code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import qiskit def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register lowercase = qiskit.QuantumCircuit(lowerCAmelCase__ , lowerCAmelCase__ ) # Apply X (NOT) Gate to Qubits 0 & 1 circuit.x(0 ) circuit.x(1 ) # Map the quantum measurement to the classical bits circuit.measure([0, 1] , [0, 1] ) # Execute the circuit on the qasm simulator lowercase = qiskit.execute(lowerCAmelCase__ , lowerCAmelCase__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ :str = single_qubit_measure(2, 2) print(F'Total count for various states are: {counts}')
101
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]: __magic_name__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} __magic_name__ : str = parent __magic_name__ : Any = batch_size __magic_name__ : Any = num_channels __magic_name__ : List[str] = image_size __magic_name__ : Tuple = min_resolution __magic_name__ : Union[str, Any] = max_resolution __magic_name__ : List[str] = do_resize __magic_name__ : Optional[Any] = size __magic_name__ : Optional[Any] = do_normalize __magic_name__ : Any = image_mean __magic_name__ : List[str] = image_std def __magic_name__ ( self ) -> List[str]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = DPTImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Dict = DPTImageProcessingTester(self ) @property def __magic_name__ ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __magic_name__ ( self ) -> str: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Optional[Any]: # Initialize image_processing __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
342
0
"""simple docstring""" from PIL import Image def lowercase ( _snake_case : Image ) ->Image: """simple docstring""" __snake_case , __snake_case : Any = image.size __snake_case : Dict = 0 __snake_case : Tuple = image.load() for i in range(_snake_case ): for j in range(_snake_case ): __snake_case : int = pixels[j, i] mean += pixel mean //= width * height for j in range(_snake_case ): for i in range(_snake_case ): __snake_case : Tuple = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": SCREAMING_SNAKE_CASE : Optional[Any] = mean_threshold(Image.open("""path_to_image""").convert("""L""")) image.save("""output_image_path""")
102
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__: Tuple = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M''' lowercase__ : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowercase__ : List[str] = '''translator''' lowercase__ : Optional[Any] = AutoTokenizer lowercase__ : int = AutoModelForSeqaSeqLM lowercase__ : List[Any] = LANGUAGE_CODES lowercase__ : str = ['''text''', '''text''', '''text'''] lowercase__ : Any = ['''text'''] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) __magic_name__ : Tuple = self.lang_to_code[src_lang] __magic_name__ : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
342
0
import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument A__ : Optional[Any] = { '''/attention/''': '''/0/SelfAttention/''', '''/self_attention/''': '''/0/SelfAttention/''', '''/encoder_decoder_attention/''': '''/1/EncDecAttention/''', '''value''': '''v''', '''query''': '''q''', '''key''': '''k''', '''out''': '''o''', '''pre_self_attention_layer_norm''': '''0/layer_norm''', '''pre_cross_attention_layer_norm''': '''1/layer_norm''', '''pre_attention_layer_norm''': '''0/layer_norm''', # previously 1, but seems wrong '''token_embedder''': '''shared''', '''encoder_norm''': '''final_layer_norm''', '''decoder_norm''': '''final_layer_norm''', '''relpos_bias/rel_embedding''': '''block/0/layer/0/SelfAttention/relative_attention_bias/weight''', '''router/router_weights/w/''': '''router/classifier/''', '''roer/roer_weights/w/''': '''router/classifier/''', '''logits_dense''': '''lm_head''', } def UpperCamelCase( __UpperCamelCase : Optional[Any] ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model lowerCAmelCase_ : Tuple = list(s_dict.keys() ) for key in keys: lowerCAmelCase_ : Union[str, Any] = R'''.*/layers_(\d+)''' lowerCAmelCase_ : Optional[int] = key if re.match(__UpperCamelCase ,__UpperCamelCase ): lowerCAmelCase_ : Tuple = re.sub(R'''layers_(\d+)''' ,R'''block/\1/layer''' ,__UpperCamelCase ) lowerCAmelCase_ : List[Any] = R'''(encoder|decoder)\/''' if re.match(__UpperCamelCase ,__UpperCamelCase ): lowerCAmelCase_ : Union[str, Any] = re.match(__UpperCamelCase ,__UpperCamelCase ).groups() if groups[0] == "encoder": lowerCAmelCase_ : List[Any] = re.sub(R'''/mlp/''' ,R'''/1/mlp/''' ,__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = re.sub(R'''/pre_mlp_layer_norm/''' ,R'''/1/layer_norm/''' ,__UpperCamelCase ) elif groups[0] == "decoder": lowerCAmelCase_ : Dict = re.sub(R'''/mlp/''' ,R'''/2/mlp/''' ,__UpperCamelCase ) lowerCAmelCase_ : List[Any] = re.sub(R'''/pre_mlp_layer_norm/''' ,R'''/2/layer_norm/''' ,__UpperCamelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: lowerCAmelCase_ : Any = new_key.replace(__UpperCamelCase ,__UpperCamelCase ) print(f"""{key} -> {new_key}""" ) lowerCAmelCase_ : Optional[int] = s_dict.pop(__UpperCamelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCAmelCase_ : List[str] = s_dict[ '''encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: lowerCAmelCase_ : Any = s_dict[ '''decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight''' ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: lowerCAmelCase_ : Tuple = s_dict[key].shape[0] lowerCAmelCase_ : str = s_dict[key] for idx in range(__UpperCamelCase ): lowerCAmelCase_ : Tuple = expert_weihts[idx] print(f"""{key} -> {key.replace("expert/" ,"nested fstring" )}""" ) s_dict.pop(__UpperCamelCase ) return s_dict A__ : Any = { '''NUM_ENCODER_LAYERS''': '''num_layers''', '''NUM_DECODER_LAYERS''': '''num_decoder_layers''', '''NUM_HEADS''': '''num_heads''', '''HEAD_DIM''': '''d_kv''', '''EMBED_DIM''': '''d_model''', '''MLP_DIM''': '''d_ff''', '''NUM_SELECTED_EXPERTS''': '''num_selected_experts''', '''NUM_ENCODER_SPARSE_LAYERS''': '''num_sparse_encoder_layers''', '''NUM_DECODER_SPARSE_LAYERS''': '''num_sparse_decoder_layers''', '''dense.MlpBlock.activations''': '''feed_forward_proj''', } def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : str ): # Convert a google style config to the hugging face fromat import regex as re with open(__UpperCamelCase ,'''r''' ) as f: lowerCAmelCase_ : int = f.read() lowerCAmelCase_ : str = re.findall(R'''(.*) = ([0-9.]*)''' ,__UpperCamelCase ) lowerCAmelCase_ : Dict = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": lowerCAmelCase_ : Dict = float(__UpperCamelCase ) if '''.''' in value else int(__UpperCamelCase ) lowerCAmelCase_ : Any = re.findall(R'''(.*activations) = \(\'(.*)\',\)''' ,__UpperCamelCase )[0] lowerCAmelCase_ : List[str] = str(activation[1] ) lowerCAmelCase_ : Dict = num_experts lowerCAmelCase_ : Dict = SwitchTransformersConfig(**__UpperCamelCase ) return config def UpperCamelCase( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Any=None ,__UpperCamelCase : Optional[int]="./" ,__UpperCamelCase : str=8 ): # Initialise PyTorch model print(f"""Loading flax weights from : {flax_checkpoint_path}""" ) lowerCAmelCase_ : Optional[int] = checkpoints.load_tax_checkpoint(__UpperCamelCase ) if gin_file is not None: lowerCAmelCase_ : Tuple = convert_gin_to_config(__UpperCamelCase ,__UpperCamelCase ) else: lowerCAmelCase_ : Tuple = SwitchTransformersConfig.from_pretrained(__UpperCamelCase ) lowerCAmelCase_ : int = SwitchTransformersForConditionalGeneration(__UpperCamelCase ) lowerCAmelCase_ : Tuple = flax_params['''target'''] lowerCAmelCase_ : Optional[Any] = flatten_dict(__UpperCamelCase ,sep='''/''' ) lowerCAmelCase_ : Tuple = rename_keys(__UpperCamelCase ) lowerCAmelCase_ : Tuple = unflatten_dict(__UpperCamelCase ,sep='''/''' ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(__UpperCamelCase ,__UpperCamelCase ) print(f"""Save PyTorch model to {pytorch_dump_path}""" ) pt_model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": A__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--switch_t5x_checkpoint_path''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the''' ''' model architecture. If not provided, a `gin_file` has to be provided.''' ), ) parser.add_argument( '''--gin_file''', default=None, type=str, required=False, help='''Path to the gin config file. If not provided, a `config_file` has to be passed ''', ) parser.add_argument( '''--config_name''', default=None, type=str, required=False, help='''Config name of SwitchTransformers model.''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output pytorch model.''' ) parser.add_argument('''--num_experts''', default=8, type=int, required=False, help='''Number of experts''') A__ : Union[str, Any] = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
103
import math class snake_case__ : def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1 __magic_name__ : Tuple = n __magic_name__ : Union[str, Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # adjacency matrix for weight __magic_name__ : List[Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # dp[i][j] stores minimum distance from i to j def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Dict = w def __magic_name__ ( self ) -> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: return self.dp[u][v] if __name__ == "__main__": __magic_name__: Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
342
0
'''simple docstring''' import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py lowerCAmelCase__ = '''.''' if __name__ == "__main__": lowerCAmelCase__ = os.path.join(REPO_PATH, '''utils/documentation_tests.txt''') lowerCAmelCase__ = [] lowerCAmelCase__ = [] with open(doctest_file_path) as fp: for line in fp: lowerCAmelCase__ = line.strip() lowerCAmelCase__ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: lowerCAmelCase__ = '''\n'''.join(non_existent_paths) raise ValueError(f'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError('''Files in `utils/documentation_tests.txt` are not in alphabetical order.''')
104
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__ : def __init__( self , lowerCAmelCase__ = None ) -> None: if components is None: __magic_name__ : Any = [] __magic_name__ : List[str] = list(lowerCAmelCase__ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")" def __add__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : Dict = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: raise Exception("""must have the same size""" ) def __sub__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : int = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... @overload def __mul__( self , lowerCAmelCase__ ) -> float: ... def __mul__( self , lowerCAmelCase__ ) -> float | Vector: if isinstance(lowerCAmelCase__ , (float, int) ): __magic_name__ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ): __magic_name__ : Optional[Any] = len(self ) __magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return sum(lowerCAmelCase__ ) else: # error case raise Exception("""invalid operand!""" ) def __magic_name__ ( self ) -> Vector: return Vector(self.__components ) def __magic_name__ ( self , lowerCAmelCase__ ) -> float: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ : Optional[int] = value def __magic_name__ ( self ) -> float: if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __magic_name__ : Dict = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase__ ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float: __magic_name__ : Optional[Any] = self * other __magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCamelCase ( _A ): """simple docstring""" assert isinstance(_A, _A ) return Vector([0] * dimension ) def UpperCamelCase ( _A, _A ): """simple docstring""" assert isinstance(_A, _A ) and (isinstance(_A, _A )) __magic_name__ : Union[str, Any] = [0] * dimension __magic_name__ : Optional[int] = 1 return Vector(_A ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" assert ( isinstance(_A, _A ) and isinstance(_A, _A ) and (isinstance(_A, (int, float) )) ) return x * scalar + y def UpperCamelCase ( _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )] return Vector(_A ) class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Dict = matrix __magic_name__ : Tuple = w __magic_name__ : Union[str, Any] = h def __str__( self ) -> str: __magic_name__ : Dict = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Tuple = [] for i in range(self.__height ): __magic_name__ : Tuple = [ self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Optional[Any] = [] for i in range(self.__height ): __magic_name__ : int = [ self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Matrix: ... @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector if len(lowerCAmelCase__ ) == self.__width: __magic_name__ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ : Optional[int] = [ self.__matrix[i][j] * other.component(lowerCAmelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar __magic_name__ : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase__ , self.__width , self.__height ) return None def __magic_name__ ( self ) -> int: return self.__height def __magic_name__ ( self ) -> int: return self.__width def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ : List[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase__ ) ): __magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise Exception("""Indices out of bounds""" ) def __magic_name__ ( self ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width ) ] return sum(lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )] return Matrix(_A, _A, _A ) def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : list[list[float]] = [ [random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A ) ] return Matrix(_A, _A, _A )
342
0
"""simple docstring""" import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask a : int = logging.getLogger(__name__) class __UpperCamelCase ( a__ ): lowerCamelCase : List[str] ="""token-classification""" def __init__( self , lowerCAmelCase__ ) -> Dict: if type(lowerCAmelCase__ ) == dict: a : str = Namespace(**lowerCAmelCase__ ) a : List[str] = import_module("tasks" ) try: a : Optional[Any] = getattr(lowerCAmelCase__ , hparams.task_type ) a : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) a : Any = self.token_classification_task.get_labels(hparams.labels ) a : Dict = CrossEntropyLoss().ignore_index super().__init__(lowerCAmelCase__ , len(self.labels ) , self.mode ) def __a ( self , **lowerCAmelCase__ ) -> Tuple: return self.model(**lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: a : List[Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": a : str = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids a : Optional[int] = self(**lowerCAmelCase__ ) a : Optional[Any] = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __a ( self ) -> Dict: a : Optional[int] = self.hparams for mode in ["train", "dev", "test"]: a : Tuple = self._feature_file(lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowerCAmelCase__ ) a : int = torch.load(lowerCAmelCase__ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) a : Dict = self.token_classification_task.read_examples_from_file(args.data_dir , lowerCAmelCase__ ) a : Dict = self.token_classification_task.convert_examples_to_features( lowerCAmelCase__ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["xlnet"] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=lowerCAmelCase__ , pad_on_left=bool(self.config.model_type in ["xlnet"] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("Saving features into cached file %s" , lowerCAmelCase__ ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> DataLoader: a : Dict = self._feature_file(lowerCAmelCase__ ) logger.info("Loading features from cached file %s" , lowerCAmelCase__ ) a : Union[str, Any] = torch.load(lowerCAmelCase__ ) a : Any = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) a : Optional[int] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: a : Union[str, Any] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: a : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) a : Optional[int] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , batch_size=lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> int: """Compute validation""" "" a : List[Any] = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type != "distilbert": a : Union[str, Any] = ( batch[2] if self.config.model_type in ["bert", "xlnet"] else None ) # XLM and RoBERTa don"t use token_type_ids a : Tuple = self(**lowerCAmelCase__ ) a, a : Optional[int] = outputs[:2] a : Any = logits.detach().cpu().numpy() a : Optional[Any] = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __a ( self , lowerCAmelCase__ ) -> int: a : Optional[Any] = torch.stack([x["val_loss"] for x in outputs] ).mean() a : Tuple = np.concatenate([x["pred"] for x in outputs] , axis=0 ) a : Any = np.argmax(lowerCAmelCase__ , axis=2 ) a : Any = np.concatenate([x["target"] for x in outputs] , axis=0 ) a : List[str] = dict(enumerate(self.labels ) ) a : str = [[] for _ in range(out_label_ids.shape[0] )] a : Any = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) a : int = { "val_loss": val_loss_mean, "accuracy_score": accuracy_score(lowerCAmelCase__ , lowerCAmelCase__ ), "precision": precision_score(lowerCAmelCase__ , lowerCAmelCase__ ), "recall": recall_score(lowerCAmelCase__ , lowerCAmelCase__ ), "f1": fa_score(lowerCAmelCase__ , lowerCAmelCase__ ), } a : List[str] = dict(results.items() ) a : str = results return ret, preds_list, out_label_list def __a ( self , lowerCAmelCase__ ) -> Optional[Any]: # when stable a, a, a : Dict = self._eval_end(lowerCAmelCase__ ) a : Union[str, Any] = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __a ( self , lowerCAmelCase__ ) -> Tuple: # updating to test_epoch_end instead of deprecated test_end a, a, a : List[Any] = self._eval_end(lowerCAmelCase__ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 a : Optional[Any] = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __a ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: # Add NER specific options BaseTransformer.add_model_specific_args(lowerCAmelCase__ , lowerCAmelCase__ ) parser.add_argument( "--task_type" , default="NER" , type=lowerCAmelCase__ , help="Task type to fine tune in training (e.g. NER, POS, etc)" ) parser.add_argument( "--max_seq_length" , default=128 , type=lowerCAmelCase__ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--labels" , default="" , type=lowerCAmelCase__ , help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used." , ) parser.add_argument( "--gpus" , default=0 , type=lowerCAmelCase__ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) a : Optional[Any] = NERTransformer.add_model_specific_args(parser, os.getcwd()) a : Tuple = parser.parse_args() a : Optional[int] = NERTransformer(args) a : Any = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 a : Any = sorted(glob.glob(os.path.join(args.output_dir, '''checkpoint-epoch=*.ckpt'''), recursive=True)) a : Optional[int] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
105
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __magic_name__: str = logging.get_logger(__name__) __magic_name__: int = "▁" __magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"} __magic_name__: List[str] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } __magic_name__: Tuple = { "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off __magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class snake_case__ ( _lowerCAmelCase ): lowercase__ : str = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = ['''input_ids''', '''attention_mask'''] lowercase__ : List[int] = [] lowercase__ : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __magic_name__ : Optional[Any] = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) __magic_name__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __magic_name__ : List[Any] = 1 __magic_name__ : Dict = len(self.sp_model ) __magic_name__ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } __magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} __magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __magic_name__ : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn""" __magic_name__ : Any = self.lang_code_to_id[self._src_lang] __magic_name__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Any: __magic_name__ : List[Any] = self.__dict__.copy() __magic_name__ : int = None __magic_name__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__ : Any = {} __magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __magic_name__ ( self ) -> str: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self ) -> str: return self._src_lang @src_lang.setter def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) __magic_name__ : Optional[int] = [1] * len(self.prefix_tokens ) __magic_name__ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : str = [self.sep_token_id] __magic_name__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __magic_name__ : Dict = src_lang __magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Tuple = tgt_lang_id return inputs def __magic_name__ ( self ) -> int: __magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip() return out_string def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , """wb""" ) as fi: __magic_name__ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding: __magic_name__ : List[str] = src_lang __magic_name__ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : str = [self.cur_lang_code] __magic_name__ : List[Any] = [self.eos_token_id] def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : Optional[int] = [self.cur_lang_code] __magic_name__ : Union[str, Any] = [self.eos_token_id]
342
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] ,lowercase_ : Tuple ,lowercase_ : int=7 ,lowercase_ : List[str]=3 ,lowercase_ : Any=3_0 ,lowercase_ : int=4_0_0 ,lowercase_ : List[str]=True ,lowercase_ : Tuple=None ,lowercase_ : int=0.9 ,lowercase_ : str=None ,lowercase_ : List[str]=True ,lowercase_ : str=[0.5, 0.5, 0.5] ,lowercase_ : Optional[Any]=[0.5, 0.5, 0.5] ,): lowerCAmelCase__ : Optional[int] = size if size is not None else {'''shortest_edge''': 3_0} lowerCAmelCase__ : int = crop_size if crop_size is not None else {'''height''': 3_0, '''width''': 3_0} lowerCAmelCase__ : List[str] = parent lowerCAmelCase__ : Any = batch_size lowerCAmelCase__ : Union[str, Any] = num_channels lowerCAmelCase__ : List[str] = min_resolution lowerCAmelCase__ : int = max_resolution lowerCAmelCase__ : Any = do_resize_and_center_crop lowerCAmelCase__ : Tuple = size lowerCAmelCase__ : List[str] = crop_pct lowerCAmelCase__ : Union[str, Any] = crop_size lowerCAmelCase__ : Any = do_normalize lowerCAmelCase__ : int = image_mean lowerCAmelCase__ : List[Any] = image_std def __lowerCAmelCase ( self : Dict ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( a_ , unittest.TestCase ): """simple docstring""" lowercase__ = PoolFormerImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self : int ): lowerCAmelCase__ : str = PoolFormerImageProcessingTester(self ) @property def __lowerCAmelCase ( self : List[Any] ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self : Tuple ): lowerCAmelCase__ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ ,'''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(lowercase_ ,'''size''' ) ) self.assertTrue(hasattr(lowercase_ ,'''crop_pct''' ) ) self.assertTrue(hasattr(lowercase_ ,'''do_normalize''' ) ) self.assertTrue(hasattr(lowercase_ ,'''image_mean''' ) ) self.assertTrue(hasattr(lowercase_ ,'''image_std''' ) ) def __lowerCAmelCase ( self : str ): lowerCAmelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 3_0} ) self.assertEqual(image_processor.crop_size ,{'''height''': 3_0, '''width''': 3_0} ) lowerCAmelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ,size=4_2 ,crop_size=8_4 ) self.assertEqual(image_processor.size ,{'''shortest_edge''': 4_2} ) self.assertEqual(image_processor.crop_size ,{'''height''': 8_4, '''width''': 8_4} ) def __lowerCAmelCase ( self : List[Any] ): pass def __lowerCAmelCase ( self : Optional[int] ): # Initialize image_processing lowerCAmelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,Image.Image ) # Test not batched input lowerCAmelCase__ : Dict = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Optional[Any] = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def __lowerCAmelCase ( self : Tuple ): # Initialize image_processing lowerCAmelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase__ : List[Any] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ,numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,np.ndarray ) # Test not batched input lowerCAmelCase__ : Optional[Any] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched lowerCAmelCase__ : Any = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) def __lowerCAmelCase ( self : Optional[int] ): # Initialize image_processing lowerCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase__ : List[str] = prepare_image_inputs(self.image_processor_tester ,equal_resolution=lowercase_ ,torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ ,torch.Tensor ) # Test not batched input lowerCAmelCase__ : List[str] = image_processing(image_inputs[0] ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,) # Test batched lowerCAmelCase__ : List[str] = image_processing(lowercase_ ,return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape ,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) ,)
106
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Dict = MobileBertConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ : Tuple = MobileBertForPreTraining(_A ) # Load weights from tf checkpoint __magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _A ) if __name__ == "__main__": __magic_name__: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__: Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
342
0
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker __lowerCAmelCase : str = 'CompVis/stable-diffusion-v1-1' __lowerCAmelCase : int = 'CompVis/stable-diffusion-v1-2' __lowerCAmelCase : List[str] = 'CompVis/stable-diffusion-v1-3' __lowerCAmelCase : str = 'CompVis/stable-diffusion-v1-4' class snake_case__ (_UpperCamelCase ): """simple docstring""" def __init__( self : str , __lowerCamelCase : AutoencoderKL , __lowerCamelCase : CLIPTextModel , __lowerCamelCase : CLIPTokenizer , __lowerCamelCase : UNetaDConditionModel , __lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __lowerCamelCase : StableDiffusionSafetyChecker , __lowerCamelCase : CLIPImageProcessor , __lowerCamelCase : bool = True , ) -> List[Any]: super()._init_() a = StableDiffusionPipeline.from_pretrained(__lowerCamelCase ) a = StableDiffusionPipeline.from_pretrained(__lowerCamelCase ) a = StableDiffusionPipeline.from_pretrained(__lowerCamelCase ) a = StableDiffusionPipeline( vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , requires_safety_checker=__lowerCamelCase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def __UpperCAmelCase ( self : Optional[int] ) -> Dict[str, Any]: return {k: getattr(self , __lowerCamelCase ) for k in self.config.keys() if not k.startswith("_" )} def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Optional[Union[str, int]] = "auto" ) -> Dict: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory a = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] ) -> List[str]: self.enable_attention_slicing(__lowerCamelCase ) @torch.no_grad() def __UpperCAmelCase ( self : Any , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : int = 5_12 , __lowerCamelCase : int = 5_12 , __lowerCamelCase : int = 50 , __lowerCamelCase : float = 7.5 , __lowerCamelCase : Optional[Union[str, List[str]]] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCamelCase : int = 1 , **__lowerCamelCase : str , ) -> Union[str, Any]: return self.pipea( prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , ) @torch.no_grad() def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : int = 5_12 , __lowerCamelCase : int = 5_12 , __lowerCamelCase : int = 50 , __lowerCamelCase : float = 7.5 , __lowerCamelCase : Optional[Union[str, List[str]]] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCamelCase : int = 1 , **__lowerCamelCase : Any , ) -> Tuple: return self.pipea( prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , ) @torch.no_grad() def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : int = 5_12 , __lowerCamelCase : int = 5_12 , __lowerCamelCase : int = 50 , __lowerCamelCase : float = 7.5 , __lowerCamelCase : Optional[Union[str, List[str]]] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCamelCase : int = 1 , **__lowerCamelCase : int , ) -> List[str]: return self.pipea( prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , ) @torch.no_grad() def __UpperCAmelCase ( self : str , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : int = 5_12 , __lowerCamelCase : int = 5_12 , __lowerCamelCase : int = 50 , __lowerCamelCase : float = 7.5 , __lowerCamelCase : Optional[Union[str, List[str]]] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCamelCase : int = 1 , **__lowerCamelCase : Tuple , ) -> str: return self.pipea( prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , ) @torch.no_grad() def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : int = 5_12 , __lowerCamelCase : int = 5_12 , __lowerCamelCase : int = 50 , __lowerCamelCase : float = 7.5 , __lowerCamelCase : Optional[Union[str, List[str]]] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCamelCase : int = 1 , **__lowerCamelCase : List[Any] , ) -> List[str]: a = "cuda" if torch.cuda.is_available() else "cpu" self.to(__lowerCamelCase ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 a = self.textaimg_sda_a( prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.2 a = self.textaimg_sda_a( prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.3 a = self.textaimg_sda_a( prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , ) # Get first result from Stable Diffusion Checkpoint v1.4 a = self.textaimg_sda_a( prompt=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , **__lowerCamelCase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
107
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[Any] = MgpstrTokenizer lowercase__ : int = False lowercase__ : Any = {} lowercase__ : Optional[int] = False def __magic_name__ ( self ) -> Optional[Any]: super().setUp() # fmt: off __magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = """tester""" __magic_name__ : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> List[str]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Dict = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) __magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) __magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) __magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __magic_name__ ( self ) -> Tuple: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __magic_name__ ( self ) -> Optional[Any]: pass
342
0
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : list[int] , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' lowerCAmelCase : List[str] = len(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): lowerCAmelCase : Dict = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): lowerCAmelCase : Optional[int] = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: lowerCAmelCase : Dict = subset[i - 1][j] if arr[i - 1] <= j: lowerCAmelCase : str = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
108
import re def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(_A, _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
342
0
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : List[str] = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(_SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : List[Any] = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(_SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Dict = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Dict = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(_SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Optional[int] = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(_SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Dict = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] UpperCAmelCase : int = """fp16""" self.assertTrue(is_safetensors_compatible(_SCREAMING_SNAKE_CASE , variant=_SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Union[str, Any] = [ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] UpperCAmelCase : Optional[Any] = """fp16""" self.assertTrue(is_safetensors_compatible(_SCREAMING_SNAKE_CASE , variant=_SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Dict = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] UpperCAmelCase : Any = """fp16""" self.assertTrue(is_safetensors_compatible(_SCREAMING_SNAKE_CASE , variant=_SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCAmelCase : Any = """fp16""" self.assertFalse(is_safetensors_compatible(_SCREAMING_SNAKE_CASE , variant=_SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : str = [ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] UpperCAmelCase : str = """fp16""" self.assertTrue(is_safetensors_compatible(_SCREAMING_SNAKE_CASE , variant=_SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : Tuple = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] UpperCAmelCase : Dict = """fp16""" self.assertTrue(is_safetensors_compatible(_SCREAMING_SNAKE_CASE , variant=_SCREAMING_SNAKE_CASE ) ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Any = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] UpperCAmelCase : Optional[int] = """fp16""" self.assertFalse(is_safetensors_compatible(_SCREAMING_SNAKE_CASE , variant=_SCREAMING_SNAKE_CASE ) )
109
import doctest from collections import deque import numpy as np class snake_case__ : def __init__( self ) -> None: __magic_name__ : Any = [2, 1, 2, -1] __magic_name__ : Tuple = [1, 2, 3, 4] def __magic_name__ ( self ) -> list[float]: __magic_name__ : Optional[Any] = len(self.first_signal ) __magic_name__ : Dict = len(self.second_signal ) __magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ ) # create a zero matrix of max_length x max_length __magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__ ): __magic_name__ : List[str] = deque(self.second_signal ) rotated_signal.rotate(lowerCAmelCase__ ) for j, item in enumerate(lowerCAmelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal __magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
342
0
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCAmelCase_ = pytest.mark.integration @require_faiss class lowerCAmelCase_ ( _lowerCAmelCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = Dataset.from_dict({"""filename""": ["""my_name-train""" + """_""" + str(lowerCAmelCase__ ) for x in np.arange(30 ).tolist()]} ) return dset def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" import faiss UpperCAmelCase__ = self._create_dummy_dataset() UpperCAmelCase__ = dset.map( lambda _UpperCAmelCase , _UpperCAmelCase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=lowerCAmelCase__ , keep_in_memory=lowerCAmelCase__ ) UpperCAmelCase__ = dset.add_faiss_index("""vecs""" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCAmelCase__ = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) dset.drop_index("""vecs""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" import faiss UpperCAmelCase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) UpperCAmelCase__ = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" import faiss UpperCAmelCase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCAmelCase__ ) as tmp_file: dset.save_faiss_index("""vecs""" , tmp_file.name ) dset.load_faiss_index("""vecs2""" , tmp_file.name ) os.unlink(tmp_file.name ) UpperCAmelCase__ = dset.get_nearest_examples("""vecs2""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" ) dset.drop_index("""vecs""" ) self.assertRaises(lowerCAmelCase__ , partial(dset.get_nearest_examples , """vecs2""" , np.ones(5 , dtype=np.floataa ) ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" from elasticsearch import Elasticsearch UpperCAmelCase__ = self._create_dummy_dataset() with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: UpperCAmelCase__ = {"""acknowledged""": True} mocked_bulk.return_value([(True, None)] * 30 ) UpperCAmelCase__ = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 29}]}} UpperCAmelCase__ = Elasticsearch() dset.add_elasticsearch_index("""filename""" , es_client=lowerCAmelCase__ ) UpperCAmelCase__ = dset.get_nearest_examples("""filename""" , """my_name-train_29""" ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) @require_faiss class lowerCAmelCase_ ( _lowerCAmelCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" import faiss UpperCAmelCase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query UpperCAmelCase__ = np.zeros(5 , dtype=np.floataa ) UpperCAmelCase__ = 1 UpperCAmelCase__ = index.search(lowerCAmelCase__ ) self.assertRaises(lowerCAmelCase__ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries UpperCAmelCase__ = np.eye(5 , dtype=np.floataa )[::-1] UpperCAmelCase__ = index.search_batch(lowerCAmelCase__ ) self.assertRaises(lowerCAmelCase__ , index.search_batch , queries[0] ) UpperCAmelCase__ = [scores[0] for scores in total_scores] UpperCAmelCase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCAmelCase__ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" import faiss UpperCAmelCase__ = FaissIndex(string_factory="""Flat""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) UpperCAmelCase__ = FaissIndex(string_factory="""LSH""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(lowerCAmelCase__ ): UpperCAmelCase__ = FaissIndex(string_factory="""Flat""" , custom_index=faiss.IndexFlat(5 ) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" import faiss UpperCAmelCase__ = faiss.IndexFlat(5 ) UpperCAmelCase__ = FaissIndex(custom_index=lowerCAmelCase__ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" import faiss UpperCAmelCase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=lowerCAmelCase__ ) as tmp_file: index.save(tmp_file.name ) UpperCAmelCase__ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) UpperCAmelCase__ = np.zeros(5 , dtype=np.floataa ) UpperCAmelCase__ = 1 UpperCAmelCase__ = index.search(lowerCAmelCase__ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ): '''simple docstring''' import faiss UpperCAmelCase__ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) UpperCAmelCase__ = """index.faiss""" UpperCAmelCase__ = F'''mock://{index_name}''' index.save(_A , storage_options=mockfs.storage_options ) UpperCAmelCase__ = FaissIndex.load(_A , storage_options=mockfs.storage_options ) UpperCAmelCase__ = np.zeros(5 , dtype=np.floataa ) UpperCAmelCase__ = 1 UpperCAmelCase__ = index.search(_A ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCAmelCase_ ( _lowerCAmelCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" from elasticsearch import Elasticsearch with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: UpperCAmelCase__ = Elasticsearch() UpperCAmelCase__ = {"""acknowledged""": True} UpperCAmelCase__ = ElasticSearchIndex(es_client=lowerCAmelCase__ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["""foo""", """bar""", """foobar"""] ) # single query UpperCAmelCase__ = """foo""" UpperCAmelCase__ = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} UpperCAmelCase__ = index.search(lowerCAmelCase__ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout UpperCAmelCase__ = """foo""" UpperCAmelCase__ = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 0}]}} UpperCAmelCase__ = index.search(lowerCAmelCase__ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries UpperCAmelCase__ = ["""foo""", """bar""", """foobar"""] UpperCAmelCase__ = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} UpperCAmelCase__ = index.search_batch(lowerCAmelCase__ ) UpperCAmelCase__ = [scores[0] for scores in total_scores] UpperCAmelCase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCAmelCase__ ) , 0 ) self.assertListEqual([1, 1, 1] , lowerCAmelCase__ ) # batched queries with timeout UpperCAmelCase__ = ["""foo""", """bar""", """foobar"""] UpperCAmelCase__ = {"""hits""": {"""hits""": [{"""_score""": 1, """_id""": 1}]}} UpperCAmelCase__ = index.search_batch(lowerCAmelCase__ , request_timeout=30 ) UpperCAmelCase__ = [scores[0] for scores in total_scores] UpperCAmelCase__ = [indices[0] for indices in total_indices] self.assertGreater(np.min(lowerCAmelCase__ ) , 0 ) self.assertListEqual([1, 1, 1] , lowerCAmelCase__ )
346
from math import factorial def UpperCamelCase ( _A, _A, _A ): """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(_A, _A ) or not isinstance(_A, _A ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) __magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __magic_name__ : Any = float(factorial(_A ) ) coefficient /= factorial(_A ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
342
0
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class lowercase ( _lowerCAmelCase ): __SCREAMING_SNAKE_CASE : Dict = ['''image_processor''', '''tokenizer'''] __SCREAMING_SNAKE_CASE : Union[str, Any] = '''OwlViTImageProcessor''' __SCREAMING_SNAKE_CASE : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , snake_case=None , snake_case=None , **snake_case ): snake_case_ = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , lowerCAmelCase__ , ) snake_case_ = kwargs.pop('feature_extractor' ) snake_case_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __call__( self , snake_case=None , snake_case=None , snake_case=None , snake_case="max_length" , snake_case="np" , **snake_case ): if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or (isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and not isinstance(text[0] , lowerCAmelCase__ )): snake_case_ = [self.tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ )] elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(text[0] , lowerCAmelCase__ ): snake_case_ = [] # Maximum number of queries across batch snake_case_ = max([len(lowerCAmelCase__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(lowerCAmelCase__ ) != max_num_queries: snake_case_ = t + [""" """] * (max_num_queries - len(lowerCAmelCase__ )) snake_case_ = self.tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) encodings.append(lowerCAmelCase__ ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": snake_case_ = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) snake_case_ = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp snake_case_ = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) snake_case_ = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch snake_case_ = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) snake_case_ = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf snake_case_ = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) snake_case_ = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) snake_case_ = BatchEncoding() snake_case_ = input_ids snake_case_ = attention_mask if query_images is not None: snake_case_ = BatchEncoding() snake_case_ = self.image_processor( lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ).pixel_values snake_case_ = query_pixel_values if images is not None: snake_case_ = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None and images is not None: snake_case_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: snake_case_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase__ ) , tensor_type=lowerCAmelCase__ ) def a ( self , *snake_case , **snake_case ): return self.image_processor.post_process(*lowerCAmelCase__ , **lowerCAmelCase__ ) def a ( self , *snake_case , **snake_case ): return self.image_processor.post_process_object_detection(*lowerCAmelCase__ , **lowerCAmelCase__ ) def a ( self , *snake_case , **snake_case ): return self.image_processor.post_process_image_guided_detection(*lowerCAmelCase__ , **lowerCAmelCase__ ) def a ( self , *snake_case , **snake_case ): return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def a ( self , *snake_case , **snake_case ): return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def a ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , lowerCAmelCase__ , ) return self.image_processor_class @property def a ( self ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , lowerCAmelCase__ , ) return self.image_processor
285
from __future__ import annotations def UpperCamelCase ( _A ): # This function is recursive """simple docstring""" __magic_name__ : str = len(_A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __magic_name__ : Dict = array[0] __magic_name__ : Optional[Any] = False __magic_name__ : Tuple = 1 __magic_name__ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __magic_name__ : Union[str, Any] = True __magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]] __magic_name__ : Dict = longest_subsequence(_A ) if len(_A ) > len(_A ): __magic_name__ : Tuple = temp_array else: i += 1 __magic_name__ : Any = [element for element in array[1:] if element >= pivot] __magic_name__ : Dict = [pivot, *longest_subsequence(_A )] if len(_A ) > len(_A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
342
0
from PIL import Image def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: def brightness(SCREAMING_SNAKE_CASE_ ) -> float: return 128 + level + (c - 128) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(_A ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change brightness to 100 lowerCamelCase__ = change_brightness(img, 100) brigt_img.save("""image_data/lena_brightness.png""", format="""png""")
212
import argparse import os import re __magic_name__: Optional[Any] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings __magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def UpperCamelCase ( _A, _A = False ): """simple docstring""" with open(_A, """r""", encoding="""utf-8""" ) as f: __magic_name__ : Any = f.read() __magic_name__ : List[Any] = content.split("""\n""" ) __magic_name__ : List[str] = [] __magic_name__ : Union[str, Any] = 0 while line_idx < len(_A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 __magic_name__ : List[Any] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __magic_name__ : List[str] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_A, """w""", encoding="""utf-8""" ) as f: f.write("""\n""".join(_A ) ) elif "\n".join(_A ) != content: return True def UpperCamelCase ( _A = False ): """simple docstring""" __magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )] __magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames] if not overwrite and any(_A ): __magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix' """ this.""" ) if __name__ == "__main__": __magic_name__: List[str] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __magic_name__: List[str] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
342
0
from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase__ ( _lowerCAmelCase ): def __init__(self : str , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : List[str] = None , ): super().__init__() self.register_modules(transformer=lowerCAmelCase__ , vae=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) # create a imagenet -> id dictionary for easier use __a : Dict = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split(''',''' ): __a : List[Any] = int(lowerCAmelCase__ ) __a : Optional[Any] = dict(sorted(self.labels.items() ) ) def lowerCAmelCase (self : str , snake_case_ : Optional[Any] ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a : Optional[Any] = list(lowerCAmelCase__ ) for l in label: if l not in self.labels: raise ValueError( f"{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}." ) return [self.labels[l] for l in label] @torch.no_grad() def __call__(self : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Any = 4.0 , snake_case_ : Union[str, Any] = None , snake_case_ : List[Any] = 5_0 , snake_case_ : Union[str, Any] = "pil" , snake_case_ : List[Any] = True , ): __a : Optional[int] = len(lowerCAmelCase__ ) __a : Any = self.transformer.config.sample_size __a : List[str] = self.transformer.config.in_channels __a : Tuple = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowerCAmelCase__ , device=self.device , dtype=self.transformer.dtype , ) __a : str = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents __a : List[str] = torch.tensor(lowerCAmelCase__ , device=self.device ).reshape(-1 ) __a : List[str] = torch.tensor([1_0_0_0] * batch_size , device=self.device ) __a : Any = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowerCAmelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: __a : Dict = latent_model_input[: len(lowerCAmelCase__ ) // 2] __a : Union[str, Any] = torch.cat([half, half] , dim=0 ) __a : Dict = self.scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) __a : List[Any] = t if not torch.is_tensor(lowerCAmelCase__ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) __a : Optional[int] = latent_model_input.device.type == """mps""" if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a : Tuple = torch.floataa if is_mps else torch.floataa else: __a : Optional[Any] = torch.intaa if is_mps else torch.intaa __a : List[str] = torch.tensor([timesteps] , dtype=lowerCAmelCase__ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: __a : int = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __a : int = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output __a : Any = self.transformer( lowerCAmelCase__ , timestep=lowerCAmelCase__ , class_labels=lowerCAmelCase__ ).sample # perform guidance if guidance_scale > 1: __a : Optional[int] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] __a : Dict = torch.split(lowerCAmelCase__ , len(lowerCAmelCase__ ) // 2 , dim=0 ) __a : List[Any] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) __a : Optional[Any] = torch.cat([half_eps, half_eps] , dim=0 ) __a : List[str] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: __a : Any = torch.split(lowerCAmelCase__ , lowerCAmelCase__ , dim=1 ) else: __a : Tuple = noise_pred # compute previous image: x_t -> x_t-1 __a : str = self.scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).prev_sample if guidance_scale > 1: __a : Any = latent_model_input.chunk(2 , dim=0 ) else: __a : Optional[Any] = latent_model_input __a : Optional[Any] = 1 / self.vae.config.scaling_factor * latents __a : Union[str, Any] = self.vae.decode(lowerCAmelCase__ ).sample __a : List[Any] = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __a : int = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __a : Dict = self.numpy_to_pil(lowerCAmelCase__ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowerCAmelCase__ )
216
__magic_name__: str = [0, 2, 4, 6, 8] __magic_name__: Optional[int] = [1, 3, 5, 7, 9] def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __magic_name__ : List[Any] = 0 for digit in range(10 ): __magic_name__ : Optional[int] = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, _A, _A ) return result __magic_name__ : str = 0 for digita in range(10 ): __magic_name__ : Optional[Any] = digita if (remainder + digita) % 2 == 0: __magic_name__ : Tuple = ODD_DIGITS else: __magic_name__ : str = EVEN_DIGITS for digita in other_parity_digits: __magic_name__ : Tuple = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, ) return result def UpperCamelCase ( _A = 9 ): """simple docstring""" __magic_name__ : List[str] = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(_A, 0, [0] * length, _A ) return result if __name__ == "__main__": print(F"""{solution() = }""")
342
0
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def _SCREAMING_SNAKE_CASE ( __snake_case : Tuple ): '''simple docstring''' for param in module.parameters(): lowercase = False def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): lowercase = """mps""" if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def _SCREAMING_SNAKE_CASE ( __snake_case : Dict ): '''simple docstring''' lowercase = plt.imshow(_A ) fig.axes.get_xaxis().set_visible(_A ) fig.axes.get_yaxis().set_visible(_A ) plt.show() def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = datetime.now() lowercase = current_time.strftime('%H:%M:%S' ) return timestamp
220
def UpperCamelCase ( _A ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) __magic_name__ : int = sorted(string.lower() ) return len(_A ) == len(set(_A ) ) if __name__ == "__main__": __magic_name__: Dict = input("Enter a string ").strip() __magic_name__: Union[str, Any] = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
342
0
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=1_8 , lowerCAmelCase__=3_0 , lowerCAmelCase__=4_0_0 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ): __SCREAMING_SNAKE_CASE = size if size is not None else {"""height""": 1_8, """width""": 1_8} __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = min_resolution __SCREAMING_SNAKE_CASE = max_resolution __SCREAMING_SNAKE_CASE = do_resize __SCREAMING_SNAKE_CASE = size __SCREAMING_SNAKE_CASE = do_normalize __SCREAMING_SNAKE_CASE = image_mean __SCREAMING_SNAKE_CASE = image_std def snake_case_ ( self): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( _lowerCAmelCase , unittest.TestCase ): """simple docstring""" __lowercase : Any = DPTImageProcessor if is_vision_available() else None def snake_case_ ( self): __SCREAMING_SNAKE_CASE = DPTImageProcessingTester(self) @property def snake_case_ ( self): return self.image_processor_tester.prepare_image_processor_dict() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""")) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""")) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""")) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase__ , """size""")) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8}) __SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2}) def snake_case_ ( self): # Initialize image_processing __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random PIL images __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCAmelCase__ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def snake_case_ ( self): # Initialize image_processing __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCAmelCase__ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def snake_case_ ( self): # Initialize image_processing __SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors __SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor) # Test not batched input __SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __SCREAMING_SNAKE_CASE = image_processing(lowerCAmelCase__ , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
100
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
342
0
import warnings from .generation import TFGenerationMixin class A( _lowerCAmelCase ): '''simple docstring''' warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''' , _lowerCAmelCase , )
204
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]: __magic_name__ : str = parent __magic_name__ : Dict = do_resize __magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88} __magic_name__ : Union[str, Any] = size_divisor __magic_name__ : Union[str, Any] = do_rescale __magic_name__ : Dict = rescale_factor __magic_name__ : Union[str, Any] = do_normalize __magic_name__ : List[str] = do_center_crop __magic_name__ : Tuple = image_mean __magic_name__ : Tuple = image_std __magic_name__ : Tuple = do_pad __magic_name__ : int = batch_size __magic_name__ : List[Any] = num_channels __magic_name__ : int = min_resolution __magic_name__ : str = max_resolution def __magic_name__ ( self ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int: if not batched: __magic_name__ : Dict = self.size["""shortest_edge"""] __magic_name__ : List[str] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): __magic_name__ ,__magic_name__ : List[Any] = image.size else: __magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2] __magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ ) if h < w: __magic_name__ ,__magic_name__ : str = size, scale * w else: __magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size __magic_name__ : Tuple = int((13_33 / 8_00) * size ) if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size: __magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = newh * scale __magic_name__ : Any = neww * scale __magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 ) __magic_name__ ,__magic_name__ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __magic_name__ : Union[str, Any] = [] for image in image_inputs: __magic_name__ ,__magic_name__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] __magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = BridgeTowerImageProcessingTester(self ) @property def __magic_name__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Any: __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) ) def __magic_name__ ( self ) -> Optional[int]: pass def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> str: # Initialize image processor __magic_name__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
342
0
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A__ : Any = [ "python", "tqdm", "regex", "requests", "packaging", "filelock", "numpy", "tokenizers", "huggingface-hub", "safetensors", "accelerate", "pyyaml", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(F"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def a ( lowerCamelCase_ , lowerCamelCase_=None ): '''simple docstring''' require_version(deps[pkg] , _A )
207
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__: Tuple = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Union[str, Any] = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __magic_name__: Optional[Any] = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
342
0
def __lowercase ( _A ) -> str: SCREAMING_SNAKE_CASE : int = 0 for ch in input_str: SCREAMING_SNAKE_CASE : Any = ord(_A ) SCREAMING_SNAKE_CASE : List[str] = pow(2 , _A ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
245
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__: Dict = logging.get_logger(__name__) __magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __magic_name__: Optional[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __magic_name__: List[Any] = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Any = ( list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) ) ) __magic_name__ : Any = bs[:] __magic_name__ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 __magic_name__ : List[str] = [chr(_A ) for n in cs] return dict(zip(_A, _A ) ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = set() __magic_name__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[Any] = char return pairs class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict: __magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ ) __magic_name__ : Any = {v: k for k, v in self.encoder.items()} __magic_name__ : Tuple = errors # how to handle errors in decoding __magic_name__ : Tuple = bytes_to_unicode() __magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1] __magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] __magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : str = {} __magic_name__ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __magic_name__ ( self ) -> Optional[Any]: return len(self.encoder ) def __magic_name__ ( self ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if token in self.cache: return self.cache[token] __magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ ,__magic_name__ : List[str] = bigram __magic_name__ : Any = [] __magic_name__ : Any = 0 while i < len(lowerCAmelCase__ ): try: __magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Optional[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : str = tuple(lowerCAmelCase__ ) __magic_name__ : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __magic_name__ : List[str] = get_pairs(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ ) __magic_name__ : str = word return word def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ : str = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __magic_name__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Tuple = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __magic_name__ : Optional[Any] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : Optional[int] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] __magic_name__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : Dict = [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __magic_name__ : List[Any] = """ """ + text return (text, kwargs)
342
0
"""simple docstring""" from math import factorial def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] , _lowercase : Tuple , _lowercase : List[str] ) ->str: '''simple docstring''' if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(_A , _A ) or not isinstance(_A , _A ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) a : int = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! a : Any = float(factorial(_A ) ) coefficient /= factorial(_A ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
105
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str: __magic_name__ : Optional[int] = parent __magic_name__ : Any = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[int] = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : str = embed_dim __magic_name__ : int = hidden_sizes __magic_name__ : Union[str, Any] = depths __magic_name__ : List[str] = num_heads __magic_name__ : str = window_size __magic_name__ : Optional[Any] = mlp_ratio __magic_name__ : Dict = qkv_bias __magic_name__ : Dict = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = drop_path_rate __magic_name__ : Optional[Any] = hidden_act __magic_name__ : int = use_absolute_embeddings __magic_name__ : Dict = patch_norm __magic_name__ : Tuple = layer_norm_eps __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[int] = is_training __magic_name__ : Optional[Any] = scope __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = encoder_stride __magic_name__ : List[Any] = out_features __magic_name__ : Union[str, Any] = out_indices def __magic_name__ ( self ) -> str: __magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[Any] = None if self.use_labels: __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Dict = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Tuple = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __magic_name__ : Optional[Any] = None __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : str = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : int = self.type_sequence_label_size __magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self ) -> int: __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs __magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ : Any = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ : Dict = False lowercase__ : Dict = False lowercase__ : int = False lowercase__ : Tuple = False lowercase__ : Optional[Any] = False def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = FocalNetModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> List[str]: return def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __magic_name__ ( self ) -> List[str]: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __magic_name__ ( self ) -> List[Any]: pass def __magic_name__ ( self ) -> List[Any]: __magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : str = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # FocalNet has a different seq_length __magic_name__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __magic_name__ : str = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape __magic_name__ : Union[str, Any] = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __magic_name__ : List[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = 3 __magic_name__ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __magic_name__ : Optional[int] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : str = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) @slow def __magic_name__ ( self ) -> Union[str, Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: __magic_name__ : Any = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.default_image_processor __magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : List[Any] = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else () lowercase__ : Optional[int] = FocalNetConfig lowercase__ : Dict = False def __magic_name__ ( self ) -> int: __magic_name__ : Dict = FocalNetModelTester(self )
342
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class a_ (_lowerCAmelCase ): __lowerCAmelCase : Any = '''decision_transformer''' __lowerCAmelCase : str = ['''past_key_values'''] __lowerCAmelCase : Any = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , snake_case_=1_7 , snake_case_=4 , snake_case_=1_2_8 , snake_case_=4_0_9_6 , snake_case_=True , snake_case_=1 , snake_case_=1_0_2_4 , snake_case_=3 , snake_case_=1 , snake_case_=None , snake_case_="relu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=1E-5 , snake_case_=0.02 , snake_case_=True , snake_case_=True , snake_case_=5_0_2_5_6 , snake_case_=5_0_2_5_6 , snake_case_=False , snake_case_=False , **snake_case_ , ): _lowerCAmelCase : List[Any] = state_dim _lowerCAmelCase : Optional[Any] = act_dim _lowerCAmelCase : List[str] = hidden_size _lowerCAmelCase : int = max_ep_len _lowerCAmelCase : Optional[int] = action_tanh _lowerCAmelCase : Tuple = vocab_size _lowerCAmelCase : Any = n_positions _lowerCAmelCase : int = n_layer _lowerCAmelCase : Optional[Any] = n_head _lowerCAmelCase : List[str] = n_inner _lowerCAmelCase : Optional[int] = activation_function _lowerCAmelCase : Optional[int] = resid_pdrop _lowerCAmelCase : List[str] = embd_pdrop _lowerCAmelCase : Tuple = attn_pdrop _lowerCAmelCase : str = layer_norm_epsilon _lowerCAmelCase : Any = initializer_range _lowerCAmelCase : Dict = scale_attn_weights _lowerCAmelCase : Dict = use_cache _lowerCAmelCase : List[Any] = scale_attn_by_inverse_layer_idx _lowerCAmelCase : Dict = reorder_and_upcast_attn _lowerCAmelCase : List[Any] = bos_token_id _lowerCAmelCase : Union[str, Any] = eos_token_id super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ )
309
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]: __magic_name__ : int = parent __magic_name__ : Tuple = batch_size __magic_name__ : int = image_size __magic_name__ : str = num_channels __magic_name__ : Dict = patch_size __magic_name__ : Tuple = num_frames __magic_name__ : List[Any] = is_training __magic_name__ : List[Any] = use_labels __magic_name__ : Dict = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Tuple = attention_type __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = scope __magic_name__ : Tuple = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __magic_name__ : str = (image_size // patch_size) ** 2 __magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : str = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> str: __magic_name__ : Dict = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __magic_name__ : Optional[Any] = self.num_labels return config def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[Any] = model(lowerCAmelCase__ ) # verify the logits shape __magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs __magic_name__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__ : Union[str, Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : str = False lowercase__ : Tuple = False lowercase__ : Any = False def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[Any] = TimesformerModelTester(self ) __magic_name__ : List[str] = ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]: __magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Optional[int] = [*signature.parameters.keys()] __magic_name__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Optional[int]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: if not self.has_attentions: pass else: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True for model_class in self.all_model_classes: __magic_name__ : Tuple = self.model_tester.seq_length __magic_name__ : int = self.model_tester.num_frames __magic_name__ : Any = True __magic_name__ : Tuple = False __magic_name__ : Optional[int] = True __magic_name__ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ : Optional[Any] = True __magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : int = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __magic_name__ : Union[str, Any] = len(lowerCAmelCase__ ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : Optional[Any] = True __magic_name__ : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) ) __magic_name__ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self ) -> Any: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ : str = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" ) __magic_name__ : List[str] = np.load(_A ) return list(_A ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( lowerCAmelCase__ ) __magic_name__ : str = self.default_image_processor __magic_name__ : Any = prepare_video() __magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : int = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
342
0
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' if not isinstance(_A , _A ): UpperCAmelCase__ = F'''Input value of [number={number}] must be an integer''' raise TypeError(_A ) if number < 0: return False UpperCAmelCase__ = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
346
def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = [0] * len(_A ) __magic_name__ : List[str] = [] __magic_name__ : List[str] = [1] * len(_A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: __magic_name__ : Dict = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __magic_name__ : int = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_A ) print(max(_A ) ) # Adjacency list of Graph __magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
0
from __future__ import annotations _UpperCAmelCase : Union[str, Any] = [] def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for i in range(len(_A ) ): if board[row][i] == 1: return False for i in range(len(_A ) ): if board[i][column] == 1: return False for i, j in zip(range(_A , -1 , -1 ) , range(_A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(_A , -1 , -1 ) , range(_A , len(_A ) ) ): if board[i][j] == 1: return False return True def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' if row >= len(_A ): solution.append(_A ) printboard(_A ) print() return True for i in range(len(_A ) ): if is_safe(_A , _A , _A ): snake_case_ = 1 solve(_A , row + 1 ) snake_case_ = 0 return False def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' for i in range(len(_A ) ): for j in range(len(_A ) ): if board[i][j] == 1: print('Q' , end=' ' ) else: print('.' , end=' ' ) print() # n=int(input("The no. of queens")) _UpperCAmelCase : str = 8 _UpperCAmelCase : Optional[int] = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
285
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> str: __magic_name__ : Tuple = """ylacombe/bark-small""" __magic_name__ : List[str] = tempfile.mkdtemp() __magic_name__ : Optional[Any] = """en_speaker_1""" __magic_name__ : Union[str, Any] = """This is a test string""" __magic_name__ : Optional[int] = """speaker_embeddings_path.json""" __magic_name__ : Any = """speaker_embeddings""" def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : str = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__ ( self ) -> Any: __magic_name__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __magic_name__ : Union[str, Any] = 35 __magic_name__ : List[Any] = 2 __magic_name__ : Dict = 8 __magic_name__ : Tuple = { """semantic_prompt""": np.ones(lowerCAmelCase__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string ) __magic_name__ : List[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
342
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: if not all(x.isalpha() for x in string ): raise ValueError('String must only contain alphabetic characters.' ) lowerCAmelCase__ : int = sorted(string.lower() ) return len(_A ) == len(set(_A ) ) if __name__ == "__main__": lowerCamelCase__ = input("""Enter a string """).strip() lowerCamelCase__ = is_isogram(input_str) print(F"""{input_str} is {"an" if isogram else "not an"} isogram.""")
