , default=42 )
parser.add_argument('--local_rank' , type=_SCREAMING_SNAKE_CASE , default=-1 , help='local_rank for distributed training on gpus' )
parser.add_argument('--no_cuda' , action='store_true' , help='Whether not to use CUDA when available' )
parser.add_argument('--server_ip' , type=_SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' )
parser.add_argument('--server_port' , type=_SCREAMING_SNAKE_CASE , default='' , help='Can be used for distant debugging.' )
_snake_case = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print('Waiting for debugger attach' )
ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=_SCREAMING_SNAKE_CASE )
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
_snake_case = torch.device('cuda' if torch.cuda.is_available() and not args.no_cuda else 'cpu' )
_snake_case = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank )
_snake_case = torch.device('cuda' , args.local_rank )
_snake_case = 1
torch.distributed.init_process_group(backend='nccl' ) # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN )
logger.info('device: {} n_gpu: {}, distributed: {}'.format(args.device , args.n_gpu , bool(args.local_rank != -1 ) ) )
_snake_case = GPTaLMHeadModel.from_pretrained(args.model_name_or_path )
# Distributed and parallel training
model.to(args.device )
if args.local_rank != -1:
_snake_case = nn.parallel.DistributedDataParallel(
_SCREAMING_SNAKE_CASE , device_ids=[args.local_rank] , output_device=args.local_rank , find_unused_parameters=_SCREAMING_SNAKE_CASE )
elif args.n_gpu > 1:
_snake_case = nn.DataParallel(_SCREAMING_SNAKE_CASE )
# Print/save training arguments
os.makedirs(args.output_dir , exist_ok=_SCREAMING_SNAKE_CASE )
torch.save(_SCREAMING_SNAKE_CASE , os.path.join(args.output_dir , 'run_args.bin' ) )
logger.info('Training/evaluation parameters %s' , _SCREAMING_SNAKE_CASE )
# Prepare dataset
_snake_case = np.concatenate(
[
np.loadtxt(args.data_dir , dtype=np.intaa ),
] )
_snake_case = (torch.from_numpy(_SCREAMING_SNAKE_CASE ),)
_snake_case = TensorDataset(*_SCREAMING_SNAKE_CASE )
_snake_case = RandomSampler(_SCREAMING_SNAKE_CASE )
_snake_case = DataLoader(_SCREAMING_SNAKE_CASE , sampler=_SCREAMING_SNAKE_CASE , batch_size=args.batch_size )
# Compute head entropy and importance score
compute_heads_importance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
_snake_case = mask_heads(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
prune_heads(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 42 |
'''simple docstring'''
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
__lowerCAmelCase = logging.get_logger(__name__)
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase=None ) -> int:
if not conversation_id:
_snake_case = uuid.uuida()
if past_user_inputs is None:
_snake_case = []
if generated_responses is None:
_snake_case = []
_snake_case = conversation_id
_snake_case = past_user_inputs
_snake_case = generated_responses
_snake_case = text
def __eq__(self , UpperCAmelCase ) -> Dict:
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def lowercase (self , UpperCAmelCase , UpperCAmelCase = False ) -> int:
if self.new_user_input:
if overwrite:
logger.warning(
f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """
f"""with: \"{text}\".""" )
_snake_case = text
else:
logger.warning(
f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """
f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" )
else:
_snake_case = text
def lowercase (self ) -> int:
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
_snake_case = None
def lowercase (self , UpperCAmelCase ) -> Any:
self.generated_responses.append(UpperCAmelCase )
def lowercase (self ) -> List[str]:
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__(self ) -> Optional[int]:
_snake_case = f"""Conversation id: {self.uuid} \n"""
for is_user, text in self.iter_texts():
_snake_case = """user""" if is_user else """bot"""
output += f"""{name} >> {text} \n"""
return output
@add_end_docstrings(
__snake_case , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , )
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
if self.tokenizer.pad_token_id is None:
_snake_case = self.tokenizer.eos_token
def lowercase (self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Dict:
_snake_case = {}
_snake_case = {}
_snake_case = {}
if min_length_for_response is not None:
_snake_case = min_length_for_response
if minimum_tokens is not None:
_snake_case = minimum_tokens
if "max_length" in generate_kwargs:
_snake_case = generate_kwargs["""max_length"""]
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
_snake_case = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(UpperCAmelCase )
return preprocess_params, forward_params, postprocess_params
def __call__(self , UpperCAmelCase , UpperCAmelCase=0 , **UpperCAmelCase ) -> Union[str, Any]:
_snake_case = super().__call__(UpperCAmelCase , num_workers=UpperCAmelCase , **UpperCAmelCase )
if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) == 1:
return outputs[0]
return outputs
def lowercase (self , UpperCAmelCase , UpperCAmelCase=32 ) -> Dict[str, Any]:
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" )
if conversation.new_user_input is None:
raise ValueError(
f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """
"""Add user inputs with the conversation's `add_user_input` method""" )
if hasattr(self.tokenizer , """_build_conversation_input_ids""" ):
_snake_case = self.tokenizer._build_conversation_input_ids(UpperCAmelCase )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
_snake_case = self._legacy_parse_and_tokenize(UpperCAmelCase )
if self.framework == "pt":
_snake_case = torch.LongTensor([input_ids] )
elif self.framework == "tf":
_snake_case = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def lowercase (self , UpperCAmelCase , UpperCAmelCase=10 , **UpperCAmelCase ) -> Optional[int]:
_snake_case = generate_kwargs.get("""max_length""" , self.model.config.max_length )
_snake_case = model_inputs["""input_ids"""].shape[1]
if max_length - minimum_tokens < n:
logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" )
_snake_case = max_length - minimum_tokens
_snake_case = model_inputs["""input_ids"""][:, -trim:]
if "attention_mask" in model_inputs:
_snake_case = model_inputs["""attention_mask"""][:, -trim:]
_snake_case = model_inputs.pop("""conversation""" )
_snake_case = max_length
_snake_case = self.model.generate(**UpperCAmelCase , **UpperCAmelCase )
if self.model.config.is_encoder_decoder:
_snake_case = 1
else:
_snake_case = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def lowercase (self , UpperCAmelCase , UpperCAmelCase=True ) -> List[str]:
_snake_case = model_outputs["""output_ids"""]
_snake_case = self.tokenizer.decode(
output_ids[0] , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , )
_snake_case = model_outputs["""conversation"""]
conversation.mark_processed()
conversation.append_response(UpperCAmelCase )
return conversation
def lowercase (self , UpperCAmelCase ) -> Dict:
_snake_case = self.tokenizer.eos_token_id
_snake_case = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
if len(UpperCAmelCase ) > self.tokenizer.model_max_length:
_snake_case = input_ids[-self.tokenizer.model_max_length :]
return input_ids | 341 | 0 |
def __UpperCAmelCase ( __a : Optional[int] ,__a : Dict ) -> str:
"""simple docstring"""
_a : Any = word.split()
def justify(__a : List[str] ,__a : Tuple ,__a : Optional[int] ) -> str:
_a : Union[str, Any] = max_width - width
_a : Optional[int] = len(_SCREAMING_SNAKE_CASE )
if len(_SCREAMING_SNAKE_CASE ) == 1:
# if there is only word in line
# just insert overall_spaces_count for the remainder of line
return line[0] + " " * overall_spaces_count
else:
_a : Optional[int] = words_count - 1
# num_spaces_between_words_list[i] : tells you to insert
# num_spaces_between_words_list[i] spaces
# after word on line[i]
_a : str = spaces_to_insert_between_words * [
overall_spaces_count // spaces_to_insert_between_words
]
_a : Union[str, Any] = (
overall_spaces_count % spaces_to_insert_between_words
)
# distribute spaces via round robin to the left words
for i in range(_SCREAMING_SNAKE_CASE ):
num_spaces_between_words_list[i] += 1
_a : Tuple = []
for i in range(_SCREAMING_SNAKE_CASE ):
# add the word
aligned_words_list.append(line[i] )
# add the spaces to insert
aligned_words_list.append(num_spaces_between_words_list[i] * ''' ''' )
# just add the last word to the sentence
aligned_words_list.append(line[-1] )
# join the aligned words list to form a justified line
return "".join(_SCREAMING_SNAKE_CASE )
_a : Optional[int] = []
_a : Tuple = []
_a : Tuple = 0
for word in words:
if width + len(_SCREAMING_SNAKE_CASE ) + len(_SCREAMING_SNAKE_CASE ) <= max_width:
# keep adding words until we can fill out max_width
# width = sum of length of all words (without overall_spaces_count)
# len(word) = length of current word
# len(line) = number of overall_spaces_count to insert between words
line.append(_SCREAMING_SNAKE_CASE )
width += len(_SCREAMING_SNAKE_CASE )
else:
# justify the line and add it to result
answer.append(justify(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) )
# reset new line and new width
_a , _a : Optional[Any] = [word], len(_SCREAMING_SNAKE_CASE )
_a : Tuple = max_width - width - len(_SCREAMING_SNAKE_CASE )
answer.append(''' '''.join(_SCREAMING_SNAKE_CASE ) + (remaining_spaces + 1) * ''' ''' )
return answer
if __name__ == "__main__":
from doctest import testmod
testmod()
| 235 |
'''simple docstring'''
from math import factorial, radians
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 18 , _SCREAMING_SNAKE_CASE = 10 ):
_snake_case = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0)
# Converting from degrees to radians
_snake_case = radians(_SCREAMING_SNAKE_CASE )
_snake_case = angle_in_radians
_snake_case = 3
_snake_case = -1
for _ in range(_SCREAMING_SNAKE_CASE ):
result += (b * (angle_in_radians**a)) / factorial(_SCREAMING_SNAKE_CASE )
_snake_case = -b # One positive term and the next will be negative and so on...
a += 2 # Increased by 2 for every term.
return round(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__import__('doctest').testmod() | 341 | 0 |
SCREAMING_SNAKE_CASE : Dict = {
"meter": "m",
"kilometer": "km",
"megametre": "Mm",
"gigametre": "Gm",
"terametre": "Tm",
"petametre": "Pm",
"exametre": "Em",
"zettametre": "Zm",
"yottametre": "Ym",
}
# Exponent of the factor(meter)
SCREAMING_SNAKE_CASE : Dict = {
"m": 0,
"km": 3,
"Mm": 6,
"Gm": 9,
"Tm": 12,
"Pm": 15,
"Em": 18,
"Zm": 21,
"Ym": 24,
}
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str:
_lowercase : Optional[Any] = from_type.lower().strip('s' )
_lowercase : Tuple = to_type.lower().strip('s' )
_lowercase : Any = UNIT_SYMBOL.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_lowercase : Optional[int] = UNIT_SYMBOL.get(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if from_sanitized not in METRIC_CONVERSION:
_lowercase : Dict = (
F'''Invalid \'from_type\' value: {from_type!r}.\n'''
F'''Conversion abbreviations are: {", ".join(_SCREAMING_SNAKE_CASE )}'''
)
raise ValueError(_SCREAMING_SNAKE_CASE )
if to_sanitized not in METRIC_CONVERSION:
_lowercase : int = (
F'''Invalid \'to_type\' value: {to_type!r}.\n'''
F'''Conversion abbreviations are: {", ".join(_SCREAMING_SNAKE_CASE )}'''
)
raise ValueError(_SCREAMING_SNAKE_CASE )
_lowercase : List[str] = METRIC_CONVERSION[from_sanitized]
_lowercase : Union[str, Any] = METRIC_CONVERSION[to_sanitized]
_lowercase : List[Any] = 1
if from_exponent > to_exponent:
_lowercase : Tuple = from_exponent - to_exponent
else:
_lowercase : int = -(to_exponent - from_exponent)
return value * pow(10 , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 21 |
'''simple docstring'''
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
__lowerCAmelCase = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
__lowerCAmelCase = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n'
__lowerCAmelCase = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
'''simple docstring'''
def lowercase (self ) -> Tuple:
if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ):
raise ImportWarning(
"""To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"""
"""You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[
"""https://github.com/m-popovic/chrF""",
] , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = CHRF.CHAR_ORDER , UpperCAmelCase = CHRF.WORD_ORDER , UpperCAmelCase = CHRF.BETA , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , ) -> int:
_snake_case = len(references[0] )
if any(len(UpperCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError("""Sacrebleu requires the same number of references for each prediction""" )
_snake_case = [[refs[i] for refs in references] for i in range(UpperCAmelCase )]
_snake_case = CHRF(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
_snake_case = sb_chrf.corpus_score(UpperCAmelCase , UpperCAmelCase )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
} | 341 | 0 |
'''simple docstring'''
import heapq
import sys
import numpy as np
__snake_case = tuple[int, int]
class lowercase :
"""simple docstring"""
def __init__( self ):
'''simple docstring'''
UpperCamelCase__ :List[Any] = []
UpperCamelCase__ :Any = set()
def lowerCAmelCase__ ( self ):
'''simple docstring'''
if not self.empty():
return self.elements[0][0]
else:
return float('''inf''' )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
return len(self.elements ) == 0
def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ):
'''simple docstring'''
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(UpperCamelCase_ )
else:
# update
# print("update", item)
UpperCamelCase__ :List[Any] = []
((UpperCamelCase__) , (UpperCamelCase__)) :List[Any] = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((UpperCamelCase__) , (UpperCamelCase__)) :str = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def lowerCAmelCase__ ( self , UpperCamelCase_ ):
'''simple docstring'''
if item in self.set:
self.set.remove(UpperCamelCase_ )
UpperCamelCase__ :Optional[int] = []
((UpperCamelCase__) , (UpperCamelCase__)) :Any = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((UpperCamelCase__) , (UpperCamelCase__)) :Optional[int] = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
return self.elements[0][1]
def lowerCAmelCase__ ( self ):
'''simple docstring'''
((UpperCamelCase__) , (UpperCamelCase__)) :int = heapq.heappop(self.elements )
self.set.remove(UpperCamelCase_ )
return (priority, item)
def a ( __a , __a ) -> int:
'''simple docstring'''
UpperCamelCase__ :Optional[int] = np.array(_SCREAMING_SNAKE_CASE )
UpperCamelCase__ :Dict = np.array(_SCREAMING_SNAKE_CASE )
return np.linalg.norm(a - b )
def a ( __a , __a ) -> int:
'''simple docstring'''
return consistent_heuristic(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) // t
def a ( __a , __a ) -> Dict:
'''simple docstring'''
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def a ( __a , __a , __a , __a ) -> List[Any]:
'''simple docstring'''
UpperCamelCase__ :Any = g_function[start] + Wa * heuristics[i](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
return ans
def a ( __a , __a , __a ) -> Dict:
'''simple docstring'''
UpperCamelCase__ :Tuple = np.chararray((n, n) )
for i in range(_SCREAMING_SNAKE_CASE ):
for j in range(_SCREAMING_SNAKE_CASE ):
UpperCamelCase__ :Tuple = '''*'''
for i in range(_SCREAMING_SNAKE_CASE ):
for j in range(_SCREAMING_SNAKE_CASE ):
if (j, (n - 1) - i) in blocks:
UpperCamelCase__ :Optional[int] = '''#'''
UpperCamelCase__ :int = '''-'''
UpperCamelCase__ :Optional[Any] = back_pointer[goal]
while x != start:
((UpperCamelCase__) , (UpperCamelCase__)) :int = x
# print(x)
UpperCamelCase__ :List[str] = '''-'''
UpperCamelCase__ :Optional[Any] = back_pointer[x]
UpperCamelCase__ :Union[str, Any] = '''-'''
for i in range(_SCREAMING_SNAKE_CASE ):
for j in range(_SCREAMING_SNAKE_CASE ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=''' ''' )
print('''<-- End position''' , end=''' ''' )
else:
print(grid[i][j] , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
print('''PATH TAKEN BY THE ALGORITHM IS:-''' )
UpperCamelCase__ :Union[str, Any] = back_pointer[goal]
while x != start:
print(_SCREAMING_SNAKE_CASE , end=''' ''' )
UpperCamelCase__ :Any = back_pointer[x]
print(_SCREAMING_SNAKE_CASE )
sys.exit()
def a ( __a ) -> Any:
'''simple docstring'''
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def a ( __a , __a , __a , __a , __a , __a , __a , __a , ) -> List[str]:
'''simple docstring'''
for itera in range(_SCREAMING_SNAKE_CASE ):
open_list[itera].remove_element(_SCREAMING_SNAKE_CASE )
# print("s", s)
# print("j", j)
((UpperCamelCase__) , (UpperCamelCase__)) :int = s
UpperCamelCase__ :Dict = (x - 1, y)
UpperCamelCase__ :Dict = (x + 1, y)
UpperCamelCase__ :Dict = (x, y + 1)
UpperCamelCase__ :Dict = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(_SCREAMING_SNAKE_CASE ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(_SCREAMING_SNAKE_CASE )
UpperCamelCase__ :str = -1
UpperCamelCase__ :Any = float('''inf''' )
if valid(_SCREAMING_SNAKE_CASE ) and g_function[neighbours] > g_function[s] + 1:
UpperCamelCase__ :Tuple = g_function[s] + 1
UpperCamelCase__ :List[str] = s
if neighbours not in close_list_anchor:
open_list[0].put(_SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
if neighbours not in close_list_inad:
for var in range(1 , _SCREAMING_SNAKE_CASE ):
if key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) <= Wa * key(
_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
open_list[j].put(
_SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
def a ( ) -> List[Any]:
'''simple docstring'''
UpperCamelCase__ :Dict = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(15 , 20 ):
some_list.append((x, 17) )
for x in range(10 , 19 ):
for y in range(1 , 15 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(12 , 19 ):
some_list.append((x, y) )
for x in range(3 , 13 ):
for y in range(16 , 19 ):
some_list.append((x, y) )
return some_list
__snake_case = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
__snake_case = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
__snake_case = make_common_ground()
__snake_case = blocks_blk
# hyper parameters
__snake_case = 1
__snake_case = 1
__snake_case = 20
__snake_case = 3 # one consistent and two other inconsistent
# start and end destination
__snake_case = (0, 0)
__snake_case = (n - 1, n - 1)
__snake_case = 1
def a ( __a , __a , __a ) -> List[Any]:
'''simple docstring'''
UpperCamelCase__ :str = {start: 0, goal: float('''inf''' )}
UpperCamelCase__ :Any = {start: -1, goal: -1}
UpperCamelCase__ :Optional[Any] = []
UpperCamelCase__ :Any = set()
for i in range(_SCREAMING_SNAKE_CASE ):
open_list.append(PriorityQueue() )
open_list[i].put(_SCREAMING_SNAKE_CASE , key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
UpperCamelCase__ :Union[str, Any] = []
UpperCamelCase__ :List[Any] = []
while open_list[0].minkey() < float('''inf''' ):
for i in range(1 , _SCREAMING_SNAKE_CASE ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('''inf''' ):
do_something(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
UpperCamelCase__ , UpperCamelCase__ :Tuple = open_list[i].top_show()
visited.add(_SCREAMING_SNAKE_CASE )
expand_state(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )
close_list_inad.append(_SCREAMING_SNAKE_CASE )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('''inf''' ):
do_something(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
UpperCamelCase__ :str = open_list[0].top_show()
visited.add(_SCREAMING_SNAKE_CASE )
expand_state(
_SCREAMING_SNAKE_CASE , 0 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )
close_list_anchor.append(_SCREAMING_SNAKE_CASE )
print('''No path found to goal''' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(_SCREAMING_SNAKE_CASE ):
if (j, i) in blocks:
print('''#''' , end=''' ''' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('''*''' , end=''' ''' )
else:
print('''-''' , end=''' ''' )
else:
print('''*''' , end=''' ''' )
if (j, i) == (n - 1, n - 1):
print('''<-- End position''' , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic) | 97 |
'''simple docstring'''
from scipy.stats import spearmanr
import datasets
__lowerCAmelCase = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n'
__lowerCAmelCase = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n'
__lowerCAmelCase = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
'''simple docstring'''
def lowercase (self ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]:
_snake_case = spearmanr(UpperCAmelCase , UpperCAmelCase )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]} | 341 | 0 |
import copy
import inspect
import unittest
from transformers import PretrainedConfig, SwiftFormerConfig
from transformers.testing_utils import (
require_torch,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import SwiftFormerForImageClassification, SwiftFormerModel
from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class _lowercase :
"""simple docstring"""
def __init__( self : Optional[int] , __lowerCamelCase : Any , __lowerCamelCase : str=13 , __lowerCamelCase : Dict=3 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Any=0.1 , __lowerCamelCase : List[Any]=0.1 , __lowerCamelCase : int=224 , __lowerCamelCase : Optional[Any]=1000 , __lowerCamelCase : int=[3, 3, 6, 4] , __lowerCamelCase : Tuple=[48, 56, 112, 220] , ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = parent
lowerCamelCase__ : Optional[Any] = batch_size
lowerCamelCase__ : Optional[Any] = num_channels
lowerCamelCase__ : int = is_training
lowerCamelCase__ : str = use_labels
lowerCamelCase__ : str = hidden_dropout_prob
lowerCamelCase__ : int = attention_probs_dropout_prob
lowerCamelCase__ : Tuple = num_labels
lowerCamelCase__ : int = image_size
lowerCamelCase__ : Optional[Any] = layer_depths
lowerCamelCase__ : List[str] = embed_dims
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ : str = None
if self.use_labels:
lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels )
lowerCamelCase__ : Optional[int] = self.get_config()
return config, pixel_values, labels
def lowerCAmelCase ( self : Dict ):
'''simple docstring'''
return SwiftFormerConfig(
depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=__lowerCamelCase , layer_scale_init_value=1E-5 , )
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : Dict ):
'''simple docstring'''
lowerCamelCase__ : List[str] = SwiftFormerModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Union[str, Any] = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) )
def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] ):
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = self.num_labels
lowerCamelCase__ : Optional[Any] = SwiftFormerForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Tuple = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
lowerCamelCase__ : int = SwiftFormerForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
lowerCamelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase__ : str = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : Dict = self.prepare_config_and_inputs()
lowerCamelCase__ : List[Any] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class _lowercase ( __snake_case , __snake_case , unittest.TestCase):
"""simple docstring"""
A__ = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else ()
A__ = (
{"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification}
if is_torch_available()
else {}
)
A__ = False
A__ = False
A__ = False
A__ = False
A__ = False
def lowerCAmelCase ( self : Any ):
'''simple docstring'''
lowerCamelCase__ : List[str] = SwiftFormerModelTester(self )
lowerCamelCase__ : Optional[Any] = ConfigTester(
self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , )
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="SwiftFormer does not use inputs_embeds" )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
pass
def lowerCAmelCase ( self : str ):
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ : Optional[int] = model_class(__lowerCamelCase )
lowerCamelCase__ : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ : List[Any] = model_class(__lowerCamelCase )
lowerCamelCase__ : Any = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase__ : Optional[Any] = [*signature.parameters.keys()]
lowerCamelCase__ : int = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def lowerCAmelCase ( self : Tuple ):
'''simple docstring'''
lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
@slow
def lowerCAmelCase ( self : Union[str, Any] ):
'''simple docstring'''
for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : Union[str, Any] = SwiftFormerModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
@unittest.skip(reason="SwiftFormer does not output attentions" )
def lowerCAmelCase ( self : int ):
'''simple docstring'''
pass
def lowerCAmelCase ( self : int ):
'''simple docstring'''
def check_hidden_states_output(__lowerCamelCase : Any , __lowerCamelCase : str , __lowerCamelCase : Optional[int] ):
lowerCamelCase__ : Optional[int] = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
lowerCamelCase__ : str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
lowerCamelCase__ : Union[str, Any] = outputs.hidden_states
lowerCamelCase__ : Dict = 8
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) # TODO
# SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width)
# with the width and height being successively divided by 2, after every 2 blocks
for i in range(len(__lowerCamelCase ) ):
self.assertEqual(
hidden_states[i].shape , torch.Size(
[
self.model_tester.batch_size,
self.model_tester.embed_dims[i // 2],
(self.model_tester.image_size // 4) // 2 ** (i // 2),
(self.model_tester.image_size // 4) // 2 ** (i // 2),
] ) , )
lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase__ : int = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCamelCase__ : Tuple = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
def lowerCAmelCase ( self : Optional[Any] ):
'''simple docstring'''
def _config_zero_init(__lowerCamelCase : Optional[Any] ):
lowerCamelCase__ : int = copy.deepcopy(__lowerCamelCase )
for key in configs_no_init.__dict__.keys():
if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
setattr(__lowerCamelCase , __lowerCamelCase , 1E-1_0 )
if isinstance(getattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ):
lowerCamelCase__ : str = _config_zero_init(getattr(__lowerCamelCase , __lowerCamelCase ) )
setattr(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
return configs_no_init
lowerCamelCase__ , lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase__ : Optional[Any] = _config_zero_init(__lowerCamelCase )
for model_class in self.all_model_classes:
lowerCamelCase__ : Union[str, Any] = model_class(config=__lowerCamelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
pass
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class _lowercase ( unittest.TestCase):
"""simple docstring"""
@cached_property
def lowerCAmelCase ( self : Optional[int] ):
'''simple docstring'''
return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None
@slow
def lowerCAmelCase ( self : int ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(__lowerCamelCase )
lowerCamelCase__ : List[Any] = self.default_image_processor
lowerCamelCase__ : Optional[Any] = prepare_img()
lowerCamelCase__ : Optional[Any] = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
lowerCamelCase__ : Optional[int] = model(**__lowerCamelCase )
# verify the logits
lowerCamelCase__ : Any = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
lowerCamelCase__ : int = torch.tensor([[-2.1_7_0_3E0_0, 2.1_1_0_7E0_0, -2.0_8_1_1E0_0]] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) )
| 184 |
'''simple docstring'''
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[2, 2, 3, 2] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=3 , UpperCAmelCase=None , ) -> List[Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = image_size
_snake_case = num_channels
_snake_case = num_stages
_snake_case = hidden_sizes
_snake_case = depths
_snake_case = is_training
_snake_case = use_labels
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = type_sequence_label_size
_snake_case = initializer_range
_snake_case = out_features
_snake_case = num_labels
_snake_case = scope
_snake_case = num_stages
def lowercase (self ) -> List[Any]:
_snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case = None
if self.use_labels:
_snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_snake_case = self.get_config()
return config, pixel_values, labels
def lowercase (self ) -> Tuple:
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def lowercase (self ) -> Any:
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str:
_snake_case = UperNetForSemanticSegmentation(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
_snake_case = model(UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def lowercase (self ) -> Tuple:
_snake_case = self.prepare_config_and_inputs()
(
(
_snake_case
), (
_snake_case
), (
_snake_case
),
) = config_and_inputs
_snake_case = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
lowerCAmelCase_ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {}
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def lowercase (self ) -> Optional[Any]:
_snake_case = UperNetModelTester(self )
_snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def lowercase (self ) -> str:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase (self ) -> Union[str, Any]:
return
def lowercase (self ) -> Union[str, Any]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase )
_snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case = [*signature.parameters.keys()]
_snake_case = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def lowercase (self ) -> int:
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase )
@unittest.skip(reason="""UperNet does not use inputs_embeds""" )
def lowercase (self ) -> int:
pass
@unittest.skip(reason="""UperNet does not support input and output embeddings""" )
def lowercase (self ) -> List[str]:
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def lowercase (self ) -> Union[str, Any]:
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def lowercase (self ) -> Union[str, Any]:
pass
@require_torch_multi_gpu
@unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def lowercase (self ) -> str:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowercase (self ) -> int:
pass
def lowercase (self ) -> List[str]:
def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
_snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
_snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_snake_case = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case = _config_zero_init(UpperCAmelCase )
_snake_case = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
_snake_case = model_class(config=UpperCAmelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip(reason="""UperNet does not have tied weights""" )
def lowercase (self ) -> Optional[Any]:
pass
@slow
def lowercase (self ) -> Tuple:
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = hf_hub_download(
repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" )
_snake_case = Image.open(_SCREAMING_SNAKE_CASE ).convert("""RGB""" )
return image
@require_torch
@require_vision
@slow
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self ) -> Any:
_snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" )
_snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCAmelCase )
_snake_case = prepare_img()
_snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
_snake_case = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
def lowercase (self ) -> Any:
_snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" )
_snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCAmelCase )
_snake_case = prepare_img()
_snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
_snake_case = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) | 341 | 0 |
import os
import zipfile
import pytest
from datasets.utils.extract import (
BzipaExtractor,
Extractor,
GzipExtractor,
LzaExtractor,
SevenZipExtractor,
TarExtractor,
XzExtractor,
ZipExtractor,
ZstdExtractor,
)
from .utils import require_lza, require_pyazr, require_zstandard
@pytest.mark.parametrize(
'''compression_format, is_archive''' , [
('''7z''', True),
('''bz2''', False),
('''gzip''', False),
('''lz4''', False),
('''tar''', True),
('''xz''', False),
('''zip''', True),
('''zstd''', False),
] , )
def A_ ( snake_case : Optional[Any] , snake_case : str , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Any , snake_case : int , snake_case : List[Any] , snake_case : Tuple , snake_case : str , snake_case : Dict , snake_case : Dict , snake_case : Tuple , ) -> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = {
'''7z''': (seven_zip_file, SevenZipExtractor),
'''bz2''': (bza_file, BzipaExtractor),
'''gzip''': (gz_file, GzipExtractor),
'''lz4''': (lza_file, LzaExtractor),
'''tar''': (tar_file, TarExtractor),
'''xz''': (xz_file, XzExtractor),
'''zip''': (zip_file, ZipExtractor),
'''zstd''': (zstd_file, ZstdExtractor),
}
__UpperCamelCase , __UpperCamelCase = input_paths_and_base_extractors[compression_format]
if input_path is None:
__UpperCamelCase = f"for '{compression_format}' compression_format, "
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(_SCREAMING_SNAKE_CASE )
assert base_extractor.is_extractable(_SCREAMING_SNAKE_CASE )
__UpperCamelCase = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''')
base_extractor.extract(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__UpperCamelCase = file_path.read_text(encoding='''utf-8''' )
else:
__UpperCamelCase = output_path.read_text(encoding='''utf-8''' )
__UpperCamelCase = text_file.read_text(encoding='''utf-8''' )
assert extracted_file_content == expected_file_content
@pytest.mark.parametrize(
'''compression_format, is_archive''' , [
('''7z''', True),
('''bz2''', False),
('''gzip''', False),
('''lz4''', False),
('''tar''', True),
('''xz''', False),
('''zip''', True),
('''zstd''', False),
] , )
def A_ ( snake_case : int , snake_case : List[str] , snake_case : str , snake_case : Tuple , snake_case : List[str] , snake_case : List[Any] , snake_case : List[str] , snake_case : Optional[int] , snake_case : Any , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Any , ) -> List[Any]:
'''simple docstring'''
__UpperCamelCase = {
'''7z''': seven_zip_file,
'''bz2''': bza_file,
'''gzip''': gz_file,
'''lz4''': lza_file,
'''tar''': tar_file,
'''xz''': xz_file,
'''zip''': zip_file,
'''zstd''': zstd_file,
}
__UpperCamelCase = input_paths[compression_format]
if input_path is None:
__UpperCamelCase = f"for '{compression_format}' compression_format, "
if compression_format == "7z":
reason += require_pyazr.kwargs["reason"]
elif compression_format == "lz4":
reason += require_lza.kwargs["reason"]
elif compression_format == "zstd":
reason += require_zstandard.kwargs["reason"]
pytest.skip(_SCREAMING_SNAKE_CASE )
__UpperCamelCase = Extractor.infer_extractor_format(_SCREAMING_SNAKE_CASE )
assert extractor_format is not None
__UpperCamelCase = tmp_path / ('''extracted''' if is_archive else '''extracted.txt''')
Extractor.extract(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if is_archive:
assert output_path.is_dir()
for file_path in output_path.iterdir():
assert file_path.name == text_file.name
__UpperCamelCase = file_path.read_text(encoding='''utf-8''' )
else:
__UpperCamelCase = output_path.read_text(encoding='''utf-8''' )
__UpperCamelCase = text_file.read_text(encoding='''utf-8''' )
assert extracted_file_content == expected_file_content
@pytest.fixture
def A_ ( snake_case : Any , snake_case : int ) -> List[str]:
'''simple docstring'''
import tarfile
__UpperCamelCase = tmp_path / '''data_dot_dot'''
directory.mkdir()
__UpperCamelCase = directory / '''tar_file_with_dot_dot.tar'''
with tarfile.TarFile(_SCREAMING_SNAKE_CASE , '''w''' ) as f:
f.add(_SCREAMING_SNAKE_CASE , arcname=os.path.join('''..''' , text_file.name ) )
return path
@pytest.fixture
def A_ ( snake_case : str ) -> Dict:
'''simple docstring'''
import tarfile
__UpperCamelCase = tmp_path / '''data_sym_link'''
directory.mkdir()
__UpperCamelCase = directory / '''tar_file_with_sym_link.tar'''
os.symlink('''..''' , directory / '''subdir''' , target_is_directory=_SCREAMING_SNAKE_CASE )
with tarfile.TarFile(_SCREAMING_SNAKE_CASE , '''w''' ) as f:
f.add(str(directory / '''subdir''' ) , arcname='''subdir''' ) # str required by os.readlink on Windows and Python < 3.8
return path
@pytest.mark.parametrize(
'''insecure_tar_file, error_log''' , [('''tar_file_with_dot_dot''', '''illegal path'''), ('''tar_file_with_sym_link''', '''Symlink''')] , )
def A_ ( snake_case : Optional[Any] , snake_case : str , snake_case : Union[str, Any] , snake_case : Union[str, Any] , snake_case : Tuple , snake_case : Any ) -> Dict:
'''simple docstring'''
__UpperCamelCase = {
'''tar_file_with_dot_dot''': tar_file_with_dot_dot,
'''tar_file_with_sym_link''': tar_file_with_sym_link,
}
__UpperCamelCase = insecure_tar_files[insecure_tar_file]
__UpperCamelCase = tmp_path / '''extracted'''
TarExtractor.extract(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
assert caplog.text
for record in caplog.records:
assert record.levelname == "ERROR"
assert error_log in record.msg
def A_ ( snake_case : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = tmpdir / '''not_a_zip_file'''
# From: https://github.com/python/cpython/pull/5053
__UpperCamelCase = (
B'''\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00'''
B'''\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6\'\x00\x00\x00\x15I'''
B'''DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07'''
B'''\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82'''
)
with not_a_zip_file.open('''wb''' ) as f:
f.write(_SCREAMING_SNAKE_CASE )
assert zipfile.is_zipfile(str(_SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile`
assert not ZipExtractor.is_extractable(_SCREAMING_SNAKE_CASE ) # but we're right
| 328 |
'''simple docstring'''
import argparse
from collections import defaultdict
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = f"""{file}_{class_name}_{test_name}"""
done_test[_id] += 1
with open(_SCREAMING_SNAKE_CASE , """r""" ) as f:
_snake_case = f.readlines()
_snake_case = f"""class {class_name}("""
_snake_case = f"""{4 * " "}def {test_name}("""
_snake_case = f"""{8 * " "}{correct_line.split()[0]}"""
_snake_case = f"""{16 * " "}{correct_line.split()[0]}"""
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = 0
_snake_case = 0
_snake_case = []
for line in lines:
if line.startswith(_SCREAMING_SNAKE_CASE ):
_snake_case = True
elif in_class and line.startswith(_SCREAMING_SNAKE_CASE ):
_snake_case = True
elif in_class and in_func and (line.startswith(_SCREAMING_SNAKE_CASE ) or line.startswith(_SCREAMING_SNAKE_CASE )):
_snake_case = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
_snake_case = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
_snake_case = True
if in_class and in_func and in_line and insert_line:
new_lines.append(f"""{spaces * " "}{correct_line}""" )
_snake_case = _snake_case = _snake_case = _snake_case = False
else:
new_lines.append(_SCREAMING_SNAKE_CASE )
with open(_SCREAMING_SNAKE_CASE , """w""" ) as f:
for line in new_lines:
f.write(_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ):
if fail is not None:
with open(_SCREAMING_SNAKE_CASE , """r""" ) as f:
_snake_case = {l.strip() for l in f.readlines()}
else:
_snake_case = None
with open(_SCREAMING_SNAKE_CASE , """r""" ) as f:
_snake_case = f.readlines()
_snake_case = defaultdict(_SCREAMING_SNAKE_CASE )
for line in correct_lines:
_snake_case, _snake_case, _snake_case, _snake_case = line.split(""";""" )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument('--correct_filename', help='filename of tests with expected result')
parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None)
__lowerCAmelCase = parser.parse_args()
main(args.correct_filename, args.fail_filename) | 341 | 0 |
"""simple docstring"""
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : int=1_0 , lowerCAmelCase_ : List[str]=3 , lowerCAmelCase_ : int=3_2 * 4 , lowerCAmelCase_ : List[Any]=3_2 * 6 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : Optional[Any]=3_2 , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = is_training
lowercase_ = use_auxiliary_loss
lowercase_ = num_queries
lowercase_ = num_channels
lowercase_ = min_size
lowercase_ = max_size
lowercase_ = num_labels
lowercase_ = mask_feature_size
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to(
lowerCAmelCase_)
lowercase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCAmelCase_)
lowercase_ = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCAmelCase_) > 0.5
).float()
lowercase_ = (torch.rand((self.batch_size, self.num_labels) , device=lowerCAmelCase_) > 0.5).long()
lowercase_ = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def _UpperCAmelCase ( self : str):
"""simple docstring"""
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig(
decoder_ffn_dim=1_2_8 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , )
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = self.prepare_config_and_inputs()
lowercase_ = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = output.encoder_hidden_states
lowercase_ = output.pixel_decoder_hidden_states
lowercase_ = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(lowerCAmelCase_) , len(config.backbone_config.depths))
self.parent.assertTrue(len(lowerCAmelCase_) , len(config.backbone_config.depths))
self.parent.assertTrue(len(lowerCAmelCase_) , config.decoder_config.decoder_layers)
def _UpperCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str]=False):
"""simple docstring"""
with torch.no_grad():
lowercase_ = MaskFormerModel(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
lowercase_ = model(pixel_values=lowerCAmelCase_ , pixel_mask=lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_)
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None)
self.parent.assertTrue(output.encoder_last_hidden_state is not None)
if output_hidden_states:
self.check_output_hidden_state(lowerCAmelCase_ , lowerCAmelCase_)
def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[Any]):
"""simple docstring"""
lowercase_ = MaskFormerForInstanceSegmentation(config=lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.eval()
def comm_check_on_output(lowerCAmelCase_ : Dict):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None)
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None)
self.parent.assertTrue(result.encoder_last_hidden_state is not None)
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1))
with torch.no_grad():
lowercase_ = model(pixel_values=lowerCAmelCase_ , pixel_mask=lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_)
comm_check_on_output(lowerCAmelCase_)
lowercase_ = model(
pixel_values=lowerCAmelCase_ , pixel_mask=lowerCAmelCase_ , mask_labels=lowerCAmelCase_ , class_labels=lowerCAmelCase_)
comm_check_on_output(lowerCAmelCase_)
self.parent.assertTrue(result.loss is not None)
self.parent.assertEqual(result.loss.shape , torch.Size([1]))
@require_torch
class SCREAMING_SNAKE_CASE__ ( __snake_case , __snake_case , unittest.TestCase ):
lowercase__ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
lowercase__ = (
{"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
lowercase__ = False
lowercase__ = False
lowercase__ = False
lowercase__ = False
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = MaskFormerModelTester(self)
lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , has_text_modality=lowerCAmelCase_)
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(lowerCAmelCase_ , **lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowerCAmelCase_)
@unittest.skip(reason="""MaskFormer does not use inputs_embeds""")
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
pass
@unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""")
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
pass
@unittest.skip(reason="""MaskFormer is not a generative model""")
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
pass
@unittest.skip(reason="""MaskFormer does not use token embeddings""")
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""")
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""")
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
pass
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ = model_class(lowerCAmelCase_)
lowercase_ = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowercase_ = [*signature.parameters.keys()]
lowercase_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase_)
@slow
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
for model_name in ["facebook/maskformer-swin-small-coco"]:
lowercase_ = MaskFormerModel.from_pretrained(lowerCAmelCase_)
self.assertIsNotNone(lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = (self.model_tester.min_size,) * 2
lowercase_ = {
"""pixel_values""": torch.randn((2, 3, *size) , device=lowerCAmelCase_),
"""mask_labels""": torch.randn((2, 1_0, *size) , device=lowerCAmelCase_),
"""class_labels""": torch.zeros(2 , 1_0 , device=lowerCAmelCase_).long(),
}
lowercase_ = MaskFormerForInstanceSegmentation(MaskFormerConfig()).to(lowerCAmelCase_)
lowercase_ = model(**lowerCAmelCase_)
self.assertTrue(outputs.loss is not None)
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(lowerCAmelCase_ , **lowerCAmelCase_ , output_hidden_states=lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowercase_ = model_class(lowerCAmelCase_).to(lowerCAmelCase_)
lowercase_ = model(**lowerCAmelCase_ , output_attentions=lowerCAmelCase_)
self.assertTrue(outputs.attentions is not None)
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
lowercase_ = self.all_model_classes[1]
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs()
lowercase_ = model_class(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.train()
lowercase_ = model(lowerCAmelCase_ , mask_labels=lowerCAmelCase_ , class_labels=lowerCAmelCase_).loss
loss.backward()
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = self.all_model_classes[1]
lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs()
lowercase_ = True
lowercase_ = True
lowercase_ = model_class(lowerCAmelCase_)
model.to(lowerCAmelCase_)
model.train()
lowercase_ = model(lowerCAmelCase_ , mask_labels=lowerCAmelCase_ , class_labels=lowerCAmelCase_)
lowercase_ = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
lowercase_ = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
lowercase_ = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
lowercase_ = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=lowerCAmelCase_)
self.assertIsNotNone(encoder_hidden_states.grad)
self.assertIsNotNone(pixel_decoder_hidden_states.grad)
self.assertIsNotNone(transformer_decoder_hidden_states.grad)
self.assertIsNotNone(attentions.grad)
UpperCAmelCase : List[Any] = 1E-4
def _SCREAMING_SNAKE_CASE () -> str:
'''simple docstring'''
lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@cached_property
def _UpperCAmelCase ( self : str):
"""simple docstring"""
return (
MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""")
if is_vision_available()
else None
)
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""").to(lowerCAmelCase_)
lowercase_ = self.default_image_processor
lowercase_ = prepare_img()
lowercase_ = image_processor(lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_)
lowercase_ = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0)
# check size
self.assertEqual(lowerCAmelCase_ , (1, 3, 8_0_0, 1_0_8_8))
with torch.no_grad():
lowercase_ = model(**lowerCAmelCase_)
lowercase_ = torch.tensor(
[[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]]).to(lowerCAmelCase_)
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCAmelCase_ , atol=lowerCAmelCase_))
lowercase_ = torch.tensor(
[[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]]).to(lowerCAmelCase_)
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCAmelCase_ , atol=lowerCAmelCase_))
lowercase_ = torch.tensor(
[[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]]).to(lowerCAmelCase_)
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCAmelCase_ , atol=lowerCAmelCase_))
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""")
.to(lowerCAmelCase_)
.eval()
)
lowercase_ = self.default_image_processor
lowercase_ = prepare_img()
lowercase_ = image_processor(lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_)
lowercase_ = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0)
# check size
self.assertEqual(lowerCAmelCase_ , (1, 3, 8_0_0, 1_0_8_8))
with torch.no_grad():
lowercase_ = model(**lowerCAmelCase_)
# masks_queries_logits
lowercase_ = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
lowercase_ = [
[-1.3_737_124, -1.7_724_937, -1.9_364_233],
[-1.5_977_281, -1.9_867_939, -2.1_523_695],
[-1.5_795_398, -1.9_269_832, -2.093_942],
]
lowercase_ = torch.tensor(lowerCAmelCase_).to(lowerCAmelCase_)
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=lowerCAmelCase_))
# class_queries_logits
lowercase_ = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1))
lowercase_ = torch.tensor(
[
[1.6512E00, -5.2572E00, -3.3519E00],
[3.6169E-02, -5.9025E00, -2.9313E00],
[1.0766E-04, -7.7630E00, -5.1263E00],
]).to(lowerCAmelCase_)
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase_ , atol=lowerCAmelCase_))
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""")
.to(lowerCAmelCase_)
.eval()
)
lowercase_ = self.default_image_processor
lowercase_ = prepare_img()
lowercase_ = image_processor(lowerCAmelCase_ , return_tensors="""pt""").to(lowerCAmelCase_)
lowercase_ = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 3_2) == 0 and (inputs_shape[-2] % 3_2) == 0)
# check size
self.assertEqual(lowerCAmelCase_ , (1, 3, 8_0_0, 1_0_8_8))
with torch.no_grad():
lowercase_ = model(**lowerCAmelCase_)
# masks_queries_logits
lowercase_ = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
lowercase_ = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]]
lowercase_ = torch.tensor(lowerCAmelCase_).to(lowerCAmelCase_)
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCAmelCase_ , atol=lowerCAmelCase_))
# class_queries_logits
lowercase_ = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1))
lowercase_ = torch.tensor(
[[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]]).to(lowerCAmelCase_)
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCAmelCase_ , atol=lowerCAmelCase_))
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
lowercase_ = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""")
.to(lowerCAmelCase_)
.eval()
)
lowercase_ = self.default_image_processor
lowercase_ = image_processor(
[np.zeros((3, 8_0_0, 1_3_3_3)), np.zeros((3, 8_0_0, 1_3_3_3))] , segmentation_maps=[np.zeros((3_8_4, 3_8_4)).astype(np.floataa), np.zeros((3_8_4, 3_8_4)).astype(np.floataa)] , return_tensors="""pt""" , )
lowercase_ = inputs["""pixel_values"""].to(lowerCAmelCase_)
lowercase_ = [el.to(lowerCAmelCase_) for el in inputs["""mask_labels"""]]
lowercase_ = [el.to(lowerCAmelCase_) for el in inputs["""class_labels"""]]
with torch.no_grad():
lowercase_ = model(**lowerCAmelCase_)
self.assertTrue(outputs.loss is not None)
| 136 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__lowerCAmelCase = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 | 0 |
"""simple docstring"""
import argparse
import os
import jax as jnp
import numpy as onp
import torch
import torch.nn as nn
from music_spectrogram_diffusion import inference
from tax import checkpoints
from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline
from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder
__lowercase = """base_with_context"""
def lowercase ( A_ , A_ )-> List[Any]:
'''simple docstring'''
a : List[str] = nn.Parameter(torch.FloatTensor(weights["token_embedder"]["embedding"] ) )
a : List[str] = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_SCREAMING_SNAKE_CASE )
for lyr_num, lyr in enumerate(model.encoders ):
a : Optional[int] = weights[F'''layers_{lyr_num}''']
a : List[str] = nn.Parameter(
torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) )
a : int = ly_weight["attention"]
a : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
a : int = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
a : Any = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
a : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
a : int = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) )
a : Any = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) )
a : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) )
a : Any = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) )
a : List[Any] = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) )
return model
def lowercase ( A_ , A_ )-> Union[str, Any]:
'''simple docstring'''
a : int = nn.Parameter(torch.FloatTensor(weights["input_proj"]["kernel"].T ) )
a : List[str] = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_SCREAMING_SNAKE_CASE )
for lyr_num, lyr in enumerate(model.encoders ):
a : Dict = weights[F'''layers_{lyr_num}''']
a : Tuple = ly_weight["attention"]
a : int = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
a : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
a : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
a : Dict = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
a : Dict = nn.Parameter(
torch.FloatTensor(ly_weight["pre_attention_layer_norm"]["scale"] ) )
a : int = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) )
a : Any = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) )
a : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) )
a : int = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) )
a : Any = nn.Parameter(torch.FloatTensor(weights["encoder_norm"]["scale"] ) )
return model
def lowercase ( A_ , A_ )-> Dict:
'''simple docstring'''
a : int = nn.Parameter(torch.FloatTensor(weights["time_emb_dense0"]["kernel"].T ) )
a : Tuple = nn.Parameter(torch.FloatTensor(weights["time_emb_dense1"]["kernel"].T ) )
a : Optional[int] = nn.Parameter(
torch.FloatTensor(weights["Embed_0"]["embedding"] ) , requires_grad=_SCREAMING_SNAKE_CASE )
a : Tuple = nn.Parameter(
torch.FloatTensor(weights["continuous_inputs_projection"]["kernel"].T ) )
for lyr_num, lyr in enumerate(model.decoders ):
a : List[str] = weights[F'''layers_{lyr_num}''']
a : List[Any] = nn.Parameter(
torch.FloatTensor(ly_weight["pre_self_attention_layer_norm"]["scale"] ) )
a : Any = nn.Parameter(
torch.FloatTensor(ly_weight["FiLMLayer_0"]["DenseGeneral_0"]["kernel"].T ) )
a : List[Any] = ly_weight["self_attention"]
a : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
a : str = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
a : Optional[Any] = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
a : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
a : Union[str, Any] = ly_weight["MultiHeadDotProductAttention_0"]
a : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["query"]["kernel"].T ) )
a : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["key"]["kernel"].T ) )
a : Any = nn.Parameter(torch.FloatTensor(attention_weights["value"]["kernel"].T ) )
a : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["out"]["kernel"].T ) )
a : Union[str, Any] = nn.Parameter(
torch.FloatTensor(ly_weight["pre_cross_attention_layer_norm"]["scale"] ) )
a : Any = nn.Parameter(torch.FloatTensor(ly_weight["pre_mlp_layer_norm"]["scale"] ) )
a : Optional[Any] = nn.Parameter(
torch.FloatTensor(ly_weight["FiLMLayer_1"]["DenseGeneral_0"]["kernel"].T ) )
a : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_0"]["kernel"].T ) )
a : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wi_1"]["kernel"].T ) )
a : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["mlp"]["wo"]["kernel"].T ) )
a : Any = nn.Parameter(torch.FloatTensor(weights["decoder_norm"]["scale"] ) )
a : str = nn.Parameter(torch.FloatTensor(weights["spec_out_dense"]["kernel"].T ) )
return model
def lowercase ( A_ )-> List[str]:
'''simple docstring'''
a : Tuple = checkpoints.load_tax_checkpoint(args.checkpoint_path )
a : List[Any] = jnp.tree_util.tree_map(onp.array , _SCREAMING_SNAKE_CASE )
a : List[str] = [
"from __gin__ import dynamic_registration",
"from music_spectrogram_diffusion.models.diffusion import diffusion_utils",
"diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0",
"diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()",
]
a : str = os.path.join(args.checkpoint_path , ".." , "config.gin" )
a : List[Any] = inference.parse_training_gin_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
a : Any = inference.InferenceModel(args.checkpoint_path , _SCREAMING_SNAKE_CASE )
a : int = DDPMScheduler(beta_schedule="squaredcos_cap_v2" , variance_type="fixed_large" )
a : Optional[Any] = SpectrogramNotesEncoder(
max_length=synth_model.sequence_length["inputs"] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , )
a : Optional[Any] = SpectrogramContEncoder(
input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["targets_context"] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="gated-gelu" , )
a : List[Any] = TaFilmDecoder(
input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["targets_context"] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , )
a : List[str] = load_notes_encoder(ta_checkpoint["target"]["token_encoder"] , _SCREAMING_SNAKE_CASE )
a : List[str] = load_continuous_encoder(ta_checkpoint["target"]["continuous_encoder"] , _SCREAMING_SNAKE_CASE )
a : Optional[int] = load_decoder(ta_checkpoint["target"]["decoder"] , _SCREAMING_SNAKE_CASE )
a : Optional[int] = OnnxRuntimeModel.from_pretrained("kashif/soundstream_mel_decoder" )
a : Optional[Any] = SpectrogramDiffusionPipeline(
notes_encoder=_SCREAMING_SNAKE_CASE , continuous_encoder=_SCREAMING_SNAKE_CASE , decoder=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , melgan=_SCREAMING_SNAKE_CASE , )
if args.save:
pipe.save_pretrained(args.output_path )
if __name__ == "__main__":
__lowercase = argparse.ArgumentParser()
parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""")
parser.add_argument(
"""--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not."""
