code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def __snake_case ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any=1_000 ) -> Any: """simple docstring""" if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd UpperCAmelCase = n - 1 UpperCAmelCase = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) UpperCAmelCase = 0 while count < prec: UpperCAmelCase = random.randint(2 , n - 1 ) UpperCAmelCase = bin_exp_mod(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if b != 1: UpperCAmelCase = True for _ in range(SCREAMING_SNAKE_CASE_ ): if b == n - 1: UpperCAmelCase = False break UpperCAmelCase = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": a__ : List[Any] = abs(int(input('Enter bound : ').strip())) print('Here\'s the list of primes:') print(', '.join(str(i) for i in range(n + 1) if is_prime_big(i)))
51
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: UpperCamelCase_ : Dict = None UpperCamelCase_ : int = logging.get_logger(__name__) UpperCamelCase_ : str = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase_ : List[Any] = { '''vocab_file''': { '''facebook/mbart-large-en-ro''': ( '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model''' ), '''facebook/mbart-large-cc25''': ( '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/mbart-large-en-ro''': '''https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json''', '''facebook/mbart-large-cc25''': '''https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json''', }, } UpperCamelCase_ : Optional[Any] = { '''facebook/mbart-large-en-ro''': 1024, '''facebook/mbart-large-cc25''': 1024, } # fmt: off UpperCamelCase_ : str = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN'''] class __lowerCAmelCase ( _lowercase ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = ["input_ids", "attention_mask"] snake_case = MBartTokenizer snake_case = [] snake_case = [] def __init__( self : List[str] , _snake_case : Tuple=None , _snake_case : int=None , _snake_case : List[Any]="<s>" , _snake_case : Tuple="</s>" , _snake_case : str="</s>" , _snake_case : List[Any]="<s>" , _snake_case : Dict="<unk>" , _snake_case : str="<pad>" , _snake_case : Any="<mask>" , _snake_case : int=None , _snake_case : Optional[int]=None , _snake_case : Any=None , **_snake_case : Union[str, Any] , ) -> List[str]: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it A_ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token super().__init__( vocab_file=_snake_case , tokenizer_file=_snake_case , bos_token=_snake_case , eos_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , src_lang=_snake_case , tgt_lang=_snake_case , additional_special_tokens=_snake_case , **_snake_case , ) A_ = vocab_file A_ = False if not self.vocab_file else True A_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"additional_special_tokens": _additional_special_tokens} ) A_ = { lang_code: self.convert_tokens_to_ids(_snake_case ) for lang_code in FAIRSEQ_LANGUAGE_CODES } A_ = src_lang if src_lang is not None else "en_XX" A_ = self.convert_tokens_to_ids(self._src_lang ) A_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def lowerCamelCase__ ( self : Dict ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def lowerCamelCase__ ( self : Tuple , _snake_case : str ) -> None: """simple docstring""" A_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase__ ( self : Optional[Any] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase__ ( self : Dict , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self : List[Any] , _snake_case : str , _snake_case : str , _snake_case : Optional[str] , _snake_case : Optional[str] , **_snake_case : Optional[int] ) -> str: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) A_ = src_lang A_ = self(_snake_case , add_special_tokens=_snake_case , return_tensors=_snake_case , **_snake_case ) A_ = self.convert_tokens_to_ids(_snake_case ) A_ = tgt_lang_id return inputs def lowerCamelCase__ ( self : Dict , _snake_case : List[str] , _snake_case : str = "en_XX" , _snake_case : Optional[List[str]] = None , _snake_case : str = "ro_RO" , **_snake_case : str , ) -> BatchEncoding: """simple docstring""" A_ = src_lang A_ = tgt_lang return super().prepare_seqaseq_batch(_snake_case , _snake_case , **_snake_case ) def lowerCamelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase__ ( self : Dict ) -> List[Any]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase__ ( self : Tuple , _snake_case : List[str] ) -> None: """simple docstring""" A_ = self.convert_tokens_to_ids(_snake_case ) A_ = [] A_ = [self.eos_token_id, self.cur_lang_code] A_ = self.convert_ids_to_tokens(self.prefix_tokens ) A_ = self.convert_ids_to_tokens(self.suffix_tokens ) A_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase__ ( self : List[str] , _snake_case : str ) -> None: """simple docstring""" A_ = self.convert_tokens_to_ids(_snake_case ) A_ = [] A_ = [self.eos_token_id, self.cur_lang_code] A_ = self.convert_ids_to_tokens(self.prefix_tokens ) A_ = self.convert_ids_to_tokens(self.suffix_tokens ) A_ = processors.TemplateProcessing( single=prefix_tokens_str + ["$A"] + suffix_tokens_str , pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def lowerCamelCase__ ( self : Union[str, Any] , _snake_case : str , _snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(_snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory.' ) return A_ = os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ): copyfile(self.vocab_file , _snake_case ) return (out_vocab_file,)
115
0
"""simple docstring""" import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) _lowercase : Union[str, Any] = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def snake_case__ ( __lowerCamelCase : Dict ): """simple docstring""" lowerCamelCase__ : Union[str, Any] ={} state_dict.pop('''pixel_mean''' , lowerCamelCase__ ) state_dict.pop('''pixel_std''' , lowerCamelCase__ ) lowerCamelCase__ : Union[str, Any] =R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowerCamelCase__ : str =key.replace(lowerCamelCase__ , lowerCamelCase__ ) if re.match(lowerCamelCase__ , lowerCamelCase__ ): lowerCamelCase__ : Tuple =int(re.match(lowerCamelCase__ , lowerCamelCase__ ).group(2 ) ) if layer_nb == 0: lowerCamelCase__ : List[str] =key.replace('''layers.0''' , '''proj_in''' ) elif layer_nb == 1: lowerCamelCase__ : int =key.replace('''layers.1''' , '''layers.0''' ) elif layer_nb == 2: lowerCamelCase__ : List[str] =key.replace('''layers.2''' , '''proj_out''' ) lowerCamelCase__ : Optional[Any] =value lowerCamelCase__ : str =model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def snake_case__ ( __lowerCamelCase : Any , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : str="ybelkada/segment-anything" ): """simple docstring""" lowerCamelCase__ : Dict =hf_hub_download(lowerCamelCase__ , f'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: lowerCamelCase__ : Optional[int] =SamConfig() elif "sam_vit_l" in model_name: lowerCamelCase__ : Dict =SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) lowerCamelCase__ : Optional[int] =SamConfig( vision_config=lowerCamelCase__ , ) elif "sam_vit_h" in model_name: lowerCamelCase__ : List[str] =SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) lowerCamelCase__ : Any =SamConfig( vision_config=lowerCamelCase__ , ) lowerCamelCase__ : Union[str, Any] =torch.load(lowerCamelCase__ , map_location='''cpu''' ) lowerCamelCase__ : int =replace_keys(lowerCamelCase__ ) lowerCamelCase__ : int =SamImageProcessor() lowerCamelCase__ : Any =SamProcessor(image_processor=lowerCamelCase__ ) lowerCamelCase__ : str =SamModel(lowerCamelCase__ ) hf_model.load_state_dict(lowerCamelCase__ ) lowerCamelCase__ : List[str] =hf_model.to('''cuda''' ) lowerCamelCase__ : List[Any] ="https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" lowerCamelCase__ : Tuple =Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ).convert('''RGB''' ) lowerCamelCase__ : List[str] =[[[400, 650]]] lowerCamelCase__ : Any =[[1]] lowerCamelCase__ : Any =processor(images=np.array(lowerCamelCase__ ) , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): lowerCamelCase__ : str =hf_model(**lowerCamelCase__ ) lowerCamelCase__ : int =output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_79_89_02_51_15_96_68 lowerCamelCase__ : Tuple =processor( images=np.array(lowerCamelCase__ ) , input_points=lowerCamelCase__ , input_labels=lowerCamelCase__ , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): lowerCamelCase__ : Union[str, Any] =hf_model(**lowerCamelCase__ ) lowerCamelCase__ : Optional[Any] =output.iou_scores.squeeze() assert scores[-1].item() == 0.97_12_60_30_92_19_36_04 lowerCamelCase__ : Any =((75, 275, 1725, 850),) lowerCamelCase__ : Any =processor(images=np.array(lowerCamelCase__ ) , input_boxes=lowerCamelCase__ , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): lowerCamelCase__ : Dict =hf_model(**lowerCamelCase__ ) lowerCamelCase__ : Tuple =output.iou_scores.squeeze() assert scores[-1].item() == 0.86_86_01_56_05_92_65_14 # Test with 2 points and 1 image. lowerCamelCase__ : str =[[[400, 650], [800, 650]]] lowerCamelCase__ : Tuple =[[1, 1]] lowerCamelCase__ : str =processor( images=np.array(lowerCamelCase__ ) , input_points=lowerCamelCase__ , input_labels=lowerCamelCase__ , return_tensors='''pt''' ).to('''cuda''' ) with torch.no_grad(): lowerCamelCase__ : List[Any] =hf_model(**lowerCamelCase__ ) lowerCamelCase__ : str =output.iou_scores.squeeze() assert scores[-1].item() == 0.99_36_04_77_92_43_46_92 if __name__ == "__main__": _lowercase : List[Any] = argparse.ArgumentParser() _lowercase : List[str] = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) _lowercase : Dict = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
710
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[Any], lowerCamelCase : Tuple, lowerCamelCase : List[str]=13, lowerCamelCase : List[Any]=32, lowerCamelCase : Dict=3, lowerCamelCase : int=4, lowerCamelCase : str=[10, 20, 30, 40], lowerCamelCase : Any=[2, 2, 3, 2], lowerCamelCase : int=True, lowerCamelCase : int=True, lowerCamelCase : str=37, lowerCamelCase : Optional[int]="gelu", lowerCamelCase : Optional[int]=10, lowerCamelCase : Any=0.02, lowerCamelCase : Union[str, Any]=["stage2", "stage3", "stage4"], lowerCamelCase : Optional[int]=3, lowerCamelCase : Tuple=None, )-> List[str]: lowerCamelCase__ : List[str] =parent lowerCamelCase__ : Tuple =batch_size lowerCamelCase__ : str =image_size lowerCamelCase__ : Any =num_channels lowerCamelCase__ : Tuple =num_stages lowerCamelCase__ : List[str] =hidden_sizes lowerCamelCase__ : Any =depths lowerCamelCase__ : Union[str, Any] =is_training lowerCamelCase__ : Tuple =use_labels lowerCamelCase__ : int =intermediate_size lowerCamelCase__ : Optional[int] =hidden_act lowerCamelCase__ : Dict =type_sequence_label_size lowerCamelCase__ : Tuple =initializer_range lowerCamelCase__ : Any =out_features lowerCamelCase__ : Tuple =num_labels lowerCamelCase__ : Optional[int] =scope lowerCamelCase__ : Optional[int] =num_stages def snake_case ( self : str )-> Optional[int]: lowerCamelCase__ : str =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple =None if self.use_labels: lowerCamelCase__ : Union[str, Any] =ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : int =self.get_config() return config, pixel_values, labels def snake_case ( self : Union[str, Any] )-> Any: return ConvNextConfig( num_channels=self.num_channels, num_stages=self.num_stages, hidden_sizes=self.hidden_sizes, depths=self.depths, is_training=self.is_training, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, out_features=self.out_features, ) def snake_case ( self : Union[str, Any] )-> Any: return UperNetConfig( backbone_config=self.get_backbone_config(), hidden_size=512, pool_scales=[1, 2, 3, 6], use_auxiliary_head=lowerCamelCase, auxiliary_loss_weight=0.4, auxiliary_in_channels=40, auxiliary_channels=256, auxiliary_num_convs=1, auxiliary_concat_input=lowerCamelCase, loss_ignore_index=255, num_labels=self.num_labels, ) def snake_case ( self : int, lowerCamelCase : str, lowerCamelCase : List[str], lowerCamelCase : List[Any] )-> Tuple: lowerCamelCase__ : List[str] =UperNetForSemanticSegmentation(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowerCamelCase__ : int =model(lowerCamelCase ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def snake_case ( self : Any )-> Tuple: lowerCamelCase__ : Dict =self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Any =config_and_inputs lowerCamelCase__ : Optional[int] ={'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' _a = (UperNetForSemanticSegmentation,) if is_torch_available() else () _a = {'image-segmentation': UperNetForSemanticSegmentation} if is_torch_available() else {} _a = False _a = False _a = False _a = False _a = False _a = False def snake_case ( self : Optional[int] )-> Optional[int]: lowerCamelCase__ : Optional[Any] =UperNetModelTester(self ) lowerCamelCase__ : Union[str, Any] =ConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase, hidden_size=37 ) def snake_case ( self : Optional[int] )-> Optional[int]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self : List[str] )-> Dict: return def snake_case ( self : Optional[int] )-> List[str]: lowerCamelCase__ , lowerCamelCase__ : str =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Union[str, Any] =model_class(lowerCamelCase ) lowerCamelCase__ : Tuple =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Tuple =[*signature.parameters.keys()] lowerCamelCase__ : List[Any] =['''pixel_values'''] self.assertListEqual(arg_names[:1], lowerCamelCase ) def snake_case ( self : Any )-> Union[str, Any]: lowerCamelCase__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def snake_case ( self : Optional[Any] )-> List[Any]: pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def snake_case ( self : Any )-> List[str]: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def snake_case ( self : int )-> Any: pass @unittest.skip(reason='''UperNet does not have a base model''' ) def snake_case ( self : Dict )-> str: pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def snake_case ( self : List[Any] )-> List[str]: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case ( self : Tuple )-> str: pass def snake_case ( self : Optional[int] )-> List[str]: def check_hidden_states_output(lowerCamelCase : Dict, lowerCamelCase : int, lowerCamelCase : List[str] ): lowerCamelCase__ : Union[str, Any] =model_class(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[Any] =model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase ) ) lowerCamelCase__ : Optional[Any] =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase__ : List[str] =self.model_tester.num_stages self.assertEqual(len(lowerCamelCase ), expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ), [self.model_tester.image_size // 4, self.model_tester.image_size // 4], ) lowerCamelCase__ , lowerCamelCase__ : Dict =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] =True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : Optional[Any] =True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase ) def snake_case ( self : Any )-> List[Any]: lowerCamelCase__ , lowerCamelCase__ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : str =_config_zero_init(lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =_config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] =model_class(config=lowerCamelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item(), [0.0, 1.0], msg=F'''Parameter {name} of model {model_class} seems not properly initialized''', ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def snake_case ( self : Any )-> str: pass @slow def snake_case ( self : int )-> Union[str, Any]: for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : str =UperNetForSemanticSegmentation.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def snake_case__ ( ): """simple docstring""" lowerCamelCase__ : Optional[int] =hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) lowerCamelCase__ : List[str] =Image.open(__lowerCamelCase ).convert('''RGB''' ) return image @require_torch @require_vision @slow class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : str )-> Union[str, Any]: lowerCamelCase__ : List[Any] =AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) lowerCamelCase__ : List[Any] =UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(lowerCamelCase ) lowerCamelCase__ : List[Any] =prepare_img() lowerCamelCase__ : List[Any] =processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) with torch.no_grad(): lowerCamelCase__ : List[Any] =model(**lowerCamelCase ) lowerCamelCase__ : Optional[int] =torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) lowerCamelCase__ : Dict =torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], lowerCamelCase, atol=1E-4 ) ) def snake_case ( self : Optional[int] )-> Optional[Any]: lowerCamelCase__ : str =AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) lowerCamelCase__ : Tuple =UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(lowerCamelCase ) lowerCamelCase__ : Dict =prepare_img() lowerCamelCase__ : Any =processor(images=lowerCamelCase, return_tensors='''pt''' ).to(lowerCamelCase ) with torch.no_grad(): lowerCamelCase__ : Any =model(**lowerCamelCase ) lowerCamelCase__ : Dict =torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape, lowerCamelCase ) lowerCamelCase__ : List[str] =torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3], lowerCamelCase, atol=1E-4 ) )
625
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A : List[str] = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Tuple = ["ConditionalDetrFeatureExtractor"] __A : Optional[Any] = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase : Any = { '''configuration_longformer''': [ '''LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongformerConfig''', '''LongformerOnnxConfig''', ], '''tokenization_longformer''': ['''LongformerTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = ['''LongformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ '''LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongformerForMaskedLM''', '''LongformerForMultipleChoice''', '''LongformerForQuestionAnswering''', '''LongformerForSequenceClassification''', '''LongformerForTokenClassification''', '''LongformerModel''', '''LongformerPreTrainedModel''', '''LongformerSelfAttention''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ '''TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLongformerForMaskedLM''', '''TFLongformerForMultipleChoice''', '''TFLongformerForQuestionAnswering''', '''TFLongformerForSequenceClassification''', '''TFLongformerForTokenClassification''', '''TFLongformerModel''', '''TFLongformerPreTrainedModel''', '''TFLongformerSelfAttention''', ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys __lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
653
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowercase = logging.get_logger(__name__) def UpperCAmelCase ( A : Any ): '''simple docstring''' if "resnet-50" in model_name: _UpperCAmelCase = ResNetConfig.from_pretrained('microsoft/resnet-50' ) elif "resnet-101" in model_name: _UpperCAmelCase = ResNetConfig.from_pretrained('microsoft/resnet-101' ) else: raise ValueError('Model name should include either resnet50 or resnet101' ) _UpperCAmelCase = DetrConfig(use_timm_backbone=_lowerCAmelCase , backbone_config=_lowerCAmelCase ) # set label attributes _UpperCAmelCase = 'panoptic' in model_name if is_panoptic: _UpperCAmelCase = 250 else: _UpperCAmelCase = 91 _UpperCAmelCase = 'huggingface/label-files' _UpperCAmelCase = 'coco-detection-id2label.json' _UpperCAmelCase = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCAmelCase ( A : List[Any] ): '''simple docstring''' _UpperCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight') ) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight') ) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias') ) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean') ) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean', ) ) rename_keys.append( ( f'backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var', f'backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( f'transformer.encoder.layers.{i}.self_attn.out_proj.weight', f'encoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.encoder.layers.{i}.self_attn.out_proj.bias', f'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'encoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.weight', f'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm1.bias', f'encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.encoder.layers.{i}.norm2.weight', f'encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'encoder.layers.{i}.final_layer_norm.bias') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'decoder.layers.{i}.self_attn.out_proj.weight', ) ) rename_keys.append( (f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', f'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( f'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', f'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'decoder.layers.{i}.fc2.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.weight', f'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm1.bias', f'decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.weight', f'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm2.bias', f'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append( (f'transformer.decoder.layers.{i}.norm3.weight', f'decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'decoder.layers.{i}.final_layer_norm.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) return rename_keys def UpperCAmelCase ( A : Optional[Any] , A : List[str] , A : int ): '''simple docstring''' _UpperCAmelCase = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase = val def UpperCAmelCase ( A : Any , A : Union[str, Any]=False ): '''simple docstring''' _UpperCAmelCase = '' if is_panoptic: _UpperCAmelCase = 'detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) _UpperCAmelCase = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[:256, :] _UpperCAmelCase = in_proj_bias[:256] _UpperCAmelCase = in_proj_weight[256:512, :] _UpperCAmelCase = in_proj_bias[256:512] _UpperCAmelCase = in_proj_weight[-256:, :] _UpperCAmelCase = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _UpperCAmelCase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) _UpperCAmelCase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[:256, :] _UpperCAmelCase = in_proj_bias[:256] _UpperCAmelCase = in_proj_weight[256:512, :] _UpperCAmelCase = in_proj_bias[256:512] _UpperCAmelCase = in_proj_weight[-256:, :] _UpperCAmelCase = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention _UpperCAmelCase = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) _UpperCAmelCase = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict _UpperCAmelCase = in_proj_weight_cross_attn[:256, :] _UpperCAmelCase = in_proj_bias_cross_attn[:256] _UpperCAmelCase = in_proj_weight_cross_attn[256:512, :] _UpperCAmelCase = in_proj_bias_cross_attn[256:512] _UpperCAmelCase = in_proj_weight_cross_attn[-256:, :] _UpperCAmelCase = in_proj_bias_cross_attn[-256:] def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( A : str , A : Dict=None , A : Optional[int]=False ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = get_detr_config(_lowerCAmelCase ) # load original model from torch hub _UpperCAmelCase = { 'detr-resnet-50': 'detr_resnet50', 'detr-resnet-101': 'detr_resnet101', } logger.info(f'Converting model {model_name}...' ) _UpperCAmelCase = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=_lowerCAmelCase ).eval() _UpperCAmelCase = detr.state_dict() # rename keys for src, dest in create_rename_keys(_lowerCAmelCase ): if is_panoptic: _UpperCAmelCase = 'detr.' + src rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowerCAmelCase , is_panoptic=_lowerCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _UpperCAmelCase = 'detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): _UpperCAmelCase = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _UpperCAmelCase = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: _UpperCAmelCase = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): _UpperCAmelCase = state_dict.pop(_lowerCAmelCase ) _UpperCAmelCase = val # finally, create HuggingFace model and load state dict _UpperCAmelCase = DetrForSegmentation(_lowerCAmelCase ) if is_panoptic else DetrForObjectDetection(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # verify our conversion on an image _UpperCAmelCase = 'coco_panoptic' if is_panoptic else 'coco_detection' _UpperCAmelCase = DetrImageProcessor(format=_lowerCAmelCase ) _UpperCAmelCase = processor(images=prepare_img() , return_tensors='pt' ) _UpperCAmelCase = encoding['pixel_values'] _UpperCAmelCase = detr(_lowerCAmelCase ) _UpperCAmelCase = model(_lowerCAmelCase ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...' ) model.push_to_hub(f'nielsr/{model_name}' ) processor.push_to_hub(f'nielsr/{model_name}' ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') lowercase = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
700
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = '''beit''' def __init__( self , snake_case=8192 , snake_case=768 , snake_case=12 , snake_case=12 , snake_case=3072 , snake_case="gelu" , snake_case=0.0 , snake_case=0.0 , snake_case=0.02 , snake_case=1E-12 , snake_case=224 , snake_case=16 , snake_case=3 , snake_case=False , snake_case=False , snake_case=False , snake_case=False , snake_case=0.1 , snake_case=0.1 , snake_case=True , snake_case=[3, 5, 7, 11] , snake_case=[1, 2, 3, 6] , snake_case=True , snake_case=0.4 , snake_case=256 , snake_case=1 , snake_case=False , snake_case=255 , **snake_case , ) -> str: super().__init__(**snake_case ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = use_mask_token _UpperCAmelCase = use_absolute_position_embeddings _UpperCAmelCase = use_relative_position_bias _UpperCAmelCase = use_shared_relative_position_bias _UpperCAmelCase = layer_scale_init_value _UpperCAmelCase = drop_path_rate _UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) _UpperCAmelCase = out_indices _UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) _UpperCAmelCase = use_auxiliary_head _UpperCAmelCase = auxiliary_loss_weight _UpperCAmelCase = auxiliary_channels _UpperCAmelCase = auxiliary_num_convs _UpperCAmelCase = auxiliary_concat_input _UpperCAmelCase = semantic_loss_ignore_index class lowercase__ ( A ): '''simple docstring''' _UpperCAmelCase = version.parse('''1.11''' ) @property def lowerCamelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def lowerCamelCase_ ( self ) -> float: return 1E-4
24
0
'''simple docstring''' import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def __snake_case ( lowercase : Optional[int] ): snake_case_ = [ "decoder.version", "decoder.output_projection.weight", "_float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(lowercase , lowercase ) def __snake_case ( lowercase : Optional[Any] ): snake_case_ = emb.weight.shape snake_case_ = nn.Linear(lowercase , lowercase , bias=lowercase ) snake_case_ = emb.weight.data return lin_layer def __snake_case ( lowercase : Optional[int] ): snake_case_ = torch.load(lowercase , map_location="cpu" ) snake_case_ = Namespace(**checkpoint["cfg"]["model"] ) snake_case_ = checkpoint["model"] remove_ignore_keys_(lowercase ) snake_case_ = state_dict["decoder.embed_tokens.weight"].shape[0] snake_case_ = {key.replace("decoder" , "model" ): val for key, val in state_dict.items()} snake_case_ = XGLMConfig( vocab_size=lowercase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="gelu" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) snake_case_ = XGLMForCausalLM(lowercase ) snake_case_ = model.load_state_dict(lowercase , strict=lowercase ) print(lowercase ) snake_case_ = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') lowercase__ = parser.parse_args() lowercase__ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
508
from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class _UpperCAmelCase ( _A ): """simple docstring""" A = '''EncodecFeatureExtractor''' A = ('''T5Tokenizer''', '''T5TokenizerFast''') def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): '''simple docstring''' super().__init__(_lowerCAmelCase , _lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = self.feature_extractor lowerCAmelCase__ :Tuple = False def snake_case_ ( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=_lowerCAmelCase , language=_lowerCAmelCase , no_timestamps=_lowerCAmelCase ) def __call__( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCAmelCase , **_lowerCAmelCase ) lowerCAmelCase__ :Optional[Any] = kwargs.pop("audio" , _lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = kwargs.pop("sampling_rate" , _lowerCAmelCase ) lowerCAmelCase__ :Dict = kwargs.pop("text" , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: lowerCAmelCase__ :Optional[int] = args[0] lowerCAmelCase__ :Tuple = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if text is not None: lowerCAmelCase__ :Any = self.tokenizer(_lowerCAmelCase , **_lowerCAmelCase ) if audio is not None: lowerCAmelCase__ :Tuple = self.feature_extractor(_lowerCAmelCase , *_lowerCAmelCase , sampling_rate=_lowerCAmelCase , **_lowerCAmelCase ) if audio is None: return inputs elif text is None: return audio_inputs else: lowerCAmelCase__ :List[str] = audio_inputs["input_values"] if "padding_mask" in audio_inputs: lowerCAmelCase__ :int = audio_inputs["padding_mask"] return inputs def snake_case_ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = kwargs.pop("audio" , _lowerCAmelCase ) lowerCAmelCase__ :Optional[int] = kwargs.pop("padding_mask" , _lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: lowerCAmelCase__ :int = args[0] lowerCAmelCase__ :List[str] = args[1:] if audio_values is not None: return self._decode_audio(_lowerCAmelCase , padding_mask=_lowerCAmelCase ) else: return self.tokenizer.batch_decode(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , *_lowerCAmelCase , **_lowerCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*_lowerCAmelCase , **_lowerCAmelCase ) def snake_case_ ( self , _lowerCAmelCase , _lowerCAmelCase = None ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = to_numpy(_lowerCAmelCase ) lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ :Optional[Any] = audio_values.shape if padding_mask is None: return list(_lowerCAmelCase ) lowerCAmelCase__ :List[str] = to_numpy(_lowerCAmelCase ) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) lowerCAmelCase__ :str = seq_len - padding_mask.shape[-1] lowerCAmelCase__ :Union[str, Any] = 1 - self.feature_extractor.padding_value lowerCAmelCase__ :Optional[Any] = np.pad(_lowerCAmelCase , ((0, 0), (0, difference)) , "constant" , constant_values=_lowerCAmelCase ) lowerCAmelCase__ :Union[str, Any] = audio_values.tolist() for i in range(_lowerCAmelCase ): lowerCAmelCase__ :str = np.asarray(audio_values[i] )[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] lowerCAmelCase__ :List[Any] = sliced_audio.reshape(_lowerCAmelCase , -1 ) return audio_values
145
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__: Optional[int] = { '''configuration_swinv2''': ['''SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Swinv2Config'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: str = [ '''SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Swinv2ForImageClassification''', '''Swinv2ForMaskedImageModeling''', '''Swinv2Model''', '''Swinv2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys A__: Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
221
import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize("dataset_size" ,[None, 4_00 * 2**20, 6_00 * 2**20]) @pytest.mark.parametrize("input_in_memory_max_size" ,["default", 0, 1_00 * 2**20, 9_00 * 2**20]) def lowerCAmelCase_ ( A_ ,A_ ,A_): if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config ,"IN_MEMORY_MAX_SIZE" ,A_) UpperCamelCase__: List[str] = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: UpperCamelCase__: List[Any] = dataset_size < in_memory_max_size else: UpperCamelCase__: int = False UpperCamelCase__: int = is_small_dataset(A_) assert result == expected
221
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/data2vec-vision-base-ft": ( "https://huggingface.co/facebook/data2vec-vision-base-ft/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = 'data2vec-vision' def __init__( self , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.0 , _a=0.0 , _a=0.02 , _a=1E-12 , _a=224 , _a=16 , _a=3 , _a=False , _a=False , _a=False , _a=False , _a=0.1 , _a=0.1 , _a=True , _a=[3, 5, 7, 11] , _a=[1, 2, 3, 6] , _a=True , _a=0.4 , _a=256 , _a=1 , _a=False , _a=255 , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = initializer_range __a = layer_norm_eps __a = image_size __a = patch_size __a = num_channels __a = use_mask_token __a = use_absolute_position_embeddings __a = use_relative_position_bias __a = use_shared_relative_position_bias __a = layer_scale_init_value __a = drop_path_rate __a = use_mean_pooling # decode head attributes (semantic segmentation) __a = out_indices __a = pool_scales # auxiliary head attributes (semantic segmentation) __a = use_auxiliary_head __a = auxiliary_loss_weight __a = auxiliary_channels __a = auxiliary_num_convs __a = auxiliary_concat_input __a = semantic_loss_ignore_index class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = version.parse('1.11' ) @property def __UpperCAmelCase ( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def __UpperCAmelCase ( self ): return 1E-4
695
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = 0 __UpperCAmelCase : bool = False __UpperCAmelCase : float = 3.0 class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {'''a''': 2} ) self.assertDictEqual(MockClass(a=2 , b=_a ).to_kwargs() , {'''a''': 2, '''b''': True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {'''a''': 2, '''c''': 2.25} ) @require_cuda def __UpperCAmelCase ( self ): # If no defaults are changed, `to_kwargs` returns an empty dict. __a = GradScalerKwargs(init_scale=1_024 , growth_factor=2 ) AcceleratorState._reset_state() __a = Accelerator(mixed_precision='''fp16''' , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) __a = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_000 ) self.assertEqual(scaler._enabled , _a ) @require_multi_gpu def __UpperCAmelCase ( self ): __a = ['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(_a , env=os.environ.copy() ) if __name__ == "__main__": lowercase_ = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) lowercase_ = Accelerator(kwargs_handlers=[ddp_scaler]) lowercase_ = torch.nn.Linear(1_0_0, 2_0_0) lowercase_ = accelerator.prepare(model) # Check the values changed in kwargs lowercase_ = "" lowercase_ = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
695
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = { 'SenseTime/deformable-detr': 'https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json', # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __snake_case ( __lowerCAmelCase ): a__ = """deformable_detr""" a__ = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , lowercase=True , lowercase=None , lowercase=3 , lowercase=3_00 , lowercase=10_24 , lowercase=6 , lowercase=10_24 , lowercase=8 , lowercase=6 , lowercase=10_24 , lowercase=8 , lowercase=0.0 , lowercase=True , lowercase="relu" , lowercase=2_56 , lowercase=0.1 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1.0 , lowercase=True , lowercase=False , lowercase="sine" , lowercase="resnet50" , lowercase=True , lowercase=False , lowercase=4 , lowercase=4 , lowercase=4 , lowercase=False , lowercase=3_00 , lowercase=False , lowercase=1 , lowercase=5 , lowercase=2 , lowercase=1 , lowercase=1 , lowercase=5 , lowercase=2 , lowercase=0.1 , lowercase=0.25 , lowercase=False , **lowercase , ) -> str: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') a__: List[Any] = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowercase , lowercase): a__: int = backbone_config.get('model_type') a__: List[str] = CONFIG_MAPPING[backbone_model_type] a__: int = config_class.from_dict(lowercase) a__: Optional[Any] = use_timm_backbone a__: Any = backbone_config a__: Dict = num_channels a__: Optional[Any] = num_queries a__: Optional[int] = max_position_embeddings a__: Any = d_model a__: List[str] = encoder_ffn_dim a__: Union[str, Any] = encoder_layers a__: str = encoder_attention_heads a__: Union[str, Any] = decoder_ffn_dim a__: Union[str, Any] = decoder_layers a__: Optional[Any] = decoder_attention_heads a__: List[Any] = dropout a__: Union[str, Any] = attention_dropout a__: Optional[int] = activation_dropout a__: str = activation_function a__: Optional[Any] = init_std a__: Optional[Any] = init_xavier_std a__: Tuple = encoder_layerdrop a__: List[Any] = auxiliary_loss a__: Dict = position_embedding_type a__: Optional[int] = backbone a__: Any = use_pretrained_backbone a__: Tuple = dilation # deformable attributes a__: Optional[Any] = num_feature_levels a__: str = encoder_n_points a__: int = decoder_n_points a__: Union[str, Any] = two_stage a__: int = two_stage_num_proposals a__: str = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.') # Hungarian matcher a__: List[str] = class_cost a__: Dict = bbox_cost a__: Tuple = giou_cost # Loss coefficients a__: Dict = mask_loss_coefficient a__: Optional[int] = dice_loss_coefficient a__: Any = bbox_loss_coefficient a__: Tuple = giou_loss_coefficient a__: Dict = eos_coefficient a__: List[str] = focal_alpha a__: int = disable_custom_kernels super().__init__(is_encoder_decoder=lowercase , **lowercase) @property def lowerCamelCase_ ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def lowerCamelCase_ ( self) -> int: '''simple docstring''' return self.d_model def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: Optional[Any] = copy.deepcopy(self.__dict__) if self.backbone_config is not None: a__: Any = self.backbone_config.to_dict() a__: Any = self.__class__.model_type return output
217
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ) ->str: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a__: int = F'Expected string as input, found {type(_SCREAMING_SNAKE_CASE )}' raise ValueError(_SCREAMING_SNAKE_CASE ) if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): a__: Dict = F'Expected boolean as use_pascal parameter, found {type(_SCREAMING_SNAKE_CASE )}' raise ValueError(_SCREAMING_SNAKE_CASE ) a__: Any = input_str.split('_' ) a__: int = 0 if use_pascal else 1 a__: str = words[start_index:] a__: Any = [word[0].upper() + word[1:] for word in words_to_capitalize] a__: Dict = '' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
217
1
"""simple docstring""" import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _SCREAMING_SNAKE_CASE ( UpperCAmelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_: Optional[Any] = OpenAIGPTTokenizer SCREAMING_SNAKE_CASE_: Any = OpenAIGPTTokenizerFast SCREAMING_SNAKE_CASE_: Optional[int] = True SCREAMING_SNAKE_CASE_: Tuple = False def __lowerCamelCase ( self : Tuple ) -> int: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowerCAmelCase = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] _lowerCAmelCase = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) _lowerCAmelCase = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(UpperCAmelCase_ ) ) def __lowerCamelCase ( self : List[str] , UpperCAmelCase_ : Tuple ) -> Union[str, Any]: """simple docstring""" return "lower newer", "lower newer" def __lowerCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _lowerCAmelCase = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) _lowerCAmelCase = 'lower' _lowerCAmelCase = ['low', 'er</w>'] _lowerCAmelCase = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) _lowerCAmelCase = tokens + ['<unk>'] _lowerCAmelCase = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) , UpperCAmelCase_ ) def __lowerCamelCase ( self : List[str] , UpperCAmelCase_ : List[Any]=15 ) -> Any: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowerCAmelCase = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) # Simple input _lowerCAmelCase = 'This is a simple input' _lowerCAmelCase = ['This is a simple input 1', 'This is a simple input 2'] _lowerCAmelCase = ('This is a simple input', 'This is a pair') _lowerCAmelCase = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' ) # Simple input self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' ) # Simple input self.assertRaises( UpperCAmelCase_ , tokenizer_r.batch_encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , ) # Pair input self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' ) # Pair input self.assertRaises(UpperCAmelCase_ , tokenizer_r.encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' ) # Pair input self.assertRaises( UpperCAmelCase_ , tokenizer_r.batch_encode_plus , UpperCAmelCase_ , max_length=UpperCAmelCase_ , padding='max_length' , ) def __lowerCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class _SCREAMING_SNAKE_CASE ( UpperCAmelCase ): '''simple docstring''' pass
580
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class _SCREAMING_SNAKE_CASE ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : NestedDataStructureLike[PathLike] , UpperCAmelCase_ : Optional[NamedSplit] = None , UpperCAmelCase_ : Optional[Features] = None , UpperCAmelCase_ : str = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : Optional[str] = None , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : Optional[Any] , ) -> Dict: """simple docstring""" super().__init__( UpperCAmelCase_ , split=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ , streaming=UpperCAmelCase_ , num_proc=UpperCAmelCase_ , **UpperCAmelCase_ , ) _lowerCAmelCase = field _lowerCAmelCase = path_or_paths if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else {self.split: path_or_paths} _lowerCAmelCase = Json( cache_dir=UpperCAmelCase_ , data_files=UpperCAmelCase_ , features=UpperCAmelCase_ , field=UpperCAmelCase_ , **UpperCAmelCase_ , ) def __lowerCamelCase ( self : Union[str, Any] ) -> Any: """simple docstring""" if self.streaming: _lowerCAmelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None self.builder.download_and_prepare( download_config=UpperCAmelCase_ , download_mode=UpperCAmelCase_ , verification_mode=UpperCAmelCase_ , base_path=UpperCAmelCase_ , num_proc=self.num_proc , ) _lowerCAmelCase = self.builder.as_dataset( split=self.split , verification_mode=UpperCAmelCase_ , in_memory=self.keep_in_memory ) return dataset class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Any , UpperCAmelCase_ : Dataset , UpperCAmelCase_ : Union[PathLike, BinaryIO] , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None , **UpperCAmelCase_ : Optional[Any] , ) -> Dict: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F"""num_proc {num_proc} must be an integer > 0.""" ) _lowerCAmelCase = dataset _lowerCAmelCase = path_or_buf _lowerCAmelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _lowerCAmelCase = num_proc _lowerCAmelCase = 'utf-8' _lowerCAmelCase = to_json_kwargs def __lowerCamelCase ( self : str ) -> int: """simple docstring""" _lowerCAmelCase = self.to_json_kwargs.pop('path_or_buf' , UpperCAmelCase_ ) _lowerCAmelCase = self.to_json_kwargs.pop('orient' , 'records' ) _lowerCAmelCase = self.to_json_kwargs.pop('lines' , True if orient == 'records' else False ) _lowerCAmelCase = self.to_json_kwargs.pop('index' , False if orient in ['split', 'table'] else True ) _lowerCAmelCase = self.to_json_kwargs.pop('compression' , UpperCAmelCase_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , 'wb' , compression=UpperCAmelCase_ ) as buffer: _lowerCAmelCase = self._write(file_obj=UpperCAmelCase_ , orient=UpperCAmelCase_ , lines=UpperCAmelCase_ , index=UpperCAmelCase_ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" ' was passed. Please provide a local path instead.' ) _lowerCAmelCase = self._write( file_obj=self.path_or_buf , orient=UpperCAmelCase_ , lines=UpperCAmelCase_ , index=UpperCAmelCase_ , **self.to_json_kwargs ) return written def __lowerCamelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] ) -> List[Any]: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = args _lowerCAmelCase = query_table( table=self.dataset.data , key=slice(UpperCAmelCase_ , offset + self.batch_size ) , indices=self.dataset._indices , ) _lowerCAmelCase = batch.to_pandas().to_json( path_or_buf=UpperCAmelCase_ , orient=UpperCAmelCase_ , lines=UpperCAmelCase_ , index=UpperCAmelCase_ , **UpperCAmelCase_ ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def __lowerCamelCase ( self : Any , UpperCAmelCase_ : BinaryIO , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any] , ) -> int: """simple docstring""" _lowerCAmelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): _lowerCAmelCase = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(UpperCAmelCase_ ) else: _lowerCAmelCase , _lowerCAmelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , UpperCAmelCase_ , UpperCAmelCase_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): written += file_obj.write(UpperCAmelCase_ ) return written
580
1
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __A ( _lowerCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Union[str, Any] = MobileBertTokenizer __lowerCamelCase : int = MobileBertTokenizerFast __lowerCamelCase : Union[str, Any] = True __lowerCamelCase : Tuple = True __lowerCamelCase : Optional[int] = filter_non_english __lowerCamelCase : Tuple = 'google/mobilebert-uncased' def a__ (self ) -> Any: """simple docstring""" super().setUp() _a = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _a = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def a__ (self , A ) -> List[str]: """simple docstring""" _a = '''UNwant\u00E9d,running''' _a = '''unwanted, running''' return input_text, output_text def a__ (self ) -> Any: """simple docstring""" _a = self.tokenizer_class(self.vocab_file ) _a = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A__ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , [9, 6, 7, 12, 10, 11] ) def a__ (self ) -> Optional[int]: """simple docstring""" if not self.test_rust_tokenizer: return _a = self.get_tokenizer() _a = self.get_rust_tokenizer() _a = '''UNwant\u00E9d,running''' _a = tokenizer.tokenize(A__ ) _a = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _a = tokenizer.encode(A__ , add_special_tokens=A__ ) _a = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) _a = self.get_rust_tokenizer() _a = tokenizer.encode(A__ ) _a = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) # With lower casing _a = self.get_tokenizer(do_lower_case=A__ ) _a = self.get_rust_tokenizer(do_lower_case=A__ ) _a = '''UNwant\u00E9d,running''' _a = tokenizer.tokenize(A__ ) _a = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) _a = tokenizer.encode(A__ , add_special_tokens=A__ ) _a = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) _a = self.get_rust_tokenizer() _a = tokenizer.encode(A__ ) _a = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) def a__ (self ) -> Tuple: """simple docstring""" _a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def a__ (self ) -> List[Any]: """simple docstring""" _a = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def a__ (self ) -> Any: """simple docstring""" _a = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a__ (self ) -> Any: """simple docstring""" _a = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def a__ (self ) -> str: """simple docstring""" _a = BasicTokenizer(do_lower_case=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a__ (self ) -> Dict: """simple docstring""" _a = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = BasicTokenizer(do_lower_case=A__ , strip_accents=A__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def a__ (self ) -> str: """simple docstring""" _a = BasicTokenizer(do_lower_case=A__ , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def a__ (self ) -> Tuple: """simple docstring""" _a = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] _a = {} for i, token in enumerate(A__ ): _a = i _a = WordpieceTokenizer(vocab=A__ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def a__ (self ) -> str: """simple docstring""" self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def a__ (self ) -> Union[str, Any]: """simple docstring""" self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def a__ (self ) -> Dict: """simple docstring""" self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def a__ (self ) -> str: """simple docstring""" _a = self.get_tokenizer() _a = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(A__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) self.assertListEqual( [rust_tokenizer.tokenize(A__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) @slow def a__ (self ) -> Any: """simple docstring""" _a = self.tokenizer_class.from_pretrained('''google/mobilebert-uncased''' ) _a = tokenizer.encode('''sequence builders''' , add_special_tokens=A__ ) _a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=A__ ) _a = tokenizer.build_inputs_with_special_tokens(A__ ) _a = tokenizer.build_inputs_with_special_tokens(A__ , A__ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def a__ (self ) -> List[str]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _a = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _a = f'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _a = tokenizer_r.encode_plus( A__ , return_attention_mask=A__ , return_token_type_ids=A__ , return_offsets_mapping=A__ , add_special_tokens=A__ , ) _a = tokenizer_r.do_lower_case if hasattr(A__ , '''do_lower_case''' ) else False _a = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def a__ (self ) -> Any: """simple docstring""" _a = ['''的''', '''人''', '''有'''] _a = ''''''.join(A__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _a = True _a = self.tokenizer_class.from_pretrained(A__ , **A__ ) _a = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _a = tokenizer_p.encode(A__ , add_special_tokens=A__ ) _a = tokenizer_r.encode(A__ , add_special_tokens=A__ ) _a = tokenizer_r.convert_ids_to_tokens(A__ ) _a = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ ) _a = False _a = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) _a = self.tokenizer_class.from_pretrained(A__ , **A__ ) _a = tokenizer_r.encode(A__ , add_special_tokens=A__ ) _a = tokenizer_p.encode(A__ , add_special_tokens=A__ ) _a = tokenizer_r.convert_ids_to_tokens(A__ ) _a = tokenizer_p.convert_ids_to_tokens(A__ ) # it is expected that only the first Chinese character is not preceded by "##". _a = [ f'''##{token}''' if idx != 0 else token for idx, token in enumerate(A__ ) ] self.assertListEqual(A__ , A__ ) self.assertListEqual(A__ , A__ )
700
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=None , ) -> Any: """simple docstring""" _a = size if size is not None else {'''shortest_edge''': 20} _a = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_center_crop _a = crop_size def a__ (self ) -> Optional[Any]: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def a__ (self ) -> int: """simple docstring""" _a = MobileNetVaImageProcessingTester(self ) @property def a__ (self ) -> Optional[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ (self ) -> str: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) self.assertTrue(hasattr(A , '''do_center_crop''' ) ) self.assertTrue(hasattr(A , '''crop_size''' ) ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 20} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def a__ (self ) -> Union[str, Any]: """simple docstring""" pass def a__ (self ) -> Any: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
352
0
'''simple docstring''' import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def UpperCamelCase__ ( __magic_name__ : int ) -> List[Any]: # picklable for multiprocessing '''simple docstring''' return x.sum() def UpperCamelCase__ ( __magic_name__ : Any ) -> Optional[int]: # picklable for multiprocessing '''simple docstring''' return i + 1 @dataclass class __snake_case : '''simple docstring''' lowerCamelCase__ = 42 lowerCamelCase__ = 42 class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __UpperCamelCase ( self ): snake_case__ : str = {} snake_case__ : Tuple = [] snake_case__ : List[Any] = 1 snake_case__ : Union[str, Any] = [1, 2] snake_case__ : str = {"""a""": 1, """b""": 2} snake_case__ : Dict = {"""a""": [1, 2], """b""": [3, 4]} snake_case__ : Dict = {"""a""": {"""1""": 1}, """b""": 2} snake_case__ : Optional[int] = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} snake_case__ : int = {} snake_case__ : Tuple = [] snake_case__ : Optional[Any] = 2 snake_case__ : Tuple = [2, 3] snake_case__ : str = {"""a""": 2, """b""": 3} snake_case__ : List[Any] = {"""a""": [2, 3], """b""": [4, 5]} snake_case__ : Union[str, Any] = {"""a""": {"""1""": 2}, """b""": 3} snake_case__ : Optional[int] = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} self.assertEqual(map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = 2 self.assertEqual(map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) snake_case__ : int = {"""a""": np.eye(2 ), """b""": np.zeros(3 ), """c""": np.ones(2 )} snake_case__ : int = {"""a""": 2, """b""": 0, """c""": 2} snake_case__ : Union[str, Any] = { """a""": np.eye(2 ).astype(__SCREAMING_SNAKE_CASE ), """b""": np.zeros(3 ).astype(__SCREAMING_SNAKE_CASE ), """c""": np.ones(2 ).astype(__SCREAMING_SNAKE_CASE ), } self.assertEqual(map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , map_numpy=__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , map_numpy=__SCREAMING_SNAKE_CASE ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , map_numpy=__SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , map_numpy=__SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(__SCREAMING_SNAKE_CASE ): # can't pickle a local lambda map_nested(lambda __SCREAMING_SNAKE_CASE : x + 1 , __SCREAMING_SNAKE_CASE , num_proc=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = {"""a""": 1, """b""": 2} snake_case__ : Optional[int] = {"""a""": 3, """b""": 4} snake_case__ : List[Any] = {"""a""": 5, """b""": 6} snake_case__ : Optional[Any] = sorted([("""a""", (1, 3, 5)), ("""b""", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): class __snake_case : '''simple docstring''' lowerCamelCase__ = '''bar''' snake_case__ : str = Foo() self.assertEqual(foo.my_attr , """bar""" ) with temporary_assignment(__SCREAMING_SNAKE_CASE , """my_attr""" , """BAR""" ): self.assertEqual(foo.my_attr , """BAR""" ) self.assertEqual(foo.my_attr , """bar""" ) @pytest.mark.parametrize( """iterable_length, num_proc, expected_num_proc""" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def UpperCamelCase__ ( __magic_name__ : List[Any] , __magic_name__ : List[Any] , __magic_name__ : Any ) -> Optional[int]: '''simple docstring''' with patch("""datasets.utils.py_utils._single_map_nested""" ) as mock_single_map_nested, patch( """datasets.parallel.parallel.Pool""" ) as mock_multiprocessing_pool: snake_case__ : Optional[int] = {f"{i}": i for i in range(__magic_name__ )} snake_case__ : List[str] = map_nested(lambda __magic_name__ : x + 10 , __magic_name__ , num_proc=__magic_name__ , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @require_tf def __UpperCamelCase ( self ): import tensorflow as tf from tensorflow.keras import layers snake_case__ : Any = layers.Dense(2 ) def gen_random_output(): snake_case__ : Union[str, Any] = tf.random.uniform((1, 3) ) return model(__SCREAMING_SNAKE_CASE ).numpy() with temp_seed(4_2 , set_tensorflow=__SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = gen_random_output() with temp_seed(4_2 , set_tensorflow=__SCREAMING_SNAKE_CASE ): snake_case__ : Dict = gen_random_output() snake_case__ : Optional[Any] = gen_random_output() np.testing.assert_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __UpperCamelCase ( self ): import torch def gen_random_output(): snake_case__ : List[Any] = torch.nn.Linear(3 , 2 ) snake_case__ : Dict = torch.rand(1 , 3 ) return model(__SCREAMING_SNAKE_CASE ).detach().numpy() with temp_seed(4_2 , set_pytorch=__SCREAMING_SNAKE_CASE ): snake_case__ : int = gen_random_output() with temp_seed(4_2 , set_pytorch=__SCREAMING_SNAKE_CASE ): snake_case__ : str = gen_random_output() snake_case__ : Any = gen_random_output() np.testing.assert_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __UpperCamelCase ( self ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): snake_case__ : Any = gen_random_output() with temp_seed(4_2 ): snake_case__ : Optional[Any] = gen_random_output() snake_case__ : int = gen_random_output() np.testing.assert_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("""input_data""" , [{}] ) def UpperCamelCase__ ( __magic_name__ : List[Any] ) -> Dict: '''simple docstring''' snake_case__ : Union[str, Any] = NestedDataStructure(__magic_name__ ).data assert output_data == input_data @pytest.mark.parametrize( """data, expected_output""" , [ ({}, []), ([], []), ("""foo""", ["""foo"""]), (["""foo""", """bar"""], ["""foo""", """bar"""]), ([["""foo""", """bar"""]], ["""foo""", """bar"""]), ([[["""foo"""], ["""bar"""]]], ["""foo""", """bar"""]), ([[["""foo"""], """bar"""]], ["""foo""", """bar"""]), ({"""a""": 1, """b""": 2}, [1, 2]), ({"""a""": [1, 2], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[[3], [4]]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, [4]]}, [1, 2, 3, 4]), ({"""a""": {"""1""": 1}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": [2]}, [1, 2]), ] , ) def UpperCamelCase__ ( __magic_name__ : Tuple , __magic_name__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case__ : Optional[int] = NestedDataStructure(__magic_name__ ).flatten() assert output == expected_output def UpperCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' snake_case__ : int = A(x=1 , y="""foobar""" ) snake_case__ : Optional[int] = {"""x""": 1, """y""": """foobar"""} assert asdict(__magic_name__ ) == expected_output snake_case__ : Tuple = {"""a""": {"""b""": A(x=10 , y="""foo""" )}, """c""": [A(x=20 , y="""bar""" )]} snake_case__ : str = {"""a""": {"""b""": {"""x""": 10, """y""": """foo"""}}, """c""": [{"""x""": 20, """y""": """bar"""}]} assert asdict(__magic_name__ ) == expected_output with pytest.raises(__magic_name__ ): asdict([1, A(x=10 , y="""foo""" )] ) def UpperCamelCase__ ( __magic_name__ : str ) -> str: '''simple docstring''' return text.split() def UpperCamelCase__ ( __magic_name__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def UpperCamelCase__ ( ) -> Optional[int]: '''simple docstring''' with Pool(2 ) as pool: snake_case__ : Optional[Any] = list(iflatmap_unordered(__magic_name__ , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(__magic_name__ ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: snake_case__ : Dict = list(iflatmap_unordered(__magic_name__ , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(__magic_name__ ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: snake_case__ : Any = [] for yield_time, content in iflatmap_unordered( __magic_name__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"""content""": """a"""}, {"""content""": """b"""}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(__magic_name__ ) assert out.count("""a""" ) == 2 assert out.count("""b""" ) == 2 assert len(__magic_name__ ) == 4
38
from __future__ import annotations from cmath import sqrt def _lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if a == 0: raise ValueError("""Coefficient 'a' must not be zero.""" ) a_ : Any = b * b - 4 * a * c a_ : List[str] = (-b + sqrt(SCREAMING_SNAKE_CASE_ )) / (2 * a) a_ : Union[str, Any] = (-b - sqrt(SCREAMING_SNAKE_CASE_ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _lowerCamelCase ( ): """simple docstring""" a_ , a_ : str = quadratic_roots(a=5 , b=6 , c=1 ) print(F"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
419
0
'''simple docstring''' def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): """simple docstring""" if digit_amount > 0: return round(number - int(__SCREAMING_SNAKE_CASE ), __SCREAMING_SNAKE_CASE ) return number - int(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
703
'''simple docstring''' import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ = 16 a_ = 32 def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE = 1_6 ): """simple docstring""" snake_case_ : Union[str, Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) snake_case_ : int = DatasetDict( { "train": dataset["train"].select(__SCREAMING_SNAKE_CASE ), "validation": dataset["train"].select(__SCREAMING_SNAKE_CASE ), "test": dataset["validation"], } ) def tokenize_function(__SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) snake_case_ : str = tokenizer(examples["sentence1"], examples["sentence2"], truncation=__SCREAMING_SNAKE_CASE, max_length=__SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case_ : List[Any] = datasets.map( __SCREAMING_SNAKE_CASE, batched=__SCREAMING_SNAKE_CASE, remove_columns=["idx", "sentence1", "sentence2"], ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ : Dict = tokenized_datasets.rename_column("label", "labels" ) def collate_fn(__SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case_ : Dict = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case_ : Optional[int] = 1_6 elif accelerator.mixed_precision != "no": snake_case_ : Tuple = 8 else: snake_case_ : Union[str, Any] = None return tokenizer.pad( __SCREAMING_SNAKE_CASE, padding="longest", max_length=__SCREAMING_SNAKE_CASE, pad_to_multiple_of=__SCREAMING_SNAKE_CASE, return_tensors="pt", ) # Instantiate dataloaders. snake_case_ : Optional[int] = DataLoader( tokenized_datasets["train"], shuffle=__SCREAMING_SNAKE_CASE, collate_fn=__SCREAMING_SNAKE_CASE, batch_size=__SCREAMING_SNAKE_CASE ) snake_case_ : int = DataLoader( tokenized_datasets["validation"], shuffle=__SCREAMING_SNAKE_CASE, collate_fn=__SCREAMING_SNAKE_CASE, batch_size=__SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = DataLoader( tokenized_datasets["test"], shuffle=__SCREAMING_SNAKE_CASE, collate_fn=__SCREAMING_SNAKE_CASE, batch_size=__SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader, test_dataloader def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case_ : Optional[Any] = [] # Download the dataset snake_case_ : Tuple = load_dataset("glue", "mrpc" ) # Create our splits snake_case_ : Union[str, Any] = StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator snake_case_ : Optional[Any] = Accelerator(cpu=args.cpu, mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ : Optional[Any] = config["lr"] snake_case_ : str = int(config["num_epochs"] ) snake_case_ : Tuple = int(config["seed"] ) snake_case_ : Optional[Any] = int(config["batch_size"] ) snake_case_ : List[Any] = evaluate.load("glue", "mrpc" ) # If the batch size is too big we use gradient accumulation snake_case_ : List[str] = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case_ : Union[str, Any] = batch_size // MAX_GPU_BATCH_SIZE snake_case_ : Union[str, Any] = MAX_GPU_BATCH_SIZE set_seed(__SCREAMING_SNAKE_CASE ) # New Code # # Create our folds: snake_case_ : int = kfold.split(np.zeros(datasets["train"].num_rows ), datasets["train"]["label"] ) snake_case_ : Optional[int] = [] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(__SCREAMING_SNAKE_CASE ): snake_case_ , snake_case_ , snake_case_ : Tuple = get_fold_dataloaders( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ : Optional[int] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", return_dict=__SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case_ : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer snake_case_ : Any = AdamW(params=model.parameters(), lr=__SCREAMING_SNAKE_CASE ) # Instantiate scheduler snake_case_ : List[str] = get_linear_schedule_with_warmup( optimizer=__SCREAMING_SNAKE_CASE, num_warmup_steps=1_0_0, num_training_steps=(len(__SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps, ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ : str = accelerator.prepare( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(__SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case_ : List[Any] = model(**__SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = outputs.loss snake_case_ : Union[str, Any] = loss / gradient_accumulation_steps accelerator.backward(__SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ : Dict = model(**__SCREAMING_SNAKE_CASE ) snake_case_ : str = outputs.logits.argmax(dim=-1 ) snake_case_ , snake_case_ : Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=__SCREAMING_SNAKE_CASE, references=__SCREAMING_SNAKE_CASE, ) snake_case_ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:', __SCREAMING_SNAKE_CASE ) # New Code # # We also run predictions on the test set at the very end snake_case_ : Any = [] for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ : int = model(**__SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = outputs.logits snake_case_ , snake_case_ : List[Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(__SCREAMING_SNAKE_CASE, dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: snake_case_ : List[Any] = torch.cat(__SCREAMING_SNAKE_CASE, dim=0 ) snake_case_ : Any = torch.stack(__SCREAMING_SNAKE_CASE, dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) snake_case_ : Tuple = metric.compute(predictions=__SCREAMING_SNAKE_CASE, references=__SCREAMING_SNAKE_CASE ) accelerator.print("Average test metrics from all folds:", __SCREAMING_SNAKE_CASE ) def UpperCamelCase_ ( ): """simple docstring""" snake_case_ : Tuple = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision", type=__SCREAMING_SNAKE_CASE, default=__SCREAMING_SNAKE_CASE, choices=["no", "fp16", "bf16", "fp8"], help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU.", ) parser.add_argument("--cpu", action="store_true", help="If passed, will train on the CPU." ) # New Code # parser.add_argument("--num_folds", type=__SCREAMING_SNAKE_CASE, default=3, help="The number of splits to perform across the dataset" ) snake_case_ : List[Any] = parser.parse_args() snake_case_ : Optional[Any] = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