212
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]: __magic_name__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} __magic_name__ : str = parent __magic_name__ : Any = batch_size __magic_name__ : Any = num_channels __magic_name__ : List[str] = image_size __magic_name__ : Tuple = min_resolution __magic_name__ : Union[str, Any] = max_resolution __magic_name__ : List[str] = do_resize __magic_name__ : Optional[Any] = size __magic_name__ : Optional[Any] = do_normalize __magic_name__ : Any = image_mean __magic_name__ : List[str] = image_std def __magic_name__ ( self ) -> List[str]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = DPTImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Dict = DPTImageProcessingTester(self ) @property def __magic_name__ ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __magic_name__ ( self ) -> str: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Optional[Any]: # Initialize image_processing __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
342
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowercase__ =logging.get_logger(__name__) lowercase__ ="▁" lowercase__ ={"vocab_file": "sentencepiece.bpe.model"} lowercase__ ={ "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } lowercase__ ={ "facebook/nllb-200-distilled-600M": 1024, } # fmt: off lowercase__ =["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class UpperCamelCase__ ( _lowerCAmelCase ): _SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : str = ['''input_ids''', '''attention_mask'''] _SCREAMING_SNAKE_CASE : List[int] = [] _SCREAMING_SNAKE_CASE : List[int] = [] def __init__(self : Optional[Any] , snake_case_ : str , snake_case_ : Any="<s>" , snake_case_ : Dict="</s>" , snake_case_ : Tuple="</s>" , snake_case_ : Optional[Any]="<s>" , snake_case_ : List[str]="<unk>" , snake_case_ : Dict="<pad>" , snake_case_ : Optional[Any]="<mask>" , snake_case_ : Union[str, Any]=None , snake_case_ : List[Any]=None , snake_case_ : Optional[int]=None , snake_case_ : Tuple = None , snake_case_ : List[str]=None , snake_case_ : List[str]=False , **snake_case_ : int , ): # Mask token behave like a normal word, i.e. include the space before it __a : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __a : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __a : Optional[Any] = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) __a : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) __a : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __a : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __a : List[Any] = 1 __a : Dict = len(self.sp_model ) __a : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } __a : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} __a : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __a : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __a : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __a : List[Any] = src_lang if src_lang is not None else """eng_Latn""" __a : Any = self.lang_code_to_id[self._src_lang] __a : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__(self : Union[str, Any] ): __a : List[Any] = self.__dict__.copy() __a : int = None __a : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__(self : int , snake_case_ : int ): __a : Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __a : Any = {} __a : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowerCAmelCase (self : Any ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCAmelCase (self : Optional[Any] ): return self._src_lang @src_lang.setter def lowerCAmelCase (self : Any , snake_case_ : List[str] ): __a : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCAmelCase (self : List[Any] , snake_case_ : Optional[Any] , snake_case_ : int = None , snake_case_ : Optional[Any] = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) __a : Optional[int] = [1] * len(self.prefix_tokens ) __a : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def lowerCAmelCase (self : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : int = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCAmelCase (self : Union[str, Any] , snake_case_ : Dict , snake_case_ : int = None ): __a : str = [self.sep_token_id] __a : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase (self : Tuple , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : Dict , **snake_case_ : List[Any] ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) __a : Dict = src_lang __a : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) __a : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) __a : Tuple = tgt_lang_id return inputs def lowerCAmelCase (self : Union[str, Any] ): __a : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase (self : List[Any] , snake_case_ : Union[str, Any] ): return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def lowerCAmelCase (self : List[Any] , snake_case_ : Optional[int] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __a : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCAmelCase (self : Dict , snake_case_ : Any ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCAmelCase (self : Optional[int] , snake_case_ : int ): __a : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , ''' ''' ).strip() return out_string def lowerCAmelCase (self : List[Any] , snake_case_ : Any , snake_case_ : Optional[Any] = None ): if not os.path.isdir(lowerCAmelCase__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __a : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , '''wb''' ) as fi: __a : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def lowerCAmelCase (self : Dict , snake_case_ : int , snake_case_ : str = "eng_Latn" , snake_case_ : Tuple = None , snake_case_ : Tuple = "fra_Latn" , **snake_case_ : Optional[int] , ): __a : List[str] = src_lang __a : Dict = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def lowerCAmelCase (self : int ): return self.set_src_lang_special_tokens(self.src_lang ) def lowerCAmelCase (self : int ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCAmelCase (self : int , snake_case_ : List[str] ): __a : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __a : List[str] = [] __a : Tuple = [self.eos_token_id, self.cur_lang_code] else: __a : str = [self.cur_lang_code] __a : List[Any] = [self.eos_token_id] def lowerCAmelCase (self : List[str] , snake_case_ : Optional[int] ): __a : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: __a : List[str] = [] __a : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __a : Optional[int] = [self.cur_lang_code] __a : Union[str, Any] = [self.eos_token_id]
216
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__: Tuple = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M''' lowercase__ : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowercase__ : List[str] = '''translator''' lowercase__ : Optional[Any] = AutoTokenizer lowercase__ : int = AutoModelForSeqaSeqLM lowercase__ : List[Any] = LANGUAGE_CODES lowercase__ : str = ['''text''', '''text''', '''text'''] lowercase__ : Any = ['''text'''] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) __magic_name__ : Tuple = self.lang_to_code[src_lang] __magic_name__ : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
342
0
"""simple docstring""" # flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter _UpperCamelCase : int = logging.get_logger(__name__) _UpperCamelCase : Dict[Optional[str], Type[Formatter]] = {} _UpperCamelCase : Dict[Optional[str], str] = {} _UpperCamelCase : Dict[Optional[str], Exception] = {} def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : Union[str, Any] = None , ): '''simple docstring''' lowercase = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f'Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})' ) lowercase = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f'Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})' ) lowercase = format_type def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : List[Any] , __snake_case : Optional[Any] = None ): '''simple docstring''' lowercase = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): lowercase = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: _UpperCamelCase : Dict = ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: _UpperCamelCase : str = ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: _UpperCamelCase : int = ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def _SCREAMING_SNAKE_CASE ( __snake_case : Dict ): '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , **__snake_case : List[Any] ): '''simple docstring''' lowercase = get_format_type_from_alias(_A ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**_A ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f'Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'' )
220
import math class snake_case__ : def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1 __magic_name__ : Tuple = n __magic_name__ : Union[str, Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # adjacency matrix for weight __magic_name__ : List[Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # dp[i][j] stores minimum distance from i to j def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Dict = w def __magic_name__ ( self ) -> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: return self.dp[u][v] if __name__ == "__main__": __magic_name__: Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
342
0
"""simple docstring""" import argparse import os import torch from transformers.utils import WEIGHTS_NAME __magic_name__ = ["small", "medium", "large"] __magic_name__ = "lm_head.decoder.weight" __magic_name__ = "lm_head.weight" def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = torch.load(_A ) __SCREAMING_SNAKE_CASE = d.pop(_A ) os.makedirs(_A , exist_ok=_A ) torch.save(_A , os.path.join(_A , _A ) ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) __magic_name__ = parser.parse_args() for MODEL in DIALOGPT_MODELS: __magic_name__ = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") __magic_name__ = F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
100
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__ : def __init__( self , lowerCAmelCase__ = None ) -> None: if components is None: __magic_name__ : Any = [] __magic_name__ : List[str] = list(lowerCAmelCase__ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")" def __add__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : Dict = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: raise Exception("""must have the same size""" ) def __sub__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : int = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... @overload def __mul__( self , lowerCAmelCase__ ) -> float: ... def __mul__( self , lowerCAmelCase__ ) -> float | Vector: if isinstance(lowerCAmelCase__ , (float, int) ): __magic_name__ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ): __magic_name__ : Optional[Any] = len(self ) __magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return sum(lowerCAmelCase__ ) else: # error case raise Exception("""invalid operand!""" ) def __magic_name__ ( self ) -> Vector: return Vector(self.__components ) def __magic_name__ ( self , lowerCAmelCase__ ) -> float: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ : Optional[int] = value def __magic_name__ ( self ) -> float: if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __magic_name__ : Dict = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase__ ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float: __magic_name__ : Optional[Any] = self * other __magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCamelCase ( _A ): """simple docstring""" assert isinstance(_A, _A ) return Vector([0] * dimension ) def UpperCamelCase ( _A, _A ): """simple docstring""" assert isinstance(_A, _A ) and (isinstance(_A, _A )) __magic_name__ : Union[str, Any] = [0] * dimension __magic_name__ : Optional[int] = 1 return Vector(_A ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" assert ( isinstance(_A, _A ) and isinstance(_A, _A ) and (isinstance(_A, (int, float) )) ) return x * scalar + y def UpperCamelCase ( _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )] return Vector(_A ) class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Dict = matrix __magic_name__ : Tuple = w __magic_name__ : Union[str, Any] = h def __str__( self ) -> str: __magic_name__ : Dict = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Tuple = [] for i in range(self.__height ): __magic_name__ : Tuple = [ self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Optional[Any] = [] for i in range(self.__height ): __magic_name__ : int = [ self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Matrix: ... @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector if len(lowerCAmelCase__ ) == self.__width: __magic_name__ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ : Optional[int] = [ self.__matrix[i][j] * other.component(lowerCAmelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar __magic_name__ : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase__ , self.__width , self.__height ) return None def __magic_name__ ( self ) -> int: return self.__height def __magic_name__ ( self ) -> int: return self.__width def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ : List[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase__ ) ): __magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise Exception("""Indices out of bounds""" ) def __magic_name__ ( self ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width ) ] return sum(lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )] return Matrix(_A, _A, _A ) def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : list[list[float]] = [ [random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A ) ] return Matrix(_A, _A, _A )
342
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : Dict = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class A( _lowerCAmelCase ): '''simple docstring''' UpperCamelCase = '''ctrl''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Tuple , A_ : Tuple=246534 , A_ : Optional[Any]=256 , A_ : Dict=1280 , A_ : int=8192 , A_ : List[str]=48 , A_ : str=16 , A_ : int=0.1 , A_ : List[str]=0.1 , A_ : Tuple=1E-6 , A_ : List[str]=0.02 , A_ : List[str]=True , **A_ : int , ) -> int: """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = n_positions lowerCamelCase_ = n_embd lowerCamelCase_ = n_layer lowerCamelCase_ = n_head lowerCamelCase_ = dff lowerCamelCase_ = resid_pdrop lowerCamelCase_ = embd_pdrop lowerCamelCase_ = layer_norm_epsilon lowerCamelCase_ = initializer_range lowerCamelCase_ = use_cache super().__init__(**lowerCAmelCase__ )
204
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __magic_name__: str = logging.get_logger(__name__) __magic_name__: int = "▁" __magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"} __magic_name__: List[str] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } __magic_name__: Tuple = { "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off __magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class snake_case__ ( _lowerCAmelCase ): lowercase__ : str = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = ['''input_ids''', '''attention_mask'''] lowercase__ : List[int] = [] lowercase__ : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __magic_name__ : Optional[Any] = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) __magic_name__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __magic_name__ : List[Any] = 1 __magic_name__ : Dict = len(self.sp_model ) __magic_name__ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } __magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} __magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __magic_name__ : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn""" __magic_name__ : Any = self.lang_code_to_id[self._src_lang] __magic_name__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Any: __magic_name__ : List[Any] = self.__dict__.copy() __magic_name__ : int = None __magic_name__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__ : Any = {} __magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __magic_name__ ( self ) -> str: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self ) -> str: return self._src_lang @src_lang.setter def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) __magic_name__ : Optional[int] = [1] * len(self.prefix_tokens ) __magic_name__ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : str = [self.sep_token_id] __magic_name__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __magic_name__ : Dict = src_lang __magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Tuple = tgt_lang_id return inputs def __magic_name__ ( self ) -> int: __magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip() return out_string def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , """wb""" ) as fi: __magic_name__ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding: __magic_name__ : List[str] = src_lang __magic_name__ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : str = [self.cur_lang_code] __magic_name__ : List[Any] = [self.eos_token_id] def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : Optional[int] = [self.cur_lang_code] __magic_name__ : Union[str, Any] = [self.eos_token_id]
342
0
import datasets from .evaluate import evaluate A__ : Tuple = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" A__ : Optional[Any] = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" A__ : Dict = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): """simple docstring""" def lowercase__ ( self : Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': {'''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.Value('''string''' )}, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ), codebase_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''], reference_urls=['''https://rajpurkar.github.io/SQuAD-explorer/'''], ) def lowercase__ ( self : Dict, lowerCamelCase : Any, lowerCamelCase : str ): '''simple docstring''' lowercase__ = {prediction["""id"""]: prediction["""prediction_text"""] for prediction in predictions} lowercase__ = [ { """paragraphs""": [ { """qas""": [ { """answers""": [{"""text""": answer_text} for answer_text in ref["""answers"""]["""text"""]], """id""": ref["""id"""], } for ref in references ] } ] } ] lowercase__ = evaluate(dataset=lowerCAmelCase__, predictions=lowerCAmelCase__ ) return score
207
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Dict = MobileBertConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ : Tuple = MobileBertForPreTraining(_A ) # Load weights from tf checkpoint __magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _A ) if __name__ == "__main__": __magic_name__: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__: Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
342
0
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any]=3 , UpperCAmelCase__ : int=3_2 , UpperCAmelCase__ : Any=3 , UpperCAmelCase__ : List[str]=1_0 , UpperCAmelCase__ : Tuple=[1_0, 2_0, 3_0, 4_0] , UpperCAmelCase__ : Optional[int]=[1, 1, 2, 1] , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Tuple=True , UpperCAmelCase__ : Dict="relu" , UpperCAmelCase__ : Tuple=3 , UpperCAmelCase__ : Dict=None , ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : Union[str, Any] = image_size SCREAMING_SNAKE_CASE : Any = num_channels SCREAMING_SNAKE_CASE : Dict = embeddings_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_sizes SCREAMING_SNAKE_CASE : Any = depths SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : List[Any] = use_labels SCREAMING_SNAKE_CASE : Any = hidden_act SCREAMING_SNAKE_CASE : int = num_labels SCREAMING_SNAKE_CASE : Optional[Any] = scope SCREAMING_SNAKE_CASE : Dict = len(lowerCAmelCase__ ) def _lowercase ( self : List[str] ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE : int = self.get_config() return config, pixel_values, labels def _lowercase ( self : Dict ) ->Optional[int]: """simple docstring""" return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def _lowercase ( self : Union[str, Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int ) ->str: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = TFRegNetModel(config=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCAmelCase__ , training=lowerCAmelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _lowercase ( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Tuple ) ->str: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = self.num_labels SCREAMING_SNAKE_CASE : Any = TFRegNetForImageClassification(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , labels=lowerCAmelCase__ , training=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : List[Any] ) ->Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class a__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Any =(TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () UpperCAmelCase__ : Optional[int] =( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) UpperCAmelCase__ : List[str] =False UpperCAmelCase__ : List[str] =False UpperCAmelCase__ : Optional[Any] =False UpperCAmelCase__ : Tuple =False UpperCAmelCase__ : int =False def _lowercase ( self : Any ) ->Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Any = TFRegNetModelTester(self ) SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ ) def _lowercase ( self : Any ) ->Union[str, Any]: """simple docstring""" return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def _lowercase ( self : Any ) ->Tuple: """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def _lowercase ( self : Dict ) ->Any: """simple docstring""" super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def _lowercase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" pass def _lowercase ( self : Tuple ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = model_class(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : List[str] = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _lowercase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowercase ( self : int ) ->str: """simple docstring""" def check_hidden_states_output(UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : int ): SCREAMING_SNAKE_CASE : Optional[int] = model_class(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Tuple = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) , training=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : List[Any] = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE : Optional[int] = layer_type SCREAMING_SNAKE_CASE : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Any = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any={} ): SCREAMING_SNAKE_CASE : Any = model(lowerCAmelCase__ , return_dict=lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(lowerCAmelCase__ , return_dict=lowerCAmelCase__ , **lowerCAmelCase__ ).to_tuple() def recursive_check(UpperCAmelCase__ : Dict , UpperCAmelCase__ : str ): if isinstance(lowerCAmelCase__ , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(lowerCAmelCase__ , lowerCAmelCase__ ): recursive_check(lowerCAmelCase__ , lowerCAmelCase__ ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(lowerCAmelCase__ , lowerCAmelCase__ ) ) , msg=( """Tuple and dict output are not equal. Difference:""" f" {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}" ) , ) recursive_check(lowerCAmelCase__ , lowerCAmelCase__ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : int = model_class(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Any = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : str = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , {"""output_hidden_states""": True} ) SCREAMING_SNAKE_CASE : List[str] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) check_equivalence(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , {"""output_hidden_states""": True} ) def _lowercase ( self : Tuple ) ->str: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def _lowercase ( self : Dict ) ->Optional[int]: """simple docstring""" for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Union[str, Any] = TFRegNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __lowercase ( ) -> int: SCREAMING_SNAKE_CASE : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class a__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Optional[Any] ) ->Optional[int]: """simple docstring""" return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowercase ( self : int ) ->Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) SCREAMING_SNAKE_CASE : Dict = self.default_image_processor SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Dict = image_processor(images=lowerCAmelCase__ , return_tensors="""tf""" ) # forward pass SCREAMING_SNAKE_CASE : Any = model(**lowerCAmelCase__ , training=lowerCAmelCase__ ) # verify the logits SCREAMING_SNAKE_CASE : Any = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : int = tf.constant([-0.41_80, -1.50_51, -3.48_36] ) tf.debugging.assert_near(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 )
245
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[Any] = MgpstrTokenizer lowercase__ : int = False lowercase__ : Any = {} lowercase__ : Optional[int] = False def __magic_name__ ( self ) -> Optional[Any]: super().setUp() # fmt: off __magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = """tester""" __magic_name__ : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> List[str]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Dict = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) __magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) __magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) __magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __magic_name__ ( self ) -> Tuple: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __magic_name__ ( self ) -> Optional[Any]: pass
342
0
"""simple docstring""" import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): lowerCamelCase : Optional[Any] =(UnCLIPScheduler,) def __a ( self , **lowerCAmelCase__ ) -> Any: a : Any = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**lowerCAmelCase__ ) return config def __a ( self ) -> Tuple: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def __a ( self ) -> List[Any]: for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowerCAmelCase__ ) def __a ( self ) -> Optional[Any]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase__ ) def __a ( self ) -> List[str]: for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowerCAmelCase__ ) def __a ( self ) -> List[str]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def __a ( self ) -> List[str]: for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowerCAmelCase__ , prev_timestep=lowerCAmelCase__ ) def __a ( self ) -> Tuple: a : Union[str, Any] = self.scheduler_classes[0] a : Tuple = self.get_scheduler_config(variance_type="fixed_small_log" ) a : Tuple = scheduler_class(**lowerCAmelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_000E-10 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1E-5 def __a ( self ) -> Any: a : Union[str, Any] = self.scheduler_classes[0] a : List[str] = self.get_scheduler_config(variance_type="learned_range" ) a : Any = scheduler_class(**lowerCAmelCase__ ) a : List[Any] = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowerCAmelCase__ ) - -10.171_2790 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowerCAmelCase__ ) - -5.7_998_052 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowerCAmelCase__ ) - -0.0_010_011 < 1E-5 def __a ( self ) -> int: a : int = self.scheduler_classes[0] a : str = self.get_scheduler_config() a : Optional[Any] = scheduler_class(**lowerCAmelCase__ ) a : Tuple = scheduler.timesteps a : Tuple = self.dummy_model() a : Optional[int] = self.dummy_sample_deter a : Tuple = torch.manual_seed(0 ) for i, t in enumerate(lowerCAmelCase__ ): # 1. predict noise residual a : List[Any] = model(lowerCAmelCase__ , lowerCAmelCase__ ) # 2. predict previous mean of sample x_t-1 a : Any = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample a : Optional[Any] = pred_prev_sample a : Union[str, Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) a : List[str] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 252.268_2495 ) < 1E-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1E-3 def __a ( self ) -> int: a : Any = self.scheduler_classes[0] a : int = self.get_scheduler_config() a : Optional[Any] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(25 ) a : str = scheduler.timesteps a : Any = self.dummy_model() a : List[Any] = self.dummy_sample_deter a : str = torch.manual_seed(0 ) for i, t in enumerate(lowerCAmelCase__ ): # 1. predict noise residual a : Union[str, Any] = model(lowerCAmelCase__ , lowerCAmelCase__ ) if i + 1 == timesteps.shape[0]: a : Optional[int] = None else: a : Tuple = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 a : Tuple = scheduler.step( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , prev_timestep=lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample a : List[Any] = pred_prev_sample a : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) a : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 258.204_4983 ) < 1E-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1E-3 def __a ( self ) -> Any: pass def __a ( self ) -> int: pass
105
import re def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(_A, _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
342
0
'''simple docstring''' import json import os import shutil import tempfile import unittest from transformers import BatchEncoding, CanineTokenizer from transformers.testing_utils import require_tokenizers, require_torch from transformers.tokenization_utils import AddedToken from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin class a_ (_lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase : Any = CanineTokenizer __lowerCAmelCase : Any = False def __UpperCamelCase ( self ): super().setUp() _lowerCAmelCase : Optional[Any] = CanineTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCamelCase ( self ): return CanineTokenizer.from_pretrained("""google/canine-s""" ) def __UpperCamelCase ( self , **snake_case_ ): _lowerCAmelCase : Union[str, Any] = self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) _lowerCAmelCase : int = 1_0_2_4 return tokenizer @require_torch def __UpperCamelCase ( self ): _lowerCAmelCase : List[Any] = self.canine_tokenizer _lowerCAmelCase : Optional[int] = ["""Life is like a box of chocolates.""", """You never know what you're gonna get."""] # fmt: off _lowerCAmelCase : List[str] = [5_7_3_4_4, 7_6, 1_0_5, 1_0_2, 1_0_1, 3_2, 1_0_5, 1_1_5, 3_2, 1_0_8, 1_0_5, 1_0_7, 1_0_1, 3_2, 9_7, 3_2, 9_8, 1_1_1, 1_2_0, 3_2, 1_1_1, 1_0_2, 3_2, 9_9, 1_0_4, 1_1_1, 9_9, 1_1_1, 1_0_8, 9_7, 1_1_6, 1_0_1, 1_1_5, 4_6, 5_7_3_4_5, 0, 0, 0, 0] # fmt: on _lowerCAmelCase : List[Any] = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) _lowerCAmelCase : Tuple = list(batch.input_ids.numpy()[0] ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 3_9) , batch.input_ids.shape ) self.assertEqual((2, 3_9) , batch.attention_mask.shape ) @require_torch def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = self.canine_tokenizer _lowerCAmelCase : Optional[int] = ["""Once there was a man.""", """He wrote a test in HuggingFace Tranformers."""] _lowerCAmelCase : Tuple = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors="""pt""" ) # check if input_ids, attention_mask and token_type_ids are returned self.assertIn("""input_ids""" , lowerCAmelCase__ ) self.assertIn("""attention_mask""" , lowerCAmelCase__ ) self.assertIn("""token_type_ids""" , lowerCAmelCase__ ) @require_torch def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.canine_tokenizer _lowerCAmelCase : Dict = [ """What's the weater?""", """It's about 25 degrees.""", ] _lowerCAmelCase : Union[str, Any] = tokenizer( text_target=lowerCAmelCase__ , max_length=3_2 , padding="""max_length""" , truncation=lowerCAmelCase__ , return_tensors="""pt""" ) self.assertEqual(3_2 , targets["""input_ids"""].shape[1] ) def __UpperCamelCase ( self ): # safety check on max_len default value so we are sure the test works _lowerCAmelCase : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test _lowerCAmelCase : str = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Union[str, Any] = """ He is very happy, UNwant\u00E9d,running""" _lowerCAmelCase : Any = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) _lowerCAmelCase : str = tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) _lowerCAmelCase : int = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) shutil.rmtree(lowerCAmelCase__ ) _lowerCAmelCase : Tuple = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc _lowerCAmelCase : Optional[Any] = tempfile.mkdtemp() _lowerCAmelCase : Dict = """ He is very happy, UNwant\u00E9d,running""" _lowerCAmelCase : Dict = tokenizer.additional_special_tokens # We can add a new special token for Canine as follows: _lowerCAmelCase : int = chr(0Xe0_07 ) additional_special_tokens.append(lowerCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) _lowerCAmelCase : Tuple = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) _lowerCAmelCase : Any = tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) _lowerCAmelCase : Dict = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIn(lowerCAmelCase__ , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) _lowerCAmelCase : Any = tokenizer.__class__.from_pretrained(lowerCAmelCase__ , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(lowerCAmelCase__ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _lowerCAmelCase : str = self.get_clean_sequence(lowerCAmelCase__ ) # a special token for Canine can be defined as follows: _lowerCAmelCase : Tuple = 0Xe0_05 _lowerCAmelCase : List[str] = chr(lowerCAmelCase__ ) tokenizer.add_special_tokens({"""cls_token""": special_token} ) _lowerCAmelCase : List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) _lowerCAmelCase : Optional[int] = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=lowerCAmelCase__ ) _lowerCAmelCase : int = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _lowerCAmelCase : Optional[int] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _lowerCAmelCase : List[str] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , input_encoded + special_token_id ) _lowerCAmelCase : Dict = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def __UpperCamelCase ( self ): _lowerCAmelCase : Dict = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _lowerCAmelCase : Tuple = chr(0Xe0_05 ) _lowerCAmelCase : int = chr(0Xe0_06 ) # `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py) tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=lowerCAmelCase__ ) # `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`, # which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py) tokenizer.add_special_tokens({"""additional_special_tokens""": [SPECIAL_TOKEN_2]} ) _lowerCAmelCase : Optional[int] = tokenizer.tokenize(lowerCAmelCase__ ) _lowerCAmelCase : str = tokenizer.tokenize(lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) self.assertEqual(token_a[0] , lowerCAmelCase__ ) self.assertEqual(token_a[0] , lowerCAmelCase__ ) @require_tokenizers def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # a special token for Canine can be defined as follows: _lowerCAmelCase : Any = 0Xe0_06 _lowerCAmelCase : Tuple = chr(lowerCAmelCase__ ) _lowerCAmelCase : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ ) tokenizer.add_special_tokens({"""additional_special_tokens""": [new_token]} ) with tempfile.TemporaryDirectory() as tmp_dir_name: tokenizer.save_pretrained(lowerCAmelCase__ ) tokenizer.from_pretrained(lowerCAmelCase__ ) def __UpperCamelCase ( self ): _lowerCAmelCase : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: _lowerCAmelCase : int = json.load(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: _lowerCAmelCase : Union[str, Any] = json.load(lowerCAmelCase__ ) # a special token for Canine can be defined as follows: _lowerCAmelCase : Dict = 0Xe0_06 _lowerCAmelCase : Dict = chr(lowerCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = [new_token_a] _lowerCAmelCase : str = [new_token_a] with open(os.path.join(lowerCAmelCase__ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files _lowerCAmelCase : int = tokenizer_class.from_pretrained(lowerCAmelCase__ , extra_ids=0 ) self.assertIn(lowerCAmelCase__ , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , ) _lowerCAmelCase : str = 0Xe0_07 _lowerCAmelCase : Any = chr(lowerCAmelCase__ ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained _lowerCAmelCase : Optional[int] = [AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ )] _lowerCAmelCase : List[Any] = tokenizer_class.from_pretrained( lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , extra_ids=0 ) self.assertIn(lowerCAmelCase__ , tokenizer.additional_special_tokens ) # self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( [new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) ) @require_tokenizers def __UpperCamelCase ( self ): _lowerCAmelCase : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _lowerCAmelCase : List[Any] = """hello world""" if self.space_between_special_tokens: _lowerCAmelCase : str = """[CLS] hello world [SEP]""" else: _lowerCAmelCase : str = input _lowerCAmelCase : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) _lowerCAmelCase : Dict = tokenizer.decode(lowerCAmelCase__ , spaces_between_special_tokens=self.space_between_special_tokens ) self.assertIn(lowerCAmelCase__ , [output, output.lower()] ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): _lowerCAmelCase : Tuple = [ """bos_token""", """eos_token""", """unk_token""", """sep_token""", """pad_token""", """cls_token""", """mask_token""", ] _lowerCAmelCase : List[Any] = """a""" _lowerCAmelCase : List[str] = ord(lowerCAmelCase__ ) for attr in attributes_list: setattr(lowerCAmelCase__ , attr + """_id""" , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , attr + """_id""" ) , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , attr + """_id""" , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , attr + """_id""" ) , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(lowerCAmelCase__ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(lowerCAmelCase__ , """additional_special_tokens_ids""" ) , [] ) _lowerCAmelCase : Dict = 0Xe0_06 _lowerCAmelCase : List[Any] = chr(lowerCAmelCase__ ) setattr(lowerCAmelCase__ , """additional_special_tokens_ids""" , [additional_special_token_id] ) self.assertListEqual(getattr(lowerCAmelCase__ , """additional_special_tokens""" ) , [additional_special_token] ) self.assertListEqual(getattr(lowerCAmelCase__ , """additional_special_tokens_ids""" ) , [additional_special_token_id] ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): pass
309
import doctest from collections import deque import numpy as np class snake_case__ : def __init__( self ) -> None: __magic_name__ : Any = [2, 1, 2, -1] __magic_name__ : Tuple = [1, 2, 3, 4] def __magic_name__ ( self ) -> list[float]: __magic_name__ : Optional[Any] = len(self.first_signal ) __magic_name__ : Dict = len(self.second_signal ) __magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ ) # create a zero matrix of max_length x max_length __magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__ ): __magic_name__ : List[str] = deque(self.second_signal ) rotated_signal.rotate(lowerCAmelCase__ ) for j, item in enumerate(lowerCAmelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal __magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
342
0
'''simple docstring''' import random def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] = False ): '''simple docstring''' UpperCAmelCase__ = {i: [] for i in range(_A )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(_A ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(_A ): for j in range(i + 1 , _A ): if random.random() < probability: graph[i].append(_A ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(_A ) return graph def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' return { i: [j for j in range(_A ) if i != j] for i in range(_A ) } if __name__ == "__main__": import doctest doctest.testmod()
346
from math import factorial def UpperCamelCase ( _A, _A, _A ): """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(_A, _A ) or not isinstance(_A, _A ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) __magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __magic_name__ : Any = float(factorial(_A ) ) coefficient /= factorial(_A ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
342
0
import os def __lowerCamelCase ( ): '''simple docstring''' with open(os.path.dirname(_A ) + '/p022_names.txt' ) as file: snake_case_ = str(file.readlines()[0] ) snake_case_ = names.replace('\"' , '' ).split(',' ) names.sort() snake_case_ = 0 snake_case_ = 0 for i, name in enumerate(_A ): for letter in name: name_score += ord(_A ) - 64 total_score += (i + 1) * name_score snake_case_ = 0 return total_score if __name__ == "__main__": print(solution())
285
from __future__ import annotations def UpperCamelCase ( _A ): # This function is recursive """simple docstring""" __magic_name__ : str = len(_A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __magic_name__ : Dict = array[0] __magic_name__ : Optional[Any] = False __magic_name__ : Tuple = 1 __magic_name__ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __magic_name__ : Union[str, Any] = True __magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]] __magic_name__ : Dict = longest_subsequence(_A ) if len(_A ) > len(_A ): __magic_name__ : Tuple = temp_array else: i += 1 __magic_name__ : Any = [element for element in array[1:] if element >= pivot] __magic_name__ : Dict = [pivot, *longest_subsequence(_A )] if len(_A ) > len(_A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
342
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Any: assert isinstance(_A , _A ), F'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: lowerCAmelCase__ : str = F'''The input value of [n={number}] has to be > 0''' raise ValueError(_A ) else: lowerCAmelCase__ : str = sylvester(number - 1 ) lowerCAmelCase__ : Union[str, Any] = num - 1 lowerCAmelCase__ : Optional[Any] = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
212
import argparse import os import re __magic_name__: Optional[Any] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings __magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def UpperCamelCase ( _A, _A = False ): """simple docstring""" with open(_A, """r""", encoding="""utf-8""" ) as f: __magic_name__ : Any = f.read() __magic_name__ : List[Any] = content.split("""\n""" ) __magic_name__ : List[str] = [] __magic_name__ : Union[str, Any] = 0 while line_idx < len(_A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 __magic_name__ : List[Any] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __magic_name__ : List[str] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_A, """w""", encoding="""utf-8""" ) as f: f.write("""\n""".join(_A ) ) elif "\n".join(_A ) != content: return True def UpperCamelCase ( _A = False ): """simple docstring""" __magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )] __magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames] if not overwrite and any(_A ): __magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix' """ this.""" ) if __name__ == "__main__": __magic_name__: List[str] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __magic_name__: List[str] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
342
0
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image lowercase__ =["text", "image", "audio"] def __UpperCamelCase ( lowerCAmelCase__ : Any ): __a : Any = [] for input_type in input_types: if input_type == "text": inputs.append('''Text input''' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' ).resize((5_1_2, 5_1_2) ) ) elif input_type == "audio": inputs.append(torch.ones(3_0_0_0 ) ) elif isinstance(_A , _A ): inputs.append(create_inputs(_A ) ) else: raise ValueError(f"Invalid type requested: {input_type}" ) return inputs def __UpperCamelCase ( lowerCAmelCase__ : Dict ): __a : Dict = [] for output in outputs: if isinstance(_A , (str, AgentText) ): output_types.append('''text''' ) elif isinstance(_A , (Image.Image, AgentImage) ): output_types.append('''image''' ) elif isinstance(_A , (torch.Tensor, AgentAudio) ): output_types.append('''audio''' ) else: raise ValueError(f"Invalid output: {output}" ) return output_types @is_tool_test class UpperCamelCase__ : def lowerCAmelCase (self : int ): self.assertTrue(hasattr(self.tool , '''inputs''' ) ) self.assertTrue(hasattr(self.tool , '''outputs''' ) ) __a : Any = self.tool.inputs for _input in inputs: if isinstance(_input , lowerCAmelCase__ ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) __a : str = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def lowerCAmelCase (self : str ): __a : Tuple = create_inputs(self.tool.inputs ) __a : Optional[Any] = self.tool(*lowerCAmelCase__ ) # There is a single output if len(self.tool.outputs ) == 1: __a : Dict = [outputs] self.assertListEqual(output_types(lowerCAmelCase__ ) , self.tool.outputs ) def lowerCAmelCase (self : Optional[int] ): self.assertTrue(hasattr(self.tool , '''description''' ) ) self.assertTrue(hasattr(self.tool , '''default_checkpoint''' ) ) self.assertTrue(self.tool.description.startswith('''This is a tool that''' ) ) def lowerCAmelCase (self : Union[str, Any] ): __a : Union[str, Any] = create_inputs(self.tool.inputs ) __a : Optional[int] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a : Tuple = [outputs] self.assertEqual(len(lowerCAmelCase__ ) , len(self.tool.outputs ) ) for output, output_type in zip(lowerCAmelCase__ , self.tool.outputs ): __a : List[Any] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) ) def lowerCAmelCase (self : Any ): __a : Union[str, Any] = create_inputs(self.tool.inputs ) __a : Any = [] for _input, input_type in zip(lowerCAmelCase__ , self.tool.inputs ): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error __a : Optional[int] = self.tool(*lowerCAmelCase__ ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a : Dict = [outputs] self.assertEqual(len(lowerCAmelCase__ ) , len(self.tool.outputs ) )
216
__magic_name__: str = [0, 2, 4, 6, 8] __magic_name__: Optional[int] = [1, 3, 5, 7, 9] def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __magic_name__ : List[Any] = 0 for digit in range(10 ): __magic_name__ : Optional[int] = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, _A, _A ) return result __magic_name__ : str = 0 for digita in range(10 ): __magic_name__ : Optional[Any] = digita if (remainder + digita) % 2 == 0: __magic_name__ : Tuple = ODD_DIGITS else: __magic_name__ : str = EVEN_DIGITS for digita in other_parity_digits: __magic_name__ : Tuple = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, ) return result def UpperCamelCase ( _A = 9 ): """simple docstring""" __magic_name__ : List[str] = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(_A, 0, [0] * length, _A ) return result if __name__ == "__main__": print(F"""{solution() = }""")
342
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _UpperCamelCase : Tuple = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Union[str, Any] = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] _UpperCamelCase : Optional[Any] = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys _UpperCamelCase : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
220
def UpperCamelCase ( _A ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) __magic_name__ : int = sorted(string.lower() ) return len(_A ) == len(set(_A ) ) if __name__ == "__main__": __magic_name__: Dict = input("Enter a string ").strip() __magic_name__: Union[str, Any] = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
342
0
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class SCREAMING_SNAKE_CASE_ ( _lowerCAmelCase ): """simple docstring""" @slow @require_torch def snake_case_ ( self): __SCREAMING_SNAKE_CASE = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""") __SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("""bert-base-uncased""") __SCREAMING_SNAKE_CASE = bertabert.config.encoder.vocab_size __SCREAMING_SNAKE_CASE = tokenizer.sep_token_id __SCREAMING_SNAKE_CASE = tokenizer.cls_token_id __SCREAMING_SNAKE_CASE = 1_2_8 __SCREAMING_SNAKE_CASE = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""") __SCREAMING_SNAKE_CASE = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""") __SCREAMING_SNAKE_CASE = train_dataset.select(range(3_2)) __SCREAMING_SNAKE_CASE = val_dataset.select(range(1_6)) __SCREAMING_SNAKE_CASE = 4 def _map_to_encoder_decoder_inputs(lowerCAmelCase__): # Tokenizer will automatically set [BOS] <text> [EOS] __SCREAMING_SNAKE_CASE = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=lowerCAmelCase__ , max_length=5_1_2) __SCREAMING_SNAKE_CASE = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=lowerCAmelCase__ , max_length=1_2_8) __SCREAMING_SNAKE_CASE = inputs.input_ids __SCREAMING_SNAKE_CASE = inputs.attention_mask __SCREAMING_SNAKE_CASE = outputs.input_ids __SCREAMING_SNAKE_CASE = outputs.input_ids.copy() __SCREAMING_SNAKE_CASE = [ [-1_0_0 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] __SCREAMING_SNAKE_CASE = outputs.attention_mask assert all(len(lowerCAmelCase__) == 5_1_2 for x in inputs.input_ids) assert all(len(lowerCAmelCase__) == 1_2_8 for x in outputs.input_ids) return batch def _compute_metrics(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = pred.label_ids __SCREAMING_SNAKE_CASE = pred.predictions # all unnecessary tokens are removed __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = sum([int(pred_str[i] == label_str[i]) for i in range(len(lowerCAmelCase__))]) / len(lowerCAmelCase__) return {"accuracy": accuracy} # map train dataset __SCREAMING_SNAKE_CASE = train_dataset.map( _map_to_encoder_decoder_inputs , batched=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset __SCREAMING_SNAKE_CASE = val_dataset.map( _map_to_encoder_decoder_inputs , batched=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) __SCREAMING_SNAKE_CASE = self.get_auto_remove_tmp_dir() __SCREAMING_SNAKE_CASE = SeqaSeqTrainingArguments( output_dir=lowerCAmelCase__ , per_device_train_batch_size=lowerCAmelCase__ , per_device_eval_batch_size=lowerCAmelCase__ , predict_with_generate=lowerCAmelCase__ , evaluation_strategy="""steps""" , do_train=lowerCAmelCase__ , do_eval=lowerCAmelCase__ , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer __SCREAMING_SNAKE_CASE = SeqaSeqTrainer( model=lowerCAmelCase__ , args=lowerCAmelCase__ , compute_metrics=_compute_metrics , train_dataset=lowerCAmelCase__ , eval_dataset=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , ) # start training trainer.train()
100
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
342