)
parser.add_argument(
"""--checkpoint_path""",
default=f'''{MODEL}/checkpoint_500000''',
type=str,
required=False,
help="""Path to the original jax model checkpoint.""",
)
__lowercase = parser.parse_args()
main(args)
| 40 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__lowerCAmelCase = logging.get_logger(__name__)
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = ["pixel_values"]
def __init__(self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
super().__init__(**UpperCAmelCase )
_snake_case = size if size is not None else {"""height""": 256, """width""": 256}
_snake_case = get_size_dict(UpperCAmelCase )
_snake_case = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
_snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" )
_snake_case = do_resize
_snake_case = size
_snake_case = resample
_snake_case = do_center_crop
_snake_case = crop_size
_snake_case = do_rescale
_snake_case = rescale_factor
_snake_case = do_normalize
_snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
_snake_case = get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return resize(
UpperCAmelCase , size=(size["""height"""], size["""width"""]) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
_snake_case = get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return center_crop(UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]:
return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image:
_snake_case = do_resize if do_resize is not None else self.do_resize
_snake_case = resample if resample is not None else self.resample
_snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop
_snake_case = do_rescale if do_rescale is not None else self.do_rescale
_snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor
_snake_case = do_normalize if do_normalize is not None else self.do_normalize
_snake_case = image_mean if image_mean is not None else self.image_mean
_snake_case = image_std if image_std is not None else self.image_std
_snake_case = size if size is not None else self.size
_snake_case = get_size_dict(UpperCAmelCase )
_snake_case = crop_size if crop_size is not None else self.crop_size
_snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" )
_snake_case = make_list_of_images(UpperCAmelCase )
if not valid_images(UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
_snake_case = [to_numpy_array(UpperCAmelCase ) for image in images]
if do_resize:
_snake_case = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images]
if do_center_crop:
_snake_case = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images]
if do_rescale:
_snake_case = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images]
if do_normalize:
_snake_case = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images]
_snake_case = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images]
_snake_case = {"""pixel_values""": images}
return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) | 341 | 0 |
from __future__ import annotations
def snake_case( __magic_name__ , __magic_name__ ) -> Union[str, Any]:
'''simple docstring'''
lowercase : List[Any] = sorted(numsa + numsa )
lowercase , lowercase : int = divmod(len(_SCREAMING_SNAKE_CASE ) , 2 )
if mod == 1:
return all_numbers[div]
else:
return (all_numbers[div] + all_numbers[div - 1]) / 2
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCAmelCase_ = [float(x) for x in input('Enter the elements of first array: ').split()]
lowerCAmelCase_ = [float(x) for x in input('Enter the elements of second array: ').split()]
print(f'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''') | 308 |
'''simple docstring'''
__lowerCAmelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
# Make sure the supplied data is a bytes-like object
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = f"""a bytes-like object is required, not '{data.__class__.__name__}'"""
raise TypeError(_SCREAMING_SNAKE_CASE )
_snake_case = """""".join(bin(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data )
_snake_case = len(_SCREAMING_SNAKE_CASE ) % 6 != 0
if padding_needed:
# The padding that will be added later
_snake_case = b"""=""" * ((6 - len(_SCREAMING_SNAKE_CASE ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(_SCREAMING_SNAKE_CASE ) % 6)
else:
_snake_case = b""""""
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 6 ) ).encode()
+ padding
)
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = (
"""argument should be a bytes-like object or ASCII string, """
f"""not '{encoded_data.__class__.__name__}'"""
)
raise TypeError(_SCREAMING_SNAKE_CASE )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
try:
_snake_case = encoded_data.decode("""utf-8""" )
except UnicodeDecodeError:
raise ValueError("""base64 encoded data should only contain ASCII characters""" )
_snake_case = encoded_data.count("""=""" )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(_SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
_snake_case = encoded_data[:-padding]
_snake_case = """""".join(
bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
_snake_case = """""".join(
bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )
_snake_case = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 8 )
]
return bytes(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 0 |
"""simple docstring"""
import os
import pytest
from transformers.dynamic_module_utils import get_imports
A_ : Optional[int] = "\nimport os\n"
A_ : Tuple = "\ndef foo():\n import os\n return False\n"
A_ : Any = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n"
A_ : List[Any] = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n"
A_ : List[str] = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n"
A_ : Any = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n"
A_ : Optional[int] = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n"
A_ : Any = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n"
A_ : str = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n"
A_ : Dict = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n"
A_ : int = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize("""case""" , _SCREAMING_SNAKE_CASE )
def A ( snake_case__ , snake_case__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = os.path.join(_SCREAMING_SNAKE_CASE , """test_file.py""" )
with open(_SCREAMING_SNAKE_CASE , """w""" ) as _tmp_file:
_tmp_file.write(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE__ = get_imports(_SCREAMING_SNAKE_CASE )
assert parsed_imports == ["os"]
| 165 |
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if discount_rate < 0:
raise ValueError("""Discount rate cannot be negative""" )
if not cash_flows:
raise ValueError("""Cash flows list cannot be empty""" )
_snake_case = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_SCREAMING_SNAKE_CASE ) )
return round(_SCREAMING_SNAKE_CASE , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 0 |
class a__ :
"""simple docstring"""
def __init__( self , lowercase , lowercase=None , lowercase=None ) -> int:
'''simple docstring'''
A__ = data
A__ = previous
A__ = next_node
def __str__( self ) -> str:
'''simple docstring'''
return F'{self.data}'
def UpperCamelCase ( self ) -> int:
'''simple docstring'''
return self.data
def UpperCamelCase ( self ) -> Dict:
'''simple docstring'''
return self.next
def UpperCamelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
return self.previous
class a__ :
"""simple docstring"""
def __init__( self , lowercase ) -> List[str]:
'''simple docstring'''
A__ = head
def __iter__( self ) -> Optional[Any]:
'''simple docstring'''
return self
def UpperCamelCase ( self ) -> str:
'''simple docstring'''
if not self.current:
raise StopIteration
else:
A__ = self.current.get_data()
A__ = self.current.get_next()
return value
class a__ :
"""simple docstring"""
def __init__( self ) -> Optional[int]:
'''simple docstring'''
A__ = None # First node in list
A__ = None # Last node in list
def __str__( self ) -> Optional[int]:
'''simple docstring'''
A__ = self.head
A__ = []
while current is not None:
nodes.append(current.get_data() )
A__ = current.get_next()
return " ".join(str(lowercase ) for node in nodes )
def __contains__( self , lowercase ) -> int:
'''simple docstring'''
A__ = self.head
while current:
if current.get_data() == value:
return True
A__ = current.get_next()
return False
def __iter__( self ) -> Union[str, Any]:
'''simple docstring'''
return LinkedListIterator(self.head )
def UpperCamelCase ( self ) -> str:
'''simple docstring'''
if self.head:
return self.head.get_data()
return None
def UpperCamelCase ( self ) -> List[Any]:
'''simple docstring'''
if self.tail:
return self.tail.get_data()
return None
def UpperCamelCase ( self , lowercase ) -> None:
'''simple docstring'''
if self.head is None:
A__ = node
A__ = node
else:
self.insert_before_node(self.head , lowercase )
def UpperCamelCase ( self , lowercase ) -> None:
'''simple docstring'''
if self.head is None:
self.set_head(lowercase )
else:
self.insert_after_node(self.tail , lowercase )
def UpperCamelCase ( self , lowercase ) -> None:
'''simple docstring'''
A__ = Node(lowercase )
if self.head is None:
self.set_head(lowercase )
else:
self.set_tail(lowercase )
def UpperCamelCase ( self , lowercase , lowercase ) -> None:
'''simple docstring'''
A__ = node
A__ = node.previous
if node.get_previous() is None:
A__ = node_to_insert
else:
A__ = node_to_insert
A__ = node_to_insert
def UpperCamelCase ( self , lowercase , lowercase ) -> None:
'''simple docstring'''
A__ = node
A__ = node.next
if node.get_next() is None:
A__ = node_to_insert
else:
A__ = node_to_insert
A__ = node_to_insert
def UpperCamelCase ( self , lowercase , lowercase ) -> None:
'''simple docstring'''
A__ = 1
A__ = Node(lowercase )
A__ = self.head
while node:
if current_position == position:
self.insert_before_node(lowercase , lowercase )
return
current_position += 1
A__ = node.next
self.insert_after_node(self.tail , lowercase )
def UpperCamelCase ( self , lowercase ) -> Node:
'''simple docstring'''
A__ = self.head
while node:
if node.get_data() == item:
return node
A__ = node.get_next()
raise Exception("Node not found" )
def UpperCamelCase ( self , lowercase ) -> Optional[int]:
'''simple docstring'''
if (node := self.get_node(lowercase )) is not None:
if node == self.head:
A__ = self.head.get_next()
if node == self.tail:
A__ = self.tail.get_previous()
self.remove_node_pointers(lowercase )
@staticmethod
def UpperCamelCase ( lowercase ) -> None:
'''simple docstring'''
if node.get_next():
A__ = node.previous
if node.get_previous():
A__ = node.next
A__ = None
A__ = None
def UpperCamelCase ( self ) -> Dict:
'''simple docstring'''
return self.head is None
def lowerCAmelCase__ ( ) -> List[str]:
'''simple docstring'''
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 68 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__lowerCAmelCase = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 | 0 |
'''simple docstring'''
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class __UpperCAmelCase ( __snake_case ):
__lowercase = (UnCLIPScheduler,)
def lowerCamelCase ( self , **lowerCAmelCase_ ):
"""simple docstring"""
_snake_case = {
'num_train_timesteps': 10_00,
'variance_type': 'fixed_small_log',
'clip_sample': True,
'clip_sample_range': 1.0,
'prediction_type': 'epsilon',
}
config.update(**lowerCAmelCase_ )
return config
def lowerCamelCase ( self ):
"""simple docstring"""
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase_ )
def lowerCamelCase ( self ):
"""simple docstring"""
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=lowerCAmelCase_ )
def lowerCamelCase ( self ):
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowerCAmelCase_ )
def lowerCamelCase ( self ):
"""simple docstring"""
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=lowerCAmelCase_ )
def lowerCamelCase ( self ):
"""simple docstring"""
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=lowerCAmelCase_ )
def lowerCamelCase ( self ):
"""simple docstring"""
for time_step in [0, 5_00, 9_99]:
for prev_timestep in [None, 5, 1_00, 2_50, 5_00, 7_50]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=lowerCAmelCase_ , prev_timestep=lowerCAmelCase_ )
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = self.scheduler_classes[0]
_snake_case = self.get_scheduler_config(variance_type='fixed_small_log' )
_snake_case = scheduler_class(**lowerCAmelCase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0549625 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.9994987 ) ) < 1E-5
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = self.scheduler_classes[0]
_snake_case = self.get_scheduler_config(variance_type='learned_range' )
_snake_case = scheduler_class(**lowerCAmelCase_ )
_snake_case = 0.5
assert scheduler._get_variance(1 , predicted_variance=lowerCAmelCase_ ) - -10.1712790 < 1E-5
assert scheduler._get_variance(4_87 , predicted_variance=lowerCAmelCase_ ) - -5.7998052 < 1E-5
assert scheduler._get_variance(9_99 , predicted_variance=lowerCAmelCase_ ) - -0.0010011 < 1E-5
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = self.scheduler_classes[0]
_snake_case = self.get_scheduler_config()
_snake_case = scheduler_class(**lowerCAmelCase_ )
_snake_case = scheduler.timesteps
_snake_case = self.dummy_model()
_snake_case = self.dummy_sample_deter
_snake_case = torch.manual_seed(0 )
for i, t in enumerate(lowerCAmelCase_ ):
# 1. predict noise residual
_snake_case = model(lowerCAmelCase_ , lowerCAmelCase_ )
# 2. predict previous mean of sample x_t-1
_snake_case = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample
_snake_case = pred_prev_sample
_snake_case = torch.sum(torch.abs(lowerCAmelCase_ ) )
_snake_case = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 252.2682495 ) < 1E-2
assert abs(result_mean.item() - 0.3284743 ) < 1E-3
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = self.scheduler_classes[0]
_snake_case = self.get_scheduler_config()
_snake_case = scheduler_class(**lowerCAmelCase_ )
scheduler.set_timesteps(25 )
_snake_case = scheduler.timesteps
_snake_case = self.dummy_model()
_snake_case = self.dummy_sample_deter
_snake_case = torch.manual_seed(0 )
for i, t in enumerate(lowerCAmelCase_ ):
# 1. predict noise residual
_snake_case = model(lowerCAmelCase_ , lowerCAmelCase_ )
if i + 1 == timesteps.shape[0]:
_snake_case = None
else:
_snake_case = timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
_snake_case = scheduler.step(
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , prev_timestep=lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample
_snake_case = pred_prev_sample
_snake_case = torch.sum(torch.abs(lowerCAmelCase_ ) )
_snake_case = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 258.2044983 ) < 1E-2
assert abs(result_mean.item() - 0.3362038 ) < 1E-3
def lowerCamelCase ( self ):
"""simple docstring"""
pass
def lowerCamelCase ( self ):
"""simple docstring"""
pass
| 42 |
'''simple docstring'''
import os
from typing import Dict, List, Tuple, TypeVar, Union
__lowerCAmelCase = TypeVar('T')
__lowerCAmelCase = Union[List[T], Tuple[T, ...]]
__lowerCAmelCase = Union[T, List[T], Dict[str, T]]
__lowerCAmelCase = Union[str, bytes, os.PathLike] | 341 | 0 |
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''')
class UpperCAmelCase_ :
"""simple docstring"""
def __init__( self , _a , _a , _a = True , _a = False ) -> int:
_a : Any = scheduler
_a : List[Any] = optimizers if isinstance(_a , (list, tuple) ) else [optimizers]
_a : int = split_batches
_a : Dict = step_with_optimizer
_a : List[str] = GradientState()
def __lowercase ( self , *_a , **_a ) -> List[str]:
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*_a , **_a )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*_a , **_a )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
_a : str = AcceleratorState().num_processes
for _ in range(_a ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , '''total_steps''' ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*_a , **_a )
else:
self.scheduler.step(*_a , **_a )
def __lowercase ( self ) -> Tuple:
return self.scheduler.get_last_lr()
def __lowercase ( self ) -> Optional[int]:
return self.scheduler.state_dict()
def __lowercase ( self , _a ) -> List[str]:
self.scheduler.load_state_dict(_a )
def __lowercase ( self ) -> Optional[int]:
return self.scheduler.get_lr()
def __lowercase ( self , *_a , **_a ) -> Union[str, Any]:
return self.scheduler.print_lr(*_a , **_a )
| 235 |
'''simple docstring'''
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) -> int:
_snake_case = data
_snake_case = previous
_snake_case = next_node
def __str__(self ) -> str:
return f"""{self.data}"""
def lowercase (self ) -> int:
return self.data
def lowercase (self ) -> Dict:
return self.next
def lowercase (self ) -> Union[str, Any]:
return self.previous
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase ) -> List[str]:
_snake_case = head
def __iter__(self ) -> Optional[Any]:
return self
def lowercase (self ) -> str:
if not self.current:
raise StopIteration
else:
_snake_case = self.current.get_data()
_snake_case = self.current.get_next()
return value
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self ) -> Optional[int]:
_snake_case = None # First node in list
_snake_case = None # Last node in list
def __str__(self ) -> Optional[int]:
_snake_case = self.head
_snake_case = []
while current is not None:
nodes.append(current.get_data() )
_snake_case = current.get_next()
return " ".join(str(UpperCAmelCase ) for node in nodes )
def __contains__(self , UpperCAmelCase ) -> int:
_snake_case = self.head
while current:
if current.get_data() == value:
return True
_snake_case = current.get_next()
return False
def __iter__(self ) -> Union[str, Any]:
return LinkedListIterator(self.head )
def lowercase (self ) -> str:
if self.head:
return self.head.get_data()
return None
def lowercase (self ) -> List[Any]:
if self.tail:
return self.tail.get_data()
return None
def lowercase (self , UpperCAmelCase ) -> None:
if self.head is None:
_snake_case = node
_snake_case = node
else:
self.insert_before_node(self.head , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> None:
if self.head is None:
self.set_head(UpperCAmelCase )
else:
self.insert_after_node(self.tail , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> None:
_snake_case = Node(UpperCAmelCase )
if self.head is None:
self.set_head(UpperCAmelCase )
else:
self.set_tail(UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = node
_snake_case = node.previous
if node.get_previous() is None:
_snake_case = node_to_insert
else:
_snake_case = node_to_insert
_snake_case = node_to_insert
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = node
_snake_case = node.next
if node.get_next() is None:
_snake_case = node_to_insert
else:
_snake_case = node_to_insert
_snake_case = node_to_insert
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = 1
_snake_case = Node(UpperCAmelCase )
_snake_case = self.head
while node:
if current_position == position:
self.insert_before_node(UpperCAmelCase , UpperCAmelCase )
return
current_position += 1
_snake_case = node.next
self.insert_after_node(self.tail , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> Node:
_snake_case = self.head
while node:
if node.get_data() == item:
return node
_snake_case = node.get_next()
raise Exception("""Node not found""" )
def lowercase (self , UpperCAmelCase ) -> Optional[int]:
if (node := self.get_node(UpperCAmelCase )) is not None:
if node == self.head:
_snake_case = self.head.get_next()
if node == self.tail:
_snake_case = self.tail.get_previous()
self.remove_node_pointers(UpperCAmelCase )
@staticmethod
def lowercase (UpperCAmelCase ) -> None:
if node.get_next():
_snake_case = node.previous
if node.get_previous():
_snake_case = node.next
_snake_case = None
_snake_case = None
def lowercase (self ) -> Dict:
return self.head is None
def __SCREAMING_SNAKE_CASE ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 0 |
import argparse
import struct
import unittest
class _lowerCamelCase:
def __init__( self, lowerCamelCase) -> None:
"""simple docstring"""
_lowercase : List[str] = data
# Initialize hash values
_lowercase : Tuple = [
0x6A09E667,
0xBB67AE85,
0x3C6EF372,
0xA54FF53A,
0x510E527F,
0x9B05688C,
0x1F83D9AB,
0x5BE0CD19,
]
# Initialize round constants
_lowercase : int = [
0x428A2F98,
0x71374491,
0xB5C0FBCF,
0xE9B5DBA5,
0x3956C25B,
0x59F111F1,
0x923F82A4,
0xAB1C5ED5,
0xD807AA98,
0x12835B01,
0x243185BE,
0x550C7DC3,
0x72BE5D74,
0x80DEB1FE,
0x9BDC06A7,
0xC19BF174,
0xE49B69C1,
0xEFBE4786,
0x0FC19DC6,
0x240CA1CC,
0x2DE92C6F,
0x4A7484AA,
0x5CB0A9DC,
0x76F988DA,
0x983E5152,
0xA831C66D,
0xB00327C8,
0xBF597FC7,
0xC6E00BF3,
0xD5A79147,
0x06CA6351,
0x14292967,
0x27B70A85,
0x2E1B2138,
0x4D2C6DFC,
0x53380D13,
0x650A7354,
0x766A0ABB,
0x81C2C92E,
0x92722C85,
0xA2BFE8A1,
0xA81A664B,
0xC24B8B70,
0xC76C51A3,
0xD192E819,
0xD6990624,
0xF40E3585,
0x106AA070,
0x19A4C116,
0x1E376C08,
0x2748774C,
0x34B0BCB5,
0x391C0CB3,
0x4ED8AA4A,
0x5B9CCA4F,
0x682E6FF3,
0x748F82EE,
0x78A5636F,
0x84C87814,
0x8CC70208,
0x90BEFFFA,
0xA4506CEB,
0xBEF9A3F7,
0xC67178F2,
]
_lowercase : Optional[int] = self.preprocessing(self.data)
self.final_hash()
@staticmethod
def UpperCamelCase ( lowerCamelCase) -> bytes:
"""simple docstring"""
_lowercase : int = B'\x80' + (B'\x00' * (63 - (len(lowerCamelCase) + 8) % 64))
_lowercase : int = struct.pack('>Q', (len(lowerCamelCase) * 8))
return data + padding + big_endian_integer
def UpperCamelCase ( self) -> None:
"""simple docstring"""
_lowercase : List[str] = [
self.preprocessed_data[x : x + 64]
for x in range(0, len(self.preprocessed_data), 64)
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
_lowercase : Tuple = list(struct.unpack('>16L', lowerCamelCase))
# add 48 0-ed integers
words += [0] * 48
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = self.hashes
for index in range(0, 64):
if index > 15:
# modify the zero-ed indexes at the end of the array
_lowercase : List[Any] = (
self.ror(words[index - 15], 7)
^ self.ror(words[index - 15], 18)
^ (words[index - 15] >> 3)
)
_lowercase : Optional[int] = (
self.ror(words[index - 2], 17)
^ self.ror(words[index - 2], 19)
^ (words[index - 2] >> 10)
)
_lowercase : List[Any] = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x100000000
# Compression
_lowercase : int = self.ror(lowerCamelCase, 6) ^ self.ror(lowerCamelCase, 11) ^ self.ror(lowerCamelCase, 25)
_lowercase : Optional[int] = (e & f) ^ ((~e & 0xFFFFFFFF) & g)
_lowercase : Any = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x100000000
_lowercase : Any = self.ror(lowerCamelCase, 2) ^ self.ror(lowerCamelCase, 13) ^ self.ror(lowerCamelCase, 22)
_lowercase : Optional[int] = (a & b) ^ (a & c) ^ (b & c)
_lowercase : Optional[int] = (sa + maj) % 0x100000000
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Any = (
g,
f,
e,
((d + tempa) % 0x100000000),
c,
b,
a,
((tempa + tempa) % 0x100000000),
)
_lowercase : Union[str, Any] = [a, b, c, d, e, f, g, h]
# Modify final values
_lowercase : Tuple = [
((element + mutated_hash_values[index]) % 0x100000000)
for index, element in enumerate(self.hashes)
]
_lowercase : Dict = ''.join([hex(lowerCamelCase)[2:].zfill(8) for value in self.hashes])
def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> int:
"""simple docstring"""
return 0xFFFFFFFF & (value << (32 - rotations)) | (value >> rotations)
class _lowerCamelCase( unittest.TestCase ):
def UpperCamelCase ( self) -> None:
"""simple docstring"""
import hashlib
_lowercase : List[Any] = bytes('Test String', 'utf-8')
self.assertEqual(SHAaaa(lowerCamelCase).hash, hashlib.shaaaa(lowerCamelCase).hexdigest())
def UpperCamelCase_( ) -> Tuple:
import doctest
doctest.testmod()
_lowercase : int = argparse.ArgumentParser()
parser.add_argument(
'-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument(
'-f' , '--file' , dest='input_file' , help='Hash contents of a file' )
_lowercase : Dict = parser.parse_args()
_lowercase : List[str] = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
_lowercase : Dict = f.read()
else:
_lowercase : int = bytes(_SCREAMING_SNAKE_CASE , 'utf-8' )
print(SHAaaa(_SCREAMING_SNAKE_CASE ).hash )
if __name__ == "__main__":
main()
| 21 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
__lowerCAmelCase = 8
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ):
_snake_case = x.device
_snake_case = (x * 255).int().clamp(0 , 255 )
_snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c h w -> b c 1 h w""" )
_snake_case = ((x & mask) != 0).float()
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c d h w -> b (c d) h w""" )
_snake_case = bits * 2 - 1
return bits
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ):
_snake_case = x.device
_snake_case = (x > 0).int()
_snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE , dtype=torch.intaa )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b (c d) h w -> b c d h w""" , d=8 )
_snake_case = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" )
return (dec / 255).clamp(0.0 , 1.0 )
def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ):
if self.num_inference_steps is None:
raise ValueError(
"""Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
_snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
_snake_case = self.alphas_cumprod[timestep]
_snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
_snake_case = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
_snake_case = self.bit_scale
if self.config.clip_sample:
_snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
_snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_snake_case = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
_snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
_snake_case = model_output.device if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else """cpu"""
_snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE )
_snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ** 0.5 * eta * noise
_snake_case = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="epsilon" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ):
_snake_case = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
_snake_case, _snake_case = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 )
else:
_snake_case = None
# 1. compute alphas, betas
_snake_case = self.alphas_cumprod[t]
_snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one
_snake_case = 1 - alpha_prod_t
_snake_case = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
_snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
_snake_case = model_output
else:
raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" )
# 3. Clip "predicted x_0"
_snake_case = self.bit_scale
if self.config.clip_sample:
_snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
_snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_snake_case = 0
if t > 0:
_snake_case = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_SCREAMING_SNAKE_CASE ).to(model_output.device )
_snake_case = (self._get_variance(_SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE ) ** 0.5) * noise
_snake_case = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE )
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1.0 , ) -> Tuple:
super().__init__()
_snake_case = bit_scale
_snake_case = (
ddim_bit_scheduler_step if isinstance(UpperCAmelCase , UpperCAmelCase ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase )
@torch.no_grad()
def __call__(self , UpperCAmelCase = 256 , UpperCAmelCase = 256 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = "pil" , UpperCAmelCase = True , **UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]:
_snake_case = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=UpperCAmelCase , )
_snake_case = decimal_to_bits(UpperCAmelCase ) * self.bit_scale
_snake_case = latents.to(self.device )
self.scheduler.set_timesteps(UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
_snake_case = self.unet(UpperCAmelCase , UpperCAmelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
_snake_case = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample
_snake_case = bits_to_decimal(UpperCAmelCase )
if output_type == "pil":
_snake_case = self.numpy_to_pil(UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCAmelCase ) | 341 | 0 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class lowercase :
"""simple docstring"""
_a = XGLMConfig
_a = {}
_a = 'gelu'
def __init__( self , UpperCamelCase_ , UpperCamelCase_=14 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=512 , UpperCamelCase_=0.02 , ):
'''simple docstring'''
UpperCamelCase__ :str = parent
UpperCamelCase__ :int = batch_size
UpperCamelCase__ :Any = seq_length
UpperCamelCase__ :Any = is_training
UpperCamelCase__ :str = use_input_mask
UpperCamelCase__ :Optional[int] = use_labels
UpperCamelCase__ :List[Any] = vocab_size
UpperCamelCase__ :Dict = d_model
UpperCamelCase__ :List[str] = num_hidden_layers
UpperCamelCase__ :Union[str, Any] = num_attention_heads
UpperCamelCase__ :Optional[int] = ffn_dim
UpperCamelCase__ :Dict = activation_function
UpperCamelCase__ :Optional[int] = activation_dropout
UpperCamelCase__ :Union[str, Any] = attention_dropout
UpperCamelCase__ :Dict = max_position_embeddings
UpperCamelCase__ :Optional[int] = initializer_range
UpperCamelCase__ :Dict = None
UpperCamelCase__ :int = 0
UpperCamelCase__ :Tuple = 2
UpperCamelCase__ :Any = 1
def lowerCAmelCase__ ( self ):
'''simple docstring'''
return XGLMConfig.from_pretrained('''facebook/xglm-564M''' )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :Dict = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
UpperCamelCase__ :Dict = None
if self.use_input_mask:
UpperCamelCase__ :Optional[int] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase__ :Optional[Any] = self.get_config()
UpperCamelCase__ :str = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def lowerCAmelCase__ ( self ):
'''simple docstring'''
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCamelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCamelCase_ , )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :List[str] = self.prepare_config_and_inputs()
(
(
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) , (
UpperCamelCase__
) ,
) :Tuple = config_and_inputs
UpperCamelCase__ :Tuple = {
'''input_ids''': input_ids,
'''head_mask''': head_mask,
}
return config, inputs_dict
@require_tf
class lowercase ( __snake_case , __snake_case , unittest.TestCase ):
"""simple docstring"""
_a = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
_a = (TFXGLMForCausalLM,) if is_tf_available() else ()
_a = (
{'feature-extraction': TFXGLMModel, 'text-generation': TFXGLMForCausalLM} if is_tf_available() else {}
)
_a = False
_a = False
_a = False
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :Dict = TFXGLMModelTester(self )
UpperCamelCase__ :Optional[Any] = ConfigTester(self , config_class=UpperCamelCase_ , n_embd=37 )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
@slow
def lowerCAmelCase__ ( self ):
'''simple docstring'''
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase__ :Union[str, Any] = TFXGLMModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
@unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
super().test_resize_token_embeddings()
@require_tf
class lowercase ( unittest.TestCase ):
"""simple docstring"""
@slow
def lowerCAmelCase__ ( self , UpperCamelCase_=True ):
'''simple docstring'''
UpperCamelCase__ :Optional[Any] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
UpperCamelCase__ :Optional[int] = tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
UpperCamelCase__ :List[str] = [2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581]
# fmt: on
UpperCamelCase__ :Union[str, Any] = model.generate(UpperCamelCase_ , do_sample=UpperCamelCase_ , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , UpperCamelCase_ )
@slow
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :List[Any] = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
UpperCamelCase__ :Optional[Any] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
tf.random.set_seed(0 )
UpperCamelCase__ :str = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' )
UpperCamelCase__ :List[Any] = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(''':/CPU:0''' ):
UpperCamelCase__ :List[str] = model.generate(UpperCamelCase_ , do_sample=UpperCamelCase_ , seed=[7, 0] )
UpperCamelCase__ :int = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCamelCase_ )
UpperCamelCase__ :Tuple = (
'''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'''
)
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
@slow
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :Tuple = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
UpperCamelCase__ :Optional[Any] = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
UpperCamelCase__ :str = '''left'''
# use different length sentences to test batching
UpperCamelCase__ :Optional[int] = [
'''This is an extremelly long sentence that only exists to test the ability of the model to cope with '''
'''left-padding, such as in batched generation. The output for the sequence below should be the same '''
'''regardless of whether left padding is applied or not. When''',
'''Hello, my dog is a little''',
]
UpperCamelCase__ :Union[str, Any] = tokenizer(UpperCamelCase_ , return_tensors='''tf''' , padding=UpperCamelCase_ )
UpperCamelCase__ :List[Any] = inputs['''input_ids''']
UpperCamelCase__ :List[Any] = model.generate(input_ids=UpperCamelCase_ , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 )
UpperCamelCase__ :Union[str, Any] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids
UpperCamelCase__ :Dict = model.generate(input_ids=UpperCamelCase_ , max_new_tokens=12 )
UpperCamelCase__ :List[str] = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids
UpperCamelCase__ :List[str] = model.generate(input_ids=UpperCamelCase_ , max_new_tokens=12 )
UpperCamelCase__ :Union[str, Any] = tokenizer.batch_decode(UpperCamelCase_ , skip_special_tokens=UpperCamelCase_ )
UpperCamelCase__ :Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCamelCase_ )
UpperCamelCase__ :Optional[int] = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCamelCase_ )
UpperCamelCase__ :Optional[Any] = [
'''This is an extremelly long sentence that only exists to test the ability of the model to cope with '''
'''left-padding, such as in batched generation. The output for the sequence below should be the same '''
'''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '''
'''a single''',
'''Hello, my dog is a little bit of a shy one, but he is very friendly''',
]
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , [non_padded_sentence, padded_sentence] ) | 97 |
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 10**9 ):
_snake_case = 1
_snake_case = 2
_snake_case = 0
_snake_case = 0
_snake_case = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
_snake_case = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(f'''{solution() = }''') | 341 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
A : str = {
"configuration_falcon": ["FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP", "FalconConfig"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : List[Any] = [
"FALCON_PRETRAINED_MODEL_ARCHIVE_LIST",
"FalconForCausalLM",
"FalconModel",
"FalconPreTrainedModel",
"FalconForSequenceClassification",
"FalconForTokenClassification",
"FalconForQuestionAnswering",
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 184 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = {
'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json',
'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json',
'microsoft/deberta-v2-xlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'
),
'microsoft/deberta-v2-xxlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'
),
}
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = "deberta-v2"
def __init__(self , UpperCAmelCase=128100 , UpperCAmelCase=1536 , UpperCAmelCase=24 , UpperCAmelCase=24 , UpperCAmelCase=6144 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-7 , UpperCAmelCase=False , UpperCAmelCase=-1 , UpperCAmelCase=0 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=0 , UpperCAmelCase="gelu" , **UpperCAmelCase , ) -> List[str]:
super().__init__(**UpperCAmelCase )
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = max_position_embeddings
_snake_case = type_vocab_size
_snake_case = initializer_range
_snake_case = relative_attention
_snake_case = max_relative_positions
_snake_case = pad_token_id
_snake_case = position_biased_input
# Backwards compatibility
if type(UpperCAmelCase ) == str:
_snake_case = [x.strip() for x in pos_att_type.lower().split("""|""" )]
_snake_case = pos_att_type
_snake_case = vocab_size
_snake_case = layer_norm_eps
_snake_case = kwargs.get("""pooler_hidden_size""" , UpperCAmelCase )
_snake_case = pooler_dropout
_snake_case = pooler_hidden_act
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
@property
def lowercase (self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_snake_case = {0: """batch""", 1: """sequence"""}
if self._config.type_vocab_size > 0:
return OrderedDict(
[("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] )
else:
return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] )
@property
def lowercase (self ) -> int:
return 12
def lowercase (self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 3 , UpperCAmelCase = 40 , UpperCAmelCase = 40 , UpperCAmelCase = None , ) -> Mapping[str, Any]:
_snake_case = super().generate_dummy_inputs(preprocessor=UpperCAmelCase , framework=UpperCAmelCase )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs | 341 | 0 |
import warnings
from ...utils import logging
from .image_processing_mobilevit import MobileViTImageProcessor
lowercase__ : Dict = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( __snake_case ):
"""simple docstring"""
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> None:
'''simple docstring'''
warnings.warn(
'''The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use MobileViTImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , )
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 328 |
'''simple docstring'''
__lowerCAmelCase = [
(1_000, 'M'),
(900, 'CM'),
(500, 'D'),
(400, 'CD'),
(100, 'C'),
(90, 'XC'),
(50, 'L'),
(40, 'XL'),
(10, 'X'),
(9, 'IX'),
(5, 'V'),
(4, 'IV'),
(1, 'I'),
]
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000}
_snake_case = 0
_snake_case = 0
while place < len(_SCREAMING_SNAKE_CASE ):
if (place + 1 < len(_SCREAMING_SNAKE_CASE )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = []
for arabic, roman in ROMAN:
((_snake_case), (_snake_case)) = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
result.append(roman * factor )
if number == 0:
break
return "".join(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 0 |
"""simple docstring"""
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class SCREAMING_SNAKE_CASE__ ( __snake_case ):
lowercase__ = ["image_processor", "tokenizer"]
lowercase__ = "CLIPImageProcessor"
lowercase__ = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast")
def __init__( self : int , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , lowerCAmelCase_ , )
lowercase_ = kwargs.pop("""feature_extractor""")
lowercase_ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""")
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""")
super().__init__(lowerCAmelCase_ , lowerCAmelCase_)
def __call__( self : Any , lowerCAmelCase_ : Tuple=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : Dict):
"""simple docstring"""
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""")
if text is not None:
lowercase_ = self.tokenizer(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_)
if images is not None:
lowercase_ = self.image_processor(lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , **lowerCAmelCase_)
if text is not None and images is not None:
lowercase_ = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowerCAmelCase_) , tensor_type=lowerCAmelCase_)
def _UpperCAmelCase ( self : str , *lowerCAmelCase_ : str , **lowerCAmelCase_ : List[str]):
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase_ , **lowerCAmelCase_)
def _UpperCAmelCase ( self : Tuple , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : List[Any]):
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase_ , **lowerCAmelCase_)
@property
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = self.tokenizer.model_input_names
lowercase_ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
| 136 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__lowerCAmelCase = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = ['PerceiverFeatureExtractor']
__lowerCAmelCase = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 | 0 |
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import SPIECE_UNDERLINE, logging
__lowercase = logging.get_logger(__name__)
__lowercase = {"""vocab_file""": """spiece.model"""}
__lowercase = {
"""vocab_file""": {
"""xlnet-base-cased""": """https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model""",
"""xlnet-large-cased""": """https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model""",
}
}
__lowercase = {
"""xlnet-base-cased""": None,
"""xlnet-large-cased""": None,
}
# Segments (not really needed)
__lowercase = 0
__lowercase = 1
__lowercase = 2
__lowercase = 3
__lowercase = 4
class _A ( __snake_case ):
"""simple docstring"""
UpperCAmelCase : str = VOCAB_FILES_NAMES
UpperCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase : Optional[Any] = """left"""
def __init__( self : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int=False , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Optional[int]="<s>" , __UpperCAmelCase : Tuple="</s>" , __UpperCAmelCase : Union[str, Any]="<unk>" , __UpperCAmelCase : int="<sep>" , __UpperCAmelCase : Any="<pad>" , __UpperCAmelCase : List[str]="<cls>" , __UpperCAmelCase : Optional[Any]="<mask>" , __UpperCAmelCase : Optional[int]=["<eop>", "<eod>"] , __UpperCAmelCase : Optional[int] = None , **__UpperCAmelCase : List[str] , ):
# Mask token behave like a normal word, i.e. include the space before it
a : Optional[Any] = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase) if isinstance(__UpperCAmelCase , __UpperCAmelCase) else mask_token
a : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
a : str = 3
a : Union[str, Any] = do_lower_case
a : str = remove_space
a : List[str] = keep_accents
a : Dict = vocab_file
a : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(__UpperCAmelCase)
@property
def __snake_case ( self : Union[str, Any]):
return len(self.sp_model)
def __snake_case ( self : str):
a : Union[str, Any] = {self.convert_ids_to_tokens(__UpperCAmelCase): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__( self : Optional[int]):
a : Optional[int] = self.__dict__.copy()
a : Union[str, Any] = None
return state
def __setstate__( self : Optional[Any] , __UpperCAmelCase : Optional[int]):
a : Tuple = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs"):
a : str = {}
a : int = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)
def __snake_case ( self : int , __UpperCAmelCase : List[str]):
if self.remove_space:
a : Optional[Any] = " ".join(inputs.strip().split())
else:
a : str = inputs
a : Optional[Any] = outputs.replace("``" , "\"").replace("''" , "\"")
if not self.keep_accents:
a : List[Any] = unicodedata.normalize("NFKD" , __UpperCAmelCase)
a : Tuple = "".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase)])
if self.do_lower_case:
a : Union[str, Any] = outputs.lower()
return outputs
def __snake_case ( self : str , __UpperCAmelCase : Any):
a : Optional[Any] = self.preprocess_text(__UpperCAmelCase)
a : Any = self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase)
a : List[Any] = []
for piece in pieces:
if len(__UpperCAmelCase) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
a : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , ""))
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0]) == 1:
a : Tuple = cur_pieces[1:]
else:
a : Tuple = cur_pieces[0][1:]
cur_pieces.append(piece[-1])
new_pieces.extend(__UpperCAmelCase)
else:
new_pieces.append(__UpperCAmelCase)
return new_pieces
def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : str):
return self.sp_model.PieceToId(__UpperCAmelCase)
def __snake_case ( self : Dict , __UpperCAmelCase : Optional[int]):
return self.sp_model.IdToPiece(__UpperCAmelCase)
def __snake_case ( self : int , __UpperCAmelCase : Optional[int]):
a : Optional[int] = "".join(__UpperCAmelCase).replace(__UpperCAmelCase , " ").strip()
return out_string
def __snake_case ( self : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] = False , __UpperCAmelCase : Any = None , __UpperCAmelCase : List[str] = True , **__UpperCAmelCase : Optional[Any] , ):
a : Optional[Any] = kwargs.pop("use_source_tokenizer" , __UpperCAmelCase)
a : Tuple = self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase)
# To avoid mixing byte-level and unicode for byte-level BPT
# we need to build string separately for added tokens and byte-level tokens
# cf. https://github.com/huggingface/transformers/issues/1133
a : str = []
a : Union[str, Any] = []
for token in filtered_tokens:
if skip_special_tokens and token in self.all_special_ids:
continue
if token in self.added_tokens_encoder:
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase))
a : Dict = []
sub_texts.append(__UpperCAmelCase)
else:
current_sub_text.append(__UpperCAmelCase)
if current_sub_text:
sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase))
# Mimic the behavior of the Rust tokenizer:
# By default, there are no spaces between special tokens
a : Any = "".join(__UpperCAmelCase)
a : Union[str, Any] = (
clean_up_tokenization_spaces
if clean_up_tokenization_spaces is not None
else self.clean_up_tokenization_spaces
)
if clean_up_tokenization_spaces:
a : Optional[int] = self.clean_up_tokenization(__UpperCAmelCase)
return clean_text
else:
return text
def __snake_case ( self : str , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] = None):
a : int = [self.sep_token_id]
a : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return token_ids_a + sep + cls
return token_ids_a + sep + token_ids_a + sep + cls
def __snake_case ( self : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Any = None , __UpperCAmelCase : Optional[Any] = False):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase)
if token_ids_a is not None:
return ([0] * len(__UpperCAmelCase)) + [1] + ([0] * len(__UpperCAmelCase)) + [1, 1]
return ([0] * len(__UpperCAmelCase)) + [1, 1]
def __snake_case ( self : int , __UpperCAmelCase : Any , __UpperCAmelCase : Any = None):
a : str = [self.sep_token_id]
a : Any = [2]
if token_ids_a is None:
return len(token_ids_a + sep) * [0] + cls_segment_id
return len(token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] + cls_segment_id
def __snake_case ( self : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] = None):
if not os.path.isdir(__UpperCAmelCase):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''')
return
a : Tuple = os.path.join(
__UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(__UpperCAmelCase) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file , __UpperCAmelCase)
elif not os.path.isfile(self.vocab_file):
with open(__UpperCAmelCase , "wb") as fi:
a : List[Any] = self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase)
return (out_vocab_file,)
| 40 |
'''simple docstring'''
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__lowerCAmelCase = 'platform'
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ):
if attention_mask is None:
_snake_case = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
_snake_case = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
_snake_case = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=99 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , ) -> Union[str, Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = seq_length
_snake_case = is_training
_snake_case = use_labels
_snake_case = vocab_size
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = max_position_embeddings
_snake_case = eos_token_id
_snake_case = pad_token_id
_snake_case = bos_token_id
_snake_case = initializer_range
def lowercase (self ) -> str:
_snake_case = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
_snake_case = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
_snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 )
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase , )
_snake_case = prepare_blenderbot_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
return config, inputs_dict
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.prepare_config_and_inputs()
return config, inputs_dict
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict:
_snake_case = 20
_snake_case = model_class_name(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] )
_snake_case, _snake_case = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase )
_snake_case = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
_snake_case = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_snake_case = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_snake_case = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase , )
_snake_case = model.decode(UpperCAmelCase , UpperCAmelCase )
_snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]:
_snake_case = 20
_snake_case = model_class_name(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] )
_snake_case, _snake_case = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_snake_case = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase )
_snake_case = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_snake_case = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_snake_case = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = model.decode(UpperCAmelCase , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase )
_snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = 99
def lowercase (self ) -> Any:
_snake_case = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
_snake_case = input_ids.shape[0]
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def lowercase (self ) -> Optional[Any]:
_snake_case, _snake_case, _snake_case = self._get_config_and_data()
_snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase )
_snake_case = lm_model(input_ids=UpperCAmelCase )
_snake_case = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase )
def lowercase (self ) -> int:
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
_snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase )
_snake_case = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
_snake_case = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
_snake_case = lm_model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase )
_snake_case = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase )
def lowercase (self ) -> Tuple:
_snake_case = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
_snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 )
_snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum()
_snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(UpperCAmelCase , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class _lowerCAmelCase ( __snake_case , unittest.TestCase , __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = True
lowerCAmelCase_ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowerCAmelCase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def lowercase (self ) -> Any:
_snake_case = FlaxBlenderbotModelTester(self )
def lowercase (self ) -> str:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_snake_case = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
_snake_case = model_class(UpperCAmelCase )
@jax.jit
def encode_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
return model.encode(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )
with self.subTest("""JIT Enabled""" ):
_snake_case = encode_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_snake_case = encode_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def lowercase (self ) -> str:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_snake_case = model_class(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
_snake_case = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
return model.decode(
decoder_input_ids=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , encoder_outputs=UpperCAmelCase , )
with self.subTest("""JIT Enabled""" ):
_snake_case = decode_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_snake_case = decode_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowercase (self ) -> Any:
for model_class_name in self.all_model_classes:
_snake_case = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
_snake_case = np.ones((1, 1) ) * model.config.eos_token_id
_snake_case = model(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" )
@slow
def lowercase (self ) -> Dict:
_snake_case = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25}
_snake_case = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True}
_snake_case = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=UpperCAmelCase )
_snake_case = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" )
_snake_case = ["""Sam"""]
_snake_case = tokenizer(UpperCAmelCase , return_tensors="""jax""" )
_snake_case = model.generate(**UpperCAmelCase , **UpperCAmelCase )
_snake_case = """Sam is a great name. It means \"sun\" in Gaelic."""