92
0
import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 A_ : Optional[Any] = data_utils.TransfoXLTokenizer A_ : Union[str, Any] = data_utils.TransfoXLCorpus A_ : Any = data_utils A_ : Optional[Any] = data_utils def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> List[str]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(UpperCAmelCase__ , 'rb' ) as fp: UpperCamelCase_: Union[str, Any] = pickle.load(UpperCAmelCase__ , encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) UpperCamelCase_: Any = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'''Save vocabulary to {pytorch_vocab_dump_path}''' ) UpperCamelCase_: Union[str, Any] = corpus.vocab.__dict__ torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: str = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' , UpperCAmelCase__ ) UpperCamelCase_: str = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'''Save dataset to {pytorch_dataset_dump_path}''' ) torch.save(UpperCAmelCase__ , UpperCAmelCase__ ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model UpperCamelCase_: Any = os.path.abspath(UpperCAmelCase__ ) UpperCamelCase_: Dict = os.path.abspath(UpperCAmelCase__ ) print(F'''Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.''' ) # Initialise PyTorch model if transfo_xl_config_file == "": UpperCamelCase_: List[str] = TransfoXLConfig() else: UpperCamelCase_: Optional[int] = TransfoXLConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: Union[str, Any] = TransfoXLLMHeadModel(UpperCAmelCase__ ) UpperCamelCase_: Tuple = load_tf_weights_in_transfo_xl(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model UpperCamelCase_: str = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCamelCase_: Union[str, Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) print(F'''Save PyTorch model to {os.path.abspath(UpperCAmelCase__ )}''' ) torch.save(model.state_dict() , UpperCAmelCase__ ) print(F'''Save configuration file to {os.path.abspath(UpperCAmelCase__ )}''' ) with open(UpperCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ : int = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) A_ : Tuple = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
57
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase_ = { 'configuration_rag': ['RagConfig'], 'retrieval_rag': ['RagRetriever'], 'tokenization_rag': ['RagTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'RagModel', 'RagPreTrainedModel', 'RagSequenceForGeneration', 'RagTokenForGeneration', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TFRagModel', 'TFRagPreTrainedModel', 'TFRagSequenceForGeneration', 'TFRagTokenForGeneration', ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
253
0
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _lowerCamelCase ( A_ : int ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : int =VideoMAEConfig() set_architecture_configs(A_ , A_ ) if "finetuned" not in model_name: UpperCamelCase__ : int =False if "finetuned" in model_name: UpperCamelCase__ : Tuple ="huggingface/label-files" if "kinetics" in model_name: UpperCamelCase__ : Tuple =4_0_0 UpperCamelCase__ : Dict ="kinetics400-id2label.json" elif "ssv2" in model_name: UpperCamelCase__ : Optional[Any] =1_7_4 UpperCamelCase__ : Any ="something-something-v2-id2label.json" else: raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned." ) UpperCamelCase__ : Optional[int] =json.load(open(hf_hub_download(A_ , A_ , repo_type="dataset" ) , "r" ) ) UpperCamelCase__ : Any ={int(A_ ): v for k, v in idalabel.items()} UpperCamelCase__ : Dict =idalabel UpperCamelCase__ : Optional[Any] ={v: k for k, v in idalabel.items()} return config def _lowerCamelCase ( A_ : Union[str, Any] , A_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' if "small" in model_name: UpperCamelCase__ : List[Any] =3_8_4 UpperCamelCase__ : Optional[int] =1_5_3_6 UpperCamelCase__ : List[str] =1_2 UpperCamelCase__ : List[str] =1_6 UpperCamelCase__ : Dict =1_2 UpperCamelCase__ : Dict =3 UpperCamelCase__ : Any =1_9_2 UpperCamelCase__ : Dict =7_6_8 elif "large" in model_name: UpperCamelCase__ : Optional[Any] =1_0_2_4 UpperCamelCase__ : Optional[int] =4_0_9_6 UpperCamelCase__ : Optional[int] =2_4 UpperCamelCase__ : List[Any] =1_6 UpperCamelCase__ : Optional[Any] =1_2 UpperCamelCase__ : Any =8 UpperCamelCase__ : Union[str, Any] =5_1_2 UpperCamelCase__ : Optional[int] =2_0_4_8 elif "huge" in model_name: UpperCamelCase__ : int =1_2_8_0 UpperCamelCase__ : Tuple =5_1_2_0 UpperCamelCase__ : Any =3_2 UpperCamelCase__ : List[Any] =1_6 UpperCamelCase__ : Tuple =1_2 UpperCamelCase__ : int =8 UpperCamelCase__ : Dict =6_4_0 UpperCamelCase__ : Optional[Any] =2_5_6_0 elif "base" not in model_name: raise ValueError("Model name should include either \"small\", \"base\", \"large\", or \"huge\"" ) def _lowerCamelCase ( A_ : Optional[Any] ) -> Any: '''simple docstring''' if "encoder." in name: UpperCamelCase__ : Dict =name.replace("encoder." , "" ) if "cls_token" in name: UpperCamelCase__ : str =name.replace("cls_token" , "videomae.embeddings.cls_token" ) if "decoder_pos_embed" in name: UpperCamelCase__ : Any =name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: UpperCamelCase__ : Optional[int] =name.replace("pos_embed" , "videomae.embeddings.position_embeddings" ) if "patch_embed.proj" in name: UpperCamelCase__ : Union[str, Any] =name.replace("patch_embed.proj" , "videomae.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: UpperCamelCase__ : int =name.replace("patch_embed.norm" , "videomae.embeddings.norm" ) if "decoder.blocks" in name: UpperCamelCase__ : List[Any] =name.replace("decoder.blocks" , "decoder.decoder_layers" ) if "blocks" in name: UpperCamelCase__ : Dict =name.replace("blocks" , "videomae.encoder.layer" ) if "attn.proj" in name: UpperCamelCase__ : Dict =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "bias" not in name: UpperCamelCase__ : List[Any] =name.replace("attn" , "attention.self" ) if "attn" in name: UpperCamelCase__ : List[Any] =name.replace("attn" , "attention.attention" ) if "norm1" in name: UpperCamelCase__ : Any =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: UpperCamelCase__ : Any =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: UpperCamelCase__ : Tuple =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: UpperCamelCase__ : Tuple =name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: UpperCamelCase__ : List[Any] =name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: UpperCamelCase__ : List[Any] =name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: UpperCamelCase__ : str =name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: UpperCamelCase__ : Optional[Any] =name.replace("norm.weight" , "videomae.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: UpperCamelCase__ : Dict =name.replace("norm.bias" , "videomae.layernorm.bias" ) if "head" in name and "decoder" not in name: UpperCamelCase__ : Optional[Any] =name.replace("head" , "classifier" ) return name def _lowerCamelCase ( A_ : Optional[Any] , A_ : List[str] ) -> Optional[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): UpperCamelCase__ : List[str] =orig_state_dict.pop(A_ ) if key.startswith("encoder." ): UpperCamelCase__ : List[str] =key.replace("encoder." , "" ) if "qkv" in key: UpperCamelCase__ : int =key.split("." ) if key.startswith("decoder.blocks" ): UpperCamelCase__ : Union[str, Any] =config.decoder_hidden_size UpperCamelCase__ : List[Any] =int(key_split[2] ) UpperCamelCase__ : int ="decoder.decoder_layers." if "weight" in key: UpperCamelCase__ : Any =val[:dim, :] UpperCamelCase__ : Dict =val[dim : dim * 2, :] UpperCamelCase__ : Union[str, Any] =val[-dim:, :] else: UpperCamelCase__ : List[str] =config.hidden_size UpperCamelCase__ : List[str] =int(key_split[1] ) UpperCamelCase__ : List[Any] ="videomae.encoder.layer." if "weight" in key: UpperCamelCase__ : Any =val[:dim, :] UpperCamelCase__ : int =val[dim : dim * 2, :] UpperCamelCase__ : Dict =val[-dim:, :] else: UpperCamelCase__ : Dict =val return orig_state_dict def _lowerCamelCase ( ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : Union[str, Any] =hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) UpperCamelCase__ : Dict =np.load(A_ ) return list(A_ ) def _lowerCamelCase ( A_ : Tuple , A_ : Dict , A_ : Any , A_ : List[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : str =get_videomae_config(A_ ) if "finetuned" in model_name: UpperCamelCase__ : int =VideoMAEForVideoClassification(A_ ) else: UpperCamelCase__ : str =VideoMAEForPreTraining(A_ ) # download original checkpoint, hosted on Google Drive UpperCamelCase__ : List[Any] ="pytorch_model.bin" gdown.cached_download(A_ , A_ , quiet=A_ ) UpperCamelCase__ : int =torch.load(A_ , map_location="cpu" ) if "model" in files: UpperCamelCase__ : Tuple =files["model"] else: UpperCamelCase__ : List[str] =files["module"] UpperCamelCase__ : Dict =convert_state_dict(A_ , A_ ) model.load_state_dict(A_ ) model.eval() # verify model on basic input UpperCamelCase__ : List[Any] =VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) UpperCamelCase__ : List[str] =prepare_video() UpperCamelCase__ : Union[str, Any] =image_processor(A_ , return_tensors="pt" ) if "finetuned" not in model_name: UpperCamelCase__ : Union[str, Any] =hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) UpperCamelCase__ : List[str] =torch.load(A_ ) UpperCamelCase__ : int =model(**A_ ) UpperCamelCase__ : str =outputs.logits UpperCamelCase__ : Optional[int] =[ "videomae-small-finetuned-kinetics", "videomae-small-finetuned-ssv2", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) "videomae-base-short", "videomae-base-short-finetuned-kinetics", "videomae-base", "videomae-base-finetuned-kinetics", "videomae-large", "videomae-large-finetuned-kinetics", "videomae-huge-finetuned-kinetics", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) "videomae-base-short-ssv2", "videomae-base-short-finetuned-ssv2", "videomae-base-ssv2", "videomae-base-finetuned-ssv2", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": UpperCamelCase__ : Union[str, Any] =torch.Size([1, 4_0_0] ) UpperCamelCase__ : List[Any] =torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": UpperCamelCase__ : Any =torch.Size([1, 1_7_4] ) UpperCamelCase__ : List[Any] =torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": UpperCamelCase__ : Optional[int] =torch.Size([1, 1_4_0_8, 1_5_3_6] ) UpperCamelCase__ : List[str] =torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": UpperCamelCase__ : Union[str, Any] =torch.Size([1, 1_4_0_8, 1_5_3_6] ) UpperCamelCase__ : List[str] =torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one UpperCamelCase__ : Dict =torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": UpperCamelCase__ : Dict =torch.Size([1, 1_4_0_8, 1_5_3_6] ) UpperCamelCase__ : str =torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": UpperCamelCase__ : int =torch.Size([1, 4_0_0] ) UpperCamelCase__ : int =torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": UpperCamelCase__ : str =torch.Size([1, 4_0_0] ) UpperCamelCase__ : List[Any] =torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": UpperCamelCase__ : Optional[Any] =torch.Size([1, 4_0_0] ) UpperCamelCase__ : Optional[int] =torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": UpperCamelCase__ : Union[str, Any] =torch.Size([1, 4_0_0] ) UpperCamelCase__ : List[Any] =torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": UpperCamelCase__ : str =torch.Size([1, 1_4_0_8, 1_5_3_6] ) UpperCamelCase__ : Optional[int] =torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": UpperCamelCase__ : List[str] =torch.Size([1, 1_7_4] ) UpperCamelCase__ : Optional[int] =torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": UpperCamelCase__ : str =torch.Size([1, 1_4_0_8, 1_5_3_6] ) UpperCamelCase__ : Any =torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": UpperCamelCase__ : Union[str, Any] =torch.Size([1, 1_7_4] ) UpperCamelCase__ : int =torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(f'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , A_ , atol=1E-4 ) else: print("Logits:" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , A_ , atol=1E-4 ) print("Logits ok!" ) # verify loss, if applicable if model_name == "videomae-base-short": UpperCamelCase__ : str =outputs.loss assert torch.allclose(A_ , A_ , atol=1E-4 ) print("Loss ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A_ ) model.save_pretrained(A_ ) if push_to_hub: print("Pushing to the hub..." ) model.push_to_hub(A_ , organization="nielsr" ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __UpperCAmelCase = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
582
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase__( snake_case__ ): '''simple docstring''' snake_case__ = ['''image_processor''', '''tokenizer'''] snake_case__ = '''CLIPImageProcessor''' snake_case__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE) -> Union[str, Any]: """simple docstring""" UpperCamelCase__ : Optional[Any] =None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Dict =kwargs.pop("feature_extractor") UpperCamelCase__ : Dict =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def __call__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE) -> int: """simple docstring""" if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none.") if text is not None: UpperCamelCase__ : Optional[int] =self.tokenizer(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) if images is not None: UpperCamelCase__ : int =self.image_processor(__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) if text is not None and images is not None: UpperCamelCase__ : str =image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__SCREAMING_SNAKE_CASE) , tensor_type=__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> str: """simple docstring""" return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) -> Union[str, Any]: """simple docstring""" return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) @property def UpperCAmelCase ( self) -> List[Any]: """simple docstring""" UpperCamelCase__ : Dict =self.tokenizer.model_input_names UpperCamelCase__ : List[Any] =self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def UpperCAmelCase ( self) -> List[str]: """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def UpperCAmelCase ( self) -> Any: """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __SCREAMING_SNAKE_CASE , ) return self.image_processor
582
1
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def lowercase (_lowerCAmelCase , _lowerCAmelCase=7 ): __lowerCAmelCase = None if token is not None: __lowerCAmelCase = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""} # The id of a workflow (not of a workflow run) __lowerCAmelCase = """636036""" __lowerCAmelCase = f"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" __lowerCAmelCase = requests.get(_lowerCAmelCase , headers=_lowerCAmelCase ).json() return result["workflow_runs"] def lowercase (_lowerCAmelCase ): __lowerCAmelCase = get_daily_ci_runs(_lowerCAmelCase ) __lowerCAmelCase = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": __lowerCAmelCase = workflow_run["""id"""] break return workflow_run_id def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = get_last_daily_ci_runs(_lowerCAmelCase ) if workflow_run_id is not None: __lowerCAmelCase = get_artifacts_links(worflow_run_id=_lowerCAmelCase , token=_lowerCAmelCase ) for artifact_name in artifact_names: if artifact_name in artifacts_links: __lowerCAmelCase = artifacts_links[artifact_name] download_artifact( artifact_name=_lowerCAmelCase , artifact_url=_lowerCAmelCase , output_dir=_lowerCAmelCase , token=_lowerCAmelCase ) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): get_last_daily_ci_artifacts(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowerCAmelCase = {} for artifact_name in artifact_names: __lowerCAmelCase = os.path.join(_lowerCAmelCase , f"""{artifact_name}.zip""" ) if os.path.isfile(_lowerCAmelCase ): __lowerCAmelCase = {} with zipfile.ZipFile(_lowerCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(_lowerCAmelCase ): # read the file with z.open(_lowerCAmelCase ) as f: __lowerCAmelCase = f.read().decode("""UTF-8""" ) return results
465
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : Union[str, Any] = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
564
0
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
38
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class A__ ( unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=3 , A_=10 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , A_=None , ): '''simple docstring''' UpperCamelCase : Optional[int] = size if size is not None else {"shortest_edge": 18} UpperCamelCase : Tuple = crop_size if crop_size is not None else {"height": 18, "width": 18} UpperCamelCase : Optional[Any] = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : List[Any] = num_channels UpperCamelCase : Union[str, Any] = num_frames UpperCamelCase : Any = image_size UpperCamelCase : Tuple = min_resolution UpperCamelCase : Optional[Any] = max_resolution UpperCamelCase : Any = do_resize UpperCamelCase : Tuple = size UpperCamelCase : List[Any] = do_normalize UpperCamelCase : Optional[int] = image_mean UpperCamelCase : Any = image_std UpperCamelCase : str = crop_size def __UpperCamelCase( self ): '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class A__ ( __snake_case , unittest.TestCase ): _UpperCAmelCase :List[str] = VivitImageProcessor if is_vision_available() else None def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = VivitImageProcessingTester(self ) @property def __UpperCamelCase( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , "image_mean" ) ) self.assertTrue(hasattr(A_ , "image_std" ) ) self.assertTrue(hasattr(A_ , "do_normalize" ) ) self.assertTrue(hasattr(A_ , "do_resize" ) ) self.assertTrue(hasattr(A_ , "do_center_crop" ) ) self.assertTrue(hasattr(A_ , "size" ) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18} ) self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} ) UpperCamelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"shortest_edge": 42} ) self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos UpperCamelCase : Union[str, Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=A_ ) for video in video_inputs: self.assertIsInstance(A_ , A_ ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input UpperCamelCase : Any = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase : str = image_processing(A_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase : str = prepare_video_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ ) for video in video_inputs: self.assertIsInstance(A_ , A_ ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input UpperCamelCase : Tuple = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase : Any = image_processing(A_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase : Union[str, Any] = prepare_video_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ ) for video in video_inputs: self.assertIsInstance(A_ , A_ ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input UpperCamelCase : Tuple = image_processing(video_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , ) # Test batched UpperCamelCase : List[Any] = image_processing(A_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["height"], self.image_processor_tester.crop_size["width"], ) , )
38
1
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging _lowerCAmelCase : str =logging.get_logger(__name__) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: Any = set() UpperCAmelCase__: Optional[Any] = [] def parse_line(SCREAMING_SNAKE_CASE ): for line in fp: if isinstance(__lowerCAmelCase ,__lowerCAmelCase ): UpperCAmelCase__: Optional[int] = line.decode("UTF-8" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" " ): # process a single warning and move it to `selected_warnings`. if len(__lowerCAmelCase ) > 0: UpperCAmelCase__: Union[str, Any] = "\n".join(__lowerCAmelCase ) # Only keep the warnings specified in `targets` if any(f": {x}: " in warning for x in targets ): selected_warnings.add(__lowerCAmelCase ) buffer.clear() continue else: UpperCAmelCase__: Any = line.strip() buffer.append(__lowerCAmelCase ) if from_gh: for filename in os.listdir(__lowerCAmelCase ): UpperCAmelCase__: List[Any] = os.path.join(__lowerCAmelCase ,__lowerCAmelCase ) if not os.path.isdir(__lowerCAmelCase ): # read the file if filename != "warnings.txt": continue with open(__lowerCAmelCase ) as fp: parse_line(__lowerCAmelCase ) else: try: with zipfile.ZipFile(__lowerCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__lowerCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(__lowerCAmelCase ) as fp: parse_line(__lowerCAmelCase ) except Exception: logger.warning( f"{artifact_path} is either an invalid zip file or something else wrong. This file is skipped." ) return selected_warnings def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ): UpperCAmelCase__: Dict = set() UpperCAmelCase__: Optional[Any] = [os.path.join(__lowerCAmelCase ,__lowerCAmelCase ) for p in os.listdir(__lowerCAmelCase ) if (p.endswith(".zip" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(__lowerCAmelCase ,__lowerCAmelCase ) ) return selected_warnings if __name__ == "__main__": def _A ( SCREAMING_SNAKE_CASE ): return values.split("," ) _lowerCAmelCase : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) _lowerCAmelCase : Union[str, Any] =parser.parse_args() _lowerCAmelCase : str =args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links _lowerCAmelCase : int =get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts _lowerCAmelCase : Dict =extract_warnings(args.output_dir, args.targets) _lowerCAmelCase : Optional[Any] =sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
113
import numpy as np def __lowercase ( __lowerCAmelCase : np.ndarray , __lowerCAmelCase : float ): return np.where(vector > 0 , __lowerCAmelCase , (alpha * (np.exp(__lowerCAmelCase ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
335
0
from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , ): for nxt, d in graph[v]: if nxt in visited_forward: continue __magic_name__ : int =cst_fwd.get(UpperCamelCase__ , np.inf ) __magic_name__ : str =cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) __magic_name__ : List[str] =new_cost_f __magic_name__ : Tuple =v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: __magic_name__ : Optional[Any] =cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __magic_name__ : Dict =-1 __magic_name__ : Union[str, Any] =set() __magic_name__ : Tuple =set() __magic_name__ : Optional[Any] ={source: 0} __magic_name__ : Tuple ={destination: 0} __magic_name__ : int ={source: None} __magic_name__ : List[str] ={destination: None} __magic_name__ : int =PriorityQueue() __magic_name__ : List[str] =PriorityQueue() __magic_name__ : Union[str, Any] =np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): __magic_name__ , __magic_name__ : Dict =queue_forward.get() visited_forward.add(UpperCamelCase__ ) __magic_name__ , __magic_name__ : List[str] =queue_backward.get() visited_backward.add(UpperCamelCase__ ) __magic_name__ : Tuple =pass_and_relaxation( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) __magic_name__ : List[str] =pass_and_relaxation( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: __magic_name__ : List[str] =shortest_distance return shortest_path_distance UpperCAmelCase_ : Union[str, Any] = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } UpperCAmelCase_ : Dict = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
703
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING UpperCAmelCase_ : str = logging.get_logger(__name__) @add_end_docstrings(UpperCamelCase__ ) class __A ( UpperCamelCase__ ): def __init__( self :Any , *__snake_case :List[Any] , **__snake_case :Union[str, Any] ): '''simple docstring''' super().__init__(*__snake_case , **__snake_case ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING ) def A__ ( self :int , __snake_case :Optional[Any]=None ): '''simple docstring''' __magic_name__ : Any ={} if top_k is not None: __magic_name__ : str =top_k return {}, {}, postprocess_params def __call__( self :Tuple , __snake_case :Union[str, List[str], "Image.Image", List["Image.Image"]] , **__snake_case :Union[str, Any] ): '''simple docstring''' return super().__call__(__snake_case , **__snake_case ) def A__ ( self :str , __snake_case :Any ): '''simple docstring''' __magic_name__ : Optional[Any] =load_image(__snake_case ) __magic_name__ : Any =self.image_processor(images=__snake_case , return_tensors=self.framework ) return model_inputs def A__ ( self :int , __snake_case :Optional[int] ): '''simple docstring''' __magic_name__ : str =self.model(**__snake_case ) return model_outputs def A__ ( self :List[str] , __snake_case :int , __snake_case :Union[str, Any]=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: __magic_name__ : Dict =self.model.config.num_labels if self.framework == "pt": __magic_name__ : int =model_outputs.logits.softmax(-1 )[0] __magic_name__ , __magic_name__ : str =probs.topk(__snake_case ) elif self.framework == "tf": __magic_name__ : Union[str, Any] =stable_softmax(model_outputs.logits , axis=-1 )[0] __magic_name__ : List[str] =tf.math.top_k(__snake_case , k=__snake_case ) __magic_name__ , __magic_name__ : str =topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"Unsupported framework: {self.framework}" ) __magic_name__ : str =scores.tolist() __magic_name__ : Union[str, Any] =ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(__snake_case , __snake_case )]
367
0
from sklearn.metrics import matthews_corrcoef import datasets UpperCAmelCase_ : Dict = "\nCompute the Matthews correlation coefficient (MCC)\n\nThe Matthews correlation coefficient is used in machine learning as a\nmeasure of the quality of binary and multiclass classifications. It takes\ninto account true and false positives and negatives and is generally\nregarded as a balanced measure which can be used even if the classes are of\nvery different sizes. The MCC is in essence a correlation coefficient value\nbetween -1 and +1. A coefficient of +1 represents a perfect prediction, 0\nan average random prediction and -1 an inverse prediction. The statistic\nis also known as the phi coefficient. [source: Wikipedia]\n" UpperCAmelCase_ : Any = "\nArgs:\n predictions (list of int): Predicted labels, as returned by a model.\n references (list of int): Ground truth labels.\n sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`.\nReturns:\n matthews_correlation (dict containing float): Matthews correlation.\nExamples:\n Example 1, a basic example with only predictions and references as inputs:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3])\n >>> print(round(results['matthews_correlation'], 2))\n 0.54\n\n Example 2, the same example as above, but also including sample weights:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 3, 1, 1, 1, 2])\n >>> print(round(results['matthews_correlation'], 2))\n 0.1\n\n Example 3, the same example as above, but with sample weights that cause a negative correlation:\n >>> matthews_metric = datasets.load_metric(\"matthews_correlation\")\n >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2],\n ... predictions=[1, 2, 2, 0, 3, 3],\n ... sample_weight=[0.5, 1, 0, 0, 0, 1])\n >>> print(round(results['matthews_correlation'], 2))\n -0.25\n" UpperCAmelCase_ : Dict = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): def A__ ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def A__ ( self :Tuple , __snake_case :str , __snake_case :Tuple , __snake_case :List[str]=None ): '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(__snake_case , __snake_case , sample_weight=__snake_case ) ), }
21
import baseaa def _lowerCAmelCase ( _lowerCAmelCase ) -> bytes: '''simple docstring''' return baseaa.baaencode(string.encode("utf-8" ) ) def _lowerCAmelCase ( _lowerCAmelCase ) -> str: '''simple docstring''' return baseaa.baadecode(_lowerCAmelCase ).decode("utf-8" ) if __name__ == "__main__": A : Dict = 'Hello World!' A : Any = baseaa_encode(test) print(encoded) A : Optional[int] = baseaa_decode(encoded) print(decoded)
371
0
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('.') def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( """`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got """ F"""{test_file} instead.""" ) _lowercase = components[-1] if not test_fn.endswith("""py""" ): raise ValueError(F"""`test_file` should be a python file. Got {test_fn} instead.""" ) if not test_fn.startswith("""test_modeling_""" ): raise ValueError( F"""`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.""" ) _lowercase = components[:-1] + [test_fn.replace(""".py""" , """""" )] _lowercase = """.""".join(snake_case_ ) return test_module_path def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = get_module_path(snake_case_ ) _lowercase = importlib.import_module(snake_case_ ) return test_module def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = [] _lowercase = get_test_module(snake_case_ ) for attr in dir(snake_case_ ): if attr.endswith("""ModelTester""" ): tester_classes.append(getattr(snake_case_ , snake_case_ ) ) # sort with class names return sorted(snake_case_ , key=lambda snake_case_ : x.__name__ ) def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = [] _lowercase = get_test_module(snake_case_ ) for attr in dir(snake_case_ ): _lowercase = getattr(snake_case_ , snake_case_ ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). _lowercase = getattr(snake_case_ , """all_model_classes""" , [] ) if len(snake_case_ ) > 0: test_classes.append(snake_case_ ) # sort with class names return sorted(snake_case_ , key=lambda snake_case_ : x.__name__ ) def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = get_test_classes(snake_case_ ) _lowercase = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(snake_case_ , key=lambda snake_case_ : x.__name__ ) def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = test_class() if hasattr(snake_case_ , """setUp""" ): test.setUp() _lowercase = None if hasattr(snake_case_ , """model_tester""" ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: _lowercase = test.model_tester.__class__ return model_tester def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): _lowercase = get_test_classes(snake_case_ ) _lowercase = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(snake_case_ ) # sort with class names return sorted(snake_case_ , key=lambda snake_case_ : x.__name__ ) def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): _lowercase = get_test_classes_for_model(snake_case_ , snake_case_ ) _lowercase = [] for test_class in test_classes: _lowercase = get_model_tester_from_test_class(snake_case_ ) if tester_class is not None: tester_classes.append(snake_case_ ) # sort with class names return sorted(snake_case_ , key=lambda snake_case_ : x.__name__ ) def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = get_test_classes(snake_case_ ) _lowercase = {test_class: get_model_tester_from_test_class(snake_case_ ) for test_class in test_classes} return test_tester_mapping def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = get_model_classes(snake_case_ ) _lowercase = { model_class: get_test_classes_for_model(snake_case_ , snake_case_ ) for model_class in model_classes } return model_test_mapping def _SCREAMING_SNAKE_CASE ( snake_case_ ): _lowercase = get_model_classes(snake_case_ ) _lowercase = { model_class: get_tester_classes_for_model(snake_case_ , snake_case_ ) for model_class in model_classes } return model_to_tester_mapping def _SCREAMING_SNAKE_CASE ( snake_case_ ): if isinstance(snake_case_ , snake_case_ ): return o elif isinstance(snake_case_ , snake_case_ ): return o.__name__ elif isinstance(snake_case_ , (list, tuple) ): return [to_json(snake_case_ ) for x in o] elif isinstance(snake_case_ , snake_case_ ): return {to_json(snake_case_ ): to_json(snake_case_ ) for k, v in o.items()} else: return o
717
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class __a ( _snake_case ): __SCREAMING_SNAKE_CASE : torch.FloatTensor __SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_=0.999 , snake_case_="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case_ ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case_ ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _lowercase = [] for i in range(snake_case_ ): _lowercase = i / num_diffusion_timesteps _lowercase = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case_ ) / alpha_bar_fn(snake_case_ ) , snake_case_ ) ) return torch.tensor(snake_case_ , dtype=torch.floataa ) class __a ( _snake_case ,_snake_case ): @register_to_config def __init__( self : Tuple , lowercase__ : int = 10_00 , lowercase__ : str = "fixed_small_log" , lowercase__ : bool = True , lowercase__ : Optional[float] = 1.0 , lowercase__ : str = "epsilon" , lowercase__ : str = "squaredcos_cap_v2" , ) ->Optional[Any]: """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""") _lowercase = betas_for_alpha_bar(lowercase__) _lowercase = 1.0 - self.betas _lowercase = torch.cumprod(self.alphas , dim=0) _lowercase = torch.tensor(1.0) # standard deviation of the initial noise distribution _lowercase = 1.0 # setable values _lowercase = None _lowercase = torch.from_numpy(np.arange(0 , lowercase__)[::-1].copy()) _lowercase = variance_type def _UpperCAmelCase ( self : Optional[Any] , lowercase__ : torch.FloatTensor , lowercase__ : Optional[int] = None) ->torch.FloatTensor: """simple docstring""" return sample def _UpperCAmelCase ( self : List[str] , lowercase__ : int , lowercase__ : Union[str, torch.device] = None) ->List[str]: """simple docstring""" _lowercase = num_inference_steps _lowercase = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) _lowercase = (np.arange(0 , lowercase__) * step_ratio).round()[::-1].copy().astype(np.intaa) _lowercase = torch.from_numpy(lowercase__).to(lowercase__) def _UpperCAmelCase ( self : int , lowercase__ : Optional[Any] , lowercase__ : int=None , lowercase__ : Optional[int]=None , lowercase__ : int=None) ->Tuple: """simple docstring""" if prev_timestep is None: _lowercase = t - 1 _lowercase = self.alphas_cumprod[t] _lowercase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowercase = 1 - alpha_prod_t _lowercase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowercase = self.betas[t] else: _lowercase = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample _lowercase = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: _lowercase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": _lowercase = torch.log(torch.clamp(lowercase__ , min=1e-20)) _lowercase = torch.exp(0.5 * variance) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler _lowercase = variance.log() _lowercase = beta.log() _lowercase = (predicted_variance + 1) / 2 _lowercase = frac * max_log + (1 - frac) * min_log return variance def _UpperCAmelCase ( self : int , lowercase__ : torch.FloatTensor , lowercase__ : int , lowercase__ : torch.FloatTensor , lowercase__ : Optional[int] = None , lowercase__ : Any=None , lowercase__ : bool = True , ) ->Union[UnCLIPSchedulerOutput, Tuple]: """simple docstring""" _lowercase = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": _lowercase , _lowercase = torch.split(lowercase__ , sample.shape[1] , dim=1) else: _lowercase = None # 1. compute alphas, betas if prev_timestep is None: _lowercase = t - 1 _lowercase = self.alphas_cumprod[t] _lowercase = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one _lowercase = 1 - alpha_prod_t _lowercase = 1 - alpha_prod_t_prev if prev_timestep == t - 1: _lowercase = self.betas[t] _lowercase = self.alphas[t] else: _lowercase = 1 - alpha_prod_t / alpha_prod_t_prev _lowercase = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": _lowercase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": _lowercase = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" """ for the UnCLIPScheduler.""") # 3. Clip "predicted x_0" if self.config.clip_sample: _lowercase = torch.clamp( lowercase__ , -self.config.clip_sample_range , self.config.clip_sample_range) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowercase = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t _lowercase = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf _lowercase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise _lowercase = 0 if t > 0: _lowercase = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=lowercase__ , device=model_output.device) _lowercase = self._get_variance( lowercase__ , predicted_variance=lowercase__ , prev_timestep=lowercase__ , ) if self.variance_type == "fixed_small_log": _lowercase = variance elif self.variance_type == "learned_range": _lowercase = (0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" """ for the UnCLIPScheduler.""") _lowercase = variance * variance_noise _lowercase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=lowercase__ , pred_original_sample=lowercase__) def _UpperCAmelCase ( self : Dict , lowercase__ : torch.FloatTensor , lowercase__ : torch.FloatTensor , lowercase__ : torch.IntTensor , ) ->torch.FloatTensor: """simple docstring""" _lowercase = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype) _lowercase = timesteps.to(original_samples.device) _lowercase = alphas_cumprod[timesteps] ** 0.5 _lowercase = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape) < len(original_samples.shape): _lowercase = sqrt_alpha_prod.unsqueeze(-1) _lowercase = (1 - alphas_cumprod[timesteps]) ** 0.5 _lowercase = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape): _lowercase = sqrt_one_minus_alpha_prod.unsqueeze(-1) _lowercase = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
572
0
def _SCREAMING_SNAKE_CASE ( __lowercase : int ) -> int: """simple docstring""" if not isinstance(__lowercase , __lowercase ) or number < 0: raise ValueError("""Input must be a non-negative integer""" ) __A = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
637
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a : List[str] = "▁" __a : int = {"vocab_file": "spiece.model"} __a : Any = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } __a : Any = { "google/pegasus-xsum": 512, } __a : Union[str, Any] = logging.get_logger(__name__) class __lowercase ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] def __init__( self : List[str] , UpperCamelCase_ : int , UpperCamelCase_ : Dict="<pad>" , UpperCamelCase_ : Dict="</s>" , UpperCamelCase_ : Optional[Any]="<unk>" , UpperCamelCase_ : List[Any]="<mask_2>" , UpperCamelCase_ : List[Any]="<mask_1>" , UpperCamelCase_ : str=None , UpperCamelCase_ : Dict=103 , UpperCamelCase_ : Optional[Dict[str, Any]] = None , **UpperCamelCase_ : int , ): """simple docstring""" __A = offset if additional_special_tokens is not None: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): raise TypeError( F"additional_special_tokens should be of type {type(UpperCamelCase_ )}, but is" F" {type(UpperCamelCase_ )}" ) __A = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"<unk_{i}>" for i in range(len(UpperCamelCase_ ) , self.offset - 1 ) ] if len(set(UpperCamelCase_ ) ) != len(UpperCamelCase_ ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" F" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) __A = additional_special_tokens_extended else: __A = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"<unk_{i}>" for i in range(2 , self.offset )] __A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token_sent=UpperCamelCase_ , offset=UpperCamelCase_ , additional_special_tokens=UpperCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase_ , ) __A = mask_token_sent __A = vocab_file __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase_ ) # add special tokens to encoder dict __A = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __A = {v: k for k, v in self.encoder.items()} @property def lowerCAmelCase_ ( self : Any ): """simple docstring""" return len(self.sp_model ) + self.offset def lowerCAmelCase_ ( self : Any ): """simple docstring""" __A = {self.convert_ids_to_tokens(UpperCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Tuple ): """simple docstring""" __A = self.__dict__.copy() __A = None return state def __setstate__( self : Tuple , UpperCamelCase_ : Dict ): """simple docstring""" __A = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self : Tuple , UpperCamelCase_ : str ): """simple docstring""" return self.sp_model.encode(UpperCamelCase_ , out_type=UpperCamelCase_ ) def lowerCAmelCase_ ( self : str , UpperCamelCase_ : str ): """simple docstring""" if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __A = self.sp_model.piece_to_id(UpperCamelCase_ ) return sp_id + self.offset def lowerCAmelCase_ ( self : int , UpperCamelCase_ : int ): """simple docstring""" if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __A = self.sp_model.IdToPiece(index - self.offset ) return token def lowerCAmelCase_ ( self : Optional[int] , UpperCamelCase_ : List[str] ): """simple docstring""" __A = [] __A = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(UpperCamelCase_ ) + token __A = [] else: current_sub_tokens.append(UpperCamelCase_ ) out_string += self.sp_model.decode(UpperCamelCase_ ) return out_string.strip() def lowerCAmelCase_ ( self : Any , UpperCamelCase_ : List[Any]=False ): """simple docstring""" return 1 def lowerCAmelCase_ ( self : Optional[int] , UpperCamelCase_ : Tuple ): """simple docstring""" __A = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def lowerCAmelCase_ ( self : int , UpperCamelCase_ : List , UpperCamelCase_ : Optional[List] = None , UpperCamelCase_ : bool = False ): """simple docstring""" if already_has_special_tokens: return self._special_token_mask(UpperCamelCase_ ) elif token_ids_a is None: return self._special_token_mask(UpperCamelCase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def lowerCAmelCase_ ( self : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any]=None ): """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase_ ( self : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(UpperCamelCase_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return __A = os.path.join( UpperCamelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase_ , """wb""" ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase_ ) return (out_vocab_file,)
637
1
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def __snake_case ( _UpperCAmelCase : np.ndarray): UpperCamelCase , UpperCamelCase , UpperCamelCase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def __snake_case ( _UpperCAmelCase : np.ndarray): return (gray > 127) & (gray <= 255) def __snake_case ( _UpperCAmelCase : np.ndarray, _UpperCAmelCase : np.ndarray): UpperCamelCase = np.zeros_like(_UpperCAmelCase) UpperCamelCase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1)) # Copy image to padded image UpperCamelCase = image # Iterate over image & apply kernel for x in range(image.shape[1]): for y in range(image.shape[0]): UpperCamelCase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() UpperCamelCase = int(summation > 0) return output if __name__ == "__main__": # read original image snake_case_ : Union[str, Any] = Path(__file__).resolve().parent / '''image_data''' / '''lena.jpg''' snake_case_ : Any = np.array(Image.open(lena_path)) # kernel to be applied snake_case_ : Union[str, Any] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) snake_case_ : Union[str, Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image snake_case_ : Any = Image.fromarray(output).convert('RGB') pil_img.save('result_dilation.png')
717
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case_ : List[Any] = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] snake_case_ : str = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] snake_case_ : Optional[int] = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): snake_case_ : List[str] = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys snake_case_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
350
0
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[Any] ): debug_launcher(test_script.main ) def UpperCamelCase_ ( self : List[Any] ): debug_launcher(test_ops.main )
55
from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class A_ ( _a ): '''simple docstring''' a__ = CustomTokenizer pass
303
0
'''simple docstring''' UpperCamelCase_ : str = { """km/h""": 1.0, """m/s""": 3.6, """mph""": 1.6_0_9_3_4_4, """knot""": 1.8_5_2, } UpperCamelCase_ : Dict = { """km/h""": 1.0, """m/s""": 0.2_7_7_7_7_7_7_7_8, """mph""": 0.6_2_1_3_7_1_1_9_2, """knot""": 0.5_3_9_9_5_6_8_0_3, } def _lowerCAmelCase (_lowercase , _lowercase , _lowercase ): """simple docstring""" if unit_to not in speed_chart or unit_from not in speed_chart_inverse: a__ = ( F'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' F'Valid values are: {", ".join(__snake_case )}' ) raise ValueError(__snake_case ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
712
'''simple docstring''' def _lowerCAmelCase (_lowercase = 4_00_00_00 ): """simple docstring""" a__ = [0, 1] a__ = 0 while fib[i] <= n: fib.append(fib[i] + fib[i + 1] ) if fib[i + 2] > n: break i += 1 a__ = 0 for j in range(len(_lowercase ) - 1 ): if fib[j] % 2 == 0: total += fib[j] return total if __name__ == "__main__": print(F"{solution() = }")
394
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class _lowerCAmelCase ( __UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Any = 'swin2sr' SCREAMING_SNAKE_CASE_: Dict = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , lowerCAmelCase_=6_4 , lowerCAmelCase_=1 , lowerCAmelCase_=3 , lowerCAmelCase_=1_8_0 , lowerCAmelCase_=[6, 6, 6, 6, 6, 6] , lowerCAmelCase_=[6, 6, 6, 6, 6, 6] , lowerCAmelCase_=8 , lowerCAmelCase_=2.0 , lowerCAmelCase_=True , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.1 , lowerCAmelCase_="gelu" , lowerCAmelCase_=False , lowerCAmelCase_=0.02 , lowerCAmelCase_=1e-5 , lowerCAmelCase_=2 , lowerCAmelCase_=1.0 , lowerCAmelCase_="1conv" , lowerCAmelCase_="pixelshuffle" , **lowerCAmelCase_ , ) -> Dict: super().__init__(**lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[Any] = image_size _SCREAMING_SNAKE_CASE : Optional[Any] = patch_size _SCREAMING_SNAKE_CASE : str = num_channels _SCREAMING_SNAKE_CASE : Any = embed_dim _SCREAMING_SNAKE_CASE : Optional[int] = depths _SCREAMING_SNAKE_CASE : List[Any] = len(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Tuple = num_heads _SCREAMING_SNAKE_CASE : Optional[Any] = window_size _SCREAMING_SNAKE_CASE : List[str] = mlp_ratio _SCREAMING_SNAKE_CASE : List[str] = qkv_bias _SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Optional[int] = drop_path_rate _SCREAMING_SNAKE_CASE : int = hidden_act _SCREAMING_SNAKE_CASE : Optional[Any] = use_absolute_embeddings _SCREAMING_SNAKE_CASE : str = layer_norm_eps _SCREAMING_SNAKE_CASE : List[Any] = initializer_range _SCREAMING_SNAKE_CASE : List[Any] = upscale _SCREAMING_SNAKE_CASE : str = img_range _SCREAMING_SNAKE_CASE : Any = resi_connection _SCREAMING_SNAKE_CASE : Tuple = upsampler
621
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def lowercase__ ( ): _SCREAMING_SNAKE_CASE : dict[int, int] = {} _SCREAMING_SNAKE_CASE : List[Any] = 2 while True: _SCREAMING_SNAKE_CASE : List[Any] = factor_map.pop(lowerCamelCase, lowerCamelCase ) if factor: _SCREAMING_SNAKE_CASE : str = factor + prime while x in factor_map: x += factor _SCREAMING_SNAKE_CASE : Union[str, Any] = factor else: _SCREAMING_SNAKE_CASE : Optional[int] = prime yield prime prime += 1 def lowercase__ ( lowerCamelCase = 1E10 ): _SCREAMING_SNAKE_CASE : Dict = sieve() _SCREAMING_SNAKE_CASE : Dict = 1 while True: _SCREAMING_SNAKE_CASE : int = next(lowerCamelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(lowerCamelCase ) n += 2 if __name__ == "__main__": print(solution())
621
1
import gc import random import unittest import numpy as np import torch from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableUnCLIPImgaImgPipeline, UNetaDConditionModel from diffusers.pipelines.pipeline_utils import DiffusionPipeline from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import ( enable_full_determinism, floats_tensor, load_image, load_numpy, require_torch_gpu, skip_mps, slow, torch_device, ) from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class a (__A , __A , __A , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = StableUnCLIPImgaImgPipeline __UpperCAmelCase : List[str] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS __UpperCAmelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __UpperCAmelCase : Optional[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __UpperCAmelCase : Dict = frozenset([] ) def __snake_case ( self : Any ) -> List[Any]: __snake_case : List[Any] = 32 __snake_case : Optional[Any] = embedder_hidden_size # image encoding components __snake_case : List[str] = CLIPImageProcessor(crop_size=32 , size=32 ) torch.manual_seed(0 ) __snake_case : str = CLIPVisionModelWithProjection( CLIPVisionConfig( hidden_size=lowerCamelCase , projection_dim=lowerCamelCase , num_hidden_layers=5 , num_attention_heads=4 , image_size=32 , intermediate_size=37 , patch_size=1 , ) ) # regular denoising components torch.manual_seed(0 ) __snake_case : int = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase ) __snake_case : Union[str, Any] = DDPMScheduler(beta_schedule="squaredcos_cap_v2" ) torch.manual_seed(0 ) __snake_case : str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) torch.manual_seed(0 ) __snake_case : Tuple = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) __snake_case : int = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock2D", "DownBlock2D") , up_block_types=("UpBlock2D", "CrossAttnUpBlock2D") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="projection" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase , layers_per_block=1 , upcast_attention=lowerCamelCase , use_linear_projection=lowerCamelCase , ) torch.manual_seed(0 ) __snake_case : int = DDIMScheduler( beta_schedule="scaled_linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type="v_prediction" , set_alpha_to_one=lowerCamelCase , steps_offset=1 , ) torch.manual_seed(0 ) __snake_case : str = AutoencoderKL() __snake_case : int = { # image encoding components '''feature_extractor''': feature_extractor, '''image_encoder''': image_encoder.eval(), # image noising components '''image_normalizer''': image_normalizer.eval(), '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder.eval(), '''unet''': unet.eval(), '''scheduler''': scheduler, '''vae''': vae.eval(), } return components def __snake_case ( self : Any , lowerCamelCase : List[str] , lowerCamelCase : List[Any]=0 , lowerCamelCase : int=True ) -> Optional[Any]: if str(lowerCamelCase ).startswith("mps" ): __snake_case : List[str] = torch.manual_seed(lowerCamelCase ) else: __snake_case : Any = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase ) __snake_case : Any = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase ) ).to(lowerCamelCase ) if pil_image: __snake_case : str = input_image * 0.5 + 0.5 __snake_case : Tuple = input_image.clamp(0 , 1 ) __snake_case : Tuple = input_image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __snake_case : Dict = DiffusionPipeline.numpy_to_pil(lowerCamelCase )[0] return { "prompt": "An anime racoon running a marathon", "image": input_image, "generator": generator, "num_inference_steps": 2, "output_type": "np", } @skip_mps def __snake_case ( self : Dict ) -> Dict: __snake_case : Union[str, Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __snake_case : Optional[int] = self.get_dummy_components() __snake_case : List[Any] = StableUnCLIPImgaImgPipeline(**lowerCamelCase ) __snake_case : str = sd_pipe.to(lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase ) __snake_case : Optional[Any] = self.get_dummy_inputs(lowerCamelCase ) inputs.update({"image_embeds": None} ) __snake_case : int = sd_pipe(**lowerCamelCase ).images __snake_case : str = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __snake_case : str = np.array([0.38_72, 0.72_24, 0.56_01, 0.47_41, 0.68_72, 0.58_14, 0.46_36, 0.38_67, 0.50_78] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __snake_case ( self : Dict ) -> Tuple: __snake_case : Union[str, Any] = torch_device in ['''cpu''', '''mps'''] self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase ) def __snake_case ( self : List[Any] ) -> Optional[int]: __snake_case : int = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __snake_case ( self : Optional[Any] ) -> Union[str, Any]: self._test_xformers_attention_forwardGenerator_pass(test_max_difference=lowerCamelCase ) @slow @require_torch_gpu class a (unittest.TestCase ): """simple docstring""" def __snake_case ( self : Optional[int] ) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : List[Any] ) -> Union[str, Any]: __snake_case : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __snake_case : Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_img2img_anime_turtle_fp16.npy" ) __snake_case : Union[str, Any] = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-l-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __snake_case : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) __snake_case : Dict = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __snake_case : int = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def __snake_case ( self : Optional[Any] ) -> Optional[int]: __snake_case : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) __snake_case : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_h_img2img_anime_turtle_fp16.npy" ) __snake_case : Tuple = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __snake_case : Any = torch.Generator(device="cpu" ).manual_seed(0 ) __snake_case : Optional[Any] = pipe(lowerCamelCase , "anime turle" , generator=lowerCamelCase , output_type="np" ) __snake_case : str = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowerCamelCase , lowerCamelCase ) def __snake_case ( self : str ) -> Tuple: __snake_case : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/turtle.png" ) torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __snake_case : Any = StableUnCLIPImgaImgPipeline.from_pretrained( "fusing/stable-unclip-2-1-h-img2img" , torch_dtype=torch.floataa ) __snake_case : List[Any] = pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() __snake_case : List[str] = pipe( lowerCamelCase , "anime turtle" , num_inference_steps=2 , output_type="np" , ) __snake_case : Dict = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
708
from maths.prime_check import is_prime def lowerCAmelCase_ ( __lowerCamelCase ): if not isinstance(__lowerCamelCase , __lowerCamelCase ): __snake_case : List[str] = F'Input value of [number={number}] must be an integer' raise TypeError(__lowerCamelCase ) if is_prime(__lowerCamelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
203
0
def __a ( ): SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 1 while len(A__ ) < 1E6: constant.append(str(A__ ) ) i += 1 SCREAMING_SNAKE_CASE = "".join(A__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
16
'''simple docstring''' import argparse import tensorflow as tf import torch from transformers import BertConfig, BertForMaskedLM from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertPooler, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging logging.set_verbosity_info() def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ): '''simple docstring''' def get_masked_lm_array(__magic_name__ ): UpperCAmelCase : Tuple = F"masked_lm/{name}/.ATTRIBUTES/VARIABLE_VALUE" UpperCAmelCase : List[str] = tf.train.load_variable(__magic_name__ , __magic_name__ ) if "kernel" in name: UpperCAmelCase : str = array.transpose() return torch.from_numpy(__magic_name__ ) def get_encoder_array(__magic_name__ ): UpperCAmelCase : List[Any] = F"encoder/{name}/.ATTRIBUTES/VARIABLE_VALUE" UpperCAmelCase : Optional[Any] = tf.train.load_variable(__magic_name__ , __magic_name__ ) if "kernel" in name: UpperCAmelCase : str = array.transpose() return torch.from_numpy(__magic_name__ ) def get_encoder_layer_array(__magic_name__ , __magic_name__ ): UpperCAmelCase : Union[str, Any] = F"encoder/_transformer_layers/{layer_index}/{name}/.ATTRIBUTES/VARIABLE_VALUE" UpperCAmelCase : int = tf.train.load_variable(__magic_name__ , __magic_name__ ) if "kernel" in name: UpperCAmelCase : Optional[int] = array.transpose() return torch.from_numpy(__magic_name__ ) def get_encoder_attention_layer_array(__magic_name__ , __magic_name__ , __magic_name__ ): UpperCAmelCase : Tuple = F"encoder/_transformer_layers/{layer_index}/_attention_layer/{name}/.ATTRIBUTES/VARIABLE_VALUE" UpperCAmelCase : List[str] = tf.train.load_variable(__magic_name__ , __magic_name__ ) UpperCAmelCase : int = array.reshape(__magic_name__ ) if "kernel" in name: UpperCAmelCase : Optional[Any] = array.transpose() return torch.from_numpy(__magic_name__ ) print(F"Loading model based on config from {config_path}..." ) UpperCAmelCase : Optional[Any] = BertConfig.from_json_file(__magic_name__ ) UpperCAmelCase : Optional[Any] = BertForMaskedLM(__magic_name__ ) # Layers for layer_index in range(0 , config.num_hidden_layers ): UpperCAmelCase : BertLayer = model.bert.encoder.layer[layer_index] # Self-attention UpperCAmelCase : BertSelfAttention = layer.attention.self UpperCAmelCase : List[Any] = get_encoder_attention_layer_array( __magic_name__ , "_query_dense/kernel" , self_attn.query.weight.data.shape ) UpperCAmelCase : Tuple = get_encoder_attention_layer_array( __magic_name__ , "_query_dense/bias" , self_attn.query.bias.data.shape ) UpperCAmelCase : int = get_encoder_attention_layer_array( __magic_name__ , "_key_dense/kernel" , self_attn.key.weight.data.shape ) UpperCAmelCase : Optional[int] = get_encoder_attention_layer_array( __magic_name__ , "_key_dense/bias" , self_attn.key.bias.data.shape ) UpperCAmelCase : Tuple = get_encoder_attention_layer_array( __magic_name__ , "_value_dense/kernel" , self_attn.value.weight.data.shape ) UpperCAmelCase : str = get_encoder_attention_layer_array( __magic_name__ , "_value_dense/bias" , self_attn.value.bias.data.shape ) # Self-attention Output UpperCAmelCase : BertSelfOutput = layer.attention.output UpperCAmelCase : str = get_encoder_attention_layer_array( __magic_name__ , "_output_dense/kernel" , self_output.dense.weight.data.shape ) UpperCAmelCase : Union[str, Any] = get_encoder_attention_layer_array( __magic_name__ , "_output_dense/bias" , self_output.dense.bias.data.shape ) UpperCAmelCase : str = get_encoder_layer_array(__magic_name__ , "_attention_layer_norm/gamma" ) UpperCAmelCase : List[str] = get_encoder_layer_array(__magic_name__ , "_attention_layer_norm/beta" ) # Intermediate UpperCAmelCase : BertIntermediate = layer.intermediate UpperCAmelCase : Dict = get_encoder_layer_array(__magic_name__ , "_intermediate_dense/kernel" ) UpperCAmelCase : Tuple = get_encoder_layer_array(__magic_name__ , "_intermediate_dense/bias" ) # Output UpperCAmelCase : BertOutput = layer.output UpperCAmelCase : Optional[Any] = get_encoder_layer_array(__magic_name__ , "_output_dense/kernel" ) UpperCAmelCase : Optional[Any] = get_encoder_layer_array(__magic_name__ , "_output_dense/bias" ) UpperCAmelCase : List[str] = get_encoder_layer_array(__magic_name__ , "_output_layer_norm/gamma" ) UpperCAmelCase : Any = get_encoder_layer_array(__magic_name__ , "_output_layer_norm/beta" ) # Embeddings UpperCAmelCase : int = get_encoder_array("_position_embedding_layer/embeddings" ) UpperCAmelCase : str = get_encoder_array("_type_embedding_layer/embeddings" ) UpperCAmelCase : Optional[Any] = get_encoder_array("_embedding_norm_layer/gamma" ) UpperCAmelCase : Any = get_encoder_array("_embedding_norm_layer/beta" ) # LM Head UpperCAmelCase : str = model.cls.predictions.transform UpperCAmelCase : List[Any] = get_masked_lm_array("dense/kernel" ) UpperCAmelCase : List[Any] = get_masked_lm_array("dense/bias" ) UpperCAmelCase : Optional[Any] = get_masked_lm_array("layer_norm/gamma" ) UpperCAmelCase : Union[str, Any] = get_masked_lm_array("layer_norm/beta" ) UpperCAmelCase : Optional[Any] = get_masked_lm_array("embedding_table" ) # Pooling UpperCAmelCase : str = BertPooler(config=__magic_name__ ) UpperCAmelCase : BertPooler = get_encoder_array("_pooler_layer/kernel" ) UpperCAmelCase : BertPooler = get_encoder_array("_pooler_layer/bias" ) # Export final model model.save_pretrained(__magic_name__ ) # Integration test - should load without any errors ;) UpperCAmelCase : Optional[int] = BertForMaskedLM.from_pretrained(__magic_name__ ) print(new_model.eval() ) print("Model conversion was done sucessfully!" ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow Token Dropping checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model.", ) a : Any = parser.parse_args() convert_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
679
0
'''simple docstring''' from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE ( __A): """simple docstring""" pass class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , __A ) -> Union[str, Any]: _lowerCAmelCase =data _lowerCAmelCase =None def __iter__( self ) -> Any: _lowerCAmelCase =self _lowerCAmelCase =[] while node: if node in visited: raise ContainsLoopError visited.append(__A ) yield node.data _lowerCAmelCase =node.next_node @property def UpperCamelCase__ ( self ) -> Union[str, Any]: try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": lowercase_ = Node(1) lowercase_ = Node(2) lowercase_ = Node(3) lowercase_ = Node(4) print(root_node.has_loop) # False lowercase_ = root_node.next_node print(root_node.has_loop) # True lowercase_ = Node(5) lowercase_ = Node(6) lowercase_ = Node(5) lowercase_ = Node(6) print(root_node.has_loop) # False lowercase_ = Node(1) print(root_node.has_loop) # False
703
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
58
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Dict = '''dandelin/vilt-b32-finetuned-vqa''' _A : List[str] = ( '''This is a tool that answers a question about an image. It takes an input named `image` which should be the ''' '''image containing the information, as well as a `question` which should be the question in English. It ''' '''returns a text that is the answer to the question.''' ) _A : str = '''image_qa''' _A : Union[str, Any] = AutoProcessor _A : Optional[Any] = AutoModelForVisualQuestionAnswering _A : List[str] = ['''image''', '''text'''] _A : Optional[int] = ['''text'''] def __init__( self : Tuple , *lowerCAmelCase__ : List[Any] , **lowerCAmelCase__ : Optional[Any] ): """simple docstring""" requires_backends(self , ["""vision"""] ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[int] , lowerCAmelCase__ : "Image" , lowerCAmelCase__ : str ): """simple docstring""" return self.pre_processor(lowerCAmelCase__ , lowerCAmelCase__ , return_tensors="""pt""" ) def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : Tuple ): """simple docstring""" with torch.no_grad(): return self.model(**lowerCAmelCase__ ).logits def UpperCamelCase__ ( self : Any , lowerCAmelCase__ : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
578
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) UpperCamelCase__ : Dict = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : Any = '''unispeech''' def __init__( self : Tuple , lowerCAmelCase__ : List[Any]=3_2 , lowerCAmelCase__ : Dict=7_6_8 , lowerCAmelCase__ : Tuple=1_2 , lowerCAmelCase__ : Dict=1_2 , lowerCAmelCase__ : int=3_0_7_2 , lowerCAmelCase__ : Union[str, Any]="gelu" , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : List[str]=0.1 , lowerCAmelCase__ : Optional[int]=0.1 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : str=0.0 , lowerCAmelCase__ : Union[str, Any]=0.1 , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : str=0.02 , lowerCAmelCase__ : int=1E-5 , lowerCAmelCase__ : Dict="group" , lowerCAmelCase__ : Any="gelu" , lowerCAmelCase__ : str=(5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2, 5_1_2) , lowerCAmelCase__ : Any=(5, 2, 2, 2, 2, 2, 2) , lowerCAmelCase__ : Dict=(1_0, 3, 3, 3, 3, 2, 2) , lowerCAmelCase__ : List[str]=False , lowerCAmelCase__ : List[Any]=1_2_8 , lowerCAmelCase__ : Union[str, Any]=1_6 , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : List[str]=0.05 , lowerCAmelCase__ : Tuple=1_0 , lowerCAmelCase__ : List[Any]=2 , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : Dict=1_0 , lowerCAmelCase__ : Union[str, Any]=0 , lowerCAmelCase__ : Any=3_2_0 , lowerCAmelCase__ : Dict=2 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : int=1_0_0 , lowerCAmelCase__ : List[str]=2_5_6 , lowerCAmelCase__ : int=2_5_6 , lowerCAmelCase__ : int=0.1 , lowerCAmelCase__ : int="mean" , lowerCAmelCase__ : Optional[int]=False , lowerCAmelCase__ : str=False , lowerCAmelCase__ : List[str]=2_5_6 , lowerCAmelCase__ : int=8_0 , lowerCAmelCase__ : Union[str, Any]=0 , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : Optional[Any]=2 , lowerCAmelCase__ : str=0.5 , **lowerCAmelCase__ : Tuple , ): """simple docstring""" super().__init__(**lowerCAmelCase__ , pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size __SCREAMING_SNAKE_CASE : Optional[Any] = feat_extract_norm __SCREAMING_SNAKE_CASE : Tuple = feat_extract_activation __SCREAMING_SNAKE_CASE : int = list(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = list(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = list(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = conv_bias __SCREAMING_SNAKE_CASE : Union[str, Any] = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE : Optional[Any] = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE : List[str] = len(self.conv_dim ) __SCREAMING_SNAKE_CASE : int = num_hidden_layers __SCREAMING_SNAKE_CASE : Any = intermediate_size __SCREAMING_SNAKE_CASE : List[str] = hidden_act __SCREAMING_SNAKE_CASE : str = num_attention_heads __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout __SCREAMING_SNAKE_CASE : Dict = attention_dropout __SCREAMING_SNAKE_CASE : Tuple = activation_dropout __SCREAMING_SNAKE_CASE : Tuple = feat_proj_dropout __SCREAMING_SNAKE_CASE : Optional[int] = final_dropout __SCREAMING_SNAKE_CASE : Tuple = layerdrop __SCREAMING_SNAKE_CASE : Dict = layer_norm_eps __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : int = num_ctc_classes __SCREAMING_SNAKE_CASE : Any = vocab_size __SCREAMING_SNAKE_CASE : Tuple = do_stable_layer_norm __SCREAMING_SNAKE_CASE : int = use_weighted_layer_sum __SCREAMING_SNAKE_CASE : int = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" F" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," F" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE : List[str] = apply_spec_augment __SCREAMING_SNAKE_CASE : str = mask_time_prob __SCREAMING_SNAKE_CASE : Dict = mask_time_length __SCREAMING_SNAKE_CASE : Optional[int] = mask_time_min_masks __SCREAMING_SNAKE_CASE : Optional[Any] = mask_feature_prob __SCREAMING_SNAKE_CASE : Dict = mask_feature_length __SCREAMING_SNAKE_CASE : Any = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __SCREAMING_SNAKE_CASE : Tuple = num_codevectors_per_group __SCREAMING_SNAKE_CASE : Optional[int] = num_codevector_groups __SCREAMING_SNAKE_CASE : List[str] = contrastive_logits_temperature __SCREAMING_SNAKE_CASE : Dict = feat_quantizer_dropout __SCREAMING_SNAKE_CASE : int = num_negatives __SCREAMING_SNAKE_CASE : Tuple = codevector_dim __SCREAMING_SNAKE_CASE : Optional[int] = proj_codevector_dim __SCREAMING_SNAKE_CASE : Optional[Any] = diversity_loss_weight # ctc loss __SCREAMING_SNAKE_CASE : Tuple = ctc_loss_reduction __SCREAMING_SNAKE_CASE : List[str] = ctc_zero_infinity # pretraining loss __SCREAMING_SNAKE_CASE : Tuple = replace_prob @property def UpperCamelCase__ ( self : List[str] ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