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class A( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , A_ : Union[str, Any] , A_ : List[str]=13 , A_ : List[Any]=7 , A_ : Optional[int]=True , A_ : str=True , A_ : Optional[int]=True , A_ : Tuple=True , A_ : Optional[Any]=99 , A_ : Any=32 , A_ : int=5 , A_ : Any=4 , A_ : Dict=37 , A_ : Dict="gelu" , A_ : int=0.1 , A_ : Dict=0.1 , A_ : List[str]=512 , A_ : str=16 , A_ : Any=2 , A_ : Optional[int]=0.02 , A_ : Tuple=4 , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_attention_mask lowerCamelCase_ = use_token_type_ids lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = num_choices def a__ ( self : Dict ) -> Dict: """simple docstring""" lowerCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase_ = None if self.use_attention_mask: lowerCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=lowerCAmelCase__ , ) return config, input_ids, attention_mask def a__ ( self : Optional[Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class A( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def a__ ( self : int ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = FlaxDistilBertModelTester(self ) @slow def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: lowerCamelCase_ = model_class_name.from_pretrained('distilbert-base-uncased' ) lowerCamelCase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase__ ) @require_flax class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : List[str] ) -> Dict: """simple docstring""" lowerCamelCase_ = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) lowerCamelCase_ = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowerCamelCase_ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowerCamelCase_ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ )[0] lowerCamelCase_ = (1, 11, 768) self.assertEqual(output.shape , lowerCAmelCase__ ) lowerCamelCase_ = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , lowerCAmelCase__ , atol=1E-4 ) )
204
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]: __magic_name__ : str = parent __magic_name__ : Dict = do_resize __magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88} __magic_name__ : Union[str, Any] = size_divisor __magic_name__ : Union[str, Any] = do_rescale __magic_name__ : Dict = rescale_factor __magic_name__ : Union[str, Any] = do_normalize __magic_name__ : List[str] = do_center_crop __magic_name__ : Tuple = image_mean __magic_name__ : Tuple = image_std __magic_name__ : Tuple = do_pad __magic_name__ : int = batch_size __magic_name__ : List[Any] = num_channels __magic_name__ : int = min_resolution __magic_name__ : str = max_resolution def __magic_name__ ( self ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int: if not batched: __magic_name__ : Dict = self.size["""shortest_edge"""] __magic_name__ : List[str] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): __magic_name__ ,__magic_name__ : List[Any] = image.size else: __magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2] __magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ ) if h < w: __magic_name__ ,__magic_name__ : str = size, scale * w else: __magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size __magic_name__ : Tuple = int((13_33 / 8_00) * size ) if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size: __magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = newh * scale __magic_name__ : Any = neww * scale __magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 ) __magic_name__ ,__magic_name__ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __magic_name__ : Union[str, Any] = [] for image in image_inputs: __magic_name__ ,__magic_name__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] __magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = BridgeTowerImageProcessingTester(self ) @property def __magic_name__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Any: __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) ) def __magic_name__ ( self ) -> Optional[int]: pass def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> str: # Initialize image processor __magic_name__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
342
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A__ : List[str] = logging.get_logger(__name__) A__ : Optional[int] = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class _UpperCAmelCase ( _lowerCAmelCase ): """simple docstring""" lowercase__ = '''xlm-roberta''' def __init__( self : Tuple, lowerCamelCase : Any=30_522, lowerCamelCase : Union[str, Any]=768, lowerCamelCase : Any=12, lowerCamelCase : List[str]=12, lowerCamelCase : Any=3_072, lowerCamelCase : Any="gelu", lowerCamelCase : str=0.1, lowerCamelCase : str=0.1, lowerCamelCase : str=512, lowerCamelCase : Optional[int]=2, lowerCamelCase : Tuple=0.02, lowerCamelCase : Any=1E-12, lowerCamelCase : Dict=1, lowerCamelCase : int=0, lowerCamelCase : List[str]=2, lowerCamelCase : Optional[Any]="absolute", lowerCamelCase : Union[str, Any]=True, lowerCamelCase : str=None, **lowerCamelCase : str, ): '''simple docstring''' super().__init__(pad_token_id=lowerCAmelCase__, bos_token_id=lowerCAmelCase__, eos_token_id=lowerCAmelCase__, **lowerCAmelCase__ ) lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = hidden_act lowercase__ = intermediate_size lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = initializer_range lowercase__ = layer_norm_eps lowercase__ = position_embedding_type lowercase__ = use_cache lowercase__ = classifier_dropout class _UpperCAmelCase ( _lowerCAmelCase ): """simple docstring""" @property def lowercase__ ( self : Tuple ): '''simple docstring''' if self.task == "multiple-choice": lowercase__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowercase__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
207
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__: Tuple = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Union[str, Any] = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __magic_name__: Optional[Any] = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
342
0
from __future__ import annotations from random import choice def __lowercase ( _A ) -> List[str]: return choice(_A ) def __lowercase ( _A , _A ) -> int: SCREAMING_SNAKE_CASE : int = random_pivot(_A ) # partition based on pivot # linear time SCREAMING_SNAKE_CASE : List[str] = [e for e in lst if e < pivot] SCREAMING_SNAKE_CASE : str = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_A ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_A ) < k - 1: return kth_number(_A , k - len(_A ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_A , _A ) if __name__ == "__main__": import doctest doctest.testmod()
245
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__: Dict = logging.get_logger(__name__) __magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __magic_name__: Optional[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __magic_name__: List[Any] = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Any = ( list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) ) ) __magic_name__ : Any = bs[:] __magic_name__ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 __magic_name__ : List[str] = [chr(_A ) for n in cs] return dict(zip(_A, _A ) ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = set() __magic_name__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[Any] = char return pairs class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict: __magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ ) __magic_name__ : Any = {v: k for k, v in self.encoder.items()} __magic_name__ : Tuple = errors # how to handle errors in decoding __magic_name__ : Tuple = bytes_to_unicode() __magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1] __magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] __magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : str = {} __magic_name__ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __magic_name__ ( self ) -> Optional[Any]: return len(self.encoder ) def __magic_name__ ( self ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if token in self.cache: return self.cache[token] __magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ ,__magic_name__ : List[str] = bigram __magic_name__ : Any = [] __magic_name__ : Any = 0 while i < len(lowerCAmelCase__ ): try: __magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Optional[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : str = tuple(lowerCAmelCase__ ) __magic_name__ : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __magic_name__ : List[str] = get_pairs(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ ) __magic_name__ : str = word return word def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ : str = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __magic_name__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Tuple = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __magic_name__ : Optional[Any] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : Optional[int] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] __magic_name__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : Dict = [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __magic_name__ : List[Any] = """ """ + text return (text, kwargs)
342
0
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[Any] ) ->Optional[int]: '''simple docstring''' a : Union[str, Any] = 0.00 a : List[str] = 0 for resistor in resistors: if resistor <= 0: a : Optional[Any] = F"""Resistor at index {index} has a negative or zero value!""" raise ValueError(_A ) first_sum += 1 / float(_A ) index += 1 return 1 / first_sum def _SCREAMING_SNAKE_CASE ( _lowercase : Dict ) ->Optional[Any]: '''simple docstring''' a : int = 0.00 a : List[Any] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: a : Any = F"""Resistor at index {index} has a negative value!""" raise ValueError(_A ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
105
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str: __magic_name__ : Optional[int] = parent __magic_name__ : Any = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[int] = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : str = embed_dim __magic_name__ : int = hidden_sizes __magic_name__ : Union[str, Any] = depths __magic_name__ : List[str] = num_heads __magic_name__ : str = window_size __magic_name__ : Optional[Any] = mlp_ratio __magic_name__ : Dict = qkv_bias __magic_name__ : Dict = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = drop_path_rate __magic_name__ : Optional[Any] = hidden_act __magic_name__ : int = use_absolute_embeddings __magic_name__ : Dict = patch_norm __magic_name__ : Tuple = layer_norm_eps __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[int] = is_training __magic_name__ : Optional[Any] = scope __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = encoder_stride __magic_name__ : List[Any] = out_features __magic_name__ : Union[str, Any] = out_indices def __magic_name__ ( self ) -> str: __magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[Any] = None if self.use_labels: __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Dict = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Tuple = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __magic_name__ : Optional[Any] = None __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : str = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : int = self.type_sequence_label_size __magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self ) -> int: __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs __magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ : Any = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ : Dict = False lowercase__ : Dict = False lowercase__ : int = False lowercase__ : Tuple = False lowercase__ : Optional[Any] = False def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = FocalNetModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> List[str]: return def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __magic_name__ ( self ) -> List[str]: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __magic_name__ ( self ) -> List[Any]: pass def __magic_name__ ( self ) -> List[Any]: __magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : str = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # FocalNet has a different seq_length __magic_name__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __magic_name__ : str = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape __magic_name__ : Union[str, Any] = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __magic_name__ : List[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = 3 __magic_name__ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __magic_name__ : Optional[int] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : str = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) @slow def __magic_name__ ( self ) -> Union[str, Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: __magic_name__ : Any = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.default_image_processor __magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : List[Any] = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else () lowercase__ : Optional[int] = FocalNetConfig lowercase__ : Dict = False def __magic_name__ ( self ) -> int: __magic_name__ : Dict = FocalNetModelTester(self )
342
0
'''simple docstring''' import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class a_ (unittest.TestCase ): @parameterized.expand([(None,), ("""foo.json""",)] ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Optional[int] = GenerationConfig( do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ , config_name=lowerCAmelCase__ ) _lowerCAmelCase : Any = GenerationConfig.from_pretrained(lowerCAmelCase__ , config_name=lowerCAmelCase__ ) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowerCAmelCase__ ) self.assertEqual(loaded_config.temperature , 0.7 ) self.assertEqual(loaded_config.length_penalty , 1.0 ) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]] ) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 5_0 ) self.assertEqual(loaded_config.max_length , 2_0 ) self.assertEqual(loaded_config.max_time , lowerCAmelCase__ ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[str] = AutoConfig.from_pretrained("""gpt2""" ) _lowerCAmelCase : List[Any] = GenerationConfig.from_model_config(lowerCAmelCase__ ) _lowerCAmelCase : Union[str, Any] = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id ) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id ) def __UpperCamelCase ( self ): _lowerCAmelCase : List[Any] = GenerationConfig() _lowerCAmelCase : Tuple = { """max_new_tokens""": 1_0_2_4, """foo""": """bar""", } _lowerCAmelCase : Optional[int] = copy.deepcopy(lowerCAmelCase__ ) _lowerCAmelCase : int = generation_config.update(**lowerCAmelCase__ ) # update_kwargs was not modified (no side effects) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1_0_2_4 ) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowerCAmelCase__ , {"""foo""": """bar"""} ) def __UpperCamelCase ( self ): _lowerCAmelCase : Tuple = GenerationConfig() _lowerCAmelCase : Optional[Any] = """bar""" with tempfile.TemporaryDirectory("""test-generation-config""" ) as tmp_dir: generation_config.save_pretrained(lowerCAmelCase__ ) _lowerCAmelCase : str = GenerationConfig.from_pretrained(lowerCAmelCase__ ) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , """bar""" ) _lowerCAmelCase : Any = GenerationConfig.from_model_config(lowerCAmelCase__ ) assert not hasattr(lowerCAmelCase__ , """foo""" ) # no new kwargs should be initialized if from config def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = GenerationConfig() self.assertEqual(default_config.temperature , 1.0 ) self.assertEqual(default_config.do_sample , lowerCAmelCase__ ) self.assertEqual(default_config.num_beams , 1 ) _lowerCAmelCase : List[str] = GenerationConfig( do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7 ) self.assertEqual(config.do_sample , lowerCAmelCase__ ) self.assertEqual(config.num_beams , 1 ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ ) _lowerCAmelCase : int = GenerationConfig.from_pretrained(lowerCAmelCase__ , temperature=1.0 ) self.assertEqual(loaded_config.temperature , 1.0 ) self.assertEqual(loaded_config.do_sample , lowerCAmelCase__ ) self.assertEqual(loaded_config.num_beams , 1 ) # default value @is_staging_test class a_ (unittest.TestCase ): @classmethod def __UpperCamelCase ( cls ): _lowerCAmelCase : Optional[int] = TOKEN HfFolder.save_token(lowerCAmelCase__ ) @classmethod def __UpperCamelCase ( cls ): try: delete_repo(token=cls._token , repo_id="""test-generation-config""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-generation-config-org""" ) except HTTPError: pass def __UpperCamelCase ( self ): _lowerCAmelCase : Union[str, Any] = GenerationConfig( do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""test-generation-config""" , use_auth_token=self._token ) _lowerCAmelCase : int = GenerationConfig.from_pretrained(f'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-generation-config""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCAmelCase__ , repo_id="""test-generation-config""" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) _lowerCAmelCase : Any = GenerationConfig.from_pretrained(f'{USER}/test-generation-config' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) def __UpperCamelCase ( self ): _lowerCAmelCase : Any = GenerationConfig( do_sample=lowerCAmelCase__ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub("""valid_org/test-generation-config-org""" , use_auth_token=self._token ) _lowerCAmelCase : List[str] = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-generation-config-org""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCAmelCase__ , repo_id="""valid_org/test-generation-config-org""" , push_to_hub=lowerCAmelCase__ , use_auth_token=self._token ) _lowerCAmelCase : Dict = GenerationConfig.from_pretrained("""valid_org/test-generation-config-org""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCAmelCase__ , getattr(lowerCAmelCase__ , lowerCAmelCase__ ) )
309
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]: __magic_name__ : int = parent __magic_name__ : Tuple = batch_size __magic_name__ : int = image_size __magic_name__ : str = num_channels __magic_name__ : Dict = patch_size __magic_name__ : Tuple = num_frames __magic_name__ : List[Any] = is_training __magic_name__ : List[Any] = use_labels __magic_name__ : Dict = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Tuple = attention_type __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = scope __magic_name__ : Tuple = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __magic_name__ : str = (image_size // patch_size) ** 2 __magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : str = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> str: __magic_name__ : Dict = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __magic_name__ : Optional[Any] = self.num_labels return config def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[Any] = model(lowerCAmelCase__ ) # verify the logits shape __magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs __magic_name__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__ : Union[str, Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : str = False lowercase__ : Tuple = False lowercase__ : Any = False def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[Any] = TimesformerModelTester(self ) __magic_name__ : List[str] = ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]: __magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Optional[int] = [*signature.parameters.keys()] __magic_name__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Optional[int]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: if not self.has_attentions: pass else: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True for model_class in self.all_model_classes: __magic_name__ : Tuple = self.model_tester.seq_length __magic_name__ : int = self.model_tester.num_frames __magic_name__ : Any = True __magic_name__ : Tuple = False __magic_name__ : Optional[int] = True __magic_name__ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ : Optional[Any] = True __magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : int = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __magic_name__ : Union[str, Any] = len(lowerCAmelCase__ ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : Optional[Any] = True __magic_name__ : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) ) __magic_name__ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self ) -> Any: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ : str = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" ) __magic_name__ : List[str] = np.load(_A ) return list(_A ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( lowerCAmelCase__ ) __magic_name__ : str = self.default_image_processor __magic_name__ : Any = prepare_video() __magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : int = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
342
0
'''simple docstring''' import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase_ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : List[Any] = IFPipeline lowerCAmelCase_ : Dict = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} lowerCAmelCase_ : int = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase_ : List[str] = PipelineTesterMixin.required_optional_params - {'''latents'''} def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" return self._get_dummy_components() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=0 ): """simple docstring""" if str(lowerCAmelCase__ ).startswith("""mps""" ): UpperCAmelCase__ = torch.manual_seed(lowerCAmelCase__ ) else: UpperCAmelCase__ = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) UpperCAmelCase__ = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" self._test_save_load_local() def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = IFPipeline.from_pretrained("""DeepFloyd/IF-I-XL-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa ) UpperCAmelCase__ = IFSuperResolutionPipeline.from_pretrained( """DeepFloyd/IF-II-L-v1.0""" , variant="""fp16""" , torch_dtype=torch.floataa , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("""cuda""" ) UpperCAmelCase__ = pipe_a.encode_prompt("""anime turtle""" , device="""cuda""" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCAmelCase__ = None UpperCAmelCase__ = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCAmelCase__ = IFImgaImgPipeline(**pipe_a.components ) UpperCAmelCase__ = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCAmelCase__ = IFInpaintingPipeline(**pipe_a.components ) UpperCAmelCase__ = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ): """simple docstring""" _start_torch_memory_measurement() UpperCAmelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase__ = pipe_a( prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , num_inference_steps=2 , generator=lowerCAmelCase__ , output_type="""np""" , ) UpperCAmelCase__ = output.images[0] assert image.shape == (64, 64, 3) UpperCAmelCase__ = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 UpperCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy""" ) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) UpperCAmelCase__ = pipe_a( prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase__ = output.images[0] assert image.shape == (2_56, 2_56, 3) UpperCAmelCase__ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] ): """simple docstring""" _start_torch_memory_measurement() UpperCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) UpperCAmelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase__ = pipe_a( prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , image=lowerCAmelCase__ , num_inference_steps=2 , generator=lowerCAmelCase__ , output_type="""np""" , ) UpperCAmelCase__ = output.images[0] assert image.shape == (64, 64, 3) UpperCAmelCase__ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy""" ) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase__ = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) UpperCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) UpperCAmelCase__ = pipe_a( prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , image=lowerCAmelCase__ , original_image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase__ = output.images[0] assert image.shape == (2_56, 2_56, 3) UpperCAmelCase__ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str ): """simple docstring""" _start_torch_memory_measurement() UpperCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) UpperCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(lowerCAmelCase__ ) UpperCAmelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase__ = pipe_a( prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , num_inference_steps=2 , generator=lowerCAmelCase__ , output_type="""np""" , ) UpperCAmelCase__ = output.images[0] assert image.shape == (64, 64, 3) UpperCAmelCase__ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy""" ) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ ) # pipeline 2 _start_torch_memory_measurement() UpperCAmelCase__ = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCAmelCase__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) UpperCAmelCase__ = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) UpperCAmelCase__ = floats_tensor((1, 3, 2_56, 2_56) , rng=random.Random(1 ) ).to(lowerCAmelCase__ ) UpperCAmelCase__ = pipe_a( prompt_embeds=lowerCAmelCase__ , negative_prompt_embeds=lowerCAmelCase__ , image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , original_image=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="""np""" , ) UpperCAmelCase__ = output.images[0] assert image.shape == (2_56, 2_56, 3) UpperCAmelCase__ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCAmelCase__ = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy""" ) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ ) def _UpperCamelCase ( ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
346
def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = [0] * len(_A ) __magic_name__ : List[str] = [] __magic_name__ : List[str] = [1] * len(_A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: __magic_name__ : Dict = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __magic_name__ : int = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_A ) print(max(_A ) ) # Adjacency list of Graph __magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
0
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowercase ( _lowerCAmelCase ): def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=True , snake_case=False , snake_case=True , snake_case=99 , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=64 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=16 , snake_case=2 , snake_case=0.02 , snake_case=3 , snake_case=4 , snake_case=None , snake_case=2 , snake_case=2 , snake_case=2 , snake_case=2 , snake_case=4 , snake_case=1 , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = scope snake_case_ = q_groups snake_case_ = k_groups snake_case_ = v_groups snake_case_ = post_attention_groups snake_case_ = intermediate_groups snake_case_ = output_groups def a ( self ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a ( self ): return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): snake_case_ = SqueezeBertModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() snake_case_ = model(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): snake_case_ = SqueezeBertForMaskedLM(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() snake_case_ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): snake_case_ = SqueezeBertForQuestionAnswering(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() snake_case_ = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): snake_case_ = self.num_labels snake_case_ = SqueezeBertForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() snake_case_ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): snake_case_ = self.num_labels snake_case_ = SqueezeBertForTokenClassification(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() snake_case_ = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): snake_case_ = self.num_choices snake_case_ = SqueezeBertForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a ( self ): snake_case_ = self.prepare_config_and_inputs() (snake_case_) = config_and_inputs snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) __SCREAMING_SNAKE_CASE : Optional[int] = ( { '''feature-extraction''': SqueezeBertModel, '''fill-mask''': SqueezeBertForMaskedLM, '''question-answering''': SqueezeBertForQuestionAnswering, '''text-classification''': SqueezeBertForSequenceClassification, '''token-classification''': SqueezeBertForTokenClassification, '''zero-shot''': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : Union[str, Any] = False __SCREAMING_SNAKE_CASE : Dict = True __SCREAMING_SNAKE_CASE : Optional[Any] = False def a ( self ): snake_case_ = SqueezeBertModelTester(self ) snake_case_ = ConfigTester(self , config_class=lowerCAmelCase__ , dim=37 ) def a ( self ): self.config_tester.run_common_tests() def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowerCAmelCase__ ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowerCAmelCase__ ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowerCAmelCase__ ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowerCAmelCase__ ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowerCAmelCase__ ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowerCAmelCase__ ) @slow def a ( self ): for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = SqueezeBertModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @require_sentencepiece @require_tokenizers @require_torch class lowercase ( unittest.TestCase ): @slow def a ( self ): snake_case_ = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' ) snake_case_ = torch.tensor([[1, 2_9414, 232, 328, 740, 1140, 1_2695, 69, 13, 1588, 2]] ) snake_case_ = model(lowerCAmelCase__ )[0] snake_case_ = torch.Size((1, 3) ) self.assertEqual(output.shape , lowerCAmelCase__ ) snake_case_ = torch.tensor([[0.64_01, -0.03_49, -0.60_41]] ) self.assertTrue(torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-4 ) )
285
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> str: __magic_name__ : Tuple = """ylacombe/bark-small""" __magic_name__ : List[str] = tempfile.mkdtemp() __magic_name__ : Optional[Any] = """en_speaker_1""" __magic_name__ : Union[str, Any] = """This is a test string""" __magic_name__ : Optional[int] = """speaker_embeddings_path.json""" __magic_name__ : Any = """speaker_embeddings""" def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : str = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__ ( self ) -> Any: __magic_name__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __magic_name__ : Union[str, Any] = 35 __magic_name__ : List[Any] = 2 __magic_name__ : Dict = 8 __magic_name__ : Tuple = { """semantic_prompt""": np.ones(lowerCAmelCase__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string ) __magic_name__ : List[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
342
0
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } lowerCamelCase__ = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: for attribute in key.split('.' ): lowerCAmelCase__ : Any = getattr(_A , _A ) if weight_type is not None: lowerCAmelCase__ : Optional[int] = getattr(_A , _A ).shape else: lowerCAmelCase__ : Tuple = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCAmelCase__ : Any = value elif weight_type == "weight_g": lowerCAmelCase__ : Tuple = value elif weight_type == "weight_v": lowerCAmelCase__ : List[Any] = value elif weight_type == "bias": lowerCAmelCase__ : Optional[Any] = value else: lowerCAmelCase__ : List[Any] = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : int = [] lowerCAmelCase__ : Dict = fairseq_model.state_dict() lowerCAmelCase__ : Optional[int] = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ : Tuple = False if "conv_layers" in name: load_conv_layer( _A , _A , _A , _A , hf_model.config.feat_extract_norm == 'group' , ) lowerCAmelCase__ : int = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase__ : Tuple = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: if "layer_norm_for_extract" in name and (".".join(name.split('.' )[:-1] ) != key): # special case since naming is very similar continue lowerCAmelCase__ : Union[str, Any] = True if "*" in mapped_key: lowerCAmelCase__ : Tuple = name.split(_A )[0].split('.' )[-2] lowerCAmelCase__ : Dict = mapped_key.replace('*' , _A ) if "weight_g" in name: lowerCAmelCase__ : List[Any] = """weight_g""" elif "weight_v" in name: lowerCAmelCase__ : Tuple = """weight_v""" elif "bias" in name: lowerCAmelCase__ : Union[str, Any] = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase__ : Optional[Any] = """weight""" else: lowerCAmelCase__ : Union[str, Any] = None set_recursively(_A , _A , _A , _A , _A ) continue if not is_used: unused_weights.append(_A ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowerCAmelCase__ : Dict = full_name.split('conv_layers.' )[-1] lowerCAmelCase__ : Optional[Any] = name.split('.' ) lowerCAmelCase__ : List[Any] = int(items[0] ) lowerCAmelCase__ : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowerCAmelCase__ : int = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowerCAmelCase__ : List[str] = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.bias.data.shape} was found.''' ) lowerCAmelCase__ : Optional[Any] = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowerCAmelCase__ : str = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_A ) @torch.no_grad() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True ) -> Any: if config_path is not None: lowerCAmelCase__ : List[str] = UniSpeechSatConfig.from_pretrained(_A ) else: lowerCAmelCase__ : Dict = UniSpeechSatConfig() lowerCAmelCase__ : Dict = """""" if is_finetuned: lowerCAmelCase__ : Dict = UniSpeechSatForCTC(_A ) else: lowerCAmelCase__ : Dict = UniSpeechSatForPreTraining(_A ) lowerCAmelCase__ : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) lowerCAmelCase__ : str = model[0].eval() recursively_load_weights(_A , _A ) hf_wavavec.save_pretrained(_A ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) lowerCamelCase__ = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
212
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]: __magic_name__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} __magic_name__ : str = parent __magic_name__ : Any = batch_size __magic_name__ : Any = num_channels __magic_name__ : List[str] = image_size __magic_name__ : Tuple = min_resolution __magic_name__ : Union[str, Any] = max_resolution __magic_name__ : List[str] = do_resize __magic_name__ : Optional[Any] = size __magic_name__ : Optional[Any] = do_normalize __magic_name__ : Any = image_mean __magic_name__ : List[str] = image_std def __magic_name__ ( self ) -> List[str]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = DPTImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Dict = DPTImageProcessingTester(self ) @property def __magic_name__ ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __magic_name__ ( self ) -> str: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Optional[Any]: # Initialize image_processing __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
342
0
from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Any = ['''sentencepiece'''] def __init__(self : List[str] , *snake_case_ : Optional[Any] , **snake_case_ : str ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Tuple = ['''sentencepiece'''] def __init__(self : Optional[int] , *snake_case_ : Dict , **snake_case_ : Union[str, Any] ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ['''sentencepiece'''] def __init__(self : Optional[int] , *snake_case_ : Union[str, Any] , **snake_case_ : Optional[Any] ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = ['''sentencepiece'''] def __init__(self : Dict , *snake_case_ : int , **snake_case_ : Union[str, Any] ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Dict = ['''sentencepiece'''] def __init__(self : Optional[Any] , *snake_case_ : Union[str, Any] , **snake_case_ : List[Any] ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : List[Any] = ['''sentencepiece'''] def __init__(self : Optional[int] , *snake_case_ : List[Any] , **snake_case_ : Tuple ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Dict = ['''sentencepiece'''] def __init__(self : List[Any] , *snake_case_ : List[Any] , **snake_case_ : Optional[int] ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : str = ['''sentencepiece'''] def __init__(self : List[Any] , *snake_case_ : List[str] , **snake_case_ : Optional[int] ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : int = ['''sentencepiece'''] def __init__(self : List[Any] , *snake_case_ : List[Any] , **snake_case_ : Tuple ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ['''sentencepiece'''] def __init__(self : Dict , *snake_case_ : Optional[int] , **snake_case_ : str ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : int = ['''sentencepiece'''] def __init__(self : Tuple , *snake_case_ : int , **snake_case_ : Optional[Any] ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ['''sentencepiece'''] def __init__(self : Optional[int] , *snake_case_ : Optional[int] , **snake_case_ : Any ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : str = ['''sentencepiece'''] def __init__(self : Optional[Any] , *snake_case_ : str , **snake_case_ : str ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = ['''sentencepiece'''] def __init__(self : int , *snake_case_ : Optional[int] , **snake_case_ : List[Any] ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = ['''sentencepiece'''] def __init__(self : int , *snake_case_ : Optional[Any] , **snake_case_ : List[str] ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = ['''sentencepiece'''] def __init__(self : int , *snake_case_ : Union[str, Any] , **snake_case_ : List[str] ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : List[str] = ['''sentencepiece'''] def __init__(self : Tuple , *snake_case_ : Any , **snake_case_ : Tuple ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : int = ['''sentencepiece'''] def __init__(self : Any , *snake_case_ : Tuple , **snake_case_ : Dict ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Tuple = ['''sentencepiece'''] def __init__(self : Optional[Any] , *snake_case_ : Any , **snake_case_ : List[Any] ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : str = ['''sentencepiece'''] def __init__(self : Union[str, Any] , *snake_case_ : List[Any] , **snake_case_ : List[str] ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : List[Any] = ['''sentencepiece'''] def __init__(self : Union[str, Any] , *snake_case_ : Union[str, Any] , **snake_case_ : Tuple ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = ['''sentencepiece'''] def __init__(self : int , *snake_case_ : Optional[int] , **snake_case_ : Any ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : int = ['''sentencepiece'''] def __init__(self : Optional[int] , *snake_case_ : List[str] , **snake_case_ : str ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : List[str] = ['''sentencepiece'''] def __init__(self : List[str] , *snake_case_ : Union[str, Any] , **snake_case_ : Any ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Tuple = ['''sentencepiece'''] def __init__(self : Dict , *snake_case_ : str , **snake_case_ : Union[str, Any] ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : int = ['''sentencepiece'''] def __init__(self : Tuple , *snake_case_ : Dict , **snake_case_ : int ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Optional[int] = ['''sentencepiece'''] def __init__(self : Dict , *snake_case_ : int , **snake_case_ : int ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Any = ['''sentencepiece'''] def __init__(self : List[str] , *snake_case_ : Optional[int] , **snake_case_ : Any ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : List[str] = ['''sentencepiece'''] def __init__(self : Tuple , *snake_case_ : Optional[int] , **snake_case_ : Union[str, Any] ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Tuple = ['''sentencepiece'''] def __init__(self : Union[str, Any] , *snake_case_ : Optional[int] , **snake_case_ : Optional[int] ): requires_backends(self , ['''sentencepiece'''] ) class UpperCamelCase__ ( metaclass=_lowerCAmelCase ): _SCREAMING_SNAKE_CASE : int = ['''sentencepiece'''] def __init__(self : Any , *snake_case_ : Union[str, Any] , **snake_case_ : int ): requires_backends(self , ['''sentencepiece'''] )
216
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__: Tuple = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M''' lowercase__ : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowercase__ : List[str] = '''translator''' lowercase__ : Optional[Any] = AutoTokenizer lowercase__ : int = AutoModelForSeqaSeqLM lowercase__ : List[Any] = LANGUAGE_CODES lowercase__ : str = ['''text''', '''text''', '''text'''] lowercase__ : Any = ['''text'''] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) __magic_name__ : Tuple = self.lang_to_code[src_lang] __magic_name__ : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
342
0
"""simple docstring""" from __future__ import annotations class a : def __init__( self , _lowerCamelCase = 0 ): lowercase = key def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = key or self.__key or 1 # make sure key is an appropriate size key %= 2_5_5 return [chr(ord(lowerCAmelCase__ ) ^ key ) for ch in content] def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = key or self.__key or 1 # make sure key is an appropriate size key %= 2_5_5 return [chr(ord(lowerCAmelCase__ ) ^ key ) for ch in content] def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = 0 ): assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = key or self.__key or 1 # make sure key can be any size while key > 2_5_5: key -= 2_5_5 # This will be returned lowercase = """""" for ch in content: ans += chr(ord(lowerCAmelCase__ ) ^ key ) return ans def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = 0 ): assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = key or self.__key or 1 # make sure key can be any size while key > 2_5_5: key -= 2_5_5 # This will be returned lowercase = """""" for ch in content: ans += chr(ord(lowerCAmelCase__ ) ^ key ) return ans def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase = 0 ): assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) try: with open(lowerCAmelCase__ ) as fin, open('encrypt.out' , 'w+' ) as fout: # actual encrypt-process for line in fin: fout.write(self.encrypt_string(lowerCAmelCase__ , lowerCAmelCase__ ) ) except OSError: return False return True def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): assert isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) try: with open(lowerCAmelCase__ ) as fin, open('decrypt.out' , 'w+' ) as fout: # actual encrypt-process for line in fin: fout.write(self.decrypt_string(lowerCAmelCase__ , lowerCAmelCase__ ) ) except OSError: return False return True # Tests # crypt = XORCipher() # key = 67 # # test encrypt # print(crypt.encrypt("hallo welt",key)) # # test decrypt # print(crypt.decrypt(crypt.encrypt("hallo welt",key), key)) # # test encrypt_string # print(crypt.encrypt_string("hallo welt",key)) # # test decrypt_string # print(crypt.decrypt_string(crypt.encrypt_string("hallo welt",key),key)) # if (crypt.encrypt_file("test.txt",key)): # print("encrypt successful") # else: # print("encrypt unsuccessful") # if (crypt.decrypt_file("encrypt.out",key)): # print("decrypt successful") # else: # print("decrypt unsuccessful")
220
import math class snake_case__ : def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1 __magic_name__ : Tuple = n __magic_name__ : Union[str, Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # adjacency matrix for weight __magic_name__ : List[Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # dp[i][j] stores minimum distance from i to j def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Dict = w def __magic_name__ ( self ) -> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: return self.dp[u][v] if __name__ == "__main__": __magic_name__: Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
342
0
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ = 10**9 ): __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 while perimeter <= max_perimeter: perimeters_sum += perimeter prev_value += 2 * value value += prev_value __SCREAMING_SNAKE_CASE = 2 * value + 2 if i % 2 == 0 else 2 * value - 2 i += 1 return perimeters_sum if __name__ == "__main__": print(F"""{solution() = }""")
100
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__ : def __init__( self , lowerCAmelCase__ = None ) -> None: if components is None: __magic_name__ : Any = [] __magic_name__ : List[str] = list(lowerCAmelCase__ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")" def __add__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : Dict = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: raise Exception("""must have the same size""" ) def __sub__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : int = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... @overload def __mul__( self , lowerCAmelCase__ ) -> float: ... def __mul__( self , lowerCAmelCase__ ) -> float | Vector: if isinstance(lowerCAmelCase__ , (float, int) ): __magic_name__ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ): __magic_name__ : Optional[Any] = len(self ) __magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return sum(lowerCAmelCase__ ) else: # error case raise Exception("""invalid operand!""" ) def __magic_name__ ( self ) -> Vector: return Vector(self.__components ) def __magic_name__ ( self , lowerCAmelCase__ ) -> float: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ : Optional[int] = value def __magic_name__ ( self ) -> float: if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __magic_name__ : Dict = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase__ ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float: __magic_name__ : Optional[Any] = self * other __magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCamelCase ( _A ): """simple docstring""" assert isinstance(_A, _A ) return Vector([0] * dimension ) def UpperCamelCase ( _A, _A ): """simple docstring""" assert isinstance(_A, _A ) and (isinstance(_A, _A )) __magic_name__ : Union[str, Any] = [0] * dimension __magic_name__ : Optional[int] = 1 return Vector(_A ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" assert ( isinstance(_A, _A ) and isinstance(_A, _A ) and (isinstance(_A, (int, float) )) ) return x * scalar + y def UpperCamelCase ( _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )] return Vector(_A ) class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Dict = matrix __magic_name__ : Tuple = w __magic_name__ : Union[str, Any] = h def __str__( self ) -> str: __magic_name__ : Dict = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Tuple = [] for i in range(self.__height ): __magic_name__ : Tuple = [ self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Optional[Any] = [] for i in range(self.__height ): __magic_name__ : int = [ self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Matrix: ... @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector if len(lowerCAmelCase__ ) == self.__width: __magic_name__ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ : Optional[int] = [ self.__matrix[i][j] * other.component(lowerCAmelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar __magic_name__ : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase__ , self.__width , self.__height ) return None def __magic_name__ ( self ) -> int: return self.__height def __magic_name__ ( self ) -> int: return self.__width def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ : List[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase__ ) ): __magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise Exception("""Indices out of bounds""" ) def __magic_name__ ( self ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width ) ] return sum(lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )] return Matrix(_A, _A, _A ) def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : list[list[float]] = [ [random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A ) ] return Matrix(_A, _A, _A )
342
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : int = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class A( _lowerCAmelCase ): '''simple docstring''' UpperCamelCase = '''poolformer''' def __init__( self : Tuple , A_ : str=3 , A_ : str=16 , A_ : Dict=16 , A_ : List[Any]=3 , A_ : Dict=4.0 , A_ : Union[str, Any]=[2, 2, 6, 2] , A_ : Optional[Any]=[64, 128, 320, 512] , A_ : Any=[7, 3, 3, 3] , A_ : Union[str, Any]=[4, 2, 2, 2] , A_ : Optional[Any]=[2, 1, 1, 1] , A_ : Union[str, Any]=4 , A_ : str=0.0 , A_ : Tuple="gelu" , A_ : Union[str, Any]=True , A_ : List[Any]=1E-5 , A_ : Tuple=0.02 , **A_ : List[Any] , ) -> Dict: """simple docstring""" lowerCamelCase_ = num_channels lowerCamelCase_ = patch_size lowerCamelCase_ = stride lowerCamelCase_ = padding lowerCamelCase_ = pool_size lowerCamelCase_ = hidden_sizes lowerCamelCase_ = mlp_ratio lowerCamelCase_ = depths lowerCamelCase_ = patch_sizes lowerCamelCase_ = strides lowerCamelCase_ = num_encoder_blocks lowerCamelCase_ = drop_path_rate lowerCamelCase_ = hidden_act lowerCamelCase_ = use_layer_scale lowerCamelCase_ = layer_scale_init_value lowerCamelCase_ = initializer_range super().__init__(**lowerCAmelCase__ ) class A( _lowerCAmelCase ): '''simple docstring''' UpperCamelCase = version.parse('''1.11''' ) @property def a__ ( self : Dict ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def a__ ( self : str ) -> float: """simple docstring""" return 2E-3
204
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __magic_name__: str = logging.get_logger(__name__) __magic_name__: int = "▁" __magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"} __magic_name__: List[str] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } __magic_name__: Tuple = { "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off __magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class snake_case__ ( _lowerCAmelCase ): lowercase__ : str = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = ['''input_ids''', '''attention_mask'''] lowercase__ : List[int] = [] lowercase__ : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __magic_name__ : Optional[Any] = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) __magic_name__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __magic_name__ : List[Any] = 1 __magic_name__ : Dict = len(self.sp_model ) __magic_name__ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } __magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} __magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __magic_name__ : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn""" __magic_name__ : Any = self.lang_code_to_id[self._src_lang] __magic_name__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Any: __magic_name__ : List[Any] = self.__dict__.copy() __magic_name__ : int = None __magic_name__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__ : Any = {} __magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __magic_name__ ( self ) -> str: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self ) -> str: return self._src_lang @src_lang.setter def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) __magic_name__ : Optional[int] = [1] * len(self.prefix_tokens ) __magic_name__ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : str = [self.sep_token_id] __magic_name__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __magic_name__ : Dict = src_lang __magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Tuple = tgt_lang_id return inputs def __magic_name__ ( self ) -> int: __magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip() return out_string def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , """wb""" ) as fi: __magic_name__ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding: __magic_name__ : List[str] = src_lang __magic_name__ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : str = [self.cur_lang_code] __magic_name__ : List[Any] = [self.eos_token_id] def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : Optional[int] = [self.cur_lang_code] __magic_name__ : Union[str, Any] = [self.eos_token_id]