_snake_case = tokenizer.batch_decode(UpperCAmelCase , **UpperCAmelCase )
assert generated_txt[0].strip() == tgt_text | 341 | 0 |
import json
import sys
import tempfile
import unittest
from pathlib import Path
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
AutoConfig,
AutoImageProcessor,
CLIPConfig,
CLIPImageProcessor,
)
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER
sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils'))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_image_processing import CustomImageProcessor # noqa E402
class _A ( unittest.TestCase ):
def __a ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
lowercase : int = 0
def __a ( self : Tuple ) -> str:
"""simple docstring"""
lowercase : Union[str, Any] = AutoImageProcessor.from_pretrained('''openai/clip-vit-base-patch32''' )
self.assertIsInstance(_A , _A )
def __a ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : Any = Path(_A ) / '''preprocessor_config.json'''
lowercase : List[str] = Path(_A ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_A , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_A , '''w''' ) )
lowercase : str = AutoImageProcessor.from_pretrained(_A )
self.assertIsInstance(_A , _A )
def __a ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : List[str] = Path(_A ) / '''preprocessor_config.json'''
lowercase : Union[str, Any] = Path(_A ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_A , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_A , '''w''' ) )
lowercase : Dict = AutoImageProcessor.from_pretrained(_A )
self.assertIsInstance(_A , _A )
def __a ( self : Tuple ) -> List[Any]:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : Union[str, Any] = CLIPConfig()
# Create a dummy config file with image_proceesor_type
lowercase : Optional[int] = Path(_A ) / '''preprocessor_config.json'''
lowercase : Any = Path(_A ) / '''config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_A , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_A , '''w''' ) )
# remove image_processor_type to make sure config.json alone is enough to load image processor locally
lowercase : List[Any] = AutoImageProcessor.from_pretrained(_A ).to_dict()
config_dict.pop('''image_processor_type''' )
lowercase : str = CLIPImageProcessor(**_A )
# save in new folder
model_config.save_pretrained(_A )
config.save_pretrained(_A )
lowercase : Dict = AutoImageProcessor.from_pretrained(_A )
# make sure private variable is not incorrectly saved
lowercase : Tuple = json.loads(config.to_json_string() )
self.assertTrue('''_processor_class''' not in dict_as_saved )
self.assertIsInstance(_A , _A )
def __a ( self : str ) -> Dict:
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : List[Any] = Path(_A ) / '''preprocessor_config.json'''
json.dump(
{'''image_processor_type''': '''CLIPImageProcessor''', '''processor_class''': '''CLIPProcessor'''} , open(_A , '''w''' ) , )
lowercase : str = AutoImageProcessor.from_pretrained(_A )
self.assertIsInstance(_A , _A )
def __a ( self : Dict ) -> Union[str, Any]:
"""simple docstring"""
with self.assertRaisesRegex(
_A , '''clip-base is not a local folder and is not a valid model identifier''' ):
lowercase : Dict = AutoImageProcessor.from_pretrained('''clip-base''' )
def __a ( self : Dict ) -> Tuple:
"""simple docstring"""
with self.assertRaisesRegex(
_A , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ):
lowercase : int = AutoImageProcessor.from_pretrained(_A , revision='''aaaaaa''' )
def __a ( self : Union[str, Any] ) -> int:
"""simple docstring"""
with self.assertRaisesRegex(
_A , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ):
lowercase : Optional[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/config-no-model''' )
def __a ( self : List[Any] ) -> List[str]:
"""simple docstring"""
with self.assertRaises(_A ):
lowercase : int = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(_A ):
lowercase : Optional[Any] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_A )
lowercase : Optional[Any] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_A )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
# Test image processor can be reloaded.
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_A )
lowercase : Tuple = AutoImageProcessor.from_pretrained(_A , trust_remote_code=_A )
self.assertEqual(reloaded_image_processor.__class__.__name__ , '''NewImageProcessor''' )
def __a ( self : List[Any] ) -> Dict:
"""simple docstring"""
try:
AutoConfig.register('''custom''' , _A )
AutoImageProcessor.register(_A , _A )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(_A ):
AutoImageProcessor.register(_A , _A )
with tempfile.TemporaryDirectory() as tmpdirname:
lowercase : List[Any] = Path(_A ) / '''preprocessor_config.json'''
lowercase : Dict = Path(_A ) / '''config.json'''
json.dump(
{'''feature_extractor_type''': '''CLIPFeatureExtractor''', '''processor_class''': '''CLIPProcessor'''} , open(_A , '''w''' ) , )
json.dump({'''model_type''': '''clip'''} , open(_A , '''w''' ) )
lowercase : List[str] = CustomImageProcessor.from_pretrained(_A )
# Now that the config is registered, it can be used as any other config with the auto-API
with tempfile.TemporaryDirectory() as tmp_dir:
image_processor.save_pretrained(_A )
lowercase : List[Any] = AutoImageProcessor.from_pretrained(_A )
self.assertIsInstance(_A , _A )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
def __a ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
class _A ( __snake_case ):
_UpperCamelCase : Union[str, Any] = True
try:
AutoConfig.register('''custom''' , _A )
AutoImageProcessor.register(_A , _A )
# If remote code is not set, the default is to use local
lowercase : Optional[Any] = AutoImageProcessor.from_pretrained('''hf-internal-testing/test_dynamic_image_processor''' )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote code is disabled, we load the local one.
lowercase : Dict = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_A )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(image_processor.is_local )
# If remote is enabled, we load from the Hub
lowercase : Optional[int] = AutoImageProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_image_processor''' , trust_remote_code=_A )
self.assertEqual(image_processor.__class__.__name__ , '''NewImageProcessor''' )
self.assertTrue(not hasattr(_A , '''is_local''' ) )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content:
del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] | 308 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=10 , UpperCAmelCase=3 , UpperCAmelCase=32 * 4 , UpperCAmelCase=32 * 6 , UpperCAmelCase=4 , UpperCAmelCase=32 , ) -> Optional[Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = is_training
_snake_case = use_auxiliary_loss
_snake_case = num_queries
_snake_case = num_channels
_snake_case = min_size
_snake_case = max_size
_snake_case = num_labels
_snake_case = mask_feature_size
def lowercase (self ) -> str:
_snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
UpperCAmelCase )
_snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase )
_snake_case = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase ) > 0.5
).float()
_snake_case = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase ) > 0.5).long()
_snake_case = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def lowercase (self ) -> Tuple:
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig(
decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , )
def lowercase (self ) -> Optional[Any]:
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.prepare_config_and_inputs()
_snake_case = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int:
_snake_case = output.encoder_hidden_states
_snake_case = output.pixel_decoder_hidden_states
_snake_case = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(UpperCAmelCase ) , config.decoder_config.decoder_layers )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]:
with torch.no_grad():
_snake_case = MaskFormerModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
_snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase )
_snake_case = model(UpperCAmelCase , output_hidden_states=UpperCAmelCase )
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(UpperCAmelCase , UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]:
_snake_case = MaskFormerForInstanceSegmentation(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
def comm_check_on_output(UpperCAmelCase ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
_snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase )
_snake_case = model(UpperCAmelCase )
comm_check_on_output(UpperCAmelCase )
_snake_case = model(
pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase )
comm_check_on_output(UpperCAmelCase )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
lowerCAmelCase_ = (
{"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def lowercase (self ) -> int:
_snake_case = MaskFormerModelTester(self )
_snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase )
def lowercase (self ) -> int:
self.config_tester.run_common_tests()
def lowercase (self ) -> List[Any]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase )
def lowercase (self ) -> Any:
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase )
@unittest.skip(reason="""MaskFormer does not use inputs_embeds""" )
def lowercase (self ) -> Optional[Any]:
pass
@unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" )
def lowercase (self ) -> Optional[int]:
pass
@unittest.skip(reason="""MaskFormer is not a generative model""" )
def lowercase (self ) -> int:
pass
@unittest.skip(reason="""MaskFormer does not use token embeddings""" )
def lowercase (self ) -> Optional[int]:
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def lowercase (self ) -> Optional[Any]:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowercase (self ) -> Tuple:
pass
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase )
_snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case = [*signature.parameters.keys()]
_snake_case = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
@slow
def lowercase (self ) -> int:
for model_name in ["facebook/maskformer-swin-small-coco"]:
_snake_case = MaskFormerModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def lowercase (self ) -> Tuple:
_snake_case = (self.model_tester.min_size,) * 2
_snake_case = {
"""pixel_values""": torch.randn((2, 3, *size) , device=UpperCAmelCase ),
"""mask_labels""": torch.randn((2, 10, *size) , device=UpperCAmelCase ),
"""class_labels""": torch.zeros(2 , 10 , device=UpperCAmelCase ).long(),
}
_snake_case = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCAmelCase )
_snake_case = model(**UpperCAmelCase )
self.assertTrue(outputs.loss is not None )
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase ).to(UpperCAmelCase )
_snake_case = model(**UpperCAmelCase , output_attentions=UpperCAmelCase )
self.assertTrue(outputs.attentions is not None )
def lowercase (self ) -> Tuple:
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
_snake_case = self.all_model_classes[1]
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.train()
_snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ).loss
loss.backward()
def lowercase (self ) -> List[str]:
# only MaskFormerForInstanceSegmentation has the loss
_snake_case = self.all_model_classes[1]
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
_snake_case = True
_snake_case = True
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.train()
_snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase )
_snake_case = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
_snake_case = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
_snake_case = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
_snake_case = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=UpperCAmelCase )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__lowerCAmelCase = 1E-4
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowercase (self ) -> Optional[int]:
return (
MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" )
if is_vision_available()
else None
)
def lowercase (self ) -> str:
_snake_case = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(UpperCAmelCase )
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.tensor(
[[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
_snake_case = torch.tensor(
[[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
_snake_case = torch.tensor(
[[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> List[str]:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
# masks_queries_logits
_snake_case = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_snake_case = [
[-1.373_7124, -1.772_4937, -1.936_4233],
[-1.597_7281, -1.986_7939, -2.152_3695],
[-1.579_5398, -1.926_9832, -2.09_3942],
]
_snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
# class_queries_logits
_snake_case = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_snake_case = torch.tensor(
[
[1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0],
[3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0],
[1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0],
] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> List[Any]:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
# masks_queries_logits
_snake_case = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_snake_case = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]]
_snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
# class_queries_logits
_snake_case = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_snake_case = torch.tensor(
[[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> Tuple:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , )
_snake_case = inputs["""pixel_values"""].to(UpperCAmelCase )
_snake_case = [el.to(UpperCAmelCase ) for el in inputs["""mask_labels"""]]
_snake_case = [el.to(UpperCAmelCase ) for el in inputs["""class_labels"""]]
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
self.assertTrue(outputs.loss is not None ) | 341 | 0 |
"""simple docstring"""
import re
import warnings
from contextlib import contextmanager
from ...processing_utils import ProcessorMixin
class lowerCamelCase (__snake_case ):
lowerCamelCase__ : Optional[int] = ['image_processor', 'tokenizer']
lowerCamelCase__ : Dict = 'AutoImageProcessor'
lowerCamelCase__ : str = 'AutoTokenizer'
def __init__( self : int , __UpperCAmelCase : List[Any]=None , __UpperCAmelCase : Dict=None , **__UpperCAmelCase : Any ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__ = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , __UpperCAmelCase , )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""feature_extractor""" )
SCREAMING_SNAKE_CASE__ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
SCREAMING_SNAKE_CASE__ = self.image_processor
SCREAMING_SNAKE_CASE__ = False
def __call__( self : str , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : Tuple ) -> Optional[int]:
# For backward compatibility
if self._in_target_context_manager:
return self.current_processor(*__UpperCAmelCase , **__UpperCAmelCase )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""images""" , __UpperCAmelCase )
SCREAMING_SNAKE_CASE__ = kwargs.pop("""text""" , __UpperCAmelCase )
if len(__UpperCAmelCase ) > 0:
SCREAMING_SNAKE_CASE__ = args[0]
SCREAMING_SNAKE_CASE__ = args[1:]
if images is None and text is None:
raise ValueError("""You need to specify either an `images` or `text` input to process.""" )
if images is not None:
SCREAMING_SNAKE_CASE__ = self.image_processor(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase )
if text is not None:
SCREAMING_SNAKE_CASE__ = self.tokenizer(__UpperCAmelCase , **__UpperCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
SCREAMING_SNAKE_CASE__ = encodings["""input_ids"""]
return inputs
def SCREAMING_SNAKE_CASE ( self : List[str] , *__UpperCAmelCase : Optional[int] , **__UpperCAmelCase : int ) -> Any:
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def SCREAMING_SNAKE_CASE ( self : List[Any] , *__UpperCAmelCase : Dict , **__UpperCAmelCase : List[Any] ) -> Optional[Any]:
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@contextmanager
def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any:
warnings.warn(
"""`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """
"""labels by using the argument `text` of the regular `__call__` method (either in the same call as """
"""your images inputs, or in a separate call.""" )
SCREAMING_SNAKE_CASE__ = True
SCREAMING_SNAKE_CASE__ = self.tokenizer
yield
SCREAMING_SNAKE_CASE__ = self.image_processor
SCREAMING_SNAKE_CASE__ = False
def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple=False , __UpperCAmelCase : Union[str, Any]=None ) -> int:
if added_vocab is None:
SCREAMING_SNAKE_CASE__ = self.tokenizer.get_added_vocab()
SCREAMING_SNAKE_CASE__ = {}
while tokens:
SCREAMING_SNAKE_CASE__ = re.search(r"""<s_(.*?)>""" , __UpperCAmelCase , re.IGNORECASE )
if start_token is None:
break
SCREAMING_SNAKE_CASE__ = start_token.group(1 )
SCREAMING_SNAKE_CASE__ = re.search(rF"""</s_{key}>""" , __UpperCAmelCase , re.IGNORECASE )
SCREAMING_SNAKE_CASE__ = start_token.group()
if end_token is None:
SCREAMING_SNAKE_CASE__ = tokens.replace(__UpperCAmelCase , """""" )
else:
SCREAMING_SNAKE_CASE__ = end_token.group()
SCREAMING_SNAKE_CASE__ = re.escape(__UpperCAmelCase )
SCREAMING_SNAKE_CASE__ = re.escape(__UpperCAmelCase )
SCREAMING_SNAKE_CASE__ = re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , __UpperCAmelCase , re.IGNORECASE )
if content is not None:
SCREAMING_SNAKE_CASE__ = content.group(1 ).strip()
if r"<s_" in content and r"</s_" in content: # non-leaf node
SCREAMING_SNAKE_CASE__ = self.tokenajson(__UpperCAmelCase , is_inner_value=__UpperCAmelCase , added_vocab=__UpperCAmelCase )
if value:
if len(__UpperCAmelCase ) == 1:
SCREAMING_SNAKE_CASE__ = value[0]
SCREAMING_SNAKE_CASE__ = value
else: # leaf nodes
SCREAMING_SNAKE_CASE__ = []
for leaf in content.split(r"""<sep/>""" ):
SCREAMING_SNAKE_CASE__ = leaf.strip()
if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>":
SCREAMING_SNAKE_CASE__ = leaf[1:-2] # for categorical special tokens
output[key].append(__UpperCAmelCase )
if len(output[key] ) == 1:
SCREAMING_SNAKE_CASE__ = output[key][0]
SCREAMING_SNAKE_CASE__ = tokens[tokens.find(__UpperCAmelCase ) + len(__UpperCAmelCase ) :].strip()
if tokens[:6] == r"<sep/>": # non-leaf nodes
return [output] + self.tokenajson(tokens[6:] , is_inner_value=__UpperCAmelCase , added_vocab=__UpperCAmelCase )
if len(__UpperCAmelCase ):
return [output] if is_inner_value else output
else:
return [] if is_inner_value else {"text_sequence": tokens}
@property
def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]:
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __UpperCAmelCase , )
return self.image_processor_class
@property
def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]:
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __UpperCAmelCase , )
return self.image_processor
| 165 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self , UpperCAmelCase ) -> Union[str, Any]:
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ):
_snake_case = model_result["""result"""][batch_size][sequence_length]
self.assertIsNotNone(UpperCAmelCase )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Dict:
_snake_case = """sgugger/tiny-distilbert-classification"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , only_pretrain_model=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Optional[Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , torchscript=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , fpaa=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Union[str, Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
# set architectures equal to `None`
_snake_case = None
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" )
def lowercase (self ) -> Tuple:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=UpperCAmelCase , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> Union[str, Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Dict:
_snake_case = """sshleifer/tinier_bart"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Any:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> int:
_snake_case = """sshleifer/tinier_bart"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> str:
_snake_case = """sshleifer/tiny-gpt2"""
with tempfile.TemporaryDirectory() as tmp_dir:
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , save_to_csv=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(UpperCAmelCase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(UpperCAmelCase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(UpperCAmelCase , """train_time.csv""" ) , env_info_csv_file=os.path.join(UpperCAmelCase , """env.csv""" ) , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """env.csv""" ) ).exists() )
def lowercase (self ) -> int:
_snake_case = """sshleifer/tiny-gpt2"""
def _check_summary_is_not_empty(UpperCAmelCase ):
self.assertTrue(hasattr(UpperCAmelCase , """sequential""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """cumulative""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """current""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """total""" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase , """log.txt""" ) , log_print=UpperCAmelCase , trace_memory_line_by_line=UpperCAmelCase , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """log.txt""" ) ).exists() ) | 341 | 0 |
from math import factorial
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: List[Any] ) -> Optional[Any]:
'''simple docstring'''
if n < k or k < 0:
raise ValueError("Please enter positive integers for n and k where n >= k" )
return factorial(_SCREAMING_SNAKE_CASE ) // (factorial(_SCREAMING_SNAKE_CASE ) * factorial(n - k ))
if __name__ == "__main__":
print(
"""The number of five-card hands possible from a standard""",
f"""fifty-two card deck is: {combinations(5_2, 5)}\n""",
)
print(
"""If a class of 40 students must be arranged into groups of""",
f"""4 for group projects, there are {combinations(4_0, 4)} ways""",
"""to arrange them.\n""",
)
print(
"""If 10 teams are competing in a Formula One race, there""",
f"""are {combinations(1_0, 3)} ways that first, second and""",
"""third place can be awarded.""",
)
| 68 |
'''simple docstring'''
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
if len(_SCREAMING_SNAKE_CASE ) == 0:
return []
_snake_case, _snake_case = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE )
_snake_case = int(max_value - min_value ) + 1
_snake_case = [[] for _ in range(_SCREAMING_SNAKE_CASE )]
for i in my_list:
buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE )
return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15] | 341 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowercase : Optional[int] = logging.get_logger(__name__)
lowercase : Optional[Any] = "▁"
lowercase : Any = {"vocab_file": "spiece.model"}
lowercase : List[Any] = {
"vocab_file": {
"google/reformer-crime-and-punishment": (
"https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model"
)
}
}
lowercase : Tuple = {
"google/reformer-crime-and-punishment": 52_4288,
}
class __UpperCAmelCase ( __snake_case ):
__lowercase = VOCAB_FILES_NAMES
__lowercase = PRETRAINED_VOCAB_FILES_MAP
__lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase = ["""input_ids""", """attention_mask"""]
def __init__( self , lowerCAmelCase_ , lowerCAmelCase_="</s>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_=[] , lowerCAmelCase_ = None , **lowerCAmelCase_ , ):
"""simple docstring"""
_snake_case = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , )
_snake_case = vocab_file
_snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(lowerCAmelCase_ )
@property
def lowerCamelCase ( self ):
"""simple docstring"""
return self.sp_model.get_piece_size()
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
"""simple docstring"""
_snake_case = self.__dict__.copy()
_snake_case = None
return state
def __setstate__( self , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
_snake_case = {}
_snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def lowerCamelCase ( self , lowerCAmelCase_ ):
"""simple docstring"""
return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ )
def lowerCamelCase ( self , lowerCAmelCase_ ):
"""simple docstring"""
return self.sp_model.piece_to_id(lowerCAmelCase_ )
def lowerCamelCase ( self , lowerCAmelCase_ ):
"""simple docstring"""
if index < self.sp_model.get_piece_size():
_snake_case = self.sp_model.IdToPiece(lowerCAmelCase_ )
return token
def lowerCamelCase ( self , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case = []
_snake_case = ''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(lowerCAmelCase_ ) + token
_snake_case = []
else:
current_sub_tokens.append(lowerCAmelCase_ )
out_string += self.sp_model.decode(lowerCAmelCase_ )
return out_string.strip()
def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ):
"""simple docstring"""
if not os.path.isdir(lowerCAmelCase_ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
_snake_case = os.path.join(
lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase_ , 'wb' ) as fi:
_snake_case = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase_ )
return (out_vocab_file,)
| 42 |
'''simple docstring'''
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
__lowerCAmelCase = logging.get_logger(__name__)
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase=None ) -> int:
if not conversation_id:
_snake_case = uuid.uuida()
if past_user_inputs is None:
_snake_case = []
if generated_responses is None:
_snake_case = []
_snake_case = conversation_id
_snake_case = past_user_inputs
_snake_case = generated_responses
_snake_case = text
def __eq__(self , UpperCAmelCase ) -> Dict:
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def lowercase (self , UpperCAmelCase , UpperCAmelCase = False ) -> int:
if self.new_user_input:
if overwrite:
logger.warning(
f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """
f"""with: \"{text}\".""" )
_snake_case = text
else:
logger.warning(
f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """
f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" )
else:
_snake_case = text
def lowercase (self ) -> int:
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
_snake_case = None
def lowercase (self , UpperCAmelCase ) -> Any:
self.generated_responses.append(UpperCAmelCase )
def lowercase (self ) -> List[str]:
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__(self ) -> Optional[int]:
_snake_case = f"""Conversation id: {self.uuid} \n"""
for is_user, text in self.iter_texts():
_snake_case = """user""" if is_user else """bot"""
output += f"""{name} >> {text} \n"""
return output
@add_end_docstrings(
__snake_case , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , )
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
if self.tokenizer.pad_token_id is None:
_snake_case = self.tokenizer.eos_token
def lowercase (self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Dict:
_snake_case = {}
_snake_case = {}
_snake_case = {}
if min_length_for_response is not None:
_snake_case = min_length_for_response
if minimum_tokens is not None:
_snake_case = minimum_tokens
if "max_length" in generate_kwargs:
_snake_case = generate_kwargs["""max_length"""]
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
_snake_case = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(UpperCAmelCase )
return preprocess_params, forward_params, postprocess_params
def __call__(self , UpperCAmelCase , UpperCAmelCase=0 , **UpperCAmelCase ) -> Union[str, Any]:
_snake_case = super().__call__(UpperCAmelCase , num_workers=UpperCAmelCase , **UpperCAmelCase )
if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) == 1:
return outputs[0]
return outputs
def lowercase (self , UpperCAmelCase , UpperCAmelCase=32 ) -> Dict[str, Any]:
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" )
if conversation.new_user_input is None:
raise ValueError(
f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """
"""Add user inputs with the conversation's `add_user_input` method""" )
if hasattr(self.tokenizer , """_build_conversation_input_ids""" ):
_snake_case = self.tokenizer._build_conversation_input_ids(UpperCAmelCase )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
_snake_case = self._legacy_parse_and_tokenize(UpperCAmelCase )
if self.framework == "pt":
_snake_case = torch.LongTensor([input_ids] )
elif self.framework == "tf":
_snake_case = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def lowercase (self , UpperCAmelCase , UpperCAmelCase=10 , **UpperCAmelCase ) -> Optional[int]:
_snake_case = generate_kwargs.get("""max_length""" , self.model.config.max_length )
_snake_case = model_inputs["""input_ids"""].shape[1]
if max_length - minimum_tokens < n:
logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" )
_snake_case = max_length - minimum_tokens
_snake_case = model_inputs["""input_ids"""][:, -trim:]
if "attention_mask" in model_inputs:
_snake_case = model_inputs["""attention_mask"""][:, -trim:]
_snake_case = model_inputs.pop("""conversation""" )
_snake_case = max_length
_snake_case = self.model.generate(**UpperCAmelCase , **UpperCAmelCase )
if self.model.config.is_encoder_decoder:
_snake_case = 1
else:
_snake_case = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def lowercase (self , UpperCAmelCase , UpperCAmelCase=True ) -> List[str]:
_snake_case = model_outputs["""output_ids"""]
_snake_case = self.tokenizer.decode(
output_ids[0] , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , )
_snake_case = model_outputs["""conversation"""]
conversation.mark_processed()
conversation.append_response(UpperCAmelCase )
return conversation
def lowercase (self , UpperCAmelCase ) -> Dict:
_snake_case = self.tokenizer.eos_token_id
_snake_case = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
if len(UpperCAmelCase ) > self.tokenizer.model_max_length:
_snake_case = input_ids[-self.tokenizer.model_max_length :]
return input_ids | 341 | 0 |
from datetime import datetime
import requests
from bsa import BeautifulSoup
if __name__ == "__main__":
a__ = input('''Enter image url: ''').strip()
print(f'''Downloading image from {url} ...''')
a__ = BeautifulSoup(requests.get(url).content, '''html.parser''')
# The image URL is in the content field of the first meta tag with property og:image
a__ = soup.find('''meta''', {'''property''': '''og:image'''})['''content''']
a__ = requests.get(image_url).content
a__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg'''
with open(file_name, '''wb''') as fp:
fp.write(image_data)
print(f'''Done. Image saved to disk as {file_name}.''')
| 235 |
'''simple docstring'''
from math import factorial, radians
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 18 , _SCREAMING_SNAKE_CASE = 10 ):
_snake_case = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0)
# Converting from degrees to radians
_snake_case = radians(_SCREAMING_SNAKE_CASE )
_snake_case = angle_in_radians
_snake_case = 3
_snake_case = -1
for _ in range(_SCREAMING_SNAKE_CASE ):
result += (b * (angle_in_radians**a)) / factorial(_SCREAMING_SNAKE_CASE )
_snake_case = -b # One positive term and the next will be negative and so on...
a += 2 # Increased by 2 for every term.
return round(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__import__('doctest').testmod() | 341 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE : Optional[Any] = {
"funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/config.json",
"funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json",
"funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/config.json",
"funnel-transformer/medium-base": "https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json",
"funnel-transformer/intermediate": (
"https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json"
),
"funnel-transformer/intermediate-base": (
"https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json"
),
"funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/config.json",
"funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json",
"funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json",
"funnel-transformer/xlarge-base": "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json",
}
class _lowerCamelCase( __snake_case ):
lowercase_ : str = """funnel"""
lowercase_ : List[str] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
}
def __init__( self, lowerCamelCase=3_05_22, lowerCamelCase=[4, 4, 4], lowerCamelCase=None, lowerCamelCase=2, lowerCamelCase=7_68, lowerCamelCase=12, lowerCamelCase=64, lowerCamelCase=30_72, lowerCamelCase="gelu_new", lowerCamelCase=0.1, lowerCamelCase=0.1, lowerCamelCase=0.0, lowerCamelCase=0.1, lowerCamelCase=None, lowerCamelCase=1E-9, lowerCamelCase="mean", lowerCamelCase="relative_shift", lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=True, **lowerCamelCase, ) -> int:
"""simple docstring"""
_lowercase : Optional[Any] = vocab_size
_lowercase : int = block_sizes
_lowercase : int = [1] * len(lowerCamelCase) if block_repeats is None else block_repeats
assert len(lowerCamelCase) == len(
self.block_repeats), "`block_sizes` and `block_repeats` should have the same length."
_lowercase : Tuple = num_decoder_layers
_lowercase : List[Any] = d_model
_lowercase : str = n_head
_lowercase : Any = d_head
_lowercase : Any = d_inner
_lowercase : List[Any] = hidden_act
_lowercase : Optional[Any] = hidden_dropout
_lowercase : Optional[int] = attention_dropout
_lowercase : List[str] = activation_dropout
_lowercase : Any = initializer_range
_lowercase : Optional[int] = initializer_std
_lowercase : Optional[int] = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.'''
_lowercase : Optional[int] = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.'''
_lowercase : int = attention_type
_lowercase : int = separate_cls
_lowercase : List[str] = truncate_seq
_lowercase : Union[str, Any] = pool_q_only
super().__init__(**lowerCamelCase)
@property
def UpperCamelCase ( self) -> Dict:
"""simple docstring"""
return sum(self.block_sizes)
@num_hidden_layers.setter
def UpperCamelCase ( self, lowerCamelCase) -> Tuple:
"""simple docstring"""
raise NotImplementedError(
'This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.')
@property
def UpperCamelCase ( self) -> str:
"""simple docstring"""
return len(self.block_sizes)
@num_blocks.setter
def UpperCamelCase ( self, lowerCamelCase) -> Dict:
"""simple docstring"""
raise NotImplementedError('This model does not support the setting of `num_blocks`. Please set `block_sizes`.')
| 21 |
'''simple docstring'''
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
__lowerCAmelCase = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
__lowerCAmelCase = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n'
__lowerCAmelCase = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
'''simple docstring'''
def lowercase (self ) -> Tuple:
if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ):
raise ImportWarning(
"""To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"""
"""You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[
"""https://github.com/m-popovic/chrF""",
] , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = CHRF.CHAR_ORDER , UpperCAmelCase = CHRF.WORD_ORDER , UpperCAmelCase = CHRF.BETA , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , ) -> int:
_snake_case = len(references[0] )
if any(len(UpperCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError("""Sacrebleu requires the same number of references for each prediction""" )
_snake_case = [[refs[i] for refs in references] for i in range(UpperCAmelCase )]
_snake_case = CHRF(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
_snake_case = sb_chrf.corpus_score(UpperCAmelCase , UpperCAmelCase )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
} | 341 | 0 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {}
class lowercase ( __snake_case ):
"""simple docstring"""
_a = 'llama'
_a = ['past_key_values']
def __init__( self , UpperCamelCase_=32000 , UpperCamelCase_=4096 , UpperCamelCase_=11008 , UpperCamelCase_=32 , UpperCamelCase_=32 , UpperCamelCase_=None , UpperCamelCase_="silu" , UpperCamelCase_=2048 , UpperCamelCase_=0.02 , UpperCamelCase_=1e-6 , UpperCamelCase_=True , UpperCamelCase_=0 , UpperCamelCase_=1 , UpperCamelCase_=2 , UpperCamelCase_=1 , UpperCamelCase_=False , UpperCamelCase_=None , **UpperCamelCase_ , ):
'''simple docstring'''
UpperCamelCase__ :Dict = vocab_size
UpperCamelCase__ :int = max_position_embeddings
UpperCamelCase__ :Dict = hidden_size
UpperCamelCase__ :Any = intermediate_size
UpperCamelCase__ :Tuple = num_hidden_layers
UpperCamelCase__ :Any = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
UpperCamelCase__ :Optional[int] = num_attention_heads
UpperCamelCase__ :Any = num_key_value_heads
UpperCamelCase__ :List[str] = hidden_act
UpperCamelCase__ :int = initializer_range
UpperCamelCase__ :Tuple = rms_norm_eps
UpperCamelCase__ :Union[str, Any] = pretraining_tp
UpperCamelCase__ :str = use_cache
UpperCamelCase__ :Tuple = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , tie_word_embeddings=UpperCamelCase_ , **UpperCamelCase_ , )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , UpperCamelCase_ ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
F'''got {self.rope_scaling}''' )
UpperCamelCase__ :List[Any] = self.rope_scaling.get('''type''' , UpperCamelCase_ )
UpperCamelCase__ :Optional[Any] = self.rope_scaling.get('''factor''' , UpperCamelCase_ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(UpperCamelCase_ , UpperCamelCase_ ) or rope_scaling_factor <= 1.0:
raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' ) | 97 |
'''simple docstring'''
from scipy.stats import spearmanr
import datasets
__lowerCAmelCase = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n'
__lowerCAmelCase = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n'
__lowerCAmelCase = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
'''simple docstring'''
def lowercase (self ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]:
_snake_case = spearmanr(UpperCAmelCase , UpperCAmelCase )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]} | 341 | 0 |
def lowercase_ ( _A : int ):
"""simple docstring"""
lowerCamelCase__ : Dict = [0] * len(_SCREAMING_SNAKE_CASE )
lowerCamelCase__ : Tuple = []
lowerCamelCase__ : List[str] = [1] * len(_SCREAMING_SNAKE_CASE )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
if indegree[i] == 0:
queue.append(_SCREAMING_SNAKE_CASE )
while queue:
lowerCamelCase__ : Any = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
lowerCamelCase__ : Any = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(_SCREAMING_SNAKE_CASE )
print(max(_SCREAMING_SNAKE_CASE ) )
# Adjacency list of Graph
A : List[str] = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 184 |
'''simple docstring'''
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[2, 2, 3, 2] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=3 , UpperCAmelCase=None , ) -> List[Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = image_size
_snake_case = num_channels
_snake_case = num_stages
_snake_case = hidden_sizes
_snake_case = depths
_snake_case = is_training
_snake_case = use_labels
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = type_sequence_label_size
_snake_case = initializer_range
_snake_case = out_features
_snake_case = num_labels
_snake_case = scope
_snake_case = num_stages
def lowercase (self ) -> List[Any]:
_snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case = None
if self.use_labels:
_snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_snake_case = self.get_config()
return config, pixel_values, labels
def lowercase (self ) -> Tuple:
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def lowercase (self ) -> Any:
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str:
_snake_case = UperNetForSemanticSegmentation(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
_snake_case = model(UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def lowercase (self ) -> Tuple:
_snake_case = self.prepare_config_and_inputs()
(
(
_snake_case
), (
_snake_case
), (
_snake_case
),
) = config_and_inputs
_snake_case = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
lowerCAmelCase_ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {}
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def lowercase (self ) -> Optional[Any]:
_snake_case = UperNetModelTester(self )
_snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def lowercase (self ) -> str:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase (self ) -> Union[str, Any]:
return
def lowercase (self ) -> Union[str, Any]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase )
_snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case = [*signature.parameters.keys()]
_snake_case = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def lowercase (self ) -> int:
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase )
@unittest.skip(reason="""UperNet does not use inputs_embeds""" )
def lowercase (self ) -> int:
pass
@unittest.skip(reason="""UperNet does not support input and output embeddings""" )
def lowercase (self ) -> List[str]:
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def lowercase (self ) -> Union[str, Any]:
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def lowercase (self ) -> Union[str, Any]:
pass
@require_torch_multi_gpu
@unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def lowercase (self ) -> str:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowercase (self ) -> int:
pass
def lowercase (self ) -> List[str]:
def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
_snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
_snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_snake_case = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case = _config_zero_init(UpperCAmelCase )
_snake_case = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
_snake_case = model_class(config=UpperCAmelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip(reason="""UperNet does not have tied weights""" )
def lowercase (self ) -> Optional[Any]:
pass
@slow
def lowercase (self ) -> Tuple:
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = hf_hub_download(
repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" )
_snake_case = Image.open(_SCREAMING_SNAKE_CASE ).convert("""RGB""" )
return image
@require_torch
@require_vision
@slow
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self ) -> Any:
_snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" )
_snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCAmelCase )
_snake_case = prepare_img()
_snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
_snake_case = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
def lowercase (self ) -> Any:
_snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" )
_snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCAmelCase )
_snake_case = prepare_img()
_snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
_snake_case = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) | 341 | 0 |
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=99 , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=None , )-> str:
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = decoder_seq_length
# For common tests
__UpperCamelCase = self.decoder_seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_attention_mask
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = d_model
__UpperCamelCase = d_model
__UpperCamelCase = decoder_layers
__UpperCamelCase = decoder_layers
__UpperCamelCase = decoder_ffn_dim
__UpperCamelCase = decoder_attention_heads
__UpperCamelCase = decoder_attention_heads
__UpperCamelCase = eos_token_id
__UpperCamelCase = bos_token_id
__UpperCamelCase = pad_token_id
__UpperCamelCase = decoder_start_token_id
__UpperCamelCase = use_cache
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = None
__UpperCamelCase = decoder_seq_length
__UpperCamelCase = 2
__UpperCamelCase = 1
def A__ ( self )-> Dict:
'''simple docstring'''
__UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
__UpperCamelCase = None
if self.use_attention_mask:
__UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
__UpperCamelCase = TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )-> List[str]:
'''simple docstring'''
__UpperCamelCase = True
__UpperCamelCase = TrOCRDecoder(config=SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ).eval()
__UpperCamelCase = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) )
self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) + 1 )
__UpperCamelCase = outputs['''past_key_values''']
# create hypothetical next token and extent to next_input_ids
__UpperCamelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
__UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ )['''last_hidden_state''']
__UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , past_key_values=SCREAMING_SNAKE_CASE_ )['''last_hidden_state''']
# select random slice
__UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCamelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
__UpperCamelCase = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 )
def A__ ( self )-> int:
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs
__UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( __snake_case , __snake_case , __snake_case , unittest.TestCase ):
"""simple docstring"""
_snake_case = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
_snake_case = (TrOCRForCausalLM,) if is_torch_available() else ()
_snake_case = {'text-generation': TrOCRForCausalLM} if is_torch_available() else {}
_snake_case = True
_snake_case = False
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = TrOCRStandaloneDecoderModelTester(self , is_training=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Tuple:
'''simple docstring'''
pass
def A__ ( self )-> List[str]:
'''simple docstring'''
pass
def A__ ( self )-> Tuple:
'''simple docstring'''
pass
def A__ ( self )-> List[str]:
'''simple docstring'''
self.config_tester.run_common_tests()
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
return
@unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :)
def A__ ( self )-> Dict:
'''simple docstring'''
pass
| 328 |
'''simple docstring'''
import argparse
from collections import defaultdict
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = f"""{file}_{class_name}_{test_name}"""
done_test[_id] += 1
with open(_SCREAMING_SNAKE_CASE , """r""" ) as f:
_snake_case = f.readlines()
_snake_case = f"""class {class_name}("""
_snake_case = f"""{4 * " "}def {test_name}("""
_snake_case = f"""{8 * " "}{correct_line.split()[0]}"""
_snake_case = f"""{16 * " "}{correct_line.split()[0]}"""
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = 0
_snake_case = 0
_snake_case = []
for line in lines:
if line.startswith(_SCREAMING_SNAKE_CASE ):
_snake_case = True
elif in_class and line.startswith(_SCREAMING_SNAKE_CASE ):
_snake_case = True
elif in_class and in_func and (line.startswith(_SCREAMING_SNAKE_CASE ) or line.startswith(_SCREAMING_SNAKE_CASE )):
_snake_case = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
_snake_case = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
_snake_case = True
if in_class and in_func and in_line and insert_line:
new_lines.append(f"""{spaces * " "}{correct_line}""" )
_snake_case = _snake_case = _snake_case = _snake_case = False
else:
new_lines.append(_SCREAMING_SNAKE_CASE )
with open(_SCREAMING_SNAKE_CASE , """w""" ) as f:
for line in new_lines:
f.write(_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ):
if fail is not None:
with open(_SCREAMING_SNAKE_CASE , """r""" ) as f:
_snake_case = {l.strip() for l in f.readlines()}
else:
_snake_case = None
with open(_SCREAMING_SNAKE_CASE , """r""" ) as f:
_snake_case = f.readlines()
_snake_case = defaultdict(_SCREAMING_SNAKE_CASE )
for line in correct_lines:
_snake_case, _snake_case, _snake_case, _snake_case = line.split(""";""" )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument('--correct_filename', help='filename of tests with expected result')
parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None)
__lowerCAmelCase = parser.parse_args()
main(args.correct_filename, args.fail_filename) | 341 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
UpperCAmelCase : Any = {
"configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"],
"tokenization_perceiver": ["PerceiverTokenizer"],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Any = ["PerceiverFeatureExtractor"]
UpperCAmelCase : Optional[Any] = ["PerceiverImageProcessor"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Optional[int] = [
"PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST",
"PerceiverForImageClassificationConvProcessing",
"PerceiverForImageClassificationFourier",
"PerceiverForImageClassificationLearned",
"PerceiverForMaskedLM",
"PerceiverForMultimodalAutoencoding",
"PerceiverForOpticalFlow",
"PerceiverForSequenceClassification",
"PerceiverLayer",
"PerceiverModel",
"PerceiverPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 136 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__lowerCAmelCase = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 | 0 |
"""simple docstring"""
import argparse
import json
import os
from collections import OrderedDict
import torch
from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer
from transformers.tokenization_utils_base import AddedToken
@torch.no_grad()
def lowercase ( A_ , A_ , A_ , A_ , A_ )-> Union[str, Any]:
'''simple docstring'''
with open(_SCREAMING_SNAKE_CASE ) as metadata_file:
a : Tuple = json.load(_SCREAMING_SNAKE_CASE )
a : Tuple = LukeConfig(use_entity_aware_attention=_SCREAMING_SNAKE_CASE , **metadata["model_config"] )
# Load in the weights from the checkpoint_path
a : Optional[int] = torch.load(_SCREAMING_SNAKE_CASE , map_location="cpu" )["module"]
# Load the entity vocab file
a : Union[str, Any] = load_original_entity_vocab(_SCREAMING_SNAKE_CASE )
# add an entry for [MASK2]
a : Union[str, Any] = max(entity_vocab.values() ) + 1
config.entity_vocab_size += 1
a : Optional[Any] = XLMRobertaTokenizer.from_pretrained(metadata["model_config"]["bert_model_name"] )
# Add special tokens to the token vocabulary for downstream tasks
a : Optional[int] = AddedToken("<ent>" , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE )
a : Optional[Any] = AddedToken("<ent2>" , lstrip=_SCREAMING_SNAKE_CASE , rstrip=_SCREAMING_SNAKE_CASE )
tokenizer.add_special_tokens({"additional_special_tokens": [entity_token_a, entity_token_a]} )
config.vocab_size += 2
print(F'''Saving tokenizer to {pytorch_dump_folder_path}''' )
tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE )
with open(os.path.join(_SCREAMING_SNAKE_CASE , "tokenizer_config.json" ) , "r" ) as f:
a : Optional[int] = json.load(_SCREAMING_SNAKE_CASE )
a : List[str] = "MLukeTokenizer"
with open(os.path.join(_SCREAMING_SNAKE_CASE , "tokenizer_config.json" ) , "w" ) as f:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
with open(os.path.join(_SCREAMING_SNAKE_CASE , MLukeTokenizer.vocab_files_names["entity_vocab_file"] ) , "w" ) as f:
json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
a : Tuple = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE )
# Initialize the embeddings of the special tokens
a : Tuple = tokenizer.convert_tokens_to_ids(["@"] )[0]
a : Tuple = tokenizer.convert_tokens_to_ids(["#"] )[0]
a : Tuple = state_dict["embeddings.word_embeddings.weight"]
a : Dict = word_emb[ent_init_index].unsqueeze(0 )
a : List[Any] = word_emb[enta_init_index].unsqueeze(0 )
a : List[Any] = torch.cat([word_emb, ent_emb, enta_emb] )
# add special tokens for 'entity_predictions.bias'
for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]:
a : List[str] = state_dict[bias_name]
a : Optional[Any] = decoder_bias[ent_init_index].unsqueeze(0 )
a : Union[str, Any] = decoder_bias[enta_init_index].unsqueeze(0 )
a : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] )
# Initialize the query layers of the entity-aware self-attention mechanism
for layer_index in range(config.num_hidden_layers ):
for matrix_name in ["query.weight", "query.bias"]:
a : Optional[int] = F'''encoder.layer.{layer_index}.attention.self.'''
a : List[str] = state_dict[prefix + matrix_name]
a : str = state_dict[prefix + matrix_name]
a : Any = state_dict[prefix + matrix_name]
# Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks
a : Union[str, Any] = state_dict["entity_embeddings.entity_embeddings.weight"]
a : str = entity_emb[entity_vocab["[MASK]"]].unsqueeze(0 )
a : int = torch.cat([entity_emb, entity_mask_emb] )
# add [MASK2] for 'entity_predictions.bias'
a : Tuple = state_dict["entity_predictions.bias"]
a : Dict = entity_prediction_bias[entity_vocab["[MASK]"]].unsqueeze(0 )
a : Union[str, Any] = torch.cat([entity_prediction_bias, entity_mask_bias] )
a : Tuple = LukeForMaskedLM(config=_SCREAMING_SNAKE_CASE ).eval()
state_dict.pop("entity_predictions.decoder.weight" )
state_dict.pop("lm_head.decoder.weight" )
state_dict.pop("lm_head.decoder.bias" )
a : Any = OrderedDict()
for key, value in state_dict.items():
if not (key.startswith("lm_head" ) or key.startswith("entity_predictions" )):
a : Union[str, Any] = state_dict[key]
else:
a : str = state_dict[key]
a , a : Optional[int] = model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
if set(_SCREAMING_SNAKE_CASE ) != {"luke.embeddings.position_ids"}:
raise ValueError(F'''Unexpected unexpected_keys: {unexpected_keys}''' )
if set(_SCREAMING_SNAKE_CASE ) != {
"lm_head.decoder.weight",
"lm_head.decoder.bias",
"entity_predictions.decoder.weight",
}:
raise ValueError(F'''Unexpected missing_keys: {missing_keys}''' )
model.tie_weights()
assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all()
assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all()
# Check outputs
a : str = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE , task="entity_classification" )
a : Any = "ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan)."
a : Tuple = (0, 9)
a : List[Any] = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors="pt" )
a : Any = model(**_SCREAMING_SNAKE_CASE )
# Verify word hidden states
if model_size == "large":
raise NotImplementedError
else: # base
a : List[Any] = torch.Size((1, 33, 768) )
a : Optional[int] = torch.tensor([[0.0_8_9_2, 0.0_5_9_6, -0.2_8_1_9], [0.0_1_3_4, 0.1_1_9_9, 0.0_5_7_3], [-0.0_1_6_9, 0.0_9_2_7, 0.0_6_4_4]] )
if not (outputs.last_hidden_state.shape == expected_shape):
raise ValueError(
F'''Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}''' )
if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ):
raise ValueError
# Verify entity hidden states
if model_size == "large":
raise NotImplementedError
else: # base
a : int = torch.Size((1, 1, 768) )
a : int = torch.tensor([[-0.1_4_8_2, 0.0_6_0_9, 0.0_3_2_2]] )
if not (outputs.entity_last_hidden_state.shape == expected_shape):
raise ValueError(
F'''Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is'''
F''' {expected_shape}''' )
if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ):
raise ValueError
# Verify masked word/entity prediction
a : Dict = MLukeTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE )
a : Dict = "Tokyo is the capital of <mask>."
a : List[Any] = (24, 30)
a : Optional[Any] = tokenizer(_SCREAMING_SNAKE_CASE , entity_spans=[span] , return_tensors="pt" )
a : Optional[Any] = model(**_SCREAMING_SNAKE_CASE )
a : Any = encoding["input_ids"][0].tolist()
a : Any = input_ids.index(tokenizer.convert_tokens_to_ids("<mask>" ) )
a : List[str] = outputs.logits[0][mask_position_id].argmax(dim=-1 )
assert "Japan" == tokenizer.decode(_SCREAMING_SNAKE_CASE )
a : Any = outputs.entity_logits[0][0].argmax().item()
a : Dict = [
entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id
]
assert [e for e in multilingual_predicted_entities if e.startswith("en:" )][0] == "en:Japan"
# Finally, save our PyTorch model and tokenizer
print("Saving PyTorch model to {}".format(_SCREAMING_SNAKE_CASE ) )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
def lowercase ( A_ )-> Any:
'''simple docstring'''
a : Optional[Any] = ["[MASK]", "[PAD]", "[UNK]"]
a : Optional[Any] = [json.loads(_SCREAMING_SNAKE_CASE ) for line in open(_SCREAMING_SNAKE_CASE )]
a : int = {}
for entry in data:
a : Optional[int] = entry["id"]
for entity_name, language in entry["entities"]:
if entity_name in SPECIAL_TOKENS:
a : str = entity_id
break
a : Tuple = F'''{language}:{entity_name}'''
a : str = entity_id
return new_mapping
if __name__ == "__main__":
__lowercase = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""--checkpoint_path""", type=str, help="""Path to a pytorch_model.bin file.""")
parser.add_argument(
"""--metadata_path""", default=None, type=str, help="""Path to a metadata.json file, defining the configuration."""
)
parser.add_argument(
"""--entity_vocab_path""",
default=None,
type=str,
help="""Path to an entity_vocab.tsv file, containing the entity vocabulary.""",
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to where to dump the output PyTorch model."""
)
parser.add_argument(
"""--model_size""", default="""base""", type=str, choices=["""base""", """large"""], help="""Size of the model to be converted."""
)
__lowercase = parser.parse_args()
convert_luke_checkpoint(
args.checkpoint_path,
args.metadata_path,
args.entity_vocab_path,
args.pytorch_dump_folder_path,
args.model_size,
)
| 40 |
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_vision_available():
import PIL
__lowerCAmelCase = logging.get_logger(__name__)
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = ["pixel_values"]
def __init__(self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None:
super().__init__(**UpperCAmelCase )
_snake_case = size if size is not None else {"""height""": 256, """width""": 256}
_snake_case = get_size_dict(UpperCAmelCase )
_snake_case = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
_snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" )
_snake_case = do_resize
_snake_case = size
_snake_case = resample
_snake_case = do_center_crop
_snake_case = crop_size
_snake_case = do_rescale
_snake_case = rescale_factor
_snake_case = do_normalize
_snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
_snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PIL.Image.BICUBIC , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
_snake_case = get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return resize(
UpperCAmelCase , size=(size["""height"""], size["""width"""]) , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
_snake_case = get_size_dict(UpperCAmelCase )
if "height" not in size or "width" not in size:
raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" )
return center_crop(UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> List[Any]:
return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray:
return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image:
_snake_case = do_resize if do_resize is not None else self.do_resize
_snake_case = resample if resample is not None else self.resample
_snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop
_snake_case = do_rescale if do_rescale is not None else self.do_rescale
_snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor
_snake_case = do_normalize if do_normalize is not None else self.do_normalize
_snake_case = image_mean if image_mean is not None else self.image_mean
_snake_case = image_std if image_std is not None else self.image_std
_snake_case = size if size is not None else self.size
_snake_case = get_size_dict(UpperCAmelCase )
_snake_case = crop_size if crop_size is not None else self.crop_size
_snake_case = get_size_dict(UpperCAmelCase , param_name="""crop_size""" )
_snake_case = make_list_of_images(UpperCAmelCase )
if not valid_images(UpperCAmelCase ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None or resample is None:
raise ValueError("""Size and resample must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
_snake_case = [to_numpy_array(UpperCAmelCase ) for image in images]
if do_resize:
_snake_case = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images]
if do_center_crop:
_snake_case = [self.center_crop(image=UpperCAmelCase , size=UpperCAmelCase ) for image in images]
if do_rescale:
_snake_case = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images]
if do_normalize:
_snake_case = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images]
_snake_case = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images]
_snake_case = {"""pixel_values""": images}
return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase ) | 341 | 0 |
import argparse
from typing import List
import evaluate
import numpy as np
import torch
from datasets import DatasetDict, load_dataset
# New Code #
# We'll be using StratifiedKFold for this example
from sklearn.model_selection import StratifiedKFold
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to perform Cross Validation,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowerCAmelCase_ = 16
lowerCAmelCase_ = 32
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = 16 ) -> Optional[Any]:
'''simple docstring'''
lowercase : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' )
lowercase : Tuple = DatasetDict(
{
'''train''': dataset['''train'''].select(_SCREAMING_SNAKE_CASE ),
'''validation''': dataset['''train'''].select(_SCREAMING_SNAKE_CASE ),
'''test''': dataset['''validation'''],
} )
def tokenize_function(__magic_name__ ):
# max_length=None => use the model max length (it's actually the default)
lowercase : Any = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowercase : int = datasets.map(
_SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowercase : Any = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(__magic_name__ ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowercase : Any = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowercase : List[Any] = 16
elif accelerator.mixed_precision != "no":
lowercase : Dict = 8
else:
lowercase : Optional[Any] = None
return tokenizer.pad(
_SCREAMING_SNAKE_CASE , padding='''longest''' , max_length=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' , )
# Instantiate dataloaders.
lowercase : Any = DataLoader(
tokenized_datasets['''train'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE )
lowercase : int = DataLoader(
tokenized_datasets['''validation'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE )
lowercase : Optional[int] = DataLoader(
tokenized_datasets['''test'''] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE )
return train_dataloader, eval_dataloader, test_dataloader
def snake_case( __magic_name__ , __magic_name__ ) -> int:
'''simple docstring'''
lowercase : Optional[Any] = []
# Download the dataset
lowercase : List[str] = load_dataset('''glue''' , '''mrpc''' )
# Create our splits
lowercase : Any = StratifiedKFold(n_splits=int(args.num_folds ) )
# Initialize accelerator
lowercase : Optional[int] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowercase : Any = config['''lr''']
lowercase : Tuple = int(config['''num_epochs'''] )
lowercase : Optional[int] = int(config['''seed'''] )
lowercase : str = int(config['''batch_size'''] )
lowercase : List[Any] = evaluate.load('''glue''' , '''mrpc''' )
# If the batch size is too big we use gradient accumulation
lowercase : Tuple = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
lowercase : Any = batch_size // MAX_GPU_BATCH_SIZE
lowercase : Dict = MAX_GPU_BATCH_SIZE
set_seed(_SCREAMING_SNAKE_CASE )
# New Code #
# Create our folds:
lowercase : int = kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] )
lowercase : Optional[Any] = []
# Iterate over them
for i, (train_idxs, valid_idxs) in enumerate(_SCREAMING_SNAKE_CASE ):
lowercase , lowercase , lowercase : List[str] = get_fold_dataloaders(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowercase : str = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=_SCREAMING_SNAKE_CASE )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowercase : Optional[Any] = model.to(accelerator.device )
# Instantiate optimizer
lowercase : Tuple = AdamW(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE )
# Instantiate scheduler
lowercase : Optional[Any] = get_linear_schedule_with_warmup(
optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=1_00 , num_training_steps=(len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowercase , lowercase , lowercase , lowercase , lowercase : str = accelerator.prepare(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Now we train the model
for epoch in range(_SCREAMING_SNAKE_CASE ):
model.train()
for step, batch in enumerate(_SCREAMING_SNAKE_CASE ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowercase : Tuple = model(**_SCREAMING_SNAKE_CASE )
lowercase : Union[str, Any] = outputs.loss
lowercase : int = loss / gradient_accumulation_steps
accelerator.backward(_SCREAMING_SNAKE_CASE )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(_SCREAMING_SNAKE_CASE ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase : Dict = model(**_SCREAMING_SNAKE_CASE )
lowercase : List[Any] = outputs.logits.argmax(dim=-1 )
lowercase , lowercase : str = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , )
lowercase : Optional[Any] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""" , _SCREAMING_SNAKE_CASE )
# New Code #
# We also run predictions on the test set at the very end
lowercase : str = []
for step, batch in enumerate(_SCREAMING_SNAKE_CASE ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
lowercase : Dict = model(**_SCREAMING_SNAKE_CASE )
lowercase : int = outputs.logits
lowercase , lowercase : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
fold_predictions.append(predictions.cpu() )
if i == 0:
# We need all of the test predictions
test_references.append(references.cpu() )
# Use accelerator.print to print only on the main process.
test_predictions.append(torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) )
# We now need to release all our memory and get rid of the current model, optimizer, etc
accelerator.free_memory()
# New Code #
# Finally we check the accuracy of our folded results:
lowercase : Dict = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 )
lowercase : Optional[Any] = torch.stack(_SCREAMING_SNAKE_CASE , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 )
lowercase : Optional[int] = metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE )
accelerator.print('''Average test metrics from all folds:''' , _SCREAMING_SNAKE_CASE )
def snake_case( ) -> List[str]:
'''simple docstring'''
lowercase : Any = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
# New Code #
parser.add_argument('''--num_folds''' , type=_SCREAMING_SNAKE_CASE , default=3 , help='''The number of splits to perform across the dataset''' )
lowercase : str = parser.parse_args()
lowercase : Any = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main() | 308 |
'''simple docstring'''
__lowerCAmelCase = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
# Make sure the supplied data is a bytes-like object
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = f"""a bytes-like object is required, not '{data.__class__.__name__}'"""
raise TypeError(_SCREAMING_SNAKE_CASE )
_snake_case = """""".join(bin(_SCREAMING_SNAKE_CASE )[2:].zfill(8 ) for byte in data )
_snake_case = len(_SCREAMING_SNAKE_CASE ) % 6 != 0
if padding_needed:
# The padding that will be added later
_snake_case = b"""=""" * ((6 - len(_SCREAMING_SNAKE_CASE ) % 6) // 2)
# Append binary_stream with arbitrary binary digits (0's by default) to make its
# length a multiple of 6.
binary_stream += "0" * (6 - len(_SCREAMING_SNAKE_CASE ) % 6)
else:
_snake_case = b""""""
# Encode every 6 binary digits to their corresponding Base64 character
return (
"".join(
B64_CHARSET[int(binary_stream[index : index + 6] , 2 )]
for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 6 ) ).encode()
+ padding
)
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = (
"""argument should be a bytes-like object or ASCII string, """
f"""not '{encoded_data.__class__.__name__}'"""
)
raise TypeError(_SCREAMING_SNAKE_CASE )
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
try:
_snake_case = encoded_data.decode("""utf-8""" )
except UnicodeDecodeError:
raise ValueError("""base64 encoded data should only contain ASCII characters""" )
_snake_case = encoded_data.count("""=""" )
# Check if the encoded string contains non base64 characters
if padding:
assert all(
char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found."
else:
assert all(
char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found."