578
1
"""simple docstring""" from collections.abc import Generator from math import sin def lowerCAmelCase ( UpperCamelCase_: bytes ) -> str: '''simple docstring''' if len(A__ ) != 32: raise ValueError("Input must be of length 32" ) _a = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def lowerCAmelCase ( UpperCamelCase_: int ) -> Any: '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) _a = format(A__ , "08x" )[-8:] _a = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" ) return little_endian_hex def lowerCAmelCase ( UpperCamelCase_: bytes ) -> Optional[int]: '''simple docstring''' _a = b"" for char in message: bit_string += format(A__ , "08b" ).encode("utf-8" ) _a = format(len(A__ ) , "064b" ).encode("utf-8" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(A__ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def lowerCAmelCase ( UpperCamelCase_: bytes ) -> Optional[int]: '''simple docstring''' if len(A__ ) % 512 != 0: raise ValueError("Input must have length that's a multiple of 512" ) for pos in range(0 , len(A__ ) , 512 ): _a = bit_string[pos : pos + 512] _a = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def lowerCAmelCase ( UpperCamelCase_: int ) -> Dict: '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) _a = format(A__ , "032b" ) _a = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(A__ , 2 ) def lowerCAmelCase ( UpperCamelCase_: int , UpperCamelCase_: int ) -> int: '''simple docstring''' return (a + b) % 2**32 def lowerCAmelCase ( UpperCamelCase_: int , UpperCamelCase_: int ) -> Optional[int]: '''simple docstring''' if i < 0: raise ValueError("Input must be non-negative" ) if shift < 0: raise ValueError("Shift must be non-negative" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def lowerCAmelCase ( UpperCamelCase_: bytes ) -> Optional[int]: '''simple docstring''' _a = preprocess(A__ ) _a = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _a = 0X67452301 _a = 0Xefcdab89 _a = 0X98badcfe _a = 0X10325476 _a = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(A__ ): _a = aa _a = ba _a = ca _a = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a = d ^ (b & (c ^ d)) _a = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a = c ^ (d & (b ^ c)) _a = (5 * i + 1) % 16 elif i <= 47: _a = b ^ c ^ d _a = (3 * i + 5) % 16 else: _a = c ^ (b | not_aa(A__ )) _a = (7 * i) % 16 _a = (f + a + added_consts[i] + block_words[g]) % 2**32 _a = d _a = c _a = b _a = sum_aa(A__ , left_rotate_aa(A__ , shift_amounts[i] ) ) # Add hashed chunk to running total _a = sum_aa(A__ , A__ ) _a = sum_aa(A__ , A__ ) _a = sum_aa(A__ , A__ ) _a = sum_aa(A__ , A__ ) _a = reformat_hex(A__ ) + reformat_hex(A__ ) + reformat_hex(A__ ) + reformat_hex(A__ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
714
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ (_UpperCAmelCase ): A__ : Union[str, Any] = (PNDMScheduler,) A__ : Optional[int] = (('''num_inference_steps''', 50),) def lowerCamelCase__ ( self , **a_ ) ->Optional[Any]: '''simple docstring''' _a = { "num_train_timesteps": 1_0_0_0, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**a_ ) return config def lowerCamelCase__ ( self , a_=0 , **a_ ) ->Tuple: '''simple docstring''' _a = dict(self.forward_default_kwargs ) _a = kwargs.pop("num_inference_steps" , a_ ) _a = self.dummy_sample _a = 0.1 * sample _a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _a = self.get_scheduler_config(**a_ ) _a = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals _a = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _a = scheduler_class.from_pretrained(a_ ) new_scheduler.set_timesteps(a_ ) # copy over dummy past residuals _a = dummy_past_residuals[:] _a = scheduler.step_prk(a_ , a_ , a_ , **a_ ).prev_sample _a = new_scheduler.step_prk(a_ , a_ , a_ , **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _a = scheduler.step_plms(a_ , a_ , a_ , **a_ ).prev_sample _a = new_scheduler.step_plms(a_ , a_ , a_ , **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self ) ->Dict: '''simple docstring''' pass def lowerCamelCase__ ( self , a_=0 , **a_ ) ->Tuple: '''simple docstring''' _a = dict(self.forward_default_kwargs ) _a = kwargs.pop("num_inference_steps" , a_ ) _a = self.dummy_sample _a = 0.1 * sample _a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: _a = self.get_scheduler_config() _a = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # copy over dummy past residuals (must be after setting timesteps) _a = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a_ ) _a = scheduler_class.from_pretrained(a_ ) # copy over dummy past residuals new_scheduler.set_timesteps(a_ ) # copy over dummy past residual (must be after setting timesteps) _a = dummy_past_residuals[:] _a = scheduler.step_prk(a_ , a_ , a_ , **a_ ).prev_sample _a = new_scheduler.step_prk(a_ , a_ , a_ , **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" _a = scheduler.step_plms(a_ , a_ , a_ , **a_ ).prev_sample _a = new_scheduler.step_plms(a_ , a_ , a_ , **a_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCamelCase__ ( self , **a_ ) ->Optional[int]: '''simple docstring''' _a = self.scheduler_classes[0] _a = self.get_scheduler_config(**a_ ) _a = scheduler_class(**a_ ) _a = 1_0 _a = self.dummy_model() _a = self.dummy_sample_deter scheduler.set_timesteps(a_ ) for i, t in enumerate(scheduler.prk_timesteps ): _a = model(a_ , a_ ) _a = scheduler.step_prk(a_ , a_ , a_ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): _a = model(a_ , a_ ) _a = scheduler.step_plms(a_ , a_ , a_ ).prev_sample return sample def lowerCamelCase__ ( self ) ->Dict: '''simple docstring''' _a = dict(self.forward_default_kwargs ) _a = kwargs.pop("num_inference_steps" , a_ ) for scheduler_class in self.scheduler_classes: _a = self.get_scheduler_config() _a = scheduler_class(**a_ ) _a = self.dummy_sample _a = 0.1 * sample if num_inference_steps is not None and hasattr(a_ , "set_timesteps" ): scheduler.set_timesteps(a_ ) elif num_inference_steps is not None and not hasattr(a_ , "set_timesteps" ): _a = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _a = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] _a = dummy_past_residuals[:] _a = scheduler.step_prk(a_ , 0 , a_ , **a_ ).prev_sample _a = scheduler.step_prk(a_ , 1 , a_ , **a_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _a = scheduler.step_plms(a_ , 0 , a_ , **a_ ).prev_sample _a = scheduler.step_plms(a_ , 1 , a_ , **a_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCamelCase__ ( self ) ->int: '''simple docstring''' for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=a_ ) def lowerCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=a_ ) _a = self.scheduler_classes[0] _a = self.get_scheduler_config(steps_offset=1 ) _a = scheduler_class(**a_ ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) , ) def lowerCamelCase__ ( self ) ->Tuple: '''simple docstring''' for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=a_ , beta_end=a_ ) def lowerCamelCase__ ( self ) ->Dict: '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=a_ ) def lowerCamelCase__ ( self ) ->str: '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=a_ ) def lowerCamelCase__ ( self ) ->Any: '''simple docstring''' for t in [1, 5, 1_0]: self.check_over_forward(time_step=a_ ) def lowerCamelCase__ ( self ) ->List[Any]: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=a_ ) def lowerCamelCase__ ( self ) ->Union[str, Any]: '''simple docstring''' _a = 2_7 for scheduler_class in self.scheduler_classes: _a = self.dummy_sample _a = 0.1 * sample _a = self.get_scheduler_config() _a = scheduler_class(**a_ ) scheduler.set_timesteps(a_ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): _a = scheduler.step_prk(a_ , a_ , a_ ).prev_sample def lowerCamelCase__ ( self ) ->Any: '''simple docstring''' with self.assertRaises(a_ ): _a = self.scheduler_classes[0] _a = self.get_scheduler_config() _a = scheduler_class(**a_ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def lowerCamelCase__ ( self ) ->Any: '''simple docstring''' _a = self.full_loop() _a = torch.sum(torch.abs(a_ ) ) _a = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 198.1_318 ) < 1E-2 assert abs(result_mean.item() - 0.2_580 ) < 1E-3 def lowerCamelCase__ ( self ) ->Optional[Any]: '''simple docstring''' _a = self.full_loop(prediction_type="v_prediction" ) _a = torch.sum(torch.abs(a_ ) ) _a = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 67.3_986 ) < 1E-2 assert abs(result_mean.item() - 0.0_878 ) < 1E-3 def lowerCamelCase__ ( self ) ->int: '''simple docstring''' _a = self.full_loop(set_alpha_to_one=a_ , beta_start=0.01 ) _a = torch.sum(torch.abs(a_ ) ) _a = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 230.0_399 ) < 1E-2 assert abs(result_mean.item() - 0.2_995 ) < 1E-3 def lowerCamelCase__ ( self ) ->str: '''simple docstring''' _a = self.full_loop(set_alpha_to_one=a_ , beta_start=0.01 ) _a = torch.sum(torch.abs(a_ ) ) _a = torch.mean(torch.abs(a_ ) ) assert abs(result_sum.item() - 186.9_482 ) < 1E-2 assert abs(result_mean.item() - 0.2_434 ) < 1E-3
612
0
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : List[Any] , *__lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : int=None , **__lowerCamelCase : str ): """simple docstring""" super().__init__(*__lowerCamelCase , **__lowerCamelCase ) _snake_case = eval_examples _snake_case = post_process_function def __UpperCAmelCase ( self : int , __lowerCamelCase : Optional[Dataset] = None , __lowerCamelCase : List[Any]=None , __lowerCamelCase : Optional[List[str]] = None , __lowerCamelCase : str = "eval" , **__lowerCamelCase : int , ): """simple docstring""" _snake_case = gen_kwargs.copy() _snake_case = ( gen_kwargs['''max_length'''] if gen_kwargs.get('''max_length''' ) is not None else self.args.generation_max_length ) _snake_case = ( gen_kwargs['''num_beams'''] if gen_kwargs.get('''num_beams''' ) is not None else self.args.generation_num_beams ) _snake_case = gen_kwargs _snake_case = self.eval_dataset if eval_dataset is None else eval_dataset _snake_case = self.get_eval_dataloader(__lowerCamelCase ) _snake_case = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _snake_case = self.compute_metrics _snake_case = None _snake_case = time.time() _snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _snake_case = eval_loop( __lowerCamelCase , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , metric_key_prefix=__lowerCamelCase , ) finally: _snake_case = compute_metrics _snake_case = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __lowerCamelCase , __lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _snake_case = self.post_process_function(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _snake_case = self.compute_metrics(__lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): _snake_case = metrics.pop(__lowerCamelCase ) metrics.update(output.metrics ) else: _snake_case = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _snake_case = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCamelCase ) return metrics def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Dict=None , __lowerCamelCase : str = "test" , **__lowerCamelCase : int ): """simple docstring""" _snake_case = gen_kwargs.copy() _snake_case = self.get_test_dataloader(__lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. _snake_case = self.compute_metrics _snake_case = None _snake_case = time.time() _snake_case = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: _snake_case = eval_loop( __lowerCamelCase , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , metric_key_prefix=__lowerCamelCase , ) finally: _snake_case = compute_metrics _snake_case = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __lowerCamelCase , __lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _snake_case = self.post_process_function(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , '''predict''' ) _snake_case = self.compute_metrics(__lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): _snake_case = metrics.pop(__lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCamelCase )
103
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase = {"configuration_vit_msn": ["VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMSNConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ "VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMSNModel", "ViTMSNForImageClassification", "ViTMSNPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
490
0
import os import re import shutil import sys import tempfile import unittest import black _lowerCamelCase : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. _lowerCamelCase : str = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n" class __snake_case (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , """schedulers/""" ) ) _lowerCAmelCase : Any = self.diffusers_dir shutil.copy( os.path.join(_UpperCAmelCase , """src/diffusers/schedulers/scheduling_ddpm.py""" ) , os.path.join(self.diffusers_dir , """schedulers/scheduling_ddpm.py""" ) , ) def SCREAMING_SNAKE_CASE ( self : int ) -> Any: '''simple docstring''' _lowerCAmelCase : Tuple = """src/diffusers""" shutil.rmtree(self.diffusers_dir ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int=None ) -> Optional[Any]: '''simple docstring''' _lowerCAmelCase : str = comment + f"\nclass {class_name}(nn.Module):\n" + class_code if overwrite_result is not None: _lowerCAmelCase : List[Any] = comment + f"\nclass {class_name}(nn.Module):\n" + overwrite_result _lowerCAmelCase : Any = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 ) _lowerCAmelCase : Tuple = black.format_str(_UpperCAmelCase , mode=_UpperCAmelCase ) _lowerCAmelCase : str = os.path.join(self.diffusers_dir , """new_code.py""" ) with open(_UpperCAmelCase , """w""" , newline="""\n""" ) as f: f.write(_UpperCAmelCase ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(_UpperCAmelCase ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=_UpperCAmelCase ) with open(_UpperCAmelCase , """r""" ) as f: self.assertTrue(f.read() , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: '''simple docstring''' _lowerCAmelCase : str = check_copies.find_code_in_diffusers("""schedulers.scheduling_ddpm.DDPMSchedulerOutput""" ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: '''simple docstring''' self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput""" , """DDPMSchedulerOutput""" , _UpperCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , re.sub("""DDPM""" , """Test""" , _UpperCAmelCase ) , ) # Copy consistency with a really long name _lowerCAmelCase : Dict = """TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" , f"{long_class_name}SchedulerOutput" , re.sub("""Bert""" , _UpperCAmelCase , _UpperCAmelCase ) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test""" , """TestSchedulerOutput""" , _UpperCAmelCase , overwrite_result=re.sub("""DDPM""" , """Test""" , _UpperCAmelCase ) , )
714
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate _lowerCamelCase : Optional[Any] = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("", "|", "|"), datarow=DataRow("", "|", "|"), padding=1, with_header_hide=None, ) _lowerCamelCase : Optional[int] = [] _lowerCamelCase : Tuple = [] _lowerCamelCase : List[str] = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} _lowerCamelCase : Optional[Any] = [ { "type": "header", "text": { "type": "plain_text", "text": F'''🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results''', "emoji": True, }, } ] _lowerCamelCase : str = 0 for log in Path().glob("*.log"): _lowerCamelCase : str = 0 with open(log, "r") as f: for line in f: _lowerCamelCase : Optional[Any] = json.loads(line) if line.get("nodeid", "") != "": _lowerCamelCase : str = line["nodeid"] if line.get("duration", None) is not None: _lowerCamelCase : str = F'''{line['duration']:.4f}''' if line.get("outcome", "") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("_")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) _lowerCamelCase : Optional[int] = [] log.unlink() _lowerCamelCase : str = "" _lowerCamelCase : Optional[Any] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" _lowerCamelCase : Any = [] _lowerCamelCase : Dict = {} for test in failed_tests: _lowerCamelCase : Union[str, Any] = test[0].split("::") _lowerCamelCase : str = data[0].split("/")[-1] if data[0] not in filesafailed: _lowerCamelCase : List[str] = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) _lowerCamelCase : List[Any] = [test[0] for test in failed_table] _lowerCamelCase : Optional[Any] = list(set(files)) # Count number of instances in failed_tests _lowerCamelCase : Union[str, Any] = [] for file in individual_files: table.append([file, len(filesafailed[file])]) _lowerCamelCase : Optional[Any] = tabulate( table, headers=["Test Location", "Num Failed"], tablefmt=hf_table_format, stralign="right", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3_0_0_0: _lowerCamelCase : List[str] = "Too many failed tests, please see the full report in the Action results." _lowerCamelCase : Tuple = len(err) + 1_0 _lowerCamelCase : Union[str, Any] = message[: 3_0_0_0 - offset] + F'''\n...\n```\n{err}''' print(F'''### {message}''') else: _lowerCamelCase : List[str] = "No failed tests! 🤗" print(F'''## {message}''') payload.append(no_error_payload) if os.environ.get("TEST_TYPE", "") != "": from slack_sdk import WebClient _lowerCamelCase : Optional[int] = WebClient(token=os.environ["SLACK_API_TOKEN"]) if message != "No failed tests! 🤗": _lowerCamelCase : int = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) _lowerCamelCase : List[Any] = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": F'''https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } payload.append(action_button) _lowerCamelCase : Union[str, Any] = { "type": "context", "elements": [ { "type": "plain_text", "text": F'''Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}''', } ], } payload.append(date_report) _lowerCamelCase : int = client.chat_postMessage(channel="#accelerate-ci-daily", text=message, blocks=payload) _lowerCamelCase : List[Any] = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name _lowerCamelCase : Dict = "" for i, row in enumerate(test_failures): if row[0] != test_class: _lowerCamelCase : Optional[int] = row[0] else: _lowerCamelCase : List[str] = "" _lowerCamelCase : int = { "type": "section", "text": { "type": "mrkdwn", "text": F'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```''', }, } client.chat_postMessage( channel="#accelerate-ci-daily", thread_ts=ts, blocks=[payload], )
196
0
'''simple docstring''' import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A__ : def __init__( self : Tuple , _a : List[str] , _a : List[Any]=13 , _a : Tuple=64 , _a : Any=2 , _a : str=3 , _a : Union[str, Any]=True , _a : Optional[Any]=True , _a : Any=32 , _a : int=5 , _a : Tuple=4 , _a : Dict=37 , _a : int="gelu" , _a : Optional[int]=0.1 , _a : Union[str, Any]=0.1 , _a : int=10 , _a : Optional[int]=0.02 , _a : List[str]=[1, 16, 4, 4] , _a : Union[str, Any]=None , ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =batch_size _SCREAMING_SNAKE_CASE =image_size _SCREAMING_SNAKE_CASE =patch_size _SCREAMING_SNAKE_CASE =num_channels _SCREAMING_SNAKE_CASE =is_training _SCREAMING_SNAKE_CASE =use_labels _SCREAMING_SNAKE_CASE =hidden_size _SCREAMING_SNAKE_CASE =num_hidden_layers _SCREAMING_SNAKE_CASE =num_attention_heads _SCREAMING_SNAKE_CASE =intermediate_size _SCREAMING_SNAKE_CASE =hidden_act _SCREAMING_SNAKE_CASE =hidden_dropout_prob _SCREAMING_SNAKE_CASE =attention_probs_dropout_prob _SCREAMING_SNAKE_CASE =type_sequence_label_size _SCREAMING_SNAKE_CASE =initializer_range _SCREAMING_SNAKE_CASE =scope _SCREAMING_SNAKE_CASE =backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size _SCREAMING_SNAKE_CASE =(self.image_size // 32) ** 2 _SCREAMING_SNAKE_CASE =num_patches + 1 def A ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels def A ( self : Optional[Any] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE ={ 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_lowerCamelCase , ) def A ( self : List[Any] , _a : Tuple , _a : Optional[Any] , _a : Optional[Any] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =ViTHybridModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE =model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Tuple , _a : Tuple , _a : Union[str, Any] , _a : Union[str, Any] ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.type_sequence_label_size _SCREAMING_SNAKE_CASE =ViTHybridForImageClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE =model(_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A ( self : Any ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =config_and_inputs _SCREAMING_SNAKE_CASE ={'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( A__ , A__ , unittest.TestCase ): A__ = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () A__ = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) A__ = False A__ = False A__ = False def A ( self : Dict ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =ViTHybridModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 ) def A ( self : str ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def A ( self : Dict ) -> Any: '''simple docstring''' pass def A ( self : str ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _SCREAMING_SNAKE_CASE =model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) ) def A ( self : str ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(_lowerCamelCase ) _SCREAMING_SNAKE_CASE =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] _SCREAMING_SNAKE_CASE =['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def A ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def A ( self : Optional[int] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) def A ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE =_config_zero_init(_lowerCamelCase ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE =model_class(config=_lowerCamelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": _SCREAMING_SNAKE_CASE =[f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def A ( self : Dict ) -> List[str]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE =ViTHybridModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) def _lowerCAmelCase ( ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): @cached_property def A ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def A ( self : Any ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _lowerCamelCase ) _SCREAMING_SNAKE_CASE =self.default_image_processor _SCREAMING_SNAKE_CASE =prepare_img() _SCREAMING_SNAKE_CASE =image_processor(images=_lowerCamelCase , return_tensors='pt' ).to(_lowerCamelCase ) # forward pass with torch.no_grad(): _SCREAMING_SNAKE_CASE =model(**_lowerCamelCase ) # verify the logits _SCREAMING_SNAKE_CASE =torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) _SCREAMING_SNAKE_CASE =torch.tensor([-1.90_90, -0.49_93, -0.23_89] ).to(_lowerCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 ) ) @slow @require_accelerate def A ( self : Tuple ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) _SCREAMING_SNAKE_CASE =ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) _SCREAMING_SNAKE_CASE =prepare_img() _SCREAMING_SNAKE_CASE =image_processor(images=_lowerCamelCase , return_tensors='pt' ) _SCREAMING_SNAKE_CASE =model(**_lowerCamelCase ) _SCREAMING_SNAKE_CASE =outputs.logits # model predicts one of the 1000 ImageNet classes _SCREAMING_SNAKE_CASE =logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
405
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __A ( unittest.TestCase ): """simple docstring""" A_ = StableDiffusionLDMaDPipeline A_ = TEXT_TO_IMAGE_PARAMS A_ = TEXT_TO_IMAGE_BATCH_PARAMS A_ = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case_( self )-> int: torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) lowercase__ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='''scaled_linear''' , clip_sample=_lowerCamelCase , set_alpha_to_one=_lowerCamelCase , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=6 , out_channels=6 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) lowercase__ = CLIPTextModel(_lowerCamelCase ) lowercase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case_( self , _lowerCamelCase , _lowerCamelCase=0 )-> Optional[Any]: if str(_lowerCamelCase ).startswith('''mps''' ): lowercase__ = torch.manual_seed(_lowerCamelCase ) else: lowercase__ = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) lowercase__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case_( self )-> List[str]: lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionLDMaDPipeline(**_lowerCamelCase ) lowercase__ = ldmad_pipe.to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase__ = self.get_dummy_inputs(_lowerCamelCase ) lowercase__ = ldmad_pipe(**_lowerCamelCase ) lowercase__ , lowercase__ = output.rgb, output.depth lowercase__ = rgb[0, -3:, -3:, -1] lowercase__ = depth[0, -3:, -1] assert rgb.shape == (1, 6_4, 6_4, 3) assert depth.shape == (1, 6_4, 6_4) lowercase__ = np.array( [0.3_7_3_3_8_1_7_6, 0.7_0_2_4_7, 0.7_4_2_0_3_1_9_3, 0.5_1_6_4_3_6_0_4, 0.5_8_2_5_6_7_9_3, 0.6_0_9_3_2_1_3_6, 0.4_1_8_1_0_9_5, 0.4_8_3_5_5_8_7_7, 0.4_6_5_3_5_2_6_2] ) lowercase__ = np.array([1_0_3.4_6_7_2_7, 8_5.8_1_2_0_0_4, 8_7.8_4_9_2_3_6] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def snake_case_( self )-> List[str]: lowercase__ = self.get_dummy_components() lowercase__ = StableDiffusionLDMaDPipeline(**_lowerCamelCase ) lowercase__ = ldmad_pipe.to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase__ = self.get_dummy_inputs(_lowerCamelCase ) lowercase__ = 3 * [inputs['''prompt''']] # forward lowercase__ = ldmad_pipe(**_lowerCamelCase ) lowercase__ , lowercase__ = output.rgb, output.depth lowercase__ = rgb_slice_a[0, -3:, -3:, -1] lowercase__ = depth_slice_a[0, -3:, -1] lowercase__ = self.get_dummy_inputs(_lowerCamelCase ) lowercase__ = 3 * [inputs.pop('''prompt''' )] lowercase__ = ldmad_pipe.tokenizer( _lowerCamelCase , padding='''max_length''' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=_lowerCamelCase , return_tensors='''pt''' , ) lowercase__ = text_inputs['''input_ids'''].to(_lowerCamelCase ) lowercase__ = ldmad_pipe.text_encoder(_lowerCamelCase )[0] lowercase__ = prompt_embeds # forward lowercase__ = ldmad_pipe(**_lowerCamelCase ) lowercase__ , lowercase__ = output.rgb, output.depth lowercase__ = rgb_slice_a[0, -3:, -3:, -1] lowercase__ = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def snake_case_( self )-> List[str]: lowercase__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator lowercase__ = self.get_dummy_components() lowercase__ = PNDMScheduler(skip_prk_steps=_lowerCamelCase ) lowercase__ = StableDiffusionLDMaDPipeline(**_lowerCamelCase ) lowercase__ = ldmad_pipe.to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase__ = self.get_dummy_inputs(_lowerCamelCase ) lowercase__ = '''french fries''' lowercase__ = ldmad_pipe(**_lowerCamelCase , negative_prompt=_lowerCamelCase ) lowercase__ , lowercase__ = output.rgb, output.depth lowercase__ = rgb[0, -3:, -3:, -1] lowercase__ = depth[0, -3:, -1] assert rgb.shape == (1, 6_4, 6_4, 3) assert depth.shape == (1, 6_4, 6_4) lowercase__ = np.array( [0.3_7_0_4_4, 0.7_1_8_1_1_5_0_3, 0.7_2_2_3_2_5_1, 0.4_8_6_0_3_6_7_5, 0.5_6_3_8_3_9_1, 0.6_3_6_4_9_4_8, 0.4_2_8_3_3_7_0_4, 0.4_9_0_1_3_1_5, 0.4_7_9_2_6_2_1_7] ) lowercase__ = np.array([1_0_7.8_4_7_3_8, 8_4.6_2_8_0_2, 8_9.9_6_2_1_3_5] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class __A ( unittest.TestCase ): """simple docstring""" def snake_case_( self )-> Any: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_( self , _lowerCamelCase , _lowerCamelCase="cpu" , _lowerCamelCase=torch.floataa , _lowerCamelCase=0 )-> List[Any]: lowercase__ = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) lowercase__ = np.random.RandomState(_lowerCamelCase ).standard_normal((1, 4, 6_4, 6_4) ) lowercase__ = torch.from_numpy(_lowerCamelCase ).to(device=_lowerCamelCase , dtype=_lowerCamelCase ) lowercase__ = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def snake_case_( self )-> Tuple: lowercase__ = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ) lowercase__ = ldmad_pipe.to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase__ = self.get_inputs(_lowerCamelCase ) lowercase__ = ldmad_pipe(**_lowerCamelCase ) lowercase__ , lowercase__ = output.rgb, output.depth lowercase__ = rgb[0, -3:, -3:, -1].flatten() lowercase__ = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 5_1_2, 5_1_2, 3) assert depth.shape == (1, 5_1_2, 5_1_2) lowercase__ = np.array( [0.5_3_8_0_5_4_6_5, 0.5_6_7_0_7_3_0_5, 0.5_4_8_6_5_1_5, 0.5_7_0_1_2_2_3_6, 0.5_8_1_4_5_1_1, 0.5_6_2_5_3_4_8_7, 0.5_4_8_4_3_0_1_4, 0.5_5_0_9_2_2_6_3, 0.6_4_5_9_7_0_6] ) lowercase__ = np.array( [0.9_2_6_3_7_8_1, 0.6_6_7_8_6_7_2, 0.5_4_8_6_5_1_5, 0.9_2_2_0_2_1_4_5, 0.6_7_8_3_1_1_3_5, 0.5_6_2_5_3_4_8_7, 0.9_2_4_1_6_9_4, 0.7_5_5_1_4_7_8, 0.6_4_5_9_7_0_6] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class __A ( unittest.TestCase ): """simple docstring""" def snake_case_( self )-> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_( self , _lowerCamelCase , _lowerCamelCase="cpu" , _lowerCamelCase=torch.floataa , _lowerCamelCase=0 )-> str: lowercase__ = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) lowercase__ = np.random.RandomState(_lowerCamelCase ).standard_normal((1, 4, 6_4, 6_4) ) lowercase__ = torch.from_numpy(_lowerCamelCase ).to(device=_lowerCamelCase , dtype=_lowerCamelCase ) lowercase__ = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 5_0, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def snake_case_( self )-> Any: lowercase__ = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ).to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase__ = self.get_inputs(_lowerCamelCase ) lowercase__ = ldmad_pipe(**_lowerCamelCase ) lowercase__ , lowercase__ = output.rgb, output.depth lowercase__ = 0.4_9_5_5_8_6 lowercase__ = 0.3_3_7_9_5_5_1_5 lowercase__ = 1_1_2.4_8_5_1_8 lowercase__ = 9_8.4_8_9_7_4_6 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def snake_case_( self )-> Any: lowercase__ = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d-4c''' ).to(_lowerCamelCase ) ldmad_pipe.set_progress_bar_config(disable=_lowerCamelCase ) lowercase__ = self.get_inputs(_lowerCamelCase ) lowercase__ = ldmad_pipe(**_lowerCamelCase ) lowercase__ , lowercase__ = output.rgb, output.depth lowercase__ = 0.4_1_9_4_1_2_7 lowercase__ = 0.3_5_3_7_5_5_8_6 lowercase__ = 0.5_6_3_8_5_0_2 lowercase__ = 0.3_4_6_8_6_1_0_3 assert rgb.shape == (1, 5_1_2, 5_1_2, 3) assert depth.shape == (1, 5_1_2, 5_1_2, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
161
0
'''simple docstring''' def _a ( _lowercase : List[str] ): '''simple docstring''' __UpperCAmelCase : int = len(_lowercase ) while cur > 1: # Find the maximum number in arr __UpperCAmelCase : Union[str, Any] = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __UpperCAmelCase : Any = arr[mi::-1] + arr[mi + 1 : len(_lowercase )] # Reverse whole list __UpperCAmelCase : List[str] = arr[cur - 1 :: -1] + arr[cur : len(_lowercase )] cur -= 1 return arr if __name__ == "__main__": __UpperCAmelCase :Any = input("Enter numbers separated by a comma:\n").strip() __UpperCAmelCase :Optional[int] = [int(item) for item in user_input.split(",")] print(pancake_sort(unsorted))
266
'''simple docstring''' import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class a ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = JukeboxTokenizer SCREAMING_SNAKE_CASE : Tuple = { "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def lowerCamelCase__ ( self : Optional[int] ) -> Optional[Any]: import torch __UpperCAmelCase : List[str] = JukeboxTokenizer.from_pretrained('''openai/jukebox-1b-lyrics''' ) __UpperCAmelCase : int = tokenizer(**self.metas )['''input_ids'''] # fmt: off __UpperCAmelCase : List[str] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: import torch __UpperCAmelCase : Optional[int] = JukeboxTokenizer.from_pretrained('''openai/jukebox-5b-lyrics''' ) __UpperCAmelCase : List[Any] = tokenizer(**self.metas )['''input_ids'''] # fmt: off __UpperCAmelCase : List[str] = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
266
1
"""simple docstring""" import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser( description=( '''Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned''' ''' Distillation''' ) ) parser.add_argument('''--model_type''', default='''roberta''', choices=['''roberta''', '''gpt2''']) parser.add_argument('''--model_name''', default='''roberta-large''', type=str) parser.add_argument('''--dump_checkpoint''', default='''serialization_dir/tf_roberta_048131723.pth''', type=str) parser.add_argument('''--vocab_transform''', action='''store_true''') __A : List[str] = parser.parse_args() if args.model_type == "roberta": __A : int = RobertaForMaskedLM.from_pretrained(args.model_name) __A : Optional[Any] = '''roberta''' elif args.model_type == "gpt2": __A : Optional[Any] = GPTaLMHeadModel.from_pretrained(args.model_name) __A : Optional[Any] = '''transformer''' __A : List[str] = model.state_dict() __A : Union[str, Any] = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: __A : List[Any] = state_dict[F'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: __A : Dict = F'''{prefix}.embeddings.{w}.weight''' __A : str = state_dict[param_name] for w in ["weight", "bias"]: __A : Dict = F'''{prefix}.embeddings.LayerNorm.{w}''' __A : Tuple = state_dict[param_name] # Transformer Blocks # __A : Dict = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: __A : str = state_dict[ F'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] __A : Optional[int] = state_dict[F'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: __A : List[str] = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: __A : Union[str, Any] = state_dict[F'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: __A : Optional[Any] = state_dict[F'''lm_head.dense.{w}'''] __A : List[str] = state_dict[F'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: __A : Tuple = state_dict[F'''{prefix}.ln_f.{w}'''] __A : Optional[int] = state_dict['''lm_head.weight'''] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
499
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __A : Dict = logging.get_logger(__name__) __A : List[Any] = TypeVar('''DatasetType''', Dataset, IterableDataset) def A_ ( snake_case_ : List[DatasetType] ,snake_case_ : Optional[List[float]] = None ,snake_case_ : Optional[int] = None ,snake_case_ : Optional[DatasetInfo] = None ,snake_case_ : Optional[NamedSplit] = None ,snake_case_ : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" ,): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(snake_case_ ): if not isinstance(snake_case_ ,(Dataset, IterableDataset) ): if isinstance(snake_case_ ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' """is an empty dataset dictionary.""" ) raise ValueError( f'Dataset at position {i} has at least one split: {list(snake_case_ )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case_ ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case_ ).__name__}.' ) if i == 0: UpperCamelCase , UpperCamelCase : Dict = ( (Dataset, IterableDataset) if isinstance(snake_case_ ,snake_case_ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case_ ,snake_case_ ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'{stopping_strategy} is not supported. Please enter a valid stopping_strategy.' ) if dataset_type is Dataset: return _interleave_map_style_datasets( snake_case_ ,snake_case_ ,snake_case_ ,info=snake_case_ ,split=snake_case_ ,stopping_strategy=snake_case_ ) else: return _interleave_iterable_datasets( snake_case_ ,snake_case_ ,snake_case_ ,info=snake_case_ ,split=snake_case_ ,stopping_strategy=snake_case_ ) def A_ ( snake_case_ : List[DatasetType] ,snake_case_ : Optional[DatasetInfo] = None ,snake_case_ : Optional[NamedSplit] = None ,snake_case_ : int = 0 ,): '''simple docstring''' if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(snake_case_ ): if not isinstance(snake_case_ ,(Dataset, IterableDataset) ): if isinstance(snake_case_ ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ' """is an empty dataset dictionary.""" ) raise ValueError( f'Dataset at position {i} has at least one split: {list(snake_case_ )}\n' f'Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(snake_case_ ) )}\']' ) raise ValueError( f'Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(snake_case_ ).__name__}.' ) if i == 0: UpperCamelCase , UpperCamelCase : List[str] = ( (Dataset, IterableDataset) if isinstance(snake_case_ ,snake_case_ ) else (IterableDataset, Dataset) ) elif not isinstance(snake_case_ ,snake_case_ ): raise ValueError( f'Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(snake_case_ ,info=snake_case_ ,split=snake_case_ ,axis=snake_case_ ) else: return _concatenate_iterable_datasets(snake_case_ ,info=snake_case_ ,split=snake_case_ ,axis=snake_case_ )
499
1
'''simple docstring''' import torch from diffusers import DiffusionPipeline class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): def __init__( self : Optional[Any] , __lowercase : Optional[Any] , __lowercase : Union[str, Any] ) -> Union[str, Any]: super().__init__() self.register_modules(unet=__lowercase , scheduler=__lowercase ) def __call__( self : int ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : str =torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) SCREAMING_SNAKE_CASE__ : Dict =1 SCREAMING_SNAKE_CASE__ : List[str] =self.unet(__lowercase , __lowercase ).sample SCREAMING_SNAKE_CASE__ : List[str] =self.scheduler.step(__lowercase , __lowercase , __lowercase ).prev_sample SCREAMING_SNAKE_CASE__ : Any =scheduler_output - scheduler_output + torch.ones_like(__lowercase ) return result
665
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """gpt_neox""" def __init__( self : List[Any] , __lowercase : Union[str, Any]=5_04_32 , __lowercase : int=61_44 , __lowercase : Tuple=44 , __lowercase : List[str]=64 , __lowercase : str=2_45_76 , __lowercase : Dict="gelu" , __lowercase : Tuple=0.25 , __lowercase : Tuple=1_00_00 , __lowercase : Tuple=0.0 , __lowercase : str=0.0 , __lowercase : List[Any]=0.1 , __lowercase : Dict=20_48 , __lowercase : Any=0.02 , __lowercase : Dict=1e-5 , __lowercase : List[Any]=True , __lowercase : str=0 , __lowercase : Optional[Any]=2 , __lowercase : Tuple=False , __lowercase : List[Any]=True , __lowercase : Optional[Any]=None , **__lowercase : Any , ) -> Dict: super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =max_position_embeddings SCREAMING_SNAKE_CASE__ : Any =hidden_size SCREAMING_SNAKE_CASE__ : str =num_hidden_layers SCREAMING_SNAKE_CASE__ : Any =num_attention_heads SCREAMING_SNAKE_CASE__ : Union[str, Any] =intermediate_size SCREAMING_SNAKE_CASE__ : Dict =hidden_act SCREAMING_SNAKE_CASE__ : str =rotary_pct SCREAMING_SNAKE_CASE__ : Optional[Any] =rotary_emb_base SCREAMING_SNAKE_CASE__ : List[Any] =attention_dropout SCREAMING_SNAKE_CASE__ : List[Any] =hidden_dropout SCREAMING_SNAKE_CASE__ : str =classifier_dropout SCREAMING_SNAKE_CASE__ : Any =initializer_range SCREAMING_SNAKE_CASE__ : Dict =layer_norm_eps SCREAMING_SNAKE_CASE__ : Any =use_cache SCREAMING_SNAKE_CASE__ : Tuple =tie_word_embeddings SCREAMING_SNAKE_CASE__ : Tuple =use_parallel_residual SCREAMING_SNAKE_CASE__ : Union[str, Any] =rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def __magic_name__ ( self : Optional[Any] ) -> Optional[Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __lowercase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F"got {self.rope_scaling}" ) SCREAMING_SNAKE_CASE__ : int =self.rope_scaling.get('''type''' , __lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =self.rope_scaling.get('''factor''' , __lowercase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__lowercase , __lowercase ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
665
1
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
74
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE__ = { "configuration_owlvit": [ "OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "OwlViTConfig", "OwlViTOnnxConfig", "OwlViTTextConfig", "OwlViTVisionConfig", ], "processing_owlvit": ["OwlViTProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["OwlViTFeatureExtractor"] SCREAMING_SNAKE_CASE__ = ["OwlViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "OwlViTModel", "OwlViTPreTrainedModel", "OwlViTTextModel", "OwlViTVisionModel", "OwlViTForObjectDetection", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
631
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def lowerCAmelCase__ ( a__ ) ->Optional[int]: '''simple docstring''' _UpperCamelCase = 384 _UpperCamelCase = 7 if "tiny" in model_name: _UpperCamelCase = 96 _UpperCamelCase = (2, 2, 6, 2) _UpperCamelCase = (3, 6, 12, 24) elif "small" in model_name: _UpperCamelCase = 96 _UpperCamelCase = (2, 2, 18, 2) _UpperCamelCase = (3, 6, 12, 24) elif "base" in model_name: _UpperCamelCase = 128 _UpperCamelCase = (2, 2, 18, 2) _UpperCamelCase = (4, 8, 16, 32) _UpperCamelCase = 12 _UpperCamelCase = 512 elif "large" in model_name: _UpperCamelCase = 192 _UpperCamelCase = (2, 2, 18, 2) _UpperCamelCase = (6, 12, 24, 48) _UpperCamelCase = 12 _UpperCamelCase = 768 # set label information _UpperCamelCase = 150 _UpperCamelCase = "huggingface/label-files" _UpperCamelCase = "ade20k-id2label.json" _UpperCamelCase = json.load(open(hf_hub_download(a__ , a__ , repo_type="dataset" ) , "r" ) ) _UpperCamelCase = {int(a__ ): v for k, v in idalabel.items()} _UpperCamelCase = {v: k for k, v in idalabel.items()} _UpperCamelCase = SwinConfig( embed_dim=a__ , depths=a__ , num_heads=a__ , window_size=a__ , out_features=["stage1", "stage2", "stage3", "stage4"] , ) _UpperCamelCase = UperNetConfig( backbone_config=a__ , auxiliary_in_channels=a__ , num_labels=a__ , idalabel=a__ , labelaid=a__ , ) return config def lowerCAmelCase__ ( a__ ) ->Dict: '''simple docstring''' _UpperCamelCase = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index', f'backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias', f'backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.weight', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.norm2.bias', f'backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias', f'backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias', f'backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.stages.{i}.downsample.reduction.weight', f'backbone.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.weight', f'backbone.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.stages.{i}.downsample.norm.bias', f'backbone.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append((f'backbone.norm{i}.weight', f'backbone.hidden_states_norms.stage{i+1}.weight') ) rename_keys.append((f'backbone.norm{i}.bias', f'backbone.hidden_states_norms.stage{i+1}.bias') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def lowerCAmelCase__ ( a__ , a__ , a__ ) ->List[Any]: '''simple docstring''' _UpperCamelCase = dct.pop(a__ ) _UpperCamelCase = val def lowerCAmelCase__ ( a__ , a__ ) ->int: '''simple docstring''' _UpperCamelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _UpperCamelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _UpperCamelCase = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight' ) _UpperCamelCase = state_dict.pop(f'backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase = in_proj_weight[:dim, :] _UpperCamelCase = in_proj_bias[: dim] _UpperCamelCase = in_proj_weight[ dim : dim * 2, : ] _UpperCamelCase = in_proj_bias[ dim : dim * 2 ] _UpperCamelCase = in_proj_weight[ -dim :, : ] _UpperCamelCase = in_proj_bias[-dim :] # fmt: on def lowerCAmelCase__ ( a__ ) ->List[str]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = x.shape _UpperCamelCase = x.reshape(a__ , 4 , in_channel // 4 ) _UpperCamelCase = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(a__ , a__ ) return x def lowerCAmelCase__ ( a__ ) ->str: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = x.shape _UpperCamelCase = x.reshape(a__ , in_channel // 4 , 4 ) _UpperCamelCase = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(a__ , a__ ) return x def lowerCAmelCase__ ( a__ ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase = x.shape[0] _UpperCamelCase = x.reshape(4 , in_channel // 4 ) _UpperCamelCase = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(a__ ) return x def lowerCAmelCase__ ( a__ ) ->str: '''simple docstring''' _UpperCamelCase = x.shape[0] _UpperCamelCase = x.reshape(in_channel // 4 , 4 ) _UpperCamelCase = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(a__ ) return x def lowerCAmelCase__ ( a__ , a__ , a__ ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase = { "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } _UpperCamelCase = model_name_to_url[model_name] _UpperCamelCase = torch.hub.load_state_dict_from_url(a__ , map_location="cpu" , file_name=a__ )[ "state_dict" ] for name, param in state_dict.items(): print(a__ , param.shape ) _UpperCamelCase = get_upernet_config(a__ ) _UpperCamelCase = UperNetForSemanticSegmentation(a__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _UpperCamelCase = state_dict.pop(a__ ) if "bn" in key: _UpperCamelCase = key.replace("bn" , "batch_norm" ) _UpperCamelCase = val # rename keys _UpperCamelCase = create_rename_keys(a__ ) for src, dest in rename_keys: rename_key(a__ , a__ , a__ ) read_in_q_k_v(a__ , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: _UpperCamelCase = reverse_correct_unfold_reduction_order(a__ ) if "norm" in key: _UpperCamelCase = reverse_correct_unfold_norm_order(a__ ) model.load_state_dict(a__ ) # verify on image _UpperCamelCase = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" _UpperCamelCase = Image.open(requests.get(a__ , stream=a__ ).raw ).convert("RGB" ) _UpperCamelCase = SegformerImageProcessor() _UpperCamelCase = processor(a__ , return_tensors="pt" ).pixel_values with torch.no_grad(): _UpperCamelCase = model(a__ ) _UpperCamelCase = outputs.logits print(logits.shape ) print("First values of logits:" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": _UpperCamelCase = torch.tensor( [[-7.5958, -7.5958, -7.4302], [-7.5958, -7.5958, -7.4302], [-7.4797, -7.4797, -7.3068]] ) elif model_name == "upernet-swin-small": _UpperCamelCase = torch.tensor( [[-7.1921, -7.1921, -6.9532], [-7.1921, -7.1921, -6.9532], [-7.0908, -7.0908, -6.8534]] ) elif model_name == "upernet-swin-base": _UpperCamelCase = torch.tensor( [[-6.5851, -6.5851, -6.4330], [-6.5851, -6.5851, -6.4330], [-6.4763, -6.4763, -6.3254]] ) elif model_name == "upernet-swin-large": _UpperCamelCase = torch.tensor( [[-7.5297, -7.5297, -7.3802], [-7.5297, -7.5297, -7.3802], [-7.4044, -7.4044, -7.2586]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , a__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(a__ ) print(f'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(a__ ) if push_to_hub: print(f'Pushing model and processor for {model_name} to hub' ) model.push_to_hub(f'openmmlab/{model_name}' ) processor.push_to_hub(f'openmmlab/{model_name}' ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''upernet-swin-tiny''', type=str, choices=[F"upernet-swin-{size}" for size in ['''tiny''', '''small''', '''base''', '''large''']], help='''Name of the Swin + UperNet model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase__ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
701
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __A = MODEL_FOR_MASKED_LM_MAPPING __A = TF_MODEL_FOR_MASKED_LM_MAPPING def __UpperCAmelCase ( self : Union[str, Any]) -> List[Any]: """simple docstring""" super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" _UpperCamelCase = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf") _UpperCamelCase = unmasker("My name is <mask>") self.assertEqual( nested_simplify(lowercase_ , decimals=6) , [ {"sequence": "My name is grouped", "score": 2.1e-0_5, "token": 38015, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1e-0_5, "token": 25506, "token_str": " accuser"}, ] , ) _UpperCamelCase = unmasker("The largest city in France is <mask>") self.assertEqual( nested_simplify(lowercase_ , decimals=6) , [ { "sequence": "The largest city in France is grouped", "score": 2.1e-0_5, "token": 38015, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1e-0_5, "token": 25506, "token_str": " accuser", }, ] , ) _UpperCamelCase = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3) self.assertEqual( nested_simplify(lowercase_ , decimals=6) , [ {"sequence": "My name is Clara", "score": 2e-0_5, "token": 13606, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2e-0_5, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9e-0_5, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def __UpperCAmelCase ( self : Union[str, Any]) -> Any: """simple docstring""" _UpperCamelCase = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt") _UpperCamelCase = unmasker("My name is <mask>") self.assertEqual( nested_simplify(lowercase_ , decimals=6) , [ {"sequence": "My name is Maul", "score": 2.2e-0_5, "token": 35676, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2e-0_5, "token": 16416, "token_str": "ELS"}, ] , ) _UpperCamelCase = unmasker("The largest city in France is <mask>") self.assertEqual( nested_simplify(lowercase_ , decimals=6) , [ { "sequence": "The largest city in France is Maul", "score": 2.2e-0_5, "token": 35676, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2e-0_5, "token": 16416, "token_str": "ELS"}, ] , ) _UpperCamelCase = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3) self.assertEqual( nested_simplify(lowercase_ , decimals=6) , [ {"sequence": "My name is Patrick", "score": 2.1e-0_5, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2e-0_5, "token": 2941, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2e-0_5, "token": 13606, "token_str": " Clara"}, ] , ) _UpperCamelCase = unmasker("My name is <mask> <mask>" , top_k=2) self.assertEqual( nested_simplify(lowercase_ , decimals=6) , [ [ { "score": 2.2e-0_5, "token": 35676, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2e-0_5, "token": 16416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2e-0_5, "token": 35676, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2e-0_5, "token": 16416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def __UpperCAmelCase ( self : Tuple) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt") # convert model to fp16 pipe.model.half() _UpperCamelCase = pipe("Paris is the [MASK] of France.") # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(lowercase_ , lowercase_) @slow @require_torch def __UpperCAmelCase ( self : List[Any]) -> List[Any]: """simple docstring""" _UpperCamelCase = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt") self.run_large_test(lowercase_) @slow @require_tf def __UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" _UpperCamelCase = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf") self.run_large_test(lowercase_) def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : int) -> Any: """simple docstring""" _UpperCamelCase = unmasker("My name is <mask>") self.assertEqual( nested_simplify(lowercase_) , [ {"sequence": "My name is John", "score": 0.0_08, "token": 610, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.0_07, "token": 1573, "token_str": " Chris"}, ] , ) _UpperCamelCase = unmasker("The largest city in France is <mask>") self.assertEqual( nested_simplify(lowercase_) , [ { "sequence": "The largest city in France is Paris", "score": 0.2_51, "token": 2201, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.2_14, "token": 12790, "token_str": " Lyon", }, ] , ) _UpperCamelCase = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3) self.assertEqual( nested_simplify(lowercase_) , [ {"sequence": "My name is Patrick", "score": 0.0_05, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.0_00, "token": 13606, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.0_00, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def __UpperCAmelCase ( self : Union[str, Any]) -> str: """simple docstring""" _UpperCamelCase = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt") _UpperCamelCase = None _UpperCamelCase = None self.run_pipeline_test(lowercase_ , []) @require_tf def __UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" _UpperCamelCase = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf") _UpperCamelCase = None _UpperCamelCase = None self.run_pipeline_test(lowercase_ , []) def __UpperCAmelCase ( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : Optional[int]) -> int: """simple docstring""" if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)") _UpperCamelCase = FillMaskPipeline(model=lowercase_ , tokenizer=lowercase_) _UpperCamelCase = [ f'This is another {tokenizer.mask_token} test', ] return fill_masker, examples def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int]) -> str: """simple docstring""" _UpperCamelCase = fill_masker.tokenizer _UpperCamelCase = fill_masker.model _UpperCamelCase = fill_masker( f'This is a {tokenizer.mask_token}' , ) self.assertEqual( lowercase_ , [ {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, ] , ) _UpperCamelCase = fill_masker([f'This is a {tokenizer.mask_token}']) self.assertEqual( lowercase_ , [ {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, ] , ) _UpperCamelCase = fill_masker([f'This is a {tokenizer.mask_token}', f'Another {tokenizer.mask_token} great test.']) self.assertEqual( lowercase_ , [ [ {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, ], [ {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, ], ] , ) with self.assertRaises(lowercase_): fill_masker([None]) # No mask_token is not supported with self.assertRaises(lowercase_): fill_masker("This is") self.run_test_top_k(lowercase_ , lowercase_) self.run_test_targets(lowercase_ , lowercase_) self.run_test_top_k_targets(lowercase_ , lowercase_) self.fill_mask_with_duplicate_targets_and_top_k(lowercase_ , lowercase_) self.fill_mask_with_multiple_masks(lowercase_ , lowercase_) def __UpperCAmelCase ( self : int , lowercase_ : Dict , lowercase_ : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = tokenizer.get_vocab() _UpperCamelCase = sorted(vocab.keys())[:2] # Pipeline argument _UpperCamelCase = FillMaskPipeline(model=lowercase_ , tokenizer=lowercase_ , targets=lowercase_) _UpperCamelCase = fill_masker(f'This is a {tokenizer.mask_token}') self.assertEqual( lowercase_ , [ {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, ] , ) _UpperCamelCase = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , lowercase_) _UpperCamelCase = [tokenizer.decode([x]) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(lowercase_)) # Call argument _UpperCamelCase = FillMaskPipeline(model=lowercase_ , tokenizer=lowercase_) _UpperCamelCase = fill_masker(f'This is a {tokenizer.mask_token}' , targets=lowercase_) self.assertEqual( lowercase_ , [ {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, ] , ) _UpperCamelCase = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , lowercase_) _UpperCamelCase = [tokenizer.decode([x]) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(lowercase_)) # Score equivalence _UpperCamelCase = fill_masker(f'This is a {tokenizer.mask_token}' , targets=lowercase_) _UpperCamelCase = [top_mask["token_str"] for top_mask in outputs] _UpperCamelCase = [top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowercase_) == set(lowercase_): _UpperCamelCase = fill_masker(f'This is a {tokenizer.mask_token}' , targets=lowercase_) _UpperCamelCase = [top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(lowercase_) , nested_simplify(lowercase_)) # Raises with invalid with self.assertRaises(lowercase_): _UpperCamelCase = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[]) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(lowercase_): _UpperCamelCase = fill_masker(f'This is a {tokenizer.mask_token}' , targets=[""]) with self.assertRaises(lowercase_): _UpperCamelCase = fill_masker(f'This is a {tokenizer.mask_token}' , targets="") def __UpperCAmelCase ( self : Union[str, Any] , lowercase_ : str , lowercase_ : List[str]) -> Any: """simple docstring""" _UpperCamelCase = FillMaskPipeline(model=lowercase_ , tokenizer=lowercase_ , top_k=2) _UpperCamelCase = fill_masker(f'This is a {tokenizer.mask_token}') self.assertEqual( lowercase_ , [ {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, ] , ) _UpperCamelCase = FillMaskPipeline(model=lowercase_ , tokenizer=lowercase_) _UpperCamelCase = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2) self.assertEqual( lowercase_ , [ {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, ] , ) self.assertEqual(nested_simplify(lowercase_) , nested_simplify(lowercase_)) def __UpperCAmelCase ( self : Any , lowercase_ : Union[str, Any] , lowercase_ : Tuple) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = tokenizer.get_vocab() _UpperCamelCase = FillMaskPipeline(model=lowercase_ , tokenizer=lowercase_) # top_k=2, ntargets=3 _UpperCamelCase = sorted(vocab.keys())[:3] _UpperCamelCase = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=2 , targets=lowercase_) # If we use the most probably targets, and filter differently, we should still # have the same results _UpperCamelCase = [el["token_str"] for el in sorted(lowercase_ , key=lambda lowercase_: x["score"] , reverse=lowercase_)] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(lowercase_).issubset(lowercase_): _UpperCamelCase = fill_masker(f'This is a {tokenizer.mask_token}' , top_k=3 , targets=lowercase_) # They should yield exactly the same result self.assertEqual(nested_simplify(lowercase_) , nested_simplify(lowercase_)) def __UpperCAmelCase ( self : int , lowercase_ : Optional[int] , lowercase_ : List[str]) -> Tuple: """simple docstring""" _UpperCamelCase = FillMaskPipeline(model=lowercase_ , tokenizer=lowercase_) _UpperCamelCase = tokenizer.get_vocab() # String duplicates + id duplicates _UpperCamelCase = sorted(vocab.keys())[:3] _UpperCamelCase = [targets[0], targets[1], targets[0], targets[2], targets[1]] _UpperCamelCase = fill_masker(f'My name is {tokenizer.mask_token}' , targets=lowercase_ , top_k=10) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(lowercase_) , 3) def __UpperCAmelCase ( self : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Any) -> Dict: """simple docstring""" _UpperCamelCase = FillMaskPipeline(model=lowercase_ , tokenizer=lowercase_) _UpperCamelCase = fill_masker( f'This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}' , top_k=2) self.assertEqual( lowercase_ , [ [ {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, ], [ {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, ], [ {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, {"sequence": ANY(lowercase_), "score": ANY(lowercase_), "token": ANY(lowercase_), "token_str": ANY(lowercase_)}, ], ] , )
82
0
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process _snake_case = logging.getLogger(__name__) def _A ( __magic_name__ , __magic_name__ ): return (preds == labels).mean() @dataclass class lowerCAmelCase : __lowerCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class lowerCAmelCase : __lowerCamelCase = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) __lowerCamelCase = field(metadata={'help': 'Should contain the data files for the task.'} ) __lowerCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __lowerCamelCase = field( default=lowercase_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def _A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , __magic_name__ ) # Set seed set_seed(training_args.seed ) try: lowercase__ = processors[data_args.task_name]() lowercase__ = processor.get_labels() lowercase__ = len(__magic_name__ ) except KeyError: raise ValueError("Task not found: %s" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__magic_name__ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowercase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase__ = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__magic_name__ , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__magic_name__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=__magic_name__ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(__magic_name__ ) -> Dict: lowercase__ = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(__magic_name__ , p.label_ids )} # Data collator lowercase__ = DataCollatorWithPadding(__magic_name__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ = Trainer( model=__magic_name__ , args=__magic_name__ , train_dataset=__magic_name__ , eval_dataset=__magic_name__ , compute_metrics=__magic_name__ , data_collator=__magic_name__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) lowercase__ = trainer.evaluate() lowercase__ = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_master(): with open(__magic_name__ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , __magic_name__ , __magic_name__ ) writer.write("%s = %s\n" % (key, value) ) results.update(__magic_name__ ) return results def _A ( __magic_name__ ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
655
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCAmelCase ( lowercase_ ): def UpperCAmelCase ( self :Optional[int] ): '''simple docstring''' lowercase__ = SMALL_MODEL_IDENTIFIER lowercase__ = "pt" lowercase__ = "tf" def UpperCAmelCase ( self :int , _lowercase :Optional[int] ): '''simple docstring''' lowercase__ = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_lowercase ) def UpperCAmelCase ( self :Tuple , _lowercase :int ): '''simple docstring''' lowercase__ = TFAutoModel.from_pretrained(self.test_model , from_pt=_lowercase ) model_tf.save_pretrained(_lowercase ) def UpperCAmelCase ( self :List[Any] ): '''simple docstring''' lowercase__ = "mock_framework" # Framework provided - return whatever the user provides lowercase__ = FeaturesManager.determine_framework(self.test_model , _lowercase ) self.assertEqual(_lowercase , _lowercase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowercase ) lowercase__ = FeaturesManager.determine_framework(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowercase ) lowercase__ = FeaturesManager.determine_framework(_lowercase , _lowercase ) self.assertEqual(_lowercase , _lowercase ) def UpperCAmelCase ( self :List[str] ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_lowercase ) lowercase__ = FeaturesManager.determine_framework(_lowercase ) self.assertEqual(_lowercase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_lowercase ) lowercase__ = FeaturesManager.determine_framework(_lowercase ) self.assertEqual(_lowercase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_lowercase ): lowercase__ = FeaturesManager.determine_framework(_lowercase ) def UpperCAmelCase ( self :Any ): '''simple docstring''' lowercase__ = MagicMock(return_value=_lowercase ) with patch("transformers.onnx.features.is_tf_available" , _lowercase ): lowercase__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowercase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow lowercase__ = MagicMock(return_value=_lowercase ) with patch("transformers.onnx.features.is_torch_available" , _lowercase ): lowercase__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowercase , self.framework_tf ) # Both in environment -> use PyTorch lowercase__ = MagicMock(return_value=_lowercase ) lowercase__ = MagicMock(return_value=_lowercase ) with patch("transformers.onnx.features.is_tf_available" , _lowercase ), patch( "transformers.onnx.features.is_torch_available" , _lowercase ): lowercase__ = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_lowercase , self.framework_pt ) # Both not in environment -> raise error lowercase__ = MagicMock(return_value=_lowercase ) lowercase__ = MagicMock(return_value=_lowercase ) with patch("transformers.onnx.features.is_tf_available" , _lowercase ), patch( "transformers.onnx.features.is_torch_available" , _lowercase ): with self.assertRaises(_lowercase ): lowercase__ = FeaturesManager.determine_framework(self.test_model )
655
1