342
0
import argparse import os import re A__ : Optional[Any] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict A__ : Any = re.compile(r'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings A__ : Tuple = re.compile(r'\s*\(\s*\"(\S[^\"]+)\"') def a ( lowerCamelCase_ , lowerCamelCase_ = False ): '''simple docstring''' with open(_A , '''r''' , encoding='''utf-8''' ) as f: lowercase__ = f.read() lowercase__ = content.split('''\n''' ) lowercase__ = [] lowercase__ = 0 while line_idx < len(_A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: lowercase__ = len(re.search(r'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 lowercase__ = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": lowercase__ = line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers lowercase__ = sorted(_A , key=lambda lowerCamelCase_ : _re_identifier.search(_A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_A , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(_A ) ) elif "\n".join(_A ) != content: return True def a ( lowerCamelCase_ = False ): '''simple docstring''' lowercase__ = [os.path.join(_A , _A ) for f in os.listdir(_A ) if f.endswith('''.py''' )] lowercase__ = [sort_auto_mapping(_A , overwrite=_A ) for fname in fnames] if not overwrite and any(_A ): lowercase__ = [f for f, d in zip(_A , _A ) if d] raise ValueError( F"""The following files have auto mappings that need sorting: {', '.join(_A )}. Run `make style` to fix""" ''' this.''' ) if __name__ == "__main__": A__ : List[str] = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') A__ : List[str] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
207
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Dict = MobileBertConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ : Tuple = MobileBertForPreTraining(_A ) # Load weights from tf checkpoint __magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _A ) if __name__ == "__main__": __magic_name__: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__: Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
342
0
import inspect import unittest from transformers import ConvNextConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__ : """simple docstring""" def __init__( self : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any]=1_3 , UpperCAmelCase__ : Optional[int]=3_2 , UpperCAmelCase__ : Tuple=3 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : int=[1_0, 2_0, 3_0, 4_0] , UpperCAmelCase__ : int=[2, 2, 3, 2] , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : str=True , UpperCAmelCase__ : Optional[int]=3_7 , UpperCAmelCase__ : Optional[int]="gelu" , UpperCAmelCase__ : Union[str, Any]=1_0 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : Tuple=["stage2", "stage3", "stage4"] , UpperCAmelCase__ : Optional[Any]=[2, 3, 4] , UpperCAmelCase__ : List[str]=None , ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = parent SCREAMING_SNAKE_CASE : Dict = batch_size SCREAMING_SNAKE_CASE : Optional[Any] = image_size SCREAMING_SNAKE_CASE : List[Any] = num_channels SCREAMING_SNAKE_CASE : str = num_stages SCREAMING_SNAKE_CASE : Optional[Any] = hidden_sizes SCREAMING_SNAKE_CASE : Any = depths SCREAMING_SNAKE_CASE : List[Any] = is_training SCREAMING_SNAKE_CASE : int = use_labels SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : str = num_labels SCREAMING_SNAKE_CASE : str = initializer_range SCREAMING_SNAKE_CASE : Optional[Any] = out_features SCREAMING_SNAKE_CASE : str = out_indices SCREAMING_SNAKE_CASE : Tuple = scope def _lowercase ( self : int ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE : List[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE : Optional[Any] = ids_tensor([self.batch_size] , self.num_labels ) SCREAMING_SNAKE_CASE : Dict = self.get_config() return config, pixel_values, labels def _lowercase ( self : Any ) ->List[str]: """simple docstring""" return ConvNextConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _lowercase ( self : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : Any ) ->Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ConvNextModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _lowercase ( self : List[str] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = ConvNextForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE : List[str] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _lowercase ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any] ) ->str: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ConvNextBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE : Dict = model(lowerCAmelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : Optional[int] = ConvNextBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _lowercase ( self : Any ) ->Dict: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE : Dict = config_and_inputs SCREAMING_SNAKE_CASE : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : List[str] =( ( ConvNextModel, ConvNextForImageClassification, ConvNextBackbone, ) if is_torch_available() else () ) UpperCAmelCase__ : Optional[Any] =( {'''feature-extraction''': ConvNextModel, '''image-classification''': ConvNextForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ : Union[str, Any] =True UpperCAmelCase__ : List[str] =False UpperCAmelCase__ : Any =False UpperCAmelCase__ : str =False UpperCAmelCase__ : str =False def _lowercase ( self : int ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = ConvNextModelTester(self ) SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=3_7 ) def _lowercase ( self : int ) ->str: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowercase ( self : str ) ->int: """simple docstring""" return @unittest.skip(reason="""ConvNext does not use inputs_embeds""" ) def _lowercase ( self : Dict ) ->Optional[int]: """simple docstring""" pass @unittest.skip(reason="""ConvNext does not support input and output embeddings""" ) def _lowercase ( self : Optional[int] ) ->int: """simple docstring""" pass @unittest.skip(reason="""ConvNext does not use feedforward chunking""" ) def _lowercase ( self : Any ) ->str: """simple docstring""" pass def _lowercase ( self : List[str] ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[Any] = model_class(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE : Tuple = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _lowercase ( self : Tuple ) ->Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowercase ( self : List[str] ) ->List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) def _lowercase ( self : List[Any] ) ->Any: """simple docstring""" def check_hidden_states_output(UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict ): SCREAMING_SNAKE_CASE : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE : Dict = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Tuple = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _lowercase ( self : Any ) ->Any: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def _lowercase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE : Optional[int] = ConvNextModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __lowercase ( ) -> int: SCREAMING_SNAKE_CASE : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowercase ( self : Any ) ->List[Any]: """simple docstring""" return AutoImageProcessor.from_pretrained("""facebook/convnext-tiny-224""" ) if is_vision_available() else None @slow def _lowercase ( self : int ) ->List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : str = ConvNextForImageClassification.from_pretrained("""facebook/convnext-tiny-224""" ).to(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[str] = self.default_image_processor SCREAMING_SNAKE_CASE : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE : Union[str, Any] = model(**lowerCAmelCase__ ) # verify the logits SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : Dict = torch.tensor([-0.02_60, -0.47_39, 0.19_11] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @require_torch class a__ ( unittest.TestCase , _lowerCAmelCase ): """simple docstring""" UpperCAmelCase__ : Tuple =(ConvNextBackbone,) if is_torch_available() else () UpperCAmelCase__ : Union[str, Any] =ConvNextConfig UpperCAmelCase__ : List[str] =False def _lowercase ( self : Optional[int] ) ->str: """simple docstring""" SCREAMING_SNAKE_CASE : Any = ConvNextModelTester(self )
245
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[Any] = MgpstrTokenizer lowercase__ : int = False lowercase__ : Any = {} lowercase__ : Optional[int] = False def __magic_name__ ( self ) -> Optional[Any]: super().setUp() # fmt: off __magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = """tester""" __magic_name__ : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> List[str]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Dict = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) __magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) __magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) __magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __magic_name__ ( self ) -> Tuple: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __magic_name__ ( self ) -> Optional[Any]: pass
342
0
"""simple docstring""" import math import os import sys def _SCREAMING_SNAKE_CASE ( _lowercase : Any ) ->Dict: '''simple docstring''' a : Dict = """""" try: with open(_A , "rb" ) as binary_file: a : Tuple = binary_file.read() for dat in data: a : Optional[Any] = F"""{dat:08b}""" result += curr_byte return result except OSError: print("File not accessible" ) sys.exit() def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : int , _lowercase : Tuple , _lowercase : Tuple ) ->List[Any]: '''simple docstring''' lexicon.pop(_A ) a : str = last_match_id if math.loga(_A ).is_integer(): for curr_key in lexicon: a : Optional[Any] = """0""" + lexicon[curr_key] a : int = bin(_A )[2:] def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple ) ->List[Any]: '''simple docstring''' a : Tuple = {"""0""": """0""", """1""": """1"""} a : Optional[Any] = """""", """""" a : List[Any] = len(_A ) for i in range(len(_A ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue a : int = lexicon[curr_string] result += last_match_id add_key_to_lexicon(_A , _A , _A , _A ) index += 1 a : List[Any] = """""" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": a : Dict = lexicon[curr_string] result += last_match_id return result def _SCREAMING_SNAKE_CASE ( _lowercase : int , _lowercase : List[str] ) ->int: '''simple docstring''' a : Optional[int] = os.path.getsize(_A ) a : Optional[int] = bin(_A )[2:] a : int = len(_A ) return "0" * (length_length - 1) + file_length_binary + compressed def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[Any] , _lowercase : List[Any] ) ->int: '''simple docstring''' a : List[str] = 8 try: with open(_A , "wb" ) as opened_file: a : List[Any] = [ to_write[i : i + byte_length] for i in range(0 , len(_A ) , _A ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("10000000" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(_A , 2 ).to_bytes(1 , byteorder="big" ) ) except OSError: print("File not accessible" ) sys.exit() def _SCREAMING_SNAKE_CASE ( _lowercase : Any , _lowercase : Any ) ->Optional[Any]: '''simple docstring''' a : str = read_file_binary(_A ) a : Tuple = compress_data(_A ) a : str = add_file_length(_A , _A ) write_file_binary(_A , _A ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
105
import re def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(_A, _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
342
0
'''simple docstring''' class a_ : def __init__( self , snake_case_ = "" , snake_case_ = False ): # Mapping from the first character of the prefix of the node _lowerCAmelCase : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word _lowerCAmelCase : Any = is_leaf _lowerCAmelCase : Optional[Any] = prefix def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Union[str, Any] = 0 for q, w in zip(self.prefix , lowerCAmelCase__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def __UpperCamelCase ( self , snake_case_ ): for word in words: self.insert(lowerCAmelCase__ ) def __UpperCamelCase ( self , snake_case_ ): # Case 1: If the word is the prefix of the node # Solution: We set the current node as leaf if self.prefix == word: _lowerCAmelCase : Any = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _lowerCAmelCase : Optional[int] = RadixNode(prefix=lowerCAmelCase__ , is_leaf=lowerCAmelCase__ ) else: _lowerCAmelCase : str = self.nodes[word[0]] _lowerCAmelCase : Optional[Any] = incoming_node.match( lowerCAmelCase__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _lowerCAmelCase : int = remaining_prefix _lowerCAmelCase : Optional[int] = self.nodes[matching_string[0]] _lowerCAmelCase : List[Any] = RadixNode(lowerCAmelCase__ , lowerCAmelCase__ ) _lowerCAmelCase : Dict = aux_node if remaining_word == "": _lowerCAmelCase : Optional[Any] = True else: self.nodes[matching_string[0]].insert(lowerCAmelCase__ ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : str = self.nodes.get(word[0] , lowerCAmelCase__ ) if not incoming_node: return False else: _lowerCAmelCase : Any = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(lowerCAmelCase__ ) def __UpperCamelCase ( self , snake_case_ ): _lowerCAmelCase : Optional[Any] = self.nodes.get(word[0] , lowerCAmelCase__ ) if not incoming_node: return False else: _lowerCAmelCase : Optional[int] = incoming_node.match( lowerCAmelCase__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(lowerCAmelCase__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: _lowerCAmelCase : List[str] = list(self.nodes.values() )[0] _lowerCAmelCase : Dict = merging_node.is_leaf self.prefix += merging_node.prefix _lowerCAmelCase : List[str] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: _lowerCAmelCase : Union[str, Any] = False # If there is 1 edge, we merge it with its child else: _lowerCAmelCase : Any = list(incoming_node.nodes.values() )[0] _lowerCAmelCase : List[str] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _lowerCAmelCase : str = merging_node.nodes return True def __UpperCamelCase ( self , snake_case_ = 0 ): if self.prefix != "": print("""-""" * height , self.prefix , """ (leaf)""" if self.is_leaf else """""" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def _UpperCAmelCase ( ) -> Optional[Any]: _lowerCAmelCase : List[Any] = """banana bananas bandana band apple all beast""".split() _lowerCAmelCase : int = RadixNode() root.insert_many(_A ) assert all(root.find(_A ) for word in words ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def _UpperCAmelCase ( ) -> List[Any]: assert test_trie() def _UpperCAmelCase ( ) -> Tuple: _lowerCAmelCase : str = RadixNode() _lowerCAmelCase : str = """banana bananas bandanas bandana band apple all beast""".split() root.insert_many(_A ) print("""Words:""" , _A ) print("""Tree:""" ) root.print_tree() if __name__ == "__main__": main()
309
import doctest from collections import deque import numpy as np class snake_case__ : def __init__( self ) -> None: __magic_name__ : Any = [2, 1, 2, -1] __magic_name__ : Tuple = [1, 2, 3, 4] def __magic_name__ ( self ) -> list[float]: __magic_name__ : Optional[Any] = len(self.first_signal ) __magic_name__ : Dict = len(self.second_signal ) __magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ ) # create a zero matrix of max_length x max_length __magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__ ): __magic_name__ : List[str] = deque(self.second_signal ) rotated_signal.rotate(lowerCAmelCase__ ) for j, item in enumerate(lowerCAmelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal __magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
342
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor UpperCAmelCase_ = logging.get_logger(__name__) class lowerCAmelCase_ ( _lowerCAmelCase ): '''simple docstring''' def __init__( self : Tuple , *_UpperCAmelCase : str , **_UpperCAmelCase : Optional[int] ): """simple docstring""" warnings.warn( """The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use DeformableDetrImageProcessor instead.""" , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
346
from math import factorial def UpperCamelCase ( _A, _A, _A ): """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(_A, _A ) or not isinstance(_A, _A ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) __magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __magic_name__ : Any = float(factorial(_A ) ) coefficient /= factorial(_A ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
342
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' snake_case_ = [] if isinstance(_A , _A ): for v in tree.values(): shapes.extend(_fetch_dims(_A ) ) elif isinstance(_A , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(_A ) ) elif isinstance(_A , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = [] for d in reversed(_A ): idx.append(flat_idx % d ) snake_case_ = flat_idx // d return tuple(reversed(_A ) ) @torch.jit.ignore def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , ): '''simple docstring''' def reduce_edge_list(UpperCamelCase__ ) -> None: snake_case_ = True for i in range(len(_A ) ): snake_case_ = -1 * (i + 1) l[reversed_idx] &= tally snake_case_ = l[reversed_idx] if start_edges is None: snake_case_ = [s == 0 for s in start] reduce_edge_list(_A ) if end_edges is None: snake_case_ = [e == (d - 1) for e, d in zip(_A , _A )] reduce_edge_list(_A ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(_A ) == 0: return [()] elif len(_A ) == 1: return [(slice(start[0] , end[0] + 1 ),)] snake_case_ = [] snake_case_ = [] # Dimensions common to start and end can be selected directly for s, e in zip(_A , _A ): if s == e: path_list.append(slice(_A , s + 1 ) ) else: break snake_case_ = tuple(_A ) snake_case_ = len(_A ) # start == end, and we're done if divergence_idx == len(_A ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None snake_case_ = start[divergence_idx] return tuple( path + (slice(_A , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None snake_case_ = end[divergence_idx] return tuple( path + (slice(_A , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) snake_case_ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = t.shape[:no_batch_dims] snake_case_ = list(_flat_idx_to_idx(_A , _A ) ) # _get_minimal_slice_set is inclusive snake_case_ = list(_flat_idx_to_idx(flat_end - 1 , _A ) ) # Get an ordered list of slices to perform snake_case_ = _get_minimal_slice_set( _A , _A , _A , ) snake_case_ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = False , ): '''simple docstring''' if not (len(_A ) > 0): raise ValueError('Must provide at least one input' ) snake_case_ = [shape[:no_batch_dims] for shape in _fetch_dims(_A )] snake_case_ = tuple([max(_A ) for s in zip(*_A )] ) def _prep_inputs(UpperCamelCase__ ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: snake_case_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) snake_case_ = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: snake_case_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t snake_case_ = tensor_tree_map(_prep_inputs , _A ) snake_case_ = None if _out is not None: snake_case_ = tensor_tree_map(lambda UpperCamelCase__ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) snake_case_ = 1 for d in orig_batch_dims: flat_batch_dim *= d snake_case_ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(UpperCamelCase__ ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t snake_case_ = 0 snake_case_ = prepped_outputs for _ in range(_A ): # Chunk the input if not low_mem: snake_case_ = _select_chunk else: snake_case_ = partial( _chunk_slice , flat_start=_A , flat_end=min(_A , i + chunk_size ) , no_batch_dims=len(_A ) , ) snake_case_ = tensor_tree_map(_A , _A ) # Run the layer on the chunk snake_case_ = layer(**_A ) # Allocate space for the output if out is None: snake_case_ = tensor_tree_map(lambda UpperCamelCase__ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , _A ) # Put the chunk in its pre-allocated space if isinstance(_A , _A ): def assign(UpperCamelCase__ , UpperCamelCase__ ) -> None: for k, v in da.items(): if isinstance(_A , _A ): assign(_A , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: snake_case_ = da[k] assign(_A , _A ) elif isinstance(_A , _A ): for xa, xa in zip(_A , _A ): if _add_into_out: xa[i : i + chunk_size] += xa else: snake_case_ = xa elif isinstance(_A , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: snake_case_ = output_chunk else: raise ValueError('Not supported' ) i += chunk_size snake_case_ = tensor_tree_map(lambda UpperCamelCase__ : t.view(orig_batch_dims + t.shape[1:] ) , _A ) return out class lowercase : def __init__( self , snake_case = 512 , ): snake_case_ = max_chunk_size snake_case_ = None snake_case_ = None def a ( self , snake_case , snake_case , snake_case ): logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size snake_case_ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] snake_case_ = [c for c in candidates if c > min_chunk_size] snake_case_ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(snake_case ) -> bool: try: with torch.no_grad(): fn(*lowerCAmelCase__ , chunk_size=lowerCAmelCase__ ) return True except RuntimeError: return False snake_case_ = 0 snake_case_ = len(lowerCAmelCase__ ) - 1 while i > min_viable_chunk_size_index: snake_case_ = test_chunk_size(candidates[i] ) if not viable: snake_case_ = (min_viable_chunk_size_index + i) // 2 else: snake_case_ = i snake_case_ = (i + len(lowerCAmelCase__ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def a ( self , snake_case , snake_case ): snake_case_ = True for aa, aa in zip(lowerCAmelCase__ , lowerCAmelCase__ ): assert type(lowerCAmelCase__ ) == type(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , (list, tuple) ): consistent &= self._compare_arg_caches(lowerCAmelCase__ , lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ = [v for _, v in sorted(aa.items() , key=lambda snake_case : x[0] )] snake_case_ = [v for _, v in sorted(aa.items() , key=lambda snake_case : x[0] )] consistent &= self._compare_arg_caches(lowerCAmelCase__ , lowerCAmelCase__ ) else: consistent &= aa == aa return consistent def a ( self , snake_case , snake_case , snake_case , ): snake_case_ = True snake_case_ = tree_map(lambda snake_case : a.shape if isinstance(lowerCAmelCase__ , torch.Tensor ) else a , lowerCAmelCase__ , lowerCAmelCase__ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(lowerCAmelCase__ ) snake_case_ = self._compare_arg_caches(self.cached_arg_data , lowerCAmelCase__ ) else: # Otherwise, we can reuse the precomputed value snake_case_ = False if not consistent: snake_case_ = self._determine_favorable_chunk_size( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) snake_case_ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
285
from __future__ import annotations def UpperCamelCase ( _A ): # This function is recursive """simple docstring""" __magic_name__ : str = len(_A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __magic_name__ : Dict = array[0] __magic_name__ : Optional[Any] = False __magic_name__ : Tuple = 1 __magic_name__ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __magic_name__ : Union[str, Any] = True __magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]] __magic_name__ : Dict = longest_subsequence(_A ) if len(_A ) > len(_A ): __magic_name__ : Tuple = temp_array else: i += 1 __magic_name__ : Any = [element for element in array[1:] if element >= pivot] __magic_name__ : Dict = [pivot, *longest_subsequence(_A )] if len(_A ) > len(_A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
342
0
class A__ : def __init__( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = {} def _lowerCamelCase ( self : List[str] ): '''simple docstring''' print(self.vertex ) for i in self.vertex: print(lowerCAmelCase__ , ' -> ' , ' -> '.join([str(lowerCAmelCase__ ) for j in self.vertex[i]] ) ) def _lowerCamelCase ( self : List[Any] , a : Any , a : List[str] ): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(lowerCAmelCase__ ) else: # else make a new vertex lowerCAmelCase__ : Dict = [to_vertex] def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[Any] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCamelCase ( self : List[str] , a : Optional[int] , a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = True print(lowerCAmelCase__ , end=' ' ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": lowerCamelCase__ = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
212
import argparse import os import re __magic_name__: Optional[Any] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings __magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def UpperCamelCase ( _A, _A = False ): """simple docstring""" with open(_A, """r""", encoding="""utf-8""" ) as f: __magic_name__ : Any = f.read() __magic_name__ : List[Any] = content.split("""\n""" ) __magic_name__ : List[str] = [] __magic_name__ : Union[str, Any] = 0 while line_idx < len(_A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 __magic_name__ : List[Any] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __magic_name__ : List[str] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_A, """w""", encoding="""utf-8""" ) as f: f.write("""\n""".join(_A ) ) elif "\n".join(_A ) != content: return True def UpperCamelCase ( _A = False ): """simple docstring""" __magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )] __magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames] if not overwrite and any(_A ): __magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix' """ this.""" ) if __name__ == "__main__": __magic_name__: List[str] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __magic_name__: List[str] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
342
0
import flax.linen as nn import jax import jax.numpy as jnp class UpperCamelCase__ ( nn.Module ): _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def lowerCAmelCase (self : Optional[int] ): __a : Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self : Tuple , snake_case_ : Any ): __a : Any = hidden_states.shape __a : str = jax.image.resize( lowerCAmelCase__ , shape=(batch, height * 2, width * 2, channels) , method='''nearest''' , ) __a : List[str] = self.conv(lowerCAmelCase__ ) return hidden_states class UpperCamelCase__ ( nn.Module ): _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def lowerCAmelCase (self : Dict ): __a : List[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__(self : Optional[int] , snake_case_ : Union[str, Any] ): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) __a : str = self.conv(lowerCAmelCase__ ) return hidden_states class UpperCamelCase__ ( nn.Module ): _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : int = None _SCREAMING_SNAKE_CASE : float = 0.0 _SCREAMING_SNAKE_CASE : bool = None _SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa def lowerCAmelCase (self : int ): __a : List[str] = self.in_channels if self.out_channels is None else self.out_channels __a : List[str] = nn.GroupNorm(num_groups=3_2 , epsilon=1E-5 ) __a : List[Any] = nn.Conv( lowerCAmelCase__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __a : List[Any] = nn.Dense(lowerCAmelCase__ , dtype=self.dtype ) __a : List[str] = nn.GroupNorm(num_groups=3_2 , epsilon=1E-5 ) __a : int = nn.Dropout(self.dropout_prob ) __a : Dict = nn.Conv( lowerCAmelCase__ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) __a : Dict = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut __a : Dict = None if use_nin_shortcut: __a : List[Any] = nn.Conv( lowerCAmelCase__ , kernel_size=(1, 1) , strides=(1, 1) , padding='''VALID''' , dtype=self.dtype , ) def __call__(self : List[Any] , snake_case_ : Any , snake_case_ : Dict , snake_case_ : List[str]=True ): __a : int = hidden_states __a : str = self.norma(lowerCAmelCase__ ) __a : Optional[int] = nn.swish(lowerCAmelCase__ ) __a : Dict = self.conva(lowerCAmelCase__ ) __a : Optional[Any] = self.time_emb_proj(nn.swish(lowerCAmelCase__ ) ) __a : Optional[Any] = jnp.expand_dims(jnp.expand_dims(lowerCAmelCase__ , 1 ) , 1 ) __a : Union[str, Any] = hidden_states + temb __a : Union[str, Any] = self.norma(lowerCAmelCase__ ) __a : Union[str, Any] = nn.swish(lowerCAmelCase__ ) __a : Union[str, Any] = self.dropout(lowerCAmelCase__ , lowerCAmelCase__ ) __a : str = self.conva(lowerCAmelCase__ ) if self.conv_shortcut is not None: __a : Any = self.conv_shortcut(lowerCAmelCase__ ) return hidden_states + residual
216
__magic_name__: str = [0, 2, 4, 6, 8] __magic_name__: Optional[int] = [1, 3, 5, 7, 9] def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __magic_name__ : List[Any] = 0 for digit in range(10 ): __magic_name__ : Optional[int] = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, _A, _A ) return result __magic_name__ : str = 0 for digita in range(10 ): __magic_name__ : Optional[Any] = digita if (remainder + digita) % 2 == 0: __magic_name__ : Tuple = ODD_DIGITS else: __magic_name__ : str = EVEN_DIGITS for digita in other_parity_digits: __magic_name__ : Tuple = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, ) return result def UpperCamelCase ( _A = 9 ): """simple docstring""" __magic_name__ : List[str] = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(_A, 0, [0] * length, _A ) return result if __name__ == "__main__": print(F"""{solution() = }""")
342
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a ( _lowerCAmelCase ): UpperCAmelCase_ : str ='''naver-clova-ix/donut-base-finetuned-docvqa''' UpperCAmelCase_ : List[Any] =( '''This is a tool that answers a question about an document (pdf). It takes an input named `document` which ''' '''should be the document containing the information, as well as a `question` that is the question about the ''' '''document. It returns a text that contains the answer to the question.''' ) UpperCAmelCase_ : List[Any] ='''document_qa''' UpperCAmelCase_ : int =AutoProcessor UpperCAmelCase_ : List[Any] =VisionEncoderDecoderModel UpperCAmelCase_ : Optional[int] =['''image''', '''text'''] UpperCAmelCase_ : Union[str, Any] =['''text'''] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): lowercase = """<s_docvqa><s_question>{user_input}</s_question><s_answer>""" lowercase = task_prompt.replace('{user_input}' , lowerCAmelCase__ ) lowercase = self.pre_processor.tokenizer( lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors='pt' ).input_ids lowercase = self.pre_processor(lowerCAmelCase__ , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCamelCase_ ( self , _lowerCamelCase ): return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=lowerCAmelCase__ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=lowerCAmelCase__ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=lowerCAmelCase__ , ).sequences def UpperCamelCase_ ( self , _lowerCamelCase ): lowercase = self.pre_processor.batch_decode(lowerCAmelCase__ )[0] lowercase = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) lowercase = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) lowercase = re.sub(R'<.*?>' , '' , lowerCAmelCase__ , count=1 ).strip() # remove first task start token lowercase = self.pre_processor.tokenajson(lowerCAmelCase__ ) return sequence["answer"]
220
def UpperCamelCase ( _A ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) __magic_name__ : int = sorted(string.lower() ) return len(_A ) == len(set(_A ) ) if __name__ == "__main__": __magic_name__: Dict = input("Enter a string ").strip() __magic_name__: Union[str, Any] = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
342
0
"""simple docstring""" import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class SCREAMING_SNAKE_CASE_ ( _lowerCAmelCase ): """simple docstring""" __lowercase : List[str] = ['''image_processor''', '''tokenizer'''] __lowercase : str = '''BlipImageProcessor''' __lowercase : Any = '''AutoTokenizer''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): super().__init__(lowerCAmelCase__ , lowerCAmelCase__) # add QFormer tokenizer __SCREAMING_SNAKE_CASE = qformer_tokenizer def __call__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = True , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = True , lowerCAmelCase__ = None , **lowerCAmelCase__ , ): if images is None and text is None: raise ValueError("""You have to specify at least images or text.""") __SCREAMING_SNAKE_CASE = BatchFeature() if text is not None: __SCREAMING_SNAKE_CASE = self.tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) encoding.update(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = self.qformer_tokenizer( text=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = qformer_text_encoding.pop("""input_ids""") __SCREAMING_SNAKE_CASE = qformer_text_encoding.pop("""attention_mask""") if images is not None: __SCREAMING_SNAKE_CASE = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__) encoding.update(lowerCAmelCase__) return encoding def snake_case_ ( self , *lowerCAmelCase__ , **lowerCAmelCase__): return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__) def snake_case_ ( self , *lowerCAmelCase__ , **lowerCAmelCase__): return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer.model_input_names __SCREAMING_SNAKE_CASE = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) def snake_case_ ( self , lowerCAmelCase__ , **lowerCAmelCase__): if os.path.isfile(lowerCAmelCase__): raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = os.path.join(lowerCAmelCase__ , """qformer_tokenizer""") self.qformer_tokenizer.save_pretrained(lowerCAmelCase__) return super().save_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) @classmethod def snake_case_ ( cls , lowerCAmelCase__ , **lowerCAmelCase__): __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(lowerCAmelCase__ , subfolder="""qformer_tokenizer""") __SCREAMING_SNAKE_CASE = cls._get_arguments_from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__) args.append(lowerCAmelCase__) return cls(*lowerCAmelCase__)
100
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
342
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib lowerCamelCase : int = get_logger() lowerCamelCase : Optional[dict] = None class A( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): '''simple docstring''' def __init__( self : List[Any] , A_ : Union[str, Any]=None , A_ : str=None , **A_ : List[str] ) -> Tuple: """simple docstring""" super().__init__(features=lowerCAmelCase__ ) import jax from jaxlib.xla_client import Device if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError( f"""Expected {device} to be a `str` not {type(lowerCAmelCase__ )}, as `jaxlib.xla_extension.Device` """ 'is not serializable neither with `pickle` nor with `dill`. Instead you can surround ' 'the device with `str()` to get its string identifier that will be internally mapped ' 'to the actual `jaxlib.xla_extension.Device`.' ) lowerCamelCase_ = device if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCamelCase_ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f"""Device with string identifier {self.device} not listed among the available """ f"""devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default """ f"""device: {str(jax.devices()[0] )}.""" ) lowerCamelCase_ = str(jax.devices()[0] ) lowerCamelCase_ = jnp_array_kwargs @staticmethod def a__ ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: """simple docstring""" import jax return {str(lowerCAmelCase__ ): device for device in jax.devices()} def a__ ( self : str , A_ : Union[str, Any] ) -> str: """simple docstring""" import jax import jax.numpy as jnp if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and column: if all( isinstance(lowerCAmelCase__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(lowerCAmelCase__ , axis=0 ) return column def a__ ( self : Dict , A_ : Dict ) -> Tuple: """simple docstring""" import jax import jax.numpy as jnp if isinstance(lowerCAmelCase__ , (str, bytes, type(lowerCAmelCase__ )) ): return value elif isinstance(lowerCAmelCase__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCamelCase_ = {} if isinstance(lowerCAmelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowerCamelCase_ = {"""dtype""": jnp.intaa} else: lowerCamelCase_ = {"""dtype""": jnp.intaa} elif isinstance(lowerCAmelCase__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCamelCase_ = {"""dtype""": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowerCAmelCase__ , PIL.Image.Image ): lowerCamelCase_ = np.asarray(lowerCAmelCase__ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCamelCase_ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(lowerCAmelCase__ , **{**default_dtype, **self.jnp_array_kwargs} ) def a__ ( self : Dict , A_ : Dict ) -> Optional[int]: """simple docstring""" import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(lowerCAmelCase__ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(lowerCAmelCase__ , '__array__' ) and not isinstance(lowerCAmelCase__ , jax.Array ): lowerCamelCase_ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowerCAmelCase__ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowerCAmelCase__ ) for substruct in data_struct] ) elif isinstance(lowerCAmelCase__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(lowerCAmelCase__ ) for substruct in data_struct] ) return self._tensorize(lowerCAmelCase__ ) def a__ ( self : Tuple , A_ : List[Any] ) -> Dict: """simple docstring""" return map_nested(self._recursive_tensorize , lowerCAmelCase__ , map_list=lowerCAmelCase__ ) def a__ ( self : Any , A_ : Tuple ) -> Mapping: """simple docstring""" lowerCamelCase_ = self.numpy_arrow_extractor().extract_row(lowerCAmelCase__ ) lowerCamelCase_ = self.python_features_decoder.decode_row(lowerCAmelCase__ ) return self.recursive_tensorize(lowerCAmelCase__ ) def a__ ( self : Union[str, Any] , A_ : Dict ) -> "jax.Array": """simple docstring""" lowerCamelCase_ = self.numpy_arrow_extractor().extract_column(lowerCAmelCase__ ) lowerCamelCase_ = self.python_features_decoder.decode_column(lowerCAmelCase__ , pa_table.column_names[0] ) lowerCamelCase_ = self.recursive_tensorize(lowerCAmelCase__ ) lowerCamelCase_ = self._consolidate(lowerCAmelCase__ ) return column def a__ ( self : List[str] , A_ : str ) -> Mapping: """simple docstring""" lowerCamelCase_ = self.numpy_arrow_extractor().extract_batch(lowerCAmelCase__ ) lowerCamelCase_ = self.python_features_decoder.decode_batch(lowerCAmelCase__ ) lowerCamelCase_ = self.recursive_tensorize(lowerCAmelCase__ ) for column_name in batch: lowerCamelCase_ = self._consolidate(batch[column_name] ) return batch
204
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]: __magic_name__ : str = parent __magic_name__ : Dict = do_resize __magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88} __magic_name__ : Union[str, Any] = size_divisor __magic_name__ : Union[str, Any] = do_rescale __magic_name__ : Dict = rescale_factor __magic_name__ : Union[str, Any] = do_normalize __magic_name__ : List[str] = do_center_crop __magic_name__ : Tuple = image_mean __magic_name__ : Tuple = image_std __magic_name__ : Tuple = do_pad __magic_name__ : int = batch_size __magic_name__ : List[Any] = num_channels __magic_name__ : int = min_resolution __magic_name__ : str = max_resolution def __magic_name__ ( self ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int: if not batched: __magic_name__ : Dict = self.size["""shortest_edge"""] __magic_name__ : List[str] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): __magic_name__ ,__magic_name__ : List[Any] = image.size else: __magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2] __magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ ) if h < w: __magic_name__ ,__magic_name__ : str = size, scale * w else: __magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size __magic_name__ : Tuple = int((13_33 / 8_00) * size ) if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size: __magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = newh * scale __magic_name__ : Any = neww * scale __magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 ) __magic_name__ ,__magic_name__ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __magic_name__ : Union[str, Any] = [] for image in image_inputs: __magic_name__ ,__magic_name__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] __magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = BridgeTowerImageProcessingTester(self ) @property def __magic_name__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Any: __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) ) def __magic_name__ ( self ) -> Optional[int]: pass def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> str: # Initialize image processor __magic_name__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
342
0
import doctest from collections import deque import numpy as np class _UpperCAmelCase : """simple docstring""" def __init__( self : Dict ): '''simple docstring''' lowercase__ = [2, 1, 2, -1] lowercase__ = [1, 2, 3, 4] def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase__ = len(self.first_signal ) lowercase__ = len(self.second_signal ) lowercase__ = max(lowerCAmelCase__, lowerCAmelCase__ ) # create a zero matrix of max_length x max_length lowercase__ = [[0] * max_length for i in range(lowerCAmelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__ ): lowercase__ = deque(self.second_signal ) rotated_signal.rotate(lowerCAmelCase__ ) for j, item in enumerate(lowerCAmelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal lowercase__ = np.matmul(np.transpose(lowerCAmelCase__ ), np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCAmelCase__, 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
207
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__: Tuple = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Union[str, Any] = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __magic_name__: Optional[Any] = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
342
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def __lowercase ( _A , _A , _A ) -> List[str]: SCREAMING_SNAKE_CASE : Tuple = AlbertConfig.from_json_file(_A ) print(F"Building PyTorch model from configuration: {config}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = AlbertForPreTraining(_A ) # Load weights from tf checkpoint load_tf_weights_in_albert(_A , _A , _A ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": UpperCAmelCase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
245
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__: Dict = logging.get_logger(__name__) __magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __magic_name__: Optional[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __magic_name__: List[Any] = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Any = ( list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) ) ) __magic_name__ : Any = bs[:] __magic_name__ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 __magic_name__ : List[str] = [chr(_A ) for n in cs] return dict(zip(_A, _A ) ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = set() __magic_name__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[Any] = char return pairs class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict: __magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ ) __magic_name__ : Any = {v: k for k, v in self.encoder.items()} __magic_name__ : Tuple = errors # how to handle errors in decoding __magic_name__ : Tuple = bytes_to_unicode() __magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1] __magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] __magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : str = {} __magic_name__ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __magic_name__ ( self ) -> Optional[Any]: return len(self.encoder ) def __magic_name__ ( self ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if token in self.cache: return self.cache[token] __magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ ,__magic_name__ : List[str] = bigram __magic_name__ : Any = [] __magic_name__ : Any = 0 while i < len(lowerCAmelCase__ ): try: __magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Optional[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : str = tuple(lowerCAmelCase__ ) __magic_name__ : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __magic_name__ : List[str] = get_pairs(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ ) __magic_name__ : str = word return word def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ : str = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __magic_name__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Tuple = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __magic_name__ : Optional[Any] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : Optional[int] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] __magic_name__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : Dict = [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __magic_name__ : List[Any] = """ """ + text return (text, kwargs)
342
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() a : Optional[int] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( _lowercase : Dict ) ->List[Any]: '''simple docstring''' a : str = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: a : str = [144, 192, 240] a : Optional[Any] = [16, 32, 64, 96, 128, 160, 640] elif "mobilevit_xs" in mobilevit_name: a : List[str] = [96, 120, 144] a : Dict = [16, 32, 48, 64, 80, 96, 384] elif "mobilevit_xxs" in mobilevit_name: a : List[Any] = [64, 80, 96] a : Any = [16, 16, 24, 48, 64, 80, 320] a : List[str] = 0.05 a : Dict = 2.0 if mobilevit_name.startswith("deeplabv3_" ): a : Optional[Any] = 512 a : List[Any] = 16 a : List[str] = 21 a : int = """pascal-voc-id2label.json""" else: a : Optional[Any] = 1000 a : Optional[Any] = """imagenet-1k-id2label.json""" a : Tuple = """huggingface/label-files""" a : str = json.load(open(hf_hub_download(_A , _A , repo_type="dataset" ) , "r" ) ) a : Optional[int] = {int(_A ): v for k, v in idalabel.items()} a : Any = idalabel a : Dict = {v: k for k, v in idalabel.items()} return config def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[int] , _lowercase : Dict=False ) ->int: '''simple docstring''' for i in range(1 , 6 ): if F"""layer_{i}.""" in name: a : Optional[int] = name.replace(F"""layer_{i}.""" , F"""encoder.layer.{i - 1}.""" ) if "conv_1." in name: a : Optional[int] = name.replace("conv_1." , "conv_stem." ) if ".block." in name: a : Optional[int] = name.replace(".block." , "." ) if "exp_1x1" in name: a : int = name.replace("exp_1x1" , "expand_1x1" ) if "red_1x1" in name: a : Any = name.replace("red_1x1" , "reduce_1x1" ) if ".local_rep.conv_3x3." in name: a : Optional[Any] = name.replace(".local_rep.conv_3x3." , ".conv_kxk." ) if ".local_rep.conv_1x1." in name: a : Union[str, Any] = name.replace(".local_rep.conv_1x1." , ".conv_1x1." ) if ".norm." in name: a : List[str] = name.replace(".norm." , ".normalization." ) if ".conv." in name: a : List[Any] = name.replace(".conv." , ".convolution." ) if ".conv_proj." in name: a : str = name.replace(".conv_proj." , ".conv_projection." ) for i in range(0 , 2 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: a : List[str] = name.replace(F""".{i}.{j}.""" , F""".{i}.layer.{j}.""" ) for i in range(2 , 6 ): for j in range(0 , 4 ): if F""".{i}.{j}.""" in name: a : Tuple = name.replace(F""".{i}.{j}.""" , F""".{i}.""" ) if "expand_1x1" in name: a : Dict = name.replace("expand_1x1" , "downsampling_layer.expand_1x1" ) if "conv_3x3" in name: a : Union[str, Any] = name.replace("conv_3x3" , "downsampling_layer.conv_3x3" ) if "reduce_1x1" in name: a : Union[str, Any] = name.replace("reduce_1x1" , "downsampling_layer.reduce_1x1" ) for i in range(2 , 5 ): if F""".global_rep.{i}.weight""" in name: a : Union[str, Any] = name.replace(F""".global_rep.{i}.weight""" , ".layernorm.weight" ) if F""".global_rep.{i}.bias""" in name: a : Any = name.replace(F""".global_rep.{i}.bias""" , ".layernorm.bias" ) if ".global_rep." in name: a : int = name.replace(".global_rep." , ".transformer." ) if ".pre_norm_mha.0." in name: a : Union[str, Any] = name.replace(".pre_norm_mha.0." , ".layernorm_before." ) if ".pre_norm_mha.1.out_proj." in name: a : List[str] = name.replace(".pre_norm_mha.1.out_proj." , ".attention.output.dense." ) if ".pre_norm_ffn.0." in name: a : Dict = name.replace(".pre_norm_ffn.0." , ".layernorm_after." ) if ".pre_norm_ffn.1." in name: a : Union[str, Any] = name.replace(".pre_norm_ffn.1." , ".intermediate.dense." ) if ".pre_norm_ffn.4." in name: a : Dict = name.replace(".pre_norm_ffn.4." , ".output.dense." ) if ".transformer." in name: a : List[Any] = name.replace(".transformer." , ".transformer.layer." ) if ".aspp_layer." in name: a : str = name.replace(".aspp_layer." , "." ) if ".aspp_pool." in name: a : Any = name.replace(".aspp_pool." , "." ) if "seg_head." in name: a : List[Any] = name.replace("seg_head." , "segmentation_head." ) if "segmentation_head.classifier.classifier." in name: a : Any = name.replace("segmentation_head.classifier.classifier." , "segmentation_head.classifier." ) if "classifier.fc." in name: a : Any = name.replace("classifier.fc." , "classifier." ) elif (not base_model) and ("segmentation_head." not in name): a : Optional[int] = """mobilevit.""" + name return name def _SCREAMING_SNAKE_CASE ( _lowercase : str , _lowercase : Tuple , _lowercase : Union[str, Any]=False ) ->List[Any]: '''simple docstring''' if base_model: a : str = """""" else: a : List[str] = """mobilevit.""" for key in orig_state_dict.copy().keys(): a : str = orig_state_dict.pop(_A ) if key[:8] == "encoder.": a : Dict = key[8:] if "qkv" in key: a : List[str] = key.split("." ) a : str = int(key_split[0][6:] ) - 1 a : Any = int(key_split[3] ) a : int = model.get_submodule(F"""{model_prefix}encoder.layer.{layer_num}""" ) a : int = layer.transformer.layer[transformer_num].attention.attention.all_head_size a : str = ( F"""{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.""" ) if "weight" in key: a : Tuple = val[:dim, :] a : Union[str, Any] = val[dim : dim * 2, :] a : Any = val[-dim:, :] else: a : Tuple = val[:dim] a : str = val[dim : dim * 2] a : List[str] = val[-dim:] else: a : Any = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( ) ->Tuple: '''simple docstring''' a : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" a : Optional[int] = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE ( _lowercase : Any , _lowercase : Dict , _lowercase : Any , _lowercase : Any=False ) ->Tuple: '''simple docstring''' a : Tuple = get_mobilevit_config(_A ) # load original state_dict a : Optional[int] = torch.load(_A , map_location="cpu" ) # load 🤗 model if mobilevit_name.startswith("deeplabv3_" ): a : Tuple = MobileViTForSemanticSegmentation(_A ).eval() else: a : Dict = MobileViTForImageClassification(_A ).eval() a : str = convert_state_dict(_A , _A ) model.load_state_dict(_A ) # Check outputs on an image, prepared by MobileViTImageProcessor a : Any = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) a : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ) a : Union[str, Any] = model(**_A ) a : str = outputs.logits if mobilevit_name.startswith("deeplabv3_" ): assert logits.shape == (1, 21, 32, 32) if mobilevit_name == "deeplabv3_mobilevit_s": a : Dict = torch.tensor( [ [[6.2065, 6.1292, 6.2070], [6.1079, 6.1254, 6.1747], [6.0042, 6.1071, 6.1034]], [[-6.9253, -6.8653, -7.0398], [-7.3218, -7.3983, -7.3670], [-7.1961, -7.2482, -7.1569]], [[-4.4723, -4.4348, -4.3769], [-5.3629, -5.4632, -5.4598], [-5.1587, -5.3402, -5.5059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": a : Optional[int] = torch.tensor( [ [[5.4449, 5.5733, 5.6314], [5.1815, 5.3930, 5.5963], [5.1656, 5.4333, 5.4853]], [[-9.4423, -9.7766, -9.6714], [-9.1581, -9.5720, -9.5519], [-9.1006, -9.6458, -9.5703]], [[-7.7721, -7.3716, -7.1583], [-8.4599, -8.0624, -7.7944], [-8.4172, -7.8366, -7.5025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": a : int = torch.tensor( [ [[6.9811, 6.9743, 7.3123], [7.1777, 7.1931, 7.3938], [7.5633, 7.8050, 7.8901]], [[-10.5536, -10.2332, -10.2924], [-10.2336, -9.8624, -9.5964], [-10.8840, -10.8158, -10.6659]], [[-3.4938, -3.0631, -2.8620], [-3.4205, -2.8135, -2.6875], [-3.4179, -2.7945, -2.8750]], ] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3, :3, :3] , _A , atol=1E-4 ) else: assert logits.shape == (1, 1000) if mobilevit_name == "mobilevit_s": a : Any = torch.tensor([-0.9866, 0.2392, -1.1241] ) elif mobilevit_name == "mobilevit_xs": a : int = torch.tensor([-2.4761, -0.9399, -1.9587] ) elif mobilevit_name == "mobilevit_xxs": a : Any = torch.tensor([-1.9364, -1.2327, -0.4653] ) else: raise ValueError(F"""Unknown mobilevit_name: {mobilevit_name}""" ) assert torch.allclose(logits[0, :3] , _A , atol=1E-4 ) Path(_A ).mkdir(exist_ok=_A ) print(F"""Saving model {mobilevit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_A ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_A ) if push_to_hub: a : Dict = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("Pushing to the hub..." ) a : Optional[Any] = model_mapping[mobilevit_name] image_processor.push_to_hub(_A , organization="apple" ) model.push_to_hub(_A , organization="apple" ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--mobilevit_name''', default='''mobilevit_s''', type=str, help=( '''Name of the MobileViT model you\'d like to convert. Should be one of \'mobilevit_s\', \'mobilevit_xs\',''' ''' \'mobilevit_xxs\', \'deeplabv3_mobilevit_s\', \'deeplabv3_mobilevit_xs\', \'deeplabv3_mobilevit_xxs\'.''' ), ) parser.add_argument( '''--checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) a : int = parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