# Check the padding
assert len(_SCREAMING_SNAKE_CASE ) % 4 == 0 and padding < 3, "Incorrect padding"
if padding:
# Remove padding if there is one
_snake_case = encoded_data[:-padding]
_snake_case = """""".join(
bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2]
else:
_snake_case = """""".join(
bin(B64_CHARSET.index(_SCREAMING_SNAKE_CASE ) )[2:].zfill(6 ) for char in encoded_data )
_snake_case = [
int(binary_stream[index : index + 8] , 2 )
for index in range(0 , len(_SCREAMING_SNAKE_CASE ) , 8 )
]
return bytes(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 0 |
"""simple docstring"""
import warnings
from .generation import TFGenerationMixin
class lowerCamelCase (__snake_case ):
warnings.warn(
'Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will '
'be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.' ,__snake_case ,)
| 165 |
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
if discount_rate < 0:
raise ValueError("""Discount rate cannot be negative""" )
if not cash_flows:
raise ValueError("""Cash flows list cannot be empty""" )
_snake_case = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_SCREAMING_SNAKE_CASE ) )
return round(_SCREAMING_SNAKE_CASE , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 0 |
import argparse
import collections
import numpy as np
import torch
from flax import traverse_util
from tax import checkpoints
from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: str ) -> Tuple:
'''simple docstring'''
return params[F'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :]
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: Dict="attention" ) -> Optional[int]:
'''simple docstring'''
A__ = A__ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] )
A__ = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] )
A__ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] )
A__ = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] )
A__ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] )
A__ = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] )
A__ = np.ascontiguousarray(params[F'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] )
A__ = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] )
return k, o, q, v
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: List[str]=False ) -> Any:
'''simple docstring'''
if split_mlp_wi:
A__ = params[F'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :]
A__ = params[F'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :]
A__ = (wi_a, wi_a)
else:
A__ = params[F'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :]
A__ = params[F'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :]
return wi, wo
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Union[str, Any] , SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: List[Any] , SCREAMING_SNAKE_CASE_: Optional[int] ) -> List[str]:
'''simple docstring'''
return params[F'{prefix}/{prefix}/{layer_name}/scale'][:, i]
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[Any] , *, SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: Dict = False ) -> List[str]:
'''simple docstring'''
A__ = traverse_util.flatten_dict(variables["target"] )
A__ = {"/".join(_SCREAMING_SNAKE_CASE ): v for k, v in old.items()}
# v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi
A__ = "encoder/encoder/mlp/wi_0/kernel" in old
print("Split MLP:" , _SCREAMING_SNAKE_CASE )
A__ = collections.OrderedDict()
# Shared embeddings.
A__ = old["token_embedder/embedding"]
# Encoder.
for i in range(_SCREAMING_SNAKE_CASE ):
# Block i, layer 0 (Self Attention).
A__ = tax_layer_norm_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "encoder" , "pre_attention_layer_norm" )
A__ , A__ , A__ , A__ = tax_attention_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "encoder" , "attention" )
A__ = layer_norm
A__ = k.T
A__ = o.T
A__ = q.T
A__ = v.T
# Block i, layer 1 (MLP).
A__ = tax_layer_norm_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "encoder" , "pre_mlp_layer_norm" )
A__ , A__ = tax_mlp_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "encoder" , _SCREAMING_SNAKE_CASE )
A__ = layer_norm
if split_mlp_wi:
A__ = wi[0].T
A__ = wi[1].T
else:
A__ = wi.T
A__ = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
A__ = tax_relpos_bias_lookup(
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "encoder" ).T
A__ = old["encoder/encoder_norm/scale"]
if not scalable_attention:
A__ = tax_relpos_bias_lookup(
_SCREAMING_SNAKE_CASE , 0 , "encoder" ).T
A__ = tax_relpos_bias_lookup(
_SCREAMING_SNAKE_CASE , 0 , "decoder" ).T
if not is_encoder_only:
# Decoder.
for i in range(_SCREAMING_SNAKE_CASE ):
# Block i, layer 0 (Self Attention).
A__ = tax_layer_norm_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "decoder" , "pre_self_attention_layer_norm" )
A__ , A__ , A__ , A__ = tax_attention_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "decoder" , "self_attention" )
A__ = layer_norm
A__ = k.T
A__ = o.T
A__ = q.T
A__ = v.T
# Block i, layer 1 (Cross Attention).
A__ = tax_layer_norm_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "decoder" , "pre_cross_attention_layer_norm" )
A__ , A__ , A__ , A__ = tax_attention_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "decoder" , "encoder_decoder_attention" )
A__ = layer_norm
A__ = k.T
A__ = o.T
A__ = q.T
A__ = v.T
# Block i, layer 2 (MLP).
A__ = tax_layer_norm_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "decoder" , "pre_mlp_layer_norm" )
A__ , A__ = tax_mlp_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "decoder" , _SCREAMING_SNAKE_CASE )
A__ = layer_norm
if split_mlp_wi:
A__ = wi[0].T
A__ = wi[1].T
else:
A__ = wi.T
A__ = wo.T
if scalable_attention:
# convert the rel_embedding of each layer
A__ = tax_relpos_bias_lookup(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , "decoder" ).T
A__ = old["decoder/decoder_norm/scale"]
# LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead)
if "decoder/logits_dense/kernel" in old:
A__ = old["decoder/logits_dense/kernel"].T
return new
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: Optional[Any] ) -> Any:
'''simple docstring'''
A__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] )
# Add what is missing.
if "encoder.embed_tokens.weight" not in state_dict:
A__ = state_dict["shared.weight"]
if not is_encoder_only:
if "decoder.embed_tokens.weight" not in state_dict:
A__ = state_dict["shared.weight"]
if "lm_head.weight" not in state_dict: # For old 1.0 models.
print("Using shared word embeddings as lm_head." )
A__ = state_dict["shared.weight"]
return state_dict
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Any , SCREAMING_SNAKE_CASE_: Union[str, Any] , SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: List[str] ) -> List[str]:
'''simple docstring'''
A__ = checkpoints.load_tax_checkpoint(_SCREAMING_SNAKE_CASE )
A__ = convert_tax_to_pytorch(
_SCREAMING_SNAKE_CASE , num_layers=config.num_layers , is_encoder_only=_SCREAMING_SNAKE_CASE , scalable_attention=_SCREAMING_SNAKE_CASE )
A__ = make_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
model.load_state_dict(_SCREAMING_SNAKE_CASE , strict=_SCREAMING_SNAKE_CASE )
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Tuple , SCREAMING_SNAKE_CASE_: Union[str, Any] , SCREAMING_SNAKE_CASE_: int , SCREAMING_SNAKE_CASE_: Tuple = False , SCREAMING_SNAKE_CASE_: Dict = False , ) -> Tuple:
'''simple docstring'''
A__ = MTaConfig.from_json_file(_SCREAMING_SNAKE_CASE )
print(F'Building PyTorch model from configuration: {config}' )
# Non-v1.1 checkpoints could also use T5Model, but this works for all.
# The v1.0 checkpoints will simply have an LM head that is the word embeddings.
if is_encoder_only:
A__ = UMTaEncoderModel(_SCREAMING_SNAKE_CASE )
else:
A__ = UMTaForConditionalGeneration(_SCREAMING_SNAKE_CASE )
# Load weights from tf checkpoint
load_tax_weights_in_ta(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# Save pytorch-model
print(F'Save PyTorch model to {pytorch_dump_path}' )
model.save_pretrained(_SCREAMING_SNAKE_CASE )
# Verify that we can load the checkpoint.
model.from_pretrained(_SCREAMING_SNAKE_CASE )
print("Done" )
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser(description="""Converts a native T5X checkpoint into a PyTorch checkpoint.""")
# Required parameters
parser.add_argument(
"""--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path to the T5X checkpoint."""
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.""",
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
parser.add_argument(
"""--is_encoder_only""", action="""store_true""", help="""Check if the model is encoder-decoder model""", default=False
)
parser.add_argument(
"""--scalable_attention""",
action="""store_true""",
help="""Whether the model uses scaled attention (umt5 model)""",
default=False,
)
lowerCAmelCase__ = parser.parse_args()
convert_tax_checkpoint_to_pytorch(
args.tax_checkpoint_path,
args.config_file,
args.pytorch_dump_path,
args.is_encoder_only,
args.scalable_attention,
)
| 68 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__lowerCAmelCase = {
'configuration_m2m_100': ['M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP', 'M2M100Config', 'M2M100OnnxConfig'],
'tokenization_m2m_100': ['M2M100Tokenizer'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST',
'M2M100ForConditionalGeneration',
'M2M100Model',
'M2M100PreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig
from .tokenization_mam_aaa import MaMaaaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mam_aaa import (
M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST,
MaMaaaForConditionalGeneration,
MaMaaaModel,
MaMaaaPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 | 0 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
lowercase : Any = logging.get_logger(__name__)
lowercase : Any = "▁"
lowercase : int = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"}
lowercase : Tuple = {
"vocab_file": {
"vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model",
},
"monolingual_vocab_file": {
"vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt",
},
}
lowercase : Tuple = {"vinai/bartpho-syllable": 1024}
class __UpperCAmelCase ( __snake_case ):
__lowercase = VOCAB_FILES_NAMES
__lowercase = PRETRAINED_VOCAB_FILES_MAP
__lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowercase = ["""input_ids""", """attention_mask"""]
def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_="<s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="</s>" , lowerCAmelCase_="<s>" , lowerCAmelCase_="<unk>" , lowerCAmelCase_="<pad>" , lowerCAmelCase_="<mask>" , lowerCAmelCase_ = None , **lowerCAmelCase_ , ):
"""simple docstring"""
_snake_case = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token
_snake_case = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , )
_snake_case = vocab_file
_snake_case = monolingual_vocab_file
_snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowerCAmelCase_ ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
_snake_case = {}
_snake_case = 0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(lowerCAmelCase_ ) not in self.fairseq_tokens_to_ids:
_snake_case = cnt
cnt += 1
with open(lowerCAmelCase_ , 'r' , encoding='utf-8' ) as f:
for line in f.readlines():
_snake_case = line.strip().split()[0]
_snake_case = len(self.fairseq_tokens_to_ids )
if str(lowerCAmelCase_ ) not in self.fairseq_tokens_to_ids:
_snake_case = len(self.fairseq_tokens_to_ids )
_snake_case = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ):
"""simple docstring"""
_snake_case = self.__dict__.copy()
_snake_case = None
_snake_case = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
_snake_case = {}
_snake_case = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
_snake_case = [self.cls_token_id]
_snake_case = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase_ )) + [1]
return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1]
def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ):
"""simple docstring"""
_snake_case = [self.sep_token_id]
_snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def lowerCamelCase ( self ):
"""simple docstring"""
return len(self.fairseq_ids_to_tokens )
def lowerCamelCase ( self ):
"""simple docstring"""
_snake_case = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def lowerCamelCase ( self , lowerCAmelCase_ ):
"""simple docstring"""
return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ )
def lowerCamelCase ( self , lowerCAmelCase_ ):
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def lowerCamelCase ( self , lowerCAmelCase_ ):
"""simple docstring"""
return self.fairseq_ids_to_tokens[index]
def lowerCamelCase ( self , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case = ''.join(lowerCAmelCase_ ).replace(lowerCAmelCase_ , ' ' ).strip()
return out_string
def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ):
"""simple docstring"""
if not os.path.isdir(lowerCAmelCase_ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
_snake_case = os.path.join(
lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
_snake_case = os.path.join(
lowerCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase_ , 'wb' ) as fi:
_snake_case = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase_ )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
lowerCAmelCase_ ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , lowerCAmelCase_ )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(lowerCAmelCase_ , 'w' , encoding='utf-8' ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(F'{str(lowerCAmelCase_ )} \n' )
return out_vocab_file, out_monolingual_vocab_file
| 42 |
'''simple docstring'''
import os
from typing import Dict, List, Tuple, TypeVar, Union
__lowerCAmelCase = TypeVar('T')
__lowerCAmelCase = Union[List[T], Tuple[T, ...]]
__lowerCAmelCase = Union[T, List[T], Dict[str, T]]
__lowerCAmelCase = Union[str, bytes, os.PathLike] | 341 | 0 |
import argparse
from collections import defaultdict
def __UpperCAmelCase ( __a : Optional[Any] ,__a : List[str] ,__a : Optional[Any] ,__a : Union[str, Any] ,__a : Optional[Any] ) -> Any:
"""simple docstring"""
_a : List[str] = F"""{file}_{class_name}_{test_name}"""
done_test[_id] += 1
with open(_SCREAMING_SNAKE_CASE ,'''r''' ) as f:
_a : Tuple = f.readlines()
_a : Optional[int] = F"""class {class_name}("""
_a : Optional[Any] = F"""{4 * ' '}def {test_name}("""
_a : str = F"""{8 * ' '}{correct_line.split()[0]}"""
_a : Any = F"""{16 * ' '}{correct_line.split()[0]}"""
_a : Optional[int] = False
_a : Optional[Any] = False
_a : List[Any] = False
_a : int = False
_a : Any = 0
_a : Any = 0
_a : Optional[int] = []
for line in lines:
if line.startswith(_SCREAMING_SNAKE_CASE ):
_a : Dict = True
elif in_class and line.startswith(_SCREAMING_SNAKE_CASE ):
_a : str = True
elif in_class and in_func and (line.startswith(_SCREAMING_SNAKE_CASE ) or line.startswith(_SCREAMING_SNAKE_CASE )):
_a : Dict = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
_a : Any = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
_a : int = True
if in_class and in_func and in_line and insert_line:
new_lines.append(F"""{spaces * ' '}{correct_line}""" )
_a : Union[str, Any] = False
else:
new_lines.append(_SCREAMING_SNAKE_CASE )
with open(_SCREAMING_SNAKE_CASE ,'''w''' ) as f:
for line in new_lines:
f.write(_SCREAMING_SNAKE_CASE )
def __UpperCAmelCase ( __a : int ,__a : int=None ) -> Any:
"""simple docstring"""
if fail is not None:
with open(_SCREAMING_SNAKE_CASE ,'''r''' ) as f:
_a : Optional[Any] = {l.strip() for l in f.readlines()}
else:
_a : List[str] = None
with open(_SCREAMING_SNAKE_CASE ,'''r''' ) as f:
_a : int = f.readlines()
_a : Tuple = defaultdict(_SCREAMING_SNAKE_CASE )
for line in correct_lines:
_a , _a , _a , _a : str = line.split(''';''' )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
parser.add_argument('''--correct_filename''', help='''filename of tests with expected result''')
parser.add_argument('''--fail_filename''', help='''filename of test failures''', type=str, default=None)
a__ = parser.parse_args()
main(args.correct_filename, args.fail_filename)
| 235 |
'''simple docstring'''
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ) -> int:
_snake_case = data
_snake_case = previous
_snake_case = next_node
def __str__(self ) -> str:
return f"""{self.data}"""
def lowercase (self ) -> int:
return self.data
def lowercase (self ) -> Dict:
return self.next
def lowercase (self ) -> Union[str, Any]:
return self.previous
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase ) -> List[str]:
_snake_case = head
def __iter__(self ) -> Optional[Any]:
return self
def lowercase (self ) -> str:
if not self.current:
raise StopIteration
else:
_snake_case = self.current.get_data()
_snake_case = self.current.get_next()
return value
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self ) -> Optional[int]:
_snake_case = None # First node in list
_snake_case = None # Last node in list
def __str__(self ) -> Optional[int]:
_snake_case = self.head
_snake_case = []
while current is not None:
nodes.append(current.get_data() )
_snake_case = current.get_next()
return " ".join(str(UpperCAmelCase ) for node in nodes )
def __contains__(self , UpperCAmelCase ) -> int:
_snake_case = self.head
while current:
if current.get_data() == value:
return True
_snake_case = current.get_next()
return False
def __iter__(self ) -> Union[str, Any]:
return LinkedListIterator(self.head )
def lowercase (self ) -> str:
if self.head:
return self.head.get_data()
return None
def lowercase (self ) -> List[Any]:
if self.tail:
return self.tail.get_data()
return None
def lowercase (self , UpperCAmelCase ) -> None:
if self.head is None:
_snake_case = node
_snake_case = node
else:
self.insert_before_node(self.head , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> None:
if self.head is None:
self.set_head(UpperCAmelCase )
else:
self.insert_after_node(self.tail , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> None:
_snake_case = Node(UpperCAmelCase )
if self.head is None:
self.set_head(UpperCAmelCase )
else:
self.set_tail(UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = node
_snake_case = node.previous
if node.get_previous() is None:
_snake_case = node_to_insert
else:
_snake_case = node_to_insert
_snake_case = node_to_insert
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = node
_snake_case = node.next
if node.get_next() is None:
_snake_case = node_to_insert
else:
_snake_case = node_to_insert
_snake_case = node_to_insert
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> None:
_snake_case = 1
_snake_case = Node(UpperCAmelCase )
_snake_case = self.head
while node:
if current_position == position:
self.insert_before_node(UpperCAmelCase , UpperCAmelCase )
return
current_position += 1
_snake_case = node.next
self.insert_after_node(self.tail , UpperCAmelCase )
def lowercase (self , UpperCAmelCase ) -> Node:
_snake_case = self.head
while node:
if node.get_data() == item:
return node
_snake_case = node.get_next()
raise Exception("""Node not found""" )
def lowercase (self , UpperCAmelCase ) -> Optional[int]:
if (node := self.get_node(UpperCAmelCase )) is not None:
if node == self.head:
_snake_case = self.head.get_next()
if node == self.tail:
_snake_case = self.tail.get_previous()
self.remove_node_pointers(UpperCAmelCase )
@staticmethod
def lowercase (UpperCAmelCase ) -> None:
if node.get_next():
_snake_case = node.previous
if node.get_previous():
_snake_case = node.next
_snake_case = None
_snake_case = None
def lowercase (self ) -> Dict:
return self.head is None
def __SCREAMING_SNAKE_CASE ( ):
pass
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 0 |
from argparse import ArgumentParser
from accelerate.commands.config import get_config_parser
from accelerate.commands.env import env_command_parser
from accelerate.commands.launch import launch_command_parser
from accelerate.commands.test import test_command_parser
from accelerate.commands.tpu import tpu_command_parser
def UpperCamelCase_( ) -> Dict:
_lowercase : str = ArgumentParser('Accelerate CLI tool' , usage='accelerate <command> [<args>]' , allow_abbrev=_SCREAMING_SNAKE_CASE )
_lowercase : Tuple = parser.add_subparsers(help='accelerate command helpers' )
# Register commands
get_config_parser(subparsers=_SCREAMING_SNAKE_CASE )
env_command_parser(subparsers=_SCREAMING_SNAKE_CASE )
launch_command_parser(subparsers=_SCREAMING_SNAKE_CASE )
tpu_command_parser(subparsers=_SCREAMING_SNAKE_CASE )
test_command_parser(subparsers=_SCREAMING_SNAKE_CASE )
# Let's go
_lowercase : List[str] = parser.parse_args()
if not hasattr(_SCREAMING_SNAKE_CASE , 'func' ):
parser.print_help()
exit(1 )
# Run
args.func(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
main()
| 21 |
'''simple docstring'''
from typing import Optional, Tuple, Union
import torch
from einops import rearrange, reduce
from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel
from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput
from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput
__lowerCAmelCase = 8
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ):
_snake_case = x.device
_snake_case = (x * 255).int().clamp(0 , 255 )
_snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c h w -> b c 1 h w""" )
_snake_case = ((x & mask) != 0).float()
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b c d h w -> b (c d) h w""" )
_snake_case = bits * 2 - 1
return bits
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=BITS ):
_snake_case = x.device
_snake_case = (x > 0).int()
_snake_case = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_SCREAMING_SNAKE_CASE , dtype=torch.intaa )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """d -> d 1 1""" )
_snake_case = rearrange(_SCREAMING_SNAKE_CASE , """b (c d) h w -> b c d h w""" , d=8 )
_snake_case = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" )
return (dec / 255).clamp(0.0 , 1.0 )
def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ):
if self.num_inference_steps is None:
raise ValueError(
"""Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" )
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
# Ideally, read DDIM paper in-detail understanding
# Notation (<variable name> -> <name in paper>
# - pred_noise_t -> e_theta(x_t, t)
# - pred_original_sample -> f_theta(x_t, t) or x_0
# - std_dev_t -> sigma_t
# - eta -> η
# - pred_sample_direction -> "direction pointing to x_t"
# - pred_prev_sample -> "x_t-1"
# 1. get previous step value (=t-1)
_snake_case = timestep - self.config.num_train_timesteps // self.num_inference_steps
# 2. compute alphas, betas
_snake_case = self.alphas_cumprod[timestep]
_snake_case = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
_snake_case = 1 - alpha_prod_t
# 3. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
# 4. Clip "predicted x_0"
_snake_case = self.bit_scale
if self.config.clip_sample:
_snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE )
# 5. compute variance: "sigma_t(η)" -> see formula (16)
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
_snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
_snake_case = eta * variance ** 0.5
if use_clipped_model_output:
# the model_output is always re-derived from the clipped x_0 in Glide
_snake_case = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
_snake_case = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction
if eta > 0:
# randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072
_snake_case = model_output.device if torch.is_tensor(_SCREAMING_SNAKE_CASE ) else """cpu"""
_snake_case = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE )
_snake_case = self._get_variance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ** 0.5 * eta * noise
_snake_case = prev_sample + variance
if not return_dict:
return (prev_sample,)
return DDIMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="epsilon" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE = True , ):
_snake_case = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
_snake_case, _snake_case = torch.split(_SCREAMING_SNAKE_CASE , sample.shape[1] , dim=1 )
else:
_snake_case = None
# 1. compute alphas, betas
_snake_case = self.alphas_cumprod[t]
_snake_case = self.alphas_cumprod[t - 1] if t > 0 else self.one
_snake_case = 1 - alpha_prod_t
_snake_case = 1 - alpha_prod_t_prev
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if prediction_type == "epsilon":
_snake_case = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif prediction_type == "sample":
_snake_case = model_output
else:
raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" )
# 3. Clip "predicted x_0"
_snake_case = self.bit_scale
if self.config.clip_sample:
_snake_case = torch.clamp(_SCREAMING_SNAKE_CASE , -scale , _SCREAMING_SNAKE_CASE )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_snake_case = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t
_snake_case = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
_snake_case = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
_snake_case = 0
if t > 0:
_snake_case = torch.randn(
model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_SCREAMING_SNAKE_CASE ).to(model_output.device )
_snake_case = (self._get_variance(_SCREAMING_SNAKE_CASE , predicted_variance=_SCREAMING_SNAKE_CASE ) ** 0.5) * noise
_snake_case = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return DDPMSchedulerOutput(prev_sample=_SCREAMING_SNAKE_CASE , pred_original_sample=_SCREAMING_SNAKE_CASE )
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 1.0 , ) -> Tuple:
super().__init__()
_snake_case = bit_scale
_snake_case = (
ddim_bit_scheduler_step if isinstance(UpperCAmelCase , UpperCAmelCase ) else ddpm_bit_scheduler_step
)
self.register_modules(unet=UpperCAmelCase , scheduler=UpperCAmelCase )
@torch.no_grad()
def __call__(self , UpperCAmelCase = 256 , UpperCAmelCase = 256 , UpperCAmelCase = 50 , UpperCAmelCase = None , UpperCAmelCase = 1 , UpperCAmelCase = "pil" , UpperCAmelCase = True , **UpperCAmelCase , ) -> Union[Tuple, ImagePipelineOutput]:
_snake_case = torch.randn(
(batch_size, self.unet.config.in_channels, height, width) , generator=UpperCAmelCase , )
_snake_case = decimal_to_bits(UpperCAmelCase ) * self.bit_scale
_snake_case = latents.to(self.device )
self.scheduler.set_timesteps(UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# predict the noise residual
_snake_case = self.unet(UpperCAmelCase , UpperCAmelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
_snake_case = self.scheduler.step(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ).prev_sample
_snake_case = bits_to_decimal(UpperCAmelCase )
if output_type == "pil":
_snake_case = self.numpy_to_pil(UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=UpperCAmelCase ) | 341 | 0 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaInpaintPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class lowercase ( __snake_case , unittest.TestCase ):
"""simple docstring"""
_a = KandinskyVaaInpaintPipeline
_a = ['image_embeds', 'negative_image_embeds', 'image', 'mask_image']
_a = [
'image_embeds',
'negative_image_embeds',
'image',
'mask_image',
]
_a = [
'generator',
'height',
'width',
'latents',
'guidance_scale',
'num_inference_steps',
'return_dict',
'guidance_scale',
'num_images_per_prompt',
'output_type',
'return_dict',
]
_a = False
@property
def lowerCAmelCase__ ( self ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase__ ( self ):
'''simple docstring'''
return 32
@property
def lowerCAmelCase__ ( self ):
'''simple docstring'''
return self.time_input_dim
@property
def lowerCAmelCase__ ( self ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def lowerCAmelCase__ ( self ):
'''simple docstring'''
return 100
@property
def lowerCAmelCase__ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
UpperCamelCase__ :List[str] = {
'''in_channels''': 9,
# Out channels is double in channels because predicts mean and variance
'''out_channels''': 8,
'''addition_embed_type''': '''image''',
'''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''),
'''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''),
'''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''',
'''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2),
'''layers_per_block''': 1,
'''encoder_hid_dim''': self.text_embedder_hidden_size,
'''encoder_hid_dim_type''': '''image_proj''',
'''cross_attention_dim''': self.cross_attention_dim,
'''attention_head_dim''': 4,
'''resnet_time_scale_shift''': '''scale_shift''',
'''class_embed_type''': None,
}
UpperCamelCase__ :Union[str, Any] = UNetaDConditionModel(**UpperCamelCase_ )
return model
@property
def lowerCAmelCase__ ( self ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def lowerCAmelCase__ ( self ):
'''simple docstring'''
torch.manual_seed(0 )
UpperCamelCase__ :List[str] = VQModel(**self.dummy_movq_kwargs )
return model
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :Optional[Any] = self.dummy_unet
UpperCamelCase__ :Any = self.dummy_movq
UpperCamelCase__ :Optional[int] = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.00085 , beta_end=0.012 , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=UpperCamelCase_ , )
UpperCamelCase__ :Tuple = {
'''unet''': unet,
'''scheduler''': scheduler,
'''movq''': movq,
}
return components
def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=0 ):
'''simple docstring'''
UpperCamelCase__ :List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
UpperCamelCase__ :str = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCamelCase_ )
# create init_image
UpperCamelCase__ :Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ )
UpperCamelCase__ :int = image.cpu().permute(0 , 2 , 3 , 1 )[0]
UpperCamelCase__ :Optional[int] = Image.fromarray(np.uinta(UpperCamelCase_ ) ).convert('''RGB''' ).resize((256, 256) )
# create mask
UpperCamelCase__ :Dict = np.ones((64, 64) , dtype=np.floataa )
UpperCamelCase__ :Tuple = 0
if str(UpperCamelCase_ ).startswith('''mps''' ):
UpperCamelCase__ :str = torch.manual_seed(UpperCamelCase_ )
else:
UpperCamelCase__ :List[str] = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ )
UpperCamelCase__ :Optional[int] = {
'''image''': init_image,
'''mask_image''': mask,
'''image_embeds''': image_embeds,
'''negative_image_embeds''': negative_image_embeds,
'''generator''': generator,
'''height''': 64,
'''width''': 64,
'''num_inference_steps''': 2,
'''guidance_scale''': 4.0,
'''output_type''': '''np''',
}
return inputs
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :Optional[Any] = '''cpu'''
UpperCamelCase__ :Any = self.get_dummy_components()
UpperCamelCase__ :List[Any] = self.pipeline_class(**UpperCamelCase_ )
UpperCamelCase__ :Dict = pipe.to(UpperCamelCase_ )
pipe.set_progress_bar_config(disable=UpperCamelCase_ )
UpperCamelCase__ :int = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) )
UpperCamelCase__ :Tuple = output.images
UpperCamelCase__ :Optional[int] = pipe(
**self.get_dummy_inputs(UpperCamelCase_ ) , return_dict=UpperCamelCase_ , )[0]
UpperCamelCase__ :List[Any] = image[0, -3:, -3:, -1]
UpperCamelCase__ :Optional[int] = image_from_tuple[0, -3:, -3:, -1]
print(F'''image.shape {image.shape}''' )
assert image.shape == (1, 64, 64, 3)
UpperCamelCase__ :Tuple = np.array(
[0.50775903, 0.49527195, 0.48824543, 0.50192237, 0.48644906, 0.49373814, 0.4780598, 0.47234827, 0.48327848] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
def lowerCAmelCase__ ( self ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3e-3 )
@slow
@require_torch_gpu
class lowercase ( unittest.TestCase ):
"""simple docstring"""
def lowerCAmelCase__ ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def lowerCAmelCase__ ( self ):
'''simple docstring'''
UpperCamelCase__ :Tuple = load_numpy(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy''' )
UpperCamelCase__ :Union[str, Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' )
UpperCamelCase__ :Optional[Any] = np.ones((768, 768) , dtype=np.floataa )
UpperCamelCase__ :List[str] = 0
UpperCamelCase__ :List[str] = '''a hat'''
UpperCamelCase__ :Union[str, Any] = KandinskyVaaPriorPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa )
pipe_prior.to(UpperCamelCase_ )
UpperCamelCase__ :int = KandinskyVaaInpaintPipeline.from_pretrained(
'''kandinsky-community/kandinsky-2-2-decoder-inpaint''' , torch_dtype=torch.floataa )
UpperCamelCase__ :int = pipeline.to(UpperCamelCase_ )
pipeline.set_progress_bar_config(disable=UpperCamelCase_ )
UpperCamelCase__ :Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 )
UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = pipe_prior(
UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple()
UpperCamelCase__ :int = pipeline(
image=UpperCamelCase_ , mask_image=UpperCamelCase_ , image_embeds=UpperCamelCase_ , negative_image_embeds=UpperCamelCase_ , generator=UpperCamelCase_ , num_inference_steps=100 , height=768 , width=768 , output_type='''np''' , )
UpperCamelCase__ :List[str] = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ ) | 97 |
'''simple docstring'''
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE = 10**9 ):
_snake_case = 1
_snake_case = 2
_snake_case = 0
_snake_case = 0
_snake_case = 0
while perimeter <= max_perimeter:
perimeters_sum += perimeter
prev_value += 2 * value
value += prev_value
_snake_case = 2 * value + 2 if i % 2 == 0 else 2 * value - 2
i += 1
return perimeters_sum
if __name__ == "__main__":
print(f'''{solution() = }''') | 341 | 0 |
import os
from datetime import datetime as dt
from github import Github
A : Dict = [
"good first issue",
"good second issue",
"good difficult issue",
"enhancement",
"new pipeline/model",
"new scheduler",
"wip",
]
def lowercase_ ( ):
"""simple docstring"""
lowerCamelCase__ : List[Any] = Github(os.environ["GITHUB_TOKEN"] )
lowerCamelCase__ : int = g.get_repo("huggingface/diffusers" )
lowerCamelCase__ : str = repo.get_issues(state="open" )
for issue in open_issues:
lowerCamelCase__ : str = sorted(issue.get_comments() , key=lambda _A : i.created_at , reverse=_SCREAMING_SNAKE_CASE )
lowerCamelCase__ : Dict = comments[0] if len(_SCREAMING_SNAKE_CASE ) > 0 else None
if (
last_comment is not None
and last_comment.user.login == "github-actions[bot]"
and (dt.utcnow() - issue.updated_at).days > 7
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Closes the issue after 7 days of inactivity since the Stalebot notification.
issue.edit(state="closed" )
elif (
"stale" in issue.get_labels()
and last_comment is not None
and last_comment.user.login != "github-actions[bot]"
):
# Opens the issue if someone other than Stalebot commented.
issue.edit(state="open" )
issue.remove_from_labels("stale" )
elif (
(dt.utcnow() - issue.updated_at).days > 23
and (dt.utcnow() - issue.created_at).days >= 30
and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() )
):
# Post a Stalebot notification after 23 days of inactivity.
issue.create_comment(
"This issue has been automatically marked as stale because it has not had "
"recent activity. If you think this still needs to be addressed "
"please comment on this thread.\n\nPlease note that issues that do not follow the "
"[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) "
"are likely to be ignored." )
issue.add_to_labels("stale" )
if __name__ == "__main__":
main()
| 184 |
'''simple docstring'''
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType
__lowerCAmelCase = logging.get_logger(__name__)
__lowerCAmelCase = {
'microsoft/deberta-v2-xlarge': 'https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json',
'microsoft/deberta-v2-xxlarge': 'https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json',
'microsoft/deberta-v2-xlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json'
),
'microsoft/deberta-v2-xxlarge-mnli': (
'https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json'
),
}
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = "deberta-v2"
def __init__(self , UpperCAmelCase=128100 , UpperCAmelCase=1536 , UpperCAmelCase=24 , UpperCAmelCase=24 , UpperCAmelCase=6144 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-7 , UpperCAmelCase=False , UpperCAmelCase=-1 , UpperCAmelCase=0 , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=0 , UpperCAmelCase="gelu" , **UpperCAmelCase , ) -> List[str]:
super().__init__(**UpperCAmelCase )
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = max_position_embeddings
_snake_case = type_vocab_size
_snake_case = initializer_range
_snake_case = relative_attention
_snake_case = max_relative_positions
_snake_case = pad_token_id
_snake_case = position_biased_input
# Backwards compatibility
if type(UpperCAmelCase ) == str:
_snake_case = [x.strip() for x in pos_att_type.lower().split("""|""" )]
_snake_case = pos_att_type
_snake_case = vocab_size
_snake_case = layer_norm_eps
_snake_case = kwargs.get("""pooler_hidden_size""" , UpperCAmelCase )
_snake_case = pooler_dropout
_snake_case = pooler_hidden_act
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
@property
def lowercase (self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_snake_case = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_snake_case = {0: """batch""", 1: """sequence"""}
if self._config.type_vocab_size > 0:
return OrderedDict(
[("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis)] )
else:
return OrderedDict([("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis)] )
@property
def lowercase (self ) -> int:
return 12
def lowercase (self , UpperCAmelCase , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = -1 , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = 3 , UpperCAmelCase = 40 , UpperCAmelCase = 40 , UpperCAmelCase = None , ) -> Mapping[str, Any]:
_snake_case = super().generate_dummy_inputs(preprocessor=UpperCAmelCase , framework=UpperCAmelCase )
if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs:
del dummy_inputs["token_type_ids"]
return dummy_inputs | 341 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase__ : List[str] = logging.get_logger(__name__)
lowercase__ : Optional[Any] = {
"EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json",
# See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox
}
class SCREAMING_SNAKE_CASE__ ( __snake_case ):
"""simple docstring"""
_snake_case = 'gpt_neox'
def __init__( self , SCREAMING_SNAKE_CASE_=50432 , SCREAMING_SNAKE_CASE_=6144 , SCREAMING_SNAKE_CASE_=44 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=24576 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.2_5 , SCREAMING_SNAKE_CASE_=10000 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=2048 , SCREAMING_SNAKE_CASE_=0.0_2 , SCREAMING_SNAKE_CASE_=1E-5 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ , )-> Optional[Any]:
'''simple docstring'''
super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = vocab_size
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = rotary_pct
__UpperCamelCase = rotary_emb_base
__UpperCamelCase = attention_dropout
__UpperCamelCase = hidden_dropout
__UpperCamelCase = classifier_dropout
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = use_cache
__UpperCamelCase = tie_word_embeddings
__UpperCamelCase = use_parallel_residual
__UpperCamelCase = rope_scaling
self._rope_scaling_validation()
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
'''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' )
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE_ ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
F"got {self.rope_scaling}" )
__UpperCamelCase = self.rope_scaling.get('''type''' , SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.rope_scaling.get('''factor''' , SCREAMING_SNAKE_CASE_ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" )
if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or rope_scaling_factor <= 1.0:
raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
| 328 |
'''simple docstring'''
__lowerCAmelCase = [
(1_000, 'M'),
(900, 'CM'),
(500, 'D'),
(400, 'CD'),
(100, 'C'),
(90, 'XC'),
(50, 'L'),
(40, 'XL'),
(10, 'X'),
(9, 'IX'),
(5, 'V'),
(4, 'IV'),
(1, 'I'),
]
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000}
_snake_case = 0
_snake_case = 0
while place < len(_SCREAMING_SNAKE_CASE ):
if (place + 1 < len(_SCREAMING_SNAKE_CASE )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
_snake_case = []
for arabic, roman in ROMAN:
((_snake_case), (_snake_case)) = divmod(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
result.append(roman * factor )
if number == 0:
break
return "".join(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
import doctest
doctest.testmod() | 341 | 0 |
"""simple docstring"""
from __future__ import annotations
import unittest
import numpy as np
from transformers import BlipTextConfig
from transformers.testing_utils import require_tf, slow
from transformers.utils import is_tf_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
if is_tf_available():
import tensorflow as tf
from transformers import TFBlipTextModel
from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int]=1_2 , lowerCAmelCase_ : Optional[Any]=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : List[Any]=9_9 , lowerCAmelCase_ : Dict=3_2 , lowerCAmelCase_ : Optional[Any]=3_2 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Dict=4 , lowerCAmelCase_ : Any=3_7 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Tuple=5_1_2 , lowerCAmelCase_ : Tuple=0.02 , lowerCAmelCase_ : Optional[Any]=0 , lowerCAmelCase_ : List[str]=None , ):
"""simple docstring"""
lowercase_ = parent
lowercase_ = batch_size
lowercase_ = seq_length
lowercase_ = is_training
lowercase_ = use_input_mask
lowercase_ = use_labels
lowercase_ = vocab_size
lowercase_ = hidden_size
lowercase_ = projection_dim
lowercase_ = num_hidden_layers
lowercase_ = num_attention_heads
lowercase_ = intermediate_size
lowercase_ = dropout
lowercase_ = attention_dropout
lowercase_ = max_position_embeddings
lowercase_ = initializer_range
lowercase_ = scope
lowercase_ = bos_token_id
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase_ = None
if self.use_input_mask:
lowercase_ = random_attention_mask([self.batch_size, self.seq_length])
if input_mask is not None:
lowercase_ = input_mask.numpy()
lowercase_ , lowercase_ = input_mask.shape
lowercase_ = np.random.randint(1 , seq_length - 1 , size=(batch_size,))
for batch_idx, start_index in enumerate(lowerCAmelCase_):
lowercase_ = 1
lowercase_ = 0
lowercase_ = self.get_config()
return config, input_ids, tf.convert_to_tensor(lowerCAmelCase_)
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
return BlipTextConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , )
def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any]):
"""simple docstring"""
lowercase_ = TFBlipTextModel(config=lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , training=lowerCAmelCase_)
lowercase_ = model(lowerCAmelCase_ , training=lowerCAmelCase_)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size))
def _UpperCAmelCase ( self : List[str]):
"""simple docstring"""
lowercase_ = self.prepare_config_and_inputs()
lowercase_ , lowercase_ , lowercase_ = config_and_inputs
lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE__ ( __snake_case , unittest.TestCase ):
lowercase__ = (TFBlipTextModel,) if is_tf_available() else ()
lowercase__ = False
lowercase__ = False
lowercase__ = False
def _UpperCAmelCase ( self : str):
"""simple docstring"""
lowercase_ = BlipTextModelTester(self)
lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_ , hidden_size=3_7)
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
lowercase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase_)
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
pass
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
pass
@unittest.skip(reason="""Blip does not use inputs_embeds""")
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
pass
@unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""")
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
pass
@unittest.skip(reason="""BlipTextModel has no base class and is not available in MODEL_MAPPING""")
def _UpperCAmelCase ( self : Optional[int]):
"""simple docstring"""
pass
@slow
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ = TFBlipTextModel.from_pretrained(lowerCAmelCase_)
self.assertIsNotNone(lowerCAmelCase_)
def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Tuple=True):
"""simple docstring"""
super().test_pt_tf_model_equivalence(allow_missing_keys=lowerCAmelCase_)
| 136 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tokenizers_available,
is_torch_available,
is_vision_available,
)
__lowerCAmelCase = {
'configuration_perceiver': ['PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PerceiverConfig', 'PerceiverOnnxConfig'],
'tokenization_perceiver': ['PerceiverTokenizer'],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = ['PerceiverFeatureExtractor']
__lowerCAmelCase = ['PerceiverImageProcessor']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST',
'PerceiverForImageClassificationConvProcessing',
'PerceiverForImageClassificationFourier',
'PerceiverForImageClassificationLearned',
'PerceiverForMaskedLM',
'PerceiverForMultimodalAutoencoding',
'PerceiverForOpticalFlow',
'PerceiverForSequenceClassification',
'PerceiverLayer',
'PerceiverModel',
'PerceiverPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig
from .tokenization_perceiver import PerceiverTokenizer
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_perceiver import PerceiverFeatureExtractor
from .image_processing_perceiver import PerceiverImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_perceiver import (
PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST,
PerceiverForImageClassificationConvProcessing,
PerceiverForImageClassificationFourier,
PerceiverForImageClassificationLearned,
PerceiverForMaskedLM,
PerceiverForMultimodalAutoencoding,
PerceiverForOpticalFlow,
PerceiverForSequenceClassification,
PerceiverLayer,
PerceiverModel,
PerceiverPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 | 0 |
"""simple docstring"""
import math
import sys
def lowercase ( A_ )-> str:
'''simple docstring'''
a : Optional[Any] = ""
try:
with open(_SCREAMING_SNAKE_CASE , "rb" ) as binary_file:
a : Tuple = binary_file.read()
for dat in data:
a : int = F'''{dat:08b}'''
result += curr_byte
return result
except OSError:
print("File not accessible" )
sys.exit()
def lowercase ( A_ )-> Tuple:
'''simple docstring'''
a : List[str] = {"0": "0", "1": "1"}
a , a : Any = "", ""
a : List[Any] = len(_SCREAMING_SNAKE_CASE )
for i in range(len(_SCREAMING_SNAKE_CASE ) ):
curr_string += data_bits[i]
if curr_string not in lexicon:
continue
a : Any = lexicon[curr_string]
result += last_match_id
a : List[str] = last_match_id + "0"
if math.loga(_SCREAMING_SNAKE_CASE ).is_integer():
a : int = {}
for curr_key in list(_SCREAMING_SNAKE_CASE ):
a : Optional[Any] = lexicon.pop(_SCREAMING_SNAKE_CASE )
a : Union[str, Any] = new_lex
a : Union[str, Any] = last_match_id + "1"
index += 1
a : Any = ""
return result
def lowercase ( A_ , A_ )-> Optional[Any]:
'''simple docstring'''
a : Optional[int] = 8
try:
with open(_SCREAMING_SNAKE_CASE , "wb" ) as opened_file:
a : List[Any] = [
to_write[i : i + byte_length]
for i in range(0 , len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
]
if len(result_byte_array[-1] ) % byte_length == 0:
result_byte_array.append("10000000" )
else:
result_byte_array[-1] += "1" + "0" * (
byte_length - len(result_byte_array[-1] ) - 1
)
for elem in result_byte_array[:-1]:
opened_file.write(int(_SCREAMING_SNAKE_CASE , 2 ).to_bytes(1 , byteorder="big" ) )
except OSError:
print("File not accessible" )
sys.exit()
def lowercase ( A_ )-> Tuple:
'''simple docstring'''
a : Union[str, Any] = 0
for letter in data_bits:
if letter == "1":
break
counter += 1
a : Any = data_bits[counter:]
a : Optional[Any] = data_bits[counter + 1 :]
return data_bits
def lowercase ( A_ , A_ )-> Union[str, Any]:
'''simple docstring'''
a : Tuple = read_file_binary(_SCREAMING_SNAKE_CASE )
a : Union[str, Any] = remove_prefix(_SCREAMING_SNAKE_CASE )
a : Optional[Any] = decompress_data(_SCREAMING_SNAKE_CASE )
write_file_binary(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
compress(sys.argv[1], sys.argv[2])
| 40 |
'''simple docstring'''
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotConfig, is_flax_available
from transformers.testing_utils import jax_device, require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
__lowerCAmelCase = 'platform'
import jax
import jax.numpy as jnp
from transformers import BlenderbotTokenizer
from transformers.models.blenderbot.modeling_flax_blenderbot import (
FlaxBlenderbotForConditionalGeneration,
FlaxBlenderbotModel,
shift_tokens_right,
)
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ):
if attention_mask is None:
_snake_case = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
_snake_case = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
_snake_case = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_snake_case = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=99 , UpperCAmelCase=16 , UpperCAmelCase=2 , UpperCAmelCase=4 , UpperCAmelCase=4 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=32 , UpperCAmelCase=2 , UpperCAmelCase=1 , UpperCAmelCase=0 , UpperCAmelCase=0.02 , ) -> Union[str, Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = seq_length
_snake_case = is_training
_snake_case = use_labels
_snake_case = vocab_size
_snake_case = hidden_size
_snake_case = num_hidden_layers
_snake_case = num_attention_heads
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = hidden_dropout_prob
_snake_case = attention_probs_dropout_prob
_snake_case = max_position_embeddings
_snake_case = eos_token_id
_snake_case = pad_token_id
_snake_case = bos_token_id
_snake_case = initializer_range
def lowercase (self ) -> str:
_snake_case = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size )
_snake_case = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 )
_snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 )
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase , )
_snake_case = prepare_blenderbot_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
return config, inputs_dict
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.prepare_config_and_inputs()
return config, inputs_dict
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict:
_snake_case = 20
_snake_case = model_class_name(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] )
_snake_case, _snake_case = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase )
_snake_case = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" )
_snake_case = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_snake_case = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_snake_case = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase , )
_snake_case = model.decode(UpperCAmelCase , UpperCAmelCase )
_snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]:
_snake_case = 20
_snake_case = model_class_name(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] )
_snake_case, _snake_case = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_snake_case = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ),
] , axis=-1 , )
_snake_case = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase , UpperCAmelCase )
_snake_case = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_snake_case = model.decode(
decoder_input_ids[:, :-1] , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , past_key_values=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" )
_snake_case = model.decode(
decoder_input_ids[:, -1:] , UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase , decoder_position_ids=UpperCAmelCase , )
_snake_case = model.decode(UpperCAmelCase , UpperCAmelCase , decoder_attention_mask=UpperCAmelCase )
_snake_case = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" )
@require_flax
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = 99
def lowercase (self ) -> Any:
_snake_case = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
_snake_case = input_ids.shape[0]
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def lowercase (self ) -> Optional[Any]:
_snake_case, _snake_case, _snake_case = self._get_config_and_data()
_snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase )
_snake_case = lm_model(input_ids=UpperCAmelCase )
_snake_case = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase )
def lowercase (self ) -> int:
_snake_case = BlenderbotConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
_snake_case = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase )
_snake_case = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa )
_snake_case = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa )
_snake_case = lm_model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase )
_snake_case = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , UpperCAmelCase )
def lowercase (self ) -> Tuple:
_snake_case = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa )
_snake_case = shift_tokens_right(UpperCAmelCase , 1 , 2 )
_snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum()
_snake_case = np.equal(UpperCAmelCase , 1 ).astype(np.floataa ).sum()
self.assertEqual(shifted.shape , input_ids.shape )
self.assertEqual(UpperCAmelCase , n_pad_before - 1 )
self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() )
@require_flax
class _lowerCAmelCase ( __snake_case , unittest.TestCase , __snake_case ):
'''simple docstring'''
lowerCAmelCase_ = True
lowerCAmelCase_ = (
(
FlaxBlenderbotModel,
FlaxBlenderbotForConditionalGeneration,
)
if is_flax_available()
else ()
)
lowerCAmelCase_ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else ()
def lowercase (self ) -> Any:
_snake_case = FlaxBlenderbotModelTester(self )
def lowercase (self ) -> str:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_snake_case = self._prepare_for_class(UpperCAmelCase , UpperCAmelCase )
_snake_case = model_class(UpperCAmelCase )
@jax.jit
def encode_jitted(UpperCAmelCase , UpperCAmelCase=None , **UpperCAmelCase ):
return model.encode(input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase )
with self.subTest("""JIT Enabled""" ):
_snake_case = encode_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_snake_case = encode_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def lowercase (self ) -> str:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
_snake_case = model_class(UpperCAmelCase )
_snake_case = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] )
_snake_case = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
return model.decode(
decoder_input_ids=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , encoder_outputs=UpperCAmelCase , )
with self.subTest("""JIT Enabled""" ):
_snake_case = decode_jitted(**UpperCAmelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
_snake_case = decode_jitted(**UpperCAmelCase ).to_tuple()
self.assertEqual(len(UpperCAmelCase ) , len(UpperCAmelCase ) )
for jitted_output, output in zip(UpperCAmelCase , UpperCAmelCase ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def lowercase (self ) -> Any:
for model_class_name in self.all_model_classes:
_snake_case = model_class_name.from_pretrained("""facebook/blenderbot-400M-distill""" )
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
_snake_case = np.ones((1, 1) ) * model.config.eos_token_id
_snake_case = model(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@unittest.skipUnless(jax_device != """cpu""" , """3B test too slow on CPU.""" )
@slow
def lowercase (self ) -> Dict:
_snake_case = {"""num_beams""": 1, """early_stopping""": True, """min_length""": 15, """max_length""": 25}
_snake_case = {"""skip_special_tokens""": True, """clean_up_tokenization_spaces""": True}
_snake_case = FlaxBlenderbotForConditionalGeneration.from_pretrained("""facebook/blenderbot-3B""" , from_pt=UpperCAmelCase )
_snake_case = BlenderbotTokenizer.from_pretrained("""facebook/blenderbot-3B""" )
_snake_case = ["""Sam"""]
_snake_case = tokenizer(UpperCAmelCase , return_tensors="""jax""" )
_snake_case = model.generate(**UpperCAmelCase , **UpperCAmelCase )
_snake_case = """Sam is a great name. It means \"sun\" in Gaelic."""