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _UpperCAmelCase ( UpperCamelCase_ ): UpperCamelCase = ['''image_processor''', '''tokenizer'''] UpperCamelCase = '''FlavaImageProcessor''' UpperCamelCase = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self :Optional[int] , __UpperCamelCase :Optional[Any]=None , __UpperCamelCase :Any=None , **__UpperCamelCase :Any ): A = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCamelCase , ) A = kwargs.pop("feature_extractor" ) A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCamelCase , __UpperCamelCase ) A = self.image_processor def __call__( self :Union[str, Any] , __UpperCamelCase :List[Any] = None , __UpperCamelCase :List[Any] = None , __UpperCamelCase :int = True , __UpperCamelCase :List[Any] = False , __UpperCamelCase :Union[str, Any] = False , __UpperCamelCase :List[Any] = None , __UpperCamelCase :Tuple = 0 , __UpperCamelCase :int = None , __UpperCamelCase :Optional[Any] = None , __UpperCamelCase :Optional[int] = None , __UpperCamelCase :Union[str, Any] = None , __UpperCamelCase :int = None , __UpperCamelCase :List[Any] = False , __UpperCamelCase :Dict = False , __UpperCamelCase :int = False , __UpperCamelCase :List[str] = False , __UpperCamelCase :Optional[Any] = True , __UpperCamelCase :Union[str, Any] = None , **__UpperCamelCase :str , ): if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: A = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) if images is not None: A = self.image_processor( __UpperCamelCase , return_image_mask=__UpperCamelCase , return_codebook_pixels=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) if text is not None and images is not None: encoding.update(__UpperCamelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCamelCase ) , tensor_type=__UpperCamelCase ) def lowerCamelCase ( self :Union[str, Any] , *__UpperCamelCase :int , **__UpperCamelCase :Dict ): return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def lowerCamelCase ( self :int , *__UpperCamelCase :Tuple , **__UpperCamelCase :List[str] ): return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def lowerCamelCase ( self :Union[str, Any] ): A = self.tokenizer.model_input_names A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase ( self :Tuple ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCamelCase , ) return self.image_processor_class @property def lowerCamelCase ( self :int ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCamelCase , ) return self.image_processor
719
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _snake_case : int = '\\n@misc{wu2016googles,\n title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n' _snake_case : Union[str, Any] = '\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe \'GLEU score\'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore\'s range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n' _snake_case : Dict = '\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n \'google_bleu\': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results["google_bleu"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results["google_bleu"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\',\n ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\']\n >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\',\n ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\',\n ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\']\n >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\',\n ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\',\n ... \'heed\', \'the\', \'cat\', \'commands\']\n >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\',\n ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\',\n ... \'of\', \'the\', \'cat\']\n\n >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\',\n ... \'interested\', \'in\', \'world\', \'history\']\n >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\',\n ... \'because\', \'he\', \'read\', \'the\', \'book\']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric("google_bleu")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results["google_bleu"], 2))\n 0.4\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): def lowerCamelCase ( self :int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def lowerCamelCase ( self :str , __UpperCamelCase :List[List[List[str]]] , __UpperCamelCase :List[List[str]] , __UpperCamelCase :int = 1 , __UpperCamelCase :int = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__UpperCamelCase , hypotheses=__UpperCamelCase , min_len=__UpperCamelCase , max_len=__UpperCamelCase ) }
524
0
from math import pi def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
73
import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = XCLIPTextConfig() # derive patch size from model name __SCREAMING_SNAKE_CASE : Tuple = model_name.find('''patch''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = int(model_name[start_idx + len('''patch''' ) : start_idx + len('''patch''' ) + 2] ) __SCREAMING_SNAKE_CASE : Tuple = XCLIPVisionConfig(patch_size=snake_case , num_frames=snake_case ) if "large" in model_name: __SCREAMING_SNAKE_CASE : Optional[Any] = 768 __SCREAMING_SNAKE_CASE : Optional[int] = 3_072 __SCREAMING_SNAKE_CASE : Optional[Any] = 12 __SCREAMING_SNAKE_CASE : Optional[Any] = 1_024 __SCREAMING_SNAKE_CASE : int = 4_096 __SCREAMING_SNAKE_CASE : Tuple = 16 __SCREAMING_SNAKE_CASE : Optional[int] = 24 __SCREAMING_SNAKE_CASE : Optional[int] = 768 __SCREAMING_SNAKE_CASE : Optional[int] = 3_072 if model_name == "xclip-large-patch14-16-frames": __SCREAMING_SNAKE_CASE : Any = 336 __SCREAMING_SNAKE_CASE : Any = XCLIPConfig.from_text_vision_configs(snake_case , snake_case ) if "large" in model_name: __SCREAMING_SNAKE_CASE : Any = 768 return config def a__ ( snake_case ): """simple docstring""" # text encoder if name == "token_embedding.weight": __SCREAMING_SNAKE_CASE : List[str] = name.replace('''token_embedding.weight''' , '''text_model.embeddings.token_embedding.weight''' ) if name == "positional_embedding": __SCREAMING_SNAKE_CASE : List[str] = name.replace('''positional_embedding''' , '''text_model.embeddings.position_embedding.weight''' ) if "ln_1" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''ln_1''' , '''layer_norm1''' ) if "ln_2" in name: __SCREAMING_SNAKE_CASE : str = name.replace('''ln_2''' , '''layer_norm2''' ) if "c_fc" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace('''c_fc''' , '''fc1''' ) if "c_proj" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''c_proj''' , '''fc2''' ) if name.startswith('''transformer.resblocks''' ): __SCREAMING_SNAKE_CASE : Any = name.replace('''transformer.resblocks''' , '''text_model.encoder.layers''' ) if "attn.out_proj" in name and "message" not in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''attn.out_proj''' , '''self_attn.out_proj''' ) if "ln_final" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace('''ln_final''' , '''text_model.final_layer_norm''' ) # visual encoder if name == "visual.class_embedding": __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''visual.class_embedding''' , '''vision_model.embeddings.class_embedding''' ) if name == "visual.positional_embedding": __SCREAMING_SNAKE_CASE : Tuple = name.replace('''visual.positional_embedding''' , '''vision_model.embeddings.position_embedding.weight''' ) if name.startswith('''visual.transformer.resblocks''' ): __SCREAMING_SNAKE_CASE : List[Any] = name.replace('''visual.transformer.resblocks''' , '''vision_model.encoder.layers''' ) if "visual.conv1" in name: __SCREAMING_SNAKE_CASE : Any = name.replace('''visual.conv1''' , '''vision_model.embeddings.patch_embedding''' ) if "visual.ln_pre" in name: __SCREAMING_SNAKE_CASE : List[str] = name.replace('''visual.ln_pre''' , '''vision_model.pre_layernorm''' ) if "visual.ln_post" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''visual.ln_post''' , '''vision_model.post_layernorm''' ) if "visual.proj" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''visual.proj''' , '''visual_projection.weight''' ) if "text_projection" in name: __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''text_projection''' , '''text_projection.weight''' ) # things on top if "prompts_visual_proj" in name: __SCREAMING_SNAKE_CASE : str = name.replace('''prompts_visual_proj''' , '''prompts_visual_projection''' ) if "prompts_visual_ln" in name: __SCREAMING_SNAKE_CASE : Optional[int] = name.replace('''prompts_visual_ln''' , '''prompts_visual_layernorm''' ) # mit if name == "mit.positional_embedding": __SCREAMING_SNAKE_CASE : Any = name.replace('''positional''' , '''position''' ) if name.startswith('''mit.resblocks''' ): __SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace('''mit.resblocks''' , '''mit.encoder.layers''' ) # prompts generator if name.startswith('''prompts_generator.norm''' ): __SCREAMING_SNAKE_CASE : Tuple = name.replace('''prompts_generator.norm''' , '''prompts_generator.layernorm''' ) return name def a__ ( snake_case , snake_case ): """simple docstring""" for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE : Tuple = orig_state_dict.pop(snake_case ) if "attn.in_proj" in key: __SCREAMING_SNAKE_CASE : Optional[Any] = key.split('''.''' ) if key.startswith('''visual''' ): __SCREAMING_SNAKE_CASE : List[Any] = key_split[3] __SCREAMING_SNAKE_CASE : Any = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __SCREAMING_SNAKE_CASE : Union[str, Any] = val[ :dim, : ] __SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : Tuple = val[ -dim:, : ] else: __SCREAMING_SNAKE_CASE : Optional[Any] = val[ :dim ] __SCREAMING_SNAKE_CASE : Tuple = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Tuple = val[ -dim: ] else: if "weight" in key: __SCREAMING_SNAKE_CASE : Tuple = val[ :dim, : ] __SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : str = val[ -dim:, : ] else: __SCREAMING_SNAKE_CASE : Dict = val[:dim] __SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : Tuple = val[-dim:] elif key.startswith('''mit''' ): __SCREAMING_SNAKE_CASE : List[str] = key_split[2] __SCREAMING_SNAKE_CASE : Union[str, Any] = config.vision_config.mit_hidden_size if "weight" in key: __SCREAMING_SNAKE_CASE : str = val[:dim, :] __SCREAMING_SNAKE_CASE : Tuple = val[dim : dim * 2, :] __SCREAMING_SNAKE_CASE : Optional[int] = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : Any = val[:dim] __SCREAMING_SNAKE_CASE : Any = val[dim : dim * 2] __SCREAMING_SNAKE_CASE : Optional[Any] = val[-dim:] else: __SCREAMING_SNAKE_CASE : Optional[Any] = key_split[2] __SCREAMING_SNAKE_CASE : Any = config.text_config.hidden_size if "weight" in key: __SCREAMING_SNAKE_CASE : Tuple = val[:dim, :] __SCREAMING_SNAKE_CASE : int = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : Dict = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : Tuple = val[:dim] __SCREAMING_SNAKE_CASE : str = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : int = val[-dim:] else: __SCREAMING_SNAKE_CASE : int = rename_key(snake_case ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __SCREAMING_SNAKE_CASE : int = val.T __SCREAMING_SNAKE_CASE : Union[str, Any] = val return orig_state_dict def a__ ( snake_case ): """simple docstring""" if num_frames == 8: __SCREAMING_SNAKE_CASE : List[Any] = '''eating_spaghetti_8_frames.npy''' elif num_frames == 16: __SCREAMING_SNAKE_CASE : Tuple = '''eating_spaghetti.npy''' elif num_frames == 32: __SCREAMING_SNAKE_CASE : Dict = '''eating_spaghetti_32_frames.npy''' __SCREAMING_SNAKE_CASE : List[str] = hf_hub_download( repo_id='''hf-internal-testing/spaghetti-video''' , filename=snake_case , repo_type='''dataset''' , ) __SCREAMING_SNAKE_CASE : int = np.load(snake_case ) return list(snake_case ) def a__ ( snake_case , snake_case=None , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = { # fully supervised kinetics-400 checkpoints '''xclip-base-patch32''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth''', '''xclip-base-patch32-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth''' ), '''xclip-base-patch16''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth''', '''xclip-base-patch16-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth''' ), '''xclip-large-patch14''': '''https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb''', '''xclip-large-patch14-16-frames''': '''https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f''', # fully supervised kinetics-600 checkpoints '''xclip-base-patch16-kinetics-600''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth''' ), '''xclip-base-patch16-kinetics-600-16-frames''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth''' ), '''xclip-large-patch14-kinetics-600''': '''https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be''', # few shot '''xclip-base-patch16-hmdb-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth''' ), '''xclip-base-patch16-hmdb-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth''' ), '''xclip-base-patch16-hmdb-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth''' ), '''xclip-base-patch16-hmdb-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth''' ), '''xclip-base-patch16-ucf-2-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth''' ), '''xclip-base-patch16-ucf-4-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth''' ), '''xclip-base-patch16-ucf-8-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth''' ), '''xclip-base-patch16-ucf-16-shot''': ( '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth''' ), # zero shot '''xclip-base-patch16-zero-shot''': '''https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth''', } __SCREAMING_SNAKE_CASE : Optional[Any] = model_to_url[model_name] __SCREAMING_SNAKE_CASE : Any = 8 if "16-frames" in model_name: __SCREAMING_SNAKE_CASE : Optional[int] = 16 elif "shot" in model_name: __SCREAMING_SNAKE_CASE : Optional[Any] = 32 __SCREAMING_SNAKE_CASE : List[str] = get_xclip_config(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Tuple = XCLIPModel(snake_case ) model.eval() if "drive" in checkpoint_url: __SCREAMING_SNAKE_CASE : Union[str, Any] = '''pytorch_model.bin''' gdown.cached_download(snake_case , snake_case , quiet=snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load(snake_case , map_location='''cpu''' )['''model'''] else: __SCREAMING_SNAKE_CASE : str = torch.hub.load_state_dict_from_url(snake_case )['''model'''] __SCREAMING_SNAKE_CASE : List[Any] = convert_state_dict(snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = XCLIPModel(snake_case ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = model.load_state_dict(snake_case , strict=snake_case ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __SCREAMING_SNAKE_CASE : Any = 336 if model_name == '''xclip-large-patch14-16-frames''' else 224 __SCREAMING_SNAKE_CASE : str = VideoMAEImageProcessor(size=snake_case ) __SCREAMING_SNAKE_CASE : int = CLIPTokenizer.from_pretrained('''openai/clip-vit-base-patch32''' ) __SCREAMING_SNAKE_CASE : Optional[int] = CLIPTokenizerFast.from_pretrained('''openai/clip-vit-base-patch32''' ) __SCREAMING_SNAKE_CASE : List[Any] = XCLIPProcessor(image_processor=snake_case , tokenizer=snake_case ) __SCREAMING_SNAKE_CASE : Dict = prepare_video(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = processor( text=['''playing sports''', '''eating spaghetti''', '''go shopping'''] , videos=snake_case , return_tensors='''pt''' , padding=snake_case ) print('''Shape of pixel values:''' , inputs.pixel_values.shape ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = model(**snake_case ) # Verify outputs __SCREAMING_SNAKE_CASE : Dict = outputs.logits_per_video __SCREAMING_SNAKE_CASE : Tuple = logits_per_video.softmax(dim=1 ) print('''Probs:''' , snake_case ) # kinetics-400 if model_name == "xclip-base-patch32": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[7.0999E-04, 9.9883E-01, 4.5580E-04]] ) elif model_name == "xclip-base-patch16": __SCREAMING_SNAKE_CASE : Dict = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[7.6937E-04, 9.9728E-01, 1.9473E-03]] ) elif model_name == "xclip-large-patch14": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[3.3877E-04, 9.9937E-01, 2.8888E-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([[3.8554E-04, 9.9929E-01, 3.2754E-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": __SCREAMING_SNAKE_CASE : List[str] = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __SCREAMING_SNAKE_CASE : str = torch.tensor([[7.1890E-06, 9.9994E-01, 5.6559E-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": __SCREAMING_SNAKE_CASE : int = torch.tensor([[1.0320E-05, 9.9993E-01, 6.2435E-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[4.1377E-06, 9.9990E-01, 9.8386E-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": __SCREAMING_SNAKE_CASE : Dict = torch.tensor([[4.1347E-05, 9.9962E-01, 3.3411E-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[8.5857E-05, 9.9928E-01, 6.3291E-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": __SCREAMING_SNAKE_CASE : Optional[int] = torch.tensor([[8.5857E-05, 9.9928E-01, 6.3291E-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": __SCREAMING_SNAKE_CASE : Tuple = torch.tensor([[9.8219E-04, 9.9593E-01, 3.0863E-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([[3.5082E-04, 9.9785E-01, 1.7966E-03]] ) else: raise ValueError(F'''Model name {model_name} not supported''' ) assert torch.allclose(snake_case , snake_case , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case ) if push_to_hub: print('''Pushing model, processor and slow tokenizer files to the hub...''' ) model.push_to_hub(snake_case , organization='''nielsr''' ) processor.push_to_hub(snake_case , organization='''nielsr''' ) slow_tokenizer.push_to_hub(snake_case , organization='''nielsr''' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""xclip-base-patch32""", type=str, help="""Name of the model.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowercase_ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
74
0
from collections import defaultdict from math import gcd def __lowercase ( lowerCamelCase_ : int = 1500000 ): SCREAMING_SNAKE_CASE__ = defaultdict(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , lowerCamelCase_ , 2 ): if gcd(lowerCamelCase_ , lowerCamelCase_ ) > 1: continue SCREAMING_SNAKE_CASE__ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(lowerCamelCase_ , limit + 1 , lowerCamelCase_ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f"""{solution() = }""")
714
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class lowerCamelCase_ ( lowercase ): """simple docstring""" def __init__( self , UpperCAmelCase__ = "▁" , UpperCAmelCase__ = True , UpperCAmelCase__ = "<unk>" , UpperCAmelCase__ = "</s>" , UpperCAmelCase__ = "<pad>" , ): SCREAMING_SNAKE_CASE__ = { "pad": {"id": 0, "token": pad_token}, "eos": {"id": 1, "token": eos_token}, "unk": {"id": 2, "token": unk_token}, } SCREAMING_SNAKE_CASE__ = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): SCREAMING_SNAKE_CASE__ = token_dict["token"] SCREAMING_SNAKE_CASE__ = Tokenizer(Unigram() ) SCREAMING_SNAKE_CASE__ = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(" {2,}" ) , " " ), normalizers.Lowercase(), ] ) SCREAMING_SNAKE_CASE__ = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ ), pre_tokenizers.Digits(individual_digits=UpperCAmelCase__ ), pre_tokenizers.Punctuation(), ] ) SCREAMING_SNAKE_CASE__ = decoders.Metaspace(replacement=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE__ = TemplateProcessing( single=f'''$A {self.special_tokens["eos"]["token"]}''' , special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])] , ) SCREAMING_SNAKE_CASE__ = { "model": "SentencePieceUnigram", "replacement": replacement, "add_prefix_space": add_prefix_space, } super().__init__(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ = 8000 , UpperCAmelCase__ = True , ): SCREAMING_SNAKE_CASE__ = trainers.UnigramTrainer( vocab_size=UpperCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=UpperCAmelCase__ , ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE__ = [files] self._tokenizer.train(UpperCAmelCase__ , trainer=UpperCAmelCase__ ) self.add_unk_id() def lowerCAmelCase__ ( self , UpperCAmelCase__ , UpperCAmelCase__ = 8000 , UpperCAmelCase__ = True , ): SCREAMING_SNAKE_CASE__ = trainers.UnigramTrainer( vocab_size=UpperCAmelCase__ , special_tokens=self.special_tokens_list , show_progress=UpperCAmelCase__ , ) self._tokenizer.train_from_iterator(UpperCAmelCase__ , trainer=UpperCAmelCase__ ) self.add_unk_id() def lowerCAmelCase__ ( self ): SCREAMING_SNAKE_CASE__ = json.loads(self._tokenizer.to_str() ) SCREAMING_SNAKE_CASE__ = self.special_tokens["unk"]["id"] SCREAMING_SNAKE_CASE__ = Tokenizer.from_str(json.dumps(UpperCAmelCase__ ) )
112
0
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class UpperCAmelCase__ : def __init__( self : int,__A : Collection[float] | None = None ): if components is None: _lowerCamelCase : List[Any] = [] _lowerCamelCase : Optional[Any] = list(SCREAMING_SNAKE_CASE__ ) def __len__( self : Tuple ): return len(self.__components ) def __str__( self : List[Any] ): return "(" + ",".join(map(SCREAMING_SNAKE_CASE__,self.__components ) ) + ")" def __add__( self : Tuple,__A : Vector ): _lowerCamelCase : Any = len(self ) if size == len(SCREAMING_SNAKE_CASE__ ): _lowerCamelCase : List[Any] = [self.__components[i] + other.component(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) else: raise Exception("must have the same size" ) def __sub__( self : str,__A : Vector ): _lowerCamelCase : int = len(self ) if size == len(SCREAMING_SNAKE_CASE__ ): _lowerCamelCase : Optional[Any] = [self.__components[i] - other.component(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ )] return Vector(SCREAMING_SNAKE_CASE__ ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self : List[str],__A : float ): ... @overload def __mul__( self : Dict,__A : Vector ): ... def __mul__( self : int,__A : float | Vector ): if isinstance(SCREAMING_SNAKE_CASE__,(float, int) ): _lowerCamelCase : str = [c * other for c in self.__components] return Vector(SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ ) and len(self ) == len(SCREAMING_SNAKE_CASE__ ): _lowerCamelCase : Tuple = len(self ) _lowerCamelCase : List[Any] = [self.__components[i] * other.component(SCREAMING_SNAKE_CASE__ ) for i in range(SCREAMING_SNAKE_CASE__ )] return sum(SCREAMING_SNAKE_CASE__ ) else: # error case raise Exception("invalid operand!" ) def lowerCamelCase_ ( self : Optional[int] ): return Vector(self.__components ) def lowerCamelCase_ ( self : Union[str, Any],__A : int ): if isinstance(SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def lowerCamelCase_ ( self : str,__A : int,__A : float ): assert -len(self.__components ) <= pos < len(self.__components ) _lowerCamelCase : Optional[int] = value def lowerCamelCase_ ( self : Tuple ): if len(self.__components ) == 0: raise Exception("Vector is empty" ) _lowerCamelCase : Optional[int] = [c**2 for c in self.__components] return math.sqrt(sum(SCREAMING_SNAKE_CASE__ ) ) def lowerCamelCase_ ( self : Dict,__A : Vector,__A : bool = False ): _lowerCamelCase : List[str] = self * other _lowerCamelCase : List[Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def A_ ( _lowerCAmelCase : int ): """simple docstring""" assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) return Vector([0] * dimension ) def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (isinstance(lowerCAmelCase_ , lowerCAmelCase_ )) _lowerCamelCase : int = [0] * dimension _lowerCamelCase : List[Any] = 1 return Vector(lowerCAmelCase_ ) def A_ ( _lowerCAmelCase : float , _lowerCAmelCase : Vector , _lowerCAmelCase : Vector ): """simple docstring""" assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (isinstance(lowerCAmelCase_ , (int, float) )) ) return x * scalar + y def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" random.seed(lowerCAmelCase_ ) _lowerCamelCase : Any = [random.randint(lowerCAmelCase_ , lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ )] return Vector(lowerCAmelCase_ ) class UpperCAmelCase__ : def __init__( self : Tuple,__A : list[list[float]],__A : int,__A : int ): _lowerCamelCase : str = matrix _lowerCamelCase : int = w _lowerCamelCase : Optional[Any] = h def __str__( self : List[str] ): _lowerCamelCase : int = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Optional[Any],__A : Matrix ): if self.__width == other.width() and self.__height == other.height(): _lowerCamelCase : str = [] for i in range(self.__height ): _lowerCamelCase : Optional[int] = [ self.__matrix[i][j] + other.component(SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ ) for j in range(self.__width ) ] matrix.append(SCREAMING_SNAKE_CASE__ ) return Matrix(SCREAMING_SNAKE_CASE__,self.__width,self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self : Optional[int],__A : Matrix ): if self.__width == other.width() and self.__height == other.height(): _lowerCamelCase : str = [] for i in range(self.__height ): _lowerCamelCase : List[str] = [ self.__matrix[i][j] - other.component(SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ ) for j in range(self.__width ) ] matrix.append(SCREAMING_SNAKE_CASE__ ) return Matrix(SCREAMING_SNAKE_CASE__,self.__width,self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self : Optional[int],__A : float ): ... @overload def __mul__( self : Tuple,__A : Vector ): ... def __mul__( self : List[Any],__A : float | Vector ): if isinstance(SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ ): # matrix-vector if len(SCREAMING_SNAKE_CASE__ ) == self.__width: _lowerCamelCase : Dict = zero_vector(self.__height ) for i in range(self.__height ): _lowerCamelCase : List[str] = [ self.__matrix[i][j] * other.component(SCREAMING_SNAKE_CASE__ ) for j in range(self.__width ) ] ans.change_component(SCREAMING_SNAKE_CASE__,sum(SCREAMING_SNAKE_CASE__ ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(SCREAMING_SNAKE_CASE__,(int, float) ): # matrix-scalar _lowerCamelCase : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(SCREAMING_SNAKE_CASE__,self.__width,self.__height ) return None def lowerCamelCase_ ( self : Dict ): return self.__height def lowerCamelCase_ ( self : Dict ): return self.__width def lowerCamelCase_ ( self : int,__A : int,__A : int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def lowerCamelCase_ ( self : Optional[int],__A : int,__A : int,__A : float ): if 0 <= x < self.__height and 0 <= y < self.__width: _lowerCamelCase : Optional[Any] = value else: raise Exception("change_component: indices out of bounds" ) def lowerCamelCase_ ( self : Union[str, Any],__A : int,__A : int ): if self.__height != self.__width: raise Exception("Matrix is not square" ) _lowerCamelCase : List[str] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _lowerCamelCase : str = minor[i][:y] + minor[i][y + 1 :] return Matrix(SCREAMING_SNAKE_CASE__,self.__width - 1,self.__height - 1 ).determinant() def lowerCamelCase_ ( self : List[Any],__A : int,__A : int ): if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ ) else: raise Exception("Indices out of bounds" ) def lowerCamelCase_ ( self : Any ): if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: _lowerCamelCase : int = [ self.__matrix[0][y] * self.cofactor(0,SCREAMING_SNAKE_CASE__ ) for y in range(self.__width ) ] return sum(SCREAMING_SNAKE_CASE__ ) def A_ ( _lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : int = [[0] * n for _ in range(lowerCAmelCase_ )] return Matrix(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def A_ ( _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int ): """simple docstring""" random.seed(lowerCAmelCase_ ) _lowerCamelCase : Tuple = [ [random.randint(lowerCAmelCase_ , lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ )] for _ in range(lowerCAmelCase_ ) ] return Matrix(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
44
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process UpperCamelCase = logging.getLogger(__name__) @dataclass class __lowerCamelCase : """simple docstring""" snake_case__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case__ = field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case__ = field(default=UpperCamelCase__ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __lowerCamelCase : """simple docstring""" snake_case__ = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) snake_case__ = field( default=1_2_8 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ = field( default=UpperCamelCase__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _A ( ): """simple docstring""" lowerCAmelCase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' " --overwrite_output_dir to overcome." ) lowerCAmelCase__ = import_module("tasks" ) try: lowerCAmelCase__ = getattr(lowerCAmelCase_ , model_args.task_type ) lowerCAmelCase__ = token_classification_task_clazz() except AttributeError: raise ValueError( F'Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' F'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , lowerCAmelCase_ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowerCAmelCase__ = token_classification_task.get_labels(data_args.labels ) lowerCAmelCase__ = dict(enumerate(lowerCAmelCase_ ) ) lowerCAmelCase__ = len(lowerCAmelCase_ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCAmelCase_ , idalabel=lowerCAmelCase_ , labelaid={label: i for i, label in enumerate(lowerCAmelCase_ )} , cache_dir=model_args.cache_dir , ) lowerCAmelCase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowerCAmelCase__ = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=lowerCAmelCase_ , cache_dir=model_args.cache_dir , ) # Get datasets lowerCAmelCase__ = ( TokenClassificationDataset( token_classification_task=lowerCAmelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , labels=lowerCAmelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCAmelCase__ = ( TokenClassificationDataset( token_classification_task=lowerCAmelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , labels=lowerCAmelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : np.ndarray ) -> Tuple[List[int], List[int]]: lowerCAmelCase__ = np.argmax(lowerCAmelCase_ , axis=2 ) lowerCAmelCase__ , lowerCAmelCase__ = preds.shape lowerCAmelCase__ = [[] for _ in range(lowerCAmelCase_ )] lowerCAmelCase__ = [[] for _ in range(lowerCAmelCase_ )] for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(lowerCAmelCase_ : EvalPrediction ) -> Dict: lowerCAmelCase__ , lowerCAmelCase__ = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(lowerCAmelCase_ , lowerCAmelCase_ ), "precision": precision_score(lowerCAmelCase_ , lowerCAmelCase_ ), "recall": recall_score(lowerCAmelCase_ , lowerCAmelCase_ ), "f1": fa_score(lowerCAmelCase_ , lowerCAmelCase_ ), } # Data collator lowerCAmelCase__ = DataCollatorWithPadding(lowerCAmelCase_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCAmelCase__ = Trainer( model=lowerCAmelCase_ , args=lowerCAmelCase_ , train_dataset=lowerCAmelCase_ , eval_dataset=lowerCAmelCase_ , compute_metrics=lowerCAmelCase_ , data_collator=lowerCAmelCase_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase__ = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCAmelCase__ = trainer.evaluate() lowerCAmelCase__ = os.path.join(training_args.output_dir , "eval_results.txt" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(" %s = %s" , lowerCAmelCase_ , lowerCAmelCase_ ) writer.write("%s = %s\n" % (key, value) ) results.update(lowerCAmelCase_ ) # Predict if training_args.do_predict: lowerCAmelCase__ = TokenClassificationDataset( token_classification_task=lowerCAmelCase_ , data_dir=data_args.data_dir , tokenizer=lowerCAmelCase_ , labels=lowerCAmelCase_ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = trainer.predict(lowerCAmelCase_ ) lowerCAmelCase__ , lowerCAmelCase__ = align_predictions(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase__ = os.path.join(training_args.output_dir , "test_results.txt" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , "w" ) as writer: for key, value in metrics.items(): logger.info(" %s = %s" , lowerCAmelCase_ , lowerCAmelCase_ ) writer.write("%s = %s\n" % (key, value) ) # Save predictions lowerCAmelCase__ = os.path.join(training_args.output_dir , "test_predictions.txt" ) if trainer.is_world_process_zero(): with open(lowerCAmelCase_ , "w" ) as writer: with open(os.path.join(data_args.data_dir , "test.txt" ) , "r" ) as f: token_classification_task.write_predictions_to_file(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) return results def _A ( lowerCAmelCase_ : Tuple ): """simple docstring""" main() if __name__ == "__main__": main()
61
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ : Dict = logging.get_logger(__name__) __magic_name__ : int = { 'google/canine-s': 'https://huggingface.co/google/canine-s/resolve/main/config.json', # See all CANINE models at https://huggingface.co/models?filter=canine } class lowerCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase_ = """canine""" def __init__( self , __UpperCamelCase=768 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=3072 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=16384 , __UpperCamelCase=16 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-12 , __UpperCamelCase=0 , __UpperCamelCase=0xe_0_0_0 , __UpperCamelCase=0xe_0_0_1 , __UpperCamelCase=4 , __UpperCamelCase=4 , __UpperCamelCase=8 , __UpperCamelCase=16384 , __UpperCamelCase=128 , **__UpperCamelCase , ): super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) A_ = max_position_embeddings A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = type_vocab_size A_ = layer_norm_eps # Character config: A_ = downsampling_rate A_ = upsampling_kernel_size A_ = num_hash_functions A_ = num_hash_buckets A_ = local_transformer_stride
608
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__ : Union[str, Any] = logging.get_logger(__name__) __magic_name__ : int = {'vocab_file': 'spiece.model'} __magic_name__ : int = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), } } __magic_name__ : str = { 'google/bigbird-roberta-base': 4_0_9_6, 'google/bigbird-roberta-large': 4_0_9_6, 'google/bigbird-base-trivia-itc': 4_0_9_6, } class lowerCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["""input_ids""", """attention_mask"""] lowerCAmelCase_ = [] def __init__( self , __UpperCamelCase , __UpperCamelCase="<unk>" , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<pad>" , __UpperCamelCase="[SEP]" , __UpperCamelCase="[MASK]" , __UpperCamelCase="[CLS]" , __UpperCamelCase = None , **__UpperCamelCase , ): A_ = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else bos_token A_ = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else eos_token A_ = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else unk_token A_ = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else pad_token A_ = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else cls_token A_ = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it A_ = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token A_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , pad_token=__UpperCamelCase , sep_token=__UpperCamelCase , mask_token=__UpperCamelCase , cls_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) A_ = vocab_file A_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCamelCase ) @property def lowercase_ ( self ): return self.sp_model.get_piece_size() def lowercase_ ( self ): A_ = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): A_ = self.__dict__.copy() A_ = None return state def __setstate__( self , __UpperCamelCase ): A_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A_ = {} A_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowercase_ ( self , __UpperCamelCase ): return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def lowercase_ ( self , __UpperCamelCase ): return self.sp_model.piece_to_id(__UpperCamelCase ) def lowercase_ ( self , __UpperCamelCase ): A_ = self.sp_model.IdToPiece(__UpperCamelCase ) return token def lowercase_ ( self , __UpperCamelCase ): A_ = [] A_ = "" A_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCamelCase ) + token A_ = True A_ = [] else: current_sub_tokens.append(__UpperCamelCase ) A_ = False out_string += self.sp_model.decode(__UpperCamelCase ) return out_string.strip() def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = True , **__UpperCamelCase , ): A_ = kwargs.pop("use_source_tokenizer" , __UpperCamelCase ) A_ = self.convert_ids_to_tokens(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 A_ = [] A_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCamelCase ) ) A_ = [] sub_texts.append(__UpperCamelCase ) else: current_sub_text.append(__UpperCamelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCamelCase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: A_ = re.sub(r" (\[(MASK|SEP)\])" , r"\1" , " ".join(__UpperCamelCase ) ) else: A_ = "".join(__UpperCamelCase ) A_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: A_ = self.clean_up_tokenization(__UpperCamelCase ) return clean_text else: return text def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): if not os.path.isdir(__UpperCamelCase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A_ = os.path.join( __UpperCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , "wb" ) as fi: A_ = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) return (out_vocab_file,) def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A_ = [self.cls_token_id] A_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1] + ([0] * len(__UpperCamelCase )) + [1] def lowercase_ ( self , __UpperCamelCase , __UpperCamelCase = None ): A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
608
1
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): A : Optional[Any] = "pt" elif is_tf_available(): A : List[Any] = "tf" else: A : Dict = "jax" class UpperCamelCase( _a , unittest.TestCase ): snake_case_ : Union[str, Any] = ByTaTokenizer snake_case_ : Dict = False def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' super().setUp() __snake_case = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' return ByTaTokenizer.from_pretrained("google/byt5-small" ) def SCREAMING_SNAKE_CASE_ ( self : Tuple , **SCREAMING_SNAKE_CASE : Any ) -> int: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str]=False , SCREAMING_SNAKE_CASE : List[Any]=2_0 , SCREAMING_SNAKE_CASE : Optional[int]=5 ) -> Optional[int]: '''simple docstring''' __snake_case = [] for i in range(len(UpperCamelCase__ ) ): try: __snake_case = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCamelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) __snake_case = list(filter(lambda SCREAMING_SNAKE_CASE : re.match(R"^[ a-zA-Z]+$" , t[1] ) , UpperCamelCase__ ) ) __snake_case = list(filter(lambda SCREAMING_SNAKE_CASE : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCamelCase__ ) , UpperCamelCase__ ) ) if max_length is not None and len(UpperCamelCase__ ) > max_length: __snake_case = toks[:max_length] if min_length is not None and len(UpperCamelCase__ ) < min_length and len(UpperCamelCase__ ) > 0: while len(UpperCamelCase__ ) < min_length: __snake_case = toks + toks # toks_str = [t[1] for t in toks] __snake_case = [t[0] for t in toks] # Ensure consistency __snake_case = tokenizer.decode(UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) if " " not in output_txt and len(UpperCamelCase__ ) > 1: __snake_case = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCamelCase__ ) + " " + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCamelCase__ ) ) if with_prefix_space: __snake_case = " " + output_txt __snake_case = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) return output_txt, output_ids def SCREAMING_SNAKE_CASE_ ( self : int ) -> List[Any]: '''simple docstring''' __snake_case = self.ta_base_tokenizer __snake_case = tokenizer(["hi</s>", "I went to the gym</s>", "</s>"] ) __snake_case = tokenizer(["hi", "I went to the gym", ""] ) self.assertListEqual(batch_with_eos_added["input_ids"] , batch_without_eos_added["input_ids"] ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> int: '''simple docstring''' __snake_case = self.ta_base_tokenizer __snake_case = "Unicode €." __snake_case = tokenizer(UpperCamelCase__ ) __snake_case = [8_8, 1_1_3, 1_0_8, 1_0_2, 1_1_4, 1_0_3, 1_0_4, 3_5, 2_2_9, 1_3_3, 1_7_5, 4_9, 1] self.assertEqual(encoded["input_ids"] , UpperCamelCase__ ) # decoding __snake_case = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , "Unicode €.</s>" ) __snake_case = tokenizer("e è é ê ë" ) __snake_case = [1_0_4, 3_5, 1_9_8, 1_7_1, 3_5, 1_9_8, 1_7_2, 3_5, 1_9_8, 1_7_3, 3_5, 1_9_8, 1_7_4, 1] self.assertEqual(encoded["input_ids"] , UpperCamelCase__ ) # decoding __snake_case = tokenizer.decode(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , "e è é ê ë</s>" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("e è é ê ë" ) ) , "e è é ê ë</s>" ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' __snake_case = self.ta_base_tokenizer __snake_case = ["A long paragraph for summarization.", "Another paragraph for summarization."] # fmt: off __snake_case = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 1, 0] # fmt: on __snake_case = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) if FRAMEWORK != "jax": __snake_case = list(batch.input_ids.numpy()[0] ) else: __snake_case = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual((2, 3_7) , batch.input_ids.shape ) self.assertEqual((2, 3_7) , batch.attention_mask.shape ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]: '''simple docstring''' __snake_case = self.ta_base_tokenizer __snake_case = ["A long paragraph for summarization.", "Another paragraph for summarization."] __snake_case = tokenizer(UpperCamelCase__ , padding=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("input_ids" , UpperCamelCase__ ) self.assertIn("attention_mask" , UpperCamelCase__ ) self.assertNotIn("decoder_input_ids" , UpperCamelCase__ ) self.assertNotIn("decoder_attention_mask" , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Any: '''simple docstring''' __snake_case = self.ta_base_tokenizer __snake_case = [ "Summary of the text.", "Another summary.", ] __snake_case = tokenizer( text_target=UpperCamelCase__ , max_length=3_2 , padding="max_length" , truncation=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) self.assertEqual(3_2 , targets["input_ids"].shape[1] ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> int: '''simple docstring''' __snake_case = self.ta_base_tokenizer __snake_case = ["A long paragraph for summarization. </s>"] __snake_case = ["Summary of the text. </s>"] # fmt: off __snake_case = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 3_5, 1] __snake_case = [8_6, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_2_4, 3_5, 1_1_4, 1_0_5, 3_5, 1_1_9, 1_0_7, 1_0_4, 3_5, 1_1_9, 1_0_4, 1_2_3, 1_1_9, 4_9, 3_5, 1] # fmt: on __snake_case = tokenizer(UpperCamelCase__ , text_target=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , batch["input_ids"][0] ) self.assertEqual(UpperCamelCase__ , batch["labels"][0] ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' __snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test __snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case = tempfile.mkdtemp() __snake_case = " He is very happy, UNwant\u00E9d,running" __snake_case = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) __snake_case = tokenizer.__class__.from_pretrained(UpperCamelCase__ ) __snake_case = after_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) shutil.rmtree(UpperCamelCase__ ) __snake_case = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc __snake_case = tempfile.mkdtemp() __snake_case = " He is very happy, UNwant\u00E9d,running" tokenizer.add_tokens(["bim", "bambam"] ) __snake_case = tokenizer.additional_special_tokens additional_special_tokens.append("new_additional_special_token" ) tokenizer.add_special_tokens({"additional_special_tokens": additional_special_tokens} ) __snake_case = tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) __snake_case = tokenizer.__class__.from_pretrained(UpperCamelCase__ ) __snake_case = after_tokenizer.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertIn("new_additional_special_token" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) __snake_case = tokenizer.__class__.from_pretrained(UpperCamelCase__ , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' __snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , "special_tokens_map.json" ) , encoding="utf-8" ) as json_file: __snake_case = json.load(UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , "tokenizer_config.json" ) , encoding="utf-8" ) as json_file: __snake_case = json.load(UpperCamelCase__ ) __snake_case = [f'''<extra_id_{i}>''' for i in range(1_2_5 )] __snake_case = added_tokens_extra_ids + [ "an_additional_special_token" ] __snake_case = added_tokens_extra_ids + [ "an_additional_special_token" ] with open(os.path.join(UpperCamelCase__ , "special_tokens_map.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(UpperCamelCase__ , UpperCamelCase__ ) with open(os.path.join(UpperCamelCase__ , "tokenizer_config.json" ) , "w" , encoding="utf-8" ) as outfile: json.dump(UpperCamelCase__ , UpperCamelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __snake_case = tokenizer_class.from_pretrained( UpperCamelCase__ , ) self.assertIn( "an_additional_special_token" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["an_additional_special_token"] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __snake_case = added_tokens_extra_ids + [AddedToken("a_new_additional_special_token" , lstrip=UpperCamelCase__ )] __snake_case = tokenizer_class.from_pretrained( UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , ) self.assertIn("a_new_additional_special_token" , tokenizer.additional_special_tokens ) self.assertEqual( ["a_new_additional_special_token"] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"] ) ) , ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> List[str]: '''simple docstring''' __snake_case = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCamelCase__ ) __snake_case = tokenizer_class.from_pretrained(UpperCamelCase__ ) self.assertTrue(tokenizer.decode([2_5_5] ) == "" ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[Any]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[str]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Any ) -> Dict: '''simple docstring''' pass def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> str: '''simple docstring''' __snake_case = self.get_tokenizers(fast=UpperCamelCase__ , do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case = ["t", "h", "i", "s", " ", "i", "s", " ", "a", " ", "t", "e", "x", "t", "</s>"] __snake_case = tokenizer.convert_tokens_to_string(UpperCamelCase__ ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' __snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case = [ "bos_token", "eos_token", "unk_token", "sep_token", "pad_token", "cls_token", "mask_token", ] __snake_case = 0 __snake_case = tokenizer.convert_ids_to_tokens( UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) for attr in attributes_list: setattr(UpperCamelCase__ , attr + "_id" , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , attr + "_id" ) , UpperCamelCase__ ) setattr(UpperCamelCase__ , attr + "_id" , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(getattr(UpperCamelCase__ , attr + "_id" ) , UpperCamelCase__ ) setattr(UpperCamelCase__ , "additional_special_tokens_ids" , [] ) self.assertListEqual(getattr(UpperCamelCase__ , "additional_special_tokens" ) , [] ) self.assertListEqual(getattr(UpperCamelCase__ , "additional_special_tokens_ids" ) , [] ) setattr(UpperCamelCase__ , "additional_special_tokens_ids" , [token_id_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase__ , "additional_special_tokens" ) , [token_to_test_setters] ) self.assertListEqual(getattr(UpperCamelCase__ , "additional_special_tokens_ids" ) , [token_id_to_test_setters] )
371
'''simple docstring''' import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : List[Any] ): """simple docstring""" super().__init__() UpperCamelCase = nn.Linear(3 , 4 ) UpperCamelCase = nn.BatchNormad(4 ) UpperCamelCase = nn.Linear(4 , 5 ) def A ( self : str , UpperCamelCase__ : Optional[int] ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(UpperCamelCase__ ) ) ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCamelCase__ , model.state_dict() ) UpperCamelCase = os.path.join(UpperCamelCase__ , 'index.json' ) self.assertTrue(os.path.isfile(UpperCamelCase__ ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: UpperCamelCase = os.path.join(UpperCamelCase__ , f"""{key}.dat""" ) self.assertTrue(os.path.isfile(UpperCamelCase__ ) ) # TODO: add tests on the fact weights are properly loaded def A ( self : str ): """simple docstring""" UpperCamelCase = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: UpperCamelCase = torch.randn(2 , 3 , dtype=UpperCamelCase__ ) with TemporaryDirectory() as tmp_dir: UpperCamelCase = offload_weight(UpperCamelCase__ , 'weight' , UpperCamelCase__ , {} ) UpperCamelCase = os.path.join(UpperCamelCase__ , 'weight.dat' ) self.assertTrue(os.path.isfile(UpperCamelCase__ ) ) self.assertDictEqual(UpperCamelCase__ , {'weight': {'shape': [2, 3], 'dtype': str(UpperCamelCase__ ).split('.' )[1]}} ) UpperCamelCase = load_offloaded_weight(UpperCamelCase__ , index['weight'] ) self.assertTrue(torch.equal(UpperCamelCase__ , UpperCamelCase__ ) ) def A ( self : int ): """simple docstring""" UpperCamelCase = ModelForTest() UpperCamelCase = model.state_dict() UpperCamelCase = {k: v for k, v in state_dict.items() if 'linear2' not in k} UpperCamelCase = {k: v for k, v in state_dict.items() if 'linear2' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = OffloadedWeightsLoader(state_dict=UpperCamelCase__ , save_folder=UpperCamelCase__ ) # Every key is there with the right value self.assertEqual(sorted(UpperCamelCase__ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCamelCase__ , weight_map[key] ) ) UpperCamelCase = {k: v for k, v in state_dict.items() if 'weight' in k} UpperCamelCase = {k: v for k, v in state_dict.items() if 'weight' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = OffloadedWeightsLoader(state_dict=UpperCamelCase__ , save_folder=UpperCamelCase__ ) # Every key is there with the right value self.assertEqual(sorted(UpperCamelCase__ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCamelCase__ , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCamelCase__ , UpperCamelCase__ ) # Duplicates are removed UpperCamelCase = OffloadedWeightsLoader(state_dict=UpperCamelCase__ , save_folder=UpperCamelCase__ ) # Every key is there with the right value self.assertEqual(sorted(UpperCamelCase__ ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCamelCase__ , weight_map[key] ) ) def A ( self : Any ): """simple docstring""" UpperCamelCase = {'a.1': 0, 'a.10': 1, 'a.2': 2} UpperCamelCase = extract_submodules_state_dict(UpperCamelCase__ , ['a.1', 'a.2'] ) self.assertDictEqual(UpperCamelCase__ , {'a.1': 0, 'a.2': 2} ) UpperCamelCase = {'a.1.a': 0, 'a.10.a': 1, 'a.2.a': 2} UpperCamelCase = extract_submodules_state_dict(UpperCamelCase__ , ['a.1', 'a.2'] ) self.assertDictEqual(UpperCamelCase__ , {'a.1.a': 0, 'a.2.a': 2} )
430
0
'''simple docstring''' from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCAmelCase__ ( _snake_case ): """simple docstring""" __UpperCamelCase = """philschmid/bart-large-cnn-samsum""" __UpperCamelCase = ( """This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, """ """and returns a summary of the text.""" ) __UpperCamelCase = """summarizer""" __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = ["""text"""] __UpperCamelCase = ["""text"""] def __lowerCAmelCase ( self : Any , A__ : List[str] ) -> Optional[Any]: '''simple docstring''' return self.pre_processor(snake_case_ , return_tensors='''pt''' , truncation=snake_case_ ) def __lowerCAmelCase ( self : int , A__ : Any ) -> str: '''simple docstring''' return self.model.generate(**snake_case_ )[0] def __lowerCAmelCase ( self : List[Any] , A__ : Any ) -> Optional[int]: '''simple docstring''' return self.pre_processor.decode(snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ )
721
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCAmelCase__ : """simple docstring""" __UpperCamelCase = LEDConfig __UpperCamelCase = {} __UpperCamelCase = "gelu" def __init__( self : str , A__ : Union[str, Any] , A__ : str=1_3 , A__ : Optional[int]=7 , A__ : str=True , A__ : Union[str, Any]=False , A__ : Dict=9_9 , A__ : Any=3_2 , A__ : Optional[int]=2 , A__ : Union[str, Any]=4 , A__ : Tuple=3_7 , A__ : str=0.1 , A__ : Any=0.1 , A__ : str=2_0 , A__ : Dict=2 , A__ : Union[str, Any]=1 , A__ : int=0 , A__ : Dict=4 , ) -> Union[str, Any]: '''simple docstring''' a__ : Dict = parent a__ : Dict = batch_size a__ : List[str] = seq_length a__ : Optional[int] = is_training a__ : Dict = use_labels a__ : Dict = vocab_size a__ : Tuple = hidden_size a__ : Optional[int] = num_hidden_layers a__ : Optional[Any] = num_attention_heads a__ : List[Any] = intermediate_size a__ : Tuple = hidden_dropout_prob a__ : Optional[int] = attention_probs_dropout_prob a__ : Dict = max_position_embeddings a__ : Optional[int] = eos_token_id a__ : Optional[int] = pad_token_id a__ : int = bos_token_id a__ : str = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after a__ : List[Any] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests a__ : List[str] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def __lowerCAmelCase ( self : int ) -> Optional[Any]: '''simple docstring''' a__ : Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) a__ : Dict = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) a__ : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) a__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ : Any = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) a__ : int = prepare_led_inputs_dict(A__ , A__ , A__ ) a__ : List[str] = tf.concat( [tf.zeros_like(A__ )[:, :-1], tf.ones_like(A__ )[:, -1:]] , axis=-1 , ) a__ : Union[str, Any] = global_attention_mask return config, inputs_dict def __lowerCAmelCase ( self : Dict , A__ : str , A__ : Dict ) -> int: '''simple docstring''' a__ : Optional[Any] = TFLEDModel(config=A__ ).get_decoder() a__ : Dict = inputs_dict['''input_ids'''] a__ : List[str] = input_ids[:1, :] a__ : Any = inputs_dict['''attention_mask'''][:1, :] a__ : Dict = 1 # first forward pass a__ : Any = model(A__ , attention_mask=A__ , use_cache=A__ ) a__ , a__ : Any = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids a__ : int = ids_tensor((self.batch_size, 3) , config.vocab_size ) a__ : List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and a__ : Any = tf.concat([input_ids, next_tokens] , axis=-1 ) a__ : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) a__ : List[Any] = model(A__ , attention_mask=A__ )[0] a__ : Any = model(A__ , attention_mask=A__ , past_key_values=A__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice a__ : Tuple = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) a__ : List[str] = output_from_no_past[:, -3:, random_slice_idx] a__ : Tuple = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A__ , A__ , rtol=1E-3 ) def __a ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : str=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : str=None , ): if attention_mask is None: a__ : str = tf.cast(tf.math.not_equal(lowerCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: a__ : str = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: a__ : List[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: a__ : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCAmelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () __UpperCamelCase = (TFLEDForConditionalGeneration,) if is_tf_available() else () __UpperCamelCase = ( { "conversational": TFLEDForConditionalGeneration, "feature-extraction": TFLEDModel, "summarization": TFLEDForConditionalGeneration, "text2text-generation": TFLEDForConditionalGeneration, "translation": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' a__ : Any = TFLEDModelTester(self ) a__ : List[str] = ConfigTester(self , config_class=A__ ) def __lowerCAmelCase ( self : Optional[int] ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __lowerCAmelCase ( self : str ) -> str: '''simple docstring''' a__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A__ ) def __lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' a__ , a__ : int = self.model_tester.prepare_config_and_inputs_for_common() a__ : Optional[Any] = tf.zeros_like(inputs_dict['''attention_mask'''] ) a__ : List[str] = 2 a__ : int = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) a__ : Dict = True a__ : Optional[int] = self.model_tester.seq_length a__ : Union[str, Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(A__ : int ): a__ : Union[str, Any] = outputs.decoder_attentions self.assertEqual(len(A__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(A__ : Any ): a__ : List[Any] = [t.numpy() for t in outputs.encoder_attentions] a__ : Tuple = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(A__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(A__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: a__ : Any = True a__ : List[str] = False a__ : int = False a__ : Union[str, Any] = model_class(A__ ) a__ : List[str] = model(self._prepare_for_class(A__ , A__ ) ) a__ : Optional[Any] = len(A__ ) self.assertEqual(config.output_hidden_states , A__ ) check_encoder_attentions_output(A__ ) if self.is_encoder_decoder: a__ : List[Any] = model_class(A__ ) a__ : Optional[Any] = model(self._prepare_for_class(A__ , A__ ) ) self.assertEqual(config.output_hidden_states , A__ ) check_decoder_attentions_output(A__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] a__ : List[Any] = True a__ : int = model_class(A__ ) a__ : Union[str, Any] = model(self._prepare_for_class(A__ , A__ ) ) self.assertEqual(config.output_hidden_states , A__ ) check_encoder_attentions_output(A__ ) # Check attention is always last and order is fine a__ : str = True a__ : str = True a__ : Tuple = model_class(A__ ) a__ : Any = model(self._prepare_for_class(A__ , A__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(A__ ) ) self.assertEqual(model.config.output_hidden_states , A__ ) check_encoder_attentions_output(A__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def __lowerCAmelCase ( self : str ) -> Optional[int]: '''simple docstring''' pass def __lowerCAmelCase ( self : int ) -> Dict: '''simple docstring''' pass def __a ( lowerCAmelCase__ : str ): return tf.constant(lowerCAmelCase__ , dtype=tf.intaa ) __SCREAMING_SNAKE_CASE = 1e-4 @slow @require_tf class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : List[str] ) -> Optional[Any]: '''simple docstring''' a__ : Optional[Any] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here a__ : Tuple = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) a__ : List[Any] = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) a__ : Tuple = prepare_led_inputs_dict(model.config , A__ , A__ ) a__ : Optional[Any] = model(**A__ )[0] a__ : Optional[Any] = (1, 1_0_2_4, 7_6_8) self.assertEqual(output.shape , A__ ) # change to expected output here a__ : Any = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , A__ , atol=1E-3 ) def __lowerCAmelCase ( self : str ) -> Optional[int]: '''simple docstring''' a__ : List[Any] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here a__ : List[Any] = _long_tensor([5_1_2 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) a__ : int = _long_tensor([1_2_8 * [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9]] ) a__ : str = prepare_led_inputs_dict(model.config , A__ , A__ ) a__ : Optional[int] = model(**A__ )[0] a__ : List[str] = (1, 1_0_2_4, model.config.vocab_size) self.assertEqual(output.shape , A__ ) # change to expected output here a__ : Optional[Any] = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , A__ , atol=1E-3 , rtol=1E-3 )
340
0
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self : Any ): _UpperCAmelCase : str = tempfile.mkdtemp() _UpperCAmelCase : Optional[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _UpperCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) _UpperCAmelCase : Union[str, Any] = { "do_resize": True, "size": 2_0, "do_center_crop": True, "crop_size": 1_8, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } _UpperCAmelCase : Optional[int] = os.path.join(self.tmpdirname , A ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(A , A ) def snake_case_ ( self : List[str] , **A : List[Any] ): return BertTokenizer.from_pretrained(self.tmpdirname , **A ) def snake_case_ ( self : Dict , **A : Optional[Any] ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **A ) def snake_case_ ( self : Any , **A : Optional[Any] ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **A ) def snake_case_ ( self : List[Any] ): shutil.rmtree(self.tmpdirname ) def snake_case_ ( self : List[str] ): _UpperCAmelCase : int = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _UpperCAmelCase : Any = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def snake_case_ ( self : Dict ): _UpperCAmelCase : Optional[Any] = self.get_tokenizer() _UpperCAmelCase : List[Any] = self.get_rust_tokenizer() _UpperCAmelCase : List[Any] = self.get_image_processor() _UpperCAmelCase : Optional[int] = AlignProcessor(tokenizer=A , image_processor=A ) processor_slow.save_pretrained(self.tmpdirname ) _UpperCAmelCase : List[str] = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=A ) _UpperCAmelCase : List[str] = AlignProcessor(tokenizer=A , image_processor=A ) processor_fast.save_pretrained(self.tmpdirname ) _UpperCAmelCase : str = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A ) self.assertIsInstance(processor_fast.tokenizer , A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A ) self.assertIsInstance(processor_fast.image_processor , A ) def snake_case_ ( self : str ): _UpperCAmelCase : Any = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _UpperCAmelCase : Optional[Any] = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) _UpperCAmelCase : Optional[int] = self.get_image_processor(do_normalize=A , padding_value=1.0 ) _UpperCAmelCase : Union[str, Any] = AlignProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : Optional[Any] = self.get_image_processor() _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : int = AlignProcessor(tokenizer=A , image_processor=A ) _UpperCAmelCase : List[Any] = self.prepare_image_inputs() _UpperCAmelCase : Tuple = image_processor(A , return_tensors="np" ) _UpperCAmelCase : Tuple = processor(images=A , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case_ ( self : Dict ): _UpperCAmelCase : int = self.get_image_processor() _UpperCAmelCase : int = self.get_tokenizer() _UpperCAmelCase : Union[str, Any] = AlignProcessor(tokenizer=A , image_processor=A ) _UpperCAmelCase : Any = "lower newer" _UpperCAmelCase : List[Any] = processor(text=A ) _UpperCAmelCase : List[Any] = tokenizer(A , padding="max_length" , max_length=6_4 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case_ ( self : str ): _UpperCAmelCase : Union[str, Any] = self.get_image_processor() _UpperCAmelCase : Any = self.get_tokenizer() _UpperCAmelCase : Any = AlignProcessor(tokenizer=A , image_processor=A ) _UpperCAmelCase : List[Any] = "lower newer" _UpperCAmelCase : Union[str, Any] = self.prepare_image_inputs() _UpperCAmelCase : str = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(A ): processor() def snake_case_ ( self : Tuple ): _UpperCAmelCase : Any = self.get_image_processor() _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Any = AlignProcessor(tokenizer=A , image_processor=A ) _UpperCAmelCase : List[str] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _UpperCAmelCase : int = processor.batch_decode(A ) _UpperCAmelCase : Optional[Any] = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def snake_case_ ( self : Optional[int] ): _UpperCAmelCase : List[Any] = self.get_image_processor() _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Tuple = AlignProcessor(tokenizer=A , image_processor=A ) _UpperCAmelCase : Any = "lower newer" _UpperCAmelCase : Any = self.prepare_image_inputs() _UpperCAmelCase : Optional[Any] = processor(text=A , images=A ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
289
"""simple docstring""" import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel _lowerCAmelCase : Any = HfApi() _lowerCAmelCase : int = {} # fmt: off _lowerCAmelCase : List[Any] = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) _lowerCAmelCase : Any = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) _lowerCAmelCase : List[str] = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) _lowerCAmelCase : Optional[int] = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) _lowerCAmelCase : List[Any] = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) _lowerCAmelCase : Optional[int] = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) _lowerCAmelCase : Optional[Any] = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) _lowerCAmelCase : List[str] = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) _lowerCAmelCase : Any = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) _lowerCAmelCase : int = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) _lowerCAmelCase : Union[str, Any] = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) _lowerCAmelCase : str = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) _lowerCAmelCase : Optional[int] = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) _lowerCAmelCase : Union[str, Any] = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) _lowerCAmelCase : Any = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on _lowerCAmelCase : Optional[Any] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": _lowerCAmelCase : List[Any] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(F"Started running {mod.modelId}!!!") if mod.modelId.startswith("CompVis"): _lowerCAmelCase : Tuple = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: _lowerCAmelCase : List[Any] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) _lowerCAmelCase : Optional[Any] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) _lowerCAmelCase : Tuple = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(F"{mod.modelId} has passed successfully!!!")