105
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str: __magic_name__ : Optional[int] = parent __magic_name__ : Any = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[int] = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : str = embed_dim __magic_name__ : int = hidden_sizes __magic_name__ : Union[str, Any] = depths __magic_name__ : List[str] = num_heads __magic_name__ : str = window_size __magic_name__ : Optional[Any] = mlp_ratio __magic_name__ : Dict = qkv_bias __magic_name__ : Dict = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = drop_path_rate __magic_name__ : Optional[Any] = hidden_act __magic_name__ : int = use_absolute_embeddings __magic_name__ : Dict = patch_norm __magic_name__ : Tuple = layer_norm_eps __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[int] = is_training __magic_name__ : Optional[Any] = scope __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = encoder_stride __magic_name__ : List[Any] = out_features __magic_name__ : Union[str, Any] = out_indices def __magic_name__ ( self ) -> str: __magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[Any] = None if self.use_labels: __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Dict = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Tuple = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __magic_name__ : Optional[Any] = None __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : str = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : int = self.type_sequence_label_size __magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self ) -> int: __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs __magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ : Any = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ : Dict = False lowercase__ : Dict = False lowercase__ : int = False lowercase__ : Tuple = False lowercase__ : Optional[Any] = False def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = FocalNetModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> List[str]: return def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __magic_name__ ( self ) -> List[str]: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __magic_name__ ( self ) -> List[Any]: pass def __magic_name__ ( self ) -> List[Any]: __magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : str = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # FocalNet has a different seq_length __magic_name__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __magic_name__ : str = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape __magic_name__ : Union[str, Any] = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __magic_name__ : List[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = 3 __magic_name__ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __magic_name__ : Optional[int] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : str = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) @slow def __magic_name__ ( self ) -> Union[str, Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: __magic_name__ : Any = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.default_image_processor __magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : List[Any] = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else () lowercase__ : Optional[int] = FocalNetConfig lowercase__ : Dict = False def __magic_name__ ( self ) -> int: __magic_name__ : Dict = FocalNetModelTester(self )
342
0
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging UpperCamelCase_ = logging.get_logger(__name__) def _UpperCAmelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : Tuple=False ) -> Union[str, Any]: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise if not is_sharded: _lowerCAmelCase : List[str] = os.path.abspath(_A ) logger.info(f'Loading PyTorch weights from {pt_path}' ) _lowerCAmelCase : str = torch.load(_A , map_location="""cpu""" ) logger.info(f'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) _lowerCAmelCase : Optional[int] = convert_pytorch_state_dict_to_flax(_A , _A ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files _lowerCAmelCase : Union[str, Any] = convert_pytorch_sharded_state_dict_to_flax(_A , _A ) return flax_state_dict def _UpperCAmelCase ( _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : Dict , ) -> str: def is_key_or_prefix_key_in_dict(_lowerCamelCase : str ) -> bool: return len(set(_A ) & {key, (model_prefix,) + key} ) > 0 # layer norm _lowerCAmelCase : Union[str, Any] = pt_tuple_key[:-1] + ("""scale""",) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(_A ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean _lowerCAmelCase : List[Any] = pt_tuple_key[:-1] + ("""mean""",) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(_A ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var _lowerCAmelCase : Tuple = pt_tuple_key[:-1] + ("""var""",) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(_A ): return renamed_pt_tuple_key, pt_tensor # embedding _lowerCAmelCase : Tuple = pt_tuple_key[:-1] + ("""embedding""",) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(_A ): return renamed_pt_tuple_key, pt_tensor # conv layer _lowerCAmelCase : List[Any] = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(_A ): _lowerCAmelCase : Union[str, Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer _lowerCAmelCase : Dict = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(_A ): _lowerCAmelCase : Tuple = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight _lowerCAmelCase : str = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias _lowerCAmelCase : Dict = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 _lowerCAmelCase : Optional[Any] = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): _lowerCAmelCase : Dict = pt_tuple_key[-2] + """_g""" elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): _lowerCAmelCase : Optional[Any] = pt_tuple_key[-2] + """_v""" if name is not None: _lowerCAmelCase : Optional[int] = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def _UpperCAmelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : str ) -> Any: _lowerCAmelCase : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} _lowerCAmelCase : List[str] = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: _lowerCAmelCase : str = flax_model.params["""params"""] else: _lowerCAmelCase : List[Any] = flax_model.params _lowerCAmelCase : Dict = flatten_dict(_A ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _lowerCAmelCase : Union[str, Any] = flatten_dict(flax_model.params["""batch_stats"""] ) random_flax_state_dict.update(_A ) _lowerCAmelCase : Optional[Any] = {} _lowerCAmelCase : str = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) _lowerCAmelCase : List[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _lowerCAmelCase : int = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary _lowerCAmelCase : Optional[int] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _lowerCAmelCase : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters _lowerCAmelCase : List[str] = rename_key_and_reshape_tensor( _A , _A , _A , _A ) # add model prefix if necessary _lowerCAmelCase : Dict = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _lowerCAmelCase : List[str] = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: _lowerCAmelCase : str = jnp.asarray(_A ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_A , _A ) continue # also add unexpected weight so that warning is thrown _lowerCAmelCase : Optional[Any] = jnp.asarray(_A ) else: # also add unexpected weight so that warning is thrown _lowerCAmelCase : Tuple = jnp.asarray(_A ) return unflatten_dict(_A ) def _UpperCAmelCase ( _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str] ) -> Tuple: import torch # Load the index _lowerCAmelCase : Union[str, Any] = {} for shard_file in shard_filenames: # load using msgpack utils _lowerCAmelCase : Optional[int] = torch.load(_A ) _lowerCAmelCase : Optional[int] = {k: v.numpy() for k, v in pt_state_dict.items()} _lowerCAmelCase : int = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: _lowerCAmelCase : List[str] = flax_model.params["""params"""] _lowerCAmelCase : Optional[Any] = flatten_dict(_A ) random_flax_state_dict.update(flatten_dict(flax_model.params["""batch_stats"""] ) ) else: _lowerCAmelCase : List[str] = flax_model.params _lowerCAmelCase : Optional[Any] = flatten_dict(_A ) _lowerCAmelCase : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) _lowerCAmelCase : Optional[Any] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split(""".""" )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): _lowerCAmelCase : int = tuple(pt_key.split(""".""" ) ) # remove base model prefix if necessary _lowerCAmelCase : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: _lowerCAmelCase : Optional[Any] = pt_tuple_key[1:] # Correctly rename weight parameters _lowerCAmelCase : str = rename_key_and_reshape_tensor( _A , _A , _A , _A ) # add model prefix if necessary _lowerCAmelCase : Union[str, Any] = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: _lowerCAmelCase : str = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' f'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: _lowerCAmelCase : Optional[int] = jnp.asarray(_A ) continue if "var" in flax_key[-1]: _lowerCAmelCase : str = jnp.asarray(_A ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(_A , _A ) continue # also add unexpected weight so that warning is thrown _lowerCAmelCase : int = jnp.asarray(_A ) else: # also add unexpected weight so that warning is thrown _lowerCAmelCase : List[str] = jnp.asarray(_A ) return unflatten_dict(_A ) def _UpperCAmelCase ( _lowerCamelCase : List[str] , _lowerCamelCase : Tuple ) -> Union[str, Any]: _lowerCAmelCase : Dict = os.path.abspath(_A ) logger.info(f'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class _lowerCAmelCase : Union[str, Any] = getattr(_A , """Flax""" + model.__class__.__name__ ) # load flax weight dict with open(_A , """rb""" ) as state_f: try: _lowerCAmelCase : List[Any] = from_bytes(_A , state_f.read() ) except UnpicklingError: raise EnvironmentError(f'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(_A , _A ) def _UpperCAmelCase ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : str ) -> Dict: try: import torch # noqa: F401 except ImportError: logger.error( """Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights _lowerCAmelCase : Optional[Any] = flatten_dict(jax.tree_util.tree_map(lambda _lowerCamelCase : x.dtype == jnp.bfloataa , _A ) ).values() if any(_A ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) _lowerCAmelCase : Optional[Any] = jax.tree_util.tree_map( lambda _lowerCamelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , _A ) _lowerCAmelCase : List[Any] = flatten_dict(_A ) _lowerCAmelCase : Tuple = pt_model.state_dict() _lowerCAmelCase : Any = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) _lowerCAmelCase : Union[str, Any] = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split(""".""" )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys _lowerCAmelCase : int = [] _lowerCAmelCase : List[str] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _lowerCAmelCase : int = flax_key_tuple[0] == pt_model.base_model_prefix _lowerCAmelCase : Optional[Any] = """.""".join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: _lowerCAmelCase : Dict = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: _lowerCAmelCase : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(_A ) not in pt_model_dict: # conv layer _lowerCAmelCase : Union[str, Any] = flax_key_tuple[:-1] + ("""weight""",) _lowerCAmelCase : List[Any] = jnp.transpose(_A , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(_A ) not in pt_model_dict: # linear layer _lowerCAmelCase : str = flax_key_tuple[:-1] + ("""weight""",) _lowerCAmelCase : str = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: _lowerCAmelCase : Any = flax_key_tuple[:-1] + ("""weight""",) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: _lowerCAmelCase : List[Any] = flax_key_tuple[:-1] + ("""running_mean""",) elif "var" in flax_key_tuple[-1]: _lowerCAmelCase : Optional[int] = flax_key_tuple[:-1] + ("""running_var""",) if "batch_stats" in flax_state: _lowerCAmelCase : List[str] = """.""".join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: _lowerCAmelCase : List[Any] = """.""".join(_A ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. _lowerCAmelCase : Optional[int] = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: _lowerCAmelCase : str = key.split(""".""" ) _lowerCAmelCase : List[Any] = None if key_components[-3::2] == ["parametrizations", "original0"]: _lowerCAmelCase : Dict = key_components[-2] + """_g""" elif key_components[-3::2] == ["parametrizations", "original1"]: _lowerCAmelCase : List[str] = key_components[-2] + """_v""" if name is not None: _lowerCAmelCase : Dict = key_components[:-3] + [name] _lowerCAmelCase : List[str] = """.""".join(_A ) _lowerCAmelCase : List[Any] = key if flax_key in special_pt_names: _lowerCAmelCase : Any = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' f'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict _lowerCAmelCase : int = np.asarray(_A ) if not isinstance(_A , np.ndarray ) else flax_tensor _lowerCAmelCase : Optional[Any] = torch.from_numpy(_A ) # remove from missing keys missing_keys.remove(_A ) else: # weight is not expected by PyTorch model unexpected_keys.append(_A ) pt_model.load_state_dict(_A ) # re-transform missing_keys to list _lowerCAmelCase : int = list(_A ) if len(_A ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' f' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) else: logger.warning(f'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(_A ) > 0: logger.warning( f'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' f' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' """ use it for predictions and inference.""" ) else: logger.warning( f'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' """If your task is similar to the task the model of the checkpoint was trained on, """ f'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
309
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]: __magic_name__ : int = parent __magic_name__ : Tuple = batch_size __magic_name__ : int = image_size __magic_name__ : str = num_channels __magic_name__ : Dict = patch_size __magic_name__ : Tuple = num_frames __magic_name__ : List[Any] = is_training __magic_name__ : List[Any] = use_labels __magic_name__ : Dict = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Tuple = attention_type __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = scope __magic_name__ : Tuple = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __magic_name__ : str = (image_size // patch_size) ** 2 __magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : str = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> str: __magic_name__ : Dict = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __magic_name__ : Optional[Any] = self.num_labels return config def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[Any] = model(lowerCAmelCase__ ) # verify the logits shape __magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs __magic_name__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__ : Union[str, Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : str = False lowercase__ : Tuple = False lowercase__ : Any = False def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[Any] = TimesformerModelTester(self ) __magic_name__ : List[str] = ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]: __magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Optional[int] = [*signature.parameters.keys()] __magic_name__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Optional[int]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: if not self.has_attentions: pass else: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True for model_class in self.all_model_classes: __magic_name__ : Tuple = self.model_tester.seq_length __magic_name__ : int = self.model_tester.num_frames __magic_name__ : Any = True __magic_name__ : Tuple = False __magic_name__ : Optional[int] = True __magic_name__ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ : Optional[Any] = True __magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : int = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __magic_name__ : Union[str, Any] = len(lowerCAmelCase__ ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : Optional[Any] = True __magic_name__ : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) ) __magic_name__ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self ) -> Any: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ : str = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" ) __magic_name__ : List[str] = np.load(_A ) return list(_A ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( lowerCAmelCase__ ) __magic_name__ : str = self.default_image_processor __magic_name__ : Any = prepare_video() __magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : int = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
342
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { "configuration_trajectory_transformer": [ "TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrajectoryTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TrajectoryTransformerModel", "TrajectoryTransformerPreTrainedModel", "load_tf_weights_in_trajectory_transformer", ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
346
def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = [0] * len(_A ) __magic_name__ : List[str] = [] __magic_name__ : List[str] = [1] * len(_A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: __magic_name__ : Dict = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __magic_name__ : int = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_A ) print(max(_A ) ) # Adjacency list of Graph __magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
0
import numpy as np import datasets _UpperCAmelCase : List[Any] = "\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n" _UpperCAmelCase : List[Any] = "\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n" _UpperCAmelCase : str = "\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {'mahalanobis': array([0.5])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def a ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'X': datasets.Sequence(datasets.Value('float' , id='sequence' ) , id='X' ), } ) , ) def a ( self , snake_case , snake_case ): # convert to numpy arrays snake_case_ = np.array(lowerCAmelCase__ ) snake_case_ = np.array(lowerCAmelCase__ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('Expected `X` to be a 2D vector' ) if len(reference_distribution.shape ) != 2: raise ValueError('Expected `reference_distribution` to be a 2D vector' ) if reference_distribution.shape[0] < 2: raise ValueError( 'Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension' ) # Get mahalanobis distance for each prediction snake_case_ = X - np.mean(lowerCAmelCase__ ) snake_case_ = np.cov(reference_distribution.T ) try: snake_case_ = np.linalg.inv(lowerCAmelCase__ ) except np.linalg.LinAlgError: snake_case_ = np.linalg.pinv(lowerCAmelCase__ ) snake_case_ = np.dot(lowerCAmelCase__ , lowerCAmelCase__ ) snake_case_ = np.dot(lowerCAmelCase__ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
285
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> str: __magic_name__ : Tuple = """ylacombe/bark-small""" __magic_name__ : List[str] = tempfile.mkdtemp() __magic_name__ : Optional[Any] = """en_speaker_1""" __magic_name__ : Union[str, Any] = """This is a test string""" __magic_name__ : Optional[int] = """speaker_embeddings_path.json""" __magic_name__ : Any = """speaker_embeddings""" def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : str = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__ ( self ) -> Any: __magic_name__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __magic_name__ : Union[str, Any] = 35 __magic_name__ : List[Any] = 2 __magic_name__ : Dict = 8 __magic_name__ : Tuple = { """semantic_prompt""": np.ones(lowerCAmelCase__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string ) __magic_name__ : List[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
342
0
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowerCAmelCase__ ( ) -> Optional[Any]: lowerCAmelCase__ : int = torch.nn.Linear(2 , 4 ) lowerCAmelCase__ : List[str] = torch.optim.AdamW(model.parameters() , lr=1.0 ) lowerCAmelCase__ : Dict = torch.optim.lr_scheduler.OneCycleLR(_A , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) lowerCAmelCase__ : Tuple = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) lowerCAmelCase__ : List[Any] = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: lowerCAmelCase__ : Union[str, Any] = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(_A ) class A__ ( _lowerCAmelCase ): @require_cuda def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(lowerCAmelCase__ ): lowerCAmelCase__ : List[str] = Accelerator(cpu=lowerCAmelCase__ ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = Accelerator() lowerCAmelCase__ : List[Any] = GradientState() assert state.num_steps == 1 lowerCAmelCase__ : str = 4 assert state.num_steps == 4 assert state.sync_gradients is True lowerCAmelCase__ : Tuple = False assert state.sync_gradients is False GradientState._reset_state() def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = Accelerator() lowerCAmelCase__ : int = create_components() ( lowerCAmelCase__ ) : List[str] = accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Dict = Accelerator() lowerCAmelCase__ : str = create_components() accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def _lowerCamelCase ( self : str ): '''simple docstring''' PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*a : Tuple , **a : str ): pass with patch('torch.cuda.set_device' , lowerCAmelCase__ ), patch_environment(ACCELERATE_TORCH_DEVICE='cuda:64' ): lowerCAmelCase__ : List[Any] = Accelerator() self.assertEqual(str(accelerator.state.device ) , 'cuda:64' ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : Tuple = Accelerator() lowerCAmelCase__ : Union[str, Any] = create_components() accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ : Optional[Any] = get_signature(lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCAmelCase__ ) # make sure random weights don't match load_random_weights(lowerCAmelCase__ ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase__ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(lowerCAmelCase__ ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase__ ) ) < 1E-3 ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = Accelerator() lowerCAmelCase__ : Optional[Any] = create_components() accelerator.prepare(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowerCAmelCase__ : Union[str, Any] = get_signature(lowerCAmelCase__ ) # saving hook def save_config(a : str , a : List[str] , a : Union[str, Any] ): lowerCAmelCase__ : str = {"""class_name""": models[0].__class__.__name__} with open(os.path.join(lowerCAmelCase__ , 'data.json' ) , 'w' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) # loading hook def load_config(a : Optional[Any] , a : List[str] ): with open(os.path.join(lowerCAmelCase__ , 'data.json' ) , 'r' ) as f: lowerCAmelCase__ : Dict = json.load(lowerCAmelCase__ ) lowerCAmelCase__ : Optional[int] = config["""class_name"""] lowerCAmelCase__ : int = accelerator.register_save_state_pre_hook(lowerCAmelCase__ ) lowerCAmelCase__ : List[str] = accelerator.register_load_state_pre_hook(lowerCAmelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCAmelCase__ ) # make sure random weights don't match with hooks load_random_weights(lowerCAmelCase__ ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase__ ) ) > 1E-3 ) # random class name to verify correct one is loaded lowerCAmelCase__ : int = """random""" # make sure loaded weights match with hooks accelerator.load_state(lowerCAmelCase__ ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase__ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCAmelCase__ ) # make sure random weights don't match with hooks removed load_random_weights(lowerCAmelCase__ ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase__ ) ) > 1E-3 ) # random class name to verify correct one is loaded lowerCAmelCase__ : List[Any] = """random""" # make sure loaded weights match with hooks removed accelerator.load_state(lowerCAmelCase__ ) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase__ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[str] = Accelerator() lowerCAmelCase__ : Optional[int] = create_components() lowerCAmelCase__ : Optional[int] = None # This should work lowerCAmelCase__ : List[str] = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.assertTrue(dummy_obj is None ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Tuple = Accelerator() lowerCAmelCase__ : Dict = create_components() lowerCAmelCase__ : Tuple = [1, 2, 3] # This should work lowerCAmelCase__ : List[Any] = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual( getattr(lowerCAmelCase__ , '_is_accelerate_prepared' , lowerCAmelCase__ ) , lowerCAmelCase__ , 'Dummy object should have `_is_accelerate_prepared` set to `True`' , ) self.assertEqual( getattr(lowerCAmelCase__ , '_is_accelerate_prepared' , lowerCAmelCase__ ) , lowerCAmelCase__ , 'Model is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(lowerCAmelCase__ , '_is_accelerate_prepared' , lowerCAmelCase__ ) , lowerCAmelCase__ , 'Optimizer is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(lowerCAmelCase__ , '_is_accelerate_prepared' , lowerCAmelCase__ ) , lowerCAmelCase__ , 'Scheduler is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(lowerCAmelCase__ , '_is_accelerate_prepared' , lowerCAmelCase__ ) , lowerCAmelCase__ , 'Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(lowerCAmelCase__ , '_is_accelerate_prepared' , lowerCAmelCase__ ) , lowerCAmelCase__ , 'Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) @slow @require_bnb def _lowerCamelCase ( self : List[str] ): '''simple docstring''' from transformers import AutoModelForCausalLM lowerCAmelCase__ : Optional[int] = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=lowerCAmelCase__ , device_map={'': 0} , ) lowerCAmelCase__ : Any = Accelerator() # This should work lowerCAmelCase__ : Any = accelerator.prepare(lowerCAmelCase__ ) @slow @require_bnb def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' from transformers import AutoModelForCausalLM lowerCAmelCase__ : Tuple = Accelerator() with init_empty_weights(): lowerCAmelCase__ : Optional[Any] = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() lowerCAmelCase__ : Optional[int] = infer_auto_device_map(lowerCAmelCase__ ) lowerCAmelCase__ : Dict = """cpu""" lowerCAmelCase__ : Any = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , device_map=lowerCAmelCase__ , load_in_abit=lowerCAmelCase__ , llm_inta_enable_fpaa_cpu_offload=lowerCAmelCase__ ) # This should not work and get value error with self.assertRaises(lowerCAmelCase__ ): lowerCAmelCase__ : Any = accelerator.prepare(lowerCAmelCase__ ) @slow @require_bnb @require_multi_gpu def _lowerCamelCase ( self : List[str] ): '''simple docstring''' from transformers import AutoModelForCausalLM lowerCAmelCase__ : Optional[Any] = {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): lowerCAmelCase__ : List[Any] = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() lowerCAmelCase__ : str = infer_auto_device_map(lowerCAmelCase__ ) lowerCAmelCase__ : int = 1 lowerCAmelCase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=lowerCAmelCase__ , device_map=lowerCAmelCase__ , ) lowerCAmelCase__ : Any = Accelerator() # This should not work and get value error with self.assertRaises(lowerCAmelCase__ ): lowerCAmelCase__ : Optional[Any] = accelerator.prepare(lowerCAmelCase__ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' from transformers import AutoModelForCausalLM with init_empty_weights(): lowerCAmelCase__ : Tuple = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) lowerCAmelCase__ : List[str] = infer_auto_device_map(lowerCAmelCase__ ) lowerCAmelCase__ : int = 1 lowerCAmelCase__ : List[Any] = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=lowerCAmelCase__ , device_map=lowerCAmelCase__ , ) lowerCAmelCase__ : Optional[Any] = Accelerator() # This should work lowerCAmelCase__ : Union[str, Any] = accelerator.prepare(lowerCAmelCase__ ) @require_cuda def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Any = torch.nn.Linear(10 , 10 ) lowerCAmelCase__ : str = torch.optim.SGD(model.parameters() , lr=0.0_1 ) lowerCAmelCase__ : List[str] = Accelerator(cpu=lowerCAmelCase__ ) lowerCAmelCase__ : Tuple = accelerator.prepare(lowerCAmelCase__ )
212
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]: __magic_name__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} __magic_name__ : str = parent __magic_name__ : Any = batch_size __magic_name__ : Any = num_channels __magic_name__ : List[str] = image_size __magic_name__ : Tuple = min_resolution __magic_name__ : Union[str, Any] = max_resolution __magic_name__ : List[str] = do_resize __magic_name__ : Optional[Any] = size __magic_name__ : Optional[Any] = do_normalize __magic_name__ : Any = image_mean __magic_name__ : List[str] = image_std def __magic_name__ ( self ) -> List[str]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = DPTImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Dict = DPTImageProcessingTester(self ) @property def __magic_name__ ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __magic_name__ ( self ) -> str: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Optional[Any]: # Initialize image_processing __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
342
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase__ ( _lowerCAmelCase ): _SCREAMING_SNAKE_CASE : List[str] = ['''image_processor''', '''tokenizer'''] _SCREAMING_SNAKE_CASE : Union[str, Any] = '''LayoutLMv3ImageProcessor''' _SCREAMING_SNAKE_CASE : List[Any] = ('''LayoutLMv3Tokenizer''', '''LayoutLMv3TokenizerFast''') def __init__(self : Optional[Any] , snake_case_ : Any=None , snake_case_ : str=None , **snake_case_ : Optional[int] ): __a : Dict = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase__ , ) __a : str = kwargs.pop('''feature_extractor''' ) __a : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __call__(self : List[str] , snake_case_ : Union[str, Any] , snake_case_ : Tuple = None , snake_case_ : List[str] = None , snake_case_ : Optional[Any] = None , snake_case_ : int = None , snake_case_ : Any = True , snake_case_ : Tuple = False , snake_case_ : Dict = None , snake_case_ : List[Any] = None , snake_case_ : Optional[Any] = 0 , snake_case_ : Dict = None , snake_case_ : List[Any] = None , snake_case_ : str = None , snake_case_ : List[Any] = False , snake_case_ : Dict = False , snake_case_ : Optional[int] = False , snake_case_ : Optional[Any] = False , snake_case_ : Tuple = True , snake_case_ : Dict = None , **snake_case_ : Optional[Any] , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor __a : Tuple = self.image_processor(images=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a : Optional[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) __a : List[str] = features["""words"""] __a : Tuple = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) # add pixel values __a : Union[str, Any] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __a : Union[str, Any] = self.get_overflowing_images(lowerCAmelCase__ , encoded_inputs['''overflow_to_sample_mapping'''] ) __a : Any = images return encoded_inputs def lowerCAmelCase (self : List[Any] , snake_case_ : Optional[int] , snake_case_ : Dict ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __a : Optional[int] = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f" {len(lowerCAmelCase__ )} and {len(lowerCAmelCase__ )}" ) return images_with_overflow def lowerCAmelCase (self : int , *snake_case_ : List[Any] , **snake_case_ : Tuple ): return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def lowerCAmelCase (self : Dict , *snake_case_ : List[Any] , **snake_case_ : int ): return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def lowerCAmelCase (self : str ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def lowerCAmelCase (self : Tuple ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase__ , ) return self.image_processor_class @property def lowerCAmelCase (self : Union[str, Any] ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase__ , ) return self.image_processor
216
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__: Tuple = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M''' lowercase__ : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowercase__ : List[str] = '''translator''' lowercase__ : Optional[Any] = AutoTokenizer lowercase__ : int = AutoModelForSeqaSeqLM lowercase__ : List[Any] = LANGUAGE_CODES lowercase__ : str = ['''text''', '''text''', '''text'''] lowercase__ : Any = ['''text'''] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) __magic_name__ : Tuple = self.lang_to_code[src_lang] __magic_name__ : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
342
0
"""simple docstring""" from __future__ import annotations import math _UpperCamelCase : str = "2020.9.26" _UpperCamelCase : Any = "xcodz-dot, cclaus, dhruvmanila" def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : int , __snake_case : Union[str, Any] , __snake_case : List[Any] ): '''simple docstring''' if not all(isinstance(_A , (float, int) ) for val in locals().values() ): lowercase = f'Input values must either be float or int: {list(locals().values() )}' raise TypeError(_A ) lowercase = ((x * distance) / (z + distance)) * scale lowercase = ((y * distance) / (z + distance)) * scale return projected_x, projected_y def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : Dict , __snake_case : str , __snake_case : Dict ): '''simple docstring''' if not isinstance(_A , _A ): raise TypeError('Axis must be a str' ) lowercase = locals() del input_variables["axis"] if not all(isinstance(_A , (float, int) ) for val in input_variables.values() ): lowercase = ( """Input values except axis must either be float or int: """ f'{list(input_variables.values() )}' ) raise TypeError(_A ) lowercase = (angle % 3_60) / 4_50 * 1_80 / math.pi if axis == "z": lowercase = x * math.cos(_A ) - y * math.sin(_A ) lowercase = y * math.cos(_A ) + x * math.sin(_A ) lowercase = z elif axis == "x": lowercase = y * math.cos(_A ) - z * math.sin(_A ) lowercase = z * math.cos(_A ) + y * math.sin(_A ) lowercase = x elif axis == "y": lowercase = x * math.cos(_A ) - z * math.sin(_A ) lowercase = z * math.cos(_A ) + x * math.sin(_A ) lowercase = y else: raise ValueError('not a valid axis, choose one of \'x\', \'y\', \'z\'' ) return new_x, new_y, new_z if __name__ == "__main__": import doctest doctest.testmod() print(F'''{convert_to_ad(1.0, 2.0, 3.0, 1_0.0, 1_0.0) = }''') print(F'''{rotate(1.0, 2.0, 3.0, 'y', 9_0.0) = }''')
220
import math class snake_case__ : def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1 __magic_name__ : Tuple = n __magic_name__ : Union[str, Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # adjacency matrix for weight __magic_name__ : List[Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # dp[i][j] stores minimum distance from i to j def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Dict = w def __magic_name__ ( self ) -> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: return self.dp[u][v] if __name__ == "__main__": __magic_name__: Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
342
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device __magic_name__ = False class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self): __SCREAMING_SNAKE_CASE = VersatileDiffusionTextToImagePipeline.from_pretrained("""shi-labs/versatile-diffusion""") # remove text_unet pipe.remove_unused_weights() pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger """ __SCREAMING_SNAKE_CASE = torch.manual_seed(0) __SCREAMING_SNAKE_CASE = pipe( prompt=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""").images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = VersatileDiffusionTextToImagePipeline.from_pretrained(lowerCAmelCase__) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = generator.manual_seed(0) __SCREAMING_SNAKE_CASE = pipe( prompt=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""").images assert np.abs(image - new_image).sum() < 1E-5, "Models don't have the same forward pass" def snake_case_ ( self): __SCREAMING_SNAKE_CASE = VersatileDiffusionTextToImagePipeline.from_pretrained( """shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa) pipe.to(lowerCAmelCase__) pipe.set_progress_bar_config(disable=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """A painting of a squirrel eating a burger """ __SCREAMING_SNAKE_CASE = torch.manual_seed(0) __SCREAMING_SNAKE_CASE = pipe( prompt=lowerCAmelCase__ , generator=lowerCAmelCase__ , guidance_scale=7.5 , num_inference_steps=5_0 , output_type="""numpy""").images __SCREAMING_SNAKE_CASE = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __SCREAMING_SNAKE_CASE = np.array([0.33_67, 0.31_69, 0.26_56, 0.38_70, 0.47_90, 0.37_96, 0.40_09, 0.48_78, 0.47_78]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
100
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__ : def __init__( self , lowerCAmelCase__ = None ) -> None: if components is None: __magic_name__ : Any = [] __magic_name__ : List[str] = list(lowerCAmelCase__ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")" def __add__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : Dict = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: raise Exception("""must have the same size""" ) def __sub__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : int = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... @overload def __mul__( self , lowerCAmelCase__ ) -> float: ... def __mul__( self , lowerCAmelCase__ ) -> float | Vector: if isinstance(lowerCAmelCase__ , (float, int) ): __magic_name__ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ): __magic_name__ : Optional[Any] = len(self ) __magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return sum(lowerCAmelCase__ ) else: # error case raise Exception("""invalid operand!""" ) def __magic_name__ ( self ) -> Vector: return Vector(self.__components ) def __magic_name__ ( self , lowerCAmelCase__ ) -> float: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ : Optional[int] = value def __magic_name__ ( self ) -> float: if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __magic_name__ : Dict = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase__ ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float: __magic_name__ : Optional[Any] = self * other __magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCamelCase ( _A ): """simple docstring""" assert isinstance(_A, _A ) return Vector([0] * dimension ) def UpperCamelCase ( _A, _A ): """simple docstring""" assert isinstance(_A, _A ) and (isinstance(_A, _A )) __magic_name__ : Union[str, Any] = [0] * dimension __magic_name__ : Optional[int] = 1 return Vector(_A ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" assert ( isinstance(_A, _A ) and isinstance(_A, _A ) and (isinstance(_A, (int, float) )) ) return x * scalar + y def UpperCamelCase ( _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )] return Vector(_A ) class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Dict = matrix __magic_name__ : Tuple = w __magic_name__ : Union[str, Any] = h def __str__( self ) -> str: __magic_name__ : Dict = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Tuple = [] for i in range(self.__height ): __magic_name__ : Tuple = [ self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Optional[Any] = [] for i in range(self.__height ): __magic_name__ : int = [ self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Matrix: ... @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector if len(lowerCAmelCase__ ) == self.__width: __magic_name__ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ : Optional[int] = [ self.__matrix[i][j] * other.component(lowerCAmelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar __magic_name__ : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase__ , self.__width , self.__height ) return None def __magic_name__ ( self ) -> int: return self.__height def __magic_name__ ( self ) -> int: return self.__width def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ : List[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase__ ) ): __magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise Exception("""Indices out of bounds""" ) def __magic_name__ ( self ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width ) ] return sum(lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )] return Matrix(_A, _A, _A ) def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : list[list[float]] = [ [random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A ) ] return Matrix(_A, _A, _A )
342
0
from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A( _lowerCAmelCase ): '''simple docstring''' UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''AutoImageProcessor''' UpperCamelCase = '''AutoTokenizer''' def __init__( self : Union[str, Any] , A_ : Dict , A_ : Any ) -> List[Any]: """simple docstring""" super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) lowerCamelCase_ = self.image_processor def __call__( self : List[Any] , A_ : List[Any]=None , A_ : str=None , A_ : str=None , **A_ : List[str] ) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: lowerCamelCase_ = self.tokenizer(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if images is not None: lowerCamelCase_ = self.image_processor(lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) if text is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase__ ) , tensor_type=lowerCAmelCase__ ) def a__ ( self : Dict , *A_ : Dict , **A_ : str ) -> Tuple: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def a__ ( self : Tuple , *A_ : Any , **A_ : Union[str, Any] ) -> Dict: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def a__ ( self : Optional[int] ) -> str: """simple docstring""" return ["input_ids", "attention_mask", "pixel_values"]
204
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __magic_name__: str = logging.get_logger(__name__) __magic_name__: int = "▁" __magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"} __magic_name__: List[str] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } __magic_name__: Tuple = { "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off __magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class snake_case__ ( _lowerCAmelCase ): lowercase__ : str = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = ['''input_ids''', '''attention_mask'''] lowercase__ : List[int] = [] lowercase__ : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __magic_name__ : Optional[Any] = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) __magic_name__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __magic_name__ : List[Any] = 1 __magic_name__ : Dict = len(self.sp_model ) __magic_name__ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } __magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} __magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __magic_name__ : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn""" __magic_name__ : Any = self.lang_code_to_id[self._src_lang] __magic_name__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Any: __magic_name__ : List[Any] = self.__dict__.copy() __magic_name__ : int = None __magic_name__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__ : Any = {} __magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __magic_name__ ( self ) -> str: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self ) -> str: return self._src_lang @src_lang.setter def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) __magic_name__ : Optional[int] = [1] * len(self.prefix_tokens ) __magic_name__ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : str = [self.sep_token_id] __magic_name__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __magic_name__ : Dict = src_lang __magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Tuple = tgt_lang_id return inputs def __magic_name__ ( self ) -> int: __magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip() return out_string def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , """wb""" ) as fi: __magic_name__ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding: __magic_name__ : List[str] = src_lang __magic_name__ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : str = [self.cur_lang_code] __magic_name__ : List[Any] = [self.eos_token_id] def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : Optional[int] = [self.cur_lang_code] __magic_name__ : Union[str, Any] = [self.eos_token_id]
342
0