_snake_case = tokenizer.batch_decode(UpperCAmelCase , **UpperCAmelCase )
assert generated_txt[0].strip() == tgt_text | 341 | 0 |
import random
import timeit
from functools import wraps
from typing import Callable, Optional
from ..configuration_utils import PretrainedConfig
from ..models.auto.modeling_tf_auto import TF_MODEL_MAPPING, TF_MODEL_WITH_LM_HEAD_MAPPING
from ..utils import is_pyanvml_available, is_tf_available, logging
from .benchmark_utils import (
Benchmark,
Memory,
MemorySummary,
measure_peak_memory_cpu,
start_memory_tracing,
stop_memory_tracing,
)
if is_tf_available():
import tensorflow as tf
from tensorflow.python.framework.errors_impl import ResourceExhaustedError
from .benchmark_args_tf import TensorFlowBenchmarkArguments
if is_pyanvml_available():
import pyanvml.pyanvml as nvml
lowerCAmelCase_ = logging.get_logger(__name__)
def snake_case( __magic_name__ , __magic_name__ ) -> Any:
'''simple docstring'''
def run_func(__magic_name__ ):
@wraps(_SCREAMING_SNAKE_CASE )
def run_in_eager_mode(*__magic_name__ , **__magic_name__ ):
return func(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
@wraps(_SCREAMING_SNAKE_CASE )
@tf.function(experimental_compile=_SCREAMING_SNAKE_CASE )
def run_in_graph_mode(*__magic_name__ , **__magic_name__ ):
return func(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
if do_eager_mode is True:
if use_xla is not False:
raise ValueError(
'''Cannot run model in XLA, if `args.eager_mode` is set to `True`. Please set `args.eager_mode=False`.''' )
return run_in_eager_mode
else:
return run_in_graph_mode
return run_func
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> str:
'''simple docstring'''
lowercase : Optional[int] = random.Random()
lowercase : Optional[Any] = [rng.randint(0 , vocab_size - 1 ) for i in range(batch_size * sequence_length )]
return tf.constant(_SCREAMING_SNAKE_CASE , shape=(batch_size, sequence_length) , dtype=tf.intaa )
class _A ( __snake_case ):
_UpperCamelCase : int = 4_2
_UpperCamelCase : List[str] = 4_2
_UpperCamelCase : List[str] = '''TensorFlow'''
@property
def __a ( self : str ) -> Union[str, Any]:
"""simple docstring"""
return tf.__version__
def __a ( self : List[str] , _A : List[str] , _A : Dict , _A : List[str] ) -> float:
"""simple docstring"""
lowercase : Optional[Any] = self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
lowercase : Tuple = self._prepare_inference_func(_A , _A , _A )
return self._measure_speed(_inference )
def __a ( self : Tuple , _A : Dict , _A : List[Any] , _A : Any ) -> float:
"""simple docstring"""
lowercase : str = self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
lowercase : int = self._prepare_train_func(_A , _A , _A )
return self._measure_speed(_train )
def __a ( self : List[str] , _A : Any , _A : List[str] , _A : Union[str, Any] ) -> [Memory, Optional[MemorySummary]]:
"""simple docstring"""
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _A )
lowercase : str = self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
lowercase : str = self._prepare_inference_func(_A , _A , _A )
return self._measure_memory(_inference )
def __a ( self : List[Any] , _A : Optional[int] , _A : Union[str, Any] , _A : str ) -> [Memory, Optional[MemorySummary]]:
"""simple docstring"""
if self.args.is_gpu:
tf.config.experimental.set_memory_growth(self.args.gpu_list[self.args.device_idx] , _A )
lowercase : Tuple = self.args.strategy
if strategy is None:
raise ValueError('''A device strategy has to be initialized before using TensorFlow.''' )
lowercase : Dict = self._prepare_train_func(_A , _A , _A )
return self._measure_memory(_train )
def __a ( self : Optional[Any] , _A : List[str] , _A : List[Any] , _A : Optional[int] ) -> Callable[[], None]:
"""simple docstring"""
lowercase : List[str] = self.config_dict[model_name]
if self.args.fpaa:
raise NotImplementedError('''Mixed precision is currently not supported.''' )
lowercase : Union[str, Any] = (
hasattr(_A , '''architectures''' )
and isinstance(config.architectures , _A )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
lowercase : Tuple = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model
lowercase : int = __import__('''transformers''' , fromlist=[model_class] )
lowercase : Tuple = getattr(_A , _A )
lowercase : Optional[Any] = model_cls(_A )
except ImportError:
raise ImportError(
f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to"""
''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' )
else:
lowercase : Dict = TF_MODEL_MAPPING[config.__class__](_A )
# encoder-decoder has vocab size saved differently
lowercase : List[Any] = config.vocab_size if hasattr(_A , '''vocab_size''' ) else config.encoder.vocab_size
lowercase : List[str] = random_input_ids(_A , _A , _A )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_forward():
return model(_A , decoder_input_ids=_A , training=_A )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_forward():
return model(_A , training=_A )
lowercase : Optional[Any] = encoder_decoder_forward if config.is_encoder_decoder else encoder_forward
return _inference
def __a ( self : Any , _A : Dict , _A : int , _A : str ) -> Callable[[], None]:
"""simple docstring"""
lowercase : str = self.config_dict[model_name]
if self.args.eager_mode is not False:
raise ValueError('''Training cannot be done in eager mode. Please make sure that `args.eager_mode = False`.''' )
if self.args.fpaa:
raise NotImplementedError('''Mixed precision is currently not supported.''' )
lowercase : str = (
hasattr(_A , '''architectures''' )
and isinstance(config.architectures , _A )
and len(config.architectures ) > 0
)
if not self.args.only_pretrain_model and has_model_class_in_config:
try:
lowercase : Optional[Any] = '''TF''' + config.architectures[0] # prepend 'TF' for tensorflow model
lowercase : Dict = __import__('''transformers''' , fromlist=[model_class] )
lowercase : Any = getattr(_A , _A )
lowercase : Union[str, Any] = model_cls(_A )
except ImportError:
raise ImportError(
f"""{model_class} does not exist. If you just want to test the pretrained model, you might want to"""
''' set `--only_pretrain_model` or `args.only_pretrain_model=True`.''' )
else:
lowercase : Optional[int] = TF_MODEL_WITH_LM_HEAD_MAPPING[config.__class__](_A )
# encoder-decoder has vocab size saved differently
lowercase : Tuple = config.vocab_size if hasattr(_A , '''vocab_size''' ) else config.encoder.vocab_size
lowercase : Optional[Any] = random_input_ids(_A , _A , _A )
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_decoder_train():
lowercase : Tuple = model(_A , decoder_input_ids=_A , labels=_A , training=_A )[0]
lowercase : List[str] = tf.gradients(_A , model.trainable_variables )
return gradients
@run_with_tf_optimizations(self.args.eager_mode , self.args.use_xla )
def encoder_train():
lowercase : str = model(_A , labels=_A , training=_A )[0]
lowercase : str = tf.gradients(_A , model.trainable_variables )
return gradients
lowercase : str = encoder_decoder_train if config.is_encoder_decoder else encoder_train
return _train
def __a ( self : Optional[Any] , _A : str ) -> float:
"""simple docstring"""
with self.args.strategy.scope():
try:
if self.args.is_tpu or self.args.use_xla:
# run additional 10 times to stabilize compilation for tpu
logger.info('''Do inference on TPU. Running model 5 times to stabilize compilation''' )
timeit.repeat(_A , repeat=1 , number=5 )
# as written in https://docs.python.org/2/library/timeit.html#timeit.Timer.repeat, min should be taken rather than the average
lowercase : Union[str, Any] = timeit.repeat(
_A , repeat=self.args.repeat , number=10 , )
return min(_A ) / 10.0
except ResourceExhaustedError as e:
self.print_fn(f"""Doesn't fit on GPU. {e}""" )
def __a ( self : Dict , _A : Union[str, Any] ) -> [Memory, MemorySummary]:
"""simple docstring"""
logger.info(
'''Note that TensorFlow allocates more memory than '''
'''it might need to speed up computation. '''
'''The memory reported here corresponds to the memory '''
'''reported by `nvidia-smi`, which can vary depending '''
'''on total available memory on the GPU that is used.''' )
with self.args.strategy.scope():
try:
if self.args.trace_memory_line_by_line:
if not self.args.eager_mode:
raise ValueError(
'''`args.eager_mode` is set to `False`. Make sure to run model in eager mode to measure memory'''
''' consumption line by line.''' )
lowercase : Any = start_memory_tracing('''transformers''' )
if self.args.is_tpu:
# tpu
raise NotImplementedError(
'''Memory Benchmarking is currently not implemented for TPU. Please disable memory benchmarking'''
''' with `args.memory=False`''' )
elif self.args.is_gpu:
# gpu
if not is_pyanvml_available():
logger.warning(
'''py3nvml not installed, we won\'t log GPU memory usage. '''
'''Install py3nvml (pip install py3nvml) to log information about GPU.''' )
lowercase : Union[str, Any] = '''N/A'''
else:
logger.info(
'''Measuring total GPU usage on GPU device. Make sure to not have additional processes'''
''' running on the same GPU.''' )
# init nvml
nvml.nvmlInit()
func()
lowercase : Optional[int] = nvml.nvmlDeviceGetHandleByIndex(self.args.device_idx )
lowercase : List[Any] = nvml.nvmlDeviceGetMemoryInfo(_A )
lowercase : Dict = meminfo.used
lowercase : Dict = Memory(_A )
# shutdown nvml
nvml.nvmlShutdown()
else:
# cpu
if self.args.trace_memory_line_by_line:
logger.info(
'''When enabling line by line tracing, the max peak memory for CPU is inaccurate in'''
''' TensorFlow.''' )
lowercase : Optional[Any] = None
else:
lowercase : Tuple = measure_peak_memory_cpu(_A )
lowercase : Union[str, Any] = Memory(_A ) if isinstance(_A , _A ) else memory_bytes
if self.args.trace_memory_line_by_line:
lowercase : Union[str, Any] = stop_memory_tracing(_A )
if memory is None:
lowercase : int = summary.total
else:
lowercase : Optional[int] = None
return memory, summary
except ResourceExhaustedError as e:
self.print_fn(f"""Doesn't fit on GPU. {e}""" )
return "N/A", None | 308 |
'''simple docstring'''
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel
if is_vision_available():
from transformers import MaskFormerImageProcessor
if is_vision_available():
from PIL import Image
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=2 , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=10 , UpperCAmelCase=3 , UpperCAmelCase=32 * 4 , UpperCAmelCase=32 * 6 , UpperCAmelCase=4 , UpperCAmelCase=32 , ) -> Optional[Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = is_training
_snake_case = use_auxiliary_loss
_snake_case = num_queries
_snake_case = num_channels
_snake_case = min_size
_snake_case = max_size
_snake_case = num_labels
_snake_case = mask_feature_size
def lowercase (self ) -> str:
_snake_case = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
UpperCAmelCase )
_snake_case = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCAmelCase )
_snake_case = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCAmelCase ) > 0.5
).float()
_snake_case = (torch.rand((self.batch_size, self.num_labels) , device=UpperCAmelCase ) > 0.5).long()
_snake_case = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def lowercase (self ) -> Tuple:
return MaskFormerConfig.from_backbone_and_decoder_configs(
backbone_config=SwinConfig(
depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig(
decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , )
def lowercase (self ) -> Optional[Any]:
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.prepare_config_and_inputs()
_snake_case = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask}
return config, inputs_dict
def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int:
_snake_case = output.encoder_hidden_states
_snake_case = output.pixel_decoder_hidden_states
_snake_case = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(UpperCAmelCase ) , len(config.backbone_config.depths ) )
self.parent.assertTrue(len(UpperCAmelCase ) , config.decoder_config.decoder_layers )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Union[str, Any]:
with torch.no_grad():
_snake_case = MaskFormerModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
_snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase )
_snake_case = model(UpperCAmelCase , output_hidden_states=UpperCAmelCase )
# the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the
# encoder and pixel decoder
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , )
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(UpperCAmelCase , UpperCAmelCase )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]:
_snake_case = MaskFormerForInstanceSegmentation(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
def comm_check_on_output(UpperCAmelCase ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , )
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
_snake_case = model(pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase )
_snake_case = model(UpperCAmelCase )
comm_check_on_output(UpperCAmelCase )
_snake_case = model(
pixel_values=UpperCAmelCase , pixel_mask=UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase )
comm_check_on_output(UpperCAmelCase )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape , torch.Size([1] ) )
@require_torch
class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else ()
lowerCAmelCase_ = (
{"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation}
if is_torch_available()
else {}
)
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def lowercase (self ) -> int:
_snake_case = MaskFormerModelTester(self )
_snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase )
def lowercase (self ) -> int:
self.config_tester.run_common_tests()
def lowercase (self ) -> List[Any]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase )
def lowercase (self ) -> Any:
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCAmelCase )
@unittest.skip(reason="""MaskFormer does not use inputs_embeds""" )
def lowercase (self ) -> Optional[Any]:
pass
@unittest.skip(reason="""MaskFormer does not have a get_input_embeddings method""" )
def lowercase (self ) -> Optional[int]:
pass
@unittest.skip(reason="""MaskFormer is not a generative model""" )
def lowercase (self ) -> int:
pass
@unittest.skip(reason="""MaskFormer does not use token embeddings""" )
def lowercase (self ) -> Optional[int]:
pass
@require_torch_multi_gpu
@unittest.skip(
reason="""MaskFormer has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def lowercase (self ) -> Optional[Any]:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowercase (self ) -> Tuple:
pass
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase )
_snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case = [*signature.parameters.keys()]
_snake_case = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
@slow
def lowercase (self ) -> int:
for model_name in ["facebook/maskformer-swin-small-coco"]:
_snake_case = MaskFormerModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def lowercase (self ) -> Tuple:
_snake_case = (self.model_tester.min_size,) * 2
_snake_case = {
"""pixel_values""": torch.randn((2, 3, *size) , device=UpperCAmelCase ),
"""mask_labels""": torch.randn((2, 10, *size) , device=UpperCAmelCase ),
"""class_labels""": torch.zeros(2 , 10 , device=UpperCAmelCase ).long(),
}
_snake_case = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCAmelCase )
_snake_case = model(**UpperCAmelCase )
self.assertTrue(outputs.loss is not None )
def lowercase (self ) -> Dict:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskformer_model(UpperCAmelCase , **UpperCAmelCase , output_hidden_states=UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase ).to(UpperCAmelCase )
_snake_case = model(**UpperCAmelCase , output_attentions=UpperCAmelCase )
self.assertTrue(outputs.attentions is not None )
def lowercase (self ) -> Tuple:
if not self.model_tester.is_training:
return
# only MaskFormerForInstanceSegmentation has the loss
_snake_case = self.all_model_classes[1]
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.train()
_snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase ).loss
loss.backward()
def lowercase (self ) -> List[str]:
# only MaskFormerForInstanceSegmentation has the loss
_snake_case = self.all_model_classes[1]
_snake_case, _snake_case, _snake_case, _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs()
_snake_case = True
_snake_case = True
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.train()
_snake_case = model(UpperCAmelCase , mask_labels=UpperCAmelCase , class_labels=UpperCAmelCase )
_snake_case = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
_snake_case = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
# we requires_grad=True in inputs_embeds (line 2152), the original implementation don't
_snake_case = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
_snake_case = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=UpperCAmelCase )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__lowerCAmelCase = 1E-4
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_vision
@slow
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowercase (self ) -> Optional[int]:
return (
MaskFormerImageProcessor.from_pretrained("""facebook/maskformer-swin-small-coco""" )
if is_vision_available()
else None
)
def lowercase (self ) -> str:
_snake_case = MaskFormerModel.from_pretrained("""facebook/maskformer-swin-small-coco""" ).to(UpperCAmelCase )
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.tensor(
[[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
_snake_case = torch.tensor(
[[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
_snake_case = torch.tensor(
[[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(UpperCAmelCase )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> List[str]:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
# masks_queries_logits
_snake_case = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_snake_case = [
[-1.373_7124, -1.772_4937, -1.936_4233],
[-1.597_7281, -1.986_7939, -2.152_3695],
[-1.579_5398, -1.926_9832, -2.09_3942],
]
_snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
# class_queries_logits
_snake_case = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_snake_case = torch.tensor(
[
[1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0],
[3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0],
[1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0],
] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> List[Any]:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-resnet101-coco-stuff""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = prepare_img()
_snake_case = image_processor(UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
_snake_case = inputs["""pixel_values"""].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(UpperCAmelCase , (1, 3, 800, 1088) )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
# masks_queries_logits
_snake_case = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , )
_snake_case = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]]
_snake_case = torch.tensor(UpperCAmelCase ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
# class_queries_logits
_snake_case = outputs.class_queries_logits
self.assertEqual(
class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) )
_snake_case = torch.tensor(
[[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCAmelCase , atol=UpperCAmelCase ) )
def lowercase (self ) -> Tuple:
_snake_case = (
MaskFormerForInstanceSegmentation.from_pretrained("""facebook/maskformer-swin-small-coco""" )
.to(UpperCAmelCase )
.eval()
)
_snake_case = self.default_image_processor
_snake_case = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="""pt""" , )
_snake_case = inputs["""pixel_values"""].to(UpperCAmelCase )
_snake_case = [el.to(UpperCAmelCase ) for el in inputs["""mask_labels"""]]
_snake_case = [el.to(UpperCAmelCase ) for el in inputs["""class_labels"""]]
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
self.assertTrue(outputs.loss is not None ) | 341 | 0 |
"""simple docstring"""
import os
import string
import sys
A_ : Dict = 1 << 8
A_ : Any = {
"tab": ord("\t"),
"newline": ord("\r"),
"esc": 27,
"up": 65 + ARROW_KEY_FLAG,
"down": 66 + ARROW_KEY_FLAG,
"right": 67 + ARROW_KEY_FLAG,
"left": 68 + ARROW_KEY_FLAG,
"mod_int": 91,
"undefined": sys.maxsize,
"interrupt": 3,
"insert": 50,
"delete": 51,
"pg_up": 53,
"pg_down": 54,
}
A_ : Optional[Any] = KEYMAP["up"]
A_ : int = KEYMAP["left"]
if sys.platform == "win32":
A_ : Dict = []
A_ : Optional[int] = {
b"\xe0H": KEYMAP["up"] - ARROW_KEY_FLAG,
b"\x00H": KEYMAP["up"] - ARROW_KEY_FLAG,
b"\xe0P": KEYMAP["down"] - ARROW_KEY_FLAG,
b"\x00P": KEYMAP["down"] - ARROW_KEY_FLAG,
b"\xe0M": KEYMAP["right"] - ARROW_KEY_FLAG,
b"\x00M": KEYMAP["right"] - ARROW_KEY_FLAG,
b"\xe0K": KEYMAP["left"] - ARROW_KEY_FLAG,
b"\x00K": KEYMAP["left"] - ARROW_KEY_FLAG,
}
for i in range(10):
A_ : Optional[Any] = ord(str(i))
def A ( ):
'''simple docstring'''
if os.name == "nt":
import msvcrt
SCREAMING_SNAKE_CASE__ = """mbcs"""
# Flush the keyboard buffer
while msvcrt.kbhit():
msvcrt.getch()
if len(_SCREAMING_SNAKE_CASE ) == 0:
# Read the keystroke
SCREAMING_SNAKE_CASE__ = msvcrt.getch()
# If it is a prefix char, get second part
if ch in (b"\x00", b"\xe0"):
SCREAMING_SNAKE_CASE__ = ch + msvcrt.getch()
# Translate actual Win chars to bullet char types
try:
SCREAMING_SNAKE_CASE__ = chr(WIN_KEYMAP[cha] )
WIN_CH_BUFFER.append(chr(KEYMAP["""mod_int"""] ) )
WIN_CH_BUFFER.append(_SCREAMING_SNAKE_CASE )
if ord(_SCREAMING_SNAKE_CASE ) in (
KEYMAP["insert"] - 1 << 9,
KEYMAP["delete"] - 1 << 9,
KEYMAP["pg_up"] - 1 << 9,
KEYMAP["pg_down"] - 1 << 9,
):
WIN_CH_BUFFER.append(chr(1_26 ) )
SCREAMING_SNAKE_CASE__ = chr(KEYMAP["""esc"""] )
except KeyError:
SCREAMING_SNAKE_CASE__ = cha[1]
else:
SCREAMING_SNAKE_CASE__ = ch.decode(_SCREAMING_SNAKE_CASE )
else:
SCREAMING_SNAKE_CASE__ = WIN_CH_BUFFER.pop(0 )
elif os.name == "posix":
import termios
import tty
SCREAMING_SNAKE_CASE__ = sys.stdin.fileno()
SCREAMING_SNAKE_CASE__ = termios.tcgetattr(_SCREAMING_SNAKE_CASE )
try:
tty.setraw(_SCREAMING_SNAKE_CASE )
SCREAMING_SNAKE_CASE__ = sys.stdin.read(1 )
finally:
termios.tcsetattr(_SCREAMING_SNAKE_CASE , termios.TCSADRAIN , _SCREAMING_SNAKE_CASE )
return ch
def A ( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = get_raw_chars()
if ord(_SCREAMING_SNAKE_CASE ) in [KEYMAP["interrupt"], KEYMAP["newline"]]:
return char
elif ord(_SCREAMING_SNAKE_CASE ) == KEYMAP["esc"]:
SCREAMING_SNAKE_CASE__ = get_raw_chars()
if ord(_SCREAMING_SNAKE_CASE ) == KEYMAP["mod_int"]:
SCREAMING_SNAKE_CASE__ = get_raw_chars()
if ord(_SCREAMING_SNAKE_CASE ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(_SCREAMING_SNAKE_CASE ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG:
return chr(ord(_SCREAMING_SNAKE_CASE ) + ARROW_KEY_FLAG )
else:
return KEYMAP["undefined"]
else:
return get_raw_chars()
else:
if char in string.printable:
return char
else:
return KEYMAP["undefined"]
| 165 |
'''simple docstring'''
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self , UpperCAmelCase ) -> Union[str, Any]:
for model_result in results.values():
for batch_size, sequence_length in zip(model_result["""bs"""] , model_result["""ss"""] ):
_snake_case = model_result["""result"""][batch_size][sequence_length]
self.assertIsNotNone(UpperCAmelCase )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Dict:
_snake_case = """sgugger/tiny-distilbert-classification"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , only_pretrain_model=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Optional[Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , torchscript=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == """cpu""" , """Cant do half precision""" )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , fpaa=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Union[str, Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
# set architectures equal to `None`
_snake_case = None
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Optional[int]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == """cpu""" , """Can't do half precision""" )
def lowercase (self ) -> Tuple:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=UpperCAmelCase , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> Union[str, Any]:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Dict:
_snake_case = """sshleifer/tinier_bart"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def lowercase (self ) -> Any:
_snake_case = """sshleifer/tiny-gpt2"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> int:
_snake_case = """sshleifer/tinier_bart"""
_snake_case = AutoConfig.from_pretrained(UpperCAmelCase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def lowercase (self ) -> str:
_snake_case = """sshleifer/tiny-gpt2"""
with tempfile.TemporaryDirectory() as tmp_dir:
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , save_to_csv=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase , """inf_time.csv""" ) , train_memory_csv_file=os.path.join(UpperCAmelCase , """train_mem.csv""" ) , inference_memory_csv_file=os.path.join(UpperCAmelCase , """inf_mem.csv""" ) , train_time_csv_file=os.path.join(UpperCAmelCase , """train_time.csv""" ) , env_info_csv_file=os.path.join(UpperCAmelCase , """env.csv""" ) , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
benchmark.run()
self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_time.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """inf_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """train_mem.csv""" ) ).exists() )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """env.csv""" ) ).exists() )
def lowercase (self ) -> int:
_snake_case = """sshleifer/tiny-gpt2"""
def _check_summary_is_not_empty(UpperCAmelCase ):
self.assertTrue(hasattr(UpperCAmelCase , """sequential""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """cumulative""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """current""" ) )
self.assertTrue(hasattr(UpperCAmelCase , """total""" ) )
with tempfile.TemporaryDirectory() as tmp_dir:
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase , """log.txt""" ) , log_print=UpperCAmelCase , trace_memory_line_by_line=UpperCAmelCase , multi_process=UpperCAmelCase , )
_snake_case = PyTorchBenchmark(UpperCAmelCase )
_snake_case = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(UpperCAmelCase , """log.txt""" ) ).exists() ) | 341 | 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MgpstrProcessor, ViTImageProcessor
@require_torch
@require_vision
class a__ ( unittest.TestCase ):
"""simple docstring"""
__lowerCamelCase = ViTImageProcessor if is_vision_available() else None
@property
def UpperCamelCase ( self ) -> int:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase ( self ) -> int:
'''simple docstring'''
A__ = (3, 32, 128)
A__ = tempfile.mkdtemp()
# fmt: off
A__ = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
A__ = dict(zip(lowercase , range(len(lowercase ) ) ) )
A__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowercase ) + "\n" )
A__ = {
"do_normalize": False,
"do_resize": True,
"image_processor_type": "ViTImageProcessor",
"resample": 3,
"size": {"height": 32, "width": 128},
}
A__ = os.path.join(self.tmpdirname , lowercase )
with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp:
json.dump(lowercase , lowercase )
def UpperCamelCase ( self , **lowercase ) -> Optional[Any]:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowercase )
def UpperCamelCase ( self , **lowercase ) -> List[Any]:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowercase )
def UpperCamelCase ( self ) -> Tuple:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def UpperCamelCase ( self ) -> str:
'''simple docstring'''
A__ = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )
A__ = Image.fromarray(np.moveaxis(lowercase , 0 , -1 ) )
return image_input
def UpperCamelCase ( self ) -> Any:
'''simple docstring'''
A__ = self.get_tokenizer()
A__ = self.get_image_processor()
A__ = MgpstrProcessor(tokenizer=lowercase , image_processor=lowercase )
processor.save_pretrained(self.tmpdirname )
A__ = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=lowercase )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() )
self.assertIsInstance(processor.image_processor , lowercase )
def UpperCamelCase ( self ) -> Tuple:
'''simple docstring'''
A__ = self.get_tokenizer()
A__ = self.get_image_processor()
A__ = MgpstrProcessor(tokenizer=lowercase , image_processor=lowercase )
processor.save_pretrained(self.tmpdirname )
A__ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" )
A__ = self.get_image_processor(do_normalize=lowercase , padding_value=1.0 )
A__ = MgpstrProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowercase , padding_value=1.0 )
self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
self.assertIsInstance(processor.char_tokenizer , lowercase )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , lowercase )
def UpperCamelCase ( self ) -> List[str]:
'''simple docstring'''
A__ = self.get_image_processor()
A__ = self.get_tokenizer()
A__ = MgpstrProcessor(tokenizer=lowercase , image_processor=lowercase )
A__ = self.prepare_image_inputs()
A__ = image_processor(lowercase , return_tensors="np" )
A__ = processor(images=lowercase , return_tensors="np" )
for key in input_image_proc.keys():
self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 )
def UpperCamelCase ( self ) -> Dict:
'''simple docstring'''
A__ = self.get_image_processor()
A__ = self.get_tokenizer()
A__ = MgpstrProcessor(tokenizer=lowercase , image_processor=lowercase )
A__ = "test"
A__ = processor(text=lowercase )
A__ = tokenizer(lowercase )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCamelCase ( self ) -> List[str]:
'''simple docstring'''
A__ = self.get_image_processor()
A__ = self.get_tokenizer()
A__ = MgpstrProcessor(tokenizer=lowercase , image_processor=lowercase )
A__ = "test"
A__ = self.prepare_image_inputs()
A__ = processor(text=lowercase , images=lowercase )
self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] )
# test if it raises when no input is passed
with pytest.raises(lowercase ):
processor()
def UpperCamelCase ( self ) -> Optional[Any]:
'''simple docstring'''
A__ = self.get_image_processor()
A__ = self.get_tokenizer()
A__ = MgpstrProcessor(tokenizer=lowercase , image_processor=lowercase )
A__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]]
A__ = processor.char_decode(lowercase )
A__ = tokenizer.batch_decode(lowercase )
A__ = [seq.replace(" " , "" ) for seq in decoded_tok]
self.assertListEqual(lowercase , lowercase )
def UpperCamelCase ( self ) -> Optional[Any]:
'''simple docstring'''
A__ = self.get_image_processor()
A__ = self.get_tokenizer()
A__ = MgpstrProcessor(tokenizer=lowercase , image_processor=lowercase )
A__ = None
A__ = self.prepare_image_inputs()
A__ = processor(text=lowercase , images=lowercase )
self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
def UpperCamelCase ( self ) -> List[Any]:
'''simple docstring'''
A__ = self.get_image_processor()
A__ = self.get_tokenizer()
A__ = MgpstrProcessor(tokenizer=lowercase , image_processor=lowercase )
A__ = torch.randn(1 , 27 , 38 )
A__ = torch.randn(1 , 27 , 50257 )
A__ = torch.randn(1 , 27 , 30522 )
A__ = processor.batch_decode([char_input, bpe_input, wp_input] )
self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
| 68 |
'''simple docstring'''
from __future__ import annotations
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ):
if len(_SCREAMING_SNAKE_CASE ) == 0:
return []
_snake_case, _snake_case = min(_SCREAMING_SNAKE_CASE ), max(_SCREAMING_SNAKE_CASE )
_snake_case = int(max_value - min_value ) + 1
_snake_case = [[] for _ in range(_SCREAMING_SNAKE_CASE )]
for i in my_list:
buckets[int(i - min_value )].append(_SCREAMING_SNAKE_CASE )
return [v for bucket in buckets for v in sorted(_SCREAMING_SNAKE_CASE )]
if __name__ == "__main__":
from doctest import testmod
testmod()
assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15] | 341 | 0 |
'''simple docstring'''
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
lowercase : Optional[int] = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow("", "|", "|"),
datarow=DataRow("", "|", "|"),
padding=1,
with_header_hide=None,
)
lowercase : int = []
lowercase : int = []
lowercase : List[str] = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}}
lowercase : Dict = [
{
"type": "header",
"text": {
"type": "plain_text",
"text": F'''🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results''',
"emoji": True,
},
}
]
lowercase : Optional[Any] = 0
for log in Path().glob("*.log"):
lowercase : str = 0
with open(log, "r") as f:
for line in f:
lowercase : Union[str, Any] = json.loads(line)
if line.get("nodeid", "") != "":
lowercase : int = line["nodeid"]
if line.get("duration", None) is not None:
lowercase : Tuple = F'''{line["duration"]:.4f}'''
if line.get("outcome", "") == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split("_")[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
lowercase : Optional[int] = []
log.unlink()
lowercase : Tuple = ""
lowercase : Tuple = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += F"*{name[1:]}: {num_failed} failed test*\n"
else:
message += F"*{name[1:]}: {num_failed} failed tests*\n"
lowercase : Optional[Any] = []
lowercase : List[Any] = {}
for test in failed_tests:
lowercase : List[str] = test[0].split("::")
lowercase : int = data[0].split("/")[-1]
if data[0] not in filesafailed:
lowercase : Optional[Any] = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
lowercase : Optional[int] = [test[0] for test in failed_table]
lowercase : Tuple = list(set(files))
# Count number of instances in failed_tests
lowercase : List[str] = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
lowercase : Union[str, Any] = tabulate(
table,
headers=["Test Location", "Num Failed"],
tablefmt=hf_table_format,
stralign="right",
)
message += F"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 3000:
lowercase : List[str] = "Too many failed tests, please see the full report in the Action results."
lowercase : int = len(err) + 10
lowercase : Optional[Any] = message[: 3000 - offset] + F'''\n...\n```\n{err}'''
print(F'''### {message}''')
else:
lowercase : Optional[int] = "No failed tests! 🤗"
print(F'''## {message}''')
payload.append(no_error_payload)
if os.environ.get("TEST_TYPE", "") != "":
from slack_sdk import WebClient
lowercase : Dict = WebClient(token=os.environ["SLACK_API_TOKEN"])
if message != "No failed tests! 🤗":
lowercase : int = {
"type": "section",
"text": {
"type": "mrkdwn",
"text": message,
},
}
payload.append(md_report)
lowercase : str = {
"type": "section",
"text": {
"type": "mrkdwn",
"text": "*For more details:*",
},
"accessory": {
"type": "button",
"text": {
"type": "plain_text",
"text": "Check Action results",
"emoji": True,
},
"url": F'''https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}''',
},
}
payload.append(action_button)
lowercase : int = {
"type": "context",
"elements": [
{
"type": "plain_text",
"text": F'''Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}''',
}
],
}
payload.append(date_report)
lowercase : Optional[Any] = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload)
lowercase : Any = response.data["ts"]
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
lowercase : str = ""
for i, row in enumerate(test_failures):
if row[0] != test_class:
lowercase : Union[str, Any] = row[0]
else:
lowercase : Dict = ""
lowercase : Any = {
"type": "section",
"text": {
"type": "mrkdwn",
"text": F'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```''',
},
}
client.chat_postMessage(
channel="#accelerate-ci-daily",
thread_ts=ts,
blocks=[payload],
)
| 42 |
'''simple docstring'''
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
__lowerCAmelCase = logging.get_logger(__name__)
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase=None ) -> int:
if not conversation_id:
_snake_case = uuid.uuida()
if past_user_inputs is None:
_snake_case = []
if generated_responses is None:
_snake_case = []
_snake_case = conversation_id
_snake_case = past_user_inputs
_snake_case = generated_responses
_snake_case = text
def __eq__(self , UpperCAmelCase ) -> Dict:
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def lowercase (self , UpperCAmelCase , UpperCAmelCase = False ) -> int:
if self.new_user_input:
if overwrite:
logger.warning(
f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """
f"""with: \"{text}\".""" )
_snake_case = text
else:
logger.warning(
f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """
f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" )
else:
_snake_case = text
def lowercase (self ) -> int:
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
_snake_case = None
def lowercase (self , UpperCAmelCase ) -> Any:
self.generated_responses.append(UpperCAmelCase )
def lowercase (self ) -> List[str]:
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__(self ) -> Optional[int]:
_snake_case = f"""Conversation id: {self.uuid} \n"""
for is_user, text in self.iter_texts():
_snake_case = """user""" if is_user else """bot"""
output += f"""{name} >> {text} \n"""
return output
@add_end_docstrings(
__snake_case , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , )
class _lowerCAmelCase ( __snake_case ):
'''simple docstring'''
def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]:
super().__init__(*UpperCAmelCase , **UpperCAmelCase )
if self.tokenizer.pad_token_id is None:
_snake_case = self.tokenizer.eos_token
def lowercase (self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Dict:
_snake_case = {}
_snake_case = {}
_snake_case = {}
if min_length_for_response is not None:
_snake_case = min_length_for_response
if minimum_tokens is not None:
_snake_case = minimum_tokens
if "max_length" in generate_kwargs:
_snake_case = generate_kwargs["""max_length"""]
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
_snake_case = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(UpperCAmelCase )
return preprocess_params, forward_params, postprocess_params
def __call__(self , UpperCAmelCase , UpperCAmelCase=0 , **UpperCAmelCase ) -> Union[str, Any]:
_snake_case = super().__call__(UpperCAmelCase , num_workers=UpperCAmelCase , **UpperCAmelCase )
if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) == 1:
return outputs[0]
return outputs
def lowercase (self , UpperCAmelCase , UpperCAmelCase=32 ) -> Dict[str, Any]:
if not isinstance(UpperCAmelCase , UpperCAmelCase ):
raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" )
if conversation.new_user_input is None:
raise ValueError(
f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """
"""Add user inputs with the conversation's `add_user_input` method""" )
if hasattr(self.tokenizer , """_build_conversation_input_ids""" ):
_snake_case = self.tokenizer._build_conversation_input_ids(UpperCAmelCase )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
_snake_case = self._legacy_parse_and_tokenize(UpperCAmelCase )
if self.framework == "pt":
_snake_case = torch.LongTensor([input_ids] )
elif self.framework == "tf":
_snake_case = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def lowercase (self , UpperCAmelCase , UpperCAmelCase=10 , **UpperCAmelCase ) -> Optional[int]:
_snake_case = generate_kwargs.get("""max_length""" , self.model.config.max_length )
_snake_case = model_inputs["""input_ids"""].shape[1]
if max_length - minimum_tokens < n:
logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" )
_snake_case = max_length - minimum_tokens
_snake_case = model_inputs["""input_ids"""][:, -trim:]
if "attention_mask" in model_inputs:
_snake_case = model_inputs["""attention_mask"""][:, -trim:]
_snake_case = model_inputs.pop("""conversation""" )
_snake_case = max_length
_snake_case = self.model.generate(**UpperCAmelCase , **UpperCAmelCase )
if self.model.config.is_encoder_decoder:
_snake_case = 1
else:
_snake_case = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def lowercase (self , UpperCAmelCase , UpperCAmelCase=True ) -> List[str]:
_snake_case = model_outputs["""output_ids"""]
_snake_case = self.tokenizer.decode(
output_ids[0] , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , )
_snake_case = model_outputs["""conversation"""]
conversation.mark_processed()
conversation.append_response(UpperCAmelCase )
return conversation
def lowercase (self , UpperCAmelCase ) -> Dict:
_snake_case = self.tokenizer.eos_token_id
_snake_case = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) )
if len(UpperCAmelCase ) > self.tokenizer.model_max_length:
_snake_case = input_ids[-self.tokenizer.model_max_length :]
return input_ids | 341 | 0 |
from . import (
albert,
align,
altclip,
audio_spectrogram_transformer,
auto,
autoformer,
bark,
bart,
barthez,
bartpho,
beit,
bert,
bert_generation,
bert_japanese,
bertweet,
big_bird,
bigbird_pegasus,
biogpt,
bit,
blenderbot,
blenderbot_small,
blip,
blip_a,
bloom,
bridgetower,
byta,
camembert,
canine,
chinese_clip,
clap,
clip,
clipseg,
codegen,
conditional_detr,
convbert,
convnext,
convnextva,
cpm,
cpmant,
ctrl,
cvt,
dataavec,
deberta,
deberta_va,
decision_transformer,
deformable_detr,
deit,
deprecated,
deta,
detr,
dialogpt,
dinat,
distilbert,
dit,
donut,
dpr,
dpt,
efficientformer,
efficientnet,
electra,
encodec,
encoder_decoder,
ernie,
ernie_m,
esm,
falcon,
flaubert,
flava,
fnet,
focalnet,
fsmt,
funnel,
git,
glpn,
gpta,
gpt_bigcode,
gpt_neo,
gpt_neox,
gpt_neox_japanese,
gpt_swa,
gptj,
gptsan_japanese,
graphormer,
groupvit,
herbert,
hubert,
ibert,
imagegpt,
informer,
instructblip,
jukebox,
layoutlm,
layoutlmva,
layoutlmva,
layoutxlm,
led,
levit,
lilt,
llama,
longformer,
longta,
luke,
lxmert,
mam_aaa,
marian,
markuplm,
maskaformer,
maskformer,
mbart,
mbartaa,
mega,
megatron_bert,
megatron_gpta,
mgp_str,
mluke,
mobilebert,
mobilenet_va,
mobilenet_va,
mobilevit,
mobilevitva,
mpnet,
mra,
mta,
musicgen,
mvp,
nat,
nezha,
nllb,
nllb_moe,
nystromformer,
oneformer,
open_llama,
openai,
opt,
owlvit,
pegasus,
pegasus_x,
perceiver,
phobert,
pixastruct,
plbart,
poolformer,
prophetnet,
qdqbert,
rag,
realm,
reformer,
regnet,
rembert,
resnet,
roberta,
roberta_prelayernorm,
roc_bert,
roformer,
rwkv,
sam,
segformer,
sew,
sew_d,
speech_encoder_decoder,
speech_to_text,
speech_to_text_a,
speechta,
splinter,
squeezebert,
swiftformer,
swin,
swinasr,
swinva,
switch_transformers,
ta,
table_transformer,
tapas,
time_series_transformer,
timesformer,
timm_backbone,
transfo_xl,
trocr,
tvlt,
umta,
unispeech,
unispeech_sat,
upernet,
videomae,
vilt,
vision_encoder_decoder,
vision_text_dual_encoder,
visual_bert,
vit,
vit_hybrid,
vit_mae,
vit_msn,
vivit,
wavaveca,
wavaveca_conformer,
wavaveca_phoneme,
wavaveca_with_lm,
wavlm,
whisper,
x_clip,
xglm,
xlm,
xlm_prophetnet,
xlm_roberta,
xlm_roberta_xl,
xlnet,
xmod,
yolos,
yoso,
)
| 235 |
'''simple docstring'''
from math import factorial, radians
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 18 , _SCREAMING_SNAKE_CASE = 10 ):
_snake_case = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0)
# Converting from degrees to radians
_snake_case = radians(_SCREAMING_SNAKE_CASE )
_snake_case = angle_in_radians
_snake_case = 3
_snake_case = -1
for _ in range(_SCREAMING_SNAKE_CASE ):
result += (b * (angle_in_radians**a)) / factorial(_SCREAMING_SNAKE_CASE )
_snake_case = -b # One positive term and the next will be negative and so on...
a += 2 # Increased by 2 for every term.
return round(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__import__('doctest').testmod() | 341 | 0 |
import argparse
import re
from flax.traverse_util import flatten_dict, unflatten_dict
from tax import checkpoints
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration
from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model
from transformers.utils import logging
logging.set_verbosity_info()
# should not include what is already done by the `from_pt` argument
SCREAMING_SNAKE_CASE : Dict = {
"/attention/": "/0/SelfAttention/",
"/self_attention/": "/0/SelfAttention/",
"/encoder_decoder_attention/": "/1/EncDecAttention/",
"value": "v",
"query": "q",
"key": "k",
"out": "o",
"pre_self_attention_layer_norm": "0/layer_norm",
"pre_cross_attention_layer_norm": "1/layer_norm",
"pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong
"token_embedder": "shared",
"encoder_norm": "final_layer_norm",
"decoder_norm": "final_layer_norm",
"relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight",
"router/router_weights/w/": "router/classifier/",
"roer/roer_weights/w/": "router/classifier/",
"logits_dense": "lm_head",
}
def UpperCamelCase_( lowerCamelCase_ ) -> Optional[int]:
# 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in
# the original model
_lowercase : Union[str, Any] = list(s_dict.keys() )
for key in keys:
_lowercase : Optional[int] = R'.*/layers_(\d+)'
_lowercase : Union[str, Any] = key
if re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_lowercase : List[str] = re.sub(R'layers_(\d+)' , R'block/\1/layer' , _SCREAMING_SNAKE_CASE )
_lowercase : Dict = R'(encoder|decoder)\/'
if re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_lowercase : Dict = re.match(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ).groups()
if groups[0] == "encoder":
_lowercase : Union[str, Any] = re.sub(R'/mlp/' , R'/1/mlp/' , _SCREAMING_SNAKE_CASE )
_lowercase : int = re.sub(R'/pre_mlp_layer_norm/' , R'/1/layer_norm/' , _SCREAMING_SNAKE_CASE )
elif groups[0] == "decoder":
_lowercase : List[Any] = re.sub(R'/mlp/' , R'/2/mlp/' , _SCREAMING_SNAKE_CASE )
_lowercase : Tuple = re.sub(R'/pre_mlp_layer_norm/' , R'/2/layer_norm/' , _SCREAMING_SNAKE_CASE )
# 2. Convert other classic mappings
for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items():
if old_key in new_key:
_lowercase : Tuple = new_key.replace(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(F'''{key} -> {new_key}''' )
_lowercase : str = s_dict.pop(_SCREAMING_SNAKE_CASE )
if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict:
_lowercase : Any = s_dict[
'encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight'
].T
if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict:
_lowercase : Dict = s_dict[
'decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight'
].T
# 3. Take extra care of the EXPERTS layer
for key in list(s_dict.keys() ):
if "expert" in key:
_lowercase : List[str] = s_dict[key].shape[0]
_lowercase : Union[str, Any] = s_dict[key]
for idx in range(_SCREAMING_SNAKE_CASE ):
_lowercase : Optional[Any] = expert_weihts[idx]
print(F'''{key} -> {key.replace("expert/" , "nested fstring" )}''' )
s_dict.pop(_SCREAMING_SNAKE_CASE )
return s_dict
SCREAMING_SNAKE_CASE : Optional[int] = {
"NUM_ENCODER_LAYERS": "num_layers",
"NUM_DECODER_LAYERS": "num_decoder_layers",
"NUM_HEADS": "num_heads",
"HEAD_DIM": "d_kv",
"EMBED_DIM": "d_model",
"MLP_DIM": "d_ff",
"NUM_SELECTED_EXPERTS": "num_selected_experts",
"NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers",
"NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers",
"dense.MlpBlock.activations": "feed_forward_proj",
}
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> int:
# Convert a google style config to the hugging face fromat
import regex as re
with open(_SCREAMING_SNAKE_CASE , 'r' ) as f:
_lowercase : str = f.read()
_lowercase : Dict = re.findall(R'(.*) = ([0-9.]*)' , _SCREAMING_SNAKE_CASE )
_lowercase : List[Any] = {}
for param, value in regex_match:
if param in GIN_TO_CONFIG_MAPPING and value != "":
_lowercase : Optional[int] = float(_SCREAMING_SNAKE_CASE ) if '.' in value else int(_SCREAMING_SNAKE_CASE )
_lowercase : Optional[int] = re.findall(R'(.*activations) = \(\'(.*)\',\)' , _SCREAMING_SNAKE_CASE )[0]
_lowercase : Dict = str(activation[1] )
_lowercase : Union[str, Any] = num_experts
_lowercase : List[str] = SwitchTransformersConfig(**_SCREAMING_SNAKE_CASE )
return config
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_="./" , lowerCamelCase_=8 ) -> str:
# Initialise PyTorch model
print(F'''Loading flax weights from : {flax_checkpoint_path}''' )
_lowercase : List[str] = checkpoints.load_tax_checkpoint(_SCREAMING_SNAKE_CASE )
if gin_file is not None:
_lowercase : Tuple = convert_gin_to_config(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
else:
_lowercase : Union[str, Any] = SwitchTransformersConfig.from_pretrained(_SCREAMING_SNAKE_CASE )
_lowercase : str = SwitchTransformersForConditionalGeneration(_SCREAMING_SNAKE_CASE )
_lowercase : str = flax_params['target']
_lowercase : Tuple = flatten_dict(_SCREAMING_SNAKE_CASE , sep='/' )
_lowercase : Dict = rename_keys(_SCREAMING_SNAKE_CASE )
_lowercase : Tuple = unflatten_dict(_SCREAMING_SNAKE_CASE , sep='/' )
# Load the flax params in the PT model
load_flax_weights_in_pytorch_model(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
print(F'''Save PyTorch model to {pytorch_dump_path}''' )
pt_model.save_pretrained(_SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--switch_t5x_checkpoint_path",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the"
" model architecture. If not provided, a `gin_file` has to be provided."