289
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class a__ ( _snake_case ): """simple docstring""" A__ : Tuple = '''levit''' def __init__( self :Optional[int] , lowercase__ :Optional[int]=224 , lowercase__ :Dict=3 , lowercase__ :Union[str, Any]=3 , lowercase__ :Optional[int]=2 , lowercase__ :List[str]=1 , lowercase__ :Optional[int]=16 , lowercase__ :str=[128, 256, 384] , lowercase__ :Dict=[4, 8, 12] , lowercase__ :Any=[4, 4, 4] , lowercase__ :int=[16, 16, 16] , lowercase__ :Any=0 , lowercase__ :Dict=[2, 2, 2] , lowercase__ :List[Any]=[2, 2, 2] , lowercase__ :List[Any]=0.02 , **lowercase__ :Dict , ): super().__init__(**lowercase__ ) lowercase = image_size lowercase = num_channels lowercase = kernel_size lowercase = stride lowercase = padding lowercase = hidden_sizes lowercase = num_attention_heads lowercase = depths lowercase = key_dim lowercase = drop_path_rate lowercase = patch_size lowercase = attention_ratio lowercase = mlp_ratio lowercase = initializer_range lowercase = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class a__ ( _snake_case ): """simple docstring""" A__ : Any = version.parse('''1.11''' ) @property def __UpperCAmelCase ( self :str ): return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __UpperCAmelCase ( self :int ): return 1E-4
718
def __snake_case ( _UpperCAmelCase ): """simple docstring""" return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def __snake_case ( _UpperCAmelCase ): """simple docstring""" lowercase = 0 lowercase = len(_UpperCAmelCase ) # No of vertices in graph lowercase = [0] * n lowercase = [False] * n def dfs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase = True lowercase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , id_ ) lowercase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowercase = min(low[at] , low[to] ) lowercase = [] for i in range(_UpperCAmelCase ): if not visited[i]: dfs(_UpperCAmelCase , -1 , _UpperCAmelCase , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
314
0
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class a__ ( __SCREAMING_SNAKE_CASE ): def __init__( self : Union[str, Any] , A_ : NestedDataStructureLike[PathLike] , A_ : Optional[NamedSplit] = None , A_ : Optional[Features] = None , A_ : str = None , A_ : bool = False , A_ : bool = False , A_ : Optional[str] = None , A_ : Optional[int] = None , **A_ : Optional[Any] , ) -> Any: """simple docstring""" super().__init__( A_ , split=A_ , features=A_ , cache_dir=A_ , keep_in_memory=A_ , streaming=A_ , num_proc=A_ , **A_ , ) lowerCamelCase_: Union[str, Any] = field lowerCamelCase_: Union[str, Any] = path_or_paths if isinstance(A_ , A_ ) else {self.split: path_or_paths} lowerCamelCase_: Optional[int] = Json( cache_dir=A_ , data_files=A_ , features=A_ , field=A_ , **A_ , ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" # Build iterable dataset if self.streaming: lowerCamelCase_: Optional[Any] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: lowerCamelCase_: Tuple = None lowerCamelCase_: Dict = None lowerCamelCase_: Union[str, Any] = None lowerCamelCase_: Union[str, Any] = None self.builder.download_and_prepare( download_config=A_ , download_mode=A_ , verification_mode=A_ , base_path=A_ , num_proc=self.num_proc , ) lowerCamelCase_: Dict = self.builder.as_dataset( split=self.split , verification_mode=A_ , in_memory=self.keep_in_memory ) return dataset class a__ : def __init__( self : List[Any] , A_ : Dataset , A_ : Union[PathLike, BinaryIO] , A_ : Optional[int] = None , A_ : Optional[int] = None , **A_ : int , ) -> Union[str, Any]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) lowerCamelCase_: List[Any] = dataset lowerCamelCase_: List[str] = path_or_buf lowerCamelCase_: List[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE lowerCamelCase_: Optional[int] = num_proc lowerCamelCase_: Optional[Any] = """utf-8""" lowerCamelCase_: List[str] = to_json_kwargs def lowerCAmelCase ( self : List[str] ) -> int: """simple docstring""" lowerCamelCase_: Tuple = self.to_json_kwargs.pop("""path_or_buf""" , A_ ) lowerCamelCase_: Union[str, Any] = self.to_json_kwargs.pop("""orient""" , """records""" ) lowerCamelCase_: Any = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False ) lowerCamelCase_: Tuple = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True ) lowerCamelCase_: int = self.to_json_kwargs.pop("""compression""" , A_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(f"""`datasets` currently does not support {compression} compression""" ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , """wb""" , compression=A_ ) as buffer: lowerCamelCase_: Optional[Any] = self._write(file_obj=A_ , orient=A_ , lines=A_ , index=A_ , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( f"""The compression parameter is not supported when writing to a buffer, but compression={compression}""" """ was passed. Please provide a local path instead.""" ) lowerCamelCase_: List[Any] = self._write( file_obj=self.path_or_buf , orient=A_ , lines=A_ , index=A_ , **self.to_json_kwargs ) return written def lowerCAmelCase ( self : Tuple , A_ : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_: Dict = args lowerCamelCase_: Tuple = query_table( table=self.dataset.data , key=slice(A_ , offset + self.batch_size ) , indices=self.dataset._indices , ) lowerCamelCase_: Optional[int] = batch.to_pandas().to_json( path_or_buf=A_ , orient=A_ , lines=A_ , index=A_ , **A_ ) if not json_str.endswith("""\n""" ): json_str += "\n" return json_str.encode(self.encoding ) def lowerCAmelCase ( self : Any , A_ : BinaryIO , A_ : Union[str, Any] , A_ : str , A_ : Tuple , **A_ : List[str] , ) -> int: """simple docstring""" lowerCamelCase_: str = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): lowerCamelCase_: Dict = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(A_ ) else: lowerCamelCase_ , lowerCamelCase_: str = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , A_ , A_ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(A_ ) return written
423
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices lowercase : int = logging.get_logger(__name__) lowercase : int = { """facebook/convnextv2-tiny-1k-224""": """https://huggingface.co/facebook/convnextv2-tiny-1k-224/resolve/main/config.json""", } class a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _A = "convnextv2" def __init__( self : List[str] , A_ : Any=3 , A_ : Tuple=4 , A_ : Dict=4 , A_ : Union[str, Any]=None , A_ : List[str]=None , A_ : Optional[int]="gelu" , A_ : Optional[Any]=0.02 , A_ : Optional[int]=1e-12 , A_ : Tuple=0.0 , A_ : int=2_24 , A_ : int=None , A_ : Optional[int]=None , **A_ : Union[str, Any] , ) -> Optional[Any]: """simple docstring""" super().__init__(**A_ ) lowerCamelCase_: Tuple = num_channels lowerCamelCase_: Union[str, Any] = patch_size lowerCamelCase_: Any = num_stages lowerCamelCase_: Optional[Any] = [96, 1_92, 3_84, 7_68] if hidden_sizes is None else hidden_sizes lowerCamelCase_: Optional[Any] = [3, 3, 9, 3] if depths is None else depths lowerCamelCase_: Tuple = hidden_act lowerCamelCase_: Optional[int] = initializer_range lowerCamelCase_: Dict = layer_norm_eps lowerCamelCase_: Tuple = drop_path_rate lowerCamelCase_: Any = image_size lowerCamelCase_: Dict = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )] lowerCamelCase_ , lowerCamelCase_: int = get_aligned_output_features_output_indices( out_features=A_ , out_indices=A_ , stage_names=self.stage_names )
423
1
'''simple docstring''' import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer lowerCamelCase :List[Any] = ['''gpt2'''] lowerCamelCase :Any = '''gpt2''' if is_tf_available(): class _lowerCAmelCase ( tf.Module ): def __init__(self , lowercase ): super().__init__() A_ : Optional[Any] = tokenizer A_ : List[Any] = AutoConfig.from_pretrained(lowercase ) A_ : Union[str, Any] = TFGPTaLMHeadModel.from_config(lowercase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) ) def _a (self , lowercase ): A_ : List[Any] = self.tokenizer(lowercase ) A_ : Tuple = tokenized["""input_ids"""].to_tensor() A_ : Union[str, Any] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) A_ : Optional[Any] = self.model(input_ids=lowercase , attention_mask=lowercase )["""logits"""] return outputs @require_tf @require_keras_nlp class _lowerCAmelCase ( unittest.TestCase ): def _a (self ): super().setUp() A_ : Union[str, Any] = [GPTaTokenizer.from_pretrained(lowercase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] A_ : int = [TFGPTaTokenizer.from_pretrained(lowercase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) A_ : Union[str, Any] = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] A_ : List[Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _a (self ): for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: A_ : Union[str, Any] = tokenizer([test_inputs] , return_tensors="""tf""" ) A_ : str = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors A_ : Any = python_outputs[key].numpy() A_ : Optional[int] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowercase , tf.intaa ) == tf_outputs_values ) ) @slow def _a (self ): for tf_tokenizer in self.tf_tokenizers: A_ : Any = tf.function(lowercase ) for test_inputs in self.test_sentences: A_ : int = tf.constant(lowercase ) A_ : List[Any] = compiled_tokenizer(lowercase ) A_ : str = tf_tokenizer(lowercase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _a (self ): for tf_tokenizer in self.tf_tokenizers: A_ : List[Any] = ModelToSave(tokenizer=lowercase ) A_ : List[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) A_ : Optional[Any] = model.serving(lowercase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: A_ : Any = Path(lowercase ) / """saved.model""" tf.saved_model.save(lowercase , lowercase , signatures={"""serving_default""": model.serving} ) A_ : Dict = tf.saved_model.load(lowercase ) A_ : str = loaded_model.signatures["""serving_default"""](lowercase )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def _a (self ): for tf_tokenizer in self.tf_tokenizers: A_ : Any = tf.convert_to_tensor([self.test_sentences[0]] ) A_ : Optional[int] = tf_tokenizer(lowercase ) # Build model with some sample inputs A_ : List[Any] = tf_tokenizer.get_config() A_ : Dict = TFGPTaTokenizer.from_config(lowercase ) A_ : Optional[int] = model_from_config(lowercase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def _a (self ): for tf_tokenizer in self.tf_tokenizers: # for the test to run A_ : Any = 123123 for max_length in [3, 5, 1024]: A_ : Optional[Any] = tf.convert_to_tensor([self.test_sentences[0]] ) A_ : str = tf_tokenizer(lowercase , max_length=lowercase ) A_ : Optional[int] = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
686
'''simple docstring''' import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = DownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[str] = 'down' def _a (self ): A_ : Dict = [-0.02_32, -0.98_69, 0.80_54, -0.06_37, -0.16_88, -1.42_64, 0.44_70, -1.33_94, 0.09_04] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = ResnetDownsampleBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Tuple = 'down' def _a (self ): A_ : Optional[int] = [0.07_10, 0.24_10, -0.73_20, -1.07_57, -1.13_43, 0.35_40, -0.01_33, -0.25_76, 0.09_48] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = AttnDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'down' def _a (self ): A_ : int = [0.06_36, 0.89_64, -0.62_34, -1.01_31, 0.08_44, 0.49_35, 0.34_37, 0.09_11, -0.29_57] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = CrossAttnDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'down' def _a (self ): A_, A_ : str = super().prepare_init_args_and_inputs_for_common() A_ : Optional[Any] = 32 return init_dict, inputs_dict def _a (self ): A_ : List[str] = [0.22_38, -0.73_96, -0.22_55, -0.38_29, 0.19_25, 1.16_65, 0.06_03, -0.72_95, 0.19_83] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = SimpleCrossAttnDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[Any] = 'down' @property def _a (self ): return super().get_dummy_input(include_encoder_hidden_states=lowercase ) def _a (self ): A_, A_ : Any = super().prepare_init_args_and_inputs_for_common() A_ : Union[str, Any] = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def _a (self ): A_ : int = [0.79_21, -0.09_92, -0.19_62, -0.76_95, -0.42_42, 0.78_04, 0.47_37, 0.27_65, 0.33_38] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = SkipDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'down' @property def _a (self ): return super().get_dummy_input(include_skip_sample=lowercase ) def _a (self ): A_ : Any = [-0.08_45, -0.20_87, -0.24_65, 0.09_71, 0.19_00, -0.04_84, 0.26_64, 0.41_79, 0.50_69] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = AttnSkipDownBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Union[str, Any] = 'down' @property def _a (self ): return super().get_dummy_input(include_skip_sample=lowercase ) def _a (self ): A_ : int = [0.55_39, 0.16_09, 0.49_24, 0.05_37, -0.19_95, 0.40_50, 0.09_79, -0.27_21, -0.06_42] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = DownEncoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Any = 'down' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : int = { """in_channels""": 32, """out_channels""": 32, } A_ : Any = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : Optional[Any] = [1.11_02, 0.53_02, 0.48_72, -0.00_23, -0.80_42, 0.04_83, -0.34_89, -0.56_32, 0.76_26] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[str] = AttnDownEncoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Optional[Any] = 'down' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : Optional[Any] = { """in_channels""": 32, """out_channels""": 32, } A_ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : Tuple = [0.89_66, -0.14_86, 0.85_68, 0.81_41, -0.90_46, -0.13_42, -0.09_72, -0.74_17, 0.15_38] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = UNetMidBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Dict = 'mid' def _a (self ): A_ : Optional[Any] = { """in_channels""": 32, """temb_channels""": 128, } A_ : Any = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : Optional[int] = [-0.10_62, 1.72_48, 0.34_94, 1.45_69, -0.09_10, -1.24_21, -0.99_84, 0.67_36, 1.00_28] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = UNetMidBlockaDCrossAttn # noqa F405 __SCREAMING_SNAKE_CASE : Optional[int] = 'mid' def _a (self ): A_, A_ : Dict = super().prepare_init_args_and_inputs_for_common() A_ : List[str] = 32 return init_dict, inputs_dict def _a (self ): A_ : str = [0.01_87, 2.42_20, 0.44_84, 1.12_03, -0.61_21, -1.51_22, -0.82_70, 0.78_51, 1.83_35] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : str = UNetMidBlockaDSimpleCrossAttn # noqa F405 __SCREAMING_SNAKE_CASE : List[Any] = 'mid' @property def _a (self ): return super().get_dummy_input(include_encoder_hidden_states=lowercase ) def _a (self ): A_, A_ : Tuple = super().prepare_init_args_and_inputs_for_common() A_ : Optional[int] = 32 return init_dict, inputs_dict def _a (self ): A_ : Any = [0.71_43, 1.99_74, 0.54_48, 1.39_77, 0.12_82, -1.12_37, -1.42_38, 0.55_30, 0.88_80] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = UpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : str = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : Union[str, Any] = [-0.20_41, -0.41_65, -0.30_22, 0.00_41, -0.66_28, -0.70_53, 0.19_28, -0.03_25, 0.05_23] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = ResnetUpsampleBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Dict = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : Optional[Any] = [0.22_87, 0.35_49, -0.13_46, 0.47_97, -0.17_15, -0.96_49, 0.73_05, -0.58_64, -0.62_44] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = CrossAttnUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Any = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_, A_ : Any = super().prepare_init_args_and_inputs_for_common() A_ : Union[str, Any] = 32 return init_dict, inputs_dict def _a (self ): A_ : Union[str, Any] = [-0.14_03, -0.35_15, -0.04_20, -0.14_25, 0.31_67, 0.50_94, -0.21_81, 0.59_31, 0.55_82] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Dict = SimpleCrossAttnUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Tuple = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase , include_encoder_hidden_states=lowercase ) def _a (self ): A_, A_ : Any = super().prepare_init_args_and_inputs_for_common() A_ : int = 32 return init_dict, inputs_dict def _a (self ): A_ : Any = [0.26_45, 0.14_80, 0.09_09, 0.80_44, -0.97_58, -0.90_83, 0.09_94, -1.14_53, -0.74_02] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[int] = AttnUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[str] = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) @unittest.skipIf(torch_device == """mps""" , """MPS result is not consistent""" ) def _a (self ): A_ : str = [0.09_79, 0.13_26, 0.00_21, 0.06_59, 0.22_49, 0.00_59, 0.11_32, 0.59_52, 0.10_33] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Any = SkipUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Tuple = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : str = [-0.08_93, -0.12_34, -0.15_06, -0.03_32, 0.01_23, -0.02_11, 0.05_66, 0.01_43, 0.03_62] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = AttnSkipUpBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : List[Any] = 'up' @property def _a (self ): return super().get_dummy_input(include_res_hidden_states_tuple=lowercase ) def _a (self ): A_ : str = [0.03_61, 0.06_17, 0.27_87, -0.03_50, 0.03_42, 0.34_21, -0.08_43, 0.09_13, 0.30_15] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : int = UpDecoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : str = 'up' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : Tuple = {"""in_channels""": 32, """out_channels""": 32} A_ : Optional[int] = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : str = [0.44_04, 0.19_98, -0.98_86, -0.33_20, -0.31_28, -0.70_34, -0.69_55, -0.23_38, -0.31_37] super().test_output(lowercase ) class _lowerCAmelCase ( __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Tuple = AttnUpDecoderBlockaD # noqa F405 __SCREAMING_SNAKE_CASE : Dict = 'up' @property def _a (self ): return super().get_dummy_input(include_temb=lowercase ) def _a (self ): A_ : List[Any] = {"""in_channels""": 32, """out_channels""": 32} A_ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def _a (self ): A_ : List[str] = [0.67_38, 0.44_91, 0.10_55, 1.07_10, 0.73_16, 0.33_39, 0.33_52, 0.10_23, 0.35_68] super().test_output(lowercase )
686
1
"""simple docstring""" # This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def A ( _A, _A, _A, _A ): """simple docstring""" snake_case_ :Any = multiprocessing.Manager() snake_case_ :Any = manager.list() snake_case_ :List[str] = multiprocessing.Process(target=_A, args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append("timed out" ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def A ( _A, _A, _A ): """simple docstring""" with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil snake_case_ :Any = shutil.rmtree snake_case_ :Any = os.rmdir snake_case_ :str = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: snake_case_ :List[str] = {} with swallow_io(): with time_limit(_A ): exec(_A, _A ) result.append("passed" ) except TimeoutException: result.append("timed out" ) except BaseException as e: result.append(F'''failed: {e}''' ) # Needed for cleaning up. snake_case_ :Dict = rmtree snake_case_ :int = rmdir snake_case_ :str = chdir @contextlib.contextmanager def A ( _A ): """simple docstring""" def signal_handler(_A, _A ): raise TimeoutException("Timed out!" ) signal.setitimer(signal.ITIMER_REAL, _A ) signal.signal(signal.SIGALRM, _A ) try: yield finally: signal.setitimer(signal.ITIMER_REAL, 0 ) @contextlib.contextmanager def A ( ): """simple docstring""" snake_case_ :List[str] = WriteOnlyStringIO() with contextlib.redirect_stdout(_A ): with contextlib.redirect_stderr(_A ): with redirect_stdin(_A ): yield @contextlib.contextmanager def A ( ): """simple docstring""" with tempfile.TemporaryDirectory() as dirname: with chdir(_A ): yield dirname class __lowerCAmelCase (__UpperCamelCase ): '''simple docstring''' pass class __lowerCAmelCase (io.StringIO ): '''simple docstring''' def _a ( self , *a , **a ): """simple docstring""" raise OSError def _a ( self , *a , **a ): """simple docstring""" raise OSError def _a ( self , *a , **a ): """simple docstring""" raise OSError def _a ( self , *a , **a ): """simple docstring""" return False class __lowerCAmelCase (contextlib._RedirectStream ): # type: ignore '''simple docstring''' a__ = 'stdin' @contextlib.contextmanager def A ( _A ): """simple docstring""" if root == ".": yield return snake_case_ :str = os.getcwd() os.chdir(_A ) try: yield except BaseException as exc: raise exc finally: os.chdir(_A ) def A ( _A=None ): """simple docstring""" if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS, (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA, (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK, (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins snake_case_ :Any = None snake_case_ :List[Any] = None import os snake_case_ :Tuple = "1" snake_case_ :Union[str, Any] = None snake_case_ :Optional[Any] = None snake_case_ :Dict = None snake_case_ :Any = None snake_case_ :Optional[int] = None snake_case_ :List[str] = None snake_case_ :int = None snake_case_ :Union[str, Any] = None snake_case_ :Tuple = None snake_case_ :Union[str, Any] = None snake_case_ :Tuple = None snake_case_ :int = None snake_case_ :str = None snake_case_ :List[str] = None snake_case_ :int = None snake_case_ :Union[str, Any] = None snake_case_ :Any = None snake_case_ :Union[str, Any] = None snake_case_ :Optional[int] = None snake_case_ :List[str] = None snake_case_ :Any = None snake_case_ :Tuple = None snake_case_ :Any = None snake_case_ :Union[str, Any] = None snake_case_ :Optional[Any] = None snake_case_ :Any = None snake_case_ :Any = None import shutil snake_case_ :Dict = None snake_case_ :str = None snake_case_ :Tuple = None import subprocess snake_case_ :Dict = None # type: ignore snake_case_ :str = None import sys snake_case_ :Optional[Any] = None snake_case_ :Tuple = None snake_case_ :Optional[int] = None snake_case_ :Any = None snake_case_ :Tuple = None
584
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __lowerCAmelCase (unittest.TestCase ): '''simple docstring''' @slow def _a ( self ): """simple docstring""" snake_case_ :List[Any] = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) snake_case_ :Dict = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house snake_case_ :int = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ :Tuple = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ :Any = model(a )["last_hidden_state"].detach() self.assertEqual(output.shape , a ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , a , atol=1e-3 ) ) @slow def _a ( self ): """simple docstring""" snake_case_ :Dict = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) snake_case_ :List[str] = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house snake_case_ :Any = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim snake_case_ :Tuple = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): snake_case_ :str = model(a )["last_hidden_state"].detach() self.assertEqual(output.shape , a ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , a , atol=1e-3 ) )
584
1
def _snake_case (_snake_case : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: _lowercase =set() # Replace all the whitespace in our sentence _lowercase =input_str.replace(' ' , '') for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower()) return len(__UpperCamelCase) == 26 def _snake_case (_snake_case : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: _lowercase =[False] * 26 for char in input_str: if char.islower(): _lowercase =True elif char.isupper(): _lowercase =True return all(__UpperCamelCase) def _snake_case (_snake_case : str = "The quick brown fox jumps over the lazy dog" , ) -> bool: return len({char for char in input_str.lower() if char.isalpha()}) == 26 def _snake_case () -> None: from timeit import timeit _lowercase ='''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('is_pangram()' , setup=__UpperCamelCase)) print(timeit('is_pangram_faster()' , setup=__UpperCamelCase)) print(timeit('is_pangram_fastest()' , setup=__UpperCamelCase)) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
711
from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. _SCREAMING_SNAKE_CASE = 2_00 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. _SCREAMING_SNAKE_CASE = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. _SCREAMING_SNAKE_CASE = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 10_00)) def _snake_case (_snake_case : str , _snake_case : str) -> tuple[str, float]: _lowercase =len([g for position, g in enumerate(_snake_case) if g == main_target[position]]) return (item, float(_snake_case)) def _snake_case (_snake_case : str , _snake_case : str) -> tuple[str, str]: _lowercase =random.randint(0 , len(_snake_case) - 1) _lowercase =parent_a[:random_slice] + parent_a[random_slice:] _lowercase =parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _snake_case (_snake_case : str , _snake_case : list[str]) -> str: _lowercase =list(_snake_case) if random.uniform(0 , 1) < MUTATION_PROBABILITY: _lowercase =random.choice(_snake_case) return "".join(_snake_case) def _snake_case (_snake_case : tuple[str, float] , _snake_case : list[tuple[str, float]] , _snake_case : list[str] , ) -> list[str]: _lowercase =[] # Generate more children proportionally to the fitness score. _lowercase =int(parent_a[1] * 100) + 1 _lowercase =10 if child_n >= 10 else child_n for _ in range(_snake_case): _lowercase =population_score[random.randint(0 , _snake_case)][0] _lowercase , _lowercase =crossover(parent_a[0] , _snake_case) # Append new string to the population list. pop.append(mutate(_snake_case , _snake_case)) pop.append(mutate(_snake_case , _snake_case)) return pop def _snake_case (_snake_case : str , _snake_case : list[str] , _snake_case : bool = True) -> tuple[int, int, str]: # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: _lowercase =f'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(_snake_case) # Verify that the target contains no genes besides the ones inside genes variable. _lowercase =sorted({c for c in target if c not in genes}) if not_in_genes_list: _lowercase =f'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(_snake_case) # Generate random starting population. _lowercase =[] for _ in range(_snake_case): population.append(''.join([random.choice(_snake_case) for i in range(len(_snake_case))])) # Just some logs to know what the algorithms is doing. _lowercase , _lowercase =0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_snake_case) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _lowercase =[evaluate(_snake_case , _snake_case) for item in population] # Check if there is a matching evolution. _lowercase =sorted(_snake_case , key=lambda _snake_case: x[1] , reverse=_snake_case) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f'''\nGeneration: {generation}''' f'''\nTotal Population:{total_population}''' f'''\nBest score: {population_score[0][1]}''' f'''\nBest string: {population_score[0][0]}''') # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _lowercase =population[: int(N_POPULATION / 3)] population.clear() population.extend(_snake_case) # Normalize population score to be between 0 and 1. _lowercase =[ (item, score / len(_snake_case)) for item, score in population_score ] # This is selection for i in range(_snake_case): population.extend(select(population_score[int(_snake_case)] , _snake_case , _snake_case)) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_snake_case) > N_POPULATION: break if __name__ == "__main__": _SCREAMING_SNAKE_CASE = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) _SCREAMING_SNAKE_CASE = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
557
0
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : dict[int, list[int]] ): '''simple docstring''' lowerCAmelCase = 0 lowerCAmelCase = len(SCREAMING_SNAKE_CASE ) # No of vertices in graph lowerCAmelCase = [0] * n lowerCAmelCase = [False] * n def dfs(SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Dict ): lowerCAmelCase = True lowerCAmelCase = id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , id_ ) lowerCAmelCase = min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowerCAmelCase = min(low[at] , low[to] ) lowerCAmelCase = [] for i in range(SCREAMING_SNAKE_CASE ): if not visited[i]: dfs(SCREAMING_SNAKE_CASE , -1 , SCREAMING_SNAKE_CASE , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
532
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase = """""" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key lowerCAmelCase = remove_duplicates(key.upper() ) lowerCAmelCase = len(SCREAMING_SNAKE_CASE ) # First fill cipher with key characters lowerCAmelCase = {alphabet[i]: char for i, char in enumerate(SCREAMING_SNAKE_CASE )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(SCREAMING_SNAKE_CASE ) , 26 ): lowerCAmelCase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 lowerCAmelCase = alphabet[i - offset] lowerCAmelCase = char return cipher_alphabet def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : dict[str, str] ): '''simple docstring''' return "".join(cipher_map.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for ch in message.upper() ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : dict[str, str] ): '''simple docstring''' lowerCAmelCase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for ch in message.upper() ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = input("""Enter message to encode or decode: """ ).strip() lowerCAmelCase = input("""Enter keyword: """ ).strip() lowerCAmelCase = input("""Encipher or decipher? E/D:""" ).strip()[0].lower() try: lowerCAmelCase = {"""e""": encipher, """d""": decipher}[option] except KeyError: raise KeyError("""invalid input option""" ) lowerCAmelCase = create_cipher_map(SCREAMING_SNAKE_CASE ) print(func(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
532
1
'''simple docstring''' import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed __UpperCAmelCase :Union[str, Any] = "true" def _a ( _lowercase : int , _lowercase : int=82 , _lowercase : Union[str, Any]=16 ): '''simple docstring''' set_seed(42 ) __UpperCAmelCase : Any = RegressionModel() __UpperCAmelCase : Union[str, Any] = deepcopy(_lowercase ) __UpperCAmelCase : str = RegressionDataset(length=_lowercase ) __UpperCAmelCase : List[str] = DataLoader(_lowercase , batch_size=_lowercase ) model.to(accelerator.device ) __UpperCAmelCase , __UpperCAmelCase : Any = accelerator.prepare(_lowercase , _lowercase ) return model, ddp_model, dataloader def _a ( _lowercase : Accelerator , _lowercase : int=False ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/mrpc-bert-base-cased''' ) __UpperCAmelCase : Optional[int] = load_dataset('''glue''' , '''mrpc''' , split='''validation''' ) def tokenize_function(_lowercase : Union[str, Any] ): __UpperCAmelCase : Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=_lowercase , max_length=_lowercase ) return outputs with accelerator.main_process_first(): __UpperCAmelCase : Optional[int] = dataset.map( _lowercase , batched=_lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) __UpperCAmelCase : Optional[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(_lowercase : Optional[Any] ): if use_longest: return tokenizer.pad(_lowercase , padding='''longest''' , return_tensors='''pt''' ) return tokenizer.pad(_lowercase , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return DataLoader(_lowercase , shuffle=_lowercase , collate_fn=_lowercase , batch_size=16 ) def _a ( _lowercase : str , _lowercase : Dict ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = Accelerator(dispatch_batches=_lowercase , split_batches=_lowercase ) __UpperCAmelCase : Dict = get_dataloader(_lowercase , not dispatch_batches ) __UpperCAmelCase : int = AutoModelForSequenceClassification.from_pretrained( '''hf-internal-testing/mrpc-bert-base-cased''' , return_dict=_lowercase ) __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = accelerator.prepare(_lowercase , _lowercase ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _a ( _lowercase : List[str] , _lowercase : Dict , _lowercase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : List[Any] = [] for batch in dataloader: __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = batch.values() with torch.no_grad(): __UpperCAmelCase : int = model(_lowercase ) __UpperCAmelCase , __UpperCAmelCase : int = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) __UpperCAmelCase , __UpperCAmelCase : Dict = [], [] for logit, targ in logits_and_targets: logits.append(_lowercase ) targs.append(_lowercase ) __UpperCAmelCase , __UpperCAmelCase : Any = torch.cat(_lowercase ), torch.cat(_lowercase ) return logits, targs def _a ( _lowercase : Accelerator , _lowercase : List[Any]=82 , _lowercase : Optional[int]=False , _lowercase : List[Any]=False , _lowercase : Any=16 ): '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = get_basic_setup(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase , __UpperCAmelCase : List[str] = generate_predictions(_lowercase , _lowercase , _lowercase ) assert ( len(_lowercase ) == num_samples ), F'Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(_lowercase )}' def _a ( _lowercase : bool = False , _lowercase : bool = False ): '''simple docstring''' __UpperCAmelCase : str = evaluate.load('''glue''' , '''mrpc''' ) __UpperCAmelCase , __UpperCAmelCase : Optional[int] = get_mrpc_setup(_lowercase , _lowercase ) # First do baseline __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = setup['''no'''] model.to(_lowercase ) model.eval() for batch in dataloader: batch.to(_lowercase ) with torch.inference_mode(): __UpperCAmelCase : Optional[Any] = model(**_lowercase ) __UpperCAmelCase : Dict = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=_lowercase , references=batch['''labels'''] ) __UpperCAmelCase : List[str] = metric.compute() # Then do distributed __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = setup['''ddp'''] model.eval() for batch in dataloader: with torch.inference_mode(): __UpperCAmelCase : Optional[int] = model(**_lowercase ) __UpperCAmelCase : List[Any] = outputs.logits.argmax(dim=-1 ) __UpperCAmelCase : int = batch['''labels'''] __UpperCAmelCase , __UpperCAmelCase : int = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=_lowercase , references=_lowercase ) __UpperCAmelCase : Union[str, Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F'Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n' def _a ( ): '''simple docstring''' __UpperCAmelCase : Dict = Accelerator(split_batches=_lowercase , dispatch_batches=_lowercase ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('''**Testing gather_for_metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`' ) test_mrpc(_lowercase , _lowercase ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test torch metrics**''' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: __UpperCAmelCase : Optional[Any] = Accelerator(split_batches=_lowercase , dispatch_batches=_lowercase ) if accelerator.is_local_main_process: print(F'With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99' ) test_torch_metrics(_lowercase , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('''**Test last batch is not dropped when perfectly divisible**''' ) __UpperCAmelCase : List[str] = Accelerator() test_torch_metrics(_lowercase , 512 ) accelerator.state._reset_state() def _a ( _lowercase : Any ): '''simple docstring''' main() if __name__ == "__main__": main()
266
'''simple docstring''' from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __UpperCAmelCase :Optional[Any] = logging.get_logger(__name__) # General docstring __UpperCAmelCase :List[Any] = "RegNetConfig" # Base docstring __UpperCAmelCase :List[Any] = "facebook/regnet-y-040" __UpperCAmelCase :Union[str, Any] = [1, 1_0_8_8, 7, 7] # Image classification docstring __UpperCAmelCase :int = "facebook/regnet-y-040" __UpperCAmelCase :Optional[Any] = "tabby, tabby cat" __UpperCAmelCase :Dict = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str , snake_case : int , snake_case : int = 3 , snake_case : int = 1 , snake_case : int = 1 , snake_case : Optional[str] = "relu" , **snake_case : Any , ) -> Union[str, Any]: super().__init__(**snake_case ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __UpperCAmelCase : Union[str, Any] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __UpperCAmelCase : List[Any] = tf.keras.layers.ConvaD( filters=snake_case , kernel_size=snake_case , strides=snake_case , padding='''VALID''' , groups=snake_case , use_bias=snake_case , name='''convolution''' , ) __UpperCAmelCase : List[Any] = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) __UpperCAmelCase : Any = ACTaFN[activation] if activation is not None else tf.identity def lowerCamelCase__ ( self : Any , snake_case : List[str] ) -> int: __UpperCAmelCase : Tuple = self.convolution(self.padding(snake_case ) ) __UpperCAmelCase : List[Any] = self.normalization(snake_case ) __UpperCAmelCase : Optional[Any] = self.activation(snake_case ) return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str , snake_case : RegNetConfig , **snake_case : Tuple ) -> int: super().__init__(**snake_case ) __UpperCAmelCase : List[str] = config.num_channels __UpperCAmelCase : Optional[int] = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def lowerCamelCase__ ( self : Optional[int] , snake_case : Dict ) -> int: __UpperCAmelCase : int = shape_list(snake_case )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __UpperCAmelCase : Dict = tf.transpose(snake_case , perm=(0, 2, 3, 1) ) __UpperCAmelCase : List[str] = self.embedder(snake_case ) return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Any , snake_case : int , snake_case : int = 2 , **snake_case : Tuple ) -> str: super().__init__(**snake_case ) __UpperCAmelCase : str = tf.keras.layers.ConvaD( filters=snake_case , kernel_size=1 , strides=snake_case , use_bias=snake_case , name='''convolution''' ) __UpperCAmelCase : int = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='''normalization''' ) def lowerCamelCase__ ( self : str , snake_case : tf.Tensor , snake_case : bool = False ) -> tf.Tensor: return self.normalization(self.convolution(snake_case ) , training=snake_case ) class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Tuple , snake_case : int , snake_case : int , **snake_case : Tuple ) -> List[Any]: super().__init__(**snake_case ) __UpperCAmelCase : List[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case , name='''pooler''' ) __UpperCAmelCase : Dict = [ tf.keras.layers.ConvaD(filters=snake_case , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=snake_case , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def lowerCamelCase__ ( self : Optional[int] , snake_case : Tuple ) -> Union[str, Any]: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __UpperCAmelCase : str = self.pooler(snake_case ) for layer_module in self.attention: __UpperCAmelCase : int = layer_module(snake_case ) __UpperCAmelCase : List[Any] = hidden_state * pooled return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Any , snake_case : RegNetConfig , snake_case : int , snake_case : int , snake_case : int = 1 , **snake_case : int ) -> int: super().__init__(**snake_case ) __UpperCAmelCase : Any = in_channels != out_channels or stride != 1 __UpperCAmelCase : Optional[int] = max(1 , out_channels // config.groups_width ) __UpperCAmelCase : Optional[int] = ( TFRegNetShortCut(snake_case , stride=snake_case , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __UpperCAmelCase : List[Any] = [ TFRegNetConvLayer(snake_case , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( snake_case , stride=snake_case , groups=snake_case , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(snake_case , kernel_size=1 , activation=snake_case , name='''layer.2''' ), ] __UpperCAmelCase : Union[str, Any] = ACTaFN[config.hidden_act] def lowerCamelCase__ ( self : Union[str, Any] , snake_case : Optional[Any] ) -> List[str]: __UpperCAmelCase : Union[str, Any] = hidden_state for layer_module in self.layers: __UpperCAmelCase : Any = layer_module(snake_case ) __UpperCAmelCase : Tuple = self.shortcut(snake_case ) hidden_state += residual __UpperCAmelCase : Optional[int] = self.activation(snake_case ) return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : List[str] , snake_case : RegNetConfig , snake_case : int , snake_case : int , snake_case : int = 1 , **snake_case : List[str] ) -> Optional[int]: super().__init__(**snake_case ) __UpperCAmelCase : List[str] = in_channels != out_channels or stride != 1 __UpperCAmelCase : Optional[Any] = max(1 , out_channels // config.groups_width ) __UpperCAmelCase : Any = ( TFRegNetShortCut(snake_case , stride=snake_case , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) __UpperCAmelCase : List[str] = [ TFRegNetConvLayer(snake_case , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( snake_case , stride=snake_case , groups=snake_case , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(snake_case , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(snake_case , kernel_size=1 , activation=snake_case , name='''layer.3''' ), ] __UpperCAmelCase : Dict = ACTaFN[config.hidden_act] def lowerCamelCase__ ( self : Optional[Any] , snake_case : Tuple ) -> Any: __UpperCAmelCase : Optional[int] = hidden_state for layer_module in self.layers: __UpperCAmelCase : Any = layer_module(snake_case ) __UpperCAmelCase : int = self.shortcut(snake_case ) hidden_state += residual __UpperCAmelCase : Optional[int] = self.activation(snake_case ) return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Optional[int] , snake_case : RegNetConfig , snake_case : int , snake_case : int , snake_case : int = 2 , snake_case : int = 2 , **snake_case : str ) -> Optional[Any]: super().__init__(**snake_case ) __UpperCAmelCase : str = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer __UpperCAmelCase : str = [ # downsampling is done in the first layer with stride of 2 layer(snake_case , snake_case , snake_case , stride=snake_case , name='''layers.0''' ), *[layer(snake_case , snake_case , snake_case , name=f'layers.{i+1}' ) for i in range(depth - 1 )], ] def lowerCamelCase__ ( self : List[str] , snake_case : Any ) -> List[Any]: for layer_module in self.layers: __UpperCAmelCase : Optional[Any] = layer_module(snake_case ) return hidden_state class a ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Any , snake_case : RegNetConfig , **snake_case : int ) -> str: super().__init__(**snake_case ) __UpperCAmelCase : Dict = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( snake_case , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) __UpperCAmelCase : Optional[Any] = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(snake_case , config.depths[1:] ) ): self.stages.append(TFRegNetStage(snake_case , snake_case , snake_case , depth=snake_case , name=f'stages.{i+1}' ) ) def lowerCamelCase__ ( self : int , snake_case : tf.Tensor , snake_case : bool = False , snake_case : bool = True ) -> TFBaseModelOutputWithNoAttention: __UpperCAmelCase : Any = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __UpperCAmelCase : Any = hidden_states + (hidden_state,) __UpperCAmelCase : List[Any] = stage_module(snake_case ) if output_hidden_states: __UpperCAmelCase : Optional[Any] = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=snake_case , hidden_states=snake_case ) @keras_serializable class a ( tf.keras.layers.Layer ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = RegNetConfig def __init__( self : Dict , snake_case : str , **snake_case : Optional[int] ) -> Any: super().__init__(**snake_case ) __UpperCAmelCase : List[Any] = config __UpperCAmelCase : List[str] = TFRegNetEmbeddings(snake_case , name='''embedder''' ) __UpperCAmelCase : List[str] = TFRegNetEncoder(snake_case , name='''encoder''' ) __UpperCAmelCase : List[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=snake_case , name='''pooler''' ) @unpack_inputs def lowerCamelCase__ ( self : Dict , snake_case : tf.Tensor , snake_case : Optional[bool] = None , snake_case : Optional[bool] = None , snake_case : bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: __UpperCAmelCase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : Optional[Any] = self.embedder(snake_case , training=snake_case ) __UpperCAmelCase : Optional[int] = self.encoder( snake_case , output_hidden_states=snake_case , return_dict=snake_case , training=snake_case ) __UpperCAmelCase : List[str] = encoder_outputs[0] __UpperCAmelCase : str = self.pooler(snake_case ) # Change to NCHW output format have uniformity in the modules __UpperCAmelCase : Optional[Any] = tf.transpose(snake_case , perm=(0, 3, 1, 2) ) __UpperCAmelCase : str = tf.transpose(snake_case , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __UpperCAmelCase : Dict = tuple([tf.transpose(snake_case , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=snake_case , pooler_output=snake_case , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class a ( _a ): """simple docstring""" SCREAMING_SNAKE_CASE : str = RegNetConfig SCREAMING_SNAKE_CASE : Tuple = "regnet" SCREAMING_SNAKE_CASE : List[Any] = "pixel_values" @property def lowerCamelCase__ ( self : int ) -> List[str]: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} __UpperCAmelCase :Optional[int] = r"\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n" __UpperCAmelCase :List[Any] = r"\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare RegNet model outputting raw features without any specific head on top." , _a , ) class a ( _a ): """simple docstring""" def __init__( self : List[Any] , snake_case : RegNetConfig , *snake_case : Optional[int] , **snake_case : List[str] ) -> Tuple: super().__init__(snake_case , *snake_case , **snake_case ) __UpperCAmelCase : Dict = TFRegNetMainLayer(snake_case , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(snake_case ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCamelCase__ ( self : Tuple , snake_case : tf.Tensor , snake_case : Optional[bool] = None , snake_case : Optional[bool] = None , snake_case : str=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: __UpperCAmelCase : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : List[str] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : Dict = self.regnet( pixel_values=snake_case , output_hidden_states=snake_case , return_dict=snake_case , training=snake_case , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( "\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _a , ) class a ( _a , _a ): """simple docstring""" def __init__( self : Tuple , snake_case : RegNetConfig , *snake_case : Optional[Any] , **snake_case : List[Any] ) -> List[Any]: super().__init__(snake_case , *snake_case , **snake_case ) __UpperCAmelCase : List[Any] = config.num_labels __UpperCAmelCase : Optional[int] = TFRegNetMainLayer(snake_case , name='''regnet''' ) # classification head __UpperCAmelCase : str = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(snake_case ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCamelCase__ ( self : Tuple , snake_case : tf.Tensor = None , snake_case : tf.Tensor = None , snake_case : bool = None , snake_case : bool = None , snake_case : Tuple=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: __UpperCAmelCase : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : Optional[int] = self.regnet( snake_case , output_hidden_states=snake_case , return_dict=snake_case , training=snake_case ) __UpperCAmelCase : str = outputs.pooler_output if return_dict else outputs[1] __UpperCAmelCase : Tuple = self.classifier[0](snake_case ) __UpperCAmelCase : Tuple = self.classifier[1](snake_case ) __UpperCAmelCase : Any = None if labels is None else self.hf_compute_loss(labels=snake_case , logits=snake_case ) if not return_dict: __UpperCAmelCase : List[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=snake_case , logits=snake_case , hidden_states=outputs.hidden_states )
266
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE = { """configuration_convnext""": ["""CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvNextConfig""", """ConvNextOnnxConfig"""] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["""ConvNextFeatureExtractor"""] SCREAMING_SNAKE_CASE = ["""ConvNextImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ """CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvNextForImageClassification""", """ConvNextModel""", """ConvNextPreTrainedModel""", """ConvNextBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ """TFConvNextForImageClassification""", """TFConvNextModel""", """TFConvNextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
199
'''simple docstring''' import json import os import tempfile import unittest import numpy as np from datasets import load_dataset from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ImageGPTImageProcessor class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , snake_case__ : int , snake_case__ : Optional[Any]=7 , snake_case__ : Tuple=3 , snake_case__ : Optional[Any]=18 , snake_case__ : Dict=30 , snake_case__ : Optional[int]=4_00 , snake_case__ : str=True , snake_case__ : str=None , snake_case__ : Optional[int]=True , ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = size if size is not None else {"height": 18, "width": 18} UpperCAmelCase__ : List[str] = parent UpperCAmelCase__ : Union[str, Any] = batch_size UpperCAmelCase__ : List[str] = num_channels UpperCAmelCase__ : List[Any] = image_size UpperCAmelCase__ : Tuple = min_resolution UpperCAmelCase__ : Optional[int] = max_resolution UpperCAmelCase__ : Any = do_resize UpperCAmelCase__ : Any = size UpperCAmelCase__ : int = do_normalize def UpperCamelCase ( self : List[str] ): '''simple docstring''' return { # here we create 2 clusters for the sake of simplicity "clusters": np.asarray( [ [0.8866443634033203, 0.6618829369544983, 0.3891746401786804], [-0.6042559146881104, -0.02295008860528469, 0.5423797369003296], ] ), "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, } @require_torch @require_vision class UpperCAmelCase_ ( A , unittest.TestCase ): '''simple docstring''' lowercase_ : Any = ImageGPTImageProcessor if is_vision_available() else None def UpperCamelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[str] = ImageGPTImageProcessingTester(self ) @property def UpperCamelCase ( self : List[Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "clusters" ) ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) def UpperCamelCase ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : str = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) UpperCAmelCase__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def UpperCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) UpperCAmelCase__ : List[str] = json.loads(image_processor.to_json_string() ) for key, value in self.image_processor_dict.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case__ , obj[key] ) ) else: self.assertEqual(obj[key] , snake_case__ ) def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ : Union[str, Any] = os.path.join(snake_case__ , "image_processor.json" ) image_processor_first.to_json_file(snake_case__ ) UpperCAmelCase__ : Any = self.image_processing_class.from_json_file(snake_case__ ).to_dict() UpperCAmelCase__ : Union[str, Any] = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , snake_case__ ) def UpperCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = self.image_processing_class(**self.image_processor_dict ) with tempfile.TemporaryDirectory() as tmpdirname: image_processor_first.save_pretrained(snake_case__ ) UpperCAmelCase__ : List[str] = self.image_processing_class.from_pretrained(snake_case__ ).to_dict() UpperCAmelCase__ : Tuple = image_processor_first.to_dict() for key, value in image_processor_first.items(): if key == "clusters": self.assertTrue(np.array_equal(snake_case__ , image_processor_second[key] ) ) else: self.assertEqual(image_processor_first[key] , snake_case__ ) @unittest.skip("ImageGPT requires clusters at initialization" ) def UpperCamelCase ( self : List[Any] ): '''simple docstring''' pass def snake_case_ ( ): UpperCAmelCase__ : List[str] = load_dataset("hf-internal-testing/fixtures_image_utils" , split="test" ) UpperCAmelCase__ : Tuple = Image.open(dataset[4]["file"] ) UpperCAmelCase__ : List[Any] = Image.open(dataset[5]["file"] ) UpperCAmelCase__ : Optional[Any] = [imagea, imagea] return images @require_vision @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Dict = ImageGPTImageProcessor.from_pretrained("openai/imagegpt-small" ) UpperCAmelCase__ : Union[str, Any] = prepare_images() # test non-batched UpperCAmelCase__ : Optional[Any] = image_processing(images[0] , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (1, 10_24) ) UpperCAmelCase__ : Union[str, Any] = [3_06, 1_91, 1_91] self.assertEqual(encoding.input_ids[0, :3].tolist() , snake_case__ ) # test batched UpperCAmelCase__ : List[Any] = image_processing(snake_case__ , return_tensors="pt" ) self.assertIsInstance(encoding.input_ids , torch.LongTensor ) self.assertEqual(encoding.input_ids.shape , (2, 10_24) ) UpperCAmelCase__ : List[str] = [3_03, 13, 13] self.assertEqual(encoding.input_ids[1, -3:].tolist() , snake_case__ )
199
1
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class _lowerCamelCase: def UpperCamelCase ( self, lowerCamelCase) -> List[Any]: """simple docstring""" raise NotImplementedError() def UpperCamelCase ( self) -> Tuple: """simple docstring""" raise NotImplementedError() class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase = False, **lowerCamelCase) -> Union[str, Any]: """simple docstring""" _lowercase : Optional[Any] = tokenizer _lowercase : List[Any] = skip_prompt _lowercase : str = decode_kwargs # variables used in the streaming process _lowercase : List[str] = [] _lowercase : List[str] = 0 _lowercase : Optional[int] = True def UpperCamelCase ( self, lowerCamelCase) -> Dict: """simple docstring""" if len(value.shape) > 1 and value.shape[0] > 1: raise ValueError('TextStreamer only supports batch size 1') elif len(value.shape) > 1: _lowercase : Dict = value[0] if self.skip_prompt and self.next_tokens_are_prompt: _lowercase : List[Any] = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist()) _lowercase : Union[str, Any] = self.tokenizer.decode(self.token_cache, **self.decode_kwargs) # After the symbol for a new line, we flush the cache. if text.endswith('\n'): _lowercase : str = text[self.print_len :] _lowercase : str = [] _lowercase : Dict = 0 # If the last token is a CJK character, we print the characters. elif len(_lowerCAmelCase) > 0 and self._is_chinese_char(ord(text[-1])): _lowercase : int = text[self.print_len :] self.print_len += len(_lowerCAmelCase) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _lowercase : Dict = text[self.print_len : text.rfind(' ') + 1] self.print_len += len(_lowerCAmelCase) self.on_finalized_text(_lowerCAmelCase) def UpperCamelCase ( self) -> List[Any]: """simple docstring""" if len(self.token_cache) > 0: _lowercase : Dict = self.tokenizer.decode(self.token_cache, **self.decode_kwargs) _lowercase : Tuple = text[self.print_len :] _lowercase : List[str] = [] _lowercase : Dict = 0 else: _lowercase : Dict = '' _lowercase : str = True self.on_finalized_text(_lowerCAmelCase, stream_end=_lowerCAmelCase) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = False) -> Tuple: """simple docstring""" print(_lowerCAmelCase, flush=_lowerCAmelCase, end='' if not stream_end else None) def UpperCamelCase ( self, lowerCamelCase) -> int: """simple docstring""" if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False class _lowerCamelCase( _a ): def __init__( self, lowerCamelCase, lowerCamelCase = False, lowerCamelCase = None, **lowerCamelCase) -> Tuple: """simple docstring""" super().__init__(_lowerCAmelCase, _lowerCAmelCase, **_lowerCAmelCase) _lowercase : Dict = Queue() _lowercase : Optional[int] = None _lowercase : Optional[int] = timeout def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase = False) -> Optional[int]: """simple docstring""" self.text_queue.put(_lowerCAmelCase, timeout=self.timeout) if stream_end: self.text_queue.put(self.stop_signal, timeout=self.timeout) def __iter__( self) -> Union[str, Any]: """simple docstring""" return self def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Tuple = self.text_queue.get(timeout=self.timeout) if value == self.stop_signal: raise StopIteration() else: return value
709
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( 'files' , [ ['full:README.md', 'dataset_infos.json'], ['empty:README.md', 'dataset_infos.json'], ['dataset_infos.json'], ['full:README.md'], ] , ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: _lowercase : Any = tmp_path_factory.mktemp('dset_infos_dir' ) if "full:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('---\ndataset_info:\n dataset_size: 42\n---' ) if "empty:README.md" in files: with open(dataset_infos_dir / 'README.md' , 'w' ) as f: f.write('' ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / 'dataset_infos.json' , 'w' ) as f: f.write('{"default": {"dataset_size": 42}}' ) _lowercase : Any = DatasetInfosDict.from_directory(lowerCamelCase_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( 'dataset_info' , [ DatasetInfo(), DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ), ] , ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: _lowercase : Union[str, Any] = str(lowerCamelCase_ ) dataset_info.write_to_directory(lowerCamelCase_ ) _lowercase : List[str] = DatasetInfo.from_directory(lowerCamelCase_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(lowerCamelCase_ , 'dataset_info.json' ) ) def UpperCamelCase_( ) -> int: _lowercase : Tuple = DatasetInfo( description='foo' , citation='bar' , homepage='https://foo.bar' , license='CC0' , features=Features({'a': Value('int32' )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train', 'num_examples': 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , ) _lowercase : Optional[int] = dataset_info._to_yaml_dict() assert sorted(lowerCamelCase_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) ) _lowercase : str = yaml.safe_dump(lowerCamelCase_ ) _lowercase : str = yaml.safe_load(lowerCamelCase_ ) assert dataset_info_yaml_dict == reloaded def UpperCamelCase_( ) -> int: _lowercase : Tuple = DatasetInfo() _lowercase : Tuple = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( 'dataset_infos_dict' , [ DatasetInfosDict(), DatasetInfosDict({'default': DatasetInfo()} ), DatasetInfosDict({'my_config_name': DatasetInfo()} ), DatasetInfosDict( { 'default': DatasetInfo( description='foo' , features=Features({'a': Value('int32' )} ) , builder_name='builder' , config_name='config' , version='1.0.0' , splits=[{'name': 'train'}] , download_size=42 , ) } ), DatasetInfosDict( { 'v1': DatasetInfo(dataset_size=42 ), 'v2': DatasetInfo(dataset_size=1337 ), } ), ] , ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Dict: _lowercase : Tuple = str(lowerCamelCase_ ) dataset_infos_dict.write_to_directory(lowerCamelCase_ ) _lowercase : Tuple = DatasetInfosDict.from_directory(lowerCamelCase_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _lowercase : Any = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _lowercase : str = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(lowerCamelCase_ , 'README.md' ) )
354
0
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 / sqrt(2 ) ) -> IIRFilter: SCREAMING_SNAKE_CASE__ = tau * frequency / samplerate SCREAMING_SNAKE_CASE__ = sin(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = cos(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE__ = (1 - _cos) / 2 SCREAMING_SNAKE_CASE__ = 1 - _cos SCREAMING_SNAKE_CASE__ = 1 + alpha SCREAMING_SNAKE_CASE__ = -2 * _cos SCREAMING_SNAKE_CASE__ = 1 - alpha SCREAMING_SNAKE_CASE__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 / sqrt(2 ) ) -> IIRFilter: SCREAMING_SNAKE_CASE__ = tau * frequency / samplerate SCREAMING_SNAKE_CASE__ = sin(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = cos(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE__ = (1 + _cos) / 2 SCREAMING_SNAKE_CASE__ = -1 - _cos SCREAMING_SNAKE_CASE__ = 1 + alpha SCREAMING_SNAKE_CASE__ = -2 * _cos SCREAMING_SNAKE_CASE__ = 1 - alpha SCREAMING_SNAKE_CASE__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 / sqrt(2 ) ) -> IIRFilter: SCREAMING_SNAKE_CASE__ = tau * frequency / samplerate SCREAMING_SNAKE_CASE__ = sin(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = cos(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE__ = _sin / 2 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = -ba SCREAMING_SNAKE_CASE__ = 1 + alpha SCREAMING_SNAKE_CASE__ = -2 * _cos SCREAMING_SNAKE_CASE__ = 1 - alpha SCREAMING_SNAKE_CASE__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 / sqrt(2 ) ) -> IIRFilter: SCREAMING_SNAKE_CASE__ = tau * frequency / samplerate SCREAMING_SNAKE_CASE__ = sin(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = cos(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE__ = 1 - alpha SCREAMING_SNAKE_CASE__ = -2 * _cos SCREAMING_SNAKE_CASE__ = 1 + alpha SCREAMING_SNAKE_CASE__ = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 / sqrt(2 ) , ) -> IIRFilter: SCREAMING_SNAKE_CASE__ = tau * frequency / samplerate SCREAMING_SNAKE_CASE__ = sin(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = cos(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE__ = 10 ** (gain_db / 40) SCREAMING_SNAKE_CASE__ = 1 + alpha * big_a SCREAMING_SNAKE_CASE__ = -2 * _cos SCREAMING_SNAKE_CASE__ = 1 - alpha * big_a SCREAMING_SNAKE_CASE__ = 1 + alpha / big_a SCREAMING_SNAKE_CASE__ = -2 * _cos SCREAMING_SNAKE_CASE__ = 1 - alpha / big_a SCREAMING_SNAKE_CASE__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 / sqrt(2 ) , ) -> IIRFilter: SCREAMING_SNAKE_CASE__ = tau * frequency / samplerate SCREAMING_SNAKE_CASE__ = sin(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = cos(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE__ = 10 ** (gain_db / 40) SCREAMING_SNAKE_CASE__ = (big_a + 1) - (big_a - 1) * _cos SCREAMING_SNAKE_CASE__ = (big_a + 1) + (big_a - 1) * _cos SCREAMING_SNAKE_CASE__ = (big_a - 1) - (big_a + 1) * _cos SCREAMING_SNAKE_CASE__ = (big_a - 1) + (big_a + 1) * _cos SCREAMING_SNAKE_CASE__ = 2 * sqrt(__UpperCAmelCase ) * alpha SCREAMING_SNAKE_CASE__ = big_a * (pmc + aaa) SCREAMING_SNAKE_CASE__ = 2 * big_a * mpc SCREAMING_SNAKE_CASE__ = big_a * (pmc - aaa) SCREAMING_SNAKE_CASE__ = ppmc + aaa SCREAMING_SNAKE_CASE__ = -2 * pmpc SCREAMING_SNAKE_CASE__ = ppmc - aaa SCREAMING_SNAKE_CASE__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 / sqrt(2 ) , ) -> IIRFilter: SCREAMING_SNAKE_CASE__ = tau * frequency / samplerate SCREAMING_SNAKE_CASE__ = sin(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = cos(__UpperCAmelCase ) SCREAMING_SNAKE_CASE__ = _sin / (2 * q_factor) SCREAMING_SNAKE_CASE__ = 10 ** (gain_db / 40) SCREAMING_SNAKE_CASE__ = (big_a + 1) - (big_a - 1) * _cos SCREAMING_SNAKE_CASE__ = (big_a + 1) + (big_a - 1) * _cos SCREAMING_SNAKE_CASE__ = (big_a - 1) - (big_a + 1) * _cos SCREAMING_SNAKE_CASE__ = (big_a - 1) + (big_a + 1) * _cos SCREAMING_SNAKE_CASE__ = 2 * sqrt(__UpperCAmelCase ) * alpha SCREAMING_SNAKE_CASE__ = big_a * (ppmc + aaa) SCREAMING_SNAKE_CASE__ = -2 * big_a * pmpc SCREAMING_SNAKE_CASE__ = big_a * (ppmc - aaa) SCREAMING_SNAKE_CASE__ = pmc + aaa SCREAMING_SNAKE_CASE__ = 2 * mpc SCREAMING_SNAKE_CASE__ = pmc - aaa SCREAMING_SNAKE_CASE__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