import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger A__ : Any = get_logger(__name__) A__ : Union[str, Any] = r"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class _UpperCAmelCase : """simple docstring""" @add_start_docstrings(lowerCAmelCase__ ) def __call__( self : Dict, lowerCamelCase : Tuple, lowerCamelCase : Dict ): '''simple docstring''' raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class _UpperCAmelCase : """simple docstring""" @add_start_docstrings(lowerCAmelCase__ ) def __call__( self : List[Any], lowerCamelCase : int, lowerCamelCase : Any ): '''simple docstring''' raise NotImplementedError( F"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" ) class _UpperCAmelCase ( _lowerCAmelCase ): """simple docstring""" @add_start_docstrings(lowerCAmelCase__ ) def __call__( self : Any, lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[Any], lowerCamelCase : str, **lowerCamelCase : Union[str, Any] ): '''simple docstring''' for processor in self: lowercase__ = inspect.signature(processor.__call__ ).parameters if len(lowerCAmelCase__ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( F"""Make sure that all the required parameters: {list(function_args.keys() )} for """ F"""{processor.__class__} are passed to the logits processor.""" ) lowercase__ = processor(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__ ) else: lowercase__ = processor(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ) return scores class _UpperCAmelCase ( _lowerCAmelCase ): """simple docstring""" def __init__( self : Dict, lowerCamelCase : Optional[int] ): '''simple docstring''' if not isinstance(lowerCAmelCase__, lowerCAmelCase__ ) or not (temperature > 0): raise ValueError(F"""`temperature` has to be a strictly positive float, but is {temperature}""" ) lowercase__ = temperature def __call__( self : Any, lowerCamelCase : Optional[int], lowerCamelCase : str, lowerCamelCase : Any ): '''simple docstring''' lowercase__ = scores / self.temperature return scores class _UpperCAmelCase ( _lowerCAmelCase ): """simple docstring""" def __init__( self : Dict, lowerCamelCase : Union[str, Any], lowerCamelCase : int = -float('''Inf''' ), lowerCamelCase : Union[str, Any] = 1 ): '''simple docstring''' if not isinstance(lowerCAmelCase__, lowerCAmelCase__ ) or (top_p < 0 or top_p > 1.0): raise ValueError(F"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" ) if not isinstance(lowerCAmelCase__, lowerCAmelCase__ ) or (min_tokens_to_keep < 1): raise ValueError(F"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" ) lowercase__ = top_p lowercase__ = filter_value lowercase__ = min_tokens_to_keep def __call__( self : str, lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = lax.top_k(lowerCAmelCase__, scores.shape[-1] ) lowercase__ = jnp.full_like(lowerCAmelCase__, self.filter_value ) lowercase__ = jax.nn.softmax(lowerCAmelCase__, axis=-1 ).cumsum(axis=-1 ) lowercase__ = cumulative_probs < self.top_p # include the token that is higher than top_p as well lowercase__ = jnp.roll(lowerCAmelCase__, 1 ) score_mask |= score_mask.at[:, 0].set(lowerCAmelCase__ ) # min tokens to keep lowercase__ = score_mask.at[:, : self.min_tokens_to_keep].set(lowerCAmelCase__ ) lowercase__ = jnp.where(lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__ ) lowercase__ = jax.lax.sort_key_val(lowerCAmelCase__, lowerCAmelCase__ )[-1] return next_scores class _UpperCAmelCase ( _lowerCAmelCase ): """simple docstring""" def __init__( self : List[str], lowerCamelCase : Union[str, Any], lowerCamelCase : Union[str, Any] = -float('''Inf''' ), lowerCamelCase : Dict = 1 ): '''simple docstring''' if not isinstance(lowerCAmelCase__, lowerCAmelCase__ ) or top_k <= 0: raise ValueError(F"""`top_k` has to be a strictly positive integer, but is {top_k}""" ) lowercase__ = max(lowerCAmelCase__, lowerCAmelCase__ ) lowercase__ = filter_value def __call__( self : List[Any], lowerCamelCase : Optional[int], lowerCamelCase : List[str], lowerCamelCase : str ): '''simple docstring''' lowercase__ = scores.shape lowercase__ = jnp.full(batch_size * vocab_size, self.filter_value ) lowercase__ = min(self.top_k, scores.shape[-1] ) # Safety check lowercase__ = lax.top_k(lowerCAmelCase__, lowerCAmelCase__ ) lowercase__ = jnp.broadcast_to((jnp.arange(lowerCAmelCase__ ) * vocab_size)[:, None], (batch_size, topk) ).flatten() lowercase__ = topk_scores.flatten() lowercase__ = topk_indices.flatten() + shift lowercase__ = next_scores_flat.at[topk_indices_flat].set(lowerCAmelCase__ ) lowercase__ = next_scores_flat.reshape(lowerCAmelCase__, lowerCAmelCase__ ) return next_scores class _UpperCAmelCase ( _lowerCAmelCase ): """simple docstring""" def __init__( self : Tuple, lowerCamelCase : Optional[Any] ): '''simple docstring''' lowercase__ = bos_token_id def __call__( self : List[Any], lowerCamelCase : Any, lowerCamelCase : Tuple, lowerCamelCase : Any ): '''simple docstring''' lowercase__ = jnp.full(scores.shape, -float('''inf''' ) ) lowercase__ = 1 - jnp.bool_(cur_len - 1 ) lowercase__ = jnp.where(lowerCAmelCase__, new_scores.at[:, self.bos_token_id].set(0 ), lowerCAmelCase__ ) return scores class _UpperCAmelCase ( _lowerCAmelCase ): """simple docstring""" def __init__( self : List[str], lowerCamelCase : str, lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = max_length lowercase__ = eos_token_id def __call__( self : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Dict, lowerCamelCase : int ): '''simple docstring''' lowercase__ = jnp.full(scores.shape, -float('''inf''' ) ) lowercase__ = 1 - jnp.bool_(cur_len - self.max_length + 1 ) lowercase__ = jnp.where(lowerCAmelCase__, new_scores.at[:, self.eos_token_id].set(0 ), lowerCAmelCase__ ) return scores class _UpperCAmelCase ( _lowerCAmelCase ): """simple docstring""" def __init__( self : Optional[Any], lowerCamelCase : str, lowerCamelCase : List[Any] ): '''simple docstring''' if not isinstance(lowerCAmelCase__, lowerCAmelCase__ ) or min_length < 0: raise ValueError(F"""`min_length` has to be a positive integer, but is {min_length}""" ) if not isinstance(lowerCAmelCase__, lowerCAmelCase__ ) or eos_token_id < 0: raise ValueError(F"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" ) lowercase__ = min_length lowercase__ = eos_token_id def __call__( self : int, lowerCamelCase : str, lowerCamelCase : Optional[int], lowerCamelCase : int ): '''simple docstring''' # create boolean flag to decide if min length penalty should be applied lowercase__ = 1 - jnp.clip(cur_len - self.min_length, 0, 1 ) lowercase__ = jnp.where(lowerCAmelCase__, scores.at[:, self.eos_token_id].set(-float('''inf''' ) ), lowerCAmelCase__ ) return scores class _UpperCAmelCase ( _lowerCAmelCase ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : Any, lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = list(lowerCAmelCase__ ) lowercase__ = begin_index def __call__( self : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : int, lowerCamelCase : str ): '''simple docstring''' lowercase__ = 1 - jnp.bool_(cur_len - self.begin_index ) lowercase__ = jnp.where(lowerCAmelCase__, scores.at[:, self.begin_suppress_tokens].set(-float('''inf''' ) ), lowerCAmelCase__ ) return scores class _UpperCAmelCase ( _lowerCAmelCase ): """simple docstring""" def __init__( self : List[Any], lowerCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = list(lowerCAmelCase__ ) def __call__( self : List[str], lowerCamelCase : Optional[Any], lowerCamelCase : Optional[Any], lowerCamelCase : Any ): '''simple docstring''' lowercase__ = scores.at[..., self.suppress_tokens].set(-float('''inf''' ) ) return scores class _UpperCAmelCase ( _lowerCAmelCase ): """simple docstring""" def __init__( self : Dict, lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = dict(lowerCAmelCase__ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. lowercase__ = jnp.ones((max(force_token_map.keys() ) + 1), dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: lowercase__ = force_token_array.at[index].set(lowerCAmelCase__ ) lowercase__ = jnp.intaa(lowerCAmelCase__ ) def __call__( self : Union[str, Any], lowerCamelCase : List[str], lowerCamelCase : Any, lowerCamelCase : Optional[Any] ): '''simple docstring''' def _force_token(lowerCamelCase : Optional[int] ): lowercase__ = scores.shape[0] lowercase__ = self.force_token_array[generation_idx] lowercase__ = jnp.ones_like(lowerCAmelCase__, dtype=scores.dtype ) * -float('''inf''' ) lowercase__ = jnp.zeros((batch_size, 1), dtype=scores.dtype ) lowercase__ = lax.dynamic_update_slice(lowerCAmelCase__, lowerCAmelCase__, (0, current_token) ) return new_scores lowercase__ = lax.cond( cur_len >= self.force_token_array.shape[0], lambda: scores, lambda: lax.cond( self.force_token_array[cur_len] >= 0, lambda: _force_token(lowerCAmelCase__ ), lambda: scores, ), ) return scores class _UpperCAmelCase ( _lowerCAmelCase ): """simple docstring""" def __init__( self : List[Any], lowerCamelCase : List[str], lowerCamelCase : Optional[int], lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = generate_config.eos_token_id lowercase__ = generate_config.no_timestamps_token_id lowercase__ = generate_config.no_timestamps_token_id + 1 lowercase__ = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowerCAmelCase__, '''max_initial_timestamp_index''' ): lowercase__ = generate_config.max_initial_timestamp_index else: lowercase__ = model_config.vocab_size if self.max_initial_timestamp_index is None: lowercase__ = model_config.vocab_size def __call__( self : Optional[Any], lowerCamelCase : Dict, lowerCamelCase : Any, lowerCamelCase : int ): '''simple docstring''' # suppress <|notimestamps|> which is handled by without_timestamps lowercase__ = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''' ) ) def handle_pairs(lowerCamelCase : Any, lowerCamelCase : List[str] ): lowercase__ = jnp.where((cur_len - self.begin_index) >= 1, lowerCAmelCase__, lowerCAmelCase__ ) lowercase__ = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin, True and last_was_timestamp, lowerCAmelCase__, ) lowercase__ = jnp.where((cur_len - self.begin_index) < 2, lowerCAmelCase__, lowerCAmelCase__ ) lowercase__ = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin, lowerCAmelCase__, lowerCAmelCase__, ) return jnp.where( lowerCAmelCase__, jnp.where( penultimate_was_timestamp > 0, scores_k.at[self.timestamp_begin :].set(-float('''inf''' ) ), scores_k.at[: self.eos_token_id].set(-float('''inf''' ) ), ), lowerCAmelCase__, ) lowercase__ = jax.vmap(lowerCAmelCase__ )(lowerCAmelCase__, lowerCAmelCase__ ) lowercase__ = jnp.where(cur_len == self.begin_index, lowerCAmelCase__, lowerCAmelCase__ ) lowercase__ = jnp.where( self.max_initial_timestamp_index is not None, True and apply_max_initial_timestamp, lowerCAmelCase__, ) lowercase__ = self.timestamp_begin + self.max_initial_timestamp_index lowercase__ = jnp.where( lowerCAmelCase__, scores.at[:, last_allowed + 1 :].set(-float('''inf''' ) ), lowerCAmelCase__, ) # if sum of probability over timestamps is above any other token, sample timestamp lowercase__ = jax.nn.log_softmax(lowerCAmelCase__, axis=-1 ) def handle_cumulative_probs(lowerCamelCase : Optional[int], lowerCamelCase : Optional[int] ): lowercase__ = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :], axis=-1 ) lowercase__ = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob, scores_k.at[: self.timestamp_begin].set(-float('''inf''' ) ), lowerCAmelCase__, ) lowercase__ = jax.vmap(lowerCAmelCase__ )(lowerCAmelCase__, lowerCAmelCase__ ) return scores
207
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Dict = MobileBertConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ : Tuple = MobileBertForPreTraining(_A ) # Load weights from tf checkpoint __magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _A ) if __name__ == "__main__": __magic_name__: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__: Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
342
0
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets UpperCAmelCase__ : List[Any] = "\\n@inproceedings{popovic-2015-chrf,\n title = \"chr{F}: character n-gram {F}-score for automatic {MT} evaluation\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Tenth Workshop on Statistical Machine Translation\",\n month = sep,\n year = \"2015\",\n address = \"Lisbon, Portugal\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W15-3049\",\n doi = \"10.18653/v1/W15-3049\",\n pages = \"392--395\",\n}\n@inproceedings{popovic-2017-chrf,\n title = \"chr{F}++: words helping character n-grams\",\n author = \"Popovi{\'c}, Maja\",\n booktitle = \"Proceedings of the Second Conference on Machine Translation\",\n month = sep,\n year = \"2017\",\n address = \"Copenhagen, Denmark\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://aclanthology.org/W17-4770\",\n doi = \"10.18653/v1/W17-4770\",\n pages = \"612--618\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" UpperCAmelCase__ : str = "\\nChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,\nand ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation\nthat is already present in sacrebleu.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.\n" UpperCAmelCase__ : int = "\nProduces ChrF(++) scores for hypotheses given reference translations.\n\nArgs:\n predictions (list of str): The predicted sentences.\n references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.\n char_order (int): Character n-gram order. Defaults to `6`.\n word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.\n beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.\n lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.\n whitespace (bool): If `True`, include whitespaces when extracting character n-grams.\n eps_smoothing (bool): If `True`, applies epsilon smoothing similar\n to reference chrF++.py, NLTK and Moses implementations. If `False`,\n it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.\n\nReturns:\n 'score' (float): The chrF (chrF++) score,\n 'char_order' (int): The character n-gram order,\n 'word_order' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,\n 'beta' (int): Determine the importance of recall w.r.t precision\n\nExamples:\n Example 1--a simple example of calculating chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction, references=reference)\n >>> print(results)\n {'score': 84.64214891738334, 'char_order': 6, 'word_order': 0, 'beta': 2}\n\n Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2)\n >>> print(results)\n {'score': 82.87263732906315, 'char_order': 6, 'word_order': 2, 'beta': 2}\n\n Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:\n >>> prediction = [\"The relationship between cats and dogs is not exactly friendly.\", \"a good bookshop is just a genteel black hole that knows how to read.\"]\n >>> reference = [[\"The relationship between dogs and cats is not exactly friendly.\"], [\"A good bookshop is just a genteel Black Hole that knows how to read.\"]]\n >>> chrf = datasets.load_metric(\"chrf\")\n >>> results = chrf.compute(predictions=prediction,\n ... references=reference,\n ... word_order=2,\n ... lowercase=True)\n >>> print(results)\n {'score': 92.12853119829202, 'char_order': 6, 'word_order': 2, 'beta': 2}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): """simple docstring""" def _lowercase ( self : List[Any] ) ->Any: """simple docstring""" if version.parse(scb.__version__ ) < version.parse("""1.4.12""" ): raise ImportWarning( """To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n""" """You can install it with `pip install \"sacrebleu>=1.4.12\"`.""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="""https://github.com/mjpost/sacreBLEU#chrf--chrf""" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Sequence(datasets.Value("""string""" , id="""sequence""" ) , id="""references""" ), } ) , codebase_urls=["""https://github.com/mjpost/sacreBLEU#chrf--chrf"""] , reference_urls=[ """https://github.com/m-popovic/chrF""", ] , ) def _lowercase ( self : List[Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] = CHRF.CHAR_ORDER , UpperCAmelCase__ : Any = CHRF.WORD_ORDER , UpperCAmelCase__ : int = CHRF.BETA , UpperCAmelCase__ : List[Any] = False , UpperCAmelCase__ : Tuple = False , UpperCAmelCase__ : Tuple = False , ) ->Any: """simple docstring""" SCREAMING_SNAKE_CASE : Any = len(references[0] ) if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError("""Sacrebleu requires the same number of references for each prediction""" ) SCREAMING_SNAKE_CASE : int = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )] SCREAMING_SNAKE_CASE : Optional[int] = CHRF(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE : List[Any] = sb_chrf.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
245
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[Any] = MgpstrTokenizer lowercase__ : int = False lowercase__ : Any = {} lowercase__ : Optional[int] = False def __magic_name__ ( self ) -> Optional[Any]: super().setUp() # fmt: off __magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = """tester""" __magic_name__ : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> List[str]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Dict = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) __magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) __magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) __magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __magic_name__ ( self ) -> Tuple: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __magic_name__ ( self ) -> Optional[Any]: pass
342
0
"""simple docstring""" import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a : Dict = logging.getLogger(__name__) class __UpperCamelCase ( _lowerCAmelCase ): lowerCamelCase : Any ='''sequence-classification''' def __init__( self , lowerCAmelCase__ ) -> str: if type(lowerCAmelCase__ ) == dict: a : Tuple = Namespace(**lowerCAmelCase__ ) a : Optional[int] = glue_output_modes[hparams.task] a : str = glue_tasks_num_labels[hparams.task] super().__init__(lowerCAmelCase__ , lowerCAmelCase__ , self.mode ) def __a ( self , **lowerCAmelCase__ ) -> Any: return self.model(**lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: a : Optional[Any] = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: a : Optional[Any] = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None a : Optional[Any] = self(**lowerCAmelCase__ ) a : Union[str, Any] = outputs[0] a : List[Any] = self.trainer.lr_schedulers[0]["""scheduler"""] a : int = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def __a ( self ) -> Optional[int]: a : Tuple = self.hparams a : str = processors[args.task]() a : int = processor.get_labels() for mode in ["train", "dev"]: a : Tuple = self._feature_file(lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , lowerCAmelCase__ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) a : List[str] = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) a : str = convert_examples_to_features( lowerCAmelCase__ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , lowerCAmelCase__ ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> DataLoader: a : List[Any] = """dev""" if mode == """test""" else mode a : List[Any] = self._feature_file(lowerCAmelCase__ ) logger.info("Loading features from cached file %s" , lowerCAmelCase__ ) a : Optional[int] = torch.load(lowerCAmelCase__ ) a : Union[str, Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) a : Tuple = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) a : str = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": a : Optional[Any] = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": a : Optional[Any] = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) , batch_size=lowerCAmelCase__ , shuffle=lowerCAmelCase__ , ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: a : Dict = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: a : Tuple = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None a : Optional[Any] = self(**lowerCAmelCase__ ) a : Optional[Any] = outputs[:2] a : Optional[int] = logits.detach().cpu().numpy() a : Union[str, Any] = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __a ( self , lowerCAmelCase__ ) -> tuple: a : Optional[int] = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() a : Union[str, Any] = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": a : Optional[int] = np.argmax(lowerCAmelCase__ , axis=1 ) elif self.hparams.glue_output_mode == "regression": a : Tuple = np.squeeze(lowerCAmelCase__ ) a : Any = np.concatenate([x["target"] for x in outputs] , axis=0 ) a : Optional[int] = [[] for _ in range(out_label_ids.shape[0] )] a : List[str] = [[] for _ in range(out_label_ids.shape[0] )] a : str = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , lowerCAmelCase__ , lowerCAmelCase__ )} a : Union[str, Any] = dict(results.items() ) a : Tuple = results return ret, preds_list, out_label_list def __a ( self , lowerCAmelCase__ ) -> dict: a : int = self._eval_end(lowerCAmelCase__ ) a : Optional[Any] = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __a ( self , lowerCAmelCase__ ) -> dict: a : Optional[int] = self._eval_end(lowerCAmelCase__ ) a : Optional[Any] = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __a ( lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: BaseTransformer.add_model_specific_args(lowerCAmelCase__ , lowerCAmelCase__ ) parser.add_argument( "--max_seq_length" , default=128 , type=lowerCAmelCase__ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=lowerCAmelCase__ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def _SCREAMING_SNAKE_CASE ( ) ->List[str]: '''simple docstring''' a : List[Any] = argparse.ArgumentParser() add_generic_args(_A , os.getcwd() ) a : Optional[int] = GLUETransformer.add_model_specific_args(_A , os.getcwd() ) a : int = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: a : str = os.path.join( "./results" , F"""{args.task}_{time.strftime('%Y%m%d_%H%M%S' )}""" , ) os.makedirs(args.output_dir ) a : int = GLUETransformer(_A ) a : str = generic_train(_A , _A ) # Optionally, predict on dev set and write to output_dir if args.do_predict: a : Tuple = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_A ) ) a : Any = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_A ) if __name__ == "__main__": main()
105
import re def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(_A, _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
342
0
'''simple docstring''' import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( """The `inpainting.py` script is outdated. Please use directly `from diffusers import""" """ StableDiffusionInpaintPipeline` instead.""" )
309
import doctest from collections import deque import numpy as np class snake_case__ : def __init__( self ) -> None: __magic_name__ : Any = [2, 1, 2, -1] __magic_name__ : Tuple = [1, 2, 3, 4] def __magic_name__ ( self ) -> list[float]: __magic_name__ : Optional[Any] = len(self.first_signal ) __magic_name__ : Dict = len(self.second_signal ) __magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ ) # create a zero matrix of max_length x max_length __magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__ ): __magic_name__ : List[str] = deque(self.second_signal ) rotated_signal.rotate(lowerCAmelCase__ ) for j, item in enumerate(lowerCAmelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal __magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
342
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class lowerCAmelCase_ : '''simple docstring''' lowerCAmelCase_ : int lowerCAmelCase_ : Node | None = None lowerCAmelCase_ : Node | None = None def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = Node(1 ) UpperCAmelCase__ = Node(2 ) UpperCAmelCase__ = Node(3 ) UpperCAmelCase__ = Node(4 ) UpperCAmelCase__ = Node(5 ) return tree def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = [] if root is None: return output UpperCAmelCase__ = deque([root] ) while process_queue: UpperCAmelCase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any ): '''simple docstring''' UpperCAmelCase__ = [] def populate_output(SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(_A , _A ) return output def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' UpperCAmelCase__ = [] def populate_output(SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[Any] ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(_A , _A ) return output def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Tuple ): '''simple docstring''' if root is None: return [] UpperCAmelCase__ = [] UpperCAmelCase__ = 0 UpperCAmelCase__ = height(_A ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_A , _A ) ) UpperCAmelCase__ = 1 else: output.append(get_nodes_from_right_to_left(_A , _A ) ) UpperCAmelCase__ = 0 return output def _UpperCamelCase ( ): # Main function for testing. '''simple docstring''' UpperCAmelCase__ = make_tree() print(F'''In-order Traversal: {inorder(_A )}''' ) print(F'''Pre-order Traversal: {preorder(_A )}''' ) print(F'''Post-order Traversal: {postorder(_A )}''' , """\n""" ) print(F'''Height of Tree: {height(_A )}''' , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(_A ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(_A ) + 1 ): print(F'''Level {level}:''' , get_nodes_from_left_to_right(_A , level=_A ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(_A ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
346
from math import factorial def UpperCamelCase ( _A, _A, _A ): """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(_A, _A ) or not isinstance(_A, _A ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) __magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __magic_name__ : Any = float(factorial(_A ) ) coefficient /= factorial(_A ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
342
0
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : Any = { "facebook/detr-resnet-50": "https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json", # See all DETR models at https://huggingface.co/models?filter=detr } class lowercase ( _lowerCAmelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''detr''' __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''past_key_values'''] __SCREAMING_SNAKE_CASE : Dict = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , snake_case=True , snake_case=None , snake_case=3 , snake_case=100 , snake_case=6 , snake_case=2048 , snake_case=8 , snake_case=6 , snake_case=2048 , snake_case=8 , snake_case=0.0 , snake_case=0.0 , snake_case=True , snake_case="relu" , snake_case=256 , snake_case=0.1 , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1.0 , snake_case=False , snake_case="sine" , snake_case="resnet50" , snake_case=True , snake_case=False , snake_case=1 , snake_case=5 , snake_case=2 , snake_case=1 , snake_case=1 , snake_case=5 , snake_case=2 , snake_case=0.1 , **snake_case , ): if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) snake_case_ = CONFIG_MAPPING["""resnet"""](out_features=['stage4'] ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ = backbone_config.get('model_type' ) snake_case_ = CONFIG_MAPPING[backbone_model_type] snake_case_ = config_class.from_dict(lowerCAmelCase__ ) # set timm attributes to None snake_case_ = None, None, None snake_case_ = use_timm_backbone snake_case_ = backbone_config snake_case_ = num_channels snake_case_ = num_queries snake_case_ = d_model snake_case_ = encoder_ffn_dim snake_case_ = encoder_layers snake_case_ = encoder_attention_heads snake_case_ = decoder_ffn_dim snake_case_ = decoder_layers snake_case_ = decoder_attention_heads snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = activation_function snake_case_ = init_std snake_case_ = init_xavier_std snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = encoder_layers snake_case_ = auxiliary_loss snake_case_ = position_embedding_type snake_case_ = backbone snake_case_ = use_pretrained_backbone snake_case_ = dilation # Hungarian matcher snake_case_ = class_cost snake_case_ = bbox_cost snake_case_ = giou_cost # Loss coefficients snake_case_ = mask_loss_coefficient snake_case_ = dice_loss_coefficient snake_case_ = bbox_loss_coefficient snake_case_ = giou_loss_coefficient snake_case_ = eos_coefficient super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def a ( self ): return self.encoder_attention_heads @property def a ( self ): return self.d_model @classmethod def a ( cls , snake_case , **snake_case ): return cls(backbone_config=lowerCAmelCase__ , **lowerCAmelCase__ ) def a ( self ): snake_case_ = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case_ = self.backbone_config.to_dict() snake_case_ = self.__class__.model_type return output class lowercase ( _lowerCAmelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = version.parse('''1.11''' ) @property def a ( self ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def a ( self ): return 1e-5 @property def a ( self ): return 12
285
from __future__ import annotations def UpperCamelCase ( _A ): # This function is recursive """simple docstring""" __magic_name__ : str = len(_A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __magic_name__ : Dict = array[0] __magic_name__ : Optional[Any] = False __magic_name__ : Tuple = 1 __magic_name__ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __magic_name__ : Union[str, Any] = True __magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]] __magic_name__ : Dict = longest_subsequence(_A ) if len(_A ) > len(_A ): __magic_name__ : Tuple = temp_array else: i += 1 __magic_name__ : Any = [element for element in array[1:] if element >= pivot] __magic_name__ : Dict = [pivot, *longest_subsequence(_A )] if len(_A ) > len(_A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
342
0
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : def __init__( self : Dict , a : int , a : str=13 , a : Dict=[30, 30] , a : List[str]=2 , a : Optional[Any]=3 , a : Any=True , a : str=True , a : Dict=32 , a : Optional[int]=5 , a : int=4 , a : int=37 , a : List[Any]="gelu" , a : Optional[Any]=0.1 , a : Dict=0.1 , a : Optional[int]=10 , a : int=0.0_2 , a : str=3 , a : int=None , a : List[Any]=8 , a : List[Any]=10 , ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = parent lowerCAmelCase__ : Tuple = batch_size lowerCAmelCase__ : Any = image_size lowerCAmelCase__ : int = patch_size lowerCAmelCase__ : Optional[int] = num_channels lowerCAmelCase__ : List[Any] = is_training lowerCAmelCase__ : Union[str, Any] = use_labels lowerCAmelCase__ : List[str] = hidden_size lowerCAmelCase__ : str = num_hidden_layers lowerCAmelCase__ : Optional[int] = num_attention_heads lowerCAmelCase__ : List[str] = intermediate_size lowerCAmelCase__ : int = hidden_act lowerCAmelCase__ : List[Any] = hidden_dropout_prob lowerCAmelCase__ : str = attention_probs_dropout_prob lowerCAmelCase__ : int = type_sequence_label_size lowerCAmelCase__ : int = initializer_range lowerCAmelCase__ : Union[str, Any] = num_labels lowerCAmelCase__ : Dict = scope lowerCAmelCase__ : Any = n_targets lowerCAmelCase__ : Any = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens lowerCAmelCase__ : Optional[int] = (image_size[1] // patch_size) * (image_size[0] // patch_size) lowerCAmelCase__ : Union[str, Any] = num_patches + 1 + self.num_detection_tokens def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) lowerCAmelCase__ : Dict = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) lowerCAmelCase__ : str = [] for i in range(self.batch_size ): lowerCAmelCase__ : Any = {} lowerCAmelCase__ : str = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=lowerCAmelCase__ ) lowerCAmelCase__ : Dict = torch.rand(self.n_targets , 4 , device=lowerCAmelCase__ ) labels.append(lowerCAmelCase__ ) lowerCAmelCase__ : Optional[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self : Any ): '''simple docstring''' return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def _lowerCamelCase ( self : int , a : Optional[int] , a : Union[str, Any] , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = YolosModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCAmelCase__ : int = model(lowerCAmelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def _lowerCamelCase ( self : Optional[int] , a : Dict , a : Dict , a : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = YolosForObjectDetection(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowerCAmelCase__ : Optional[int] = model(pixel_values=lowerCAmelCase__ ) lowerCAmelCase__ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) lowerCAmelCase__ : List[Any] = model(pixel_values=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase__ : Optional[Any] = config_and_inputs lowerCAmelCase__ : Dict = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class A__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase = (YolosModel, YolosForObjectDetection) if is_torch_available() else () lowercase = ( {'''feature-extraction''': YolosModel, '''object-detection''': YolosForObjectDetection} if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def _lowerCamelCase ( self : str , a : int , a : Optional[Any] , a : Dict=False ): '''simple docstring''' lowerCAmelCase__ : Dict = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": lowerCAmelCase__ : str = [] for i in range(self.model_tester.batch_size ): lowerCAmelCase__ : Any = {} lowerCAmelCase__ : Union[str, Any] = torch.ones( size=(self.model_tester.n_targets,) , device=lowerCAmelCase__ , dtype=torch.long ) lowerCAmelCase__ : Dict = torch.ones( self.model_tester.n_targets , 4 , device=lowerCAmelCase__ , dtype=torch.float ) labels.append(lowerCAmelCase__ ) lowerCAmelCase__ : List[str] = labels return inputs_dict def _lowerCamelCase ( self : List[Any] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = YolosModelTester(self ) lowerCAmelCase__ : Optional[Any] = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def _lowerCamelCase ( self : List[str] ): '''simple docstring''' pass def _lowerCamelCase ( self : Dict ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : str = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCAmelCase__ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Tuple = model_class(lowerCAmelCase__ ) lowerCAmelCase__ : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ : Tuple = [*signature.parameters.keys()] lowerCAmelCase__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ : Tuple = True # in YOLOS, the seq_len is different lowerCAmelCase__ : Optional[Any] = self.model_tester.expected_seq_len for model_class in self.all_model_classes: lowerCAmelCase__ : int = True lowerCAmelCase__ : str = False lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) lowerCAmelCase__ : List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCAmelCase__ : str = True lowerCAmelCase__ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) lowerCAmelCase__ : Any = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) lowerCAmelCase__ : Optional[int] = len(lowerCAmelCase__ ) # Check attention is always last and order is fine lowerCAmelCase__ : Dict = True lowerCAmelCase__ : Optional[Any] = True lowerCAmelCase__ : Optional[int] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ : str = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) lowerCAmelCase__ : Dict = 1 self.assertEqual(out_len + added_hidden_states , len(lowerCAmelCase__ ) ) lowerCAmelCase__ : Dict = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' def check_hidden_states_output(a : Dict , a : Any , a : Optional[Any] ): lowerCAmelCase__ : List[str] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase__ : Tuple = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) lowerCAmelCase__ : List[Any] = outputs.hidden_states lowerCAmelCase__ : Any = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # YOLOS has a different seq_length lowerCAmelCase__ : Tuple = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowerCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ : Any = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase__ : List[str] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*lowerCAmelCase__ ) @slow def _lowerCamelCase ( self : Any ): '''simple docstring''' for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ : Optional[int] = YolosModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def lowerCAmelCase__ ( ) -> Any: lowerCAmelCase__ : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def _lowerCamelCase ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(lowerCAmelCase__ ) lowerCAmelCase__ : List[Any] = self.default_image_processor lowerCAmelCase__ : Tuple = prepare_img() lowerCAmelCase__ : Dict = image_processor(images=lowerCAmelCase__ , return_tensors='pt' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase__ : int = model(inputs.pixel_values ) # verify outputs lowerCAmelCase__ : Optional[int] = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) lowerCAmelCase__ : List[Any] = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] , device=lowerCAmelCase__ , ) lowerCAmelCase__ : str = torch.tensor( [[0.2_5_5_9, 0.5_4_5_5, 0.4_7_0_6], [0.2_9_8_9, 0.7_2_7_9, 0.1_8_7_5], [0.7_7_3_2, 0.4_0_1_7, 0.4_4_6_2]] , device=lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) ) # verify postprocessing lowerCAmelCase__ : int = image_processor.post_process_object_detection( lowerCAmelCase__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] lowerCAmelCase__ : Any = torch.tensor([0.9_9_9_4, 0.9_7_9_0, 0.9_9_6_4, 0.9_9_7_2, 0.9_8_6_1] ).to(lowerCAmelCase__ ) lowerCAmelCase__ : List[Any] = [75, 75, 17, 63, 17] lowerCAmelCase__ : int = torch.tensor([335.0_609, 79.3_848, 375.4_216, 187.2_495] ).to(lowerCAmelCase__ ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , lowerCAmelCase__ , atol=1E-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , lowerCAmelCase__ ) self.assertTrue(torch.allclose(results['boxes'][0, :] , lowerCAmelCase__ ) )
212
import argparse import os import re __magic_name__: Optional[Any] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings __magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def UpperCamelCase ( _A, _A = False ): """simple docstring""" with open(_A, """r""", encoding="""utf-8""" ) as f: __magic_name__ : Any = f.read() __magic_name__ : List[Any] = content.split("""\n""" ) __magic_name__ : List[str] = [] __magic_name__ : Union[str, Any] = 0 while line_idx < len(_A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 __magic_name__ : List[Any] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __magic_name__ : List[str] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_A, """w""", encoding="""utf-8""" ) as f: f.write("""\n""".join(_A ) ) elif "\n".join(_A ) != content: return True def UpperCamelCase ( _A = False ): """simple docstring""" __magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )] __magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames] if not overwrite and any(_A ): __magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix' """ this.""" ) if __name__ == "__main__": __magic_name__: List[str] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __magic_name__: List[str] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
342
0
import os import re import shutil import sys import tempfile import unittest import black lowercase__ =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. lowercase__ =" \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class UpperCamelCase__ ( unittest.TestCase ): def lowerCAmelCase (self : Optional[int] ): __a : Any = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) __a : List[Any] = self.diffusers_dir shutil.copy( os.path.join(lowerCAmelCase__ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def lowerCAmelCase (self : List[Any] ): __a : Dict = """src/diffusers""" shutil.rmtree(self.diffusers_dir ) def lowerCAmelCase (self : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : List[str] , snake_case_ : Tuple=None ): __a : Any = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: __a : Tuple = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result __a : Dict = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) __a : Dict = black.format_str(lowerCAmelCase__ , mode=lowerCAmelCase__ ) __a : Union[str, Any] = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(lowerCAmelCase__ , '''w''' , newline='''\n''' ) as f: f.write(lowerCAmelCase__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase__ ) with open(lowerCAmelCase__ , '''r''' ) as f: self.assertTrue(f.read() , lowerCAmelCase__ ) def lowerCAmelCase (self : List[str] ): __a : Optional[Any] = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCAmelCase (self : Tuple ): # Base copy consistency self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , lowerCAmelCase__ , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , lowerCAmelCase__ ) , ) # Copy consistency with a really long name __a : Dict = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" , f"{long_class_name}SchedulerOutput" , re.sub('''Bert''' , lowerCAmelCase__ , lowerCAmelCase__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , lowerCAmelCase__ , overwrite_result=re.sub('''DDPM''' , '''Test''' , lowerCAmelCase__ ) , )
216
__magic_name__: str = [0, 2, 4, 6, 8] __magic_name__: Optional[int] = [1, 3, 5, 7, 9] def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" if remaining_length == 0: if digits[0] == 0 or digits[-1] == 0: return 0 for i in range(length // 2 - 1, -1, -1 ): remainder += digits[i] + digits[length - i - 1] if remainder % 2 == 0: return 0 remainder //= 10 return 1 if remaining_length == 1: if remainder % 2 == 0: return 0 __magic_name__ : List[Any] = 0 for digit in range(10 ): __magic_name__ : Optional[int] = digit result += reversible_numbers( 0, (remainder + 2 * digit) // 10, _A, _A ) return result __magic_name__ : str = 0 for digita in range(10 ): __magic_name__ : Optional[Any] = digita if (remainder + digita) % 2 == 0: __magic_name__ : Tuple = ODD_DIGITS else: __magic_name__ : str = EVEN_DIGITS for digita in other_parity_digits: __magic_name__ : Tuple = digita result += reversible_numbers( remaining_length - 2, (remainder + digita + digita) // 10, _A, _A, ) return result def UpperCamelCase ( _A = 9 ): """simple docstring""" __magic_name__ : List[str] = 0 for length in range(1, max_power + 1 ): result += reversible_numbers(_A, 0, [0] * length, _A ) return result if __name__ == "__main__": print(F"""{solution() = }""")
342
0
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=3_2 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase=[1_0, 2_0, 3_0, 4_0] , _lowerCamelCase=[2, 2, 3, 2] , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=3_7 , _lowerCamelCase="gelu" , _lowerCamelCase=1_0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=["stage2", "stage3", "stage4"] , _lowerCamelCase=3 , _lowerCamelCase=None , ): lowercase = parent lowercase = batch_size lowercase = image_size lowercase = num_channels lowercase = num_stages lowercase = hidden_sizes lowercase = depths lowercase = is_training lowercase = use_labels lowercase = intermediate_size lowercase = hidden_act lowercase = type_sequence_label_size lowercase = initializer_range lowercase = out_features lowercase = num_labels lowercase = scope lowercase = num_stages def UpperCamelCase_ ( self ): lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self ): return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def UpperCamelCase_ ( self ): return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=5_1_2 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=lowerCAmelCase__ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=4_0 , auxiliary_channels=2_5_6 , auxiliary_num_convs=1 , auxiliary_concat_input=lowerCAmelCase__ , loss_ignore_index=2_5_5 , num_labels=self.num_labels , ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowercase = UperNetForSemanticSegmentation(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase = model(lowerCAmelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCamelCase_ ( self ): lowercase = self.prepare_config_and_inputs() ( lowercase ) = config_and_inputs lowercase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( _lowerCAmelCase, _lowerCAmelCase, unittest.TestCase ): UpperCAmelCase_ : List[Any] =(UperNetForSemanticSegmentation,) if is_torch_available() else () UpperCAmelCase_ : Any ={'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} UpperCAmelCase_ : int =False UpperCAmelCase_ : Any =False UpperCAmelCase_ : Optional[Any] =False UpperCAmelCase_ : List[str] =False UpperCAmelCase_ : int =False UpperCAmelCase_ : Dict =False def UpperCamelCase_ ( self ): lowercase = UperNetModelTester(self ) lowercase = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=3_7 ) def UpperCamelCase_ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self ): return def UpperCamelCase_ ( self ): lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(lowerCAmelCase__ ) lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase = [*signature.parameters.keys()] lowercase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def UpperCamelCase_ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCAmelCase__ ) @unittest.skip(reason='UperNet does not use inputs_embeds' ) def UpperCamelCase_ ( self ): pass @unittest.skip(reason='UperNet does not support input and output embeddings' ) def UpperCamelCase_ ( self ): pass @unittest.skip(reason='UperNet does not have a base model' ) def UpperCamelCase_ ( self ): pass @unittest.skip(reason='UperNet does not have a base model' ) def UpperCamelCase_ ( self ): pass @require_torch_multi_gpu @unittest.skip(reason='UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCamelCase_ ( self ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase_ ( self ): pass def UpperCamelCase_ ( self ): def check_hidden_states_output(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowercase = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): lowercase = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) lowercase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase_ ( self ): lowercase = self.model_tester.prepare_config_and_inputs_for_common() lowercase = _config_zero_init(lowerCAmelCase__ ) lowercase = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: lowercase = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip(reason='UperNet does not have tied weights' ) def UpperCamelCase_ ( self ): pass @slow def UpperCamelCase_ ( self ): for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = UperNetForSemanticSegmentation.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowercase = hf_hub_download( repo_id='hf-internal-testing/fixtures_ade20k' , repo_type='dataset' , filename='ADE_val_00000001.jpg' ) lowercase = Image.open(_A ).convert('RGB' ) return image @require_torch @require_vision @slow class a ( unittest.TestCase ): def UpperCamelCase_ ( self ): lowercase = AutoImageProcessor.from_pretrained('openmmlab/upernet-swin-tiny' ) lowercase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-swin-tiny' ).to(lowerCAmelCase__ ) lowercase = prepare_img() lowercase = processor(images=lowerCAmelCase__ , return_tensors='pt' ).to(lowerCAmelCase__ ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) lowercase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) lowercase = torch.tensor( [[-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.5_9_5_8, -7.5_9_5_8, -7.4_3_0_2], [-7.4_7_9_7, -7.4_7_9_7, -7.3_0_6_8]] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) ) def UpperCamelCase_ ( self ): lowercase = AutoImageProcessor.from_pretrained('openmmlab/upernet-convnext-tiny' ) lowercase = UperNetForSemanticSegmentation.from_pretrained('openmmlab/upernet-convnext-tiny' ).to(lowerCAmelCase__ ) lowercase = prepare_img() lowercase = processor(images=lowerCAmelCase__ , return_tensors='pt' ).to(lowerCAmelCase__ ) with torch.no_grad(): lowercase = model(**lowerCAmelCase__ ) lowercase = torch.Size((1, model.config.num_labels, 5_1_2, 5_1_2) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) lowercase = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
220
def UpperCamelCase ( _A ): """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("""String must only contain alphabetic characters.""" ) __magic_name__ : int = sorted(string.lower() ) return len(_A ) == len(set(_A ) ) if __name__ == "__main__": __magic_name__: Dict = input("Enter a string ").strip() __magic_name__: Union[str, Any] = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
342
0
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __magic_name__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( _lowerCAmelCase ): """simple docstring""" __lowercase : List[Any] = ['''pixel_values'''] def __init__( self , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_5_5 , lowerCAmelCase__ = True , lowerCAmelCase__ = 8 , **lowerCAmelCase__ , ): super().__init__(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = do_rescale __SCREAMING_SNAKE_CASE = rescale_factor __SCREAMING_SNAKE_CASE = do_pad __SCREAMING_SNAKE_CASE = pad_size def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None , **lowerCAmelCase__): return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None): __SCREAMING_SNAKE_CASE = get_image_size(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = (old_height // size + 1) * size - old_height __SCREAMING_SNAKE_CASE = (old_width // size + 1) * size - old_width return pad(lowerCAmelCase__ , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = ChannelDimension.FIRST , **lowerCAmelCase__ , ): __SCREAMING_SNAKE_CASE = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE = do_pad if do_pad is not None else self.do_pad __SCREAMING_SNAKE_CASE = pad_size if pad_size is not None else self.pad_size __SCREAMING_SNAKE_CASE = make_list_of_images(lowerCAmelCase__) if not valid_images(lowerCAmelCase__): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""") if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""") # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE = [to_numpy_array(lowerCAmelCase__) for image in images] if do_rescale: __SCREAMING_SNAKE_CASE = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__) for image in images] if do_pad: __SCREAMING_SNAKE_CASE = [self.pad(lowerCAmelCase__ , size=lowerCAmelCase__) for image in images] __SCREAMING_SNAKE_CASE = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__) for image in images] __SCREAMING_SNAKE_CASE = {"""pixel_values""": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__)
100
import warnings from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401 warnings.warn( "The `inpainting.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionInpaintPipeline` instead." )
342
0
def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] ): '''simple docstring''' lowerCamelCase_ = [1] lowerCamelCase_ = 0, 0, 0 lowerCamelCase_ = ugly_nums[ia] * 2 lowerCamelCase_ = ugly_nums[ia] * 3 lowerCamelCase_ = ugly_nums[ia] * 5 for _ in range(1 , _A ): lowerCamelCase_ = min(_A , _A , _A ) ugly_nums.append(_A ) if next_num == next_a: ia += 1 lowerCamelCase_ = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 lowerCamelCase_ = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 lowerCamelCase_ = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(F"""{ugly_numbers(200) = }""")
204
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ = True , lowerCAmelCase__ = None , lowerCAmelCase__ = 32 , lowerCAmelCase__ = True , lowerCAmelCase__ = 1 / 2_55 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowerCAmelCase__ = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowerCAmelCase__ = True , lowerCAmelCase__=7 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=3 , ) -> Union[str, Any]: __magic_name__ : str = parent __magic_name__ : Dict = do_resize __magic_name__ : Union[str, Any] = size if size is not None else {"""shortest_edge""": 2_88} __magic_name__ : Union[str, Any] = size_divisor __magic_name__ : Union[str, Any] = do_rescale __magic_name__ : Dict = rescale_factor __magic_name__ : Union[str, Any] = do_normalize __magic_name__ : List[str] = do_center_crop __magic_name__ : Tuple = image_mean __magic_name__ : Tuple = image_std __magic_name__ : Tuple = do_pad __magic_name__ : int = batch_size __magic_name__ : List[Any] = num_channels __magic_name__ : int = min_resolution __magic_name__ : str = max_resolution def __magic_name__ ( self ) -> str: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> int: if not batched: __magic_name__ : Dict = self.size["""shortest_edge"""] __magic_name__ : List[str] = image_inputs[0] if isinstance(lowerCAmelCase__ , Image.Image ): __magic_name__ ,__magic_name__ : List[Any] = image.size else: __magic_name__ ,__magic_name__ : Dict = image.shape[1], image.shape[2] __magic_name__ : List[Any] = size / min(lowerCAmelCase__ , lowerCAmelCase__ ) if h < w: __magic_name__ ,__magic_name__ : str = size, scale * w else: __magic_name__ ,__magic_name__ : Optional[Any] = scale * h, size __magic_name__ : Tuple = int((13_33 / 8_00) * size ) if max(lowerCAmelCase__ , lowerCAmelCase__ ) > max_size: __magic_name__ : Union[str, Any] = max_size / max(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = newh * scale __magic_name__ : Any = neww * scale __magic_name__ ,__magic_name__ : str = int(newh + 0.5 ), int(neww + 0.5 ) __magic_name__ ,__magic_name__ : int = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: __magic_name__ : Union[str, Any] = [] for image in image_inputs: __magic_name__ ,__magic_name__ : int = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __magic_name__ : Optional[Any] = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[0] )[0] __magic_name__ : Tuple = max(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : int = BridgeTowerImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Any = BridgeTowerImageProcessingTester(self ) @property def __magic_name__ ( self ) -> List[Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Any: __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size_divisor""" ) ) def __magic_name__ ( self ) -> Optional[int]: pass def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : str = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image processor __magic_name__ : str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[Any] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Any = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Optional[int] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __magic_name__ ( self ) -> str: # Initialize image processor __magic_name__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : Any = self.image_processor_tester.get_expected_values(lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __magic_name__ : Dict = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values __magic_name__ ,__magic_name__ : List[str] = self.image_processor_tester.get_expected_values(lowerCAmelCase__ , batched=lowerCAmelCase__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , )
342
0