),
)
parser.add_argument(
"--gin_file",
default=None,
type=str,
required=False,
help="Path to the gin config file. If not provided, a `config_file` has to be passed ",
)
parser.add_argument(
"--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model."
)
parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts")
SCREAMING_SNAKE_CASE : str = parser.parse_args()
convert_flax_checkpoint_to_pytorch(
args.switch_tax_checkpoint_path,
args.config_name,
args.gin_file,
args.pytorch_dump_folder_path,
args.num_experts,
)
| 21 |
'''simple docstring'''
import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
__lowerCAmelCase = '\\n@inproceedings{popovic-2015-chrf,\n title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",\n month = sep,\n year = "2015",\n address = "Lisbon, Portugal",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W15-3049",\n doi = "10.18653/v1/W15-3049",\n pages = "392--395",\n}\n@inproceedings{popovic-2017-chrf,\n title = "chr{F}++: words helping character n-grams",\n author = "Popovi{\'c}, Maja",\n booktitle = "Proceedings of the Second Conference on Machine Translation",\n month = sep,\n year = "2017",\n address = "Copenhagen, Denmark",\n publisher = "Association for Computational Linguistics",\n url = "https://aclanthology.org/W17-4770",\n doi = "10.18653/v1/W17-4770",\n pages = "612--618",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n'
__lowerCAmelCase = '\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n'
__lowerCAmelCase = '\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n \'score\' (float): The chrF (chrF++) score,\n \'char_order\' (int): The character n-gram order,\n \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n \'beta\' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]\n >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]\n >>> chrf = datasets.load_metric("chrf")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
'''simple docstring'''
def lowercase (self ) -> Tuple:
if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ):
raise ImportWarning(
"""To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"""
"""You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ),
} ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[
"""https://github.com/m-popovic/chrF""",
] , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = CHRF.CHAR_ORDER , UpperCAmelCase = CHRF.WORD_ORDER , UpperCAmelCase = CHRF.BETA , UpperCAmelCase = False , UpperCAmelCase = False , UpperCAmelCase = False , ) -> int:
_snake_case = len(references[0] )
if any(len(UpperCAmelCase ) != references_per_prediction for refs in references ):
raise ValueError("""Sacrebleu requires the same number of references for each prediction""" )
_snake_case = [[refs[i] for refs in references] for i in range(UpperCAmelCase )]
_snake_case = CHRF(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
_snake_case = sb_chrf.corpus_score(UpperCAmelCase , UpperCAmelCase )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
} | 341 | 0 |
'''simple docstring'''
import os
from typing import List, Optional, Union
from ...tokenization_utils import PreTrainedTokenizer
from ...tokenization_utils_base import AddedToken
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {'''vocab_file''': '''vocab.txt'''}
__snake_case = {
'''vocab_file''': {
'''facebook/esm2_t6_8M_UR50D''': '''https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt''',
'''facebook/esm2_t12_35M_UR50D''': '''https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt''',
},
}
__snake_case = {
'''facebook/esm2_t6_8M_UR50D''': 1024,
'''facebook/esm2_t12_35M_UR50D''': 1024,
}
def a ( __a ) -> Dict:
'''simple docstring'''
with open(_SCREAMING_SNAKE_CASE , '''r''' ) as f:
UpperCamelCase__ :Optional[int] = f.read().splitlines()
return [l.strip() for l in lines]
class lowercase ( __snake_case ):
"""simple docstring"""
_a = VOCAB_FILES_NAMES
_a = PRETRAINED_VOCAB_FILES_MAP
_a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = ['input_ids', 'attention_mask']
def __init__( self , UpperCamelCase_ , UpperCamelCase_="<unk>" , UpperCamelCase_="<cls>" , UpperCamelCase_="<pad>" , UpperCamelCase_="<mask>" , UpperCamelCase_="<eos>" , **UpperCamelCase_ , ):
'''simple docstring'''
super().__init__(**UpperCamelCase_ )
UpperCamelCase__ :List[Any] = load_vocab_file(UpperCamelCase_ )
UpperCamelCase__ :str = dict(enumerate(self.all_tokens ) )
UpperCamelCase__ :List[str] = {tok: ind for ind, tok in enumerate(self.all_tokens )}
UpperCamelCase__ :List[Any] = unk_token
UpperCamelCase__ :List[Any] = cls_token
UpperCamelCase__ :List[Any] = pad_token
UpperCamelCase__ :str = mask_token
UpperCamelCase__ :str = eos_token
UpperCamelCase__ :Optional[Any] = self.all_tokens
self._create_trie(self.unique_no_split_tokens )
def lowerCAmelCase__ ( self , UpperCamelCase_ ):
'''simple docstring'''
return self._id_to_token.get(UpperCamelCase_ , self.unk_token )
def lowerCAmelCase__ ( self , UpperCamelCase_ ):
'''simple docstring'''
return self._token_to_id.get(UpperCamelCase_ , self._token_to_id.get(self.unk_token ) )
def lowerCAmelCase__ ( self , UpperCamelCase_ , **UpperCamelCase_ ):
'''simple docstring'''
return text.split()
def lowerCAmelCase__ ( self , UpperCamelCase_=False ):
'''simple docstring'''
return len(self._id_to_token )
def lowerCAmelCase__ ( self ):
'''simple docstring'''
return {token: i for i, token in enumerate(self.all_tokens )}
def lowerCAmelCase__ ( self , UpperCamelCase_ ):
'''simple docstring'''
return self._token_to_id.get(UpperCamelCase_ , self._token_to_id.get(self.unk_token ) )
def lowerCAmelCase__ ( self , UpperCamelCase_ ):
'''simple docstring'''
return self._id_to_token.get(UpperCamelCase_ , self.unk_token )
def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None ):
'''simple docstring'''
UpperCamelCase__ :Optional[Any] = [self.cls_token_id]
UpperCamelCase__ :Optional[Any] = [self.eos_token_id] # No sep token in ESM vocabulary
if token_ids_a is None:
if self.eos_token_id is None:
return cls + token_ids_a
else:
return cls + token_ids_a + sep
elif self.eos_token_id is None:
raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' )
return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token
def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = False ):
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
'''You should not supply a second sequence if the provided sequence of '''
'''ids is already formatted with special tokens for the model.''' )
return [1 if token in self.all_special_ids else 0 for token in token_ids_a]
UpperCamelCase__ :int = [1] + ([0] * len(UpperCamelCase_ )) + [1]
if token_ids_a is not None:
mask += [0] * len(UpperCamelCase_ ) + [1]
return mask
def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ):
'''simple docstring'''
UpperCamelCase__ :int = os.path.join(UpperCamelCase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' )
with open(UpperCamelCase_ , '''w''' ) as f:
f.write('''\n'''.join(self.all_tokens ) )
return (vocab_file,)
@property
def lowerCAmelCase__ ( self ):
'''simple docstring'''
return self.get_vocab_size(with_added_tokens=UpperCamelCase_ )
def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ = False ):
'''simple docstring'''
return super()._add_tokens(UpperCamelCase_ , special_tokens=UpperCamelCase_ ) | 97 |
'''simple docstring'''
from scipy.stats import spearmanr
import datasets
__lowerCAmelCase = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n'
__lowerCAmelCase = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n'
__lowerCAmelCase = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _lowerCAmelCase ( datasets.Metric ):
'''simple docstring'''
def lowercase (self ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""float""" ),
"""references""": datasets.Value("""float""" ),
} ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[Any]:
_snake_case = spearmanr(UpperCAmelCase , UpperCAmelCase )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]} | 341 | 0 |
import html
from ...feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from ...utils import is_bsa_available, logging, requires_backends
if is_bsa_available():
import bsa
from bsa import BeautifulSoup
A : Optional[int] = logging.get_logger(__name__)
class _lowercase ( __snake_case):
"""simple docstring"""
def __init__( self : str , **__lowerCamelCase : Any ):
'''simple docstring'''
requires_backends(self , ["bs4"] )
super().__init__(**__lowerCamelCase )
def lowerCAmelCase ( self : List[Any] , __lowerCamelCase : int ):
'''simple docstring'''
lowerCamelCase__ : Dict = []
lowerCamelCase__ : Optional[Any] = []
lowerCamelCase__ : Any = element if element.name else element.parent
for parent in child.parents: # type: bs4.element.Tag
lowerCamelCase__ : List[str] = parent.find_all(child.name , recursive=__lowerCamelCase )
xpath_tags.append(child.name )
xpath_subscripts.append(
0 if 1 == len(__lowerCamelCase ) else next(i for i, s in enumerate(__lowerCamelCase , 1 ) if s is child ) )
lowerCamelCase__ : Union[str, Any] = parent
xpath_tags.reverse()
xpath_subscripts.reverse()
return xpath_tags, xpath_subscripts
def lowerCAmelCase ( self : List[str] , __lowerCamelCase : str ):
'''simple docstring'''
lowerCamelCase__ : int = BeautifulSoup(__lowerCamelCase , "html.parser" )
lowerCamelCase__ : int = []
lowerCamelCase__ : List[str] = []
lowerCamelCase__ : List[str] = []
for element in html_code.descendants:
if type(__lowerCamelCase ) == bsa.element.NavigableString:
if type(element.parent ) != bsa.element.Tag:
continue
lowerCamelCase__ : List[Any] = html.unescape(__lowerCamelCase ).strip()
if not text_in_this_tag:
continue
all_doc_strings.append(__lowerCamelCase )
lowerCamelCase__ , lowerCamelCase__ : Tuple = self.xpath_soup(__lowerCamelCase )
stringaxtag_seq.append(__lowerCamelCase )
stringaxsubs_seq.append(__lowerCamelCase )
if len(__lowerCamelCase ) != len(__lowerCamelCase ):
raise ValueError("Number of doc strings and xtags does not correspond" )
if len(__lowerCamelCase ) != len(__lowerCamelCase ):
raise ValueError("Number of doc strings and xsubs does not correspond" )
return all_doc_strings, stringaxtag_seq, stringaxsubs_seq
def lowerCAmelCase ( self : Dict , __lowerCamelCase : Any , __lowerCamelCase : Dict ):
'''simple docstring'''
lowerCamelCase__ : Tuple = ""
for tagname, subs in zip(__lowerCamelCase , __lowerCamelCase ):
xpath += f"/{tagname}"
if subs != 0:
xpath += f"[{subs}]"
return xpath
def __call__( self : Tuple , __lowerCamelCase : Optional[Any] ):
'''simple docstring'''
lowerCamelCase__ : Union[str, Any] = False
# Check that strings has a valid type
if isinstance(__lowerCamelCase , __lowerCamelCase ):
lowerCamelCase__ : Dict = True
elif isinstance(__lowerCamelCase , (list, tuple) ):
if len(__lowerCamelCase ) == 0 or isinstance(html_strings[0] , __lowerCamelCase ):
lowerCamelCase__ : Union[str, Any] = True
if not valid_strings:
raise ValueError(
"HTML strings must of type `str`, `List[str]` (batch of examples), "
f"but is of type {type(__lowerCamelCase )}." )
lowerCamelCase__ : List[Any] = bool(isinstance(__lowerCamelCase , (list, tuple) ) and (isinstance(html_strings[0] , __lowerCamelCase )) )
if not is_batched:
lowerCamelCase__ : Tuple = [html_strings]
# Get nodes + xpaths
lowerCamelCase__ : str = []
lowerCamelCase__ : Optional[int] = []
for html_string in html_strings:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Tuple = self.get_three_from_single(__lowerCamelCase )
nodes.append(__lowerCamelCase )
lowerCamelCase__ : str = []
for node, tag_list, sub_list in zip(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ):
lowerCamelCase__ : Optional[int] = self.construct_xpath(__lowerCamelCase , __lowerCamelCase )
xpath_strings.append(__lowerCamelCase )
xpaths.append(__lowerCamelCase )
# return as Dict
lowerCamelCase__ : Optional[int] = {"nodes": nodes, "xpaths": xpaths}
lowerCamelCase__ : str = BatchFeature(data=__lowerCamelCase , tensor_type=__lowerCamelCase )
return encoded_inputs
| 184 |
'''simple docstring'''
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class _lowerCAmelCase :
'''simple docstring'''
def __init__(self , UpperCAmelCase , UpperCAmelCase=13 , UpperCAmelCase=32 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=[10, 20, 30, 40] , UpperCAmelCase=[2, 2, 3, 2] , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=37 , UpperCAmelCase="gelu" , UpperCAmelCase=10 , UpperCAmelCase=0.02 , UpperCAmelCase=["stage2", "stage3", "stage4"] , UpperCAmelCase=3 , UpperCAmelCase=None , ) -> List[Any]:
_snake_case = parent
_snake_case = batch_size
_snake_case = image_size
_snake_case = num_channels
_snake_case = num_stages
_snake_case = hidden_sizes
_snake_case = depths
_snake_case = is_training
_snake_case = use_labels
_snake_case = intermediate_size
_snake_case = hidden_act
_snake_case = type_sequence_label_size
_snake_case = initializer_range
_snake_case = out_features
_snake_case = num_labels
_snake_case = scope
_snake_case = num_stages
def lowercase (self ) -> List[Any]:
_snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
_snake_case = None
if self.use_labels:
_snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_snake_case = self.get_config()
return config, pixel_values, labels
def lowercase (self ) -> Tuple:
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def lowercase (self ) -> Any:
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=UpperCAmelCase , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=UpperCAmelCase , loss_ignore_index=255 , num_labels=self.num_labels , )
def lowercase (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> str:
_snake_case = UperNetForSemanticSegmentation(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
_snake_case = model(UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def lowercase (self ) -> Tuple:
_snake_case = self.prepare_config_and_inputs()
(
(
_snake_case
), (
_snake_case
), (
_snake_case
),
) = config_and_inputs
_snake_case = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class _lowerCAmelCase ( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase_ = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
lowerCAmelCase_ = {"image-segmentation": UperNetForSemanticSegmentation} if is_torch_available() else {}
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
lowerCAmelCase_ = False
def lowercase (self ) -> Optional[Any]:
_snake_case = UperNetModelTester(self )
_snake_case = ConfigTester(self , config_class=UpperCAmelCase , has_text_modality=UpperCAmelCase , hidden_size=37 )
def lowercase (self ) -> str:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase (self ) -> Union[str, Any]:
return
def lowercase (self ) -> Union[str, Any]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = model_class(UpperCAmelCase )
_snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case = [*signature.parameters.keys()]
_snake_case = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , UpperCAmelCase )
def lowercase (self ) -> int:
_snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase )
@unittest.skip(reason="""UperNet does not use inputs_embeds""" )
def lowercase (self ) -> int:
pass
@unittest.skip(reason="""UperNet does not support input and output embeddings""" )
def lowercase (self ) -> List[str]:
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def lowercase (self ) -> Union[str, Any]:
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def lowercase (self ) -> Union[str, Any]:
pass
@require_torch_multi_gpu
@unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def lowercase (self ) -> str:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def lowercase (self ) -> int:
pass
def lowercase (self ) -> List[str]:
def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ):
_snake_case = model_class(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
with torch.no_grad():
_snake_case = model(**self._prepare_for_class(UpperCAmelCase , UpperCAmelCase ) )
_snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
_snake_case = self.model_tester.num_stages
self.assertEqual(len(UpperCAmelCase ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
_snake_case = True
check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase )
def lowercase (self ) -> List[str]:
_snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case = _config_zero_init(UpperCAmelCase )
_snake_case = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
_snake_case = model_class(config=UpperCAmelCase )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , )
@unittest.skip(reason="""UperNet does not have tied weights""" )
def lowercase (self ) -> Optional[Any]:
pass
@slow
def lowercase (self ) -> Tuple:
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case = UperNetForSemanticSegmentation.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
def __SCREAMING_SNAKE_CASE ( ):
_snake_case = hf_hub_download(
repo_id="""hf-internal-testing/fixtures_ade20k""" , repo_type="""dataset""" , filename="""ADE_val_00000001.jpg""" )
_snake_case = Image.open(_SCREAMING_SNAKE_CASE ).convert("""RGB""" )
return image
@require_torch
@require_vision
@slow
class _lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def lowercase (self ) -> Any:
_snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" )
_snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(UpperCAmelCase )
_snake_case = prepare_img()
_snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
_snake_case = torch.tensor(
[[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) )
def lowercase (self ) -> Any:
_snake_case = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" )
_snake_case = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(UpperCAmelCase )
_snake_case = prepare_img()
_snake_case = processor(images=UpperCAmelCase , return_tensors="""pt""" ).to(UpperCAmelCase )
with torch.no_grad():
_snake_case = model(**UpperCAmelCase )
_snake_case = torch.Size((1, model.config.num_labels, 512, 512) )
self.assertEqual(outputs.logits.shape , UpperCAmelCase )
_snake_case = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ).to(UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , UpperCAmelCase , atol=1e-4 ) ) | 341 | 0 |
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
lowercase__ : str = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None )-> int:
'''simple docstring'''
if not conversation_id:
__UpperCamelCase = uuid.uuida()
if past_user_inputs is None:
__UpperCamelCase = []
if generated_responses is None:
__UpperCamelCase = []
__UpperCamelCase = conversation_id
__UpperCamelCase = past_user_inputs
__UpperCamelCase = generated_responses
__UpperCamelCase = text
def __eq__( self , SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = False )-> int:
'''simple docstring'''
if self.new_user_input:
if overwrite:
logger.warning(
F"User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten "
F"with: \"{text}\"." )
__UpperCamelCase = text
else:
logger.warning(
F"User input added while unprocessed input was existing: \"{self.new_user_input}\" new input "
F"ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input" )
else:
__UpperCamelCase = text
def A__ ( self )-> int:
'''simple docstring'''
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
__UpperCamelCase = None
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Any:
'''simple docstring'''
self.generated_responses.append(SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> List[str]:
'''simple docstring'''
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = F"Conversation id: {self.uuid} \n"
for is_user, text in self.iter_texts():
__UpperCamelCase = '''user''' if is_user else '''bot'''
output += F"{name} >> {text} \n"
return output
@add_end_docstrings(
__snake_case , R'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' , )
class SCREAMING_SNAKE_CASE__ ( __snake_case ):
"""simple docstring"""
def __init__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Union[str, Any]:
'''simple docstring'''
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if self.tokenizer.pad_token_id is None:
__UpperCamelCase = self.tokenizer.eos_token
def A__ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
__UpperCamelCase = {}
__UpperCamelCase = {}
__UpperCamelCase = {}
if min_length_for_response is not None:
__UpperCamelCase = min_length_for_response
if minimum_tokens is not None:
__UpperCamelCase = minimum_tokens
if "max_length" in generate_kwargs:
__UpperCamelCase = generate_kwargs['''max_length''']
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
__UpperCamelCase = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(SCREAMING_SNAKE_CASE_ )
return preprocess_params, forward_params, postprocess_params
def __call__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 , **SCREAMING_SNAKE_CASE_ )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = super().__call__(SCREAMING_SNAKE_CASE_ , num_workers=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) == 1:
return outputs[0]
return outputs
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=32 )-> Dict[str, Any]:
'''simple docstring'''
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' )
if conversation.new_user_input is None:
raise ValueError(
F"Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. "
'''Add user inputs with the conversation\'s `add_user_input` method''' )
if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ):
__UpperCamelCase = self.tokenizer._build_conversation_input_ids(SCREAMING_SNAKE_CASE_ )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
__UpperCamelCase = self._legacy_parse_and_tokenize(SCREAMING_SNAKE_CASE_ )
if self.framework == "pt":
__UpperCamelCase = torch.LongTensor([input_ids] )
elif self.framework == "tf":
__UpperCamelCase = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=10 , **SCREAMING_SNAKE_CASE_ )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length )
__UpperCamelCase = model_inputs['''input_ids'''].shape[1]
if max_length - minimum_tokens < n:
logger.warning(F"Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})" )
__UpperCamelCase = max_length - minimum_tokens
__UpperCamelCase = model_inputs['''input_ids'''][:, -trim:]
if "attention_mask" in model_inputs:
__UpperCamelCase = model_inputs['''attention_mask'''][:, -trim:]
__UpperCamelCase = model_inputs.pop('''conversation''' )
__UpperCamelCase = max_length
__UpperCamelCase = self.model.generate(**SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if self.model.config.is_encoder_decoder:
__UpperCamelCase = 1
else:
__UpperCamelCase = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=True )-> List[str]:
'''simple docstring'''
__UpperCamelCase = model_outputs['''output_ids''']
__UpperCamelCase = self.tokenizer.decode(
output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ , )
__UpperCamelCase = model_outputs['''conversation''']
conversation.mark_processed()
conversation.append_response(SCREAMING_SNAKE_CASE_ )
return conversation
def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Dict:
'''simple docstring'''
__UpperCamelCase = self.tokenizer.eos_token_id
__UpperCamelCase = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) )
if len(SCREAMING_SNAKE_CASE_ ) > self.tokenizer.model_max_length:
__UpperCamelCase = input_ids[-self.tokenizer.model_max_length :]
return input_ids
| 328 |
'''simple docstring'''
import argparse
from collections import defaultdict
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
_snake_case = f"""{file}_{class_name}_{test_name}"""
done_test[_id] += 1
with open(_SCREAMING_SNAKE_CASE , """r""" ) as f:
_snake_case = f.readlines()
_snake_case = f"""class {class_name}("""
_snake_case = f"""{4 * " "}def {test_name}("""
_snake_case = f"""{8 * " "}{correct_line.split()[0]}"""
_snake_case = f"""{16 * " "}{correct_line.split()[0]}"""
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = False
_snake_case = 0
_snake_case = 0
_snake_case = []
for line in lines:
if line.startswith(_SCREAMING_SNAKE_CASE ):
_snake_case = True
elif in_class and line.startswith(_SCREAMING_SNAKE_CASE ):
_snake_case = True
elif in_class and in_func and (line.startswith(_SCREAMING_SNAKE_CASE ) or line.startswith(_SCREAMING_SNAKE_CASE )):
_snake_case = len(line.split(correct_line.split()[0] )[0] )
count += 1
if count == done_test[_id]:
_snake_case = True
if in_class and in_func and in_line:
if ")" not in line:
continue
else:
_snake_case = True
if in_class and in_func and in_line and insert_line:
new_lines.append(f"""{spaces * " "}{correct_line}""" )
_snake_case = _snake_case = _snake_case = _snake_case = False
else:
new_lines.append(_SCREAMING_SNAKE_CASE )
with open(_SCREAMING_SNAKE_CASE , """w""" ) as f:
for line in new_lines:
f.write(_SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ):
if fail is not None:
with open(_SCREAMING_SNAKE_CASE , """r""" ) as f:
_snake_case = {l.strip() for l in f.readlines()}
else:
_snake_case = None
with open(_SCREAMING_SNAKE_CASE , """r""" ) as f:
_snake_case = f.readlines()
_snake_case = defaultdict(_SCREAMING_SNAKE_CASE )
for line in correct_lines:
_snake_case, _snake_case, _snake_case, _snake_case = line.split(""";""" )
if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures:
overwrite_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
__lowerCAmelCase = argparse.ArgumentParser()
parser.add_argument('--correct_filename', help='filename of tests with expected result')
parser.add_argument('--fail_filename', help='filename of test failures', type=str, default=None)
__lowerCAmelCase = parser.parse_args()
main(args.correct_filename, args.fail_filename) | 341 | 0 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
UpperCAmelCase : Dict = {
"configuration_data2vec_audio": ["DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Data2VecAudioConfig"],
"configuration_data2vec_text": [
"DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Data2VecTextConfig",
"Data2VecTextOnnxConfig",
],
"configuration_data2vec_vision": [
"DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP",
"Data2VecVisionConfig",
"Data2VecVisionOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : Dict = [
"DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST",
"Data2VecAudioForAudioFrameClassification",
"Data2VecAudioForCTC",
"Data2VecAudioForSequenceClassification",
"Data2VecAudioForXVector",
"Data2VecAudioModel",
"Data2VecAudioPreTrainedModel",
]
UpperCAmelCase : List[str] = [
"DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST",
"Data2VecTextForCausalLM",
"Data2VecTextForMaskedLM",
"Data2VecTextForMultipleChoice",
"Data2VecTextForQuestionAnswering",
"Data2VecTextForSequenceClassification",
"Data2VecTextForTokenClassification",
"Data2VecTextModel",
"Data2VecTextPreTrainedModel",
]
UpperCAmelCase : Dict = [
"DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST",
"Data2VecVisionForImageClassification",
"Data2VecVisionForMaskedImageModeling",
"Data2VecVisionForSemanticSegmentation",
"Data2VecVisionModel",
"Data2VecVisionPreTrainedModel",
]
if is_tf_available():
UpperCAmelCase : List[str] = [
"TFData2VecVisionForImageClassification",
"TFData2VecVisionForSemanticSegmentation",
"TFData2VecVisionModel",
"TFData2VecVisionPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig
from .configuration_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecTextConfig,
DataaVecTextOnnxConfig,
)
from .configuration_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecVisionConfig,
DataaVecVisionOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dataavec_audio import (
DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecAudioForAudioFrameClassification,
DataaVecAudioForCTC,
DataaVecAudioForSequenceClassification,
DataaVecAudioForXVector,
DataaVecAudioModel,
DataaVecAudioPreTrainedModel,
)
from .modeling_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecTextForCausalLM,
DataaVecTextForMaskedLM,
DataaVecTextForMultipleChoice,
DataaVecTextForQuestionAnswering,
DataaVecTextForSequenceClassification,
DataaVecTextForTokenClassification,
DataaVecTextModel,
DataaVecTextPreTrainedModel,
)
from .modeling_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecVisionForImageClassification,
DataaVecVisionForMaskedImageModeling,
DataaVecVisionForSemanticSegmentation,
DataaVecVisionModel,
DataaVecVisionPreTrainedModel,
)
if is_tf_available():
from .modeling_tf_dataavec_vision import (
TFDataaVecVisionForImageClassification,
TFDataaVecVisionForSemanticSegmentation,
TFDataaVecVisionModel,
TFDataaVecVisionPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 136 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
__lowerCAmelCase = {
'configuration_falcon': ['FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FalconConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'FALCON_PRETRAINED_MODEL_ARCHIVE_LIST',
'FalconForCausalLM',
'FalconModel',
'FalconPreTrainedModel',
'FalconForSequenceClassification',
'FalconForTokenClassification',
'FalconForQuestionAnswering',
]
if TYPE_CHECKING:
from .configuration_falcon import FALCON_PRETRAINED_CONFIG_ARCHIVE_MAP, FalconConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_falcon import (
FALCON_PRETRAINED_MODEL_ARCHIVE_LIST,
FalconForCausalLM,
FalconForQuestionAnswering,
FalconForSequenceClassification,
FalconForTokenClassification,
FalconModel,
FalconPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 341 | 0 |
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__magic_name__: int = get_tests_dir("fixtures/test_sentencepiece_no_bos.model")
@require_sentencepiece
@require_tokenizers
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Union[str, Any] = PegasusTokenizer
lowercase__ : Optional[Any] = PegasusTokenizerFast
lowercase__ : Union[str, Any] = True
lowercase__ : List[str] = True
def __magic_name__ ( self ) -> str:
super().setUp()
# We have a SentencePiece fixture for testing
__magic_name__ : List[str] = PegasusTokenizer(lowerCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __magic_name__ ( self ) -> Any:
return PegasusTokenizer.from_pretrained("""google/pegasus-large""" )
def __magic_name__ ( self , **lowerCAmelCase__ ) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple:
return ("This is a test", "This is a test")
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : int = """</s>"""
__magic_name__ : Optional[int] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Tuple = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<pad>""" )
self.assertEqual(vocab_keys[1] , """</s>""" )
self.assertEqual(vocab_keys[-1] , """v""" )
self.assertEqual(len(lowerCAmelCase__ ) , 11_03 )
def __magic_name__ ( self ) -> int:
self.assertEqual(self.get_tokenizer().vocab_size , 11_03 )
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : Any = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
__magic_name__ : Dict = self.tokenizer_class.from_pretrained(self.tmpdirname )
__magic_name__ : List[Any] = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
__magic_name__ : List[str] = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0]
__magic_name__ : Tuple = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self ) -> int:
__magic_name__ : List[str] = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
__magic_name__ : List[Any] = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
__magic_name__ : List[str] = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1]
__magic_name__ : Any = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ ).input_ids[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : Dict = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_61_03
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 1_03
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 10_24
__magic_name__ : Tuple = """To ensure a smooth flow of bank resolutions."""
__magic_name__ : Any = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1]
__magic_name__ : Dict = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ ).input_ids[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : Union[str, Any] = ["""This is going to be way too long.""" * 1_50, """short example"""]
__magic_name__ : int = ["""not super long but more than 5 tokens""", """tiny"""]
__magic_name__ : Union[str, Any] = self._large_tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="""pt""" )
__magic_name__ : List[Any] = self._large_tokenizer(
text_target=lowerCAmelCase__ , max_length=5 , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 10_24)
assert batch.attention_mask.shape == (2, 10_24)
assert targets["input_ids"].shape == (2, 5)
assert len(lowerCAmelCase__ ) == 2 # input_ids, attention_mask.
@slow
def __magic_name__ ( self ) -> Union[str, Any]:
# fmt: off
__magic_name__ : Union[str, Any] = {"""input_ids""": [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Union[str, Any] = PegasusTokenizer
lowercase__ : Tuple = PegasusTokenizerFast
lowercase__ : Tuple = True
lowercase__ : Union[str, Any] = True
def __magic_name__ ( self ) -> str:
super().setUp()
# We have a SentencePiece fixture for testing
__magic_name__ : List[str] = PegasusTokenizer(lowerCAmelCase__ , offset=0 , mask_token_sent=lowerCAmelCase__ , mask_token="""[MASK]""" )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def __magic_name__ ( self ) -> Any:
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""" )
def __magic_name__ ( self , **lowerCAmelCase__ ) -> PegasusTokenizer:
return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]:
return ("This is a test", "This is a test")
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : int = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
__magic_name__ : List[str] = self.tokenizer_class.from_pretrained(self.tmpdirname )
__magic_name__ : Union[str, Any] = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
__magic_name__ : List[str] = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0]
__magic_name__ : Tuple = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@require_torch
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Tuple = ["""This is going to be way too long.""" * 10_00, """short example"""]
__magic_name__ : Tuple = ["""not super long but more than 5 tokens""", """tiny"""]
__magic_name__ : List[Any] = self._large_tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="""pt""" )
__magic_name__ : Any = self._large_tokenizer(
text_target=lowerCAmelCase__ , max_length=5 , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors="""pt""" )
assert batch.input_ids.shape == (2, 40_96)
assert batch.attention_mask.shape == (2, 40_96)
assert targets["input_ids"].shape == (2, 5)
assert len(lowerCAmelCase__ ) == 2 # input_ids, attention_mask.
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : List[Any] = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
__magic_name__ : Optional[int] = self._large_tokenizer(lowerCAmelCase__ ).input_ids
self.assertListEqual(
lowerCAmelCase__ , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
| 342 |
from math import factorial
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
if successes > trials:
raise ValueError("""successes must be lower or equal to trials""" )
if trials < 0 or successes < 0:
raise ValueError("""the function is defined for non-negative integers""" )
if not isinstance(_A, _A ) or not isinstance(_A, _A ):
raise ValueError("""the function is defined for non-negative integers""" )
if not 0 < prob < 1:
raise ValueError("""prob has to be in range of 1 - 0""" )
__magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes))
# Calculate the binomial coefficient: n! / k!(n-k)!
__magic_name__ : Any = float(factorial(_A ) )
coefficient /= factorial(_A ) * factorial(trials - successes )
return probability * coefficient
if __name__ == "__main__":
from doctest import testmod
testmod()
print("Probability of 2 successes out of 4 trails")
print("with probability of 0.75 is:", end=" ")
print(binomial_distribution(2, 4, 0.75))
| 342 | 1 |
from __future__ import annotations
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
if days_between_payments <= 0:
raise ValueError("""days_between_payments must be > 0""" )
if daily_interest_rate < 0:
raise ValueError("""daily_interest_rate must be >= 0""" )
if principal <= 0:
raise ValueError("""principal must be > 0""" )
return principal * daily_interest_rate * days_between_payments
def UpperCamelCase ( _A, _A, _A, ):
"""simple docstring"""
if number_of_compounding_periods <= 0:
raise ValueError("""number_of_compounding_periods must be > 0""" )
if nominal_annual_interest_rate_percentage < 0:
raise ValueError("""nominal_annual_interest_rate_percentage must be >= 0""" )
if principal <= 0:
raise ValueError("""principal must be > 0""" )
return principal * (
(1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods
- 1
)
def UpperCamelCase ( _A, _A, _A, ):
"""simple docstring"""
if number_of_years <= 0:
raise ValueError("""number_of_years must be > 0""" )
if nominal_annual_percentage_rate < 0:
raise ValueError("""nominal_annual_percentage_rate must be >= 0""" )
if principal <= 0:
raise ValueError("""principal must be > 0""" )
return compound_interest(
_A, nominal_annual_percentage_rate / 365, number_of_years * 365 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 |
from __future__ import annotations
def UpperCamelCase ( _A ): # This function is recursive
"""simple docstring"""
__magic_name__ : str = len(_A )
# If the array contains only one element, we return it (it's the stop condition of
# recursion)
if array_length <= 1:
return array
# Else
__magic_name__ : Dict = array[0]
__magic_name__ : Optional[Any] = False
__magic_name__ : Tuple = 1
__magic_name__ : list[int] = []
while not is_found and i < array_length:
if array[i] < pivot:
__magic_name__ : Union[str, Any] = True
__magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]]
__magic_name__ : Dict = longest_subsequence(_A )
if len(_A ) > len(_A ):
__magic_name__ : Tuple = temp_array
else:
i += 1
__magic_name__ : Any = [element for element in array[1:] if element >= pivot]
__magic_name__ : Dict = [pivot, *longest_subsequence(_A )]
if len(_A ) > len(_A ):
return temp_array
else:
return longest_subseq
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 | 1 |
from math import log
from scipy.constants import Boltzmann, physical_constants
__magic_name__: Tuple = 300 # TEMPERATURE (unit = K)
def UpperCamelCase ( _A, _A, _A, ):
"""simple docstring"""
if donor_conc <= 0:
raise ValueError("""Donor concentration should be positive""" )
elif acceptor_conc <= 0:
raise ValueError("""Acceptor concentration should be positive""" )
elif intrinsic_conc <= 0:
raise ValueError("""Intrinsic concentration should be positive""" )
elif donor_conc <= intrinsic_conc:
raise ValueError(
"""Donor concentration should be greater than intrinsic concentration""" )
elif acceptor_conc <= intrinsic_conc:
raise ValueError(
"""Acceptor concentration should be greater than intrinsic concentration""" )
else:
return (
Boltzmann
* T
* log((donor_conc * acceptor_conc) / intrinsic_conc**2 )
/ physical_constants["electron volt"][0]
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 342 |
import argparse
import os
import re
__magic_name__: Optional[Any] = "src/transformers/models/auto"
# re pattern that matches mapping introductions:
# SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict
__magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict")
# re pattern that matches identifiers in mappings
__magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"")
def UpperCamelCase ( _A, _A = False ):
"""simple docstring"""
with open(_A, """r""", encoding="""utf-8""" ) as f:
__magic_name__ : Any = f.read()
__magic_name__ : List[Any] = content.split("""\n""" )
__magic_name__ : List[str] = []
__magic_name__ : Union[str, Any] = 0
while line_idx < len(_A ):
if _re_intro_mapping.search(lines[line_idx] ) is not None:
__magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8
# Start of a new mapping!
while not lines[line_idx].startswith(""" """ * indent + """(""" ):
new_lines.append(lines[line_idx] )
line_idx += 1
__magic_name__ : List[Any] = []
while lines[line_idx].strip() != "]":
# Blocks either fit in one line or not
if lines[line_idx].strip() == "(":
__magic_name__ : List[str] = line_idx
while not lines[line_idx].startswith(""" """ * indent + """)""" ):
line_idx += 1
blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) )
else:
blocks.append(lines[line_idx] )
line_idx += 1
# Sort blocks by their identifiers
__magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] )
new_lines += blocks
else:
new_lines.append(lines[line_idx] )
line_idx += 1
if overwrite:
with open(_A, """w""", encoding="""utf-8""" ) as f:
f.write("""\n""".join(_A ) )
elif "\n".join(_A ) != content:
return True
def UpperCamelCase ( _A = False ):
"""simple docstring"""
__magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )]
__magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames]
if not overwrite and any(_A ):
__magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d]
raise ValueError(
f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix'
""" this.""" )
if __name__ == "__main__":
__magic_name__: List[str] = argparse.ArgumentParser()
parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.")
__magic_name__: List[str] = parser.parse_args()
sort_all_auto_mappings(not args.check_only)
| 342 | 1 |
from __future__ import annotations
class snake_case__ :
def __init__( self , lowerCAmelCase__ = 0 ) -> Dict:
__magic_name__ : Union[str, Any] = key
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> list[str]:
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : Dict = key or self.__key or 1
# make sure key is an appropriate size
key %= 2_55
return [chr(ord(lowerCAmelCase__ ) ^ key ) for ch in content]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> list[str]:
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : str = key or self.__key or 1
# make sure key is an appropriate size
key %= 2_55
return [chr(ord(lowerCAmelCase__ ) ^ key ) for ch in content]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = 0 ) -> str:
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = key or self.__key or 1
# make sure key can be any size
while key > 2_55:
key -= 2_55
# This will be returned
__magic_name__ : List[str] = """"""
for ch in content:
ans += chr(ord(lowerCAmelCase__ ) ^ key )
return ans
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = 0 ) -> str:
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : Optional[Any] = key or self.__key or 1
# make sure key can be any size
while key > 2_55:
key -= 2_55
# This will be returned
__magic_name__ : Dict = """"""
for ch in content:
ans += chr(ord(lowerCAmelCase__ ) ^ key )
return ans
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = 0 ) -> bool:
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
try:
with open(lowerCAmelCase__ ) as fin, open("""encrypt.out""" , """w+""" ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.encrypt_string(lowerCAmelCase__ , lowerCAmelCase__ ) )
except OSError:
return False
return True
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> bool:
assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ )
try:
with open(lowerCAmelCase__ ) as fin, open("""decrypt.out""" , """w+""" ) as fout:
# actual encrypt-process
for line in fin:
fout.write(self.decrypt_string(lowerCAmelCase__ , lowerCAmelCase__ ) )
except OSError:
return False
return True
# Tests
# crypt = XORCipher()
# key = 67
# # test encrypt
# print(crypt.encrypt("hallo welt",key))
# # test decrypt
# print(crypt.decrypt(crypt.encrypt("hallo welt",key), key))
# # test encrypt_string
# print(crypt.encrypt_string("hallo welt",key))
# # test decrypt_string
# print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key))
# if (crypt.encrypt_file("test.txt",key)):
# print("encrypt successful")
# else:
# print("encrypt unsuccessful")
# if (crypt.decrypt_file("encrypt.out",key)):
# print("decrypt successful")
# else:
# print("decrypt unsuccessful")
| 342 |
__magic_name__: str = [0, 2, 4, 6, 8]
__magic_name__: Optional[int] = [1, 3, 5, 7, 9]
def UpperCamelCase ( _A, _A, _A, _A ):
"""simple docstring"""
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1, -1, -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
__magic_name__ : List[Any] = 0
for digit in range(10 ):
__magic_name__ : Optional[int] = digit
result += reversible_numbers(
0, (remainder + 2 * digit) // 10, _A, _A )
return result
__magic_name__ : str = 0
for digita in range(10 ):
__magic_name__ : Optional[Any] = digita
if (remainder + digita) % 2 == 0:
__magic_name__ : Tuple = ODD_DIGITS
else:
__magic_name__ : str = EVEN_DIGITS
for digita in other_parity_digits:
__magic_name__ : Tuple = digita
result += reversible_numbers(
remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, )
return result
def UpperCamelCase ( _A = 9 ):
"""simple docstring"""
__magic_name__ : List[str] = 0
for length in range(1, max_power + 1 ):
result += reversible_numbers(_A, 0, [0] * length, _A )
return result
if __name__ == "__main__":
print(F"""{solution() = }""")
| 342 | 1 |
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
__magic_name__: Dict = logging.get_logger(__name__)
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : str = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
__magic_name__ : List[str] = 128
elif "12-12" in model_name:
__magic_name__ : Dict = 12
__magic_name__ : Dict = 12
elif "14-14" in model_name:
__magic_name__ : str = 14
__magic_name__ : Optional[int] = 14
elif "16-16" in model_name:
__magic_name__ : Optional[int] = 16
__magic_name__ : str = 16
else:
raise ValueError("""Model not supported""" )
__magic_name__ : Tuple = """huggingface/label-files"""
if "speech-commands" in model_name:
__magic_name__ : Any = 35
__magic_name__ : Optional[Any] = """speech-commands-v2-id2label.json"""
else:
__magic_name__ : List[Any] = 527
__magic_name__ : Tuple = """audioset-id2label.json"""
__magic_name__ : int = json.load(open(hf_hub_download(_A, _A, repo_type="""dataset""" ), """r""" ) )
__magic_name__ : str = {int(_A ): v for k, v in idalabel.items()}
__magic_name__ : Dict = idalabel
__magic_name__ : Optional[Any] = {v: k for k, v in idalabel.items()}
return config
def UpperCamelCase ( _A ):
"""simple docstring"""
if "module.v" in name:
__magic_name__ : Any = name.replace("""module.v""", """audio_spectrogram_transformer""" )
if "cls_token" in name:
__magic_name__ : int = name.replace("""cls_token""", """embeddings.cls_token""" )
if "dist_token" in name:
__magic_name__ : List[str] = name.replace("""dist_token""", """embeddings.distillation_token""" )
if "pos_embed" in name:
__magic_name__ : Union[str, Any] = name.replace("""pos_embed""", """embeddings.position_embeddings""" )
if "patch_embed.proj" in name:
__magic_name__ : Dict = name.replace("""patch_embed.proj""", """embeddings.patch_embeddings.projection""" )
# transformer blocks
if "blocks" in name:
__magic_name__ : Tuple = name.replace("""blocks""", """encoder.layer""" )
if "attn.proj" in name:
__magic_name__ : List[Any] = name.replace("""attn.proj""", """attention.output.dense""" )
if "attn" in name:
__magic_name__ : Any = name.replace("""attn""", """attention.self""" )
if "norm1" in name:
__magic_name__ : Optional[int] = name.replace("""norm1""", """layernorm_before""" )
if "norm2" in name:
__magic_name__ : Union[str, Any] = name.replace("""norm2""", """layernorm_after""" )
if "mlp.fc1" in name:
__magic_name__ : Union[str, Any] = name.replace("""mlp.fc1""", """intermediate.dense""" )
if "mlp.fc2" in name:
__magic_name__ : str = name.replace("""mlp.fc2""", """output.dense""" )
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
__magic_name__ : int = name.replace("""audio_spectrogram_transformer.norm""", """audio_spectrogram_transformer.layernorm""" )
# classifier head
if "module.mlp_head.0" in name:
__magic_name__ : Tuple = name.replace("""module.mlp_head.0""", """classifier.layernorm""" )
if "module.mlp_head.1" in name:
__magic_name__ : List[str] = name.replace("""module.mlp_head.1""", """classifier.dense""" )
return name
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
for key in orig_state_dict.copy().keys():
__magic_name__ : Optional[int] = orig_state_dict.pop(_A )
if "qkv" in key:
__magic_name__ : Optional[int] = key.split(""".""" )
__magic_name__ : List[Any] = int(key_split[3] )
__magic_name__ : str = config.hidden_size
if "weight" in key:
__magic_name__ : Optional[Any] = val[:dim, :]
__magic_name__ : Dict = val[dim : dim * 2, :]
__magic_name__ : Optional[Any] = val[-dim:, :]
else:
__magic_name__ : Optional[Any] = val[:dim]
__magic_name__ : Any = val[dim : dim * 2]
__magic_name__ : Dict = val[-dim:]
else:
__magic_name__ : Union[str, Any] = val
return orig_state_dict
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : str = [
"""module.v.head.weight""",
"""module.v.head.bias""",
"""module.v.head_dist.weight""",
"""module.v.head_dist.bias""",
]
for k in ignore_keys:
state_dict.pop(_A, _A )
@torch.no_grad()
def UpperCamelCase ( _A, _A, _A=False ):
"""simple docstring"""
__magic_name__ : Dict = get_audio_spectrogram_transformer_config(_A )
__magic_name__ : Optional[Any] = {
"""ast-finetuned-audioset-10-10-0.4593""": (
"""https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.450""": (
"""https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448""": (
"""https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1"""
),
"""ast-finetuned-audioset-10-10-0.448-v2""": (
"""https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1"""
),
"""ast-finetuned-audioset-12-12-0.447""": (
"""https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1"""
),
"""ast-finetuned-audioset-14-14-0.443""": (
"""https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1"""
),
"""ast-finetuned-audioset-16-16-0.442""": (
"""https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1"""
),
"""ast-finetuned-speech-commands-v2""": (
"""https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1"""
),
}
# load original state_dict
__magic_name__ : List[Any] = model_name_to_url[model_name]
__magic_name__ : str = torch.hub.load_state_dict_from_url(_A, map_location="""cpu""" )
# remove some keys
remove_keys(_A )
# rename some keys
__magic_name__ : List[str] = convert_state_dict(_A, _A )
# load 🤗 model
__magic_name__ : Optional[Any] = ASTForAudioClassification(_A )
model.eval()
model.load_state_dict(_A )
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
__magic_name__ : Optional[int] = -4.2677393 if """speech-commands""" not in model_name else -6.845978
__magic_name__ : Union[str, Any] = 4.5689974 if """speech-commands""" not in model_name else 5.5654526
__magic_name__ : List[str] = 1024 if """speech-commands""" not in model_name else 128
__magic_name__ : Any = ASTFeatureExtractor(mean=_A, std=_A, max_length=_A )
if "speech-commands" in model_name:
__magic_name__ : Optional[Any] = load_dataset("""speech_commands""", """v0.02""", split="""validation""" )
__magic_name__ : str = dataset[0]["""audio"""]["""array"""]
else:
__magic_name__ : List[Any] = hf_hub_download(
repo_id="""nielsr/audio-spectogram-transformer-checkpoint""", filename="""sample_audio.flac""", repo_type="""dataset""", )
__magic_name__ ,__magic_name__ : Optional[int] = torchaudio.load(_A )
__magic_name__ : Optional[Any] = waveform.squeeze().numpy()
__magic_name__ : List[str] = feature_extractor(_A, sampling_rate=16000, return_tensors="""pt""" )
# forward pass
__magic_name__ : Any = model(**_A )
__magic_name__ : Tuple = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
__magic_name__ : Union[str, Any] = torch.tensor([-0.8760, -7.0042, -8.6602] )
elif model_name == "ast-finetuned-audioset-10-10-0.450":
__magic_name__ : Union[str, Any] = torch.tensor([-1.1986, -7.0903, -8.2718] )
elif model_name == "ast-finetuned-audioset-10-10-0.448":
__magic_name__ : int = torch.tensor([-2.6128, -8.0080, -9.4344] )
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
__magic_name__ : Union[str, Any] = torch.tensor([-1.5080, -7.4534, -8.8917] )
elif model_name == "ast-finetuned-audioset-12-12-0.447":
__magic_name__ : Union[str, Any] = torch.tensor([-0.5050, -6.5833, -8.0843] )
elif model_name == "ast-finetuned-audioset-14-14-0.443":
__magic_name__ : Union[str, Any] = torch.tensor([-0.3826, -7.0336, -8.2413] )
elif model_name == "ast-finetuned-audioset-16-16-0.442":
__magic_name__ : Union[str, Any] = torch.tensor([-1.2113, -6.9101, -8.3470] )
elif model_name == "ast-finetuned-speech-commands-v2":
__magic_name__ : str = torch.tensor([6.1589, -8.0566, -8.7984] )
else:
raise ValueError("""Unknown model name""" )
if not torch.allclose(logits[0, :3], _A, atol=1e-4 ):
raise ValueError("""Logits don't match""" )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
Path(_A ).mkdir(exist_ok=_A )
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(_A )
print(f'Saving feature extractor to {pytorch_dump_folder_path}' )
feature_extractor.save_pretrained(_A )
if push_to_hub:
print("""Pushing model and feature extractor to the hub...""" )
model.push_to_hub(f'MIT/{model_name}' )
feature_extractor.push_to_hub(f'MIT/{model_name}' )
if __name__ == "__main__":
__magic_name__: List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="ast-finetuned-audioset-10-10-0.4593",
type=str,
help="Name of the Audio Spectrogram Transformer model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
__magic_name__: str = parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 342 |
def UpperCamelCase ( _A ):
"""simple docstring"""
if not all(x.isalpha() for x in string ):
raise ValueError("""String must only contain alphabetic characters.""" )
__magic_name__ : int = sorted(string.lower() )
return len(_A ) == len(set(_A ) )
if __name__ == "__main__":
__magic_name__: Dict = input("Enter a string ").strip()
__magic_name__: Union[str, Any] = is_isogram(input_str)
print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
| 342 | 1 |
import math
def UpperCamelCase ( _A ):
"""simple docstring"""
assert isinstance(_A, _A ) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or not number % 2:
# Negatives, 0, 1 and all even numbers are not primes
return False
__magic_name__ : Optional[int] = range(3, int(math.sqrt(_A ) + 1 ), 2 )
return not any(not number % i for i in odd_numbers )
def UpperCamelCase ( _A, _A=1, **_A ):
"""simple docstring"""
__magic_name__ : Optional[Any] = factor * value
__magic_name__ : str = value
while not is_prime(_A ):
value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1
if value == first_value_val:
return next_prime(value + 1, **_A )
return value
| 342 |
import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
"The `inpainting.py` script is outdated. Please use directly `from diffusers import"
" StableDiffusionInpaintPipeline` instead."