159
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _A = { 'configuration_squeezebert': [ 'SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SqueezeBertConfig', 'SqueezeBertOnnxConfig', ], 'tokenization_squeezebert': ['SqueezeBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ['SqueezeBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'SqueezeBertForMaskedLM', 'SqueezeBertForMultipleChoice', 'SqueezeBertForQuestionAnswering', 'SqueezeBertForSequenceClassification', 'SqueezeBertForTokenClassification', 'SqueezeBertModel', 'SqueezeBertModule', 'SqueezeBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
159
1
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : """simple docstring""" def __init__( self : str , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[str]=13 , lowerCamelCase__ : Union[str, Any]=30 , lowerCamelCase__ : int=2 , lowerCamelCase__ : str=3 , lowerCamelCase__ : Any=True , lowerCamelCase__ : str=True , lowerCamelCase__ : Any=32 , lowerCamelCase__ : str=5 , lowerCamelCase__ : List[str]=4 , lowerCamelCase__ : List[str]=37 , lowerCamelCase__ : Optional[Any]="gelu" , lowerCamelCase__ : int=0.1 , lowerCamelCase__ : Union[str, Any]=0.1 , lowerCamelCase__ : List[str]=10 , lowerCamelCase__ : int=0.0_2 , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Dict=0.6 , lowerCamelCase__ : str=None , ) -> str: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = is_training __lowercase = use_labels __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = mask_ratio __lowercase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) __lowercase = (image_size // patch_size) ** 2 __lowercase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = self.get_config() return config, pixel_values, labels def UpperCAmelCase_ ( self : Optional[Any] ) -> str: """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCAmelCase_ ( self : str , lowerCamelCase__ : str , lowerCamelCase__ : Tuple , lowerCamelCase__ : Tuple ) -> Dict: """simple docstring""" __lowercase = ViTMAEModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self : Dict , lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : int ) -> str: """simple docstring""" __lowercase = ViTMAEForPreTraining(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = model(lowerCamelCase__ ) __lowercase = (self.image_size // self.patch_size) ** 2 __lowercase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images __lowercase = 1 __lowercase = ViTMAEForPreTraining(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __lowercase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowercase = model(lowerCamelCase__ ) __lowercase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class a ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCamelCase_ : int = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () UpperCamelCase_ : Optional[int] = {'feature-extraction': ViTMAEModel} if is_torch_available() else {} UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : Any = False def UpperCAmelCase_ ( self : Tuple ) -> int: """simple docstring""" __lowercase = ViTMAEModelTester(self ) __lowercase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[Any]: """simple docstring""" pass def UpperCAmelCase_ ( self : str ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowercase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def UpperCAmelCase_ ( self : Dict ) -> Any: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCamelCase__ ) __lowercase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase = [*signature.parameters.keys()] __lowercase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def UpperCAmelCase_ ( self : Dict ) -> Tuple: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def UpperCAmelCase_ ( self : List[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase__ ) def UpperCAmelCase_ ( self : Optional[int] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Any ) -> str: """simple docstring""" np.random.seed(2 ) __lowercase = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) __lowercase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) __lowercase = torch.from_numpy(lowerCamelCase__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument __lowercase = pt_noise super().check_pt_tf_models(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase_ ( self : int ) -> Any: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __lowercase = outputs[0].cpu().numpy() __lowercase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase__ ) __lowercase = model_class.from_pretrained(lowerCamelCase__ ) model.to(lowerCamelCase__ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): __lowercase = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) # Make sure we don't have nans __lowercase = after_outputs[0].cpu().numpy() __lowercase = 0 __lowercase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase__ , 1e-5 ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase_ ( self : Tuple ) -> Optional[Any]: """simple docstring""" pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: """simple docstring""" pass @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def UpperCAmelCase_ ( self : int ) -> Optional[int]: """simple docstring""" pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase_ ( self : Tuple ) -> Any: """simple docstring""" pass @slow def UpperCAmelCase_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = ViTMAEModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _A( ) -> List[str]: '''simple docstring''' __lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class a ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def UpperCAmelCase_ ( self : Tuple ) -> List[str]: """simple docstring""" np.random.seed(2 ) __lowercase = ViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ).to(lowerCamelCase__ ) __lowercase = self.default_image_processor __lowercase = prepare_img() __lowercase = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) __lowercase = ViTMAEConfig() __lowercase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) __lowercase = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): __lowercase = model(**lowerCamelCase__ , noise=torch.from_numpy(lowerCamelCase__ ).to(device=lowerCamelCase__ ) ) # verify the logits __lowercase = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) __lowercase = torch.tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(lowerCamelCase__ ) , atol=1e-4 ) )
705
import itertools import string from collections.abc import Generator, Iterable def _A( UpperCamelCase__ : Iterable[str] , UpperCamelCase__ : int ) -> Generator[tuple[str, ...], None, None]: '''simple docstring''' __lowercase = iter(UpperCamelCase__ ) while True: __lowercase = tuple(itertools.islice(UpperCamelCase__ , UpperCamelCase__ ) ) if not chunk: return yield chunk def _A( UpperCamelCase__ : str ) -> str: '''simple docstring''' __lowercase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) __lowercase = '''''' if len(UpperCamelCase__ ) < 2: return dirty for i in range(len(UpperCamelCase__ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(UpperCamelCase__ ) & 1: clean += "X" return clean def _A( UpperCamelCase__ : str ) -> list[str]: '''simple docstring''' __lowercase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler __lowercase = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(UpperCamelCase__ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(UpperCamelCase__ ) return table def _A( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> str: '''simple docstring''' __lowercase = generate_table(UpperCamelCase__ ) __lowercase = prepare_input(UpperCamelCase__ ) __lowercase = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCamelCase__ , 2 ): __lowercase , __lowercase = divmod(table.index(UpperCamelCase__ ) , 5 ) __lowercase , __lowercase = divmod(table.index(UpperCamelCase__ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _A( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> str: '''simple docstring''' __lowercase = generate_table(UpperCamelCase__ ) __lowercase = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCamelCase__ , 2 ): __lowercase , __lowercase = divmod(table.index(UpperCamelCase__ ) , 5 ) __lowercase , __lowercase = divmod(table.index(UpperCamelCase__ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
362
0
from __future__ import annotations snake_case : Optional[int] = [True] * 1_000_001 snake_case : Tuple = 2 while i * i <= 1_000_000: if seive[i]: for j in range(i * i, 1_000_001, i): snake_case : List[Any] = False i += 1 def lowerCAmelCase_ ( _snake_case : int ) -> bool: '''simple docstring''' return seive[n] def lowerCAmelCase_ ( _snake_case : int ) -> bool: '''simple docstring''' return any(digit in "02468" for digit in str(_snake_case ) ) def lowerCAmelCase_ ( _snake_case : int = 1000000 ) -> list[int]: '''simple docstring''' __magic_name__ : Any = [2] # result already includes the number 2. for num in range(3 , limit + 1 , 2 ): if is_prime(_snake_case ) and not contains_an_even_digit(_snake_case ): __magic_name__ : Tuple = str(_snake_case ) __magic_name__ : List[Any] = [int(str_num[j:] + str_num[:j] ) for j in range(len(_snake_case ) )] if all(is_prime(_snake_case ) for i in list_nums ): result.append(_snake_case ) return result def lowerCAmelCase_ ( ) -> int: '''simple docstring''' return len(find_circular_primes() ) if __name__ == "__main__": print(F"{len(find_circular_primes()) = }")
124
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _snake_case ( snake_case , unittest.TestCase ): UpperCamelCase__ = DiTPipeline UpperCamelCase__ = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS UpperCamelCase__ = PipelineTesterMixin.required_optional_params - { 'latents', 'num_images_per_prompt', 'callback', 'callback_steps', } UpperCamelCase__ = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS UpperCamelCase__ = False def SCREAMING_SNAKE_CASE ( self ): torch.manual_seed(0 ) __magic_name__ : Tuple = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_a , activation_fn="gelu-approximate" , num_embeds_ada_norm=1_000 , norm_type="ada_norm_zero" , norm_elementwise_affine=_a , ) __magic_name__ : int = AutoencoderKL() __magic_name__ : str = DDIMScheduler() __magic_name__ : int = {"transformer": transformer.eval(), "vae": vae.eval(), "scheduler": scheduler} return components def SCREAMING_SNAKE_CASE ( self , _a , _a=0 ): if str(_a ).startswith("mps" ): __magic_name__ : str = torch.manual_seed(_a ) else: __magic_name__ : Optional[Any] = torch.Generator(device=_a ).manual_seed(_a ) __magic_name__ : Dict = { "class_labels": [1], "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = "cpu" __magic_name__ : Optional[int] = self.get_dummy_components() __magic_name__ : Any = self.pipeline_class(**_a ) pipe.to(_a ) pipe.set_progress_bar_config(disable=_a ) __magic_name__ : Tuple = self.get_dummy_inputs(_a ) __magic_name__ : Any = pipe(**_a ).images __magic_name__ : List[str] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) __magic_name__ : List[Any] = np.array([0.29_46, 0.66_01, 0.43_29, 0.32_96, 0.41_44, 0.53_19, 0.72_73, 0.50_13, 0.44_57] ) __magic_name__ : Union[str, Any] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_a , 1e-3 ) def SCREAMING_SNAKE_CASE ( self ): self._test_inference_batch_single_identical(relax_max_difference=_a , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def SCREAMING_SNAKE_CASE ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Optional[Any] = torch.manual_seed(0 ) __magic_name__ : Optional[int] = DiTPipeline.from_pretrained("facebook/DiT-XL-2-256" ) pipe.to("cuda" ) __magic_name__ : int = ["vase", "umbrella", "white shark", "white wolf"] __magic_name__ : str = pipe.get_label_ids(_a ) __magic_name__ : Dict = pipe(_a , generator=_a , num_inference_steps=40 , output_type="np" ).images for word, image in zip(_a , _a ): __magic_name__ : int = load_numpy( f'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-2 def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : str = DiTPipeline.from_pretrained("facebook/DiT-XL-2-512" ) __magic_name__ : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("cuda" ) __magic_name__ : List[str] = ["vase", "umbrella"] __magic_name__ : Any = pipe.get_label_ids(_a ) __magic_name__ : List[str] = torch.manual_seed(0 ) __magic_name__ : Optional[Any] = pipe(_a , generator=_a , num_inference_steps=25 , output_type="np" ).images for word, image in zip(_a , _a ): __magic_name__ : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" f'''/dit/{word}_512.npy''' ) assert np.abs((expected_image - image).max() ) < 1e-1
124
1
from __future__ import annotations import requests _lowerCAmelCase = set( "approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split() ) def _snake_case ( __snake_case , __snake_case = 1 , __snake_case = "new" , __snake_case = None ): _UpperCamelCase = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(__snake_case ) - valid_terms ) ): _UpperCamelCase = f"""Invalid search term: {invalid_search_terms}""" raise ValueError(__snake_case ) _UpperCamelCase = requests.get( f"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 429: raise requests.HTTPError _UpperCamelCase = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(__snake_case )} _UpperCamelCase = {} for id_ in range(__snake_case ): _UpperCamelCase = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
71
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = (DPMSolverSDEScheduler,) UpperCAmelCase = 10 def UpperCamelCase_ ( self : Tuple , **_A : Union[str, Any] ): _UpperCamelCase = { '''num_train_timesteps''': 1100, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''noise_sampler_seed''': 0, } config.update(**_A ) return config def UpperCamelCase_ ( self : List[Any] ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_A ) def UpperCamelCase_ ( self : List[Any] ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_A , beta_end=_A ) def UpperCamelCase_ ( self : List[str] ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_A ) def UpperCamelCase_ ( self : Union[str, Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_A ) def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(_A ) for i, t in enumerate(scheduler.timesteps ): _UpperCamelCase = scheduler.scale_model_input(_A , _A ) _UpperCamelCase = model(_A , _A ) _UpperCamelCase = scheduler.step(_A , _A , _A ) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47_8210_4492_1875 ) < 1e-2 assert abs(result_mean.item() - 0.2178_7059_6456_5277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3521_1181_6406 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9068_9229_9652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) _UpperCamelCase = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma _UpperCamelCase = sample.to(_A ) for i, t in enumerate(scheduler.timesteps ): _UpperCamelCase = scheduler.scale_model_input(_A , _A ) _UpperCamelCase = model(_A , _A ) _UpperCamelCase = scheduler.step(_A , _A , _A ) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77_1492_0043_9453 ) < 1e-2 assert abs(result_mean.item() - 0.1_6226_2890_1481_6284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1_6633_6059_5703 ) < 1e-2 assert abs(result_mean.item() - 0.1_6688_3260_0116_7297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8_4875_4882_8125 ) < 1e-2 assert abs(result_mean.item() - 0.1560_5306_6253_6621 ) < 1e-3 def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A ) scheduler.set_timesteps(self.num_inference_steps , device=_A ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(_A ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(_A , _A ) _UpperCamelCase = model(_A , _A ) _UpperCamelCase = scheduler.step(_A , _A , _A ) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46_9573_9746_0938 ) < 1e-2 assert abs(result_mean.item() - 0.2_1805_9346_0798_2635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59_3536_3769_5312 ) < 1e-2 assert abs(result_mean.item() - 0.2_2342_9083_8241_5771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52_3834_2285_1562 ) < 1e-2 assert abs(result_mean.item() - 0.211_6195_7085_1326 ) < 1e-3 def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = self.scheduler_classes[0] _UpperCamelCase = self.get_scheduler_config() _UpperCamelCase = scheduler_class(**_A , use_karras_sigmas=_A ) scheduler.set_timesteps(self.num_inference_steps , device=_A ) _UpperCamelCase = self.dummy_model() _UpperCamelCase = self.dummy_sample_deter.to(_A ) * scheduler.init_noise_sigma _UpperCamelCase = sample.to(_A ) for t in scheduler.timesteps: _UpperCamelCase = scheduler.scale_model_input(_A , _A ) _UpperCamelCase = model(_A , _A ) _UpperCamelCase = scheduler.step(_A , _A , _A ) _UpperCamelCase = output.prev_sample _UpperCamelCase = torch.sum(torch.abs(_A ) ) _UpperCamelCase = torch.mean(torch.abs(_A ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66_9741_3574_2188 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63_6535_6445_3125 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3_1352_2338_8672 ) < 1e-2 assert abs(result_mean.item() - 0.2_3003_8727_3098_1811 ) < 1e-2
71
1
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __snake_case = 16 __snake_case = 32 def a ( __a , __a = 16 , __a = "bert-base-cased" ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :List[str] = AutoTokenizer.from_pretrained(__a ) UpperCamelCase__ :List[str] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__a ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ :Optional[int] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase__ :List[Any] = datasets.map( __a , batched=__a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=__a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase__ :List[str] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__a ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__a , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(__a , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. UpperCamelCase__ :Union[str, Any] = DataLoader( tokenized_datasets['''train'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) UpperCamelCase__ :List[Any] = DataLoader( tokenized_datasets['''validation'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader def a ( __a , __a , __a , __a ) -> List[str]: '''simple docstring''' model.eval() UpperCamelCase__ :Optional[Any] = 0 for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase__ :Tuple = model(**__a ) UpperCamelCase__ :Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCamelCase__ , UpperCamelCase__ :Dict = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__a ) - 1: UpperCamelCase__ :str = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase__ :List[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__a , references=__a , ) UpperCamelCase__ :Union[str, Any] = metric.compute() return eval_metric["accuracy"] def a ( __a , __a ) -> List[str]: '''simple docstring''' UpperCamelCase__ :Optional[int] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase__ :str = config['''lr'''] UpperCamelCase__ :str = int(config['''num_epochs'''] ) UpperCamelCase__ :Any = int(config['''seed'''] ) UpperCamelCase__ :Union[str, Any] = int(config['''batch_size'''] ) UpperCamelCase__ :List[str] = args.model_name_or_path set_seed(__a ) UpperCamelCase__ , UpperCamelCase__ :int = get_dataloaders(__a , __a , __a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase__ :Any = AutoModelForSequenceClassification.from_pretrained(__a , return_dict=__a ) # Instantiate optimizer UpperCamelCase__ :Dict = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase__ :Any = optimizer_cls(params=model.parameters() , lr=__a ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase__ :Dict = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: UpperCamelCase__ :Optional[int] = 1 UpperCamelCase__ :Any = (len(__a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase__ :List[str] = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=0 , num_training_steps=__a , ) else: UpperCamelCase__ :Any = DummyScheduler(__a , total_num_steps=__a , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :List[str] = accelerator.prepare( __a , __a , __a , __a , __a ) # We need to keep track of how many total steps we have iterated over UpperCamelCase__ :Dict = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase__ :List[Any] = 0 UpperCamelCase__ :str = evaluate.load('''glue''' , '''mrpc''' ) UpperCamelCase__ :Any = num_epochs if args.partial_train_epoch is not None: UpperCamelCase__ :Any = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCamelCase__ :Union[str, Any] = args.resume_from_checkpoint.split('''epoch_''' )[1] UpperCamelCase__ :List[Any] = '''''' for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCamelCase__ :int = int(__a ) + 1 UpperCamelCase__ :Union[str, Any] = evaluation_loop(__a , __a , __a , __a ) accelerator.print('''resumed checkpoint performance:''' , __a ) accelerator.print('''resumed checkpoint\'s scheduler\'s lr:''' , lr_scheduler.get_lr()[0] ) accelerator.print('''resumed optimizers\'s lr:''' , optimizer.param_groups[0]['''lr'''] ) with open(os.path.join(args.output_dir , f'''state_{starting_epoch-1}.json''' ) , '''r''' ) as f: UpperCamelCase__ :Any = json.load(__a ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCamelCase__ :Optional[int] = {} for epoch in range(__a , __a ): model.train() for step, batch in enumerate(__a ): UpperCamelCase__ :Dict = model(**__a ) UpperCamelCase__ :Optional[int] = outputs.loss UpperCamelCase__ :Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCamelCase__ :int = f'''epoch_{epoch}''' UpperCamelCase__ :Any = os.path.join(args.output_dir , __a ) accelerator.save_state(__a ) UpperCamelCase__ :Tuple = evaluation_loop(__a , __a , __a , __a ) UpperCamelCase__ :str = accuracy UpperCamelCase__ :Optional[Any] = lr_scheduler.get_lr()[0] UpperCamelCase__ :Union[str, Any] = optimizer.param_groups[0]['''lr'''] UpperCamelCase__ :Optional[Any] = epoch UpperCamelCase__ :Union[str, Any] = overall_step accelerator.print(f'''epoch {epoch}:''' , __a ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f'''state_{epoch}.json''' ) , '''w''' ) as f: json.dump(__a , __a ) def a ( ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ :List[str] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=__a , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=__a , ) parser.add_argument( '''--output_dir''' , type=__a , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=__a , default=__a , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--partial_train_epoch''' , type=__a , default=__a , help='''If passed, the training will stop after this number of epochs.''' , ) parser.add_argument( '''--num_epochs''' , type=__a , default=2 , help='''Number of train epochs.''' , ) UpperCamelCase__ :Dict = parser.parse_args() UpperCamelCase__ :Union[str, Any] = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__a , __a ) if __name__ == "__main__": main()
189
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class lowercase : """simple docstring""" _a = 42 _a = None _a = None __snake_case = namedtuple('''CoinsDistribResult''', '''moves excess''') def a ( __a ) -> int: '''simple docstring''' if root is None: return 0 # Validation def count_nodes(__a ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__a ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__a ) != count_coins(__a ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(__a ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = get_distrib(node.left ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = get_distrib(node.right ) UpperCamelCase__ :Tuple = 1 - left_distrib_excess UpperCamelCase__ :Optional[int] = 1 - right_distrib_excess UpperCamelCase__ :int = ( left_distrib_moves + right_distrib_moves + abs(__a ) + abs(__a ) ) UpperCamelCase__ :Optional[Any] = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__a , __a ) return get_distrib(__a )[0] if __name__ == "__main__": import doctest doctest.testmod()
189
1
import flax.linen as nn import jax import jax.numpy as jnp class lowercase ( nn.Module ): """simple docstring""" a__ = 4_2 a__ = jnp.floataa def A__ ( self): _UpperCamelCase : str = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , __snake_case): _UpperCamelCase : str = hidden_states.shape _UpperCamelCase : Union[str, Any] = jax.image.resize( __snake_case , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) _UpperCamelCase : Dict = self.conv(__snake_case) return hidden_states class lowercase ( nn.Module ): """simple docstring""" a__ = 4_2 a__ = jnp.floataa def A__ ( self): _UpperCamelCase : Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , __snake_case): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) _UpperCamelCase : Any = self.conv(__snake_case) return hidden_states class lowercase ( nn.Module ): """simple docstring""" a__ = 4_2 a__ = None a__ = 0.0 a__ = None a__ = jnp.floataa def A__ ( self): _UpperCamelCase : Optional[int] = self.in_channels if self.out_channels is None else self.out_channels _UpperCamelCase : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5) _UpperCamelCase : Tuple = nn.Conv( __snake_case , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _UpperCamelCase : int = nn.Dense(__snake_case , dtype=self.dtype) _UpperCamelCase : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5) _UpperCamelCase : Tuple = nn.Dropout(self.dropout_prob) _UpperCamelCase : List[str] = nn.Conv( __snake_case , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _UpperCamelCase : str = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _UpperCamelCase : str = None if use_nin_shortcut: _UpperCamelCase : Optional[int] = nn.Conv( __snake_case , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self , __snake_case , __snake_case , __snake_case=True): _UpperCamelCase : str = hidden_states _UpperCamelCase : Optional[Any] = self.norma(__snake_case) _UpperCamelCase : List[Any] = nn.swish(__snake_case) _UpperCamelCase : List[Any] = self.conva(__snake_case) _UpperCamelCase : List[str] = self.time_emb_proj(nn.swish(__snake_case)) _UpperCamelCase : Dict = jnp.expand_dims(jnp.expand_dims(__snake_case , 1) , 1) _UpperCamelCase : str = hidden_states + temb _UpperCamelCase : Optional[int] = self.norma(__snake_case) _UpperCamelCase : List[Any] = nn.swish(__snake_case) _UpperCamelCase : Optional[Any] = self.dropout(__snake_case , __snake_case) _UpperCamelCase : Tuple = self.conva(__snake_case) if self.conv_shortcut is not None: _UpperCamelCase : Dict = self.conv_shortcut(__snake_case) return hidden_states + residual
703
import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCAmelCase__ = { """sample_size""": 3_2, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [3_2, 6_4], """attention_head_dim""": 8, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 6_4, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 3, """num_class_embeds""": 1_0_0_0, """block_out_channels""": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """scale_shift""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """sample_size""": 2_5_6, """in_channels""": 3, """out_channels""": 3, """layers_per_block""": 2, """num_class_embeds""": None, """block_out_channels""": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], """attention_head_dim""": 6_4, """down_block_types""": [ """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """ResnetDownsampleBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", """AttnDownBlock2D""", ], """up_block_types""": [ """AttnUpBlock2D""", """AttnUpBlock2D""", """AttnUpBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", """ResnetUpsampleBlock2D""", ], """resnet_time_scale_shift""": """default""", """upsample_type""": """resnet""", """downsample_type""": """resnet""", } lowerCAmelCase__ = { """num_train_timesteps""": 4_0, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 2_0_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } lowerCAmelCase__ = { """num_train_timesteps""": 1_5_1, """sigma_min""": 0.0_02, """sigma_max""": 80.0, } def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> List[str]: '''simple docstring''' if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowerCamelCase_ ( UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any]=False ) -> str: '''simple docstring''' _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _UpperCamelCase : str = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _UpperCamelCase : List[Any] = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _UpperCamelCase : Union[str, Any] = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _UpperCamelCase : Tuple = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any=None ) -> int: '''simple docstring''' _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Optional[Any] = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.norm.weight'''] _UpperCamelCase : Optional[int] = checkpoint[F'''{old_prefix}.norm.bias'''] _UpperCamelCase : List[str] = weight_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = bias_q.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Any = weight_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : List[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Tuple = bias_v.squeeze(-1 ).squeeze(-1 ) _UpperCamelCase : Optional[Any] = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _UpperCamelCase : Dict = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowerCamelCase_ ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase : Any = torch.load(UpperCAmelCase_ , map_location='cpu' ) _UpperCamelCase : Union[str, Any] = {} _UpperCamelCase : Optional[int] = checkpoint['time_embed.0.weight'] _UpperCamelCase : List[Any] = checkpoint['time_embed.0.bias'] _UpperCamelCase : Dict = checkpoint['time_embed.2.weight'] _UpperCamelCase : Optional[Any] = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: _UpperCamelCase : List[str] = checkpoint['label_emb.weight'] _UpperCamelCase : Optional[int] = checkpoint['input_blocks.0.0.weight'] _UpperCamelCase : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] _UpperCamelCase : Optional[int] = unet_config['down_block_types'] _UpperCamelCase : Optional[Any] = unet_config['layers_per_block'] _UpperCamelCase : Dict = unet_config['attention_head_dim'] _UpperCamelCase : List[str] = unet_config['block_out_channels'] _UpperCamelCase : str = 1 _UpperCamelCase : Optional[int] = channels_list[0] for i, layer_type in enumerate(UpperCAmelCase_ ): _UpperCamelCase : List[str] = channels_list[i] _UpperCamelCase : str = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : str = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : List[Any] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : Any = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCAmelCase_ ): _UpperCamelCase : List[str] = F'''down_blocks.{i}.resnets.{j}''' _UpperCamelCase : str = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : int = True if j == 0 and downsample_block_has_skip else False _UpperCamelCase : Any = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : Dict = F'''down_blocks.{i}.attentions.{j}''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.1''' _UpperCamelCase : Dict = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : int = F'''down_blocks.{i}.downsamplers.0''' _UpperCamelCase : Optional[int] = F'''input_blocks.{current_layer}.0''' _UpperCamelCase : List[Any] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 _UpperCamelCase : Tuple = current_channels # hardcoded the mid-block for now _UpperCamelCase : Any = 'mid_block.resnets.0' _UpperCamelCase : Optional[Any] = 'middle_block.0' _UpperCamelCase : Tuple = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = 'mid_block.attentions.0' _UpperCamelCase : Tuple = 'middle_block.1' _UpperCamelCase : Union[str, Any] = convert_attention(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Tuple = 'mid_block.resnets.1' _UpperCamelCase : str = 'middle_block.2' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = unet_config['up_block_types'] for i, layer_type in enumerate(UpperCAmelCase_ ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : Optional[Any] = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Optional[int] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : str = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Dict = F'''output_blocks.{current_layer-1}.1''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _UpperCamelCase : str = F'''up_blocks.{i}.resnets.{j}''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer}.0''' _UpperCamelCase : Optional[int] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , has_skip=UpperCAmelCase_ ) _UpperCamelCase : int = F'''up_blocks.{i}.attentions.{j}''' _UpperCamelCase : List[Any] = F'''output_blocks.{current_layer}.1''' _UpperCamelCase : Optional[int] = convert_attention( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) current_layer += 1 if i != len(UpperCAmelCase_ ) - 1: _UpperCamelCase : List[Any] = F'''up_blocks.{i}.upsamplers.0''' _UpperCamelCase : Union[str, Any] = F'''output_blocks.{current_layer-1}.2''' _UpperCamelCase : List[str] = convert_resnet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : List[Any] = checkpoint['out.0.weight'] _UpperCamelCase : str = checkpoint['out.0.bias'] _UpperCamelCase : int = checkpoint['out.2.weight'] _UpperCamelCase : List[Any] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--unet_path""", default=None, type=str, required=True, help="""Path to the unet.pt to convert.""") parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output the converted UNet model.""" ) parser.add_argument("""--class_cond""", default=True, type=str, help="""Whether the model is class-conditional.""") lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = strabool(args.class_cond) lowerCAmelCase__ = os.path.basename(args.unet_path) print(f'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: lowerCAmelCase__ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCAmelCase__ = TEST_UNET_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: lowerCAmelCase__ = None lowerCAmelCase__ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCAmelCase__ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCAmelCase__ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCAmelCase__ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCAmelCase__ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'Checkpoint type {ckpt_name} is not currently supported.') lowerCAmelCase__ = CMStochasticIterativeScheduler(**scheduler_config) lowerCAmelCase__ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
648
0
"""simple docstring""" def lowerCamelCase (a_ :int = 100) -> int: lowercase :Union[str, Any] = set() lowercase :List[Any] = 0 lowercase :Dict = n + 1 # maximum limit for a in range(2 , a_): for b in range(2 , a_): lowercase :Tuple = a**b # calculates the current power collect_powers.add(a_) # adds the result to the set return len(a_) if __name__ == "__main__": print('''Number of terms ''', solution(int(str(input()).strip())))
677
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
677
1
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = 42 class __SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 42 SCREAMING_SNAKE_CASE_ = (1_6, 3_2, 9_6, 2_5_6) SCREAMING_SNAKE_CASE_ = jnp.floataa def __lowerCamelCase( self ): """simple docstring""" _snake_case : Optional[int] = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _snake_case : Optional[int] = [] for i in range(len(self.block_out_channels ) - 1 ): _snake_case : Optional[int] = self.block_out_channels[i] _snake_case : Any = self.block_out_channels[i + 1] _snake_case : Optional[int] = nn.Conv( SCREAMING_SNAKE_CASE__ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = nn.Conv( SCREAMING_SNAKE_CASE__ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(SCREAMING_SNAKE_CASE__ ) _snake_case : int = blocks _snake_case : List[Any] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _snake_case : List[Any] = self.conv_in(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = nn.silu(SCREAMING_SNAKE_CASE__ ) for block in self.blocks: _snake_case : Tuple = block(SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = nn.silu(SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = self.conv_out(SCREAMING_SNAKE_CASE__ ) return embedding @flax_register_to_config class __SCREAMING_SNAKE_CASE ( nn.Module , lowercase__ , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = 3_2 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = (3_2_0, 6_4_0, 1_2_8_0, 1_2_8_0) SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 8 SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = 1_2_8_0 SCREAMING_SNAKE_CASE_ = 0.0 SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = jnp.floataa SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = "rgb" SCREAMING_SNAKE_CASE_ = (1_6, 3_2, 9_6, 2_5_6) def __lowerCamelCase( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _snake_case : Union[str, Any] = (1, self.in_channels, self.sample_size, self.sample_size) _snake_case : str = jnp.zeros(SCREAMING_SNAKE_CASE__ , dtype=jnp.floataa ) _snake_case : List[str] = jnp.ones((1,) , dtype=jnp.intaa ) _snake_case : str = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) _snake_case : Any = (1, 3, self.sample_size * 8, self.sample_size * 8) _snake_case : int = jnp.zeros(SCREAMING_SNAKE_CASE__ , dtype=jnp.floataa ) _snake_case , _snake_case : Optional[int] = jax.random.split(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )["params"] def __lowerCamelCase( self ): """simple docstring""" _snake_case : List[str] = self.block_out_channels _snake_case : Optional[Any] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. _snake_case : Any = self.num_attention_heads or self.attention_head_dim # input _snake_case : str = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time _snake_case : Optional[Any] = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) _snake_case : List[str] = FlaxTimestepEmbedding(SCREAMING_SNAKE_CASE__ , dtype=self.dtype ) _snake_case : Dict = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) _snake_case : Dict = self.only_cross_attention if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _snake_case : Optional[int] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _snake_case : int = (num_attention_heads,) * len(self.down_block_types ) # down _snake_case : List[str] = [] _snake_case : List[str] = [] _snake_case : List[str] = block_out_channels[0] _snake_case : Optional[int] = nn.Conv( SCREAMING_SNAKE_CASE__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(SCREAMING_SNAKE_CASE__ ) for i, down_block_type in enumerate(self.down_block_types ): _snake_case : Optional[int] = output_channel _snake_case : Dict = block_out_channels[i] _snake_case : Dict = i == len(SCREAMING_SNAKE_CASE__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": _snake_case : Union[str, Any] = FlaxCrossAttnDownBlockaD( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: _snake_case : List[str] = FlaxDownBlockaD( in_channels=SCREAMING_SNAKE_CASE__ , out_channels=SCREAMING_SNAKE_CASE__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(SCREAMING_SNAKE_CASE__ ) for _ in range(self.layers_per_block ): _snake_case : str = nn.Conv( SCREAMING_SNAKE_CASE__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(SCREAMING_SNAKE_CASE__ ) if not is_final_block: _snake_case : int = nn.Conv( SCREAMING_SNAKE_CASE__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(SCREAMING_SNAKE_CASE__ ) _snake_case : int = down_blocks _snake_case : Optional[Any] = controlnet_down_blocks # mid _snake_case : Union[str, Any] = block_out_channels[-1] _snake_case : Any = FlaxUNetMidBlockaDCrossAttn( in_channels=SCREAMING_SNAKE_CASE__ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) _snake_case : Tuple = nn.Conv( SCREAMING_SNAKE_CASE__ , kernel_size=(1, 1) , padding="""VALID""" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 1.0 , SCREAMING_SNAKE_CASE__ = True , SCREAMING_SNAKE_CASE__ = False , ): """simple docstring""" _snake_case : Tuple = self.controlnet_conditioning_channel_order if channel_order == "bgr": _snake_case : Union[str, Any] = jnp.flip(SCREAMING_SNAKE_CASE__ , axis=1 ) # 1. time if not isinstance(SCREAMING_SNAKE_CASE__ , jnp.ndarray ): _snake_case : str = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(SCREAMING_SNAKE_CASE__ , jnp.ndarray ) and len(timesteps.shape ) == 0: _snake_case : Union[str, Any] = timesteps.astype(dtype=jnp.floataa ) _snake_case : Optional[Any] = jnp.expand_dims(SCREAMING_SNAKE_CASE__ , 0 ) _snake_case : Optional[Any] = self.time_proj(SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[Any] = self.time_embedding(SCREAMING_SNAKE_CASE__ ) # 2. pre-process _snake_case : Optional[int] = jnp.transpose(SCREAMING_SNAKE_CASE__ , (0, 2, 3, 1) ) _snake_case : Any = self.conv_in(SCREAMING_SNAKE_CASE__ ) _snake_case : Any = jnp.transpose(SCREAMING_SNAKE_CASE__ , (0, 2, 3, 1) ) _snake_case : Any = self.controlnet_cond_embedding(SCREAMING_SNAKE_CASE__ ) sample += controlnet_cond # 3. down _snake_case : Union[str, Any] = (sample,) for down_block in self.down_blocks: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = down_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=not train ) else: _snake_case , _snake_case : Dict = down_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid _snake_case : List[Any] = self.mid_block(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , deterministic=not train ) # 5. contronet blocks _snake_case : Tuple = () for down_block_res_sample, controlnet_block in zip(SCREAMING_SNAKE_CASE__ , self.controlnet_down_blocks ): _snake_case : Optional[Any] = controlnet_block(SCREAMING_SNAKE_CASE__ ) controlnet_down_block_res_samples += (down_block_res_sample,) _snake_case : Tuple = controlnet_down_block_res_samples _snake_case : str = self.controlnet_mid_block(SCREAMING_SNAKE_CASE__ ) # 6. scaling _snake_case : Optional[int] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=SCREAMING_SNAKE_CASE__ , mid_block_res_sample=SCREAMING_SNAKE_CASE__ )
519
def UpperCAmelCase ( A__ ) -> list[list[int]]: _snake_case : List[str] = [] if len(A__ ) == 1: return [nums.copy()] for _ in range(len(A__ ) ): _snake_case : Optional[Any] = nums.pop(0 ) _snake_case : Any = permute(A__ ) for perm in permutations: perm.append(A__ ) result.extend(A__ ) nums.append(A__ ) return result def UpperCAmelCase ( A__ ) -> List[Any]: def backtrack(A__ ): if start == len(A__ ) - 1: output.append(nums[:] ) else: for i in range(A__ , len(A__ ) ): _snake_case , _snake_case : Dict = nums[i], nums[start] backtrack(start + 1 ) _snake_case , _snake_case : Union[str, Any] = nums[i], nums[start] # backtrack _snake_case : int = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function UpperCAmelCase_ = permutea([1, 2, 3]) print(res) doctest.testmod()
519
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : List[str] = logging.get_logger(__name__) lowercase : List[str] = {} class _a (__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase_ : List[Any] = 'llama' lowerCAmelCase_ : List[Any] = ['past_key_values'] def __init__( self ,__a=32_000 ,__a=4_096 ,__a=11_008 ,__a=32 ,__a=32 ,__a=None ,__a="silu" ,__a=2_048 ,__a=0.02 ,__a=1E-6 ,__a=True ,__a=0 ,__a=1 ,__a=2 ,__a=1 ,__a=False ,__a=None ,**__a ,) -> str: snake_case : List[str] = vocab_size snake_case : Optional[Any] = max_position_embeddings snake_case : Union[str, Any] = hidden_size snake_case : Tuple = intermediate_size snake_case : int = num_hidden_layers snake_case : Union[str, Any] = num_attention_heads # for backward compatibility if num_key_value_heads is None: snake_case : Tuple = num_attention_heads snake_case : Any = num_key_value_heads snake_case : Optional[Any] = hidden_act snake_case : Any = initializer_range snake_case : List[str] = rms_norm_eps snake_case : Union[str, Any] = pretraining_tp snake_case : Optional[int] = use_cache snake_case : Optional[int] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,tie_word_embeddings=_a ,**_a ,) def snake_case_ ( self ) -> Optional[int]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,_a ) or len(self.rope_scaling ) != 2: raise ValueError( """`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, """ F'''got {self.rope_scaling}''' ) snake_case : str = self.rope_scaling.get("""type""" ,_a ) snake_case : str = self.rope_scaling.get("""factor""" ,_a ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(_a ,_a ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
116
"""simple docstring""" import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class __lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self ): __a = inspect.getfile(accelerate.test_utils ) __a = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] ) __a = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def __UpperCAmelCase ( self ): __a = f''' {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} '''.split() __a = [sys.executable] + distributed_args execute_subprocess_async(_a , env=os.environ.copy() )
695
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { """configuration_mobilebert""": [ """MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileBertConfig""", """MobileBertOnnxConfig""", ], """tokenization_mobilebert""": ["""MobileBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["""MobileBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileBertForMaskedLM""", """MobileBertForMultipleChoice""", """MobileBertForNextSentencePrediction""", """MobileBertForPreTraining""", """MobileBertForQuestionAnswering""", """MobileBertForSequenceClassification""", """MobileBertForTokenClassification""", """MobileBertLayer""", """MobileBertModel""", """MobileBertPreTrainedModel""", """load_tf_weights_in_mobilebert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileBertForMaskedLM""", """TFMobileBertForMultipleChoice""", """TFMobileBertForNextSentencePrediction""", """TFMobileBertForPreTraining""", """TFMobileBertForQuestionAnswering""", """TFMobileBertForSequenceClassification""", """TFMobileBertForTokenClassification""", """TFMobileBertMainLayer""", """TFMobileBertModel""", """TFMobileBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
714
"""simple docstring""" import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir("""fixtures/test_sentencepiece_with_bytefallback.model""") @require_sentencepiece @require_tokenizers class snake_case_ ( a_ ,unittest.TestCase ): __lowerCAmelCase = GPTSwaTokenizer __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = False def snake_case_ ( self ): super().setUp() # We have a SentencePiece fixture for testing a_ : Optional[int] = GPTSwaTokenizer(a_ , eos_token="<unk>" , bos_token="<unk>" , pad_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self , a_ ): a_ : Union[str, Any] = "This is a test" a_ : Tuple = "This is a test" return input_text, output_text def snake_case_ ( self ): a_ : List[str] = "<s>" a_ : Any = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) , a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) , a_ ) def snake_case_ ( self ): a_ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(a_ ) , 2_0_0_0 ) def snake_case_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 2_0_0_0 ) def snake_case_ ( self ): a_ : Union[str, Any] = GPTSwaTokenizer(a_ ) a_ : str = tokenizer.tokenize("This is a test" ) self.assertListEqual(a_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2] ) a_ : str = tokenizer.tokenize("I was born in 92000, and this is falsé." ) # fmt: off self.assertListEqual( a_ , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] , ) # fmt: on a_ : List[str] = tokenizer.convert_tokens_to_ids(a_ ) self.assertListEqual( a_ , [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0] , ) a_ : Optional[int] = tokenizer.convert_ids_to_tokens(a_ ) # fmt: off self.assertListEqual( a_ , ["▁I", "▁was", "▁bor", "n", "▁in", "▁", "<0x39>", "2", "0", "0", "0", ",", "▁and", "▁this", "▁is", "▁f", "al", "s", "<0xC3>", "<0xA9>", "."] ) # fmt: on def snake_case_ ( self ): a_ : List[str] = GPTSwaTokenizer(a_ ) a_ : List[Any] = ["This is a test", "I was born in 92000, and this is falsé."] a_ : Optional[Any] = [ [4_6_5, 2_8_7, 2_6_5, 6_3_1, 8_4_2], [2_6_2, 2_7_2, 1_5_2_5, 2_8_6, 2_7_1, 2_6_8, 6_0, 9_1_6, 6_3_3, 6_3_3, 6_3_3, 2_5_9, 2_6_6, 3_0_1, 2_8_7, 3_8_4, 3_6_7, 2_6_3, 1_9_8, 1_7_2, 2_6_0], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(a_ , a_ ): self.assertListEqual(tokenizer.encode_fast(a_ ) , a_ ) # Test that decode_fast returns the input text for text, token_ids in zip(a_ , a_ ): self.assertEqual(tokenizer.decode_fast(a_ ) , a_ ) @slow def snake_case_ ( self ): a_ : Dict = [ "<|python|>def fibonacci(n)\n if n < 0:\n print('Incorrect input')", "Hey there, how are you doing this fine day?", "This is a text with a trailing spaces followed by a dot .", "Häj sväjs lillebrör! =)", "Det är inget fel på Mr. Cool", ] # fmt: off a_ : Union[str, Any] = {"input_ids": [[6_3_4_2_3, 5, 6_8_1_1, 1_4_9_5_4, 2_8_2, 8_1_6, 3_8_2_1, 6_3_4_6_6, 6_3_4_2_5, 6_3_4_6_2, 1_8, 6_3_9_7_8, 6_7_8, 3_0_1, 1_3_2_0, 6_3_4_2_3, 6_3_4_5_5, 6_3_4_5_8, 1_8, 6_3_9_8_2, 4_2_4_6, 3_9_4_0, 1_9_0_1, 4_7_7_8_9, 5_5_4_7, 1_8_9_9_4], [1_9_6_3_0, 1_1_0_0, 6_3_4_4_6, 1_3_4_2, 6_3_3, 5_4_4, 4_4_8_8, 5_9_3, 5_1_0_2, 2_4_1_6, 6_3_4_9_5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_6_5_2, 4_2_8, 2_6_8, 1_9_3_6, 5_1_5, 2_6_8, 5_8_5_9_3, 2_2_4_1_3, 9_1_0_6, 5_4_6, 2_6_8, 3_3_2_1_3, 6_3_9_7_9, 6_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_5_1_3_0, 6_3_4_5_0, 9_2_4, 6_3_4_4_9, 2_2_4_9, 4_0_6_2, 1_5_5_8, 3_1_8, 6_3_5_0_4, 2_1_4_9_8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_0_9, 3_7_7, 2_8_2_7, 2_5_5_9, 3_3_2, 6_5_7_5, 6_3_4_4_3, 2_6_8_0_1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_ , model_name="AI-Sweden/gpt-sw3-126m" , sequences=a_ , )
370
0
def A ( snake_case__ : str ) -> bool: '''simple docstring''' return credit_card_number.startswith(('34', '35', '37', '4', '5', '6') ) def A ( snake_case__ : str ) -> bool: '''simple docstring''' __snake_case = credit_card_number __snake_case = 0 __snake_case = len(snake_case__ ) - 2 for i in range(snake_case__ , -1 , -2 ): # double the value of every second digit __snake_case = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 10 digit += 1 __snake_case = cc_number[:i] + str(snake_case__ ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(snake_case__ ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 10 == 0 def A ( snake_case__ : str ) -> bool: '''simple docstring''' __snake_case = f"{credit_card_number} is an invalid credit card number because" if not credit_card_number.isdigit(): print(f"{error_message} it has nonnumerical characters." ) return False if not 13 <= len(snake_case__ ) <= 16: print(f"{error_message} of its length." ) return False if not validate_initial_digits(snake_case__ ): print(f"{error_message} of its first two digits." ) return False if not luhn_validation(snake_case__ ): print(f"{error_message} it fails the Luhn check." ) return False print(f"{credit_card_number} is a valid credit card number." ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("4111111111111111") validate_credit_card_number("32323")
313
from ...processing_utils import ProcessorMixin class __lowercase ( lowerCamelCase__ ): __UpperCAmelCase = '''SpeechT5FeatureExtractor''' __UpperCAmelCase = '''SpeechT5Tokenizer''' def __init__( self , lowercase_ , lowercase_) -> Optional[int]: super().__init__(lowercase_ , lowercase_) def __call__( self , *lowercase_ , **lowercase_) -> int: __snake_case = kwargs.pop('audio' , lowercase_) __snake_case = kwargs.pop('text' , lowercase_) __snake_case = kwargs.pop('text_target' , lowercase_) __snake_case = kwargs.pop('audio_target' , lowercase_) __snake_case = kwargs.pop('sampling_rate' , lowercase_) if audio is not None and text is not None: raise ValueError( 'Cannot process both `audio` and `text` inputs. Did you mean `audio_target` or `text_target`?') if audio_target is not None and text_target is not None: raise ValueError( 'Cannot process both `audio_target` and `text_target` inputs. Did you mean `audio` or `text`?') if audio is None and audio_target is None and text is None and text_target is None: raise ValueError( 'You need to specify either an `audio`, `audio_target`, `text`, or `text_target` input to process.') if audio is not None: __snake_case = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_) elif text is not None: __snake_case = self.tokenizer(lowercase_ , **lowercase_) else: __snake_case = None if audio_target is not None: __snake_case = self.feature_extractor(audio_target=lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_) __snake_case = targets['input_values'] elif text_target is not None: __snake_case = self.tokenizer(lowercase_ , **lowercase_) __snake_case = targets['input_ids'] else: __snake_case = None if inputs is None: return targets if targets is not None: __snake_case = labels __snake_case = targets.get('attention_mask') if decoder_attention_mask is not None: __snake_case = decoder_attention_mask return inputs def _a ( self , *lowercase_ , **lowercase_) -> int: __snake_case = kwargs.pop('input_values' , lowercase_) __snake_case = kwargs.pop('input_ids' , lowercase_) __snake_case = kwargs.pop('labels' , lowercase_) if input_values is not None and input_ids is not None: raise ValueError('Cannot process both `input_values` and `input_ids` inputs.') if input_values is None and input_ids is None and labels is None: raise ValueError( 'You need to specify either an `input_values`, `input_ids`, or `labels` input to be padded.') if input_values is not None: __snake_case = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_) elif input_ids is not None: __snake_case = self.tokenizer.pad(lowercase_ , **lowercase_) else: __snake_case = None if labels is not None: if "input_ids" in labels or (isinstance(lowercase_ , lowercase_) and "input_ids" in labels[0]): __snake_case = self.tokenizer.pad(lowercase_ , **lowercase_) __snake_case = targets['input_ids'] else: __snake_case = self.feature_extractor.feature_size __snake_case = self.feature_extractor.num_mel_bins __snake_case = self.feature_extractor.pad(lowercase_ , *lowercase_ , **lowercase_) __snake_case = feature_size_hack __snake_case = targets['input_values'] else: __snake_case = None if inputs is None: return targets if targets is not None: __snake_case = labels __snake_case = targets.get('attention_mask') if decoder_attention_mask is not None: __snake_case = decoder_attention_mask return inputs def _a ( self , *lowercase_ , **lowercase_) -> List[str]: return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def _a ( self , *lowercase_ , **lowercase_) -> List[Any]: return self.tokenizer.decode(*lowercase_ , **lowercase_)
313
1
"""simple docstring""" def UpperCAmelCase__ ( _UpperCAmelCase ): # noqa: E741 """simple docstring""" A_ : Tuple = len(_UpperCAmelCase ) A_ : Optional[Any] = 0 A_ : int = [0] * n A_ : List[Any] = [False] * n A_ : Tuple = [False] * n def dfs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if parent == root: out_edge_count += 1 A_ : Optional[Any] = True A_ : List[Any] = at for to in l[at]: if to == parent: pass elif not visited[to]: A_ : str = dfs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) A_ : Union[str, Any] = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: A_ : List[Any] = True # AP found via cycle if at == low[to]: A_ : int = True else: A_ : Tuple = min(low[at] , _UpperCAmelCase ) return out_edge_count for i in range(_UpperCAmelCase ): if not visited[i]: A_ : Optional[int] = 0 A_ : Any = dfs(_UpperCAmelCase , _UpperCAmelCase , -1 , _UpperCAmelCase ) A_ : str = out_edge_count > 1 for x in range(len(_UpperCAmelCase ) ): if is_art[x] is True: print(_UpperCAmelCase ) # Adjacency list of graph lowerCamelCase_ : Optional[Any] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
302
"""simple docstring""" import sys def UpperCAmelCase__ ( _UpperCAmelCase ): """simple docstring""" A_ : Dict = len(_UpperCAmelCase ) A_ : int = [[0 for x in range(_UpperCAmelCase )] for x in range(_UpperCAmelCase )] A_ : Tuple = [[0 for x in range(_UpperCAmelCase )] for x in range(_UpperCAmelCase )] for chain_length in range(2 , _UpperCAmelCase ): for a in range(1 , n - chain_length + 1 ): A_ : Optional[Any] = a + chain_length - 1 A_ : List[str] = sys.maxsize for c in range(_UpperCAmelCase , _UpperCAmelCase ): A_ : Any = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: A_ : Optional[Any] = cost A_ : Optional[int] = c return matrix, sol def UpperCAmelCase__ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" if i == j: print('A' + str(_UpperCAmelCase ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(_UpperCAmelCase , _UpperCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(_UpperCAmelCase , optimal_solution[i][j] + 1 , _UpperCAmelCase ) print(')' , end=' ' ) def UpperCAmelCase__ ( ): """simple docstring""" A_ : Optional[Any] = [30, 35, 15, 5, 10, 20, 25] A_ : Optional[Any] = len(_UpperCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 A_ , A_ : int = matrix_chain_order(_UpperCAmelCase ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(_UpperCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
302
1
from collections import defaultdict def lowercase ( __A : int ) -> int: '''simple docstring''' snake_case : Union[str, Any] = 1 snake_case : str = True for v in tree[start]: if v not in visited: ret += dfs(__A ) if ret % 2 == 0: cuts.append(__A ) return ret def lowercase ( ) -> Union[str, Any]: '''simple docstring''' dfs(1 ) if __name__ == "__main__": __lowercase , __lowercase : Union[str, Any] = 10, 9 __lowercase : Dict = defaultdict(list) __lowercase : dict[int, bool] = {} __lowercase : list[int] = [] __lowercase : Optional[Any] = 0 __lowercase : Optional[Any] = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
36
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :Union[str, Any] = { '''caidas/swin2sr-classicalsr-x2-64''': ( '''https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json''' ), } class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Tuple = """swin2sr""" _lowerCamelCase : Tuple = { """hidden_size""": """embed_dim""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : List[Any] , snake_case_ : Optional[int]=6_4 , snake_case_ : Optional[Any]=1 , snake_case_ : Optional[int]=3 , snake_case_ : Optional[Any]=1_8_0 , snake_case_ : List[str]=[6, 6, 6, 6, 6, 6] , snake_case_ : List[Any]=[6, 6, 6, 6, 6, 6] , snake_case_ : Tuple=8 , snake_case_ : Optional[Any]=2.0 , snake_case_ : Any=True , snake_case_ : str=0.0 , snake_case_ : Tuple=0.0 , snake_case_ : str=0.1 , snake_case_ : Union[str, Any]="gelu" , snake_case_ : Dict=False , snake_case_ : int=0.0_2 , snake_case_ : List[Any]=1e-5 , snake_case_ : int=2 , snake_case_ : Any=1.0 , snake_case_ : Dict="1conv" , snake_case_ : Optional[Any]="pixelshuffle" , **snake_case_ : int , ): super().__init__(**snake_case_ ) _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = embed_dim _UpperCAmelCase = depths _UpperCAmelCase = len(snake_case_ ) _UpperCAmelCase = num_heads _UpperCAmelCase = window_size _UpperCAmelCase = mlp_ratio _UpperCAmelCase = qkv_bias _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = drop_path_rate _UpperCAmelCase = hidden_act _UpperCAmelCase = use_absolute_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = initializer_range _UpperCAmelCase = upscale _UpperCAmelCase = img_range _UpperCAmelCase = resi_connection _UpperCAmelCase = upsampler
236
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : List[Any] = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Any = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys __snake_case : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __snake_case : int = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Union[str, Any] = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Dict = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
691
1
"""simple docstring""" import os from collections.abc import Iterator def _UpperCamelCase ( UpperCamelCase = "." ) -> Iterator[str]: """simple docstring""" for dir_path, dir_names, filenames in os.walk(UpperCamelCase ): __UpperCAmelCase : Any = [d for d in dir_names if d != "scripts" and d[0] not in "._"] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(UpperCamelCase )[1] in (".py", ".ipynb"): yield os.path.join(UpperCamelCase , UpperCamelCase ).lstrip("./" ) def _UpperCamelCase ( UpperCamelCase ) -> Optional[int]: """simple docstring""" return f"{i * ' '}*" if i else "\n##" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase ) -> str: """simple docstring""" __UpperCAmelCase : Optional[int] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(UpperCamelCase ) or old_parts[i] != new_part) and new_part: print(f"{md_prefix(UpperCamelCase )} {new_part.replace('_' , ' ' ).title()}" ) return new_path def _UpperCamelCase ( UpperCamelCase = "." ) -> None: """simple docstring""" __UpperCAmelCase : str = "" for filepath in sorted(good_file_paths(UpperCamelCase ) ): __UpperCAmelCase , __UpperCAmelCase : List[str] = os.path.split(UpperCamelCase ) if filepath != old_path: __UpperCAmelCase : Tuple = print_path(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : Union[str, Any] = (filepath.count(os.sep ) + 1) if filepath else 0 __UpperCAmelCase : Any = f"{filepath}/{filename}".replace(" " , "%20" ) __UpperCAmelCase : int = os.path.splitext(filename.replace("_" , " " ).title() )[0] print(f"{md_prefix(UpperCamelCase )} [{filename}]({url})" ) if __name__ == "__main__": print_directory_md(""".""")