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A__ : Tuple = logging.get_logger(__name__) A__ : Any = { "vocab_file": "vocab.json", "tokenizer_config_file": "tokenizer_config.json", "merges_file": "merges.txt", } A__ : Optional[int] = { "vocab_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json" ), }, "tokenizer_config_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json" ), }, "merges_file": { "facebook/s2t-wav2vec2-large-en-de": ( "https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt" ), }, } A__ : str = "</w>" A__ : Tuple = "@@ " def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = set() lowercase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase__ = char return pairs # Speech2Text2 has no max input length A__ : Dict = {"facebook/s2t-wav2vec2-large-en-de": 10_24} class _UpperCAmelCase ( _lowerCAmelCase ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = ['''input_ids''', '''attention_mask'''] def __init__( self : int, lowerCamelCase : Tuple, lowerCamelCase : Tuple="<s>", lowerCamelCase : Any="<pad>", lowerCamelCase : int="</s>", lowerCamelCase : Optional[int]="<unk>", lowerCamelCase : Optional[int]=False, lowerCamelCase : Optional[Any]=None, **lowerCamelCase : int, ): '''simple docstring''' super().__init__( unk_token=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, do_lower_case=lowerCAmelCase__, **lowerCAmelCase__, ) lowercase__ = do_lower_case with open(lowerCAmelCase__, encoding='''utf-8''' ) as vocab_handle: lowercase__ = json.load(lowerCAmelCase__ ) lowercase__ = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"""No merges files provided. {self.__class__.__name__} can only be used for decoding.""" ) lowercase__ = None lowercase__ = None else: with open(lowerCAmelCase__, encoding='''utf-8''' ) as merges_handle: lowercase__ = merges_handle.read().split('''\n''' )[:-1] lowercase__ = [tuple(merge.split()[:2] ) for merge in merges] lowercase__ = dict(zip(lowerCAmelCase__, range(len(lowerCAmelCase__ ) ) ) ) lowercase__ = {} @property def lowercase__ ( self : str ): '''simple docstring''' return len(self.decoder ) def lowercase__ ( self : List[Any] ): '''simple docstring''' return dict(self.encoder, **self.added_tokens_encoder ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Any ): '''simple docstring''' lowercase__ = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowercase__ = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: lowercase__ = min(lowerCAmelCase__, key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCAmelCase__, float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowercase__ = bigram lowercase__ = [] lowercase__ = 0 while i < len(lowerCAmelCase__ ): try: lowercase__ = word.index(lowerCAmelCase__, lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase__ = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase__ = tuple(lowerCAmelCase__ ) lowercase__ = new_word if len(lowerCAmelCase__ ) == 1: break else: lowercase__ = get_pairs(lowerCAmelCase__ ) lowercase__ = """ """.join(lowerCAmelCase__ ) if word == "\n " + BPE_TOKEN_MERGES: lowercase__ = """\n""" + BPE_TOKEN_MERGES if word.endswith(lowerCAmelCase__ ): lowercase__ = word.replace(lowerCAmelCase__, '''''' ) lowercase__ = word.replace(''' ''', lowerCAmelCase__ ) lowercase__ = word return word def lowercase__ ( self : Union[str, Any], lowerCamelCase : Any ): '''simple docstring''' if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: lowercase__ = text.lower() lowercase__ = text.split() lowercase__ = [] for token in text: if token: split_tokens.extend(list(self.bpe(lowerCAmelCase__ ).split(''' ''' ) ) ) return split_tokens def lowercase__ ( self : Tuple, lowerCamelCase : Tuple ): '''simple docstring''' return self.encoder.get(lowerCAmelCase__, self.encoder.get(self.unk_token ) ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[str] ): '''simple docstring''' lowercase__ = self.decoder.get(lowerCAmelCase__, self.unk_token ) return result def lowercase__ ( self : Optional[Any], lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = """ """.join(lowerCAmelCase__ ) # make sure @@ tokens are concatenated lowercase__ = """""".join(string.split(lowerCAmelCase__ ) ) return string def lowercase__ ( self : str, lowerCamelCase : Optional[Any], lowerCamelCase : List[Any] = None ): '''simple docstring''' if not os.path.isdir(lowerCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( lowerCAmelCase__, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join( lowerCAmelCase__, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCAmelCase__, '''w''', encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=lowerCAmelCase__, ensure_ascii=lowerCAmelCase__ ) + '''\n''' ) lowercase__ = 0 if self.bpe_ranks is None: return (vocab_file,) with open(lowerCAmelCase__, '''w''', encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowercase__ = token_index writer.write(''' '''.join(lowerCAmelCase__ ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
207
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__: Tuple = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__: Union[str, Any] = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] __magic_name__: Optional[Any] = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __magic_name__: Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
342
0
from __future__ import annotations def __lowercase ( _A , _A , _A ) -> Optional[int]: if days_between_payments <= 0: raise ValueError("""days_between_payments must be > 0""" ) if daily_interest_rate < 0: raise ValueError("""daily_interest_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * daily_interest_rate * days_between_payments def __lowercase ( _A , _A , _A , ) -> Any: if number_of_compounding_periods <= 0: raise ValueError("""number_of_compounding_periods must be > 0""" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("""nominal_annual_interest_rate_percentage must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def __lowercase ( _A , _A , _A , ) -> Tuple: if number_of_years <= 0: raise ValueError("""number_of_years must be > 0""" ) if nominal_annual_percentage_rate < 0: raise ValueError("""nominal_annual_percentage_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return compound_interest( _A , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
245
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__: Dict = logging.get_logger(__name__) __magic_name__: List[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all BART models at https://huggingface.co/models?filter=bart __magic_name__: Optional[Any] = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, } __magic_name__: List[Any] = { "facebook/bart-base": 1_024, "facebook/bart-large": 1_024, "facebook/bart-large-mnli": 1_024, "facebook/bart-large-cnn": 1_024, "facebook/bart-large-xsum": 1_024, "yjernite/bart_eli5": 1_024, } @lru_cache() def UpperCamelCase ( ): """simple docstring""" __magic_name__ : Any = ( list(range(ord("""!""" ), ord("""~""" ) + 1 ) ) + list(range(ord("""¡""" ), ord("""¬""" ) + 1 ) ) + list(range(ord("""®""" ), ord("""ÿ""" ) + 1 ) ) ) __magic_name__ : Any = bs[:] __magic_name__ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 __magic_name__ : List[str] = [chr(_A ) for n in cs] return dict(zip(_A, _A ) ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : str = set() __magic_name__ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __magic_name__ : List[Any] = char return pairs class snake_case__ ( _lowerCAmelCase ): lowercase__ : Union[str, Any] = VOCAB_FILES_NAMES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__="replace" , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Dict: __magic_name__ : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token __magic_name__ : Optional[int] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token __magic_name__ : str = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token __magic_name__ : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding="""utf-8""" ) as vocab_handle: __magic_name__ : Union[str, Any] = json.load(lowerCAmelCase__ ) __magic_name__ : Any = {v: k for k, v in self.encoder.items()} __magic_name__ : Tuple = errors # how to handle errors in decoding __magic_name__ : Tuple = bytes_to_unicode() __magic_name__ : Dict = {v: k for k, v in self.byte_encoder.items()} with open(lowerCAmelCase__ , encoding="""utf-8""" ) as merges_handle: __magic_name__ : Optional[Any] = merges_handle.read().split("""\n""" )[1:-1] __magic_name__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] __magic_name__ : int = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : str = {} __magic_name__ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __magic_name__ : Union[str, Any] = re.compile(R"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property def __magic_name__ ( self ) -> Optional[Any]: return len(self.encoder ) def __magic_name__ ( self ) -> Optional[int]: return dict(self.encoder , **self.added_tokens_encoder ) def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if token in self.cache: return self.cache[token] __magic_name__ : Union[str, Any] = tuple(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = get_pairs(lowerCAmelCase__ ) if not pairs: return token while True: __magic_name__ : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __magic_name__ ,__magic_name__ : List[str] = bigram __magic_name__ : Any = [] __magic_name__ : Any = 0 while i < len(lowerCAmelCase__ ): try: __magic_name__ : str = word.index(lowerCAmelCase__ , lowerCAmelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __magic_name__ : Optional[Any] = j if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __magic_name__ : str = tuple(lowerCAmelCase__ ) __magic_name__ : Optional[int] = new_word if len(lowerCAmelCase__ ) == 1: break else: __magic_name__ : List[str] = get_pairs(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = """ """.join(lowerCAmelCase__ ) __magic_name__ : str = word return word def __magic_name__ ( self , lowerCAmelCase__ ) -> Tuple: __magic_name__ : str = [] for token in re.findall(self.pat , lowerCAmelCase__ ): __magic_name__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(""" """ ) ) return bpe_tokens def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.decoder.get(lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : Tuple = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + """\n""" ) __magic_name__ : Optional[Any] = 0 with open(lowerCAmelCase__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' """ Please check that the tokenizer is not corrupted!""" ) __magic_name__ : Optional[int] = token_index writer.write(""" """.join(lowerCAmelCase__ ) + """\n""" ) index += 1 return vocab_file, merge_file def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] __magic_name__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) if token_ids_a is None: return [1] + ([0] * len(lowerCAmelCase__ )) + [1] return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : Dict = [self.sep_token_id] __magic_name__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__=False , **lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Any = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()): __magic_name__ : List[Any] = """ """ + text return (text, kwargs)
342
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a : int = { "configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"], "feature_extraction_whisper": ["WhisperFeatureExtractor"], "processing_whisper": ["WhisperProcessor"], "tokenization_whisper": ["WhisperTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = ["WhisperTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ "WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "WhisperForConditionalGeneration", "WhisperModel", "WhisperPreTrainedModel", "WhisperForAudioClassification", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : List[str] = [ "TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWhisperForConditionalGeneration", "TFWhisperModel", "TFWhisperPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Any = [ "FlaxWhisperForConditionalGeneration", "FlaxWhisperModel", "FlaxWhisperPreTrainedModel", "FlaxWhisperForAudioClassification", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=32 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=[32, 64, 1_28] , lowerCAmelCase__=[1, 2, 1] , lowerCAmelCase__=[2, 2, 4] , lowerCAmelCase__=2 , lowerCAmelCase__=2.0 , lowerCAmelCase__=True , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.1 , lowerCAmelCase__="gelu" , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=0.0_2 , lowerCAmelCase__=1e-5 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=10 , lowerCAmelCase__=8 , lowerCAmelCase__=["stage1", "stage2"] , lowerCAmelCase__=[1, 2] , ) -> str: __magic_name__ : Optional[int] = parent __magic_name__ : Any = batch_size __magic_name__ : Union[str, Any] = image_size __magic_name__ : Optional[int] = patch_size __magic_name__ : Union[str, Any] = num_channels __magic_name__ : str = embed_dim __magic_name__ : int = hidden_sizes __magic_name__ : Union[str, Any] = depths __magic_name__ : List[str] = num_heads __magic_name__ : str = window_size __magic_name__ : Optional[Any] = mlp_ratio __magic_name__ : Dict = qkv_bias __magic_name__ : Dict = hidden_dropout_prob __magic_name__ : Optional[Any] = attention_probs_dropout_prob __magic_name__ : List[Any] = drop_path_rate __magic_name__ : Optional[Any] = hidden_act __magic_name__ : int = use_absolute_embeddings __magic_name__ : Dict = patch_norm __magic_name__ : Tuple = layer_norm_eps __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[int] = is_training __magic_name__ : Optional[Any] = scope __magic_name__ : Union[str, Any] = use_labels __magic_name__ : Optional[Any] = type_sequence_label_size __magic_name__ : Union[str, Any] = encoder_stride __magic_name__ : List[Any] = out_features __magic_name__ : Union[str, Any] = out_indices def __magic_name__ ( self ) -> str: __magic_name__ : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : Optional[Any] = None if self.use_labels: __magic_name__ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Dict = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> List[Any]: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : Any = FocalNetModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[int] = model(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __magic_name__ : Optional[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Tuple = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __magic_name__ : Optional[Any] = None __magic_name__ : List[str] = FocalNetBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Optional[int] = FocalNetForMaskedImageModeling(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : str = model(lowerCAmelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : int = FocalNetForMaskedImageModeling(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : List[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : int = self.type_sequence_label_size __magic_name__ : Tuple = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : int = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __magic_name__ : Optional[int] = 1 __magic_name__ : Dict = FocalNetForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __magic_name__ : Dict = model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __magic_name__ ( self ) -> int: __magic_name__ : int = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Dict = config_and_inputs __magic_name__ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : str = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ : Any = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ : Dict = False lowercase__ : Dict = False lowercase__ : int = False lowercase__ : Tuple = False lowercase__ : Optional[Any] = False def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = FocalNetModelTester(self ) __magic_name__ : int = ConfigTester(self , config_class=lowerCAmelCase__ , embed_dim=37 , has_text_modality=lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __magic_name__ ( self ) -> List[str]: return def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def __magic_name__ ( self ) -> List[str]: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def __magic_name__ ( self ) -> List[Any]: pass def __magic_name__ ( self ) -> List[Any]: __magic_name__ ,__magic_name__ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Tuple: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __magic_name__ : str = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Tuple = [*signature.parameters.keys()] __magic_name__ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Dict: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) # FocalNet has a different seq_length __magic_name__ : List[str] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : Optional[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __magic_name__ : str = outputs.reshaped_hidden_states self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ ,__magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = reshaped_hidden_states[0].shape __magic_name__ : Union[str, Any] = ( reshaped_hidden_states[0].view(lowerCAmelCase__ , lowerCAmelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __magic_name__ : List[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Optional[Any] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[Any] = 3 __magic_name__ : Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __magic_name__ : Dict = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __magic_name__ : List[Any] = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __magic_name__ : Tuple = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __magic_name__ : Optional[int] = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : str = True self.check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , (padded_height, padded_width) ) @slow def __magic_name__ ( self ) -> Union[str, Any]: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Optional[int] = FocalNetModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Dict = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: __magic_name__ : Any = model_class(config=lowerCAmelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @require_vision @require_torch class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[int]: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : int = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.default_image_processor __magic_name__ : int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __magic_name__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : List[Any] = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = (FocalNetBackbone,) if is_torch_available() else () lowercase__ : Optional[int] = FocalNetConfig lowercase__ : Dict = False def __magic_name__ ( self ) -> int: __magic_name__ : Dict = FocalNetModelTester(self )
342
0
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : def __init__( self , snake_case_ , snake_case_=1_3 , snake_case_=3_2 , snake_case_=3 , snake_case_=4 , snake_case_=[1_0, 2_0, 3_0, 4_0] , snake_case_=[2, 2, 3, 2] , snake_case_=True , snake_case_=True , snake_case_=3_7 , snake_case_="gelu" , snake_case_=1_0 , snake_case_=0.02 , snake_case_=["stage2", "stage3", "stage4"] , snake_case_=[2, 3, 4] , snake_case_=None , ): _lowerCAmelCase : Dict = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : int = image_size _lowerCAmelCase : str = num_channels _lowerCAmelCase : Union[str, Any] = num_stages _lowerCAmelCase : List[str] = hidden_sizes _lowerCAmelCase : Tuple = depths _lowerCAmelCase : Optional[int] = is_training _lowerCAmelCase : Tuple = use_labels _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : Tuple = num_labels _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Any = out_features _lowerCAmelCase : str = out_indices _lowerCAmelCase : List[str] = scope def __UpperCamelCase ( self ): _lowerCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase : List[Any] = None if self.use_labels: _lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase : Optional[int] = self.get_config() return config, pixel_values, labels def __UpperCamelCase ( self ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Dict = ConvNextVaModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _lowerCAmelCase : Any = model(lowerCAmelCase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Optional[Any] = ConvNextVaForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _lowerCAmelCase : List[str] = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : str = ConvNextVaBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _lowerCAmelCase : Optional[int] = model(lowerCAmelCase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _lowerCAmelCase : Any = None _lowerCAmelCase : Dict = ConvNextVaBackbone(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() _lowerCAmelCase : List[str] = model(lowerCAmelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __UpperCamelCase ( self ): _lowerCAmelCase : Any = self.prepare_config_and_inputs() _lowerCAmelCase : Any = config_and_inputs _lowerCAmelCase : Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.prepare_config_and_inputs() _lowerCAmelCase : str = config_and_inputs _lowerCAmelCase : Dict = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class a_ (_lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __lowerCAmelCase : List[str] = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase : Optional[int] = False __lowerCAmelCase : List[str] = False __lowerCAmelCase : Tuple = False __lowerCAmelCase : Optional[int] = False __lowerCAmelCase : Tuple = False def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = ConvNextVaModelTester(self ) _lowerCAmelCase : Any = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=3_7 ) def __UpperCamelCase ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __UpperCamelCase ( self ): return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def __UpperCamelCase ( self ): pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def __UpperCamelCase ( self ): pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def __UpperCamelCase ( self ): pass def __UpperCamelCase ( self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() _lowerCAmelCase : Any = True if model_class.__name__ in [ *get_values(lowerCAmelCase__ ), *get_values(lowerCAmelCase__ ), ]: continue _lowerCAmelCase : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.train() _lowerCAmelCase : Optional[Any] = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) _lowerCAmelCase : Dict = model(**lowerCAmelCase__ ).loss loss.backward() def __UpperCamelCase ( self ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_with_labels() _lowerCAmelCase : Optional[Any] = False _lowerCAmelCase : Optional[Any] = True if ( model_class.__name__ in [*get_values(lowerCAmelCase__ ), *get_values(lowerCAmelCase__ )] or not model_class.supports_gradient_checkpointing ): continue _lowerCAmelCase : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.gradient_checkpointing_enable() model.train() _lowerCAmelCase : str = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) _lowerCAmelCase : Dict = model(**lowerCAmelCase__ ).loss loss.backward() def __UpperCamelCase ( self ): _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : List[str] = model_class(lowerCAmelCase__ ) _lowerCAmelCase : Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : int = [*signature.parameters.keys()] _lowerCAmelCase : List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __UpperCamelCase ( self ): def check_hidden_states_output(snake_case_ , snake_case_ , snake_case_ ): _lowerCAmelCase : Optional[int] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): _lowerCAmelCase : Dict = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) _lowerCAmelCase : Optional[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCAmelCase : Tuple = self.model_tester.num_stages self.assertEqual(len(lowerCAmelCase__ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase : Any = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def __UpperCamelCase ( self ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Optional[int] = ConvNextVaModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _UpperCAmelCase ( ) -> str: _lowerCAmelCase : List[str] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class a_ (unittest.TestCase ): @cached_property def __UpperCamelCase ( self ): return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def __UpperCamelCase ( self ): _lowerCAmelCase : Optional[Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(lowerCAmelCase__ ) _lowerCAmelCase : List[str] = self.default_image_processor _lowerCAmelCase : List[Any] = prepare_img() _lowerCAmelCase : str = preprocessor(images=lowerCAmelCase__ , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): _lowerCAmelCase : List[Any] = model(**lowerCAmelCase__ ) # verify the logits _lowerCAmelCase : Any = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) _lowerCAmelCase : str = torch.tensor([0.9996, 0.1966, -0.4386] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
309
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=10 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=2 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.0_2 , lowerCAmelCase__="divided_space_time" , lowerCAmelCase__=None , ) -> List[str]: __magic_name__ : int = parent __magic_name__ : Tuple = batch_size __magic_name__ : int = image_size __magic_name__ : str = num_channels __magic_name__ : Dict = patch_size __magic_name__ : Tuple = num_frames __magic_name__ : List[Any] = is_training __magic_name__ : List[Any] = use_labels __magic_name__ : Dict = hidden_size __magic_name__ : List[Any] = num_hidden_layers __magic_name__ : str = num_attention_heads __magic_name__ : List[Any] = intermediate_size __magic_name__ : Dict = hidden_act __magic_name__ : List[Any] = hidden_dropout_prob __magic_name__ : Union[str, Any] = attention_probs_dropout_prob __magic_name__ : Tuple = attention_type __magic_name__ : List[str] = initializer_range __magic_name__ : Optional[Any] = scope __magic_name__ : Tuple = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token __magic_name__ : str = (image_size // patch_size) ** 2 __magic_name__ : Any = (num_frames) * self.num_patches_per_frame + 1 def __magic_name__ ( self ) -> Dict: __magic_name__ : Optional[Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) __magic_name__ : str = None if self.use_labels: __magic_name__ : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__ : Optional[Any] = self.get_config() return config, pixel_values, labels def __magic_name__ ( self ) -> str: __magic_name__ : Dict = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) __magic_name__ : Optional[Any] = self.num_labels return config def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: __magic_name__ : List[Any] = TimesformerModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : Optional[Any] = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: __magic_name__ : int = TimesformerForVideoClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() __magic_name__ : List[Any] = model(lowerCAmelCase__ ) # verify the logits shape __magic_name__ : List[Any] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Any: __magic_name__ : Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ ,__magic_name__ ,__magic_name__ : Tuple = config_and_inputs __magic_name__ : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class snake_case__ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): lowercase__ : Tuple = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase__ : Union[str, Any] = ( {'''feature-extraction''': TimesformerModel, '''video-classification''': TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : str = False lowercase__ : Tuple = False lowercase__ : Any = False def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[Any] = TimesformerModelTester(self ) __magic_name__ : List[str] = ConfigTester( self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=False ) -> List[str]: __magic_name__ : List[str] = copy.deepcopy(lowerCAmelCase__ ) if return_labels: if model_class in get_values(lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def __magic_name__ ( self ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="""TimeSformer does not use inputs_embeds""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> Optional[int]: __magic_name__ ,__magic_name__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : List[Any] = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __magic_name__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Dict = model_class(lowerCAmelCase__ ) __magic_name__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__ : Optional[int] = [*signature.parameters.keys()] __magic_name__ : Any = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: __magic_name__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*lowerCAmelCase__ ) @slow def __magic_name__ ( self ) -> Optional[int]: for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] = TimesformerModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def __magic_name__ ( self ) -> List[Any]: if not self.has_attentions: pass else: __magic_name__ ,__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __magic_name__ : Optional[int] = True for model_class in self.all_model_classes: __magic_name__ : Tuple = self.model_tester.seq_length __magic_name__ : int = self.model_tester.num_frames __magic_name__ : Any = True __magic_name__ : Tuple = False __magic_name__ : Optional[int] = True __magic_name__ : str = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : List[str] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __magic_name__ : Optional[Any] = True __magic_name__ : Optional[Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : Optional[int] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : int = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) __magic_name__ : Union[str, Any] = len(lowerCAmelCase__ ) # Check attention is always last and order is fine __magic_name__ : str = True __magic_name__ : Optional[Any] = True __magic_name__ : int = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : List[str] = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(out_len + 1 , len(lowerCAmelCase__ ) ) __magic_name__ : Union[str, Any] = outputs.attentions self.assertEqual(len(lowerCAmelCase__ ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def __magic_name__ ( self ) -> Any: def check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __magic_name__ : Union[str, Any] = model_class(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() with torch.no_grad(): __magic_name__ : int = model(**self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) ) __magic_name__ : Optional[Any] = outputs.hidden_states __magic_name__ : str = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) __magic_name__ : str = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __magic_name__ ,__magic_name__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__ : Optional[Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__ : Union[str, Any] = True check_hidden_states_output(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase ( ): """simple docstring""" __magic_name__ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""", filename="""eating_spaghetti.npy""", repo_type="""dataset""" ) __magic_name__ : List[str] = np.load(_A ) return list(_A ) @require_torch @require_vision class snake_case__ ( unittest.TestCase ): @cached_property def __magic_name__ ( self ) -> Optional[Any]: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __magic_name__ ( self ) -> List[Any]: __magic_name__ : Dict = TimesformerForVideoClassification.from_pretrained("""facebook/timesformer-base-finetuned-k400""" ).to( lowerCAmelCase__ ) __magic_name__ : str = self.default_image_processor __magic_name__ : Any = prepare_video() __magic_name__ : Dict = image_processor(video[:8] , return_tensors="""pt""" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): __magic_name__ : int = model(**lowerCAmelCase__ ) # verify the logits __magic_name__ : Optional[int] = torch.Size((1, 4_00) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = torch.tensor([-0.3_0_1_6, -0.7_7_1_3, -0.4_2_0_5] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) )
342
0
'''simple docstring''' from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ = logging.get_logger(__name__) @add_end_docstrings(_lowerCAmelCase ) class lowerCAmelCase_ ( _lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : int ): """simple docstring""" super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , _UpperCAmelCase : Union[str, Any]=None ): """simple docstring""" UpperCAmelCase__ = {} if top_k is not None: UpperCAmelCase__ = top_k return {}, {}, postprocess_params def __call__( self : Any , _UpperCAmelCase : str , **_UpperCAmelCase : Optional[Any] ): """simple docstring""" return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = load_image(lowerCAmelCase__ ) UpperCAmelCase__ = self.image_processor(images=lowerCAmelCase__ , return_tensors=self.framework ) return model_inputs def SCREAMING_SNAKE_CASE__ ( self : int , _UpperCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = self.model(**lowerCAmelCase__ ) return model_outputs def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any]=5 ): """simple docstring""" if top_k > self.model.config.num_labels: UpperCAmelCase__ = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase__ = model_outputs.logits.softmax(-1 )[0] UpperCAmelCase__ = probs.topk(lowerCAmelCase__ ) elif self.framework == "tf": UpperCAmelCase__ = stable_softmax(model_outputs.logits , axis=-1 )[0] UpperCAmelCase__ = tf.math.top_k(lowerCAmelCase__ , k=lowerCAmelCase__ ) UpperCAmelCase__ = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f'''Unsupported framework: {self.framework}''' ) UpperCAmelCase__ = scores.tolist() UpperCAmelCase__ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase__ , lowerCAmelCase__ )]
346
def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = [0] * len(_A ) __magic_name__ : List[str] = [] __magic_name__ : List[str] = [1] * len(_A ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_A ) ): if indegree[i] == 0: queue.append(_A ) while queue: __magic_name__ : Dict = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: __magic_name__ : int = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(_A ) print(max(_A ) ) # Adjacency list of Graph __magic_name__: str = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
342
0
import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase : Union[str, Any] = logging.getLogger() def __lowerCamelCase ( ): '''simple docstring''' snake_case_ = argparse.ArgumentParser() parser.add_argument('-f' ) snake_case_ = parser.parse_args() return args.f class lowercase ( _lowerCAmelCase ): def a ( self ): snake_case_ = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCAmelCase__ ) def a ( self , snake_case ): snake_case_ = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , 'run_glue_deebert.py' ) with patch.object(lowerCAmelCase__ , 'argv' , lowerCAmelCase__ ): snake_case_ = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCAmelCase__ , 0.6_66 ) @slow @require_torch_non_multi_gpu def a ( self ): snake_case_ = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(lowerCAmelCase__ ) snake_case_ = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(lowerCAmelCase__ ) snake_case_ = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(lowerCAmelCase__ )
285
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> str: __magic_name__ : Tuple = """ylacombe/bark-small""" __magic_name__ : List[str] = tempfile.mkdtemp() __magic_name__ : Optional[Any] = """en_speaker_1""" __magic_name__ : Union[str, Any] = """This is a test string""" __magic_name__ : Optional[int] = """speaker_embeddings_path.json""" __magic_name__ : Any = """speaker_embeddings""" def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[Any]: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Optional[Any] = self.get_tokenizer() __magic_name__ : int = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : Union[str, Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[int] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __magic_name__ : Optional[Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : str = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="""(BOS)""" , eos_token="""(EOS)""" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__ ( self ) -> Any: __magic_name__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __magic_name__ : Union[str, Any] = 35 __magic_name__ : List[Any] = 2 __magic_name__ : Dict = 8 __magic_name__ : Tuple = { """semantic_prompt""": np.ones(lowerCAmelCase__ ), """coarse_prompt""": np.ones((nb_codebooks_coarse, seq_len) ), """fine_prompt""": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __magic_name__ : Optional[int] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __magic_name__ : Dict = os.path.join(self.tmpdirname , """file.npz""" ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __magic_name__ : List[Any] = inputs["""history_prompt"""] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __magic_name__ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : str = self.get_tokenizer() __magic_name__ : Dict = BarkProcessor(tokenizer=lowerCAmelCase__ ) __magic_name__ : Optional[Any] = processor(text=self.input_string ) __magic_name__ : List[Any] = tokenizer( self.input_string , padding="""max_length""" , max_length=2_56 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
342
0
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCamelCase__ = logging.get_logger(__name__) # General docstring lowerCamelCase__ = "MobileNetV1Config" # Base docstring lowerCamelCase__ = "google/mobilenet_v1_1.0_224" lowerCamelCase__ = [1, 1024, 7, 7] # Image classification docstring lowerCamelCase__ = "google/mobilenet_v1_1.0_224" lowerCamelCase__ = "tabby, tabby cat" lowerCamelCase__ = [ "google/mobilenet_v1_1.0_224", "google/mobilenet_v1_0.75_192", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ) -> List[str]: lowerCAmelCase__ : Union[str, Any] = {} if isinstance(_A , _A ): lowerCAmelCase__ : Optional[Any] = model.mobilenet_va else: lowerCAmelCase__ : List[str] = model lowerCAmelCase__ : Union[str, Any] = """MobilenetV1/Conv2d_0/""" lowerCAmelCase__ : Tuple = backbone.conv_stem.convolution.weight lowerCAmelCase__ : Optional[Any] = backbone.conv_stem.normalization.bias lowerCAmelCase__ : Any = backbone.conv_stem.normalization.weight lowerCAmelCase__ : Union[str, Any] = backbone.conv_stem.normalization.running_mean lowerCAmelCase__ : str = backbone.conv_stem.normalization.running_var for i in range(13 ): lowerCAmelCase__ : Union[str, Any] = i + 1 lowerCAmelCase__ : Any = i * 2 lowerCAmelCase__ : Any = backbone.layer[pt_index] lowerCAmelCase__ : Tuple = F'''MobilenetV1/Conv2d_{tf_index}_depthwise/''' lowerCAmelCase__ : Union[str, Any] = pointer.convolution.weight lowerCAmelCase__ : List[Any] = pointer.normalization.bias lowerCAmelCase__ : Optional[Any] = pointer.normalization.weight lowerCAmelCase__ : Union[str, Any] = pointer.normalization.running_mean lowerCAmelCase__ : str = pointer.normalization.running_var lowerCAmelCase__ : Optional[int] = backbone.layer[pt_index + 1] lowerCAmelCase__ : Tuple = F'''MobilenetV1/Conv2d_{tf_index}_pointwise/''' lowerCAmelCase__ : List[Any] = pointer.convolution.weight lowerCAmelCase__ : int = pointer.normalization.bias lowerCAmelCase__ : List[str] = pointer.normalization.weight lowerCAmelCase__ : Union[str, Any] = pointer.normalization.running_mean lowerCAmelCase__ : Tuple = pointer.normalization.running_var if isinstance(_A , _A ): lowerCAmelCase__ : str = """MobilenetV1/Logits/Conv2d_1c_1x1/""" lowerCAmelCase__ : Optional[int] = model.classifier.weight lowerCAmelCase__ : List[Any] = model.classifier.bias return tf_to_pt_map def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> List[str]: try: import numpy as np import tensorflow as tf except ImportError: logger.error( 'Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see ' 'https://www.tensorflow.org/install/ for installation instructions.' ) raise # Load weights from TF model lowerCAmelCase__ : Dict = tf.train.list_variables(_A ) lowerCAmelCase__ : Dict = {} for name, shape in init_vars: logger.info(F'''Loading TF weight {name} with shape {shape}''' ) lowerCAmelCase__ : List[str] = tf.train.load_variable(_A , _A ) lowerCAmelCase__ : str = array # Build TF to PyTorch weights loading map lowerCAmelCase__ : Optional[Any] = _build_tf_to_pytorch_map(_A , _A , _A ) for name, pointer in tf_to_pt_map.items(): logger.info(F'''Importing {name}''' ) if name not in tf_weights: logger.info(F'''{name} not in tf pre-trained weights, skipping''' ) continue lowerCAmelCase__ : Union[str, Any] = tf_weights[name] if "depthwise_weights" in name: logger.info('Transposing depthwise' ) lowerCAmelCase__ : Optional[int] = np.transpose(_A , (2, 3, 0, 1) ) elif "weights" in name: logger.info('Transposing' ) if len(pointer.shape ) == 2: # copying into linear layer lowerCAmelCase__ : List[str] = array.squeeze().transpose() else: lowerCAmelCase__ : Tuple = np.transpose(_A , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'''Pointer shape {pointer.shape} and array shape {array.shape} mismatched''' ) logger.info(F'''Initialize PyTorch weight {name} {array.shape}''' ) lowerCAmelCase__ : Tuple = torch.from_numpy(_A ) tf_weights.pop(_A , _A ) tf_weights.pop(name + '/RMSProp' , _A ) tf_weights.pop(name + '/RMSProp_1' , _A ) tf_weights.pop(name + '/ExponentialMovingAverage' , _A ) logger.info(F'''Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}''' ) return model def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: lowerCAmelCase__ : Tuple = features.shape[-2:] lowerCAmelCase__ : List[Any] = conv_layer.stride lowerCAmelCase__ : Union[str, Any] = conv_layer.kernel_size if in_height % stride_height == 0: lowerCAmelCase__ : Tuple = max(kernel_height - stride_height , 0 ) else: lowerCAmelCase__ : Any = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: lowerCAmelCase__ : Optional[int] = max(kernel_width - stride_width , 0 ) else: lowerCAmelCase__ : str = max(kernel_width - (in_width % stride_width) , 0 ) lowerCAmelCase__ : List[Any] = pad_along_width // 2 lowerCAmelCase__ : Dict = pad_along_width - pad_left lowerCAmelCase__ : int = pad_along_height // 2 lowerCAmelCase__ : List[Any] = pad_along_height - pad_top lowerCAmelCase__ : Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(_A , _A , 'constant' , 0.0 ) class A__ ( nn.Module ): def __init__( self : Optional[Any] , a : int , a : Optional[int] , a : List[Any] , a : Tuple , a : List[Any] = 1 , a : Any = 1 , a : Union[str, Any] = False , a : Dict = True , a : Optional[int] = True , ): '''simple docstring''' super().__init__() lowerCAmelCase__ : List[Any] = config if in_channels % groups != 0: raise ValueError(f'''Input channels ({in_channels}) are not divisible by {groups} groups.''' ) if out_channels % groups != 0: raise ValueError(f'''Output channels ({out_channels}) are not divisible by {groups} groups.''' ) lowerCAmelCase__ : Any = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowerCAmelCase__ : List[str] = nn.Convad( in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=lowerCAmelCase__ , stride=lowerCAmelCase__ , padding=lowerCAmelCase__ , groups=lowerCAmelCase__ , bias=lowerCAmelCase__ , padding_mode='zeros' , ) if use_normalization: lowerCAmelCase__ : Optional[Any] = nn.BatchNormad( num_features=lowerCAmelCase__ , eps=config.layer_norm_eps , momentum=0.9_9_9_7 , affine=lowerCAmelCase__ , track_running_stats=lowerCAmelCase__ , ) else: lowerCAmelCase__ : Union[str, Any] = None if use_activation: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowerCAmelCase__ : Tuple = ACTaFN[use_activation] elif isinstance(config.hidden_act , lowerCAmelCase__ ): lowerCAmelCase__ : Dict = ACTaFN[config.hidden_act] else: lowerCAmelCase__ : List[Any] = config.hidden_act else: lowerCAmelCase__ : Optional[int] = None def _lowerCamelCase ( self : Tuple , a : str ): '''simple docstring''' if self.config.tf_padding: lowerCAmelCase__ : str = apply_tf_padding(lowerCAmelCase__ , self.convolution ) lowerCAmelCase__ : Union[str, Any] = self.convolution(lowerCAmelCase__ ) if self.normalization is not None: lowerCAmelCase__ : Any = self.normalization(lowerCAmelCase__ ) if self.activation is not None: lowerCAmelCase__ : Optional[Any] = self.activation(lowerCAmelCase__ ) return features class A__ ( _lowerCAmelCase ): lowercase = MobileNetVaConfig lowercase = load_tf_weights_in_mobilenet_va lowercase = '''mobilenet_v1''' lowercase = '''pixel_values''' lowercase = False def _lowerCamelCase ( self : Optional[Any] , a : Dict ): '''simple docstring''' if isinstance(lowerCAmelCase__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowerCAmelCase__ , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowerCamelCase__ = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" lowerCamelCase__ = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.' , _lowerCAmelCase , ) class A__ ( _lowerCAmelCase ): def __init__( self : Optional[Any] , a : List[str] , a : List[str] = True ): '''simple docstring''' super().__init__(lowerCAmelCase__ ) lowerCAmelCase__ : List[Any] = config lowerCAmelCase__ : Dict = 32 lowerCAmelCase__ : List[Any] = max(int(depth * config.depth_multiplier ) , config.min_depth ) lowerCAmelCase__ : Optional[Any] = MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=config.num_channels , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=2 , ) lowerCAmelCase__ : Dict = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowerCAmelCase__ : Union[str, Any] = nn.ModuleList() for i in range(13 ): lowerCAmelCase__ : List[Any] = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowerCAmelCase__ : Any = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=3 , stride=strides[i] , groups=lowerCAmelCase__ , ) ) self.layer.append( MobileNetVaConvLayer( lowerCAmelCase__ , in_channels=lowerCAmelCase__ , out_channels=lowerCAmelCase__ , kernel_size=1 , ) ) lowerCAmelCase__ : Union[str, Any] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _lowerCamelCase ( self : List[Any] , a : int ): '''simple docstring''' raise NotImplementedError @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCamelCase ( self : Optional[Any] , a : Optional[int] = None , a : Any = None , a : Union[str, Any] = None , ): '''simple docstring''' lowerCAmelCase__ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase__ : int = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) lowerCAmelCase__ : List[Any] = self.conv_stem(lowerCAmelCase__ ) lowerCAmelCase__ : int = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowerCAmelCase__ : Optional[Any] = layer_module(lowerCAmelCase__ ) if output_hidden_states: lowerCAmelCase__ : List[Any] = all_hidden_states + (hidden_states,) lowerCAmelCase__ : Tuple = hidden_states if self.pooler is not None: lowerCAmelCase__ : Tuple = torch.flatten(self.pooler(lowerCAmelCase__ ) , start_dim=1 ) else: lowerCAmelCase__ : Dict = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase__ , pooler_output=lowerCAmelCase__ , hidden_states=lowerCAmelCase__ , ) @add_start_docstrings( '\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , _lowerCAmelCase , ) class A__ ( _lowerCAmelCase ): def __init__( self : List[str] , a : int ): '''simple docstring''' super().__init__(lowerCAmelCase__ ) lowerCAmelCase__ : Dict = config.num_labels lowerCAmelCase__ : Optional[Any] = MobileNetVaModel(lowerCAmelCase__ ) lowerCAmelCase__ : List[Any] = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowerCAmelCase__ : Optional[Any] = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCAmelCase__ ) lowerCAmelCase__ : int = nn.Linear(lowerCAmelCase__ , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCamelCase ( self : Optional[Any] , a : Optional[int] = None , a : Any = None , a : Tuple = None , a : Tuple = None , ): '''simple docstring''' lowerCAmelCase__ : List[str] = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase__ : List[str] = self.mobilenet_va(lowerCAmelCase__ , output_hidden_states=lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) lowerCAmelCase__ : Dict = outputs.pooler_output if return_dict else outputs[1] lowerCAmelCase__ : str = self.classifier(self.dropout(lowerCAmelCase__ ) ) lowerCAmelCase__ : Optional[int] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCAmelCase__ : int = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCAmelCase__ : Optional[int] = """single_label_classification""" else: lowerCAmelCase__ : Dict = """multi_label_classification""" if self.config.problem_type == "regression": lowerCAmelCase__ : Optional[Any] = MSELoss() if self.num_labels == 1: lowerCAmelCase__ : Optional[int] = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCAmelCase__ : Optional[Any] = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.config.problem_type == "single_label_classification": lowerCAmelCase__ : Optional[int] = CrossEntropyLoss() lowerCAmelCase__ : Optional[Any] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCAmelCase__ : Optional[Any] = BCEWithLogitsLoss() lowerCAmelCase__ : Any = loss_fct(lowerCAmelCase__ , lowerCAmelCase__ ) if not return_dict: lowerCAmelCase__ : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=lowerCAmelCase__ , logits=lowerCAmelCase__ , hidden_states=outputs.hidden_states , )
212
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=4_00 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]: __magic_name__ : Optional[Any] = size if size is not None else {"""height""": 18, """width""": 18} __magic_name__ : str = parent __magic_name__ : Any = batch_size __magic_name__ : Any = num_channels __magic_name__ : List[str] = image_size __magic_name__ : Tuple = min_resolution __magic_name__ : Union[str, Any] = max_resolution __magic_name__ : List[str] = do_resize __magic_name__ : Optional[Any] = size __magic_name__ : Optional[Any] = do_normalize __magic_name__ : Any = image_mean __magic_name__ : List[str] = image_std def __magic_name__ ( self ) -> List[str]: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Any = DPTImageProcessor if is_vision_available() else None def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Dict = DPTImageProcessingTester(self ) @property def __magic_name__ ( self ) -> Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_mean""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """image_std""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCAmelCase__ , """size""" ) ) def __magic_name__ ( self ) -> List[str]: __magic_name__ : int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 18, """width""": 18} ) __magic_name__ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} ) def __magic_name__ ( self ) -> str: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __magic_name__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input __magic_name__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[int] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Tuple: # Initialize image_processing __magic_name__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __magic_name__ : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : int = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __magic_name__ ( self ) -> Optional[Any]: # Initialize image_processing __magic_name__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __magic_name__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input __magic_name__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched __magic_name__ : Optional[Any] = image_processing(lowerCAmelCase__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
342