)
| 342 | 1 |
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
__magic_name__: Tuple = "src/transformers"
__magic_name__: List[str] = "docs/source/en"
__magic_name__: List[str] = "."
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
with open(_A, """r""", encoding="""utf-8""", newline="""\n""" ) as f:
__magic_name__ : Union[str, Any] = f.readlines()
# Find the start prompt.
__magic_name__ : Any = 0
while not lines[start_index].startswith(_A ):
start_index += 1
start_index += 1
__magic_name__ : int = start_index
while not lines[end_index].startswith(_A ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
__magic_name__: Union[str, Any] = "Model|Encoder|Decoder|ForConditionalGeneration"
# Regexes that match TF/Flax/PT model names.
__magic_name__: int = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
__magic_name__: List[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
__magic_name__: str = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
# This is to make sure the transformers module imported is the one in the repo.
__magic_name__: Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH)
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : List[Any] = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""", _A )
return [m.group(0 ) for m in matches]
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
__magic_name__ : Any = 2 if text == """✅""" or text == """❌""" else len(_A )
__magic_name__ : Union[str, Any] = (width - text_length) // 2
__magic_name__ : str = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
__magic_name__ : Dict = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
__magic_name__ : Optional[Any] = {name: config.replace("""Config""", """""" ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
__magic_name__ : Optional[Any] = collections.defaultdict(_A )
__magic_name__ : Optional[int] = collections.defaultdict(_A )
__magic_name__ : Union[str, Any] = collections.defaultdict(_A )
__magic_name__ : Optional[int] = collections.defaultdict(_A )
__magic_name__ : Dict = collections.defaultdict(_A )
# Let's lookup through all transformers object (once).
for attr_name in dir(_A ):
__magic_name__ : int = None
if attr_name.endswith("""Tokenizer""" ):
__magic_name__ : Optional[Any] = slow_tokenizers
__magic_name__ : Dict = attr_name[:-9]
elif attr_name.endswith("""TokenizerFast""" ):
__magic_name__ : Union[str, Any] = fast_tokenizers
__magic_name__ : List[str] = attr_name[:-13]
elif _re_tf_models.match(_A ) is not None:
__magic_name__ : List[Any] = tf_models
__magic_name__ : Any = _re_tf_models.match(_A ).groups()[0]
elif _re_flax_models.match(_A ) is not None:
__magic_name__ : int = flax_models
__magic_name__ : Tuple = _re_flax_models.match(_A ).groups()[0]
elif _re_pt_models.match(_A ) is not None:
__magic_name__ : List[Any] = pt_models
__magic_name__ : Dict = _re_pt_models.match(_A ).groups()[0]
if lookup_dict is not None:
while len(_A ) > 0:
if attr_name in model_name_to_prefix.values():
__magic_name__ : int = True
break
# Try again after removing the last word in the name
__magic_name__ : str = """""".join(camel_case_split(_A )[:-1] )
# Let's build that table!
__magic_name__ : str = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
__magic_name__ : Tuple = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""]
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
__magic_name__ : Optional[Any] = [len(_A ) + 2 for c in columns]
__magic_name__ : Optional[Any] = max([len(_A ) for name in model_names] ) + 2
# Build the table per se
__magic_name__ : Optional[Any] = """|""" + """|""".join([_center_text(_A, _A ) for c, w in zip(_A, _A )] ) + """|\n"""
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n"
__magic_name__ : Dict = {True: """✅""", False: """❌"""}
for name in model_names:
__magic_name__ : List[str] = model_name_to_prefix[name]
__magic_name__ : Dict = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(_A, _A ) for l, w in zip(_A, _A )] ) + "|\n"
return table
def UpperCamelCase ( _A=False ):
"""simple docstring"""
__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : List[Any] = _find_text_in_file(
filename=os.path.join(_A, """index.md""" ), start_prompt="""<!--This table is updated automatically from the auto modules""", end_prompt="""<!-- End table-->""", )
__magic_name__ : List[Any] = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(_A, """index.md""" ), """w""", encoding="""utf-8""", newline="""\n""" ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
"""The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" )
if __name__ == "__main__":
__magic_name__: Optional[int] = argparse.ArgumentParser()
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
__magic_name__: Any = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 342 |
import unittest
from typing import Dict, List, Optional, Union
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BridgeTowerImageProcessor
class snake_case__ ( unittest.TestCase ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]:
__magic_name__ : str = parent
__magic_name__ : Dict = do_resize
__magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88}
__magic_name__ : Union[str, Any] = size_divisor
__magic_name__ : Union[str, Any] = do_rescale
__magic_name__ : Dict = rescale_factor
__magic_name__ : Union[str, Any] = do_normalize
__magic_name__ : List[str] = do_center_crop
__magic_name__ : Tuple = image_mean
__magic_name__ : Tuple = image_std
__magic_name__ : Tuple = do_pad
__magic_name__ : int = batch_size
__magic_name__ : List[Any] = num_channels
__magic_name__ : int = min_resolution
__magic_name__ : str = max_resolution
def __magic_name__ ( self ) -> str:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"size_divisor": self.size_divisor,
}
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int:
if not batched:
__magic_name__ : Dict = self.size["""shortest_edge"""]
__magic_name__ : List[str] = image_inputs[0]
if isinstance(lowerCAmelCase__ , Image.Image ):
__magic_name__ ,__magic_name__ : List[Any] = image.size
else:
__magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2]
__magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ )
if h < w:
__magic_name__ ,__magic_name__ : str = size, scale * w
else:
__magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size
__magic_name__ : Tuple = int((13_33 / 8_00) * size )
if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size:
__magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = newh * scale
__magic_name__ : Any = neww * scale
__magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 )
__magic_name__ ,__magic_name__ : int = (
newh // self.size_divisor * self.size_divisor,
neww // self.size_divisor * self.size_divisor,
)
else:
__magic_name__ : Union[str, Any] = []
for image in image_inputs:
__magic_name__ ,__magic_name__ : int = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
__magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0]
__magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : Any = BridgeTowerImageProcessingTester(self )
@property
def __magic_name__ ( self ) -> List[Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def __magic_name__ ( self ) -> Any:
__magic_name__ : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) )
def __magic_name__ ( self ) -> Optional[int]:
pass
def __magic_name__ ( self ) -> Tuple:
# Initialize image processor
__magic_name__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
__magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __magic_name__ ( self ) -> Tuple:
# Initialize image processor
__magic_name__ : str = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
__magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def __magic_name__ ( self ) -> str:
# Initialize image processor
__magic_name__ : int = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
__magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
__magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
__magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
| 342 | 1 |
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_tf_outputs import (
TFBaseModelOutputWithNoAttention,
TFBaseModelOutputWithPoolingAndNoAttention,
TFSequenceClassifierOutput,
)
from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs
from ...tf_utils import shape_list
from ...utils import logging
from .configuration_regnet import RegNetConfig
__magic_name__: Dict = logging.get_logger(__name__)
# General docstring
__magic_name__: List[Any] = "RegNetConfig"
# Base docstring
__magic_name__: Optional[int] = "facebook/regnet-y-040"
__magic_name__: str = [1, 1_088, 7, 7]
# Image classification docstring
__magic_name__: int = "facebook/regnet-y-040"
__magic_name__: int = "tabby, tabby cat"
__magic_name__: Union[str, Any] = [
"facebook/regnet-y-040",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class snake_case__ ( tf.keras.layers.Layer ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = "relu" , **lowerCAmelCase__ , ) -> List[Any]:
super().__init__(**lowerCAmelCase__ )
# The padding and conv has been verified in
# https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb
__magic_name__ : int = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 )
__magic_name__ : Union[str, Any] = tf.keras.layers.ConvaD(
filters=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , strides=lowerCAmelCase__ , padding="""VALID""" , groups=lowerCAmelCase__ , use_bias=lowerCAmelCase__ , name="""convolution""" , )
__magic_name__ : Dict = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" )
__magic_name__ : Dict = ACTaFN[activation] if activation is not None else tf.identity
def __magic_name__ ( self , lowerCAmelCase__ ) -> Any:
__magic_name__ : Dict = self.convolution(self.padding(lowerCAmelCase__ ) )
__magic_name__ : List[Any] = self.normalization(lowerCAmelCase__ )
__magic_name__ : str = self.activation(lowerCAmelCase__ )
return hidden_state
class snake_case__ ( tf.keras.layers.Layer ):
def __init__( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]:
super().__init__(**lowerCAmelCase__ )
__magic_name__ : int = config.num_channels
__magic_name__ : Any = TFRegNetConvLayer(
out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name="""embedder""" , )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Any:
__magic_name__ : str = shape_list(lowerCAmelCase__ )[1]
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"""Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" )
# When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format.
# So change the input format from `NCHW` to `NHWC`.
# shape = (batch_size, in_height, in_width, in_channels=num_channels)
__magic_name__ : Tuple = tf.transpose(lowerCAmelCase__ , perm=(0, 2, 3, 1) )
__magic_name__ : int = self.embedder(lowerCAmelCase__ )
return hidden_state
class snake_case__ ( tf.keras.layers.Layer ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = 2 , **lowerCAmelCase__ ) -> List[Any]:
super().__init__(**lowerCAmelCase__ )
__magic_name__ : Optional[int] = tf.keras.layers.ConvaD(
filters=lowerCAmelCase__ , kernel_size=1 , strides=lowerCAmelCase__ , use_bias=lowerCAmelCase__ , name="""convolution""" )
__magic_name__ : Optional[int] = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name="""normalization""" )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> tf.Tensor:
return self.normalization(self.convolution(lowerCAmelCase__ ) , training=lowerCAmelCase__ )
class snake_case__ ( tf.keras.layers.Layer ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple:
super().__init__(**lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCAmelCase__ , name="""pooler""" )
__magic_name__ : List[str] = [
tf.keras.layers.ConvaD(filters=lowerCAmelCase__ , kernel_size=1 , activation="""relu""" , name="""attention.0""" ),
tf.keras.layers.ConvaD(filters=lowerCAmelCase__ , kernel_size=1 , activation="""sigmoid""" , name="""attention.2""" ),
]
def __magic_name__ ( self , lowerCAmelCase__ ) -> str:
# [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels]
__magic_name__ : Dict = self.pooler(lowerCAmelCase__ )
for layer_module in self.attention:
__magic_name__ : Any = layer_module(lowerCAmelCase__ )
__magic_name__ : Any = hidden_state * pooled
return hidden_state
class snake_case__ ( tf.keras.layers.Layer ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 , **lowerCAmelCase__ ) -> Optional[int]:
super().__init__(**lowerCAmelCase__ )
__magic_name__ : Tuple = in_channels != out_channels or stride != 1
__magic_name__ : Any = max(1 , out_channels // config.groups_width )
__magic_name__ : Any = (
TFRegNetShortCut(lowerCAmelCase__ , stride=lowerCAmelCase__ , name="""shortcut""" )
if should_apply_shortcut
else tf.keras.layers.Activation("""linear""" , name="""shortcut""" )
)
# `self.layers` instead of `self.layer` because that is a reserved argument.
__magic_name__ : List[Any] = [
TFRegNetConvLayer(lowerCAmelCase__ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ),
TFRegNetConvLayer(
lowerCAmelCase__ , stride=lowerCAmelCase__ , groups=lowerCAmelCase__ , activation=config.hidden_act , name="""layer.1""" ),
TFRegNetConvLayer(lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ , name="""layer.2""" ),
]
__magic_name__ : Optional[Any] = ACTaFN[config.hidden_act]
def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]:
__magic_name__ : List[str] = hidden_state
for layer_module in self.layers:
__magic_name__ : Optional[Any] = layer_module(lowerCAmelCase__ )
__magic_name__ : int = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
__magic_name__ : Dict = self.activation(lowerCAmelCase__ )
return hidden_state
class snake_case__ ( tf.keras.layers.Layer ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1 , **lowerCAmelCase__ ) -> Optional[int]:
super().__init__(**lowerCAmelCase__ )
__magic_name__ : Optional[int] = in_channels != out_channels or stride != 1
__magic_name__ : str = max(1 , out_channels // config.groups_width )
__magic_name__ : List[Any] = (
TFRegNetShortCut(lowerCAmelCase__ , stride=lowerCAmelCase__ , name="""shortcut""" )
if should_apply_shortcut
else tf.keras.layers.Activation("""linear""" , name="""shortcut""" )
)
__magic_name__ : Any = [
TFRegNetConvLayer(lowerCAmelCase__ , kernel_size=1 , activation=config.hidden_act , name="""layer.0""" ),
TFRegNetConvLayer(
lowerCAmelCase__ , stride=lowerCAmelCase__ , groups=lowerCAmelCase__ , activation=config.hidden_act , name="""layer.1""" ),
TFRegNetSELayer(lowerCAmelCase__ , reduced_channels=int(round(in_channels / 4 ) ) , name="""layer.2""" ),
TFRegNetConvLayer(lowerCAmelCase__ , kernel_size=1 , activation=lowerCAmelCase__ , name="""layer.3""" ),
]
__magic_name__ : Tuple = ACTaFN[config.hidden_act]
def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : str = hidden_state
for layer_module in self.layers:
__magic_name__ : Any = layer_module(lowerCAmelCase__ )
__magic_name__ : List[str] = self.shortcut(lowerCAmelCase__ )
hidden_state += residual
__magic_name__ : Dict = self.activation(lowerCAmelCase__ )
return hidden_state
class snake_case__ ( tf.keras.layers.Layer ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 2 , **lowerCAmelCase__ ) -> int:
super().__init__(**lowerCAmelCase__ )
__magic_name__ : Dict = TFRegNetXLayer if config.layer_type == """x""" else TFRegNetYLayer
__magic_name__ : Optional[int] = [
# downsampling is done in the first layer with stride of 2
layer(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , stride=lowerCAmelCase__ , name="""layers.0""" ),
*[layer(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , name=F'layers.{i+1}' ) for i in range(depth - 1 )],
]
def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]:
for layer_module in self.layers:
__magic_name__ : str = layer_module(lowerCAmelCase__ )
return hidden_state
class snake_case__ ( tf.keras.layers.Layer ):
def __init__( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> str:
super().__init__(**lowerCAmelCase__ )
__magic_name__ : List[str] = []
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
TFRegNetStage(
lowerCAmelCase__ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name="""stages.0""" , ) )
__magic_name__ : Any = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for i, ((in_channels, out_channels), depth) in enumerate(zip(lowerCAmelCase__ , config.depths[1:] ) ):
self.stages.append(TFRegNetStage(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , depth=lowerCAmelCase__ , name=F'stages.{i+1}' ) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False , lowerCAmelCase__ = True ) -> TFBaseModelOutputWithNoAttention:
__magic_name__ : Optional[int] = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
__magic_name__ : Dict = hidden_states + (hidden_state,)
__magic_name__ : Optional[int] = stage_module(lowerCAmelCase__ )
if output_hidden_states:
__magic_name__ : Optional[int] = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return TFBaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ )
@keras_serializable
class snake_case__ ( tf.keras.layers.Layer ):
lowercase__ : str = RegNetConfig
def __init__( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict:
super().__init__(**lowerCAmelCase__ )
__magic_name__ : List[Any] = config
__magic_name__ : Union[str, Any] = TFRegNetEmbeddings(lowerCAmelCase__ , name="""embedder""" )
__magic_name__ : int = TFRegNetEncoder(lowerCAmelCase__ , name="""encoder""" )
__magic_name__ : List[str] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowerCAmelCase__ , name="""pooler""" )
@unpack_inputs
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention:
__magic_name__ : Any = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__magic_name__ : Optional[int] = return_dict if return_dict is not None else self.config.use_return_dict
__magic_name__ : Optional[Any] = self.embedder(lowerCAmelCase__ , training=lowerCAmelCase__ )
__magic_name__ : str = self.encoder(
lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , training=lowerCAmelCase__ )
__magic_name__ : Dict = encoder_outputs[0]
__magic_name__ : List[str] = self.pooler(lowerCAmelCase__ )
# Change to NCHW output format have uniformity in the modules
__magic_name__ : Any = tf.transpose(lowerCAmelCase__ , perm=(0, 3, 1, 2) )
__magic_name__ : Optional[int] = tf.transpose(lowerCAmelCase__ , perm=(0, 3, 1, 2) )
# Change the other hidden state outputs to NCHW as well
if output_hidden_states:
__magic_name__ : List[str] = tuple([tf.transpose(lowerCAmelCase__ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , )
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : int = RegNetConfig
lowercase__ : List[str] = '''regnet'''
lowercase__ : List[Any] = '''pixel_values'''
@property
def __magic_name__ ( self ) -> Optional[Any]:
return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_24, 2_24) , dtype=tf.floataa )}
__magic_name__: Optional[int] = r"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n"
__magic_name__: Any = r"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
'''The bare RegNet model outputting raw features without any specific head on top.''' , _lowerCAmelCase , )
class snake_case__ ( _lowerCAmelCase ):
def __init__( self , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict:
super().__init__(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = TFRegNetMainLayer(lowerCAmelCase__ , name="""regnet""" )
@unpack_inputs
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]:
__magic_name__ : Optional[int] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__magic_name__ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict
__magic_name__ : List[Any] = self.regnet(
pixel_values=lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , training=lowerCAmelCase__ , )
if not return_dict:
return (outputs[0],) + outputs[1:]
return TFBaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , )
@add_start_docstrings(
'''
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
''' , _lowerCAmelCase , )
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase ):
def __init__( self , lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[int]:
super().__init__(lowerCAmelCase__ , *lowerCAmelCase__ , **lowerCAmelCase__ )
__magic_name__ : List[str] = config.num_labels
__magic_name__ : int = TFRegNetMainLayer(lowerCAmelCase__ , name="""regnet""" )
# classification head
__magic_name__ : Any = [
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(config.num_labels , name="""classifier.1""" ) if config.num_labels > 0 else tf.identity,
]
@unpack_inputs
@add_start_docstrings_to_model_forward(lowerCAmelCase__ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def __magic_name__ ( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
__magic_name__ : str = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__magic_name__ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict
__magic_name__ : Tuple = self.regnet(
lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , training=lowerCAmelCase__ )
__magic_name__ : List[Any] = outputs.pooler_output if return_dict else outputs[1]
__magic_name__ : Tuple = self.classifier[0](lowerCAmelCase__ )
__magic_name__ : Optional[Any] = self.classifier[1](lowerCAmelCase__ )
__magic_name__ : Optional[int] = None if labels is None else self.hf_compute_loss(labels=lowerCAmelCase__ , logits=lowerCAmelCase__ )
if not return_dict:
__magic_name__ : Any = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TFSequenceClassifierOutput(loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states )
| 342 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__magic_name__: Tuple = {
"configuration_clap": [
"CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClapAudioConfig",
"ClapConfig",
"ClapTextConfig",
],
"processing_clap": ["ClapProcessor"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__: Union[str, Any] = [
"CLAP_PRETRAINED_MODEL_ARCHIVE_LIST",
"ClapModel",
"ClapPreTrainedModel",
"ClapTextModel",
"ClapTextModelWithProjection",
"ClapAudioModel",
"ClapAudioModelWithProjection",
]
__magic_name__: Optional[Any] = ["ClapFeatureExtractor"]
if TYPE_CHECKING:
from .configuration_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioConfig,
ClapConfig,
ClapTextConfig,
)
from .processing_clap import ClapProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clap import ClapFeatureExtractor
from .modeling_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioModel,
ClapAudioModelWithProjection,
ClapModel,
ClapPreTrainedModel,
ClapTextModel,
ClapTextModelWithProjection,
)
else:
import sys
__magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 342 | 1 |
import gc
import random
import unittest
import torch
from diffusers import (
IFImgaImgPipeline,
IFImgaImgSuperResolutionPipeline,
IFInpaintingPipeline,
IFInpaintingSuperResolutionPipeline,
IFPipeline,
IFSuperResolutionPipeline,
)
from diffusers.models.attention_processor import AttnAddedKVProcessor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
from . import IFPipelineTesterMixin
@skip_mps
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : List[Any] = IFPipeline
lowercase__ : Dict = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''}
lowercase__ : int = TEXT_TO_IMAGE_BATCH_PARAMS
lowercase__ : List[str] = PipelineTesterMixin.required_optional_params - {'''latents'''}
def __magic_name__ ( self ) -> int:
return self._get_dummy_components()
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> str:
if str(lowerCAmelCase__ ).startswith("""mps""" ):
__magic_name__ : Optional[int] = torch.manual_seed(lowerCAmelCase__ )
else:
__magic_name__ : Union[str, Any] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ )
__magic_name__ : Any = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def __magic_name__ ( self ) -> Dict:
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def __magic_name__ ( self ) -> int:
# Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder
super().test_save_load_floataa(expected_max_diff=1e-1 )
def __magic_name__ ( self ) -> Any:
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def __magic_name__ ( self ) -> List[str]:
self._test_save_load_local()
def __magic_name__ ( self ) -> str:
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def __magic_name__ ( self ) -> int:
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@slow
@require_torch_gpu
class snake_case__ ( unittest.TestCase ):
def __magic_name__ ( self ) -> Tuple:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def __magic_name__ ( self ) -> Tuple:
# if
__magic_name__ : int = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa )
__magic_name__ : Any = IFSuperResolutionPipeline.from_pretrained(
"""DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ )
# pre compute text embeddings and remove T5 to save memory
pipe_a.text_encoder.to("""cuda""" )
__magic_name__ ,__magic_name__ : Tuple = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" )
del pipe_a.tokenizer
del pipe_a.text_encoder
gc.collect()
__magic_name__ : Dict = None
__magic_name__ : Union[str, Any] = None
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# img2img
__magic_name__ : Dict = IFImgaImgPipeline(**pipe_a.components )
__magic_name__ : Union[str, Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_imgaimg(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
pipe_a.remove_all_hooks()
pipe_a.remove_all_hooks()
# inpainting
__magic_name__ : Optional[Any] = IFInpaintingPipeline(**pipe_a.components )
__magic_name__ : int = IFInpaintingSuperResolutionPipeline(**pipe_a.components )
pipe_a.enable_model_cpu_offload()
pipe_a.enable_model_cpu_offload()
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() )
self._test_if_inpainting(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int:
# pipeline 1
_start_torch_memory_measurement()
__magic_name__ : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__magic_name__ : str = pipe_a(
prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , num_inference_steps=2 , generator=lowerCAmelCase__ , output_type="""np""" , )
__magic_name__ : Any = output.images[0]
assert image.shape == (64, 64, 3)
__magic_name__ : Tuple = torch.cuda.max_memory_allocated()
assert mem_bytes < 13 * 10**9
__magic_name__ : Tuple = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" )
assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
# pipeline 2
_start_torch_memory_measurement()
__magic_name__ : Optional[int] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__magic_name__ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = pipe_a(
prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="""np""" , )
__magic_name__ : Any = output.images[0]
assert image.shape == (2_56, 2_56, 3)
__magic_name__ : Union[str, Any] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
__magic_name__ : Dict = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" )
assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict:
# pipeline 1
_start_torch_memory_measurement()
__magic_name__ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowerCAmelCase__ )
__magic_name__ : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__magic_name__ : Optional[Any] = pipe_a(
prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , image=lowerCAmelCase__ , num_inference_steps=2 , generator=lowerCAmelCase__ , output_type="""np""" , )
__magic_name__ : str = output.images[0]
assert image.shape == (64, 64, 3)
__magic_name__ : int = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
__magic_name__ : List[str] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" )
assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
# pipeline 2
_start_torch_memory_measurement()
__magic_name__ : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__magic_name__ : Optional[Any] = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowerCAmelCase__ )
__magic_name__ : List[str] = pipe_a(
prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , image=lowerCAmelCase__ , original_image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="""np""" , )
__magic_name__ : Optional[Any] = output.images[0]
assert image.shape == (2_56, 2_56, 3)
__magic_name__ : Optional[int] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
__magic_name__ : Optional[int] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" )
assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]:
# pipeline 1
_start_torch_memory_measurement()
__magic_name__ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowerCAmelCase__ )
__magic_name__ : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(lowerCAmelCase__ )
__magic_name__ : int = torch.Generator(device="""cpu""" ).manual_seed(0 )
__magic_name__ : Any = pipe_a(
prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , num_inference_steps=2 , generator=lowerCAmelCase__ , output_type="""np""" , )
__magic_name__ : Optional[Any] = output.images[0]
assert image.shape == (64, 64, 3)
__magic_name__ : int = torch.cuda.max_memory_allocated()
assert mem_bytes < 10 * 10**9
__magic_name__ : str = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" )
assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
# pipeline 2
_start_torch_memory_measurement()
__magic_name__ : Optional[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 )
__magic_name__ : Any = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowerCAmelCase__ )
__magic_name__ : Any = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(lowerCAmelCase__ )
__magic_name__ : str = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(lowerCAmelCase__ )
__magic_name__ : Any = pipe_a(
prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , original_image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="""np""" , )
__magic_name__ : Optional[Any] = output.images[0]
assert image.shape == (2_56, 2_56, 3)
__magic_name__ : Optional[int] = torch.cuda.max_memory_allocated()
assert mem_bytes < 4 * 10**9
__magic_name__ : Optional[int] = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" )
assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
def UpperCamelCase ( ):
"""simple docstring"""
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
| 342 |
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
__magic_name__: Dict = logging.get_logger(__name__)
__magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
# See all BART models at https://huggingface.co/models?filter=bart
__magic_name__: Optional[Any] = {
"vocab_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json",
},
"merges_file": {
"facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt",
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt",
"facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt",
"facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt",
"facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt",
"yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt",
},
}
__magic_name__: List[Any] = {
"facebook/bart-base": 1_024,
"facebook/bart-large": 1_024,
"facebook/bart-large-mnli": 1_024,
"facebook/bart-large-cnn": 1_024,
"facebook/bart-large-xsum": 1_024,
"yjernite/bart_eli5": 1_024,
}
@lru_cache()
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : Any = (
list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) )
)
__magic_name__ : Any = bs[:]
__magic_name__ : Dict = 0
for b in range(2**8 ):
if b not in bs:
bs.append(_A )
cs.append(2**8 + n )
n += 1
__magic_name__ : List[str] = [chr(_A ) for n in cs]
return dict(zip(_A, _A ) )
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : str = set()
__magic_name__ : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__magic_name__ : List[Any] = char
return pairs
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES
lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask''']
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict:
__magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
__magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
__magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
__magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
__magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
__magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , )
with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle:
__magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ )
__magic_name__ : Any = {v: k for k, v in self.encoder.items()}
__magic_name__ : Tuple = errors # how to handle errors in decoding
__magic_name__ : Tuple = bytes_to_unicode()
__magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle:
__magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1]
__magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges]
__magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
__magic_name__ : str = {}
__magic_name__ : int = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" )
@property
def __magic_name__ ( self ) -> Optional[Any]:
return len(self.encoder )
def __magic_name__ ( self ) -> Optional[int]:
return dict(self.encoder , **self.added_tokens_encoder )
def __magic_name__ ( self , lowerCAmelCase__ ) -> str:
if token in self.cache:
return self.cache[token]
__magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ )
if not pairs:
return token
while True:
__magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) )
if bigram not in self.bpe_ranks:
break
__magic_name__ ,__magic_name__ : List[str] = bigram
__magic_name__ : Any = []
__magic_name__ : Any = 0
while i < len(lowerCAmelCase__ ):
try:
__magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__magic_name__ : Optional[Any] = j
if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__magic_name__ : str = tuple(lowerCAmelCase__ )
__magic_name__ : Optional[int] = new_word
if len(lowerCAmelCase__ ) == 1:
break
else:
__magic_name__ : List[str] = get_pairs(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ )
__magic_name__ : str = word
return word
def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : str = []
for token in re.findall(self.pat , lowerCAmelCase__ ):
__magic_name__ : List[Any] = """""".join(
self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) )
return bpe_tokens
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.decoder.get(lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Any:
__magic_name__ : Tuple = """""".join(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors )
return text
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
__magic_name__ : Tuple = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
__magic_name__ : List[str] = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] )
with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" )
__magic_name__ : Optional[Any] = 0
with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer:
writer.write("""#version: 0.2\n""" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ):
if index != token_index:
logger.warning(
F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
""" Please check that the tokenizer is not corrupted!""" )
__magic_name__ : Optional[int] = token_index
writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" )
index += 1
return vocab_file, merge_file
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__magic_name__ : List[str] = [self.cls_token_id]
__magic_name__ : Any = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
__magic_name__ : Dict = [self.sep_token_id]
__magic_name__ : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()):
__magic_name__ : List[Any] = """ """ + text
return (text, kwargs)
| 342 | 1 |
import math
class snake_case__ :
def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1
__magic_name__ : Tuple = n
__magic_name__ : Union[str, Any] = [
[math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ )
] # adjacency matrix for weight
__magic_name__ : List[Any] = [
[math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ )
] # dp[i][j] stores minimum distance from i to j
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : Dict = w
def __magic_name__ ( self ) -> Optional[int]:
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
__magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str:
return self.dp[u][v]
if __name__ == "__main__":
__magic_name__: Dict = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 342 |
import collections
import inspect
import unittest
from transformers import FocalNetConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
)
from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str:
__magic_name__ : Optional[int] = parent
__magic_name__ : Any = batch_size
__magic_name__ : Union[str, Any] = image_size
__magic_name__ : Optional[int] = patch_size
__magic_name__ : Union[str, Any] = num_channels
__magic_name__ : str = embed_dim
__magic_name__ : int = hidden_sizes
__magic_name__ : Union[str, Any] = depths
__magic_name__ : List[str] = num_heads
__magic_name__ : str = window_size
__magic_name__ : Optional[Any] = mlp_ratio
__magic_name__ : Dict = qkv_bias
__magic_name__ : Dict = hidden_dropout_prob
__magic_name__ : Optional[Any] = attention_probs_dropout_prob
__magic_name__ : List[Any] = drop_path_rate
__magic_name__ : Optional[Any] = hidden_act
__magic_name__ : int = use_absolute_embeddings
__magic_name__ : Dict = patch_norm
__magic_name__ : Tuple = layer_norm_eps
__magic_name__ : List[str] = initializer_range
__magic_name__ : Optional[int] = is_training
__magic_name__ : Optional[Any] = scope
__magic_name__ : Union[str, Any] = use_labels
__magic_name__ : Optional[Any] = type_sequence_label_size
__magic_name__ : Union[str, Any] = encoder_stride
__magic_name__ : List[Any] = out_features
__magic_name__ : Union[str, Any] = out_indices
def __magic_name__ ( self ) -> str:
__magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__magic_name__ : Optional[Any] = None
if self.use_labels:
__magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : Dict = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self ) -> List[Any]:
return FocalNetConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Optional[int] = model(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1))
__magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Tuple = model(lowerCAmelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] )
# verify backbone works with out_features=None
__magic_name__ : Optional[Any] = None
__magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Union[str, Any] = model(lowerCAmelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : str = model(lowerCAmelCase__ )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
__magic_name__ : Optional[int] = 1
__magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__magic_name__ : List[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : int = self.type_sequence_label_size
__magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__magic_name__ : Optional[int] = 1
__magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__magic_name__ : Dict = model(lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def __magic_name__ ( self ) -> int:
__magic_name__ : int = self.prepare_config_and_inputs()
__magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs
__magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : str = (
(
FocalNetModel,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetBackbone,
)
if is_torch_available()
else ()
)
lowercase__ : Any = (
{'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification}
if is_torch_available()
else {}
)
lowercase__ : Dict = False
lowercase__ : Dict = False
lowercase__ : int = False
lowercase__ : Tuple = False
lowercase__ : Optional[Any] = False
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Optional[Any] = FocalNetModelTester(self )
__magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __magic_name__ ( self ) -> List[str]:
return
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ )
@unittest.skip(reason="""FocalNet does not use inputs_embeds""" )
def __magic_name__ ( self ) -> List[str]:
pass
@unittest.skip(reason="""FocalNet does not use feedforward chunking""" )
def __magic_name__ ( self ) -> List[Any]:
pass
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
__magic_name__ : Dict = model_class(lowerCAmelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__magic_name__ : Dict = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes[:-1]:
__magic_name__ : str = model_class(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Tuple = [*signature.parameters.keys()]
__magic_name__ : str = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict:
__magic_name__ : List[Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : Optional[Any] = outputs.hidden_states
__magic_name__ : Union[str, Any] = getattr(
self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 )
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
# FocalNet has a different seq_length
__magic_name__ : List[str] = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
__magic_name__ : str = outputs.reshaped_hidden_states
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
__magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape
__magic_name__ : Union[str, Any] = (
reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 )
)
self.assertListEqual(
list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , )
def __magic_name__ ( self ) -> str:
__magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
for model_class in self.all_model_classes[:-1]:
__magic_name__ : List[Any] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : Optional[Any] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self ) -> str:
__magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[Any] = 3
__magic_name__ : Union[str, Any] = (
self.model_tester.image_size
if isinstance(self.model_tester.image_size , collections.abc.Iterable )
else (self.model_tester.image_size, self.model_tester.image_size)
)
__magic_name__ : Dict = (
config.patch_size
if isinstance(config.patch_size , collections.abc.Iterable )
else (config.patch_size, config.patch_size)
)
__magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0])
__magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1])
for model_class in self.all_model_classes[:-1]:
__magic_name__ : Optional[int] = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : str = True
self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) )
@slow
def __magic_name__ ( self ) -> Union[str, Any]:
for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ )
for model_class in self.all_model_classes:
__magic_name__ : Any = model_class(config=lowerCAmelCase__ )
for name, param in model.named_parameters():
if "embeddings" not in name and param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@require_vision
@require_torch
class snake_case__ ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self ) -> Optional[int]:
# TODO update organization
return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None
@slow
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = self.default_image_processor
__magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
__magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
__magic_name__ : List[Any] = model(**lowerCAmelCase__ )
# verify the logits
__magic_name__ : Union[str, Any] = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
__magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 )
@require_torch
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else ()
lowercase__ : Optional[int] = FocalNetConfig
lowercase__ : Dict = False
def __magic_name__ ( self ) -> int:
__magic_name__ : Dict = FocalNetModelTester(self )
| 342 | 1 |
import itertools
import math
def UpperCamelCase ( _A ):
"""simple docstring"""
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(_A ) + 1 ), 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : List[Any] = 2
while True:
if is_prime(_A ):
yield num
num += 1
def UpperCamelCase ( _A = 10001 ):
"""simple docstring"""
return next(itertools.islice(prime_generator(), nth - 1, _A ) )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 342 |
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]:
__magic_name__ : int = parent
__magic_name__ : Tuple = batch_size
__magic_name__ : int = image_size
__magic_name__ : str = num_channels
__magic_name__ : Dict = patch_size
__magic_name__ : Tuple = num_frames
__magic_name__ : List[Any] = is_training
__magic_name__ : List[Any] = use_labels
__magic_name__ : Dict = hidden_size
__magic_name__ : List[Any] = num_hidden_layers
__magic_name__ : str = num_attention_heads
__magic_name__ : List[Any] = intermediate_size
__magic_name__ : Dict = hidden_act
__magic_name__ : List[Any] = hidden_dropout_prob
__magic_name__ : Union[str, Any] = attention_probs_dropout_prob
__magic_name__ : Tuple = attention_type
__magic_name__ : List[str] = initializer_range
__magic_name__ : Optional[Any] = scope
__magic_name__ : Tuple = num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
__magic_name__ : str = (image_size // patch_size) ** 2
__magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Optional[Any] = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
__magic_name__ : str = None
if self.use_labels:
__magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels )
__magic_name__ : Optional[Any] = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self ) -> str:
__magic_name__ : Dict = TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
__magic_name__ : Optional[Any] = self.num_labels
return config
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
__magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Optional[Any] = model(lowerCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any:
__magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : List[Any] = model(lowerCAmelCase__ )
# verify the logits shape
__magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ )
def __magic_name__ ( self ) -> Any:
__magic_name__ : Union[str, Any] = self.prepare_config_and_inputs()
__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs
__magic_name__ : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
lowercase__ : Union[str, Any] = (
{'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification}
if is_torch_available()
else {}
)
lowercase__ : int = False
lowercase__ : str = False
lowercase__ : Tuple = False
lowercase__ : Any = False
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : List[Any] = TimesformerModelTester(self )
__magic_name__ : List[str] = ConfigTester(
self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]:
__magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ )
if return_labels:
if model_class in get_values(lowerCAmelCase__ ):
__magic_name__ : Union[str, Any] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ )
return inputs_dict
def __magic_name__ ( self ) -> List[str]:
self.config_tester.run_common_tests()
@unittest.skip(reason="""TimeSformer does not use inputs_embeds""" )
def __magic_name__ ( self ) -> str:
pass
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : List[Any] = model_class(lowerCAmelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__magic_name__ : Tuple = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) )
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Dict = model_class(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Optional[int] = [*signature.parameters.keys()]
__magic_name__ : Any = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ )
@slow
def __magic_name__ ( self ) -> Optional[int]:
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
if not self.has_attentions:
pass
else:
__magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Optional[int] = True
for model_class in self.all_model_classes:
__magic_name__ : Tuple = self.model_tester.seq_length
__magic_name__ : int = self.model_tester.num_frames
__magic_name__ : Any = True
__magic_name__ : Tuple = False
__magic_name__ : Optional[int] = True
__magic_name__ : str = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : List[str] = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
__magic_name__ : Optional[Any] = True
__magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : int = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
__magic_name__ : Union[str, Any] = len(lowerCAmelCase__ )
# Check attention is always last and order is fine
__magic_name__ : str = True
__magic_name__ : Optional[Any] = True
__magic_name__ : int = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) )
__magic_name__ : Union[str, Any] = outputs.attentions
self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def __magic_name__ ( self ) -> Any:
def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
__magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : Optional[Any] = outputs.hidden_states
__magic_name__ : str = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ )
__magic_name__ : str = self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
__magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Optional[Any] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : Union[str, Any] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : List[Any] = hf_hub_download(
repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" )
__magic_name__ : List[str] = np.load(_A )
return list(_A )
@require_torch
@require_vision
class snake_case__ ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self ) -> Optional[Any]:
# logits were tested with a different mean and std, so we use the same here
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to(
lowerCAmelCase__ )
__magic_name__ : str = self.default_image_processor
__magic_name__ : Any = prepare_video()
__magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
__magic_name__ : int = model(**lowerCAmelCase__ )
# verify the logits
__magic_name__ : Optional[int] = torch.Size((1, 4_00) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
| 342 | 1 |
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : UNetaDModel
lowercase__ : ScoreSdeVeScheduler
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
super().__init__()
self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ )
@torch.no_grad()
def __call__( self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 20_00 , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , **lowerCAmelCase__ , ) -> Union[ImagePipelineOutput, Tuple]:
__magic_name__ : int = self.unet.config.sample_size
__magic_name__ : Optional[int] = (batch_size, 3, img_size, img_size)
__magic_name__ : List[str] = self.unet
__magic_name__ : int = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ ) * self.scheduler.init_noise_sigma
__magic_name__ : List[Any] = sample.to(self.device )
self.scheduler.set_timesteps(lowerCAmelCase__ )
self.scheduler.set_sigmas(lowerCAmelCase__ )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
__magic_name__ : List[Any] = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
__magic_name__ : int = self.unet(lowerCAmelCase__ , lowerCAmelCase__ ).sample
__magic_name__ : Tuple = self.scheduler.step_correct(lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample
# prediction step
__magic_name__ : Optional[int] = model(lowerCAmelCase__ , lowerCAmelCase__ ).sample
__magic_name__ : Tuple = self.scheduler.step_pred(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
__magic_name__ ,__magic_name__ : Tuple = output.prev_sample, output.prev_sample_mean
__magic_name__ : Tuple = sample_mean.clamp(0 , 1 )
__magic_name__ : int = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__magic_name__ : Optional[Any] = self.numpy_to_pil(lowerCAmelCase__ )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=lowerCAmelCase__ )
| 342 |
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : List[Any] = [0] * len(_A )
__magic_name__ : List[str] = []
__magic_name__ : List[str] = [1] * len(_A )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(_A ) ):
if indegree[i] == 0:
queue.append(_A )
while queue:
__magic_name__ : Dict = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
__magic_name__ : int = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(_A )
print(max(_A ) )
# Adjacency list of Graph
__magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 342 | 1 |
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert_fast import BertTokenizerFast
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
__magic_name__: Optional[Any] = logging.get_logger(__name__)
__magic_name__: Dict = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
__magic_name__: Optional[int] = {
"vocab_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-ctx_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-ctx_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
__magic_name__: Optional[int] = {
"vocab_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-question_encoder-single-nq-base": (
"https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-question_encoder-multiset-base": (
"https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json"
),
},
}
__magic_name__: List[Any] = {
"vocab_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt"
),
},
"tokenizer_file": {
"facebook/dpr-reader-single-nq-base": (
"https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json"
),
"facebook/dpr-reader-multiset-base": (
"https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json"
),
},
}
__magic_name__: Optional[Any] = {
"facebook/dpr-ctx_encoder-single-nq-base": 512,
"facebook/dpr-ctx_encoder-multiset-base": 512,
}
__magic_name__: List[Any] = {
"facebook/dpr-question_encoder-single-nq-base": 512,
"facebook/dpr-question_encoder-multiset-base": 512,
}
__magic_name__: List[str] = {
"facebook/dpr-reader-single-nq-base": 512,
"facebook/dpr-reader-multiset-base": 512,
}
__magic_name__: Optional[Any] = {
"facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True},
}
__magic_name__: Tuple = {
"facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True},
"facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True},
}
__magic_name__: Any = {
"facebook/dpr-reader-single-nq-base": {"do_lower_case": True},
"facebook/dpr-reader-multiset-base": {"do_lower_case": True},
}
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : List[Any] = VOCAB_FILES_NAMES
lowercase__ : Any = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowercase__ : List[str] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ : Union[str, Any] = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION
lowercase__ : Optional[int] = DPRContextEncoderTokenizer
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : Any = VOCAB_FILES_NAMES
lowercase__ : Union[str, Any] = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP
lowercase__ : Optional[Any] = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ : Dict = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION
lowercase__ : Optional[int] = DPRQuestionEncoderTokenizer
__magic_name__: Union[str, Any] = collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
__magic_name__: Tuple = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
__magic_name__: int = r"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `'tf'`: Return TensorFlow `tf.constant` objects.\n - `'pt'`: Return PyTorch `torch.Tensor` objects.\n - `'np'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer's default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n "
@add_start_docstrings(_lowerCAmelCase )
class snake_case__ :
def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchEncoding:
if titles is None and texts is None:
return super().__call__(
lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , )
elif titles is None or texts is None:
__magic_name__ : Tuple = titles if texts is None else texts
return super().__call__(
lowerCAmelCase__ , lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , )
__magic_name__ : int = titles if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else [titles]
__magic_name__ : Dict = texts if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else [texts]
__magic_name__ : Any = len(lowerCAmelCase__ )
__magic_name__ : Optional[Any] = questions if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else [questions] * n_passages
assert len(lowerCAmelCase__ ) == len(
lowerCAmelCase__ ), F'There should be as many titles than texts but got {len(lowerCAmelCase__ )} titles and {len(lowerCAmelCase__ )} texts.'