77
'''simple docstring''' import unittest from transformers import GPTSwaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase = get_tests_dir('''fixtures/test_sentencepiece_with_bytefallback.model''') @require_sentencepiece @require_tokenizers class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): lowerCAmelCase : Tuple = GPTSwaTokenizer lowerCAmelCase : Tuple = False lowerCAmelCase : Optional[Any] = True lowerCAmelCase : Any = False def __lowercase ( self : Any ): super().setUp() # We have a SentencePiece fixture for testing _a : int = GPTSwaTokenizer(_UpperCAmelCase ,eos_token='<unk>' ,bos_token='<unk>' ,pad_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def __lowercase ( self : Optional[Any] ,_UpperCAmelCase : int ): _a : Any = 'This is a test' _a : Any = 'This is a test' return input_text, output_text def __lowercase ( self : str ): _a : Optional[Any] = '<s>' _a : str = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_UpperCAmelCase ) ,_UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_UpperCAmelCase ) ,_UpperCAmelCase ) def __lowercase ( self : Union[str, Any] ): _a : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] ,'<unk>' ) self.assertEqual(vocab_keys[1] ,'<s>' ) self.assertEqual(vocab_keys[-1] ,'j' ) self.assertEqual(len(_UpperCAmelCase ) ,2000 ) def __lowercase ( self : Optional[int] ): self.assertEqual(self.get_tokenizer().vocab_size ,2000 ) def __lowercase ( self : List[Any] ): _a : Union[str, Any] = GPTSwaTokenizer(_UpperCAmelCase ) _a : str = tokenizer.tokenize('This is a test' ) self.assertListEqual(_UpperCAmelCase ,['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) ,[465, 287, 265, 631, 842] ) _a : Any = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) # fmt: off self.assertListEqual( _UpperCAmelCase ,['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ,) # fmt: on _a : Optional[Any] = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) self.assertListEqual( _UpperCAmelCase ,[262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260] ,) _a : List[str] = tokenizer.convert_ids_to_tokens(_UpperCAmelCase ) # fmt: off self.assertListEqual( _UpperCAmelCase ,['▁I', '▁was', '▁bor', 'n', '▁in', '▁', '<0x39>', '2', '0', '0', '0', ',', '▁and', '▁this', '▁is', '▁f', 'al', 's', '<0xC3>', '<0xA9>', '.'] ) # fmt: on def __lowercase ( self : str ): _a : List[Any] = GPTSwaTokenizer(_UpperCAmelCase ) _a : Optional[Any] = ['This is a test', 'I was born in 92000, and this is falsé.'] _a : Dict = [ [465, 287, 265, 631, 842], [262, 272, 1525, 286, 271, 268, 60, 916, 633, 633, 633, 259, 266, 301, 287, 384, 367, 263, 198, 172, 260], ] # Test that encode_fast returns the same as tokenize + convert_tokens_to_ids for text, expected_ids in zip(_UpperCAmelCase ,_UpperCAmelCase ): self.assertListEqual(tokenizer.encode_fast(_UpperCAmelCase ) ,_UpperCAmelCase ) # Test that decode_fast returns the input text for text, token_ids in zip(_UpperCAmelCase ,_UpperCAmelCase ): self.assertEqual(tokenizer.decode_fast(_UpperCAmelCase ) ,_UpperCAmelCase ) @slow def __lowercase ( self : Optional[Any] ): _a : Optional[int] = [ '<|python|>def fibonacci(n)\n if n < 0:\n print(\'Incorrect input\')', 'Hey there, how are you doing this fine day?', 'This is a text with a trailing spaces followed by a dot .', 'Häj sväjs lillebrör! =)', 'Det är inget fel på Mr. Cool', ] # fmt: off _a : Tuple = {'input_ids': [[63423, 5, 6811, 14954, 282, 816, 3821, 63466, 63425, 63462, 18, 63978, 678, 301, 1320, 63423, 63455, 63458, 18, 63982, 4246, 3940, 1901, 47789, 5547, 18994], [19630, 1100, 63446, 1342, 633, 544, 4488, 593, 5102, 2416, 63495, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1652, 428, 268, 1936, 515, 268, 58593, 22413, 9106, 546, 268, 33213, 63979, 698, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [55130, 63450, 924, 63449, 2249, 4062, 1558, 318, 63504, 21498, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [509, 377, 2827, 2559, 332, 6575, 63443, 26801, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # fmt: on self.tokenizer_integration_test_util( expected_encoding=_UpperCAmelCase ,model_name='AI-Sweden/gpt-sw3-126m' ,sequences=_UpperCAmelCase ,)
358
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=_SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = ['flax', 'transformers'] def __init__( self : Dict , *lowerCamelCase : List[str] , **lowerCamelCase : Optional[int] ) -> Dict: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def __lowercase ( cls : Union[str, Any] , *lowerCamelCase : Dict , **lowerCamelCase : List[str] ) -> Dict: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def __lowercase ( cls : Tuple , *lowerCamelCase : Dict , **lowerCamelCase : List[Any] ) -> Union[str, Any]: requires_backends(cls , ["""flax""", """transformers"""] ) class __snake_case ( metaclass=_SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = ['flax', 'transformers'] def __init__( self : Any , *lowerCamelCase : int , **lowerCamelCase : int ) -> Any: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def __lowercase ( cls : Union[str, Any] , *lowerCamelCase : Dict , **lowerCamelCase : Tuple ) -> Tuple: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def __lowercase ( cls : Dict , *lowerCamelCase : List[Any] , **lowerCamelCase : List[Any] ) -> Optional[int]: requires_backends(cls , ["""flax""", """transformers"""] ) class __snake_case ( metaclass=_SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = ['flax', 'transformers'] def __init__( self : Dict , *lowerCamelCase : Optional[int] , **lowerCamelCase : Tuple ) -> int: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def __lowercase ( cls : Optional[int] , *lowerCamelCase : Optional[int] , **lowerCamelCase : Dict ) -> int: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def __lowercase ( cls : List[str] , *lowerCamelCase : List[str] , **lowerCamelCase : int ) -> Optional[int]: requires_backends(cls , ["""flax""", """transformers"""] ) class __snake_case ( metaclass=_SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = ['flax', 'transformers'] def __init__( self : Dict , *lowerCamelCase : List[Any] , **lowerCamelCase : Optional[Any] ) -> Any: requires_backends(self , ["""flax""", """transformers"""] ) @classmethod def __lowercase ( cls : str , *lowerCamelCase : Optional[int] , **lowerCamelCase : Dict ) -> Optional[Any]: requires_backends(cls , ["""flax""", """transformers"""] ) @classmethod def __lowercase ( cls : str , *lowerCamelCase : Optional[Any] , **lowerCamelCase : Dict ) -> List[str]: requires_backends(cls , ["""flax""", """transformers"""] )
398
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Union[str, Any] = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[int] = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
398
1
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class lowercase__: '''simple docstring''' def __init__( self :Any , lowerCamelCase_ :List[str] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = data SCREAMING_SNAKE_CASE : List[Any] = [0x6745_2301, 0xEFCD_AB89, 0x98BA_DCFE, 0x1032_5476, 0xC3D2_E1F0] @staticmethod def __lowerCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :str ) -> Optional[int]: '''simple docstring''' return ((n << b) | (n >> (32 - b))) & 0xFFFF_FFFF def __lowerCAmelCase ( self :int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = B'''\x80''' + B'''\x00''' * (63 - (len(self.data ) + 8) % 64) SCREAMING_SNAKE_CASE : Union[str, Any] = self.data + padding + struct.pack('''>Q''' , 8 * len(self.data ) ) return padded_data def __lowerCAmelCase ( self :Optional[int] ) -> Union[str, Any]: '''simple docstring''' return [ self.padded_data[i : i + 64] for i in range(0 , len(self.padded_data ) , 64 ) ] def __lowerCAmelCase ( self :Optional[Any] , lowerCamelCase_ :Tuple ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = list(struct.unpack('''>16L''' , lowerCamelCase_ ) ) + [0] * 64 for i in range(16 , 80 ): SCREAMING_SNAKE_CASE : Tuple = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]) , 1 ) return w def __lowerCAmelCase ( self :str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.padding() SCREAMING_SNAKE_CASE : int = self.split_blocks() for block in self.blocks: SCREAMING_SNAKE_CASE : Union[str, Any] = self.expand_block(lowerCamelCase_ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[str] = self.h for i in range(0 , 80 ): if 0 <= i < 20: SCREAMING_SNAKE_CASE : List[str] = (b & c) | ((~b) & d) SCREAMING_SNAKE_CASE : Optional[int] = 0x5A82_7999 elif 20 <= i < 40: SCREAMING_SNAKE_CASE : str = b ^ c ^ d SCREAMING_SNAKE_CASE : Dict = 0x6ED9_EBA1 elif 40 <= i < 60: SCREAMING_SNAKE_CASE : Optional[Any] = (b & c) | (b & d) | (c & d) SCREAMING_SNAKE_CASE : Tuple = 0x8F1B_BCDC elif 60 <= i < 80: SCREAMING_SNAKE_CASE : Dict = b ^ c ^ d SCREAMING_SNAKE_CASE : Any = 0xCA62_C1D6 SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : str = ( self.rotate(lowerCamelCase_ , 5 ) + f + e + k + expanded_block[i] & 0xFFFF_FFFF, a, self.rotate(lowerCamelCase_ , 30 ), c, d, ) SCREAMING_SNAKE_CASE : List[Any] = ( self.h[0] + a & 0xFFFF_FFFF, self.h[1] + b & 0xFFFF_FFFF, self.h[2] + c & 0xFFFF_FFFF, self.h[3] + d & 0xFFFF_FFFF, self.h[4] + e & 0xFFFF_FFFF, ) return ("{:08x}" * 5).format(*self.h ) def __A ( )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = B'''Test String''' assert SHAaHash(a_ ).final_hash() == hashlib.shaa(a_ ).hexdigest() # noqa: S324 def __A ( )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE : List[str] = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: SCREAMING_SNAKE_CASE : Optional[int] = f.read() else: SCREAMING_SNAKE_CASE : Optional[Any] = bytes(a_ , '''utf-8''' ) print(SHAaHash(a_ ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
698
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCamelCase__ : List[str] = 250004 lowerCamelCase__ : str = 250020 @require_sentencepiece @require_tokenizers class lowercase__( _UpperCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = MBartaaTokenizer UpperCamelCase = MBartaaTokenizerFast UpperCamelCase = True UpperCamelCase = True def __lowerCAmelCase ( self :Union[str, Any] ) -> str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE : Optional[int] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = '''<s>''' SCREAMING_SNAKE_CASE : Union[str, Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase_ ) , 10_54 ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def __lowerCAmelCase ( self :Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = MBartaaTokenizer(lowerCamelCase_ , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) SCREAMING_SNAKE_CASE : int = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def __lowerCAmelCase ( self :Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = {'''input_ids''': [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def __lowerCAmelCase ( self :Optional[int] ) -> List[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE : str = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): SCREAMING_SNAKE_CASE : Tuple = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = tokenizer_r.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE : Any = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : int = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : List[Any] = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE : Union[str, Any] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Optional[int] = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[str] = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE : Tuple = tokenizer_r.from_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__( unittest.TestCase ): '''simple docstring''' UpperCamelCase = """facebook/mbart-large-50-one-to-many-mmt""" UpperCamelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] UpperCamelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] UpperCamelCase = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def __lowerCAmelCase ( cls :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) SCREAMING_SNAKE_CASE : Dict = 1 return cls def __lowerCAmelCase ( self :Any ) -> int: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 25_00_38 ) def __lowerCAmelCase ( self :List[str] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' self.assertIn(lowerCamelCase_ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE : int = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer.decode(lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCamelCase_ ) def __lowerCAmelCase ( self :Tuple ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : str = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = 10 SCREAMING_SNAKE_CASE : Union[str, Any] = self.tokenizer(lowerCamelCase_ , max_length=lowerCamelCase_ , truncation=lowerCamelCase_ ).input_ids[0] self.assertEqual(ids[0] , lowerCamelCase_ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) def __lowerCAmelCase ( self :str ) -> List[str]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_53, 25_00_01] ) def __lowerCAmelCase ( self :List[str] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : int = tempfile.mkdtemp() SCREAMING_SNAKE_CASE : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = MBartaaTokenizer.from_pretrained(lowerCamelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCamelCase_ ) @require_torch def __lowerCAmelCase ( self :str ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Dict = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __lowerCAmelCase ( self :Optional[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE : List[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCamelCase_ , lowerCamelCase_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE : List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCamelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __lowerCAmelCase ( self :Union[str, Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer(self.src_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=3 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : Tuple = self.tokenizer( text_target=self.tgt_text , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , max_length=10 , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE : List[Any] = targets['''input_ids'''] SCREAMING_SNAKE_CASE : Optional[int] = shift_tokens_right(lowerCamelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __lowerCAmelCase ( self :Any ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCamelCase_ ) , { # en_XX, A, test, EOS '''input_ids''': [[25_00_04, 62, 30_34, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
698
1
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Dict: snake_case : List[Any] = old_name if "patch_embed" in old_name: snake_case , snake_case , snake_case : int = old_name.split(""".""" ) if layer == "0": snake_case : Dict = old_name.replace("""0""" ,"""convolution1""" ) elif layer == "1": snake_case : Optional[Any] = old_name.replace("""1""" ,"""batchnorm_before""" ) elif layer == "3": snake_case : Dict = old_name.replace("""3""" ,"""convolution2""" ) else: snake_case : int = old_name.replace("""4""" ,"""batchnorm_after""" ) if "network" in old_name and re.search(R"""\d\.\d""" ,lowercase ): snake_case : str = R"""\b\d{2}\b""" if bool(re.search(lowercase ,lowercase ) ): snake_case : Optional[Any] = re.search(R"""\d\.\d\d.""" ,lowercase ).group() else: snake_case : str = re.search(R"""\d\.\d.""" ,lowercase ).group() if int(match[0] ) < 6: snake_case : List[str] = old_name.replace(lowercase ,"""""" ) snake_case : Any = trimmed_name.replace("""network""" ,match[0] + """.meta4D_layers.blocks.""" + match[2:-1] ) snake_case : int = """intermediate_stages.""" + trimmed_name else: snake_case : Any = old_name.replace(lowercase ,"""""" ) if int(match[2] ) < num_meta4D_last_stage: snake_case : int = trimmed_name.replace("""network""" ,"""meta4D_layers.blocks.""" + match[2] ) else: snake_case : Tuple = str(int(match[2] ) - num_meta4D_last_stage ) snake_case : Optional[int] = trimmed_name.replace("""network""" ,"""meta3D_layers.blocks.""" + layer_index ) if "norm1" in old_name: snake_case : str = trimmed_name.replace("""norm1""" ,"""layernorm1""" ) elif "norm2" in old_name: snake_case : Optional[Any] = trimmed_name.replace("""norm2""" ,"""layernorm2""" ) elif "fc1" in old_name: snake_case : Optional[Any] = trimmed_name.replace("""fc1""" ,"""linear_in""" ) elif "fc2" in old_name: snake_case : Any = trimmed_name.replace("""fc2""" ,"""linear_out""" ) snake_case : Optional[int] = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(R""".\d.""" ,lowercase ): snake_case : List[str] = old_name.replace("""network""" ,"""intermediate_stages""" ) if "fc" in new_name: snake_case : Dict = new_name.replace("""fc""" ,"""convolution""" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): snake_case : Optional[Any] = new_name.replace("""norm1""" ,"""batchnorm_before""" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): snake_case : Tuple = new_name.replace("""norm2""" ,"""batchnorm_after""" ) if "proj" in new_name: snake_case : Dict = new_name.replace("""proj""" ,"""projection""" ) if "dist_head" in new_name: snake_case : Dict = new_name.replace("""dist_head""" ,"""distillation_classifier""" ) elif "head" in new_name: snake_case : Tuple = new_name.replace("""head""" ,"""classifier""" ) elif "patch_embed" in new_name: snake_case : Tuple = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": snake_case : Any = new_name.replace("""norm""" ,"""layernorm""" ) snake_case : Optional[Any] = """efficientformer.""" + new_name else: snake_case : Optional[Any] = """efficientformer.encoder.""" + new_name return new_name def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> Tuple: for key in checkpoint.copy().keys(): snake_case : Optional[Any] = checkpoint.pop(lowercase ) snake_case : Tuple = val return checkpoint def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: snake_case : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case : str = Image.open(requests.get(lowercase ,stream=lowercase ).raw ) return image def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> Union[str, Any]: snake_case : List[str] = torch.load(lowercase ,map_location="""cpu""" )["""model"""] snake_case : Optional[int] = EfficientFormerConfig.from_json_file(lowercase ) snake_case : Optional[Any] = EfficientFormerForImageClassificationWithTeacher(lowercase ) snake_case : Any = """_""".join(checkpoint_path.split("""/""" )[-1].split(""".""" )[0].split("""_""" )[:-1] ) snake_case : List[Any] = config.depths[-1] - config.num_metaad_blocks + 1 snake_case : Any = convert_torch_checkpoint(lowercase ,lowercase ) model.load_state_dict(lowercase ) model.eval() snake_case : Dict = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image snake_case : str = prepare_img() snake_case : Optional[int] = 256 snake_case : str = 224 snake_case : Optional[int] = EfficientFormerImageProcessor( size={"""shortest_edge""": image_size} ,crop_size={"""height""": crop_size, """width""": crop_size} ,resample=pillow_resamplings["""bicubic"""] ,) snake_case : Optional[int] = processor(images=lowercase ,return_tensors="""pt""" ).pixel_values # original processing pipeline snake_case : List[Any] = Compose( [ Resize(lowercase ,interpolation=pillow_resamplings["""bicubic"""] ), CenterCrop(lowercase ), ToTensor(), Normalize(lowercase ,lowercase ), ] ) snake_case : Union[str, Any] = image_transforms(lowercase ).unsqueeze(0 ) assert torch.allclose(lowercase ,lowercase ) snake_case : int = model(lowercase ) snake_case : Optional[int] = outputs.logits snake_case : Dict = (1, 1000) if "l1" in model_name: snake_case : Union[str, Any] = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] ,lowercase ,atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: snake_case : Any = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] ,lowercase ,atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: snake_case : Any = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(lowercase ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("""Pushing model to the hub...""" ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" ,commit_message="""Add model""" ,use_temp_dir=lowercase ,) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" ,commit_message="""Add image processor""" ,use_temp_dir=lowercase ,) if __name__ == "__main__": lowerCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) lowerCamelCase : int = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
717
from itertools import product def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> list[int]: snake_case : Tuple = sides_number snake_case : List[str] = max_face_number * dice_number snake_case : Any = [0] * (max_total + 1) snake_case : int = 1 snake_case : List[str] = range(lowercase ,max_face_number + 1 ) for dice_numbers in product(lowercase ,repeat=lowercase ): snake_case : Any = sum(lowercase ) totals_frequencies[total] += 1 return totals_frequencies def SCREAMING_SNAKE_CASE__ ( ) -> float: snake_case : List[str] = total_frequency_distribution( sides_number=4 ,dice_number=9 ) snake_case : str = total_frequency_distribution( sides_number=6 ,dice_number=6 ) snake_case : Optional[int] = 0 snake_case : List[str] = 9 snake_case : Union[str, Any] = 4 * 9 snake_case : Dict = 6 for peter_total in range(lowercase ,max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) snake_case : str = (4**9) * (6**6) snake_case : int = peter_wins_count / total_games_number snake_case : Optional[int] = round(lowercase ,ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"""{solution() = }""")
684
0
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class lowercase_ (lowercase__ , unittest.TestCase ): snake_case =BlenderbotSmallTokenizer snake_case =False def __UpperCamelCase ( self) -> Optional[Any]: super().setUp() a__ =['__start__', 'adapt', 'act', 'ap@@', 'te', '__end__', '__unk__'] a__ =dict(zip(lowercase_ , range(len(lowercase_)))) a__ =['#version: 0.2', 'a p', 't e</w>', 'ap t</w>', 'a d', 'ad apt</w>', 'a c', 'ac t</w>', ''] a__ ={'unk_token': '__unk__', 'bos_token': '__start__', 'eos_token': '__end__'} a__ =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) a__ =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(lowercase_) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(lowercase_)) def __UpperCamelCase ( self , **lowercase_) -> int: kwargs.update(self.special_tokens_map) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **lowercase_) def __UpperCamelCase ( self , lowercase_) -> Tuple: a__ ='adapt act apte' a__ ='adapt act apte' return input_text, output_text def __UpperCamelCase ( self) -> Dict: a__ =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map) a__ ='adapt act apte' a__ =['adapt', 'act', 'ap@@', 'te'] a__ =tokenizer.tokenize(lowercase_) self.assertListEqual(lowercase_ , lowercase_) a__ =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] a__ =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_) , lowercase_) def __UpperCamelCase ( self) -> Optional[int]: a__ =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M') assert tok('sam').input_ids == [1384] a__ ='I am a small frog.' a__ =tok([src_text] , padding=lowercase_ , truncation=lowercase_)['input_ids'] a__ =tok.batch_decode(lowercase_ , skip_special_tokens=lowercase_ , clean_up_tokenization_spaces=lowercase_)[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __UpperCamelCase ( self) -> List[Any]: a__ =BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M') a__ ='I am a small frog .' a__ ='.' a__ =tok(lowercase_)['input_ids'] a__ =tok(lowercase_)['input_ids'] assert encoded[-1] == encoded_dot[0]
20
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = ShapEImgaImgPipeline lowerCAmelCase__ = ["image"] lowerCAmelCase__ = ["image"] lowerCAmelCase__ = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] lowerCAmelCase__ = False @property def UpperCAmelCase__ ( self : Tuple ) -> Tuple: """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : str ) -> int: """simple docstring""" return 32 @property def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" return 8 @property def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __SCREAMING_SNAKE_CASE = CLIPVisionModel(__SCREAMING_SNAKE_CASE ) return model @property def UpperCAmelCase__ ( self : Any ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = CLIPImageProcessor( crop_size=224 , do_center_crop=__SCREAMING_SNAKE_CASE , do_normalize=__SCREAMING_SNAKE_CASE , do_resize=__SCREAMING_SNAKE_CASE , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def UpperCAmelCase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __SCREAMING_SNAKE_CASE = PriorTransformer(**__SCREAMING_SNAKE_CASE ) return model @property def UpperCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __SCREAMING_SNAKE_CASE = ShapERenderer(**__SCREAMING_SNAKE_CASE ) return model def UpperCAmelCase__ ( self : str ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.dummy_prior __SCREAMING_SNAKE_CASE = self.dummy_image_encoder __SCREAMING_SNAKE_CASE = self.dummy_image_processor __SCREAMING_SNAKE_CASE = self.dummy_renderer __SCREAMING_SNAKE_CASE = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1_024 , prediction_type="""sample""" , use_karras_sigmas=__SCREAMING_SNAKE_CASE , clip_sample=__SCREAMING_SNAKE_CASE , clip_sample_range=1.0 , ) __SCREAMING_SNAKE_CASE = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : str=0 ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = """cpu""" __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = output.images[0] __SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __SCREAMING_SNAKE_CASE = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : str ) -> Dict: """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = torch_device == """cpu""" __SCREAMING_SNAKE_CASE = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__SCREAMING_SNAKE_CASE , relax_max_difference=__SCREAMING_SNAKE_CASE , ) def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_dummy_components() __SCREAMING_SNAKE_CASE = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) for key in inputs.keys(): if key in self.batch_params: __SCREAMING_SNAKE_CASE = batch_size * [inputs[key]] __SCREAMING_SNAKE_CASE = pipe(**__SCREAMING_SNAKE_CASE , num_images_per_prompt=__SCREAMING_SNAKE_CASE )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : int ) -> Dict: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) __SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) __SCREAMING_SNAKE_CASE = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) __SCREAMING_SNAKE_CASE = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(0 ) __SCREAMING_SNAKE_CASE = pipe( __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
627
0
"""simple docstring""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = to_pil_image(_lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase = pil_image.size __lowerCAmelCase = pytesseract.image_to_data(_lowerCAmelCase , lang=_lowerCAmelCase , output_type="""dict""" , config=_lowerCAmelCase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates __lowerCAmelCase = [idx for idx, word in enumerate(_lowerCAmelCase ) if not word.strip()] __lowerCAmelCase = [word for idx, word in enumerate(_lowerCAmelCase ) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(_lowerCAmelCase ) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(_lowerCAmelCase ) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(_lowerCAmelCase ) if idx not in irrelevant_indices] __lowerCAmelCase = [coord for idx, coord in enumerate(_lowerCAmelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __lowerCAmelCase = [] for x, y, w, h in zip(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [x, y, x + w, y + h] actual_boxes.append(_lowerCAmelCase ) # finally, normalize the bounding boxes __lowerCAmelCase = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) ) assert len(_lowerCAmelCase ) == len(_lowerCAmelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowerCAmelCase_ ( A__ ): '''simple docstring''' _snake_case = ['''pixel_values'''] def __init__( self , snake_case_ = True , snake_case_ = None , snake_case_ = PILImageResampling.BILINEAR , snake_case_ = True , snake_case_ = 1 / 255 , snake_case_ = True , snake_case_ = None , snake_case_ = None , snake_case_ = True , snake_case_ = None , snake_case_ = "" , **snake_case_ , ) -> None: super().__init__(**snake_case_ ) __lowerCAmelCase = size if size is not None else {"""height""": 224, """width""": 224} __lowerCAmelCase = get_size_dict(snake_case_ ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_value __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD __lowerCAmelCase = apply_ocr __lowerCAmelCase = ocr_lang __lowerCAmelCase = tesseract_config def A__ ( self , snake_case_ , snake_case_ , snake_case_ = PILImageResampling.BILINEAR , snake_case_ = None , **snake_case_ , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(snake_case_ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __lowerCAmelCase = (size["""height"""], size["""width"""]) return resize(snake_case_ , size=snake_case_ , resample=snake_case_ , data_format=snake_case_ , **snake_case_ ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ) -> np.ndarray: return rescale(snake_case_ , scale=snake_case_ , data_format=snake_case_ , **snake_case_ ) def A__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = None , **snake_case_ , ) -> np.ndarray: return normalize(snake_case_ , mean=snake_case_ , std=snake_case_ , data_format=snake_case_ , **snake_case_ ) def A__ ( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_=None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = ChannelDimension.FIRST , **snake_case_ , ) -> PIL.Image.Image: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(snake_case_ ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = apply_ocr if apply_ocr is not None else self.apply_ocr __lowerCAmelCase = ocr_lang if ocr_lang is not None else self.ocr_lang __lowerCAmelCase = tesseract_config if tesseract_config is not None else self.tesseract_config __lowerCAmelCase = make_list_of_images(snake_case_ ) if not valid_images(snake_case_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""If do_normalize is True, image_mean and image_std must be specified.""" ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(snake_case_ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , """pytesseract""" ) __lowerCAmelCase = [] __lowerCAmelCase = [] for image in images: __lowerCAmelCase , __lowerCAmelCase = apply_tesseract(snake_case_ , snake_case_ , snake_case_ ) words_batch.append(snake_case_ ) boxes_batch.append(snake_case_ ) if do_resize: __lowerCAmelCase = [self.resize(image=snake_case_ , size=snake_case_ , resample=snake_case_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(image=snake_case_ , scale=snake_case_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(image=snake_case_ , mean=snake_case_ , std=snake_case_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(snake_case_ , snake_case_ ) for image in images] __lowerCAmelCase = BatchFeature(data={"""pixel_values""": images} , tensor_type=snake_case_ ) if apply_ocr: __lowerCAmelCase = words_batch __lowerCAmelCase = boxes_batch return data
573
"""simple docstring""" import unittest from knapsack import greedy_knapsack as kp class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def A__ ( self ) -> Dict: __lowerCAmelCase = [10, 20, 30, 40, 50, 60] __lowerCAmelCase = [2, 4, 6, 8, 10, 12] __lowerCAmelCase = 100 self.assertEqual(kp.calc_profit(snake_case_ , snake_case_ , snake_case_ ) , 210 ) def A__ ( self ) -> Dict: self.assertRaisesRegex(snake_case_ , """max_weight must greater than zero.""" ) def A__ ( self ) -> Tuple: self.assertRaisesRegex(snake_case_ , """Weight can not be negative.""" ) def A__ ( self ) -> int: self.assertRaisesRegex(snake_case_ , """Profit can not be negative.""" ) def A__ ( self ) -> Tuple: self.assertRaisesRegex(snake_case_ , """max_weight must greater than zero.""" ) def A__ ( self ) -> Optional[int]: self.assertRaisesRegex( snake_case_ , """The length of profit and weight must be same.""" ) if __name__ == "__main__": unittest.main()
573
1
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowercase : List[str] = logging.get_logger(__name__) lowercase : str = Dict[str, Any] lowercase : Optional[int] = List[Prediction] @add_end_docstrings(lowerCAmelCase ) class __snake_case ( lowerCAmelCase ): def __init__( self ,*snake_case ,**snake_case ): '''simple docstring''' super().__init__(*snake_case ,**snake_case ) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) requires_backends(self ,"""vision""" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' lowercase : List[Any] = {} if "threshold" in kwargs: lowercase : int = kwargs["""threshold"""] return {}, {}, postprocess_kwargs def __call__( self ,*snake_case ,**snake_case ): '''simple docstring''' return super().__call__(*snake_case ,**snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : str = load_image(snake_case ) lowercase : Union[str, Any] = torch.IntTensor([[image.height, image.width]] ) lowercase : Any = self.image_processor(images=[image] ,return_tensors="""pt""" ) if self.tokenizer is not None: lowercase : List[str] = self.tokenizer(text=inputs["""words"""] ,boxes=inputs["""boxes"""] ,return_tensors="""pt""" ) lowercase : Dict = target_size return inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Union[str, Any] = model_inputs.pop("""target_size""" ) lowercase : Optional[Any] = self.model(**snake_case ) lowercase : int = outputs.__class__({"""target_size""": target_size, **outputs} ) if self.tokenizer is not None: lowercase : List[str] = model_inputs["""bbox"""] return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case=0.9 ): '''simple docstring''' lowercase : Optional[Any] = model_outputs["""target_size"""] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. lowercase , lowercase : Tuple = target_size[0].tolist() def unnormalize(snake_case ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) lowercase , lowercase : Union[str, Any] = model_outputs["""logits"""].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) lowercase : Union[str, Any] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] lowercase : Any = [unnormalize(snake_case ) for bbox in model_outputs["""bbox"""].squeeze(0 )] lowercase : int = ["""score""", """label""", """box"""] lowercase : int = [dict(zip(snake_case ,snake_case ) ) for vals in zip(scores.tolist() ,snake_case ,snake_case ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel lowercase : Tuple = self.image_processor.post_process_object_detection(snake_case ,snake_case ,snake_case ) lowercase : int = raw_annotations[0] lowercase : Optional[Any] = raw_annotation["""scores"""] lowercase : Tuple = raw_annotation["""labels"""] lowercase : List[Any] = raw_annotation["""boxes"""] lowercase : str = scores.tolist() lowercase : str = [self.model.config.idalabel[label.item()] for label in labels] lowercase : str = [self._get_bounding_box(snake_case ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] lowercase : Optional[int] = ["""score""", """label""", """box"""] lowercase : Tuple = [ dict(zip(snake_case ,snake_case ) ) for vals in zip(raw_annotation["""scores"""] ,raw_annotation["""labels"""] ,raw_annotation["""boxes"""] ) ] return annotation def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' if self.framework != "pt": raise ValueError("""The ObjectDetectionPipeline is only available in PyTorch.""" ) lowercase , lowercase , lowercase , lowercase : Union[str, Any] = box.int().tolist() lowercase : Optional[Any] = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
336
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowercase : Any = { """tiny.en""": """https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt""", """tiny""": """https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt""", """base.en""": """https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt""", """base""": """https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt""", """small.en""": """https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt""", """small""": """https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt""", """medium.en""": """https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt""", """medium""": """https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt""", """large""": """https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt""", """large-v2""": """https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt""", } def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : Any = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : Dict = { """blocks""": """layers""", """mlp.0""": """fc1""", """mlp.2""": """fc2""", """mlp_ln""": """final_layer_norm""", """.attn.query""": """.self_attn.q_proj""", """.attn.key""": """.self_attn.k_proj""", """.attn.value""": """.self_attn.v_proj""", """.attn_ln""": """.self_attn_layer_norm""", """.attn.out""": """.self_attn.out_proj""", """.cross_attn.query""": """.encoder_attn.q_proj""", """.cross_attn.key""": """.encoder_attn.k_proj""", """.cross_attn.value""": """.encoder_attn.v_proj""", """.cross_attn_ln""": """.encoder_attn_layer_norm""", """.cross_attn.out""": """.encoder_attn.out_proj""", """decoder.ln.""": """decoder.layer_norm.""", """encoder.ln.""": """encoder.layer_norm.""", """token_embedding""": """embed_tokens""", """encoder.positional_embedding""": """encoder.embed_positions.weight""", """decoder.positional_embedding""": """decoder.embed_positions.weight""", """ln_post""": """layer_norm""", } def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Optional[Any] = list(s_dict.keys() ) for key in keys: lowercase : Any = key for k, v in WHISPER_MAPPING.items(): if k in key: lowercase : Dict = new_key.replace(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(f"{key} -> {new_key}" ) lowercase : Dict = s_dict.pop(SCREAMING_SNAKE_CASE__ ) return s_dict def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase , lowercase : Optional[Any] = emb.weight.shape lowercase : Dict = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) lowercase : str = emb.weight.data return lin_layer def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> bytes: os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = os.path.basename(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = url.split("""/""" )[-2] lowercase : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ) and not os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise RuntimeError(f"{download_target} exists and is not a regular file" ) if os.path.isfile(SCREAMING_SNAKE_CASE__ ): lowercase : Any = open(SCREAMING_SNAKE_CASE__ , """rb""" ).read() if hashlib.shaaaa(SCREAMING_SNAKE_CASE__ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file" ) with urllib.request.urlopen(SCREAMING_SNAKE_CASE__ ) as source, open(SCREAMING_SNAKE_CASE__ , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=80 , unit="""iB""" , unit_scale=SCREAMING_SNAKE_CASE__ , unit_divisor=1_024 ) as loop: while True: lowercase : Any = source.read(8_192 ) if not buffer: break output.write(SCREAMING_SNAKE_CASE__ ) loop.update(len(SCREAMING_SNAKE_CASE__ ) ) lowercase : Dict = open(SCREAMING_SNAKE_CASE__ , """rb""" ).read() if hashlib.shaaaa(SCREAMING_SNAKE_CASE__ ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: if ".pt" not in checkpoint_path: lowercase : Any = _download(_MODELS[checkpoint_path] ) else: lowercase : Tuple = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) lowercase : Tuple = original_checkpoint["""dims"""] lowercase : str = original_checkpoint["""model_state_dict"""] lowercase : Tuple = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) rename_keys(SCREAMING_SNAKE_CASE__ ) lowercase : Dict = True lowercase : str = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] lowercase : Tuple = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=SCREAMING_SNAKE_CASE__ , decoder_ffn_dim=SCREAMING_SNAKE_CASE__ , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) lowercase : Any = WhisperForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Union[str, Any] = model.model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0 and not set(SCREAMING_SNAKE_CASE__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" f" but all the following weights are missing {missing}" ) if tie_embeds: lowercase : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowercase : str = proj_out_weights model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() # # Required parameters parser.add_argument("""--checkpoint_path""", type=str, help="""Patht to the downloaded checkpoints""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") lowercase : Optional[int] = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
336
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() lowercase : Optional[Any] = logging.get_logger(__name__) lowercase : str = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } lowercase : Optional[int] = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : List[Any] = {} with open(_lowerCamelCase , "r") as file: for line_number, line in enumerate(_lowerCamelCase): __UpperCamelCase : Tuple = line.strip() if line: __UpperCamelCase : List[Any] = line.split() __UpperCamelCase : Optional[int] = line_number __UpperCamelCase : str = words[0] __UpperCamelCase : int = value return result def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any) -> Optional[int]: '''simple docstring''' for attribute in key.split("."): __UpperCamelCase : int = getattr(_lowerCamelCase , _lowerCamelCase) __UpperCamelCase : str = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCamelCase): __UpperCamelCase : str = PARAM_MAPPING[full_name.split(".")[-1]] __UpperCamelCase : Optional[Any] = "param" if weight_type is not None and weight_type != "param": __UpperCamelCase : int = getattr(_lowerCamelCase , _lowerCamelCase).shape elif weight_type is not None and weight_type == "param": __UpperCamelCase : Any = hf_pointer for attribute in hf_param_name.split("."): __UpperCamelCase : Union[str, Any] = getattr(_lowerCamelCase , _lowerCamelCase) __UpperCamelCase : Optional[int] = shape_pointer.shape # let's reduce dimension __UpperCamelCase : Dict = value[0] else: __UpperCamelCase : Optional[Any] = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}') if weight_type == "weight": __UpperCamelCase : Optional[Any] = value elif weight_type == "weight_g": __UpperCamelCase : Union[str, Any] = value elif weight_type == "weight_v": __UpperCamelCase : Optional[Any] = value elif weight_type == "bias": __UpperCamelCase : List[str] = value elif weight_type == "param": for attribute in hf_param_name.split("."): __UpperCamelCase : List[str] = getattr(_lowerCamelCase , _lowerCamelCase) __UpperCamelCase : Optional[Any] = value else: __UpperCamelCase : int = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.') def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any , _lowerCamelCase : str , _lowerCamelCase : Tuple , _lowerCamelCase : str , _lowerCamelCase : str) -> Any: '''simple docstring''' __UpperCamelCase : Tuple = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowerCamelCase): __UpperCamelCase : str = PARAM_MAPPING[full_name.split(".")[-1]] __UpperCamelCase : List[str] = "param" if weight_type is not None and weight_type != "param": __UpperCamelCase : Any = ".".join([key, weight_type]) elif weight_type is not None and weight_type == "param": __UpperCamelCase : str = ".".join([key, hf_param_name]) else: __UpperCamelCase : str = key __UpperCamelCase : int = value if "lm_head" in full_key else value[0] lowercase : int = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[int] , _lowerCamelCase : Any=None , _lowerCamelCase : List[str]=None) -> List[str]: '''simple docstring''' __UpperCamelCase : Optional[Any] = False for key, mapped_key in MAPPING.items(): __UpperCamelCase : int = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model.")[-1] == name.split(".")[0]: __UpperCamelCase : Dict = True if "*" in mapped_key: __UpperCamelCase : Tuple = name.split(_lowerCamelCase)[0].split(".")[-2] __UpperCamelCase : List[str] = mapped_key.replace("*" , _lowerCamelCase) if "weight_g" in name: __UpperCamelCase : Any = "weight_g" elif "weight_v" in name: __UpperCamelCase : Union[str, Any] = "weight_v" elif "bias" in name: __UpperCamelCase : Any = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCamelCase : int = "weight" else: __UpperCamelCase : str = None if hf_dict is not None: rename_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) else: set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase) return is_used return is_used def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : List[str] , _lowerCamelCase : Any) -> str: '''simple docstring''' __UpperCamelCase : str = [] __UpperCamelCase : Union[str, Any] = fairseq_model.state_dict() __UpperCamelCase : Optional[int] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase : List[str] = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) __UpperCamelCase : int = True else: __UpperCamelCase : List[str] = load_wavaveca_layer(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase) if not is_used: unused_weights.append(_lowerCamelCase) logger.warning(F'Unused weights: {unused_weights}') def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : str , _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[int]) -> str: '''simple docstring''' __UpperCamelCase : Union[str, Any] = full_name.split("conv_layers.")[-1] __UpperCamelCase : List[str] = name.split(".") __UpperCamelCase : Dict = int(items[0]) __UpperCamelCase : Tuple = int(items[1]) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.') __UpperCamelCase : Optional[int] = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.') __UpperCamelCase : str = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.') elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.') __UpperCamelCase : List[str] = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.') __UpperCamelCase : str = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.') else: unused_weights.append(_lowerCamelCase) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str=None , _lowerCamelCase : str=None , _lowerCamelCase : Tuple=True , _lowerCamelCase : Optional[int]=False) -> Tuple: '''simple docstring''' if config_path is not None: __UpperCamelCase : Union[str, Any] = WavaVecaConfig.from_pretrained(_lowerCamelCase) else: __UpperCamelCase : Optional[Any] = WavaVecaConfig() if is_seq_class: __UpperCamelCase : List[str] = read_txt_into_dict(_lowerCamelCase) __UpperCamelCase : int = idalabel __UpperCamelCase : Optional[Any] = WavaVecaForSequenceClassification(_lowerCamelCase) __UpperCamelCase : Dict = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) feature_extractor.save_pretrained(_lowerCamelCase) elif is_finetuned: if dict_path: __UpperCamelCase : Optional[Any] = Dictionary.load(_lowerCamelCase) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCamelCase : List[Any] = target_dict.pad_index __UpperCamelCase : Union[str, Any] = target_dict.bos_index __UpperCamelCase : Optional[int] = target_dict.eos_index __UpperCamelCase : Tuple = len(target_dict.symbols) __UpperCamelCase : Optional[int] = os.path.join(_lowerCamelCase , "vocab.json") if not os.path.isdir(_lowerCamelCase): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCamelCase)) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase) __UpperCamelCase : Any = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCamelCase : Optional[Any] = 0 __UpperCamelCase : Dict = 1 with open(_lowerCamelCase , "w" , encoding="utf-8") as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase) __UpperCamelCase : Union[str, Any] = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCamelCase , ) __UpperCamelCase : List[Any] = True if config.feat_extract_norm == "layer" else False __UpperCamelCase : Optional[Any] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) __UpperCamelCase : Tuple = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase) processor.save_pretrained(_lowerCamelCase) __UpperCamelCase : int = WavaVecaForCTC(_lowerCamelCase) else: __UpperCamelCase : Optional[int] = WavaVecaForPreTraining(_lowerCamelCase) if is_finetuned or is_seq_class: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/")[:-1])}) else: __UpperCamelCase : Any = argparse.Namespace(task="audio_pretraining") __UpperCamelCase : str = fairseq.tasks.setup_task(_lowerCamelCase) __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : List[str] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase) __UpperCamelCase : Any = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned) hf_wavavec.save_pretrained(_lowerCamelCase) if __name__ == "__main__": lowercase : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) lowercase : Any = parser.parse_args() lowercase : int = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
94
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class lowerCamelCase__ ( __lowercase): '''simple docstring''' _A = ComputeEnvironment.AMAZON_SAGEMAKER _A = True _A = 'ml.p3.2xlarge' _A = 'accelerate_sagemaker_execution_role' _A = 'hf-sm' _A = 'us-east-1' _A = 1 _A = 'accelerate-sagemaker-1' _A = '1.6' _A = '4.4' _A = 'train.py' _A = [ '--model_name_or_path', 'bert', '--do_train', 'False', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] _A = [ '--model_name_or_path', 'bert', '--do_train', '--do_test', 'False', '--do_predict', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self :Tuple ) -> str: # If no defaults are changed, `to_kwargs` returns an empty dict. __UpperCamelCase : str = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["model_name_or_path"] , a ) assert isinstance(converted_args["do_train"] , a ) assert isinstance(converted_args["epochs"] , a ) assert isinstance(converted_args["learning_rate"] , a ) assert isinstance(converted_args["max_steps"] , a ) with pytest.raises(a ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
94
1
from __future__ import annotations def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): __lowerCamelCase : list[list[int]] = [] __lowerCamelCase : list[int] = [] __lowerCamelCase : int = 0 __lowerCamelCase : Optional[int] = sum(SCREAMING_SNAKE_CASE__ ) create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return result def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , ): if sum(SCREAMING_SNAKE_CASE__ ) > max_sum or (remaining_nums_sum + sum(SCREAMING_SNAKE_CASE__ )) < max_sum: return if sum(SCREAMING_SNAKE_CASE__ ) == max_sum: result.append(SCREAMING_SNAKE_CASE__ ) return for index in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): create_state_space_tree( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 , [*path, nums[index]] , SCREAMING_SNAKE_CASE__ , remaining_nums_sum - nums[index] , ) lowercase_ = [3, 3_4, 4, 1_2, 5, 2] lowercase_ = 9 lowercase_ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
669
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class A_ ( __UpperCamelCase , __UpperCamelCase ): '''simple docstring''' __snake_case = 1 @register_to_config def __init__( self: str , a: str=2000 , a: List[str]=0.1 , a: Any=20 , a: Dict=1e-3 ): __lowerCamelCase : Dict = None __lowerCamelCase : Any = None __lowerCamelCase : Optional[int] = None def _snake_case ( self: int , a: str , a: Union[str, torch.device] = None ): __lowerCamelCase : int = torch.linspace(1 , self.config.sampling_eps , a , device=a ) def _snake_case ( self: List[Any] , a: Union[str, Any] , a: Tuple , a: Optional[Any] , a: Dict=None ): if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowerCamelCase : Tuple = ( -0.2_5 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowerCamelCase : Optional[int] = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowerCamelCase : Optional[Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowerCamelCase : List[str] = std.unsqueeze(-1 ) __lowerCamelCase : Any = -score / std # compute __lowerCamelCase : List[Any] = -1.0 / len(self.timesteps ) __lowerCamelCase : Any = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowerCamelCase : Dict = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowerCamelCase : int = beta_t.unsqueeze(-1 ) __lowerCamelCase : Any = -0.5 * beta_t * x __lowerCamelCase : List[Any] = torch.sqrt(a ) __lowerCamelCase : Tuple = drift - diffusion**2 * score __lowerCamelCase : str = x + drift * dt # add noise __lowerCamelCase : Any = randn_tensor(x.shape , layout=x.layout , generator=a , device=x.device , dtype=x.dtype ) __lowerCamelCase : Any = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self: Optional[int] ): return self.config.num_train_timesteps
669
1
"""simple docstring""" import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def _snake_case ( snake_case__ : Optional[int] ): A = torch.exp(__snake_case ) A = torch.sum(__snake_case , dim=1 ) # sum of exp(x_i) A = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(__snake_case ) - B / A class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,A_ : Dict ) -> List[Any]: super().__init__() A = config.output_attentions A = config.output_hidden_states A = nn.ModuleList([BertLayer(__lowerCAmelCase ) for _ in range(config.num_hidden_layers )] ) A = nn.ModuleList([BertHighway(__lowerCAmelCase ) for _ in range(config.num_hidden_layers )] ) A = [-1 for _ in range(config.num_hidden_layers )] def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[Any] ) -> Optional[Any]: if (type(__lowerCAmelCase ) is float) or (type(__lowerCAmelCase ) is int): for i in range(len(self.early_exit_entropy ) ): A = x else: A = x def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[str] ) -> Union[str, Any]: A = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int] ,A_ : List[Any]=None ,A_ : List[Any]=None ,A_ : Dict=None ,A_ : List[str]=None ,) -> Tuple: A = () A = () A = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: A = all_hidden_states + (hidden_states,) A = layer_module( __lowerCAmelCase ,__lowerCAmelCase ,head_mask[i] ,__lowerCAmelCase ,__lowerCAmelCase ) A = layer_outputs[0] if self.output_attentions: A = all_attentions + (layer_outputs[1],) A = (hidden_states,) if self.output_hidden_states: A = current_outputs + (all_hidden_states,) if self.output_attentions: A = current_outputs + (all_attentions,) A = self.highway[i](__lowerCAmelCase ) # logits, pooled_output if not self.training: A = highway_exit[0] A = entropy(__lowerCAmelCase ) A = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy A = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: A = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(__lowerCAmelCase ,i + 1 ) else: A = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: A = all_hidden_states + (hidden_states,) A = (hidden_states,) if self.output_hidden_states: A = outputs + (all_hidden_states,) if self.output_attentions: A = outputs + (all_attentions,) A = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( '''The Bert Model transformer with early exiting (DeeBERT). ''' , _lowercase , ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Optional[int] ,A_ : Any ) -> Tuple: super().__init__(__lowerCAmelCase ) A = config A = BertEmbeddings(__lowerCAmelCase ) A = DeeBertEncoder(__lowerCAmelCase ) A = BertPooler(__lowerCAmelCase ) self.init_weights() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Tuple: self.encoder.init_highway_pooler(self.pooler ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: return self.embeddings.word_embeddings def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Tuple ) -> Tuple: A = value def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int ) -> List[str]: for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(__lowerCAmelCase ) @add_start_docstrings_to_model_forward(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[int]=None ,A_ : str=None ,A_ : Dict=None ,A_ : str=None ,A_ : Optional[int]=None ,A_ : int=None ,A_ : Optional[Any]=None ,A_ : Dict=None ,) -> Dict: if input_ids is not None and inputs_embeds is not None: raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time' ) elif input_ids is not None: A = input_ids.size() elif inputs_embeds is not None: A = inputs_embeds.size()[:-1] else: raise ValueError('You have to specify either input_ids or inputs_embeds' ) A = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: A = torch.ones(__lowerCAmelCase ,device=__lowerCAmelCase ) if encoder_attention_mask is None: A = torch.ones(__lowerCAmelCase ,device=__lowerCAmelCase ) if token_type_ids is None: A = torch.zeros(__lowerCAmelCase ,dtype=torch.long ,device=__lowerCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. A = self.get_extended_attention_mask(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: A = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: A = encoder_attention_mask[:, None, None, :] A = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility A = (1.0 - encoder_extended_attention_mask) * -1_0000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] A = self.get_head_mask(__lowerCAmelCase ,self.config.num_hidden_layers ) A = self.embeddings( input_ids=__lowerCAmelCase ,position_ids=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,inputs_embeds=__lowerCAmelCase ) A = self.encoder( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,head_mask=__lowerCAmelCase ,encoder_hidden_states=__lowerCAmelCase ,encoder_attention_mask=__lowerCAmelCase ,) A = encoder_outputs[0] A = self.pooler(__lowerCAmelCase ) A = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Dict ,A_ : List[Any] ,A_ : Dict ) -> List[Any]: A = message A = exit_layer # start from 1! class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Any ,A_ : Optional[int] ) -> str: super().__init__() A = BertPooler(__lowerCAmelCase ) A = nn.Dropout(config.hidden_dropout_prob ) A = nn.Linear(config.hidden_size ,config.num_labels ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Optional[int] ) -> Union[str, Any]: A = encoder_outputs[0] A = self.pooler(__lowerCAmelCase ) # "return" pooler_output # BertModel A = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification A = bmodel_output[1] A = self.dropout(__lowerCAmelCase ) A = self.classifier(__lowerCAmelCase ) return logits, pooled_output @add_start_docstrings( '''Bert Model (with early exiting - DeeBERT) with a classifier on top, also takes care of multi-layer training. ''' , _lowercase , ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] ,A_ : Any ) -> List[Any]: super().__init__(__lowerCAmelCase ) A = config.num_labels A = config.num_hidden_layers A = DeeBertModel(__lowerCAmelCase ) A = nn.Dropout(config.hidden_dropout_prob ) A = nn.Linear(config.hidden_size ,self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(__lowerCAmelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Optional[int]=None ,A_ : Any=None ,A_ : str=None ,A_ : str=None ,A_ : Any=None ,A_ : int=None ,A_ : Any=None ,A_ : List[Any]=-1 ,A_ : Union[str, Any]=False ,) -> int: A = self.num_layers try: A = self.bert( __lowerCAmelCase ,attention_mask=__lowerCAmelCase ,token_type_ids=__lowerCAmelCase ,position_ids=__lowerCAmelCase ,head_mask=__lowerCAmelCase ,inputs_embeds=__lowerCAmelCase ,) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits A = outputs[1] A = self.dropout(__lowerCAmelCase ) A = self.classifier(__lowerCAmelCase ) A = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: A = e.message A = e.exit_layer A = outputs[0] if not self.training: A = entropy(__lowerCAmelCase ) A = [] A = [] if labels is not None: if self.num_labels == 1: # We are doing regression A = MSELoss() A = loss_fct(logits.view(-1 ) ,labels.view(-1 ) ) else: A = CrossEntropyLoss() A = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) # work with highway exits A = [] for highway_exit in outputs[-1]: A = highway_exit[0] if not self.training: highway_logits_all.append(__lowerCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression A = MSELoss() A = loss_fct(highway_logits.view(-1 ) ,labels.view(-1 ) ) else: A = CrossEntropyLoss() A = loss_fct(highway_logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) highway_losses.append(__lowerCAmelCase ) if train_highway: A = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: A = (loss,) + outputs if not self.training: A = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: A = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
706
"""simple docstring""" from collections import deque from math import floor from random import random from time import time class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Dict ) -> int: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Union[str, Any] ,A_ : Any ,A_ : Optional[Any]=1 ) -> int: if self.graph.get(A_ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A = [[w, v]] if not self.graph.get(A_ ): A = [] def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Union[str, Any] ,A_ : Dict ) -> Optional[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : int=-2 ,A_ : Dict=-1 ) -> str: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Any=-1 ) -> int: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Union[str, Any]=-2 ) -> Optional[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tuple ) -> Any: A = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Union[str, Any] ) -> str: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any]=-2 ) -> Any: A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s A = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return sorted_nodes def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Tuple=-2 ,A_ : List[str]=-1 ) -> str: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Union[str, Any]=-2 ) -> Dict: A = time() self.bfs(A_ ) A = time() return end - begin class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ) -> Tuple: A = {} def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Optional[Any] ,A_ : str ,A_ : List[str]=1 ) -> Dict: # check if the u exists if self.graph.get(A_ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A = [[w, v]] # add the other way if self.graph.get(A_ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A = [[w, u]] def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : List[str] ) -> List[Any]: if self.graph.get(A_ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(A_ ) # the other way round if self.graph.get(A_ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(A_ ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[str]=-2 ,A_ : List[Any]=-1 ) -> int: if s == d: return [] A = [] A = [] if s == -2: A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(A_ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = ss # check if se have reached the starting point if len(A_ ) == 0: return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[int]=-1 ) -> List[Any]: if c == -1: A = floor(random() * 1_0000 ) + 10 for i in range(A_ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A = floor(random() * c ) + 1 if n != i: self.add_pair(A_ ,A_ ,1 ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : Dict=-2 ) -> List[Any]: A = deque() A = [] if s == -2: A = list(self.graph )[0] d.append(A_ ) visited.append(A_ ) while d: A = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Optional[Any] ) -> List[Any]: return len(self.graph[u] ) def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return list(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: A = [] A = [] A = list(self.graph )[0] stack.append(A_ ) visited.append(A_ ) A = -2 A = [] A = s A = False A = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A = len(A_ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A = node[1] break # check if all the children are visited if s == ss: stack.pop() A = True if len(A_ ) != 0: A = stack[len(A_ ) - 1] else: A = False indirect_parents.append(A_ ) A = s A = ss # check if se have reached the starting point if len(A_ ) == 0: return False def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: return list(self.graph ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Optional[Any]=-2 ,A_ : List[str]=-1 ) -> Any: A = time() self.dfs(A_ ,A_ ) A = time() return end - begin def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ,A_ : List[Any]=-2 ) -> Union[str, Any]: A = time() self.bfs(A_ ) A = time() return end - begin
22
0
'''simple docstring''' from __future__ import annotations def snake_case ( a_ : Union[str, Any] , a_ : Optional[Any] ) -> list[int]: """simple docstring""" UpperCamelCase_ : Dict = 0 UpperCamelCase_ : Any = len(__a ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCamelCase_ : Optional[int] = i + 1 else: UpperCamelCase_ : Optional[Any] = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
208
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase : Union[str, Any] = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } UpperCamelCase : List[str] = { """roberta-base""": 512, """roberta-large""": 512, """roberta-large-mnli""": 512, """distilroberta-base""": 512, """roberta-base-openai-detector""": 512, """roberta-large-openai-detector""": 512, } class A__ ( A__ ): """simple docstring""" _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ['input_ids', 'attention_mask'] _lowercase = RobertaTokenizer def __init__( self : List[str] , lowerCamelCase__ : Any=None , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : Dict=None , lowerCamelCase__ : List[str]="replace" , lowerCamelCase__ : List[str]="<s>" , lowerCamelCase__ : Union[str, Any]="</s>" , lowerCamelCase__ : Any="</s>" , lowerCamelCase__ : Any="<s>" , lowerCamelCase__ : int="<unk>" , lowerCamelCase__ : Any="<pad>" , lowerCamelCase__ : Tuple="<mask>" , lowerCamelCase__ : Any=False , lowerCamelCase__ : Dict=True , **lowerCamelCase__ : Optional[Any] , ): super().__init__( lowerCamelCase__ , lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , errors=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , unk_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ , trim_offsets=lowerCamelCase__ , **lowerCamelCase__ , ) a__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : Any = getattr(lowerCamelCase__ , pre_tok_state.pop("type" ) ) a__ : int = add_prefix_space a__ : Tuple = pre_tok_class(**lowerCamelCase__ ) a__ : str = add_prefix_space a__ : Tuple = "post_processor" a__ : Dict = getattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) if tokenizer_component_instance: a__ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ : Tuple = tuple(state["sep"] ) if "cls" in state: a__ : str = tuple(state["cls"] ) a__ : str = False if state.get("add_prefix_space" , lowerCamelCase__ ) != add_prefix_space: a__ : str = add_prefix_space a__ : Any = True if state.get("trim_offsets" , lowerCamelCase__ ) != trim_offsets: a__ : int = trim_offsets a__ : Dict = True if changes_to_apply: a__ : Union[str, Any] = getattr(lowerCamelCase__ , state.pop("type" ) ) a__ : str = component_class(**lowerCamelCase__ ) setattr(self.backend_tokenizer , lowerCamelCase__ , lowerCamelCase__ ) @property def _UpperCamelCase( self : Union[str, Any] ): if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _UpperCamelCase( self : List[Any] , lowerCamelCase__ : Tuple ): a__ : List[Any] = AddedToken(lowerCamelCase__ , lstrip=lowerCamelCase__ , rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else value a__ : List[str] = value def _UpperCamelCase( self : Union[str, Any] , *lowerCamelCase__ : int , **lowerCamelCase__ : int ): a__ : Optional[int] = kwargs.get("is_split_into_words" , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : Tuple , *lowerCamelCase__ : Dict , **lowerCamelCase__ : List[str] ): a__ : Dict = kwargs.get("is_split_into_words" , lowerCamelCase__ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase__ , **lowerCamelCase__ ) def _UpperCamelCase( self : str , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ): a__ : int = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int]=None ): a__ : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def _UpperCamelCase( self : Dict , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ): a__ : Tuple = [self.sep_token_id] a__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
37
0
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class _lowerCAmelCase ( __A ): '''simple docstring''' @staticmethod @abstractmethod def __lowercase ( UpperCamelCase_ : ArgumentParser ) -> Dict: '''simple docstring''' raise NotImplementedError() @abstractmethod def __lowercase ( self : str ) -> Union[str, Any]: '''simple docstring''' raise NotImplementedError()
703
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor lowerCamelCase__ = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): '''simple docstring''' def __init__( self : Union[str, Any] , *UpperCamelCase_ : List[str] , **UpperCamelCase_ : Any ) -> None: '''simple docstring''' warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , UpperCamelCase_ , ) super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
411
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
338
"""simple docstring""" import os import zipfile import pytest from datasets.utils.extract import ( BzipaExtractor, Extractor, GzipExtractor, LzaExtractor, SevenZipExtractor, TarExtractor, XzExtractor, ZipExtractor, ZstdExtractor, ) from .utils import require_lza, require_pyazr, require_zstandard @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , )-> List[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = { """7z""": (seven_zip_file, SevenZipExtractor), """bz2""": (bza_file, BzipaExtractor), """gzip""": (gz_file, GzipExtractor), """lz4""": (lza_file, LzaExtractor), """tar""": (tar_file, TarExtractor), """xz""": (xz_file, XzExtractor), """zip""": (zip_file, ZipExtractor), """zstd""": (zstd_file, ZstdExtractor), } _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = input_paths_and_base_extractors[compression_format] if input_path is None: _SCREAMING_SNAKE_CASE : List[Any] = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__SCREAMING_SNAKE_CASE ) assert base_extractor.is_extractable(__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Union[str, Any] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") base_extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _SCREAMING_SNAKE_CASE : Optional[int] = file_path.read_text(encoding="""utf-8""" ) else: _SCREAMING_SNAKE_CASE : Optional[Any] = output_path.read_text(encoding="""utf-8""" ) _SCREAMING_SNAKE_CASE : List[str] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.mark.parametrize( """compression_format, is_archive""" , [ ("""7z""", True), ("""bz2""", False), ("""gzip""", False), ("""lz4""", False), ("""tar""", True), ("""xz""", False), ("""zip""", True), ("""zstd""", False), ] , ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , )-> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = { """7z""": seven_zip_file, """bz2""": bza_file, """gzip""": gz_file, """lz4""": lza_file, """tar""": tar_file, """xz""": xz_file, """zip""": zip_file, """zstd""": zstd_file, } _SCREAMING_SNAKE_CASE : Tuple = input_paths[compression_format] if input_path is None: _SCREAMING_SNAKE_CASE : List[Any] = F"""for '{compression_format}' compression_format, """ if compression_format == "7z": reason += require_pyazr.kwargs["reason"] elif compression_format == "lz4": reason += require_lza.kwargs["reason"] elif compression_format == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE : Optional[int] = Extractor.infer_extractor_format(__SCREAMING_SNAKE_CASE ) assert extractor_format is not None _SCREAMING_SNAKE_CASE : Optional[Any] = tmp_path / ("""extracted""" if is_archive else """extracted.txt""") Extractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if is_archive: assert output_path.is_dir() for file_path in output_path.iterdir(): assert file_path.name == text_file.name _SCREAMING_SNAKE_CASE : Tuple = file_path.read_text(encoding="""utf-8""" ) else: _SCREAMING_SNAKE_CASE : str = output_path.read_text(encoding="""utf-8""" ) _SCREAMING_SNAKE_CASE : Optional[Any] = text_file.read_text(encoding="""utf-8""" ) assert extracted_file_content == expected_file_content @pytest.fixture def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Any: import tarfile _SCREAMING_SNAKE_CASE : Any = tmp_path / """data_dot_dot""" directory.mkdir() _SCREAMING_SNAKE_CASE : Optional[int] = directory / """tar_file_with_dot_dot.tar""" with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f: f.add(__SCREAMING_SNAKE_CASE , arcname=os.path.join("""..""" , text_file.name ) ) return path @pytest.fixture def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> Dict: import tarfile _SCREAMING_SNAKE_CASE : List[str] = tmp_path / """data_sym_link""" directory.mkdir() _SCREAMING_SNAKE_CASE : Optional[int] = directory / """tar_file_with_sym_link.tar""" os.symlink("""..""" , directory / """subdir""" , target_is_directory=__SCREAMING_SNAKE_CASE ) with tarfile.TarFile(__SCREAMING_SNAKE_CASE , """w""" ) as f: f.add(str(directory / """subdir""" ) , arcname="""subdir""" ) # str required by os.readlink on Windows and Python < 3.8 return path @pytest.mark.parametrize( """insecure_tar_file, error_log""" , [("""tar_file_with_dot_dot""", """illegal path"""), ("""tar_file_with_sym_link""", """Symlink""")] , ) def lowerCamelCase_(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )-> Tuple: _SCREAMING_SNAKE_CASE : List[Any] = { """tar_file_with_dot_dot""": tar_file_with_dot_dot, """tar_file_with_sym_link""": tar_file_with_sym_link, } _SCREAMING_SNAKE_CASE : int = insecure_tar_files[insecure_tar_file] _SCREAMING_SNAKE_CASE : str = tmp_path / """extracted""" TarExtractor.extract(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert caplog.text for record in caplog.records: assert record.levelname == "ERROR" assert error_log in record.msg def lowerCamelCase_(__SCREAMING_SNAKE_CASE )-> str: # We should have less false positives than zipfile.is_zipfile # We do that by checking only the magic number _SCREAMING_SNAKE_CASE : List[str] = tmpdir / """not_a_zip_file""" # From: https://github.com/python/cpython/pull/5053 _SCREAMING_SNAKE_CASE : Any = ( b"""\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00""" b"""\x00\x02\x08\x06\x00\x00\x00\x99\x81\xb6'\x00\x00\x00\x15I""" b"""DATx\x01\x01\n\x00\xf5\xff\x00PK\x05\x06\x00PK\x06\x06\x07""" b"""\xac\x01N\xc6|a\r\x00\x00\x00\x00IEND\xaeB`\x82""" ) with not_a_zip_file.open("""wb""" ) as f: f.write(__SCREAMING_SNAKE_CASE ) assert zipfile.is_zipfile(str(__SCREAMING_SNAKE_CASE ) ) # is a false positive for `zipfile` assert not ZipExtractor.is_extractable(__SCREAMING_SNAKE_CASE ) # but we're right