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ =logging.get_logger(__name__) lowercase__ ={ "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class UpperCamelCase__ ( _lowerCAmelCase ): _SCREAMING_SNAKE_CASE : str = '''data2vec-vision''' def __init__(self : Optional[int] , snake_case_ : Optional[int]=7_6_8 , snake_case_ : Optional[Any]=1_2 , snake_case_ : Optional[Any]=1_2 , snake_case_ : int=3_0_7_2 , snake_case_ : str="gelu" , snake_case_ : Dict=0.0 , snake_case_ : Tuple=0.0 , snake_case_ : List[str]=0.02 , snake_case_ : Dict=1E-12 , snake_case_ : List[str]=2_2_4 , snake_case_ : int=1_6 , snake_case_ : Tuple=3 , snake_case_ : Optional[int]=False , snake_case_ : List[Any]=False , snake_case_ : List[str]=False , snake_case_ : Any=False , snake_case_ : Optional[Any]=0.1 , snake_case_ : str=0.1 , snake_case_ : str=True , snake_case_ : Tuple=[3, 5, 7, 1_1] , snake_case_ : Optional[int]=[1, 2, 3, 6] , snake_case_ : Union[str, Any]=True , snake_case_ : List[str]=0.4 , snake_case_ : Union[str, Any]=2_5_6 , snake_case_ : Union[str, Any]=1 , snake_case_ : List[Any]=False , snake_case_ : str=2_5_5 , **snake_case_ : Tuple , ): super().__init__(**lowerCAmelCase__ ) __a : Dict = hidden_size __a : str = num_hidden_layers __a : Union[str, Any] = num_attention_heads __a : List[str] = intermediate_size __a : Tuple = hidden_act __a : int = hidden_dropout_prob __a : Tuple = attention_probs_dropout_prob __a : Dict = initializer_range __a : str = layer_norm_eps __a : Any = image_size __a : Optional[int] = patch_size __a : Optional[Any] = num_channels __a : Any = use_mask_token __a : Optional[Any] = use_absolute_position_embeddings __a : Optional[Any] = use_relative_position_bias __a : List[Any] = use_shared_relative_position_bias __a : Dict = layer_scale_init_value __a : List[Any] = drop_path_rate __a : Optional[Any] = use_mean_pooling # decode head attributes (semantic segmentation) __a : List[str] = out_indices __a : int = pool_scales # auxiliary head attributes (semantic segmentation) __a : str = use_auxiliary_head __a : List[Any] = auxiliary_loss_weight __a : Union[str, Any] = auxiliary_channels __a : Optional[Any] = auxiliary_num_convs __a : Union[str, Any] = auxiliary_concat_input __a : Optional[Any] = semantic_loss_ignore_index class UpperCamelCase__ ( _lowerCAmelCase ): _SCREAMING_SNAKE_CASE : Optional[Any] = version.parse("1.11" ) @property def lowerCAmelCase (self : Tuple ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def lowerCAmelCase (self : Optional[Any] ): return 1E-4
216
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool __magic_name__: Tuple = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class snake_case__ ( _lowerCAmelCase ): lowercase__ : List[str] = '''facebook/nllb-200-distilled-600M''' lowercase__ : List[Any] = ( '''This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ''' '''be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ''' '''which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ''' '''plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.''' ) lowercase__ : List[str] = '''translator''' lowercase__ : Optional[Any] = AutoTokenizer lowercase__ : int = AutoModelForSeqaSeqLM lowercase__ : List[Any] = LANGUAGE_CODES lowercase__ : str = ['''text''', '''text''', '''text'''] lowercase__ : Any = ['''text'''] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: if src_lang not in self.lang_to_code: raise ValueError(F'{src_lang} is not a supported language.' ) if tgt_lang not in self.lang_to_code: raise ValueError(F'{tgt_lang} is not a supported language.' ) __magic_name__ : Tuple = self.lang_to_code[src_lang] __magic_name__ : Dict = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCAmelCase__ , return_tensors="""pt""" , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.model.generate(**lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Dict: return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCAmelCase__ )
342
0
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class a ( _lowerCAmelCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=False , _lowerCamelCase=2 , _lowerCamelCase=9_9 , _lowerCamelCase=0 , _lowerCamelCase=3_2 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=5_1_2 , _lowerCamelCase=1_2 , _lowerCamelCase=2 , _lowerCamelCase=0.0_2 , _lowerCamelCase=3 , _lowerCamelCase=4 , _lowerCamelCase="last" , _lowerCamelCase=None , _lowerCamelCase=None , ): lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_input_lengths lowercase = use_token_type_ids lowercase = use_labels lowercase = gelu_activation lowercase = sinusoidal_embeddings lowercase = causal lowercase = asm lowercase = n_langs lowercase = vocab_size lowercase = n_special lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_labels lowercase = num_choices lowercase = summary_type lowercase = use_proj lowercase = scope def UpperCamelCase_ ( self ): lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_input_lengths: lowercase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase = None lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase = ids_tensor([self.batch_size] , 2 ).float() lowercase = ids_tensor([self.batch_size] , self.num_choices ) lowercase = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase_ ( self ): return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowercase = FlaubertModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase = model(lowerCAmelCase__ , lengths=lowerCAmelCase__ , langs=lowerCAmelCase__ ) lowercase = model(lowerCAmelCase__ , langs=lowerCAmelCase__ ) lowercase = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowercase = FlaubertWithLMHeadModel(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase = model(lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowercase = FlaubertForQuestionAnsweringSimple(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase = model(lowerCAmelCase__ ) lowercase = model(lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowercase = FlaubertForQuestionAnswering(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase = model(lowerCAmelCase__ ) lowercase = model( lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , cls_index=lowerCAmelCase__ , is_impossible=lowerCAmelCase__ , p_mask=lowerCAmelCase__ , ) lowercase = model( lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ , cls_index=lowerCAmelCase__ , is_impossible=lowerCAmelCase__ , ) (lowercase) = result_with_labels.to_tuple() lowercase = model(lowerCAmelCase__ , start_positions=lowerCAmelCase__ , end_positions=lowerCAmelCase__ ) (lowercase) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowercase = FlaubertForSequenceClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase = model(lowerCAmelCase__ ) lowercase = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowercase = self.num_labels lowercase = FlaubertForTokenClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase = model(lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ): lowercase = self.num_choices lowercase = FlaubertForMultipleChoice(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase = model( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , labels=lowerCAmelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self ): lowercase = self.prepare_config_and_inputs() ( lowercase ) = config_and_inputs lowercase = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """lengths""": input_lengths, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class a ( _lowerCAmelCase, _lowerCAmelCase, unittest.TestCase ): UpperCAmelCase_ : Dict =( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase_ : Optional[int] =( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=False ): lowercase = super()._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ , return_labels=lowerCAmelCase__ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase__ ) return inputs_dict def UpperCamelCase_ ( self ): lowercase = FlaubertModelTester(self ) lowercase = ConfigTester(self , config_class=lowerCAmelCase__ , emb_dim=3_7 ) def UpperCamelCase_ ( self ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowerCAmelCase__ ) def UpperCamelCase_ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowerCAmelCase__ ) def UpperCamelCase_ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*lowerCAmelCase__ ) def UpperCamelCase_ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowerCAmelCase__ ) def UpperCamelCase_ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowerCAmelCase__ ) def UpperCamelCase_ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*lowerCAmelCase__ ) def UpperCamelCase_ ( self ): lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*lowerCAmelCase__ ) @slow def UpperCamelCase_ ( self ): for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = FlaubertModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) @slow @require_torch_gpu def UpperCamelCase_ ( self ): lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return lowercase = True lowercase = model_class(config=lowerCAmelCase__ ) lowercase = self._prepare_for_class(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = torch.jit.trace( lowerCAmelCase__ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , 'traced_model.pt' ) ) lowercase = torch.jit.load(os.path.join(lowerCAmelCase__ , 'traced_model.pt' ) , map_location=lowerCAmelCase__ ) loaded(inputs_dict['input_ids'].to(lowerCAmelCase__ ) , inputs_dict['attention_mask'].to(lowerCAmelCase__ ) ) @require_torch class a ( unittest.TestCase ): @slow def UpperCamelCase_ ( self ): lowercase = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased' ) lowercase = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) with torch.no_grad(): lowercase = model(lowerCAmelCase__ )[0] lowercase = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , lowerCAmelCase__ ) lowercase = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) )
220
import math class snake_case__ : def __init__( self , lowerCAmelCase__=0 ) -> Optional[int]: # a graph with Node 0,1,...,N-1 __magic_name__ : Tuple = n __magic_name__ : Union[str, Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # adjacency matrix for weight __magic_name__ : List[Any] = [ [math.inf for j in range(0 , lowerCAmelCase__ )] for i in range(0 , lowerCAmelCase__ ) ] # dp[i][j] stores minimum distance from i to j def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: __magic_name__ : Dict = w def __magic_name__ ( self ) -> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __magic_name__ : Optional[Any] = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: return self.dp[u][v] if __name__ == "__main__": __magic_name__: Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
342
0
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm __magic_name__ = re.compile("[^A-Za-z_0-9]") # parameters used in DuplicationIndex __magic_name__ = 10 __magic_name__ = 256 def _lowerCAmelCase ( UpperCamelCase_ ): if len(_A ) < MIN_NUM_TOKENS: return None __SCREAMING_SNAKE_CASE = MinHash(num_perm=_A ) for token in set(_A ): min_hash.update(token.encode() ) return min_hash def _lowerCAmelCase ( UpperCamelCase_ ): return {t for t in NON_ALPHA.split(_A ) if len(t.strip() ) > 0} class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , *, lowerCAmelCase__ = 0.85 , ): __SCREAMING_SNAKE_CASE = duplication_jaccard_threshold __SCREAMING_SNAKE_CASE = NUM_PERM __SCREAMING_SNAKE_CASE = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm) __SCREAMING_SNAKE_CASE = defaultdict(lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self._index.query(lowerCAmelCase__) if code_key in self._index.keys: print(f"Duplicate key {code_key}") return self._index.insert(lowerCAmelCase__ , lowerCAmelCase__) if len(lowerCAmelCase__) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(lowerCAmelCase__) break else: self._duplicate_clusters[close_duplicates[0]].add(lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = [] for base, duplicates in self._duplicate_clusters.items(): __SCREAMING_SNAKE_CASE = [base] + list(lowerCAmelCase__) # reformat the cluster to be a list of dict __SCREAMING_SNAKE_CASE = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(lowerCAmelCase__) return duplicate_clusters def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = self.get_duplicate_clusters() with open(lowerCAmelCase__ , """w""") as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__) def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = element __SCREAMING_SNAKE_CASE = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def _lowerCAmelCase ( UpperCamelCase_ ): with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(_A , max_queue_size=1_0000 ) , chunksize=100 , ): if data is not None: yield data def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = DuplicationIndex(duplication_jaccard_threshold=_A ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_A ) ) , max_queue_size=100 ) ): di.add(_A , _A ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = get_tokens(_A ) __SCREAMING_SNAKE_CASE = get_tokens(_A ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) __magic_name__ = None def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [] for elementa in cluster: __SCREAMING_SNAKE_CASE = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: __SCREAMING_SNAKE_CASE = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(_A , _A ) >= jaccard_threshold: elementa["copies"] += 1 break else: __SCREAMING_SNAKE_CASE = 1 extremes.append(_A ) return extremes def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): global _shared_dataset __SCREAMING_SNAKE_CASE = dataset __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = partial(_find_cluster_extremes_shared , jaccard_threshold=_A ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _A , _A , ) , total=len(_A ) , ): extremes_list.append(_A ) return extremes_list def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ = 0.85 ): __SCREAMING_SNAKE_CASE = make_duplicate_clusters(_A , _A ) __SCREAMING_SNAKE_CASE = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = find_extremes(_A , _A , _A ) for extremes in extremes_clusters: for element in extremes: __SCREAMING_SNAKE_CASE = element __SCREAMING_SNAKE_CASE = duplicate_indices - set(extreme_dict.keys() ) __SCREAMING_SNAKE_CASE = dataset.filter(lambda UpperCamelCase_ , UpperCamelCase_ : idx not in remove_indices , with_indices=_A ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: __SCREAMING_SNAKE_CASE = element["""base_index"""] in extreme_dict if element["is_extreme"]: __SCREAMING_SNAKE_CASE = extreme_dict[element["""base_index"""]]["""copies"""] print(f"Original dataset size: {len(_A )}" ) print(f"Number of duplicate clusters: {len(_A )}" ) print(f"Files in duplicate cluster: {len(_A )}" ) print(f"Unique files in duplicate cluster: {len(_A )}" ) print(f"Filtered dataset size: {len(_A )}" ) return ds_filter, duplicate_clusters
100
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__ : def __init__( self , lowerCAmelCase__ = None ) -> None: if components is None: __magic_name__ : Any = [] __magic_name__ : List[str] = list(lowerCAmelCase__ ) def __len__( self ) -> int: return len(self.__components ) def __str__( self ) -> str: return "(" + ",".join(map(lowerCAmelCase__ , self.__components ) ) + ")" def __add__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : Dict = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] + other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: raise Exception("""must have the same size""" ) def __sub__( self , lowerCAmelCase__ ) -> Vector: __magic_name__ : int = len(self ) if size == len(lowerCAmelCase__ ): __magic_name__ : str = [self.__components[i] - other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return Vector(lowerCAmelCase__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... @overload def __mul__( self , lowerCAmelCase__ ) -> float: ... def __mul__( self , lowerCAmelCase__ ) -> float | Vector: if isinstance(lowerCAmelCase__ , (float, int) ): __magic_name__ : Optional[Any] = [c * other for c in self.__components] return Vector(lowerCAmelCase__ ) elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(self ) == len(lowerCAmelCase__ ): __magic_name__ : Optional[Any] = len(self ) __magic_name__ : List[Any] = [self.__components[i] * other.component(lowerCAmelCase__ ) for i in range(lowerCAmelCase__ )] return sum(lowerCAmelCase__ ) else: # error case raise Exception("""invalid operand!""" ) def __magic_name__ ( self ) -> Vector: return Vector(self.__components ) def __magic_name__ ( self , lowerCAmelCase__ ) -> float: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ : Optional[int] = value def __magic_name__ ( self ) -> float: if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __magic_name__ : Dict = [c**2 for c in self.__components] return math.sqrt(sum(lowerCAmelCase__ ) ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = False ) -> float: __magic_name__ : Optional[Any] = self * other __magic_name__ : List[str] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def UpperCamelCase ( _A ): """simple docstring""" assert isinstance(_A, _A ) return Vector([0] * dimension ) def UpperCamelCase ( _A, _A ): """simple docstring""" assert isinstance(_A, _A ) and (isinstance(_A, _A )) __magic_name__ : Union[str, Any] = [0] * dimension __magic_name__ : Optional[int] = 1 return Vector(_A ) def UpperCamelCase ( _A, _A, _A ): """simple docstring""" assert ( isinstance(_A, _A ) and isinstance(_A, _A ) and (isinstance(_A, (int, float) )) ) return x * scalar + y def UpperCamelCase ( _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : Union[str, Any] = [random.randint(_A, _A ) for _ in range(_A )] return Vector(_A ) class snake_case__ : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: __magic_name__ : Dict = matrix __magic_name__ : Tuple = w __magic_name__ : Union[str, Any] = h def __str__( self ) -> str: __magic_name__ : Dict = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Tuple = [] for i in range(self.__height ): __magic_name__ : Tuple = [ self.__matrix[i][j] + other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self , lowerCAmelCase__ ) -> Matrix: if self.__width == other.width() and self.__height == other.height(): __magic_name__ : Optional[Any] = [] for i in range(self.__height ): __magic_name__ : int = [ self.__matrix[i][j] - other.component(lowerCAmelCase__ , lowerCAmelCase__ ) for j in range(self.__width ) ] matrix.append(lowerCAmelCase__ ) return Matrix(lowerCAmelCase__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self , lowerCAmelCase__ ) -> Matrix: ... @overload def __mul__( self , lowerCAmelCase__ ) -> Vector: ... def __mul__( self , lowerCAmelCase__ ) -> Vector | Matrix: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # matrix-vector if len(lowerCAmelCase__ ) == self.__width: __magic_name__ : Tuple = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ : Optional[int] = [ self.__matrix[i][j] * other.component(lowerCAmelCase__ ) for j in range(self.__width ) ] ans.change_component(lowerCAmelCase__ , sum(lowerCAmelCase__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(lowerCAmelCase__ , (int, float) ): # matrix-scalar __magic_name__ : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(lowerCAmelCase__ , self.__width , self.__height ) return None def __magic_name__ ( self ) -> int: return self.__height def __magic_name__ ( self ) -> int: return self.__width def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> None: if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ : List[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __magic_name__ : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(lowerCAmelCase__ ) ): __magic_name__ : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(lowerCAmelCase__ , self.__width - 1 , self.__height - 1 ).determinant() def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(lowerCAmelCase__ , lowerCAmelCase__ ) else: raise Exception("""Indices out of bounds""" ) def __magic_name__ ( self ) -> float: if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ : str = [ self.__matrix[0][y] * self.cofactor(0 , lowerCAmelCase__ ) for y in range(self.__width ) ] return sum(lowerCAmelCase__ ) def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : list[list[float]] = [[0] * n for _ in range(_A )] return Matrix(_A, _A, _A ) def UpperCamelCase ( _A, _A, _A, _A ): """simple docstring""" random.seed(_A ) __magic_name__ : list[list[float]] = [ [random.randint(_A, _A ) for _ in range(_A )] for _ in range(_A ) ] return Matrix(_A, _A, _A )
342
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class A( unittest.TestCase ): '''simple docstring''' @slow def a__ ( self : str ) -> Dict: """simple docstring""" lowerCamelCase_ = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) lowerCamelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house lowerCamelCase_ = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim lowerCamelCase_ = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCamelCase_ = model(lowerCAmelCase__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , lowerCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowerCAmelCase__ , atol=1E-3 ) ) @slow def a__ ( self : Tuple ) -> int: """simple docstring""" lowerCamelCase_ = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) lowerCamelCase_ = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house lowerCamelCase_ = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim lowerCamelCase_ = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): lowerCamelCase_ = model(lowerCAmelCase__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , lowerCAmelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , lowerCAmelCase__ , atol=1E-3 ) )
204
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging __magic_name__: str = logging.get_logger(__name__) __magic_name__: int = "▁" __magic_name__: List[str] = {"vocab_file": "sentencepiece.bpe.model"} __magic_name__: List[str] = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } __magic_name__: Tuple = { "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off __magic_name__: int = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class snake_case__ ( _lowerCAmelCase ): lowercase__ : str = VOCAB_FILES_NAMES lowercase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP lowercase__ : str = ['''input_ids''', '''attention_mask'''] lowercase__ : List[int] = [] lowercase__ : List[int] = [] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="<s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="</s>" , lowerCAmelCase__="<s>" , lowerCAmelCase__="<unk>" , lowerCAmelCase__="<pad>" , lowerCAmelCase__="<mask>" , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__ = None , lowerCAmelCase__=None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int: # Mask token behave like a normal word, i.e. include the space before it __magic_name__ : Any = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token __magic_name__ : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs __magic_name__ : Optional[Any] = legacy_behaviour super().__init__( bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=lowerCAmelCase__ , **lowerCAmelCase__ , ) __magic_name__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase__ ) ) __magic_name__ : List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __magic_name__ : List[str] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __magic_name__ : List[Any] = 1 __magic_name__ : Dict = len(self.sp_model ) __magic_name__ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase__ ) } __magic_name__ : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} __magic_name__ : Union[str, Any] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __magic_name__ : Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __magic_name__ : List[str] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __magic_name__ : List[Any] = src_lang if src_lang is not None else """eng_Latn""" __magic_name__ : Any = self.lang_code_to_id[self._src_lang] __magic_name__ : Optional[int] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Any: __magic_name__ : List[Any] = self.__dict__.copy() __magic_name__ : int = None __magic_name__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowerCAmelCase__ ) -> Any: __magic_name__ : Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __magic_name__ : Any = {} __magic_name__ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __magic_name__ ( self ) -> str: return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __magic_name__ ( self ) -> str: return self._src_lang @src_lang.setter def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ ) __magic_name__ : Optional[int] = [1] * len(self.prefix_tokens ) __magic_name__ : Any = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase__ )) + ([0] * len(lowerCAmelCase__ )) + suffix_ones def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[int]: __magic_name__ : str = [self.sep_token_id] __magic_name__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __magic_name__ : Dict = src_lang __magic_name__ : List[Any] = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) __magic_name__ : Optional[Any] = self.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Tuple = tgt_lang_id return inputs def __magic_name__ ( self ) -> int: __magic_name__ : str = {self.convert_ids_to_tokens(lowerCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __magic_name__ ( self , lowerCAmelCase__ ) -> List[str]: return self.sp_model.encode(lowerCAmelCase__ , out_type=lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __magic_name__ : List[str] = self.sp_model.PieceToId(lowerCAmelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __magic_name__ ( self , lowerCAmelCase__ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: __magic_name__ : Tuple = """""".join(lowerCAmelCase__ ).replace(lowerCAmelCase__ , """ """ ).strip() return out_string def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __magic_name__ : List[Any] = os.path.join( lowerCAmelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase__ , """wb""" ) as fi: __magic_name__ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase__ ) return (out_vocab_file,) def __magic_name__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = "eng_Latn" , lowerCAmelCase__ = None , lowerCAmelCase__ = "fra_Latn" , **lowerCAmelCase__ , ) -> BatchEncoding: __magic_name__ : List[str] = src_lang __magic_name__ : Dict = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> str: return self.set_src_lang_special_tokens(self.src_lang ) def __magic_name__ ( self ) -> List[str]: return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : Optional[int] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Tuple = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : str = [self.cur_lang_code] __magic_name__ : List[Any] = [self.eos_token_id] def __magic_name__ ( self , lowerCAmelCase__ ) -> None: __magic_name__ : List[str] = self.lang_code_to_id[lang] if self.legacy_behaviour: __magic_name__ : List[str] = [] __magic_name__ : Optional[int] = [self.eos_token_id, self.cur_lang_code] else: __magic_name__ : Optional[int] = [self.cur_lang_code] __magic_name__ : Union[str, Any] = [self.eos_token_id]
342
0
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A__ : List[Any] = { "configuration_cpmant": ["CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP", "CpmAntConfig"], "tokenization_cpmant": ["CpmAntTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = [ "CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST", "CpmAntForCausalLM", "CpmAntModel", "CpmAntPreTrainedModel", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys A__ : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
207
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase ( _A, _A, _A ): """simple docstring""" __magic_name__ : Dict = MobileBertConfig.from_json_file(_A ) print(f'Building PyTorch model from configuration: {config}' ) __magic_name__ : Tuple = MobileBertForPreTraining(_A ) # Load weights from tf checkpoint __magic_name__ : int = load_tf_weights_in_mobilebert(_A, _A, _A ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict(), _A ) if __name__ == "__main__": __magic_name__: Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __magic_name__: Dict = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
342
0
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification UpperCAmelCase__ : int = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co UpperCAmelCase__ : List[str] = "main" # Default branch name UpperCAmelCase__ : str = "f2c752cfc5c0ab6f4bdec59acea69eefbee381c2" # One particular commit (not the top of `main`) UpperCAmelCase__ : List[Any] = "aaaaaaa" # This commit does not exist, so we should 404. UpperCAmelCase__ : Tuple = "d9e9f15bc825e4b2c9249e9578f884bbcb5e3684" # Sha-1 of config.json on the top of `main`, for checking purposes UpperCAmelCase__ : Any = "4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3" @contextlib.contextmanager def __lowercase ( ) -> int: print("""Welcome!""" ) yield print("""Bye!""" ) @contextlib.contextmanager def __lowercase ( ) -> Optional[Any]: print("""Bonjour!""" ) yield print("""Au revoir!""" ) class a__ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" assert transformers.__spec__ is not None assert importlib.util.find_spec("""transformers""" ) is not None class a__ ( unittest.TestCase ): """simple docstring""" @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _lowercase ( self : Any , UpperCAmelCase__ : Optional[Any] ) ->int: """simple docstring""" with ContextManagers([] ): print("""Transformers are awesome!""" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , """Transformers are awesome!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _lowercase ( self : Dict , UpperCAmelCase__ : int ) ->List[str]: """simple docstring""" with ContextManagers([context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Welcome!\nTransformers are awesome!\nBye!\n""" ) @unittest.mock.patch("""sys.stdout""" , new_callable=io.StringIO ) def _lowercase ( self : Dict , UpperCAmelCase__ : Optional[Any] ) ->Tuple: """simple docstring""" with ContextManagers([context_fr(), context_en()] ): print("""Transformers are awesome!""" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , """Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n""" ) @require_torch def _lowercase ( self : List[Any] ) ->str: """simple docstring""" self.assertEqual(find_labels(lowerCAmelCase__ ) , ["""labels"""] ) self.assertEqual(find_labels(lowerCAmelCase__ ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(lowerCAmelCase__ ) , ["""start_positions""", """end_positions"""] ) class a__ ( _lowerCAmelCase ): """simple docstring""" pass self.assertEqual(find_labels(lowerCAmelCase__ ) , ["""labels"""] ) @require_tf def _lowercase ( self : Dict ) ->Optional[Any]: """simple docstring""" self.assertEqual(find_labels(lowerCAmelCase__ ) , ["""labels"""] ) self.assertEqual(find_labels(lowerCAmelCase__ ) , ["""labels""", """next_sentence_label"""] ) self.assertEqual(find_labels(lowerCAmelCase__ ) , ["""start_positions""", """end_positions"""] ) class a__ ( _lowerCAmelCase ): """simple docstring""" pass self.assertEqual(find_labels(lowerCAmelCase__ ) , ["""labels"""] ) @require_flax def _lowercase ( self : Any ) ->int: """simple docstring""" self.assertEqual(find_labels(lowerCAmelCase__ ) , [] ) self.assertEqual(find_labels(lowerCAmelCase__ ) , [] ) self.assertEqual(find_labels(lowerCAmelCase__ ) , [] ) class a__ ( _lowerCAmelCase ): """simple docstring""" pass self.assertEqual(find_labels(lowerCAmelCase__ ) , [] )
245
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case__ ( _lowerCAmelCase , unittest.TestCase ): lowercase__ : Optional[Any] = MgpstrTokenizer lowercase__ : int = False lowercase__ : Any = {} lowercase__ : Optional[int] = False def __magic_name__ ( self ) -> Optional[Any]: super().setUp() # fmt: off __magic_name__ : List[str] = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __magic_name__ : List[Any] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[int]: return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self , lowerCAmelCase__ ) -> Optional[int]: __magic_name__ : List[str] = """tester""" __magic_name__ : int = """tester""" return input_text, output_text @unittest.skip("""MGP-STR always lower cases letters.""" ) def __magic_name__ ( self ) -> str: pass def __magic_name__ ( self ) -> List[str]: __magic_name__ : List[Any] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ : Dict = """[SPECIAL_TOKEN]""" tokenizer.add_special_tokens({"""cls_token""": special_token} ) __magic_name__ : List[str] = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , 1 ) __magic_name__ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) self.assertTrue(special_token not in decoded ) def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): __magic_name__ ,__magic_name__ : Optional[Any] = self.get_input_output_texts(lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) __magic_name__ : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) __magic_name__ : List[Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertNotEqual(len(lowerCAmelCase__ ) , 0 ) __magic_name__ : Optional[int] = tokenizer.decode(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(text_a.replace(""" """ , """""" ) , lowerCAmelCase__ ) @unittest.skip("""MGP-STR tokenizer only handles one sequence.""" ) def __magic_name__ ( self ) -> Tuple: pass @unittest.skip("""inputs cannot be pretokenized in MgpstrTokenizer""" ) def __magic_name__ ( self ) -> Optional[Any]: pass
342
0
"""simple docstring""" import copy import re class __UpperCamelCase : lowerCamelCase : Optional[int] ='''hp''' lowerCamelCase : Any ={} lowerCamelCase : Any =None @classmethod def __a ( cls , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: a : List[Any] = prefix a : Tuple = defaults cls.build_naming_info() @staticmethod def __a ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: if len(lowerCAmelCase__ ) == 0: return "" a : int = None if any(char.isdigit() for char in word ): raise Exception(f"""Parameters should not contain numbers: \'{word}\' contains a number""" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(lowerCAmelCase__ ) + 1 ): a : Union[str, Any] = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: a : str = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(lowerCAmelCase__ ): a : List[Any] = """""" while integer != 0: a : Tuple = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s a : List[Any] = 0 while True: a : List[Any] = word + """#""" + int_to_alphabetic(lowerCAmelCase__ ) if sword in info["reverse_short_word"]: continue else: a : str = sword break a : List[Any] = short_word a : str = word return short_word @staticmethod def __a ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: a : Tuple = param_name.split("_" ) a : int = [TrialShortNamer.shortname_for_word(lowerCAmelCase__ , lowerCAmelCase__ ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name a : Tuple = ["""""", """_"""] for separator in separators: a : Union[str, Any] = separator.join(lowerCAmelCase__ ) if shortname not in info["reverse_short_param"]: a : int = shortname a : Any = param_name return shortname return param_name @staticmethod def __a ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: a : List[Any] = TrialShortNamer.shortname_for_key(lowerCAmelCase__ , lowerCAmelCase__ ) a : str = short_name a : Any = param_name @classmethod def __a ( cls ) -> Tuple: if cls.NAMING_INFO is not None: return a : int = { """short_word""": {}, """reverse_short_word""": {}, """short_param""": {}, """reverse_short_param""": {}, } a : Union[str, Any] = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(lowerCAmelCase__ , lowerCAmelCase__ ) a : Tuple = info @classmethod def __a ( cls , lowerCAmelCase__ ) -> int: cls.build_naming_info() assert cls.PREFIX is not None a : int = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(f"""You should provide a default value for the param name {k} with value {v}""" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue a : Union[str, Any] = cls.NAMING_INFO["""short_param"""][k] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : List[str] = 1 if v else 0 a : Union[str, Any] = """""" if isinstance(lowerCAmelCase__ , (int, float) ) else """-""" a : Any = f"""{key}{sep}{v}""" name.append(lowerCAmelCase__ ) return "_".join(lowerCAmelCase__ ) @classmethod def __a ( cls , lowerCAmelCase__ ) -> Union[str, Any]: a : List[str] = repr[len(cls.PREFIX ) + 1 :] if repr == "": a : str = [] else: a : Union[str, Any] = repr.split("_" ) a : Any = {} for value in values: if "-" in value: a : Union[str, Any] = value.split("-" ) else: a : int = re.sub("[0-9.]" , "" , lowerCAmelCase__ ) a : Optional[Any] = float(re.sub("[^0-9.]" , "" , lowerCAmelCase__ ) ) a : Optional[Any] = cls.NAMING_INFO["""reverse_short_param"""][p_k] a : Any = p_v for k in cls.DEFAULTS: if k not in parameters: a : Union[str, Any] = cls.DEFAULTS[k] return parameters
105
import re def UpperCamelCase ( _A ): """simple docstring""" __magic_name__ : List[Any] = re.compile(R"""^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$""" ) if match := re.search(_A, _A ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator("+918827897895"))
342
0
'''simple docstring''' import numpy as np import qiskit def _UpperCAmelCase ( _lowerCamelCase : List[str] = 8 , _lowerCamelCase : Dict = None ) -> Tuple: _lowerCAmelCase : str = np.random.default_rng(seed=_A ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. _lowerCAmelCase : Union[str, Any] = 6 * key_len # Measurement basis for Alice's qubits. _lowerCAmelCase : List[str] = rng.integers(2 , size=_A ) # The set of states Alice will prepare. _lowerCAmelCase : Dict = rng.integers(2 , size=_A ) # Measurement basis for Bob's qubits. _lowerCAmelCase : Optional[Any] = rng.integers(2 , size=_A ) # Quantum Circuit to simulate BB84 _lowerCAmelCase : int = qiskit.QuantumCircuit(_A , name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(_A ): if alice_state[index] == 1: bbaa_circ.x(_A ) if alice_basis[index] == 1: bbaa_circ.h(_A ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(_A ): if bob_basis[index] == 1: bbaa_circ.h(_A ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. _lowerCAmelCase : int = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. _lowerCAmelCase : Any = qiskit.execute(_A , _A , shots=1 , seed_simulator=_A ) # Returns the result of measurement. _lowerCAmelCase : List[Any] = job.result().get_counts(_A ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. _lowerCAmelCase : Optional[Any] = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( _A , _A , _A ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. _lowerCAmelCase : Optional[int] = gen_key[:key_len] if len(_A ) >= key_len else gen_key.ljust(_A , """0""" ) return key if __name__ == "__main__": print(F'The generated key is : {bbaa(8, seed=0)}') from doctest import testmod testmod()
309
import doctest from collections import deque import numpy as np class snake_case__ : def __init__( self ) -> None: __magic_name__ : Any = [2, 1, 2, -1] __magic_name__ : Tuple = [1, 2, 3, 4] def __magic_name__ ( self ) -> list[float]: __magic_name__ : Optional[Any] = len(self.first_signal ) __magic_name__ : Dict = len(self.second_signal ) __magic_name__ : Tuple = max(lowerCAmelCase__ , lowerCAmelCase__ ) # create a zero matrix of max_length x max_length __magic_name__ : Optional[int] = [[0] * max_length for i in range(lowerCAmelCase__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowerCAmelCase__ ): __magic_name__ : List[str] = deque(self.second_signal ) rotated_signal.rotate(lowerCAmelCase__ ) for j, item in enumerate(lowerCAmelCase__ ): matrix[i][j] += item # multiply the matrix with the first signal __magic_name__ : List[Any] = np.matmul(np.transpose(lowerCAmelCase__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowerCAmelCase__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
342
0
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=_A , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=_A , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=_A ) return parser.parse_args() def _UpperCamelCase ( ): '''simple docstring''' UpperCAmelCase__ = parse_args() # Import training_script as a module. UpperCAmelCase__ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) UpperCAmelCase__ = script_fpath.stem UpperCAmelCase__ = importlib.import_module(_A ) # Patch sys.argv UpperCAmelCase__ = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
346
from math import factorial def UpperCamelCase ( _A, _A, _A ): """simple docstring""" if successes > trials: raise ValueError("""successes must be lower or equal to trials""" ) if trials < 0 or successes < 0: raise ValueError("""the function is defined for non-negative integers""" ) if not isinstance(_A, _A ) or not isinstance(_A, _A ): raise ValueError("""the function is defined for non-negative integers""" ) if not 0 < prob < 1: raise ValueError("""prob has to be in range of 1 - 0""" ) __magic_name__ : int = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __magic_name__ : Any = float(factorial(_A ) ) coefficient /= factorial(_A ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.75))
342
0
import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets _UpperCAmelCase : str = "\\n@inproceedings{lin-2004-rouge,\n title = \"{ROUGE}: A Package for Automatic Evaluation of Summaries\",\n author = \"Lin, Chin-Yew\",\n booktitle = \"Text Summarization Branches Out\",\n month = jul,\n year = \"2004\",\n address = \"Barcelona, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W04-1013\",\n pages = \"74--81\",\n}\n" _UpperCAmelCase : int = "\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n" _UpperCAmelCase : Optional[Any] = "\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `\"rouge{n}\"` (e.g. `\"rouge1\"`, `\"rouge2\"`) where: {n} is the n-gram based scoring,\n `\"rougeL\"`: Longest common subsequence based scoring.\n `\"rougeLSum\"`: rougeLsum splits text using `\"\n\"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric('rouge')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n ['rouge1', 'rouge2', 'rougeL', 'rougeLsum']\n >>> print(results[\"rouge1\"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results[\"rouge1\"].mid.fmeasure)\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase ( datasets.Metric ): def a ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/google-research/google-research/tree/master/rouge'] , reference_urls=[ 'https://en.wikipedia.org/wiki/ROUGE_(metric)', 'https://github.com/google-research/google-research/tree/master/rouge', ] , ) def a ( self , snake_case , snake_case , snake_case=None , snake_case=True , snake_case=False ): if rouge_types is None: snake_case_ = ["""rouge1""", """rouge2""", """rougeL""", """rougeLsum"""] snake_case_ = rouge_scorer.RougeScorer(rouge_types=lowerCAmelCase__ , use_stemmer=lowerCAmelCase__ ) if use_aggregator: snake_case_ = scoring.BootstrapAggregator() else: snake_case_ = [] for ref, pred in zip(lowerCAmelCase__ , lowerCAmelCase__ ): snake_case_ = scorer.score(lowerCAmelCase__ , lowerCAmelCase__ ) if use_aggregator: aggregator.add_scores(lowerCAmelCase__ ) else: scores.append(lowerCAmelCase__ ) if use_aggregator: snake_case_ = aggregator.aggregate() else: snake_case_ = {} for key in scores[0]: snake_case_ = [score[key] for score in scores] return result
285
from __future__ import annotations def UpperCamelCase ( _A ): # This function is recursive """simple docstring""" __magic_name__ : str = len(_A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else __magic_name__ : Dict = array[0] __magic_name__ : Optional[Any] = False __magic_name__ : Tuple = 1 __magic_name__ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: __magic_name__ : Union[str, Any] = True __magic_name__ : List[Any] = [element for element in array[i:] if element >= array[i]] __magic_name__ : Dict = longest_subsequence(_A ) if len(_A ) > len(_A ): __magic_name__ : Tuple = temp_array else: i += 1 __magic_name__ : Any = [element for element in array[1:] if element >= pivot] __magic_name__ : Dict = [pivot, *longest_subsequence(_A )] if len(_A ) > len(_A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
342
0
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch lowerCamelCase__ = random.Random() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1.0 , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None ) -> Dict: if rng is None: lowerCAmelCase__ : str = global_rng lowerCAmelCase__ : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class A__ ( unittest.TestCase ): def __init__( self : List[str] , a : List[str] , a : List[str]=7 , a : Tuple=400 , a : str=2_000 , a : int=10 , a : List[Any]=160 , a : List[str]=8 , a : Any=0.0 , a : Optional[Any]=4_000 , a : Optional[int]=False , a : List[Any]=True , ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = parent lowerCAmelCase__ : List[str] = batch_size lowerCAmelCase__ : int = min_seq_length lowerCAmelCase__ : Optional[Any] = max_seq_length lowerCAmelCase__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase__ : List[Any] = padding_value lowerCAmelCase__ : Tuple = sampling_rate lowerCAmelCase__ : Optional[int] = return_attention_mask lowerCAmelCase__ : List[Any] = do_normalize lowerCAmelCase__ : Optional[Any] = feature_size lowerCAmelCase__ : Optional[int] = chunk_length lowerCAmelCase__ : Tuple = hop_length def _lowerCamelCase ( self : Dict ): '''simple docstring''' return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowerCamelCase ( self : Optional[int] , a : List[str]=False , a : int=False ): '''simple docstring''' def _flatten(a : Dict ): return list(itertools.chain(*lowerCAmelCase__ ) ) if equal_length: lowerCAmelCase__ : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCAmelCase__ : List[str] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase__ : str = [np.asarray(lowerCAmelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A__ ( _lowerCAmelCase , unittest.TestCase ): lowercase = WhisperFeatureExtractor if is_speech_available() else None def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : int = WhisperFeatureExtractionTester(self ) def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : int = feat_extract_first.save_pretrained(lowerCAmelCase__ )[0] check_json_file_has_correct_format(lowerCAmelCase__ ) lowerCAmelCase__ : int = self.feature_extraction_class.from_pretrained(lowerCAmelCase__ ) lowerCAmelCase__ : List[Any] = feat_extract_first.to_dict() lowerCAmelCase__ : int = feat_extract_second.to_dict() lowerCAmelCase__ : Union[str, Any] = feat_extract_first.mel_filters lowerCAmelCase__ : int = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : str = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Union[str, Any] = os.path.join(lowerCAmelCase__ , 'feat_extract.json' ) feat_extract_first.to_json_file(lowerCAmelCase__ ) lowerCAmelCase__ : Optional[int] = self.feature_extraction_class.from_json_file(lowerCAmelCase__ ) lowerCAmelCase__ : str = feat_extract_first.to_dict() lowerCAmelCase__ : int = feat_extract_second.to_dict() lowerCAmelCase__ : Tuple = feat_extract_first.mel_filters lowerCAmelCase__ : Union[str, Any] = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ ) ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase__ : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase__ : Any = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs] # Test feature size lowerCAmelCase__ : Dict = feature_extractor(lowerCAmelCase__ , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input lowerCAmelCase__ : Tuple = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features lowerCAmelCase__ : Dict = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test batched lowerCAmelCase__ : Union[str, Any] = feature_extractor(lowerCAmelCase__ , return_tensors='np' ).input_features lowerCAmelCase__ : Tuple = feature_extractor(lowerCAmelCase__ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase__ : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCAmelCase__ : str = np.asarray(lowerCAmelCase__ ) lowerCAmelCase__ : Optional[Any] = feature_extractor(lowerCAmelCase__ , return_tensors='np' ).input_features lowerCAmelCase__ : Union[str, Any] = feature_extractor(lowerCAmelCase__ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) # Test truncation required lowerCAmelCase__ : Dict = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] lowerCAmelCase__ : Any = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs] lowerCAmelCase__ : List[Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] lowerCAmelCase__ : List[Any] = [np.asarray(lowerCAmelCase__ ) for speech_input in speech_inputs_truncated] lowerCAmelCase__ : Any = feature_extractor(lowerCAmelCase__ , return_tensors='np' ).input_features lowerCAmelCase__ : str = feature_extractor(lowerCAmelCase__ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCAmelCase__ , lowerCAmelCase__ ): self.assertTrue(np.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1E-3 ) ) def _lowerCamelCase ( self : Union[str, Any] ): '''simple docstring''' import torch lowerCAmelCase__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ : Optional[int] = np.random.rand(100 , 32 ).astype(np.floataa ) lowerCAmelCase__ : Union[str, Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase__ : Dict = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCAmelCase__ : Optional[Any] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def _lowerCamelCase ( self : Optional[int] , a : List[Any] ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech lowerCAmelCase__ : Optional[int] = ds.sort('id' ).select(range(lowerCAmelCase__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : int = torch.tensor( [ 0.1_1_9_3, -0.0_9_4_6, -0.1_0_9_8, -0.0_1_9_6, 0.0_2_2_5, -0.0_6_9_0, -0.1_7_3_6, 0.0_9_5_1, 0.0_9_7_1, -0.0_8_1_7, -0.0_7_0_2, 0.0_1_6_2, 0.0_2_6_0, 0.0_0_1_7, -0.0_1_9_2, -0.1_6_7_8, 0.0_7_0_9, -0.1_8_6_7, -0.0_6_5_5, -0.0_2_7_4, -0.0_2_3_4, -0.1_8_8_4, -0.0_5_1_6, -0.0_5_5_4, -0.0_2_7_4, -0.1_4_2_5, -0.1_4_2_3, 0.0_8_3_7, 0.0_3_7_7, -0.0_8_5_4 ] ) # fmt: on lowerCAmelCase__ : List[Any] = self._load_datasamples(1 ) lowerCAmelCase__ : Optional[int] = WhisperFeatureExtractor() lowerCAmelCase__ : Any = feature_extractor(lowerCAmelCase__ , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , lowerCAmelCase__ , atol=1E-4 ) ) def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase__ : Any = self._load_datasamples(1 )[0] lowerCAmelCase__ : List[Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue lowerCAmelCase__ : Dict = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowerCAmelCase__ )[0] self.assertTrue(np.all(np.mean(lowerCAmelCase__ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCAmelCase__ ) - 1 ) < 1E-3 ) )
212
import argparse import os import re __magic_name__: Optional[Any] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __magic_name__: Any = re.compile(r"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings __magic_name__: Tuple = re.compile(r"\s*\(\s*\"(\S[^\"]+)\"") def UpperCamelCase ( _A, _A = False ): """simple docstring""" with open(_A, """r""", encoding="""utf-8""" ) as f: __magic_name__ : Any = f.read() __magic_name__ : List[Any] = content.split("""\n""" ) __magic_name__ : List[str] = [] __magic_name__ : Union[str, Any] = 0 while line_idx < len(_A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: __magic_name__ : Any = len(re.search(R"""^(\s*)\S""", lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(""" """ * indent + """(""" ): new_lines.append(lines[line_idx] ) line_idx += 1 __magic_name__ : List[Any] = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": __magic_name__ : List[str] = line_idx while not lines[line_idx].startswith(""" """ * indent + """)""" ): line_idx += 1 blocks.append("""\n""".join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers __magic_name__ : Union[str, Any] = sorted(_A, key=lambda _A : _re_identifier.search(_A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_A, """w""", encoding="""utf-8""" ) as f: f.write("""\n""".join(_A ) ) elif "\n".join(_A ) != content: return True def UpperCamelCase ( _A = False ): """simple docstring""" __magic_name__ : Any = [os.path.join(_A, _A ) for f in os.listdir(_A ) if f.endswith(""".py""" )] __magic_name__ : List[str] = [sort_auto_mapping(_A, overwrite=_A ) for fname in fnames] if not overwrite and any(_A ): __magic_name__ : Optional[Any] = [f for f, d in zip(_A, _A ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(_A )}. Run `make style` to fix' """ this.""" ) if __name__ == "__main__": __magic_name__: List[str] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") __magic_name__: List[str] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
342
0