__magic_name__ : Tuple = super().__call__(lowerCAmelCase__ , lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )["""input_ids"""]
__magic_name__ : str = super().__call__(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )["""input_ids"""]
__magic_name__ : Optional[int] = {
"""input_ids""": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(lowerCAmelCase__ , lowerCAmelCase__ )
]
}
if return_attention_mask is not False:
__magic_name__ : int = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] )
__magic_name__ : Dict = attention_mask
return self.pad(lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 16 , lowerCAmelCase__ = 64 , lowerCAmelCase__ = 4 , ) -> List[DPRSpanPrediction]:
__magic_name__ : str = reader_input["""input_ids"""]
__magic_name__ ,__magic_name__ ,__magic_name__ : str = reader_output[:3]
__magic_name__ : int = len(lowerCAmelCase__ )
__magic_name__ : Optional[int] = sorted(range(lowerCAmelCase__ ) , reverse=lowerCAmelCase__ , key=relevance_logits.__getitem__ )
__magic_name__ : List[DPRReaderOutput] = []
for doc_id in sorted_docs:
__magic_name__ : Union[str, Any] = list(input_ids[doc_id] )
# assuming question & title information is at the beginning of the sequence
__magic_name__ : Tuple = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
__magic_name__ : Tuple = sequence_ids.index(self.pad_token_id )
else:
__magic_name__ : Tuple = len(lowerCAmelCase__ )
__magic_name__ : List[Any] = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCAmelCase__ , top_spans=lowerCAmelCase__ , )
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCAmelCase__ , start_index=lowerCAmelCase__ , end_index=lowerCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) )
if len(lowerCAmelCase__ ) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> List[DPRSpanPrediction]:
__magic_name__ : str = []
for start_index, start_score in enumerate(lowerCAmelCase__ ):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ):
scores.append(((start_index, start_index + answer_length), start_score + end_score) )
__magic_name__ : int = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[1] , reverse=lowerCAmelCase__ )
__magic_name__ : List[Any] = []
for (start_index, end_index), score in scores:
assert start_index <= end_index, F'Wrong span indices: [{start_index}:{end_index}]'
__magic_name__ : Optional[int] = end_index - start_index + 1
assert length <= max_answer_length, F'Span is too long: {length} > {max_answer_length}'
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals ):
continue
chosen_span_intervals.append((start_index, end_index) )
if len(lowerCAmelCase__ ) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(_lowerCAmelCase )
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase ):
lowercase__ : Dict = VOCAB_FILES_NAMES
lowercase__ : Optional[int] = READER_PRETRAINED_VOCAB_FILES_MAP
lowercase__ : List[str] = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ : int = READER_PRETRAINED_INIT_CONFIGURATION
lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask''']
lowercase__ : str = DPRReaderTokenizer
| 342 |
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import AutoTokenizer, BarkProcessor
from transformers.testing_utils import require_torch, slow
@require_torch
class snake_case__ ( unittest.TestCase ):
def __magic_name__ ( self ) -> str:
__magic_name__ : Tuple = """ylacombe/bark-small"""
__magic_name__ : List[str] = tempfile.mkdtemp()
__magic_name__ : Optional[Any] = """en_speaker_1"""
__magic_name__ : Union[str, Any] = """This is a test string"""
__magic_name__ : Optional[int] = """speaker_embeddings_path.json"""
__magic_name__ : Any = """speaker_embeddings"""
def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]:
return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ )
def __magic_name__ ( self ) -> Optional[Any]:
shutil.rmtree(self.tmpdirname )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Optional[Any] = self.get_tokenizer()
__magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ )
processor.save_pretrained(self.tmpdirname )
__magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
@slow
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : Optional[int] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
processor.save_pretrained(
self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , )
__magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" )
__magic_name__ : str = BarkProcessor.from_pretrained(
self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , )
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() )
def __magic_name__ ( self ) -> Any:
__magic_name__ : List[str] = BarkProcessor.from_pretrained(
pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , )
__magic_name__ : Union[str, Any] = 35
__magic_name__ : List[Any] = 2
__magic_name__ : Dict = 8
__magic_name__ : Tuple = {
"""semantic_prompt""": np.ones(lowerCAmelCase__ ),
"""coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ),
"""fine_prompt""": np.ones((nb_codebooks_total, seq_len) ),
}
# test providing already loaded voice_preset
__magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() )
# test loading voice preset from npz file
__magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" )
np.savez(lowerCAmelCase__ , **lowerCAmelCase__ )
__magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ )
__magic_name__ : List[Any] = inputs["""history_prompt"""]
for key in voice_preset:
self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() )
# test loading voice preset from the hub
__magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset )
def __magic_name__ ( self ) -> Optional[Any]:
__magic_name__ : str = self.get_tokenizer()
__magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ )
__magic_name__ : Optional[Any] = processor(text=self.input_string )
__magic_name__ : List[Any] = tokenizer(
self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
| 342 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__magic_name__: int = {
"configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"],
"feature_extraction_whisper": ["WhisperFeatureExtractor"],
"processing_whisper": ["WhisperProcessor"],
"tokenization_whisper": ["WhisperTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__: Optional[int] = ["WhisperTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__: Any = [
"WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST",
"WhisperForConditionalGeneration",
"WhisperModel",
"WhisperPreTrainedModel",
"WhisperForAudioClassification",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__: List[str] = [
"TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFWhisperForConditionalGeneration",
"TFWhisperModel",
"TFWhisperPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__: Any = [
"FlaxWhisperForConditionalGeneration",
"FlaxWhisperModel",
"FlaxWhisperPreTrainedModel",
"FlaxWhisperForAudioClassification",
]
if TYPE_CHECKING:
from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig
from .feature_extraction_whisper import WhisperFeatureExtractor
from .processing_whisper import WhisperProcessor
from .tokenization_whisper import WhisperTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_whisper_fast import WhisperTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_whisper import (
WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
WhisperForAudioClassification,
WhisperForConditionalGeneration,
WhisperModel,
WhisperPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_whisper import (
TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWhisperForConditionalGeneration,
TFWhisperModel,
TFWhisperPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_whisper import (
FlaxWhisperForAudioClassification,
FlaxWhisperForConditionalGeneration,
FlaxWhisperModel,
FlaxWhisperPreTrainedModel,
)
else:
import sys
__magic_name__: Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 342 |
import unittest
import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class snake_case__ ( unittest.TestCase ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]:
__magic_name__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18}
__magic_name__ : str = parent
__magic_name__ : Any = batch_size
__magic_name__ : Any = num_channels
__magic_name__ : List[str] = image_size
__magic_name__ : Tuple = min_resolution
__magic_name__ : Union[str, Any] = max_resolution
__magic_name__ : List[str] = do_resize
__magic_name__ : Optional[Any] = size
__magic_name__ : Optional[Any] = do_normalize
__magic_name__ : Any = image_mean
__magic_name__ : List[str] = image_std
def __magic_name__ ( self ) -> List[str]:
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Any = DPTImageProcessor if is_vision_available() else None
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : Dict = DPTImageProcessingTester(self )
@property
def __magic_name__ ( self ) -> Union[str, Any]:
return self.image_processor_tester.prepare_image_processor_dict()
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) )
self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) )
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} )
__magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
def __magic_name__ ( self ) -> str:
# Initialize image_processing
__magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , Image.Image )
# Test not batched input
__magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __magic_name__ ( self ) -> Tuple:
# Initialize image_processing
__magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__magic_name__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , np.ndarray )
# Test not batched input
__magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
def __magic_name__ ( self ) -> Optional[Any]:
# Initialize image_processing
__magic_name__ : Any = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase__ , torch.Tensor )
# Test not batched input
__magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
__magic_name__ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 342 | 1 |
import inspect
import unittest
from huggingface_hub import hf_hub_download
from transformers import ConvNextConfig, UperNetConfig
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import UperNetForSemanticSegmentation
from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=[10, 20, 30, 40] , lowerCAmelCase__=[2, 2, 3, 2] , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=["stage2", "stage3", "stage4"] , lowerCAmelCase__=3 , lowerCAmelCase__=None , ) -> Dict:
__magic_name__ : List[Any] = parent
__magic_name__ : Optional[int] = batch_size
__magic_name__ : Dict = image_size
__magic_name__ : List[Any] = num_channels
__magic_name__ : Tuple = num_stages
__magic_name__ : int = hidden_sizes
__magic_name__ : Tuple = depths
__magic_name__ : str = is_training
__magic_name__ : Any = use_labels
__magic_name__ : List[Any] = intermediate_size
__magic_name__ : Union[str, Any] = hidden_act
__magic_name__ : Optional[int] = type_sequence_label_size
__magic_name__ : Dict = initializer_range
__magic_name__ : Optional[Any] = out_features
__magic_name__ : List[Any] = num_labels
__magic_name__ : Optional[int] = scope
__magic_name__ : List[Any] = num_stages
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__magic_name__ : Optional[int] = None
if self.use_labels:
__magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : str = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self ) -> Tuple:
return ConvNextConfig(
num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , )
def __magic_name__ ( self ) -> int:
return UperNetConfig(
backbone_config=self.get_backbone_config() , hidden_size=5_12 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCAmelCase__ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=2_56 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCAmelCase__ , loss_ignore_index=2_55 , num_labels=self.num_labels , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]:
__magic_name__ : Tuple = UperNetForSemanticSegmentation(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Dict = model(lowerCAmelCase__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def __magic_name__ ( self ) -> str:
__magic_name__ : Dict = self.prepare_config_and_inputs()
(
(
__magic_name__
) ,(
__magic_name__
) ,(
__magic_name__
) ,
) : Optional[int] = config_and_inputs
__magic_name__ : Tuple = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : List[Any] = (UperNetForSemanticSegmentation,) if is_torch_available() else ()
lowercase__ : Any = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {}
lowercase__ : int = False
lowercase__ : Any = False
lowercase__ : Optional[Any] = False
lowercase__ : List[str] = False
lowercase__ : int = False
lowercase__ : Dict = False
def __magic_name__ ( self ) -> Dict:
__magic_name__ : Union[str, Any] = UperNetModelTester(self )
__magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 )
def __magic_name__ ( self ) -> List[str]:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __magic_name__ ( self ) -> List[Any]:
return
def __magic_name__ ( self ) -> Any:
__magic_name__ ,__magic_name__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Dict = model_class(lowerCAmelCase__ )
__magic_name__ : List[Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Tuple = [*signature.parameters.keys()]
__magic_name__ : Union[str, Any] = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def __magic_name__ ( self ) -> int:
__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase__ )
@unittest.skip(reason="""UperNet does not use inputs_embeds""" )
def __magic_name__ ( self ) -> Tuple:
pass
@unittest.skip(reason="""UperNet does not support input and output embeddings""" )
def __magic_name__ ( self ) -> Optional[int]:
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def __magic_name__ ( self ) -> Union[str, Any]:
pass
@unittest.skip(reason="""UperNet does not have a base model""" )
def __magic_name__ ( self ) -> Dict:
pass
@require_torch_multi_gpu
@unittest.skip(reason="""UperNet has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" )
def __magic_name__ ( self ) -> Optional[Any]:
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def __magic_name__ ( self ) -> Dict:
pass
def __magic_name__ ( self ) -> List[Any]:
def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
__magic_name__ : List[Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : Optional[Any] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : str = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__magic_name__ : Tuple = self.model_tester.num_stages
self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : List[str] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : Optional[int] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[str]:
__magic_name__ ,__magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
__magic_name__ : Union[str, Any] = _config_zero_init(lowerCAmelCase__ )
__magic_name__ : Dict = _config_zero_init(configs_no_init.backbone_config )
for model_class in self.all_model_classes:
__magic_name__ : str = model_class(config=lowerCAmelCase__ )
for name, param in model.named_parameters():
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@unittest.skip(reason="""UperNet does not have tied weights""" )
def __magic_name__ ( self ) -> Dict:
pass
@slow
def __magic_name__ ( self ) -> Tuple:
for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : Tuple = UperNetForSemanticSegmentation.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : List[Any] = hf_hub_download(
repo_id="""hf-internal-testing/fixtures_ade20k""", repo_type="""dataset""", filename="""ADE_val_00000001.jpg""" )
__magic_name__ : Dict = Image.open(_A ).convert("""RGB""" )
return image
@require_torch
@require_vision
@slow
class snake_case__ ( unittest.TestCase ):
def __magic_name__ ( self ) -> Dict:
__magic_name__ : int = AutoImageProcessor.from_pretrained("""openmmlab/upernet-swin-tiny""" )
__magic_name__ : Tuple = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-swin-tiny""" ).to(lowerCAmelCase__ )
__magic_name__ : Optional[int] = prepare_img()
__magic_name__ : Optional[Any] = processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ )
with torch.no_grad():
__magic_name__ : List[str] = model(**lowerCAmelCase__ )
__magic_name__ : List[str] = torch.Size((1, model.config.num_labels, 5_12, 5_12) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = torch.tensor(
[[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : str = AutoImageProcessor.from_pretrained("""openmmlab/upernet-convnext-tiny""" )
__magic_name__ : Tuple = UperNetForSemanticSegmentation.from_pretrained("""openmmlab/upernet-convnext-tiny""" ).to(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = prepare_img()
__magic_name__ : Any = processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ )
with torch.no_grad():
__magic_name__ : Optional[int] = model(**lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = torch.Size((1, model.config.num_labels, 5_12, 5_12) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
__magic_name__ : List[str] = torch.tensor(
[[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
| 342 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
__magic_name__: Tuple = {
"Acehnese Arabic": "ace_Arab",
"Acehnese Latin": "ace_Latn",
"Mesopotamian Arabic": "acm_Arab",
"Ta'izzi-Adeni Arabic": "acq_Arab",
"Tunisian Arabic": "aeb_Arab",
"Afrikaans": "afr_Latn",
"South Levantine Arabic": "ajp_Arab",
"Akan": "aka_Latn",
"Amharic": "amh_Ethi",
"North Levantine Arabic": "apc_Arab",
"Modern Standard Arabic": "arb_Arab",
"Modern Standard Arabic Romanized": "arb_Latn",
"Najdi Arabic": "ars_Arab",
"Moroccan Arabic": "ary_Arab",
"Egyptian Arabic": "arz_Arab",
"Assamese": "asm_Beng",
"Asturian": "ast_Latn",
"Awadhi": "awa_Deva",
"Central Aymara": "ayr_Latn",
"South Azerbaijani": "azb_Arab",
"North Azerbaijani": "azj_Latn",
"Bashkir": "bak_Cyrl",
"Bambara": "bam_Latn",
"Balinese": "ban_Latn",
"Belarusian": "bel_Cyrl",
"Bemba": "bem_Latn",
"Bengali": "ben_Beng",
"Bhojpuri": "bho_Deva",
"Banjar Arabic": "bjn_Arab",
"Banjar Latin": "bjn_Latn",
"Standard Tibetan": "bod_Tibt",
"Bosnian": "bos_Latn",
"Buginese": "bug_Latn",
"Bulgarian": "bul_Cyrl",
"Catalan": "cat_Latn",
"Cebuano": "ceb_Latn",
"Czech": "ces_Latn",
"Chokwe": "cjk_Latn",
"Central Kurdish": "ckb_Arab",
"Crimean Tatar": "crh_Latn",
"Welsh": "cym_Latn",
"Danish": "dan_Latn",
"German": "deu_Latn",
"Southwestern Dinka": "dik_Latn",
"Dyula": "dyu_Latn",
"Dzongkha": "dzo_Tibt",
"Greek": "ell_Grek",
"English": "eng_Latn",
"Esperanto": "epo_Latn",
"Estonian": "est_Latn",
"Basque": "eus_Latn",
"Ewe": "ewe_Latn",
"Faroese": "fao_Latn",
"Fijian": "fij_Latn",
"Finnish": "fin_Latn",
"Fon": "fon_Latn",
"French": "fra_Latn",
"Friulian": "fur_Latn",
"Nigerian Fulfulde": "fuv_Latn",
"Scottish Gaelic": "gla_Latn",
"Irish": "gle_Latn",
"Galician": "glg_Latn",
"Guarani": "grn_Latn",
"Gujarati": "guj_Gujr",
"Haitian Creole": "hat_Latn",
"Hausa": "hau_Latn",
"Hebrew": "heb_Hebr",
"Hindi": "hin_Deva",
"Chhattisgarhi": "hne_Deva",
"Croatian": "hrv_Latn",
"Hungarian": "hun_Latn",
"Armenian": "hye_Armn",
"Igbo": "ibo_Latn",
"Ilocano": "ilo_Latn",
"Indonesian": "ind_Latn",
"Icelandic": "isl_Latn",
"Italian": "ita_Latn",
"Javanese": "jav_Latn",
"Japanese": "jpn_Jpan",
"Kabyle": "kab_Latn",
"Jingpho": "kac_Latn",
"Kamba": "kam_Latn",
"Kannada": "kan_Knda",
"Kashmiri Arabic": "kas_Arab",
"Kashmiri Devanagari": "kas_Deva",
"Georgian": "kat_Geor",
"Central Kanuri Arabic": "knc_Arab",
"Central Kanuri Latin": "knc_Latn",
"Kazakh": "kaz_Cyrl",
"Kabiyè": "kbp_Latn",
"Kabuverdianu": "kea_Latn",
"Khmer": "khm_Khmr",
"Kikuyu": "kik_Latn",
"Kinyarwanda": "kin_Latn",
"Kyrgyz": "kir_Cyrl",
"Kimbundu": "kmb_Latn",
"Northern Kurdish": "kmr_Latn",
"Kikongo": "kon_Latn",
"Korean": "kor_Hang",
"Lao": "lao_Laoo",
"Ligurian": "lij_Latn",
"Limburgish": "lim_Latn",
"Lingala": "lin_Latn",
"Lithuanian": "lit_Latn",
"Lombard": "lmo_Latn",
"Latgalian": "ltg_Latn",
"Luxembourgish": "ltz_Latn",
"Luba-Kasai": "lua_Latn",
"Ganda": "lug_Latn",
"Luo": "luo_Latn",
"Mizo": "lus_Latn",
"Standard Latvian": "lvs_Latn",
"Magahi": "mag_Deva",
"Maithili": "mai_Deva",
"Malayalam": "mal_Mlym",
"Marathi": "mar_Deva",
"Minangkabau Arabic ": "min_Arab",
"Minangkabau Latin": "min_Latn",
"Macedonian": "mkd_Cyrl",
"Plateau Malagasy": "plt_Latn",
"Maltese": "mlt_Latn",
"Meitei Bengali": "mni_Beng",
"Halh Mongolian": "khk_Cyrl",
"Mossi": "mos_Latn",
"Maori": "mri_Latn",
"Burmese": "mya_Mymr",
"Dutch": "nld_Latn",
"Norwegian Nynorsk": "nno_Latn",
"Norwegian Bokmål": "nob_Latn",
"Nepali": "npi_Deva",
"Northern Sotho": "nso_Latn",
"Nuer": "nus_Latn",
"Nyanja": "nya_Latn",
"Occitan": "oci_Latn",
"West Central Oromo": "gaz_Latn",
"Odia": "ory_Orya",
"Pangasinan": "pag_Latn",
"Eastern Panjabi": "pan_Guru",
"Papiamento": "pap_Latn",
"Western Persian": "pes_Arab",
"Polish": "pol_Latn",
"Portuguese": "por_Latn",
"Dari": "prs_Arab",
"Southern Pashto": "pbt_Arab",
"Ayacucho Quechua": "quy_Latn",
"Romanian": "ron_Latn",
"Rundi": "run_Latn",
"Russian": "rus_Cyrl",
"Sango": "sag_Latn",
"Sanskrit": "san_Deva",
"Santali": "sat_Olck",
"Sicilian": "scn_Latn",
"Shan": "shn_Mymr",
"Sinhala": "sin_Sinh",
"Slovak": "slk_Latn",
"Slovenian": "slv_Latn",
"Samoan": "smo_Latn",
"Shona": "sna_Latn",
"Sindhi": "snd_Arab",
"Somali": "som_Latn",
"Southern Sotho": "sot_Latn",
"Spanish": "spa_Latn",
"Tosk Albanian": "als_Latn",
"Sardinian": "srd_Latn",
"Serbian": "srp_Cyrl",
"Swati": "ssw_Latn",
"Sundanese": "sun_Latn",
"Swedish": "swe_Latn",
"Swahili": "swh_Latn",
"Silesian": "szl_Latn",
"Tamil": "tam_Taml",
"Tatar": "tat_Cyrl",
"Telugu": "tel_Telu",
"Tajik": "tgk_Cyrl",
"Tagalog": "tgl_Latn",
"Thai": "tha_Thai",
"Tigrinya": "tir_Ethi",
"Tamasheq Latin": "taq_Latn",
"Tamasheq Tifinagh": "taq_Tfng",
"Tok Pisin": "tpi_Latn",
"Tswana": "tsn_Latn",
"Tsonga": "tso_Latn",
"Turkmen": "tuk_Latn",
"Tumbuka": "tum_Latn",
"Turkish": "tur_Latn",
"Twi": "twi_Latn",
"Central Atlas Tamazight": "tzm_Tfng",
"Uyghur": "uig_Arab",
"Ukrainian": "ukr_Cyrl",
"Umbundu": "umb_Latn",
"Urdu": "urd_Arab",
"Northern Uzbek": "uzn_Latn",
"Venetian": "vec_Latn",
"Vietnamese": "vie_Latn",
"Waray": "war_Latn",
"Wolof": "wol_Latn",
"Xhosa": "xho_Latn",
"Eastern Yiddish": "ydd_Hebr",
"Yoruba": "yor_Latn",
"Yue Chinese": "yue_Hant",
"Chinese Simplified": "zho_Hans",
"Chinese Traditional": "zho_Hant",
"Standard Malay": "zsm_Latn",
"Zulu": "zul_Latn",
}
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M'''
lowercase__ : List[Any] = (
'''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should '''
'''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, '''
'''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in '''
'''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.'''
)
lowercase__ : List[str] = '''translator'''
lowercase__ : Optional[Any] = AutoTokenizer
lowercase__ : int = AutoModelForSeqaSeqLM
lowercase__ : List[Any] = LANGUAGE_CODES
lowercase__ : str = ['''text''', '''text''', '''text''']
lowercase__ : Any = ['''text''']
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]:
if src_lang not in self.lang_to_code:
raise ValueError(F'{src_lang} is not a supported language.' )
if tgt_lang not in self.lang_to_code:
raise ValueError(F'{tgt_lang} is not a supported language.' )
__magic_name__ : Tuple = self.lang_to_code[src_lang]
__magic_name__ : Dict = self.lang_to_code[tgt_lang]
return self.pre_processor._build_translation_inputs(
lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.model.generate(**lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict:
return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
| 342 | 1 |
import json
import os
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from requests.exceptions import HTTPError
from transformers.utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
cached_file,
get_file_from_repo,
has_file,
)
__magic_name__: List[Any] = "hf-internal-testing/tiny-random-bert"
__magic_name__: List[Any] = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert")
__magic_name__: int = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6"
class snake_case__ ( unittest.TestCase ):
def __magic_name__ ( self ) -> int:
__magic_name__ : Union[str, Any] = cached_file(lowerCAmelCase__ , lowerCAmelCase__ )
# Should have downloaded the file in here
self.assertTrue(os.path.isdir(lowerCAmelCase__ ) )
# Cache should contain at least those three subfolders:
for subfolder in ["blobs", "refs", "snapshots"]:
self.assertTrue(os.path.isdir(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ) )
with open(os.path.join(lowerCAmelCase__ , """refs""" , """main""" ) ) as f:
__magic_name__ : Union[str, Any] = f.read()
self.assertEqual(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , """snapshots""" , lowerCAmelCase__ , lowerCAmelCase__ ) )
self.assertTrue(os.path.isfile(lowerCAmelCase__ ) )
# File is cached at the same place the second time.
__magic_name__ : List[Any] = cached_file(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ )
# Using a specific revision to test the full commit hash.
__magic_name__ : str = cached_file(lowerCAmelCase__ , lowerCAmelCase__ , revision="""9b8c223""" )
self.assertEqual(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , """snapshots""" , lowerCAmelCase__ , lowerCAmelCase__ ) )
def __magic_name__ ( self ) -> List[Any]:
with self.assertRaisesRegex(lowerCAmelCase__ , """is not a valid model identifier""" ):
__magic_name__ : str = cached_file("""tiny-random-bert""" , lowerCAmelCase__ )
with self.assertRaisesRegex(lowerCAmelCase__ , """is not a valid git identifier""" ):
__magic_name__ : str = cached_file(lowerCAmelCase__ , lowerCAmelCase__ , revision="""aaaa""" )
with self.assertRaisesRegex(lowerCAmelCase__ , """does not appear to have a file named""" ):
__magic_name__ : Optional[int] = cached_file(lowerCAmelCase__ , """conf""" )
def __magic_name__ ( self ) -> int:
with self.assertRaisesRegex(lowerCAmelCase__ , """does not appear to have a file named""" ):
__magic_name__ : Tuple = cached_file(lowerCAmelCase__ , """conf""" )
with open(os.path.join(lowerCAmelCase__ , """refs""" , """main""" ) ) as f:
__magic_name__ : str = f.read()
self.assertTrue(os.path.isfile(os.path.join(lowerCAmelCase__ , """.no_exist""" , lowerCAmelCase__ , """conf""" ) ) )
__magic_name__ : List[str] = cached_file(lowerCAmelCase__ , """conf""" , _raise_exceptions_for_missing_entries=lowerCAmelCase__ )
self.assertIsNone(lowerCAmelCase__ )
__magic_name__ : List[Any] = cached_file(lowerCAmelCase__ , """conf""" , local_files_only=lowerCAmelCase__ , _raise_exceptions_for_missing_entries=lowerCAmelCase__ )
self.assertIsNone(lowerCAmelCase__ )
__magic_name__ : Any = mock.Mock()
__magic_name__ : str = 5_00
__magic_name__ : Optional[int] = {}
__magic_name__ : List[Any] = HTTPError
__magic_name__ : Any = {}
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("""requests.Session.request""" , return_value=lowerCAmelCase__ ) as mock_head:
__magic_name__ : int = cached_file(lowerCAmelCase__ , """conf""" , _raise_exceptions_for_connection_errors=lowerCAmelCase__ )
self.assertIsNone(lowerCAmelCase__ )
# This check we did call the fake head request
mock_head.assert_called()
def __magic_name__ ( self ) -> int:
self.assertTrue(has_file("""hf-internal-testing/tiny-bert-pt-only""" , lowerCAmelCase__ ) )
self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , lowerCAmelCase__ ) )
self.assertFalse(has_file("""hf-internal-testing/tiny-bert-pt-only""" , lowerCAmelCase__ ) )
def __magic_name__ ( self ) -> Union[str, Any]:
# `get_file_from_repo` returns None if the file does not exist
self.assertIsNone(get_file_from_repo("""bert-base-cased""" , """ahah.txt""" ) )
# The function raises if the repository does not exist.
with self.assertRaisesRegex(lowerCAmelCase__ , """is not a valid model identifier""" ):
get_file_from_repo("""bert-base-case""" , lowerCAmelCase__ )
# The function raises if the revision does not exist.
with self.assertRaisesRegex(lowerCAmelCase__ , """is not a valid git identifier""" ):
get_file_from_repo("""bert-base-cased""" , lowerCAmelCase__ , revision="""ahaha""" )
__magic_name__ : Tuple = get_file_from_repo("""bert-base-cased""" , lowerCAmelCase__ )
# The name is the cached name which is not very easy to test, so instead we load the content.
__magic_name__ : Dict = json.loads(open(lowerCAmelCase__ , """r""" ).read() )
self.assertEqual(config["""hidden_size"""] , 7_68 )
def __magic_name__ ( self ) -> Union[str, Any]:
with tempfile.TemporaryDirectory() as tmp_dir:
__magic_name__ : List[Any] = Path(lowerCAmelCase__ ) / """a.txt"""
filename.touch()
self.assertEqual(get_file_from_repo(lowerCAmelCase__ , """a.txt""" ) , str(lowerCAmelCase__ ) )
self.assertIsNone(get_file_from_repo(lowerCAmelCase__ , """b.txt""" ) )
| 342 |
import math
class snake_case__ :
def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1
__magic_name__ : Tuple = n
__magic_name__ : Union[str, Any] = [
[math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ )
] # adjacency matrix for weight
__magic_name__ : List[Any] = [
[math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ )
] # dp[i][j] stores minimum distance from i to j
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple:
__magic_name__ : Dict = w
def __magic_name__ ( self ) -> Optional[int]:
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
__magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str:
return self.dp[u][v]
if __name__ == "__main__":
__magic_name__: Dict = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 342 | 1 |
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=3 , lowerCAmelCase__=4 , lowerCAmelCase__=[10, 20, 30, 40] , lowerCAmelCase__=[2, 2, 3, 2] , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=["stage2", "stage3", "stage4"] , lowerCAmelCase__=[2, 3, 4] , lowerCAmelCase__=None , ) -> List[Any]:
__magic_name__ : Tuple = parent
__magic_name__ : Dict = batch_size
__magic_name__ : Optional[Any] = image_size
__magic_name__ : List[Any] = num_channels
__magic_name__ : str = num_stages
__magic_name__ : Optional[Any] = hidden_sizes
__magic_name__ : Any = depths
__magic_name__ : List[Any] = is_training
__magic_name__ : int = use_labels
__magic_name__ : Any = intermediate_size
__magic_name__ : Dict = hidden_act
__magic_name__ : str = num_labels
__magic_name__ : str = initializer_range
__magic_name__ : Optional[Any] = out_features
__magic_name__ : str = out_indices
__magic_name__ : Tuple = scope
def __magic_name__ ( self ) -> Optional[int]:
__magic_name__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__magic_name__ : List[Any] = None
if self.use_labels:
__magic_name__ : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels )
__magic_name__ : Dict = self.get_config()
return config, pixel_values, labels
def __magic_name__ ( self ) -> List[str]:
return ConvNextConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : List[str] = ConvNextModel(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : str = model(lowerCAmelCase__ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]:
__magic_name__ : Optional[int] = ConvNextForImageClassification(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : List[str] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str:
__magic_name__ : List[Any] = ConvNextBackbone(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : Dict = model(lowerCAmelCase__ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
__magic_name__ : int = None
__magic_name__ : Optional[int] = ConvNextBackbone(config=lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
__magic_name__ : List[Any] = model(lowerCAmelCase__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def __magic_name__ ( self ) -> Dict:
__magic_name__ : str = self.prepare_config_and_inputs()
__magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs
__magic_name__ : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
lowercase__ : List[str] = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
lowercase__ : Optional[Any] = (
{'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification}
if is_torch_available()
else {}
)
lowercase__ : Union[str, Any] = True
lowercase__ : List[str] = False
lowercase__ : Any = False
lowercase__ : str = False
lowercase__ : str = False
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : Any = ConvNextModelTester(self )
__magic_name__ : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 )
def __magic_name__ ( self ) -> str:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __magic_name__ ( self ) -> int:
return
@unittest.skip(reason="""ConvNext does not use inputs_embeds""" )
def __magic_name__ ( self ) -> Optional[int]:
pass
@unittest.skip(reason="""ConvNext does not support input and output embeddings""" )
def __magic_name__ ( self ) -> int:
pass
@unittest.skip(reason="""ConvNext does not use feedforward chunking""" )
def __magic_name__ ( self ) -> str:
pass
def __magic_name__ ( self ) -> Tuple:
__magic_name__ ,__magic_name__ : str = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ )
__magic_name__ : Dict = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__magic_name__ : Tuple = [*signature.parameters.keys()]
__magic_name__ : Dict = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase__ )
def __magic_name__ ( self ) -> Tuple:
__magic_name__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> List[Any]:
__magic_name__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*lowerCAmelCase__ )
def __magic_name__ ( self ) -> Any:
def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ):
__magic_name__ : List[Any] = model_class(lowerCAmelCase__ )
model.to(lowerCAmelCase__ )
model.eval()
with torch.no_grad():
__magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) )
__magic_name__ : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__magic_name__ : Dict = self.model_tester.num_stages
self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__magic_name__ : Tuple = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__magic_name__ : Union[str, Any] = True
check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__ ( self ) -> Any:
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ )
@slow
def __magic_name__ ( self ) -> List[Any]:
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__magic_name__ : Optional[int] = ConvNextModel.from_pretrained(lowerCAmelCase__ )
self.assertIsNotNone(lowerCAmelCase__ )
def UpperCamelCase ( ):
"""simple docstring"""
__magic_name__ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class snake_case__ ( unittest.TestCase ):
@cached_property
def __magic_name__ ( self ) -> List[Any]:
return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None
@slow
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : str = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(lowerCAmelCase__ )
__magic_name__ : List[str] = self.default_image_processor
__magic_name__ : Optional[Any] = prepare_img()
__magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ )
# forward pass
with torch.no_grad():
__magic_name__ : Union[str, Any] = model(**lowerCAmelCase__ )
# verify the logits
__magic_name__ : Tuple = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , lowerCAmelCase__ )
__magic_name__ : Dict = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(lowerCAmelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
@require_torch
class snake_case__ ( unittest.TestCase , _lowerCAmelCase ):
lowercase__ : Tuple = (ConvNextBackbone,) if is_torch_available() else ()
lowercase__ : Union[str, Any] = ConvNextConfig
lowercase__ : List[str] = False
def __magic_name__ ( self ) -> str:
__magic_name__ : Any = ConvNextModelTester(self )
| 342 |
from __future__ import annotations
import math
import random
from collections.abc import Collection
from typing import overload
class snake_case__ :
def __init__( self , lowerCAmelCase__ = None ) -> None:
if components is None:
__magic_name__ : Any = []
__magic_name__ : List[str] = list(lowerCAmelCase__ )
def __len__( self ) -> int:
return len(self.__components )
def __str__( self ) -> str:
return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")"
def __add__( self , lowerCAmelCase__ ) -> Vector:
__magic_name__ : Dict = len(self )
if size == len(lowerCAmelCase__ ):
__magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return Vector(lowerCAmelCase__ )
else:
raise Exception("""must have the same size""" )
def __sub__( self , lowerCAmelCase__ ) -> Vector:
__magic_name__ : int = len(self )
if size == len(lowerCAmelCase__ ):
__magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return Vector(lowerCAmelCase__ )
else: # error case
raise Exception("""must have the same size""" )
@overload
def __mul__( self , lowerCAmelCase__ ) -> Vector:
...
@overload
def __mul__( self , lowerCAmelCase__ ) -> float:
...
def __mul__( self , lowerCAmelCase__ ) -> float | Vector:
if isinstance(lowerCAmelCase__ , (float, int) ):
__magic_name__ : Optional[Any] = [c * other for c in self.__components]
return Vector(lowerCAmelCase__ )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ):
__magic_name__ : Optional[Any] = len(self )
__magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )]
return sum(lowerCAmelCase__ )
else: # error case
raise Exception("""invalid operand!""" )
def __magic_name__ ( self ) -> Vector:
return Vector(self.__components )
def __magic_name__ ( self , lowerCAmelCase__ ) -> float:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ):
return self.__components[i]
else:
raise Exception("""index out of range""" )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
assert -len(self.__components ) <= pos < len(self.__components )
__magic_name__ : Optional[int] = value
def __magic_name__ ( self ) -> float:
if len(self.__components ) == 0:
raise Exception("""Vector is empty""" )
__magic_name__ : Dict = [c**2 for c in self.__components]
return math.sqrt(sum(lowerCAmelCase__ ) )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float:
__magic_name__ : Optional[Any] = self * other
__magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length()
if deg:
return math.degrees(math.acos(num / den ) )
else:
return math.acos(num / den )
def UpperCamelCase ( _A ):
"""simple docstring"""
assert isinstance(_A, _A )
return Vector([0] * dimension )
def UpperCamelCase ( _A, _A ):
"""simple docstring"""
assert isinstance(_A, _A ) and (isinstance(_A, _A ))
__magic_name__ : Union[str, Any] = [0] * dimension
__magic_name__ : Optional[int] = 1
return Vector(_A )
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
assert (
isinstance(_A, _A )
and isinstance(_A, _A )
and (isinstance(_A, (int, float) ))
)
return x * scalar + y
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
random.seed(_A )
__magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )]
return Vector(_A )
class snake_case__ :
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
__magic_name__ : Dict = matrix
__magic_name__ : Tuple = w
__magic_name__ : Union[str, Any] = h
def __str__( self ) -> str:
__magic_name__ : Dict = """"""
for i in range(self.__height ):
ans += "|"
for j in range(self.__width ):
if j < self.__width - 1:
ans += str(self.__matrix[i][j] ) + ","
else:
ans += str(self.__matrix[i][j] ) + "|\n"
return ans
def __add__( self , lowerCAmelCase__ ) -> Matrix:
if self.__width == other.width() and self.__height == other.height():
__magic_name__ : Tuple = []
for i in range(self.__height ):
__magic_name__ : Tuple = [
self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ )
for j in range(self.__width )
]
matrix.append(lowerCAmelCase__ )
return Matrix(lowerCAmelCase__ , self.__width , self.__height )
else:
raise Exception("""matrix must have the same dimension!""" )
def __sub__( self , lowerCAmelCase__ ) -> Matrix:
if self.__width == other.width() and self.__height == other.height():
__magic_name__ : Optional[Any] = []
for i in range(self.__height ):
__magic_name__ : int = [
self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ )
for j in range(self.__width )
]
matrix.append(lowerCAmelCase__ )
return Matrix(lowerCAmelCase__ , self.__width , self.__height )
else:
raise Exception("""matrices must have the same dimension!""" )
@overload
def __mul__( self , lowerCAmelCase__ ) -> Matrix:
...
@overload
def __mul__( self , lowerCAmelCase__ ) -> Vector:
...
def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector
if len(lowerCAmelCase__ ) == self.__width:
__magic_name__ : Tuple = zero_vector(self.__height )
for i in range(self.__height ):
__magic_name__ : Optional[int] = [
self.__matrix[i][j] * other.component(lowerCAmelCase__ )
for j in range(self.__width )
]
ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) )
return ans
else:
raise Exception(
"""vector must have the same size as the """
"""number of columns of the matrix!""" )
elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar
__magic_name__ : Any = [
[self.__matrix[i][j] * other for j in range(self.__width )]
for i in range(self.__height )
]
return Matrix(lowerCAmelCase__ , self.__width , self.__height )
return None
def __magic_name__ ( self ) -> int:
return self.__height
def __magic_name__ ( self ) -> int:
return self.__width
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float:
if 0 <= x < self.__height and 0 <= y < self.__width:
return self.__matrix[x][y]
else:
raise Exception("""change_component: indices out of bounds""" )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None:
if 0 <= x < self.__height and 0 <= y < self.__width:
__magic_name__ : List[Any] = value
else:
raise Exception("""change_component: indices out of bounds""" )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float:
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
__magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :]
for i in range(len(lowerCAmelCase__ ) ):
__magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :]
return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant()
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float:
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
if 0 <= x < self.__height and 0 <= y < self.__width:
return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ )
else:
raise Exception("""Indices out of bounds""" )
def __magic_name__ ( self ) -> float:
if self.__height != self.__width:
raise Exception("""Matrix is not square""" )
if self.__height < 1:
raise Exception("""Matrix has no element""" )
elif self.__height == 1:
return self.__matrix[0][0]
elif self.__height == 2:
return (
self.__matrix[0][0] * self.__matrix[1][1]
- self.__matrix[0][1] * self.__matrix[1][0]
)
else:
__magic_name__ : str = [
self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width )
]
return sum(lowerCAmelCase__ )
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )]
return Matrix(_A, _A, _A )
def UpperCamelCase ( _A, _A, _A, _A ):
"""simple docstring"""
random.seed(_A )
__magic_name__ : list[list[float]] = [
[random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A )
]
return Matrix(_A, _A, _A )
| 342 | 1 |
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : Tuple = 384
if "tiny" in model_name:
__magic_name__ : Optional[int] = [3, 3, 9, 3]
__magic_name__ : Optional[int] = [96, 192, 384, 768]
if "small" in model_name:
__magic_name__ : List[str] = [3, 3, 27, 3]
__magic_name__ : List[Any] = [96, 192, 384, 768]
if "base" in model_name:
__magic_name__ : Any = [3, 3, 27, 3]
__magic_name__ : List[Any] = [128, 256, 512, 1024]
__magic_name__ : Optional[Any] = 512
if "large" in model_name:
__magic_name__ : Optional[Any] = [3, 3, 27, 3]
__magic_name__ : Any = [192, 384, 768, 1536]
__magic_name__ : Tuple = 768
if "xlarge" in model_name:
__magic_name__ : Any = [3, 3, 27, 3]
__magic_name__ : List[str] = [256, 512, 1024, 2048]
__magic_name__ : Optional[Any] = 1024
# set label information
__magic_name__ : Optional[Any] = 150
__magic_name__ : Optional[int] = """huggingface/label-files"""
__magic_name__ : Any = """ade20k-id2label.json"""
__magic_name__ : Dict = json.load(open(hf_hub_download(_A, _A, repo_type="""dataset""" ), """r""" ) )
__magic_name__ : List[str] = {int(_A ): v for k, v in idalabel.items()}
__magic_name__ : List[Any] = {v: k for k, v in idalabel.items()}
__magic_name__ : Dict = ConvNextConfig(
depths=_A, hidden_sizes=_A, out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] )
__magic_name__ : Optional[Any] = UperNetConfig(
backbone_config=_A, auxiliary_in_channels=_A, num_labels=_A, idalabel=_A, labelaid=_A, )
return config
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : Union[str, Any] = []
# fmt: off
# stem
rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") )
rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") )
rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") )
rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") )
# stages
for i in range(len(config.backbone_config.depths ) ):
for j in range(config.backbone_config.depths[i] ):
rename_keys.append((f'backbone.stages.{i}.{j}.gamma', f'backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter') )
rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.weight', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.depthwise_conv.bias', f'backbone.encoder.stages.{i}.layers.{j}.dwconv.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.norm.weight', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.norm.bias', f'backbone.encoder.stages.{i}.layers.{j}.layernorm.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv1.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.weight', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight') )
rename_keys.append((f'backbone.stages.{i}.{j}.pointwise_conv2.bias', f'backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias') )
if i > 0:
rename_keys.append((f'backbone.downsample_layers.{i}.0.weight', f'backbone.encoder.stages.{i}.downsampling_layer.0.weight') )
rename_keys.append((f'backbone.downsample_layers.{i}.0.bias', f'backbone.encoder.stages.{i}.downsampling_layer.0.bias') )
rename_keys.append((f'backbone.downsample_layers.{i}.1.weight', f'backbone.encoder.stages.{i}.downsampling_layer.1.weight') )
rename_keys.append((f'backbone.downsample_layers.{i}.1.bias', f'backbone.encoder.stages.{i}.downsampling_layer.1.bias') )
rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') )
rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') )
# decode head
rename_keys.extend(
[
("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""),
("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""),
("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""),
("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""),
] )
# fmt: on
return rename_keys
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
__magic_name__ : Tuple = dct.pop(_A )
__magic_name__ : int = val
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
__magic_name__ : str = {
"""upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""",
"""upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""",
"""upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""",
"""upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""",
"""upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""",
}
__magic_name__ : Optional[int] = model_name_to_url[model_name]
__magic_name__ : Tuple = torch.hub.load_state_dict_from_url(_A, map_location="""cpu""" )["""state_dict"""]
__magic_name__ : List[str] = get_upernet_config(_A )
__magic_name__ : Union[str, Any] = UperNetForSemanticSegmentation(_A )
model.eval()
# replace "bn" => "batch_norm"
for key in state_dict.copy().keys():
__magic_name__ : Dict = state_dict.pop(_A )
if "bn" in key:
__magic_name__ : Union[str, Any] = key.replace("""bn""", """batch_norm""" )
__magic_name__ : Dict = val
# rename keys
__magic_name__ : Tuple = create_rename_keys(_A )
for src, dest in rename_keys:
rename_key(_A, _A, _A )
model.load_state_dict(_A )
# verify on image
__magic_name__ : Any = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg"""
__magic_name__ : str = Image.open(requests.get(_A, stream=_A ).raw ).convert("""RGB""" )
__magic_name__ : List[Any] = SegformerImageProcessor()
__magic_name__ : str = processor(_A, return_tensors="""pt""" ).pixel_values
with torch.no_grad():
__magic_name__ : Union[str, Any] = model(_A )
if model_name == "upernet-convnext-tiny":
__magic_name__ : Dict = torch.tensor(
[[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] )
elif model_name == "upernet-convnext-small":
__magic_name__ : Optional[Any] = torch.tensor(
[[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] )
elif model_name == "upernet-convnext-base":
__magic_name__ : Tuple = torch.tensor(
[[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] )
elif model_name == "upernet-convnext-large":
__magic_name__ : Any = torch.tensor(
[[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] )
elif model_name == "upernet-convnext-xlarge":
__magic_name__ : List[Any] = torch.tensor(
[[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] )
print("""Logits:""", outputs.logits[0, 0, :3, :3] )
assert torch.allclose(outputs.logits[0, 0, :3, :3], _A, atol=1e-4 )
print("""Looks ok!""" )
if pytorch_dump_folder_path is not None:
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(_A )
print(f'Saving processor to {pytorch_dump_folder_path}' )
processor.save_pretrained(_A )
if push_to_hub:
print(f'Pushing model and processor for {model_name} to hub' )
model.push_to_hub(f'openmmlab/{model_name}' )
processor.push_to_hub(f'openmmlab/{model_name}' )
if __name__ == "__main__":
__magic_name__: Optional[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="upernet-convnext-tiny",
type=str,
choices=[F"""upernet-convnext-{size}""" for size in ["tiny", "small", "base", "large", "xlarge"]],
help="Name of the ConvNext UperNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
__magic_name__: Union[str, Any] = parser.parse_args()
convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 342 |
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
from ...utils import logging
__magic_name__: str = logging.get_logger(__name__)
__magic_name__: int = "▁"
__magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"}
__magic_name__: List[str] = {
"vocab_file": {
"facebook/nllb-200-distilled-600M": (
"https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model"
),
}
}
__magic_name__: Tuple = {
"facebook/nllb-200-distilled-600M": 1_024,
}
# fmt: off
__magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"]
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : str = VOCAB_FILES_NAMES
lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP
lowercase__ : str = ['''input_ids''', '''attention_mask''']
lowercase__ : List[int] = []
lowercase__ : List[int] = []
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int:
# Mask token behave like a normal word, i.e. include the space before it
__magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
__magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs
__magic_name__ : Optional[Any] = legacy_behaviour
super().__init__(
bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , )
__magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowerCAmelCase__ ) )
__magic_name__ : List[Any] = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a'
# spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s'
# Mimic fairseq token-to-id alignment for the first 4 token
__magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
__magic_name__ : List[Any] = 1
__magic_name__ : Dict = len(self.sp_model )
__magic_name__ : int = {
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ )
}
__magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()}
__magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset
self.fairseq_tokens_to_ids.update(self.lang_code_to_id )
__magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
__magic_name__ : List[str] = list(self.lang_code_to_id.keys() )
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
self._additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in self._additional_special_tokens] )
__magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn"""
__magic_name__ : Any = self.lang_code_to_id[self._src_lang]
__magic_name__ : Optional[int] = tgt_lang
self.set_src_lang_special_tokens(self._src_lang )
def __getstate__( self ) -> Any:
__magic_name__ : List[Any] = self.__dict__.copy()
__magic_name__ : int = None
__magic_name__ : Optional[int] = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , lowerCAmelCase__ ) -> Any:
__magic_name__ : Any = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
__magic_name__ : Any = {}
__magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
@property
def __magic_name__ ( self ) -> str:
return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token
@property
def __magic_name__ ( self ) -> str:
return self._src_lang
@src_lang.setter
def __magic_name__ ( self , lowerCAmelCase__ ) -> None:
__magic_name__ : Tuple = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
__magic_name__ : Optional[int] = [1] * len(self.prefix_tokens )
__magic_name__ : Any = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones
return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]:
__magic_name__ : str = [self.sep_token_id]
__magic_name__ : Dict = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]:
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" )
__magic_name__ : Dict = src_lang
__magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ )
__magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ )
__magic_name__ : Tuple = tgt_lang_id
return inputs
def __magic_name__ ( self ) -> int:
__magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]:
return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
__magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def __magic_name__ ( self , lowerCAmelCase__ ) -> str:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]:
__magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip()
return out_string
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
__magic_name__ : List[Any] = os.path.join(
lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase__ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase__ , """wb""" ) as fi:
__magic_name__ : List[str] = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase__ )
return (out_vocab_file,)
def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding:
__magic_name__ : List[str] = src_lang
__magic_name__ : Dict = tgt_lang
return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ )
def __magic_name__ ( self ) -> str:
return self.set_src_lang_special_tokens(self.src_lang )
def __magic_name__ ( self ) -> List[str]:
return self.set_tgt_lang_special_tokens(self.tgt_lang )
def __magic_name__ ( self , lowerCAmelCase__ ) -> None:
__magic_name__ : Optional[int] = self.lang_code_to_id[src_lang]
if self.legacy_behaviour:
__magic_name__ : List[str] = []
__magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code]
else:
__magic_name__ : str = [self.cur_lang_code]
__magic_name__ : List[Any] = [self.eos_token_id]
def __magic_name__ ( self , lowerCAmelCase__ ) -> None:
__magic_name__ : List[str] = self.lang_code_to_id[lang]
if self.legacy_behaviour:
__magic_name__ : List[str] = []
__magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code]
else:
__magic_name__ : Optional[int] = [self.cur_lang_code]
__magic_name__ : Union[str, Any] = [self.eos_token_id]
| 342 | 1 |
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class snake_case__ ( _lowerCAmelCase ):
lowercase__ : Dict = ['''image_processor''', '''tokenizer''']
lowercase__ : Union[str, Any] = '''OwlViTImageProcessor'''
lowercase__ : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''')
def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ ) -> Optional[int]:
__magic_name__ : List[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , lowerCAmelCase__ , )
__magic_name__ : List[str] = kwargs.pop("""feature_extractor""" )
__magic_name__ : List[str] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""" )
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""" )
super().__init__(lowerCAmelCase__ , lowerCAmelCase__ )
def __call__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__="max_length" , lowerCAmelCase__="np" , **lowerCAmelCase__ ) -> Tuple:
if text is None and query_images is None and images is None:
raise ValueError(
"""You have to specify at least one text or query image or image. All three cannot be none.""" )
if text is not None:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or (isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and not isinstance(text[0] , lowerCAmelCase__ )):
__magic_name__ : List[str] = [self.tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ )]
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(text[0] , lowerCAmelCase__ ):
__magic_name__ : Any = []
# Maximum number of queries across batch
__magic_name__ : Dict = max([len(lowerCAmelCase__ ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(lowerCAmelCase__ ) != max_num_queries:
__magic_name__ : List[Any] = t + [""" """] * (max_num_queries - len(lowerCAmelCase__ ))
__magic_name__ : int = self.tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ )
encodings.append(lowerCAmelCase__ )
else:
raise TypeError("""Input text should be a string, a list of strings or a nested list of strings""" )
if return_tensors == "np":
__magic_name__ : Optional[int] = np.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
__magic_name__ : Optional[Any] = np.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
__magic_name__ : Tuple = jnp.concatenate([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
__magic_name__ : int = jnp.concatenate([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
__magic_name__ : Any = torch.cat([encoding["""input_ids"""] for encoding in encodings] , dim=0 )
__magic_name__ : Optional[Any] = torch.cat([encoding["""attention_mask"""] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
__magic_name__ : str = tf.stack([encoding["""input_ids"""] for encoding in encodings] , axis=0 )
__magic_name__ : Dict = tf.stack([encoding["""attention_mask"""] for encoding in encodings] , axis=0 )
else:
raise ValueError("""Target return tensor type could not be returned""" )
__magic_name__ : str = BatchEncoding()
__magic_name__ : int = input_ids
__magic_name__ : str = attention_mask
if query_images is not None:
__magic_name__ : Optional[Any] = BatchEncoding()
__magic_name__ : Any = self.image_processor(
lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ).pixel_values
__magic_name__ : str = query_pixel_values
if images is not None:
__magic_name__ : str = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ )
if text is not None and images is not None:
__magic_name__ : Tuple = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
__magic_name__ : List[str] = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowerCAmelCase__ ) , tensor_type=lowerCAmelCase__ )
def __magic_name__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]:
return self.image_processor.post_process(*lowerCAmelCase__ , **lowerCAmelCase__ )
def __magic_name__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict:
return self.image_processor.post_process_object_detection(*lowerCAmelCase__ , **lowerCAmelCase__ )
def __magic_name__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]:
return self.image_processor.post_process_image_guided_detection(*lowerCAmelCase__ , **lowerCAmelCase__ )
def __magic_name__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> int:
return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ )
def __magic_name__ ( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> str:
return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ )
@property
def __magic_name__ ( self ) -> Dict:
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCAmelCase__ , )
return self.image_processor_class
@property
def __magic_name__ ( self ) -> str:
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCAmelCase__ , )
return self.image_processor
| 342 |
import argparse
import torch
from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert
from transformers.utils import logging
logging.set_verbosity_info()
def UpperCamelCase ( _A, _A, _A ):
"""simple docstring"""
__magic_name__ : Dict = MobileBertConfig.from_json_file(_A )
print(f'Building PyTorch model from configuration: {config}' )
__magic_name__ : Tuple = MobileBertForPreTraining(_A )
# Load weights from tf checkpoint
__magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict(), _A )
if __name__ == "__main__":
__magic_name__: Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--mobilebert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained MobileBERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__magic_name__: Dict = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
| 342 | 1 |
__magic_name__: str = [0, 2, 4, 6, 8]
__magic_name__: Optional[int] = [1, 3, 5, 7, 9]
def UpperCamelCase ( _A, _A, _A, _A ):
"""simple docstring"""
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0
for i in range(length // 2 - 1, -1, -1 ):
remainder += digits[i] + digits[length - i - 1]
if remainder % 2 == 0:
return 0
remainder //= 10
return 1
if remaining_length == 1:
if remainder % 2 == 0:
return 0
__magic_name__ : List[Any] = 0
for digit in range(10 ):
__magic_name__ : Optional[int] = digit
result += reversible_numbers(
0, (remainder + 2 * digit) // 10, _A, _A )
return result
__magic_name__ : str = 0
for digita in range(10 ):
__magic_name__ : Optional[Any] = digita
if (remainder + digita) % 2 == 0:
__magic_name__ : Tuple = ODD_DIGITS
else:
__magic_name__ : str = EVEN_DIGITS
for digita in other_parity_digits:
__magic_name__ : Tuple = digita
result += reversible_numbers(
remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, )
return result
def UpperCamelCase ( _A = 9 ):
"""simple docstring"""
__magic_name__ : List[str] = 0
for length in range(1, max_power + 1 ):
result += reversible_numbers(_A, 0, [0] * length, _A )
return result
if __name__ == "__main__":
print(F"""{solution() = }""")
| 342 |
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class snake_case__ ( _lowerCAmelCase , unittest.TestCase ):
lowercase__ : Optional[Any] = MgpstrTokenizer
lowercase__ : int = False
lowercase__ : Any = {}
lowercase__ : Optional[int] = False
def __magic_name__ ( self ) -> Optional[Any]:
super().setUp()
# fmt: off
__magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""]
# fmt: on
__magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
__magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] )
with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" )
def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]:
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]:
__magic_name__ : List[str] = """tester"""
__magic_name__ : int = """tester"""
return input_text, output_text
@unittest.skip("""MGP-STR always lower cases letters.""" )
def __magic_name__ ( self ) -> str:
pass
def __magic_name__ ( self ) -> List[str]:
__magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ )
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
__magic_name__ : Dict = """[SPECIAL_TOKEN]"""
tokenizer.add_special_tokens({"""cls_token""": special_token} )
__magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , 1 )
__magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
self.assertTrue(special_token not in decoded )
def __magic_name__ ( self ) -> Union[str, Any]:
__magic_name__ : int = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'{tokenizer.__class__.__name__}' ):
__magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ )
__magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ )
__magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
__magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
__magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertNotEqual(len(lowerCAmelCase__ ) , 0 )
__magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ )
@unittest.skip("""MGP-STR tokenizer only handles one sequence.""" )
def __magic_name__ ( self ) -> Tuple:
pass
@unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" )
def __magic_name__ ( self ) -> Optional[Any]:
pass
| 342 | 1 |
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : List[Any] = [0] * len(_A )
__magic_name__ : List[str] = []
__magic_name__ : List[str] = [1] * len(_A )
for values in graph.values():
for i in values:
indegree[i] += 1
for i in range(len(_A ) ):
if indegree[i] == 0:
queue.append(_A )
while queue:
__magic_name__ : Dict = queue.pop(0 )
for x in graph[vertex]:
indegree[x] -= 1
if long_dist[vertex] + 1 > long_dist[x]:
__magic_name__ : int = long_dist[vertex] + 1
if indegree[x] == 0:
queue.append(_A )
print(max(_A ) )
# Adjacency list of Graph
__magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []}
longest_distance(graph)
| 342 |
import re
def UpperCamelCase ( _A ):
"""simple docstring"""
__magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" )
if match := re.search(_A, _A ):
return match.string == phone
return False
if __name__ == "__main__":
print(indian_phone_validator("+918827897895"))
| 342 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.