338
1
'''simple docstring''' from .configuration_bert_masked import MaskedBertConfig from .modeling_bert_masked import ( MaskedBertForMultipleChoice, MaskedBertForQuestionAnswering, MaskedBertForSequenceClassification, MaskedBertForTokenClassification, MaskedBertModel, ) from .modules import *
331
'''simple docstring''' from typing import List, Optional import numpy as np from ...processing_utils import ProcessorMixin from ...utils import to_numpy class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase ="EncodecFeatureExtractor" UpperCAmelCase =("T5Tokenizer", "T5TokenizerFast") def __init__( self , snake_case , snake_case) -> List[str]: '''simple docstring''' super().__init__(snake_case , snake_case) _UpperCAmelCase : Dict =self.feature_extractor _UpperCAmelCase : List[str] =False def lowerCAmelCase ( self , snake_case=None , snake_case=None , snake_case=True) -> Optional[Any]: '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=snake_case , language=snake_case , no_timestamps=snake_case) def __call__( self , *snake_case , **snake_case) -> List[Any]: '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*snake_case , **snake_case) _UpperCAmelCase : Union[str, Any] =kwargs.pop('audio' , snake_case) _UpperCAmelCase : str =kwargs.pop('sampling_rate' , snake_case) _UpperCAmelCase : str =kwargs.pop('text' , snake_case) if len(snake_case) > 0: _UpperCAmelCase : Union[str, Any] =args[0] _UpperCAmelCase : int =args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.') if text is not None: _UpperCAmelCase : List[str] =self.tokenizer(snake_case , **snake_case) if audio is not None: _UpperCAmelCase : int =self.feature_extractor(snake_case , *snake_case , sampling_rate=snake_case , **snake_case) if audio is None: return inputs elif text is None: return audio_inputs else: _UpperCAmelCase : Union[str, Any] =audio_inputs['input_values'] if "padding_mask" in audio_inputs: _UpperCAmelCase : Tuple =audio_inputs['padding_mask'] return inputs def lowerCAmelCase ( self , *snake_case , **snake_case) -> List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] =kwargs.pop('audio' , snake_case) _UpperCAmelCase : str =kwargs.pop('padding_mask' , snake_case) if len(snake_case) > 0: _UpperCAmelCase : Tuple =args[0] _UpperCAmelCase : Optional[int] =args[1:] if audio_values is not None: return self._decode_audio(snake_case , padding_mask=snake_case) else: return self.tokenizer.batch_decode(*snake_case , **snake_case) def lowerCAmelCase ( self , *snake_case , **snake_case) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*snake_case , **snake_case) def lowerCAmelCase ( self , snake_case , snake_case = None) -> List[np.ndarray]: '''simple docstring''' _UpperCAmelCase : List[str] =to_numpy(snake_case) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] =audio_values.shape if padding_mask is None: return list(snake_case) _UpperCAmelCase : Optional[Any] =to_numpy(snake_case) # match the sequence length of the padding mask to the generated audio arrays by padding with the **non-padding** # token (so that the generated audio values are **not** treated as padded tokens) _UpperCAmelCase : List[str] =seq_len - padding_mask.shape[-1] _UpperCAmelCase : List[str] =1 - self.feature_extractor.padding_value _UpperCAmelCase : Optional[int] =np.pad(snake_case , ((0, 0), (0, difference)) , 'constant' , constant_values=snake_case) _UpperCAmelCase : List[str] =audio_values.tolist() for i in range(snake_case): _UpperCAmelCase : Dict =np.asarray(audio_values[i])[ padding_mask[i][None, :] != self.feature_extractor.padding_value ] _UpperCAmelCase : Union[str, Any] =sliced_audio.reshape(snake_case , -1) return audio_values
331
1
import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def a__ ( lowercase__ ): '''simple docstring''' return np.dot(lowercase__ , lowercase__ ) class A : def __init__( self: List[Any] , *, _lowerCAmelCase: float = np.inf , _lowerCAmelCase: str = "linear" , _lowerCAmelCase: float = 0.0 , ) -> None: '''simple docstring''' UpperCAmelCase_ =regularization UpperCAmelCase_ =gamma if kernel == "linear": UpperCAmelCase_ =self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("rbf kernel requires gamma" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("gamma must be float or int" ) if not self.gamma > 0: raise ValueError("gamma must be > 0" ) UpperCAmelCase_ =self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCAmelCase_ =F'Unknown kernel: {kernel}' raise ValueError(_lowerCAmelCase ) def lowerCAmelCase__ ( self: Dict , _lowerCAmelCase: ndarray , _lowerCAmelCase: ndarray ) -> float: '''simple docstring''' return np.dot(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase__ ( self: int , _lowerCAmelCase: ndarray , _lowerCAmelCase: ndarray ) -> float: '''simple docstring''' return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def lowerCAmelCase__ ( self: Any , _lowerCAmelCase: list[ndarray] , _lowerCAmelCase: ndarray ) -> None: '''simple docstring''' UpperCAmelCase_ =observations UpperCAmelCase_ =classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCAmelCase_) , ) =np.shape(_lowerCAmelCase ) def to_minimize(_lowerCAmelCase: ndarray ) -> float: UpperCAmelCase_ =0 ((UpperCAmelCase_) , ) =np.shape(_lowerCAmelCase ) for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_lowerCAmelCase ) UpperCAmelCase_ =LinearConstraint(_lowerCAmelCase , 0 , 0 ) UpperCAmelCase_ =Bounds(0 , self.regularization ) UpperCAmelCase_ =minimize( _lowerCAmelCase , np.ones(_lowerCAmelCase ) , bounds=_lowerCAmelCase , constraints=[ly_contraint] ).x UpperCAmelCase_ =l_star # calculating mean offset of separation plane to points UpperCAmelCase_ =0 for i in range(_lowerCAmelCase ): for j in range(_lowerCAmelCase ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) UpperCAmelCase_ =s / n def lowerCAmelCase__ ( self: Optional[int] , _lowerCAmelCase: ndarray ) -> int: '''simple docstring''' UpperCAmelCase_ =sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _lowerCAmelCase ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
54
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class snake_case ( __UpperCAmelCase ): '''simple docstring''' _A : str = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) _A : Union[str, Any] = 'CIDAS/clipseg-rd64-refined' _A : Tuple = 'image_segmenter' _A : List[Any] = CLIPSegForImageSegmentation _A : List[str] = ['image', 'text'] _A : Optional[int] = ['image'] def __init__( self : List[str] , *__lowercase : Union[str, Any] , **__lowercase : Any ): '''simple docstring''' requires_backends(self , ['''vision'''] ) super().__init__(*__lowercase , **__lowercase ) def A_ ( self : int , __lowercase : "Image" , __lowercase : str ): '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=__lowercase , return_tensors='''pt''' ) def A_ ( self : List[Any] , __lowercase : List[Any] ): '''simple docstring''' with torch.no_grad(): __UpperCAmelCase : List[str] = self.model(**__lowercase ).logits return logits def A_ ( self : int , __lowercase : Optional[int] ): '''simple docstring''' __UpperCAmelCase : Any = outputs.cpu().detach().numpy() __UpperCAmelCase : List[Any] = 0 __UpperCAmelCase : Any = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
522
0
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
59
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput _lowerCamelCase = logging.get_logger(__name__) # pylint: disable=invalid-name def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[List, PIL.Image.Image, torch.Tensor] ): warnings.warn( """The preprocess method is deprecated and will be removed in a future version. Please""" """ use VaeImageProcessor.preprocess instead""" , UpperCamelCase__ , ) if isinstance(UpperCamelCase__ , torch.Tensor ): return image elif isinstance(UpperCamelCase__ , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ = [image] if isinstance(image[0] , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = image[0].size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 SCREAMING_SNAKE_CASE__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] SCREAMING_SNAKE_CASE__ = np.concatenate(UpperCamelCase__ , axis=0 ) SCREAMING_SNAKE_CASE__ = np.array(UpperCamelCase__ ).astype(np.floataa ) / 2_5_5.0 SCREAMING_SNAKE_CASE__ = image.transpose(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE__ = 2.0 * image - 1.0 SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ ) elif isinstance(image[0] , torch.Tensor ): SCREAMING_SNAKE_CASE__ = torch.cat(UpperCamelCase__ , dim=0 ) return image def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Union[List, PIL.Image.Image, torch.Tensor] ): if isinstance(UpperCamelCase__ , torch.Tensor ): return mask elif isinstance(UpperCamelCase__ , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ = [mask] if isinstance(mask[0] , PIL.Image.Image ): SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = mask[0].size SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 SCREAMING_SNAKE_CASE__ = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask] SCREAMING_SNAKE_CASE__ = np.concatenate(UpperCamelCase__ , axis=0 ) SCREAMING_SNAKE_CASE__ = mask.astype(np.floataa ) / 2_5_5.0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = torch.from_numpy(UpperCamelCase__ ) elif isinstance(mask[0] , torch.Tensor ): SCREAMING_SNAKE_CASE__ = torch.cat(UpperCamelCase__ , dim=0 ) return mask class UpperCamelCase_ ( UpperCamelCase__ ): lowerCamelCase_ = 42 lowerCamelCase_ = 42 def __init__( self :Any , __A :List[Any] , __A :Optional[Any] ) -> Union[str, Any]: """simple docstring""" super().__init__() self.register_modules(unet=__A , scheduler=__A ) @torch.no_grad() def __call__( self :str , __A :Union[torch.Tensor, PIL.Image.Image] , __A :Union[torch.Tensor, PIL.Image.Image] , __A :int = 250 , __A :float = 0.0 , __A :int = 10 , __A :int = 10 , __A :Optional[Union[torch.Generator, List[torch.Generator]]] = None , __A :Optional[str] = "pil" , __A :bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" SCREAMING_SNAKE_CASE__ = image SCREAMING_SNAKE_CASE__ = _preprocess_image(__A ) SCREAMING_SNAKE_CASE__ = original_image.to(device=self.device , dtype=self.unet.dtype ) SCREAMING_SNAKE_CASE__ = _preprocess_mask(__A ) SCREAMING_SNAKE_CASE__ = mask_image.to(device=self.device , dtype=self.unet.dtype ) SCREAMING_SNAKE_CASE__ = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__A , __A ) and len(__A ) != batch_size: raise ValueError( f'''You have passed a list of generators of length {len(__A )}, but requested an effective batch''' f''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) SCREAMING_SNAKE_CASE__ = original_image.shape SCREAMING_SNAKE_CASE__ = randn_tensor(__A , generator=__A , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__A , __A , __A , self.device ) SCREAMING_SNAKE_CASE__ = eta SCREAMING_SNAKE_CASE__ = self.scheduler.timesteps[0] + 1 SCREAMING_SNAKE_CASE__ = generator[0] if isinstance(__A , __A ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual SCREAMING_SNAKE_CASE__ = self.unet(__A , __A ).sample # compute previous image: x_t -> x_t-1 SCREAMING_SNAKE_CASE__ = self.scheduler.step(__A , __A , __A , __A , __A , __A ).prev_sample else: # compute the reverse: x_t-1 -> x_t SCREAMING_SNAKE_CASE__ = self.scheduler.undo_step(__A , __A , __A ) SCREAMING_SNAKE_CASE__ = t SCREAMING_SNAKE_CASE__ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE__ = self.numpy_to_pil(__A ) if not return_dict: return (image,) return ImagePipelineOutput(images=__A )
59
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowerCAmelCase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowerCAmelCase : Optional[int] = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowerCAmelCase : Optional[Any] = { """unc-nlp/lxmert-base-uncased""": 512, } lowerCAmelCase : int = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class __magic_name__ ( _a ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_INIT_CONFIGURATION __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = LxmertTokenizer def __init__( self , _a=None , _a=None , _a=True , _a="[UNK]" , _a="[SEP]" , _a="[PAD]" , _a="[CLS]" , _a="[MASK]" , _a=True , _a=None , **_a , ): """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , do_lower_case=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE__ , strip_accents=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , SCREAMING_SNAKE_CASE__ ) != do_lower_case or normalizer_state.get("""strip_accents""" , SCREAMING_SNAKE_CASE__ ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , SCREAMING_SNAKE_CASE__ ) != tokenize_chinese_chars ): lowerCamelCase = getattr(SCREAMING_SNAKE_CASE__ , normalizer_state.pop("""type""" ) ) lowerCamelCase = do_lower_case lowerCamelCase = strip_accents lowerCamelCase = tokenize_chinese_chars lowerCamelCase = normalizer_class(**SCREAMING_SNAKE_CASE__ ) lowerCamelCase = do_lower_case def _lowerCAmelCase ( self , _a , _a=None ): """simple docstring""" lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" lowerCamelCase = [self.sep_token_id] lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" lowerCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ )
543
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _snake_case ( _a ): _A : List[str] = '''camembert''' def __init__( self : List[Any] ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=30_522 ,SCREAMING_SNAKE_CASE__ : int=768 ,SCREAMING_SNAKE_CASE__ : List[Any]=12 ,SCREAMING_SNAKE_CASE__ : Any=12 ,SCREAMING_SNAKE_CASE__ : Tuple=3_072 ,SCREAMING_SNAKE_CASE__ : str="gelu" ,SCREAMING_SNAKE_CASE__ : int=0.1 ,SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 ,SCREAMING_SNAKE_CASE__ : Dict=512 ,SCREAMING_SNAKE_CASE__ : List[str]=2 ,SCREAMING_SNAKE_CASE__ : Tuple=0.02 ,SCREAMING_SNAKE_CASE__ : Any=1e-12 ,SCREAMING_SNAKE_CASE__ : str=1 ,SCREAMING_SNAKE_CASE__ : Optional[Any]=0 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 ,SCREAMING_SNAKE_CASE__ : Any="absolute" ,SCREAMING_SNAKE_CASE__ : Tuple=True ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=None ,**SCREAMING_SNAKE_CASE__ : Tuple ,): super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ ,bos_token_id=SCREAMING_SNAKE_CASE__ ,eos_token_id=SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE:Union[str, Any] = vocab_size SCREAMING_SNAKE_CASE:str = hidden_size SCREAMING_SNAKE_CASE:str = num_hidden_layers SCREAMING_SNAKE_CASE:List[str] = num_attention_heads SCREAMING_SNAKE_CASE:Optional[int] = hidden_act SCREAMING_SNAKE_CASE:int = intermediate_size SCREAMING_SNAKE_CASE:List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE:Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE:str = max_position_embeddings SCREAMING_SNAKE_CASE:Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE:Optional[int] = initializer_range SCREAMING_SNAKE_CASE:Tuple = layer_norm_eps SCREAMING_SNAKE_CASE:Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE:Optional[int] = use_cache SCREAMING_SNAKE_CASE:List[Any] = classifier_dropout class _snake_case ( _a ): @property def __UpperCamelCase ( self : List[str] ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE:Any = {0: "batch", 1: "choice", 2: "sequence"} else: SCREAMING_SNAKE_CASE:str = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
143
0
'''simple docstring''' def lowerCamelCase__ ( __lowerCamelCase : str ): '''simple docstring''' if not grid or not grid[0]: raise TypeError('The grid does not contain the appropriate information' ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] _UpperCAmelCase : Dict =grid[0] for row_n in range(1 , len(lowercase__ ) ): _UpperCAmelCase : Any =grid[row_n] _UpperCAmelCase : Tuple =fill_row(lowercase__ , lowercase__ ) _UpperCAmelCase : Union[str, Any] =grid[row_n] return grid[-1][-1] def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : Optional[int] ): '''simple docstring''' current_row[0] += row_above[0] for cell_n in range(1 , len(lowercase__ ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' from transformers import BertTokenizerFast from .custom_tokenization import CustomTokenizer class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase =CustomTokenizer pass
331
0
from __future__ import annotations def __lowercase ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any] ): if partitions <= 0: raise ValueError('partitions must be a positive number!' ) if partitions > number_of_bytes: raise ValueError('partitions can not > number_of_bytes!' ) UpperCamelCase_ : Union[str, Any] = number_of_bytes // partitions UpperCamelCase_ : int = [] for i in range(_UpperCAmelCase ): UpperCamelCase_ : Dict = i * bytes_per_partition + 1 UpperCamelCase_ : List[Any] = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(F"{start_bytes}-{end_bytes}" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
417
from __future__ import annotations from math import ceil, floor, sqrt def A_ ( _UpperCAmelCase = 2_00_00_00 ): SCREAMING_SNAKE_CASE_: list[int] = [0] SCREAMING_SNAKE_CASE_: int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target SCREAMING_SNAKE_CASE_: int = 0 # the area corresponding to the grid that gives the product closest to target SCREAMING_SNAKE_CASE_: int = 0 # an estimate of b, using the quadratic formula SCREAMING_SNAKE_CASE_: float # the largest integer less than b_estimate SCREAMING_SNAKE_CASE_: int # the largest integer less than b_estimate SCREAMING_SNAKE_CASE_: int # the triangle number corresponding to b_floor SCREAMING_SNAKE_CASE_: int # the triangle number corresponding to b_ceil SCREAMING_SNAKE_CASE_: int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): SCREAMING_SNAKE_CASE_: List[Any] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 SCREAMING_SNAKE_CASE_: Any = floor(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: List[str] = ceil(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_: Any = triangle_numbers[b_floor] SCREAMING_SNAKE_CASE_: List[Any] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): SCREAMING_SNAKE_CASE_: int = triangle_b_first_guess * triangle_a SCREAMING_SNAKE_CASE_: int = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): SCREAMING_SNAKE_CASE_: Optional[Any] = triangle_b_second_guess * triangle_a SCREAMING_SNAKE_CASE_: Tuple = idx_a * b_ceil return area if __name__ == "__main__": print(f'''{solution() = }''')
671
0
def snake_case (__lowercase , __lowercase ) -> int: '''simple docstring''' if len(__lowercase ) != len(__lowercase ): raise ValueError("String lengths must match!" ) _snake_case : List[Any] = 0 for chara, chara in zip(__lowercase , __lowercase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
700
from math import pi def snake_case (__lowercase , __lowercase ) -> float: '''simple docstring''' return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(9_0, 1_0))
580
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : float | Decimal , snake_case_ : float = 10**-10 ) -> float: '''simple docstring''' UpperCAmelCase_ = a while True: UpperCAmelCase_ = Decimal(snake_case_ ) - ( Decimal(eval(snake_case_ ) ) / Decimal(eval(str(diff(snake_case_ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(snake_case_ ) ) < precision: # noqa: S307 return float(snake_case_ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial print(f"The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}") # Find Square Root of 5 print(f"The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}") # Exponential Roots print(f"The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}")
78
def __UpperCamelCase ( A = 10**12 ): UpperCamelCase__ = 1 UpperCamelCase__ = 0 UpperCamelCase__ = 1 UpperCamelCase__ = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f"""{solution() = }""")
415
0
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCamelCase : """simple docstring""" def __init__( self : Union[str, Any] , snake_case : Any , snake_case : Optional[Any]=2 , snake_case : Dict=8 , snake_case : Any=True , snake_case : Dict=True , snake_case : List[Any]=True , snake_case : List[Any]=True , snake_case : Tuple=99 , snake_case : int=16 , snake_case : Optional[int]=5 , snake_case : Optional[int]=2 , snake_case : Dict=36 , snake_case : List[Any]="gelu" , snake_case : Any=0.0 , snake_case : Union[str, Any]=0.0 , snake_case : Any=512 , snake_case : Any=16 , snake_case : Dict=2 , snake_case : Dict=0.02 , snake_case : str=3 , snake_case : Any=4 , snake_case : List[str]=None , ): __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = num_labels __UpperCamelCase = num_choices __UpperCamelCase = scope def snake_case ( self : Union[str, Any] ): __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case ( self : Optional[Any] ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def snake_case ( self : Any ): __UpperCamelCase = self.get_config() __UpperCamelCase = 300 return config def snake_case ( self : List[Any] ): ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = self.prepare_config_and_inputs() __UpperCamelCase = True __UpperCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def snake_case ( self : Dict , snake_case : Optional[int] , snake_case : List[Any] , snake_case : Any , snake_case : Tuple , snake_case : Optional[int] , snake_case : int , snake_case : List[Any] ): __UpperCamelCase = MraModel(config=snake_case ) model.to(snake_case ) model.eval() __UpperCamelCase = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) __UpperCamelCase = model(snake_case , token_type_ids=snake_case ) __UpperCamelCase = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : List[str] , snake_case : Optional[int] , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : List[Any] , snake_case : List[Any] , snake_case : Optional[int] , snake_case : Any , snake_case : List[Any] , snake_case : Optional[int] , ): __UpperCamelCase = True __UpperCamelCase = MraModel(snake_case ) model.to(snake_case ) model.eval() __UpperCamelCase = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , encoder_attention_mask=snake_case , ) __UpperCamelCase = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , encoder_hidden_states=snake_case , ) __UpperCamelCase = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Dict , snake_case : str , snake_case : Optional[Any] , snake_case : List[Any] , snake_case : List[Any] , snake_case : List[str] , snake_case : Any , snake_case : Optional[int] ): __UpperCamelCase = MraForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() __UpperCamelCase = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self : Union[str, Any] , snake_case : str , snake_case : Dict , snake_case : List[str] , snake_case : Tuple , snake_case : Any , snake_case : List[Any] , snake_case : Any ): __UpperCamelCase = MraForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() __UpperCamelCase = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self : Any , snake_case : int , snake_case : Tuple , snake_case : int , snake_case : List[Any] , snake_case : Union[str, Any] , snake_case : int , snake_case : Optional[int] ): __UpperCamelCase = self.num_labels __UpperCamelCase = MraForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() __UpperCamelCase = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self : Tuple , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Dict , snake_case : List[Any] , snake_case : Any , snake_case : Tuple , snake_case : Union[str, Any] ): __UpperCamelCase = self.num_labels __UpperCamelCase = MraForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() __UpperCamelCase = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self : List[Any] , snake_case : Optional[Any] , snake_case : List[str] , snake_case : int , snake_case : List[Any] , snake_case : int , snake_case : Optional[Any] , snake_case : Dict ): __UpperCamelCase = self.num_choices __UpperCamelCase = MraForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() __UpperCamelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCamelCase = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self : Dict ): __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _lowerCamelCase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase__ : List[Any] = False lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : Union[str, Any] = False lowerCAmelCase__ : str = () def snake_case ( self : Any ): __UpperCamelCase = MraModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def snake_case ( self : int ): self.config_tester.run_common_tests() def snake_case ( self : Optional[Any] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def snake_case ( self : Dict ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase = type self.model_tester.create_and_check_model(*snake_case ) def snake_case ( self : Optional[Any] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def snake_case ( self : Optional[Any] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def snake_case ( self : Dict ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def snake_case ( self : List[Any] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def snake_case ( self : Any ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @slow def snake_case ( self : List[Any] ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = MraModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip(reason='''MRA does not output attentions''' ) def snake_case ( self : List[str] ): return @require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self : int ): __UpperCamelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) __UpperCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCamelCase = model(snake_case )[0] __UpperCamelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , snake_case ) __UpperCamelCase = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1E-4 ) ) @slow def snake_case ( self : Optional[int] ): __UpperCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) __UpperCamelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCamelCase = model(snake_case )[0] __UpperCamelCase = 50265 __UpperCamelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , snake_case ) __UpperCamelCase = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1E-4 ) ) @slow def snake_case ( self : Union[str, Any] ): __UpperCamelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) __UpperCamelCase = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): __UpperCamelCase = model(snake_case )[0] __UpperCamelCase = 50265 __UpperCamelCase = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , snake_case ) __UpperCamelCase = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1E-4 ) )
375
import heapq import sys import numpy as np a_ = tuple[int, int] class _lowerCamelCase : """simple docstring""" def __init__( self : Dict ): __UpperCamelCase = [] __UpperCamelCase = set() def snake_case ( self : Dict ): if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def snake_case ( self : Optional[Any] ): return len(self.elements ) == 0 def snake_case ( self : Optional[int] , snake_case : Tuple , snake_case : Any ): if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(snake_case ) else: # update # print("update", item) __UpperCamelCase = [] ((__UpperCamelCase) , (__UpperCamelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((__UpperCamelCase) , (__UpperCamelCase)) = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def snake_case ( self : Any , snake_case : int ): if item in self.set: self.set.remove(snake_case ) __UpperCamelCase = [] ((__UpperCamelCase) , (__UpperCamelCase)) = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((__UpperCamelCase) , (__UpperCamelCase)) = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def snake_case ( self : Tuple ): return self.elements[0][1] def snake_case ( self : List[str] ): ((__UpperCamelCase) , (__UpperCamelCase)) = heapq.heappop(self.elements ) self.set.remove(snake_case ) return (priority, item) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Tuple: """simple docstring""" __UpperCamelCase = np.array(lowercase_ ) __UpperCamelCase = np.array(lowercase_ ) return np.linalg.norm(a - b ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" return consistent_heuristic(lowercase_ , lowercase_ ) // t def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> Dict: """simple docstring""" return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> str: """simple docstring""" __UpperCamelCase = g_function[start] + Wa * heuristics[i](lowercase_ , lowercase_ ) return ans def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Dict: """simple docstring""" __UpperCamelCase = np.chararray((n, n) ) for i in range(lowercase_ ): for j in range(lowercase_ ): __UpperCamelCase = '''*''' for i in range(lowercase_ ): for j in range(lowercase_ ): if (j, (n - 1) - i) in blocks: __UpperCamelCase = '''#''' __UpperCamelCase = '''-''' __UpperCamelCase = back_pointer[goal] while x != start: ((__UpperCamelCase) , (__UpperCamelCase)) = x # print(x) __UpperCamelCase = '''-''' __UpperCamelCase = back_pointer[x] __UpperCamelCase = '''-''' for i in range(lowercase_ ): for j in range(lowercase_ ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) __UpperCamelCase = back_pointer[goal] while x != start: print(lowercase_ , end=''' ''' ) __UpperCamelCase = back_pointer[x] print(lowercase_ ) sys.exit() def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> List[Any]: """simple docstring""" if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) -> Tuple: """simple docstring""" for itera in range(lowercase_ ): open_list[itera].remove_element(lowercase_ ) # print("s", s) # print("j", j) ((__UpperCamelCase) , (__UpperCamelCase)) = s __UpperCamelCase = (x - 1, y) __UpperCamelCase = (x + 1, y) __UpperCamelCase = (x, y + 1) __UpperCamelCase = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(lowercase_ ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(lowercase_ ) __UpperCamelCase = -1 __UpperCamelCase = float('''inf''' ) if valid(lowercase_ ) and g_function[neighbours] > g_function[s] + 1: __UpperCamelCase = g_function[s] + 1 __UpperCamelCase = s if neighbours not in close_list_anchor: open_list[0].put(lowercase_ , key(lowercase_ , 0 , lowercase_ , lowercase_ ) ) if neighbours not in close_list_inad: for var in range(1 , lowercase_ ): if key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) <= Wa * key( lowercase_ , 0 , lowercase_ , lowercase_ ): open_list[j].put( lowercase_ , key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( ) -> str: """simple docstring""" __UpperCamelCase = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list a_ = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} a_ = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] a_ = make_common_ground() a_ = blocks_blk # hyper parameters a_ = 1 a_ = 1 a_ = 20 a_ = 3 # one consistent and two other inconsistent # start and end destination a_ = (0, 0) a_ = (n - 1, n - 1) a_ = 1 def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> str: """simple docstring""" __UpperCamelCase = {start: 0, goal: float('''inf''' )} __UpperCamelCase = {start: -1, goal: -1} __UpperCamelCase = [] __UpperCamelCase = set() for i in range(lowercase_ ): open_list.append(PriorityQueue() ) open_list[i].put(lowercase_ , key(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) ) __UpperCamelCase = [] __UpperCamelCase = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , lowercase_ ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(lowercase_ , lowercase_ , lowercase_ ) else: __UpperCamelCase , __UpperCamelCase = open_list[i].top_show() visited.add(lowercase_ ) expand_state( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) close_list_inad.append(lowercase_ ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(lowercase_ , lowercase_ , lowercase_ ) else: __UpperCamelCase = open_list[0].top_show() visited.add(lowercase_ ) expand_state( lowercase_ , 0 , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , ) close_list_anchor.append(lowercase_ ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(lowercase_ ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
375
1
from __future__ import annotations from typing import Any def _lowerCamelCase( __snake_case ) -> int: if not postfix_notation: return 0 __snake_case = {"+", "-", "*", "/"} __snake_case = [] for token in postfix_notation: if token in operations: __snake_case , __snake_case = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(__snake_case ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
524
import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py lowerCamelCase__ = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. lowerCamelCase__ = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. lowerCamelCase__ = re.compile(r'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') lowerCamelCase__ = re.compile(r'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. lowerCamelCase__ = re.compile(r'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) lowerCamelCase__ = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def _lowerCamelCase( __snake_case ) -> Tuple: __snake_case = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)" , __snake_case ) return [m.group(0 ) for m in matches] def _lowerCamelCase( ) -> Optional[int]: __snake_case = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES __snake_case = { config.replace("Config" , "" ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. __snake_case = collections.defaultdict(__snake_case ) __snake_case = collections.defaultdict(__snake_case ) __snake_case = collections.defaultdict(__snake_case ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(__snake_case ): __snake_case = None if _re_tf_models.match(__snake_case ) is not None: __snake_case = tf_models __snake_case = _re_tf_models.match(__snake_case ).groups()[0] elif _re_flax_models.match(__snake_case ) is not None: __snake_case = flax_models __snake_case = _re_flax_models.match(__snake_case ).groups()[0] elif _re_pt_models.match(__snake_case ) is not None: __snake_case = pt_models __snake_case = _re_pt_models.match(__snake_case ).groups()[0] if lookup_dict is not None: while len(__snake_case ) > 0: if attr_name in model_prefix_to_model_type: __snake_case = True break # Try again after removing the last word in the name __snake_case = "".join(camel_case_split(__snake_case )[:-1] ) __snake_case = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) __snake_case = list(__snake_case ) all_models.sort() __snake_case = {"model_type": all_models} __snake_case = [pt_models[t] for t in all_models] __snake_case = [tf_models[t] for t in all_models] __snake_case = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure __snake_case = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: __snake_case = "AutoProcessor" elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: __snake_case = "AutoTokenizer" elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: __snake_case = "AutoFeatureExtractor" else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. __snake_case = "AutoTokenizer" __snake_case = [processors[t] for t in all_models] return pd.DataFrame(__snake_case ) def _lowerCamelCase( __snake_case ) -> List[Any]: __snake_case = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: __snake_case = [model_mapping, f"""TF_{model_mapping}""", f"""FLAX_{model_mapping}"""] __snake_case = [auto_class, f"""TF_{auto_class}""", f"""Flax_{auto_class}"""] # Loop through all three frameworks for module, cls, mapping in zip(__snake_case , __snake_case , __snake_case ): # The type of pipeline may not exist in this framework if not hasattr(__snake_case , __snake_case ): continue # First extract all model_names __snake_case = [] for name in getattr(__snake_case , __snake_case ).values(): if isinstance(__snake_case , __snake_case ): model_names.append(__snake_case ) else: model_names.extend(list(__snake_case ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def _lowerCamelCase( __snake_case , __snake_case ) -> Union[str, Any]: __snake_case = get_frameworks_table() __snake_case = Dataset.from_pandas(__snake_case ) __snake_case = hf_hub_download( "huggingface/transformers-metadata" , "pipeline_tags.json" , repo_type="dataset" , token=__snake_case ) __snake_case = Dataset.from_json(__snake_case ) __snake_case = { tags_dataset[i]["model_class"]: (tags_dataset[i]["pipeline_tag"], tags_dataset[i]["auto_class"]) for i in range(len(__snake_case ) ) } __snake_case = update_pipeline_and_auto_class_table(__snake_case ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. __snake_case = sorted(table.keys() ) __snake_case = pd.DataFrame( { "model_class": model_classes, "pipeline_tag": [table[m][0] for m in model_classes], "auto_class": [table[m][1] for m in model_classes], } ) __snake_case = Dataset.from_pandas(__snake_case ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(__snake_case , "frameworks.json" ) ) tags_dataset.to_json(os.path.join(__snake_case , "pipeline_tags.json" ) ) if commit_sha is not None: __snake_case = ( f"""Update with commit {commit_sha}\n\nSee: """ f"""https://github.com/huggingface/transformers/commit/{commit_sha}""" ) else: __snake_case = "Update" upload_folder( repo_id="huggingface/transformers-metadata" , folder_path=__snake_case , repo_type="dataset" , token=__snake_case , commit_message=__snake_case , ) def _lowerCamelCase( ) -> Union[str, Any]: __snake_case = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} __snake_case = transformers_module.pipelines.SUPPORTED_TASKS __snake_case = [] for key in pipeline_tasks: if key not in in_table: __snake_case = pipeline_tasks[key]["pt"] if isinstance(__snake_case , (list, tuple) ): __snake_case = model[0] __snake_case = model.__name__ if model not in in_table.values(): missing.append(__snake_case ) if len(__snake_case ) > 0: __snake_case = ", ".join(__snake_case ) raise ValueError( "The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside " f"""`utils/update_metadata.py`: {msg}. Please add them!""" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') lowerCamelCase__ = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
524
1
'''simple docstring''' import os def _snake_case ( A_ : Dict ): """simple docstring""" a_ : List[str] = len(grid[0] ) a_ : int = len(_lowerCamelCase ) a_ : Tuple = 0 a_ : List[Any] = 0 a_ : List[str] = 0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(_lowerCamelCase ): for j in range(n_rows - 3 ): a_ : List[Any] = grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] a_ : Tuple = grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: a_ : List[Any] = ( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: a_ : List[Any] = ( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) a_ : str = max( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if max_product > largest: a_ : Optional[Any] = max_product return largest def _snake_case ( ): """simple docstring""" a_ : Tuple = [] with open(os.path.dirname(_lowerCamelCase ) + """/grid.txt""" ) as file: for line in file: grid.append(line.strip("""\n""" ).split(""" """ ) ) a_ : Tuple = [[int(_lowerCamelCase ) for i in grid[j]] for j in range(len(_lowerCamelCase ) )] return largest_product(_lowerCamelCase ) if __name__ == "__main__": print(solution())
719
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging __snake_case: Tuple = logging.get_logger(__name__) __snake_case: Tuple = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" a_ = "t5" a_ = ["past_key_values"] a_ = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , lowerCAmelCase_=3_21_28 , lowerCAmelCase_=5_12 , lowerCAmelCase_=64 , lowerCAmelCase_=20_48 , lowerCAmelCase_=6 , lowerCAmelCase_=None , lowerCAmelCase_=8 , lowerCAmelCase_=32 , lowerCAmelCase_=1_28 , lowerCAmelCase_=0.1 , lowerCAmelCase_=1E-6 , lowerCAmelCase_=1.0 , lowerCAmelCase_="relu" , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=0 , lowerCAmelCase_=1 , **lowerCAmelCase_ , ): '''simple docstring''' a_ : List[Any] = vocab_size a_ : List[str] = d_model a_ : Union[str, Any] = d_kv a_ : List[Any] = d_ff a_ : int = num_layers a_ : Any = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry a_ : Union[str, Any] = num_heads a_ : int = relative_attention_num_buckets a_ : Dict = relative_attention_max_distance a_ : Union[str, Any] = dropout_rate a_ : Union[str, Any] = layer_norm_epsilon a_ : List[Any] = initializer_factor a_ : Any = feed_forward_proj a_ : List[Any] = use_cache a_ : Dict = self.feed_forward_proj.split("""-""" ) a_ : Union[str, Any] = act_info[-1] a_ : str = act_info[0] == """gated""" if len(lowerCAmelCase_ ) > 1 and act_info[0] != "gated" or len(lowerCAmelCase_ ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) # for backwards compatibility if feed_forward_proj == "gated-gelu": a_ : List[str] = """gelu_new""" super().__init__( pad_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ , ) class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" @property def _lowerCAmelCase ( self ): '''simple docstring''' a_ : List[Any] = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: a_ : Tuple = """past_encoder_sequence + sequence""" a_ : str = {0: """batch"""} a_ : Any = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: a_ : List[Any] = {0: """batch""", 1: """decoder_sequence"""} a_ : Optional[int] = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase_ , direction="""inputs""" ) return common_inputs @property def _lowerCAmelCase ( self ): '''simple docstring''' return 13
460
0
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class _a : """simple docstring""" def __init__( self : str , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any]=13 , UpperCAmelCase : List[Any]=7 , UpperCAmelCase : Tuple=False , UpperCAmelCase : int=True , UpperCAmelCase : Optional[int]=False , UpperCAmelCase : Tuple=True , UpperCAmelCase : Optional[Any]=33 , UpperCAmelCase : Optional[Any]=32 , UpperCAmelCase : List[Any]=5 , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : Any=37 , UpperCAmelCase : int="gelu" , UpperCAmelCase : Union[str, Any]=0.1 , UpperCAmelCase : Any=0.1 , UpperCAmelCase : List[str]=512 , UpperCAmelCase : Optional[int]=16 , UpperCAmelCase : int=2 , UpperCAmelCase : List[str]=0.02 , UpperCAmelCase : str=3 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Optional[Any]=None , ): A_ = parent A_ = batch_size A_ = seq_length A_ = is_training A_ = use_input_mask A_ = use_token_type_ids A_ = use_labels A_ = vocab_size A_ = hidden_size A_ = num_hidden_layers A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = max_position_embeddings A_ = type_vocab_size A_ = type_sequence_label_size A_ = initializer_range A_ = num_labels A_ = num_choices A_ = scope def __A ( self : Any ): A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = None if self.use_input_mask: A_ = random_attention_mask([self.batch_size, self.seq_length] ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self : str ): return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __A ( self : Tuple , UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ): A_ = EsmModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase ) A_ = model(UpperCAmelCase ) A_ = model(UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A ( self : List[Any] , UpperCAmelCase : int , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : Optional[Any] ): A_ = EsmForMaskedLM(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str ): A_ = self.num_labels A_ = EsmForTokenClassification(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() A_ = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self : Optional[Any] ): A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _a ( snake_case_ , snake_case_ , unittest.TestCase ): """simple docstring""" _lowerCamelCase : List[Any] = False _lowerCamelCase : Dict = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) _lowerCamelCase : Tuple = () _lowerCamelCase : Tuple = ( { 'feature-extraction': EsmModel, 'fill-mask': EsmForMaskedLM, 'text-classification': EsmForSequenceClassification, 'token-classification': EsmForTokenClassification, 'zero-shot': EsmForSequenceClassification, } if is_torch_available() else {} ) _lowerCamelCase : Any = True def __A ( self : List[Any] ): A_ = EsmModelTester(self ) A_ = ConfigTester(self , config_class=UpperCAmelCase , hidden_size=37 ) def __A ( self : Optional[int] ): self.config_tester.run_common_tests() def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : List[str] ): A_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A_ = type self.model_tester.create_and_check_model(*UpperCAmelCase ) def __A ( self : Tuple ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase ) def __A ( self : List[Any] ): A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase ) @slow def __A ( self : Any ): for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = EsmModel.from_pretrained(UpperCAmelCase ) self.assertIsNotNone(UpperCAmelCase ) def __A ( self : Optional[int] ): A_ = self.model_tester.prepare_config_and_inputs()[0] A_ = EsmEmbeddings(config=UpperCAmelCase ) A_ = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) A_ = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) A_ = create_position_ids_from_input_ids(UpperCAmelCase , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase , UpperCAmelCase ) ) ) def __A ( self : Union[str, Any] ): A_ = self.model_tester.prepare_config_and_inputs()[0] A_ = EsmEmbeddings(config=UpperCAmelCase ) A_ = torch.empty(2 , 4 , 30 ) A_ = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] A_ = torch.as_tensor([expected_single_positions, expected_single_positions] ) A_ = embeddings.create_position_ids_from_inputs_embeds(UpperCAmelCase ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(UpperCAmelCase , UpperCAmelCase ) ) ) @unittest.skip("Esm does not support embedding resizing" ) def __A ( self : Tuple ): pass @unittest.skip("Esm does not support embedding resizing" ) def __A ( self : Optional[int] ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __A ( self : List[str] ): pass @require_torch class _a ( snake_case_ ): """simple docstring""" @slow def __A ( self : Dict ): with torch.no_grad(): A_ = EsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() A_ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) A_ = model(UpperCAmelCase )[0] A_ = 33 A_ = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , UpperCAmelCase ) A_ = torch.tensor( [[[8.9_215, -10.5_898, -6.4_671], [-6.3_967, -13.9_114, -1.1_212], [-7.7_812, -13.9_516, -3.7_406]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self : Tuple ): with torch.no_grad(): A_ = EsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) model.eval() A_ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A_ = model(UpperCAmelCase )[0] # compare the actual values for a slice. A_ = torch.tensor( [[[0.1_444, 0.5_413, 0.3_248], [0.3_034, 0.0_053, 0.3_108], [0.3_228, -0.2_499, 0.3_415]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase , atol=1E-4 ) )
86
def __snake_case ( __UpperCamelCase : list ,__UpperCamelCase : int = 0 ): """simple docstring""" A_ = length or len(__UpperCamelCase ) A_ = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: A_ , A_ = list_data[i + 1], list_data[i] A_ = True return list_data if not swapped else bubble_sort(__UpperCamelCase ,length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
86
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class A : def __init__( self : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str=13 , __UpperCAmelCase : Tuple=7 , __UpperCAmelCase : str=True , __UpperCAmelCase : int=True , __UpperCAmelCase : Any=True , __UpperCAmelCase : List[str]=True , __UpperCAmelCase : Dict=99 , __UpperCAmelCase : Dict=[1, 1, 2] , __UpperCAmelCase : Tuple=1 , __UpperCAmelCase : Tuple=32 , __UpperCAmelCase : str=4 , __UpperCAmelCase : Optional[int]=8 , __UpperCAmelCase : Optional[Any]=37 , __UpperCAmelCase : str="gelu_new" , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : str=0.1 , __UpperCAmelCase : Optional[int]=0.0 , __UpperCAmelCase : Any=512 , __UpperCAmelCase : Optional[Any]=3 , __UpperCAmelCase : List[Any]=0.02 , __UpperCAmelCase : Optional[int]=3 , __UpperCAmelCase : str=4 , __UpperCAmelCase : Any=None , __UpperCAmelCase : Tuple=False , ) -> Tuple: """simple docstring""" UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = seq_length UpperCamelCase_ = is_training UpperCamelCase_ = use_input_mask UpperCamelCase_ = use_token_type_ids UpperCamelCase_ = use_labels UpperCamelCase_ = vocab_size UpperCamelCase_ = block_sizes UpperCamelCase_ = num_decoder_layers UpperCamelCase_ = d_model UpperCamelCase_ = n_head UpperCamelCase_ = d_head UpperCamelCase_ = d_inner UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dropout UpperCamelCase_ = attention_dropout UpperCamelCase_ = activation_dropout UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = 2 UpperCamelCase_ = num_labels UpperCamelCase_ = num_choices UpperCamelCase_ = scope UpperCamelCase_ = initializer_std # Used in the tests to check the size of the first attention layer UpperCamelCase_ = n_head # Used in the tests to check the size of the first hidden state UpperCamelCase_ = self.d_model # Used in the tests to check the number of output hidden states/attentions UpperCamelCase_ = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: UpperCamelCase_ = self.num_hidden_layers + 2 def lowercase__ ( self : Any ) -> Tuple: """simple docstring""" UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ = None if self.use_input_mask: UpperCamelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ = None if self.use_token_type_ids: UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ = None UpperCamelCase_ = None UpperCamelCase_ = None if self.use_labels: UpperCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ = FunnelConfig( vocab_size=self.vocab_size , block_sizes=self.block_sizes , num_decoder_layers=self.num_decoder_layers , d_model=self.d_model , n_head=self.n_head , d_head=self.d_head , d_inner=self.d_inner , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , activation_dropout=self.activation_dropout , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_std=self.initializer_std , ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def lowercase__ ( self : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : str , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = TFFunnelModel(config=__UpperCAmelCase ) UpperCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCamelCase_ = model(__UpperCAmelCase ) UpperCamelCase_ = [input_ids, input_mask] UpperCamelCase_ = model(__UpperCAmelCase ) UpperCamelCase_ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) UpperCamelCase_ = False UpperCamelCase_ = TFFunnelModel(config=__UpperCAmelCase ) UpperCamelCase_ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) UpperCamelCase_ = False UpperCamelCase_ = TFFunnelModel(config=__UpperCAmelCase ) UpperCamelCase_ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.d_model) ) def lowercase__ ( self : Any , __UpperCAmelCase : str , __UpperCAmelCase : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : List[Any] , ) -> str: """simple docstring""" UpperCamelCase_ = TFFunnelBaseModel(config=__UpperCAmelCase ) UpperCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCamelCase_ = model(__UpperCAmelCase ) UpperCamelCase_ = [input_ids, input_mask] UpperCamelCase_ = model(__UpperCAmelCase ) UpperCamelCase_ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) UpperCamelCase_ = False UpperCamelCase_ = TFFunnelBaseModel(config=__UpperCAmelCase ) UpperCamelCase_ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 3, self.d_model) ) UpperCamelCase_ = False UpperCamelCase_ = TFFunnelBaseModel(config=__UpperCAmelCase ) UpperCamelCase_ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, 2, self.d_model) ) def lowercase__ ( self : Any , __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = TFFunnelForPreTraining(config=__UpperCAmelCase ) UpperCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCamelCase_ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : int , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , ) -> List[str]: """simple docstring""" UpperCamelCase_ = TFFunnelForMaskedLM(config=__UpperCAmelCase ) UpperCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCamelCase_ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any , __UpperCAmelCase : Dict , ) -> int: """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = TFFunnelForSequenceClassification(config=__UpperCAmelCase ) UpperCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCamelCase_ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , ) -> Optional[int]: """simple docstring""" UpperCamelCase_ = self.num_choices UpperCamelCase_ = TFFunnelForMultipleChoice(config=__UpperCAmelCase ) UpperCamelCase_ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } UpperCamelCase_ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase__ ( self : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ = self.num_labels UpperCamelCase_ = TFFunnelForTokenClassification(config=__UpperCAmelCase ) UpperCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCamelCase_ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : Tuple , ) -> List[Any]: """simple docstring""" UpperCamelCase_ = TFFunnelForQuestionAnswering(config=__UpperCAmelCase ) UpperCamelCase_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCamelCase_ = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase__ ( self : Optional[int] ) -> int: """simple docstring""" UpperCamelCase_ = self.prepare_config_and_inputs() ( UpperCamelCase_ ) = config_and_inputs UpperCamelCase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( lowercase__ , lowercase__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[Any] = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) _SCREAMING_SNAKE_CASE : Dict = ( { '''feature-extraction''': (TFFunnelBaseModel, TFFunnelModel), '''fill-mask''': TFFunnelForMaskedLM, '''question-answering''': TFFunnelForQuestionAnswering, '''text-classification''': TFFunnelForSequenceClassification, '''token-classification''': TFFunnelForTokenClassification, '''zero-shot''': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : int = False def lowercase__ ( self : Any ) -> List[Any]: """simple docstring""" UpperCamelCase_ = TFFunnelModelTester(self ) UpperCamelCase_ = ConfigTester(self , config_class=__UpperCAmelCase ) def lowercase__ ( self : Any ) -> str: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : int ) -> int: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> List[Any]: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def lowercase__ ( self : Optional[int] ) -> Any: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) def lowercase__ ( self : Tuple ) -> Any: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) @require_tf class A ( lowercase__ , unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : Union[str, Any] = False def lowercase__ ( self : List[str] ) -> Any: """simple docstring""" UpperCamelCase_ = TFFunnelModelTester(self , base=__UpperCAmelCase ) UpperCamelCase_ = ConfigTester(self , config_class=__UpperCAmelCase ) def lowercase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self : Any ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*__UpperCAmelCase ) def lowercase__ ( self : Dict ) -> int: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def lowercase__ ( self : Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase )
704
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a : Any = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[Any] = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[str] = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : int = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Optional[Any] = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
559
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class a ( unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=32 , A_=True , ): '''simple docstring''' _UpperCAmelCase : str = parent _UpperCAmelCase : Optional[int] = batch_size _UpperCAmelCase : List[Any] = num_channels _UpperCAmelCase : Optional[Any] = image_size _UpperCAmelCase : Optional[Any] = min_resolution _UpperCAmelCase : int = max_resolution _UpperCAmelCase : List[str] = do_resize _UpperCAmelCase : Optional[Any] = size_divisor _UpperCAmelCase : Dict = do_rescale def _UpperCAmelCase ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class a ( _UpperCAmelCase , unittest.TestCase ): _lowercase = GLPNImageProcessor if is_vision_available() else None def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = GLPNImageProcessingTester(self ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "size_divisor" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "resample" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_rescale" ) ) def _UpperCAmelCase ( self ): '''simple docstring''' pass def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) _UpperCAmelCase : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) _UpperCAmelCase : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCAmelCase : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) _UpperCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
300
from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase__ ( _UpperCAmelCase ): A__ : Tuple =["""image_processor""", """tokenizer"""] A__ : Dict ="""BlipImageProcessor""" A__ : str ="""AutoTokenizer""" def __init__( self : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ): SCREAMING_SNAKE_CASE__ = False super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.image_processor def __call__( self : Optional[int] , UpperCAmelCase_ : ImageInput = None , UpperCAmelCase_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[bool, str, PaddingStrategy] = False , UpperCAmelCase_ : Union[bool, str, TruncationStrategy] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , **UpperCAmelCase_ : int , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: SCREAMING_SNAKE_CASE__ = self.tokenizer SCREAMING_SNAKE_CASE__ = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) return text_encoding # add pixel_values SCREAMING_SNAKE_CASE__ = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) if text is not None: SCREAMING_SNAKE_CASE__ = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) else: SCREAMING_SNAKE_CASE__ = None if text_encoding is not None: encoding_image_processor.update(UpperCAmelCase_ ) return encoding_image_processor def A_ ( self : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[str] ): return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def A_ ( self : Any , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[Any] ): return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def A_ ( self : int ): SCREAMING_SNAKE_CASE__ = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
472
0
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): # Initialise PyTorch model SCREAMING_SNAKE_CASE_ = BigBirdConfig.from_json_file(__UpperCamelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) if is_trivia_qa: SCREAMING_SNAKE_CASE_ = BigBirdForQuestionAnswering(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = BigBirdForPreTraining(__UpperCamelCase ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__UpperCamelCase , __UpperCamelCase , is_trivia_qa=__UpperCamelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) A : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
356
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase (unittest.TestCase ): """simple docstring""" @slow def __A ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE_ = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) SCREAMING_SNAKE_CASE_ = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house SCREAMING_SNAKE_CASE_ = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(__magic_name__ )["last_hidden_state"].detach() self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __magic_name__ , atol=1e-3 ) ) @slow def __A ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE_ = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) SCREAMING_SNAKE_CASE_ = torch.tensor([[0, 581, 10_269, 83, 99_942, 136, 60_742, 23, 70, 80_583, 18_276, 2]] ) # The dog is cute and lives in the garden house SCREAMING_SNAKE_CASE_ = torch.Size((1, 12, 1_024) ) # batch_size, sequence_length, embedding_vector_dim SCREAMING_SNAKE_CASE_ = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): SCREAMING_SNAKE_CASE_ = model(__magic_name__ )["last_hidden_state"].detach() self.assertEqual(output.shape , __magic_name__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __magic_name__ , atol=1e-3 ) )
356
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase = { "configuration_rag": ["RagConfig"], "retrieval_rag": ["RagRetriever"], "tokenization_rag": ["RagTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ "RagModel", "RagPreTrainedModel", "RagSequenceForGeneration", "RagTokenForGeneration", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ "TFRagModel", "TFRagPreTrainedModel", "TFRagSequenceForGeneration", "TFRagTokenForGeneration", ] if TYPE_CHECKING: from .configuration_rag import RagConfig from .retrieval_rag import RagRetriever from .tokenization_rag import RagTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rag import RagModel, RagPreTrainedModel, RagSequenceForGeneration, RagTokenForGeneration try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rag import ( TFRagModel, TFRagPreTrainedModel, TFRagSequenceForGeneration, TFRagTokenForGeneration, ) else: import sys lowercase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
198
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker lowercase = "CompVis/stable-diffusion-v1-1" lowercase = "CompVis/stable-diffusion-v1-2" lowercase = "CompVis/stable-diffusion-v1-3" lowercase = "CompVis/stable-diffusion-v1-4" class UpperCamelCase_ ( snake_case_ ): '''simple docstring''' def __init__( self , a , a , a , a , a , a , a , a = True , ) -> int: super()._init_() snake_case_ = StableDiffusionPipeline.from_pretrained(a ) snake_case_ = StableDiffusionPipeline.from_pretrained(a ) snake_case_ = StableDiffusionPipeline.from_pretrained(a ) snake_case_ = StableDiffusionPipeline( vae=a , text_encoder=a , tokenizer=a , unet=a , scheduler=a , safety_checker=a , feature_extractor=a , requires_safety_checker=a , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def _UpperCamelCase ( self ) -> Dict[str, Any]: return {k: getattr(self , a ) for k in self.config.keys() if not k.startswith('_' )} def _UpperCamelCase ( self , a = "auto" ) -> Dict: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory snake_case_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(a ) def _UpperCamelCase ( self ) -> List[Any]: self.enable_attention_slicing(a ) @torch.no_grad() def _UpperCamelCase ( self , a , a = 5_12 , a = 5_12 , a = 50 , a = 7.5 , a = None , a = 1 , a = 0.0 , a = None , a = None , a = "pil" , a = True , a = None , a = 1 , **a , ) -> Optional[Any]: return self.pipea( prompt=a , height=a , width=a , num_inference_steps=a , guidance_scale=a , negative_prompt=a , num_images_per_prompt=a , eta=a , generator=a , latents=a , output_type=a , return_dict=a , callback=a , callback_steps=a , **a , ) @torch.no_grad() def _UpperCamelCase ( self , a , a = 5_12 , a = 5_12 , a = 50 , a = 7.5 , a = None , a = 1 , a = 0.0 , a = None , a = None , a = "pil" , a = True , a = None , a = 1 , **a , ) -> int: return self.pipea( prompt=a , height=a , width=a , num_inference_steps=a , guidance_scale=a , negative_prompt=a , num_images_per_prompt=a , eta=a , generator=a , latents=a , output_type=a , return_dict=a , callback=a , callback_steps=a , **a , ) @torch.no_grad() def _UpperCamelCase ( self , a , a = 5_12 , a = 5_12 , a = 50 , a = 7.5 , a = None , a = 1 , a = 0.0 , a = None , a = None , a = "pil" , a = True , a = None , a = 1 , **a , ) -> Optional[int]: return self.pipea( prompt=a , height=a , width=a , num_inference_steps=a , guidance_scale=a , negative_prompt=a , num_images_per_prompt=a , eta=a , generator=a , latents=a , output_type=a , return_dict=a , callback=a , callback_steps=a , **a , ) @torch.no_grad() def _UpperCamelCase ( self , a , a = 5_12 , a = 5_12 , a = 50 , a = 7.5 , a = None , a = 1 , a = 0.0 , a = None , a = None , a = "pil" , a = True , a = None , a = 1 , **a , ) -> Any: return self.pipea( prompt=a , height=a , width=a , num_inference_steps=a , guidance_scale=a , negative_prompt=a , num_images_per_prompt=a , eta=a , generator=a , latents=a , output_type=a , return_dict=a , callback=a , callback_steps=a , **a , ) @torch.no_grad() def _UpperCamelCase ( self , a , a = 5_12 , a = 5_12 , a = 50 , a = 7.5 , a = None , a = 1 , a = 0.0 , a = None , a = None , a = "pil" , a = True , a = None , a = 1 , **a , ) -> Optional[Any]: snake_case_ = 'cuda' if torch.cuda.is_available() else 'cpu' self.to(a ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F'''`height` and `width` must be divisible by 8 but are {height} and {width}.''' ) # Get first result from Stable Diffusion Checkpoint v1.1 snake_case_ = self.textaimg_sda_a( prompt=a , height=a , width=a , num_inference_steps=a , guidance_scale=a , negative_prompt=a , num_images_per_prompt=a , eta=a , generator=a , latents=a , output_type=a , return_dict=a , callback=a , callback_steps=a , **a , ) # Get first result from Stable Diffusion Checkpoint v1.2 snake_case_ = self.textaimg_sda_a( prompt=a , height=a , width=a , num_inference_steps=a , guidance_scale=a , negative_prompt=a , num_images_per_prompt=a , eta=a , generator=a , latents=a , output_type=a , return_dict=a , callback=a , callback_steps=a , **a , ) # Get first result from Stable Diffusion Checkpoint v1.3 snake_case_ = self.textaimg_sda_a( prompt=a , height=a , width=a , num_inference_steps=a , guidance_scale=a , negative_prompt=a , num_images_per_prompt=a , eta=a , generator=a , latents=a , output_type=a , return_dict=a , callback=a , callback_steps=a , **a , ) # Get first result from Stable Diffusion Checkpoint v1.4 snake_case_ = self.textaimg_sda_a( prompt=a , height=a , width=a , num_inference_steps=a , guidance_scale=a , negative_prompt=a , num_images_per_prompt=a , eta=a , generator=a , latents=a , output_type=a , return_dict=a , callback=a , callback_steps=a , **a , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
198
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase : Any = { 'microsoft/table-transformer-detection': ( 'https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json' ), } class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _A : Tuple = '''table-transformer''' _A : Optional[int] = ['''past_key_values'''] _A : List[Any] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__(self , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=3 , lowerCAmelCase_=100 , lowerCAmelCase_=6 , lowerCAmelCase_=2048 , lowerCAmelCase_=8 , lowerCAmelCase_=6 , lowerCAmelCase_=2048 , lowerCAmelCase_=8 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=True , lowerCAmelCase_="relu" , lowerCAmelCase_=256 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.0 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1.0 , lowerCAmelCase_=False , lowerCAmelCase_="sine" , lowerCAmelCase_="resnet50" , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=1 , lowerCAmelCase_=5 , lowerCAmelCase_=2 , lowerCAmelCase_=1 , lowerCAmelCase_=1 , lowerCAmelCase_=5 , lowerCAmelCase_=2 , lowerCAmelCase_=0.1 , **lowerCAmelCase_ , ): if backbone_config is not None and use_timm_backbone: raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" ) if not use_timm_backbone: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) A_ : Dict = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] ) elif isinstance(A__ , A__ ): A_ : Any = backbone_config.get("""model_type""" ) A_ : int = CONFIG_MAPPING[backbone_model_type] A_ : str = config_class.from_dict(A__ ) # set timm attributes to None A_ : Any = None, None, None A_ : Optional[int] = use_timm_backbone A_ : List[str] = backbone_config A_ : Any = num_channels A_ : Union[str, Any] = num_queries A_ : Optional[int] = d_model A_ : Union[str, Any] = encoder_ffn_dim A_ : str = encoder_layers A_ : List[Any] = encoder_attention_heads A_ : str = decoder_ffn_dim A_ : Any = decoder_layers A_ : Tuple = decoder_attention_heads A_ : List[Any] = dropout A_ : int = attention_dropout A_ : Any = activation_dropout A_ : Tuple = activation_function A_ : Tuple = init_std A_ : Union[str, Any] = init_xavier_std A_ : int = encoder_layerdrop A_ : List[str] = decoder_layerdrop A_ : Any = encoder_layers A_ : List[str] = auxiliary_loss A_ : List[str] = position_embedding_type A_ : Tuple = backbone A_ : List[Any] = use_pretrained_backbone A_ : List[Any] = dilation # Hungarian matcher A_ : Tuple = class_cost A_ : Union[str, Any] = bbox_cost A_ : List[Any] = giou_cost # Loss coefficients A_ : Any = mask_loss_coefficient A_ : int = dice_loss_coefficient A_ : Union[str, Any] = bbox_loss_coefficient A_ : str = giou_loss_coefficient A_ : int = eos_coefficient super().__init__(is_encoder_decoder=A__ , **A__ ) @property def lowerCamelCase(self ): return self.encoder_attention_heads @property def lowerCamelCase(self ): return self.d_model class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ): """simple docstring""" _A : Dict = version.parse("""1.11""" ) @property def lowerCamelCase(self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ("""pixel_mask""", {0: """batch"""}), ] ) @property def lowerCamelCase(self ): return 1e-5 @property def lowerCamelCase(self ): return 12
720
"""simple docstring""" import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py _lowerCAmelCase = "." if __name__ == "__main__": _lowerCAmelCase = os.path.join(REPO_PATH, "utils/documentation_tests.txt") _lowerCAmelCase = [] _lowerCAmelCase = [] with open(doctest_file_path) as fp: for line in fp: _lowerCAmelCase = line.strip() _lowerCAmelCase = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: _lowerCAmelCase = "\n".join(non_existent_paths) raise ValueError(F'`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}') if all_paths != sorted(all_paths): raise ValueError("Files in `utils/documentation_tests.txt` are not in alphabetical order.")
480
0