code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from __future__ import annotations from typing import Any def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" if not postfix_notation: return 0 A = {'+', '-', '*', '/'} A = [] for token in postfix_notation: if token in operations: A , A = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCamelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
690
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , _lowercase : Optional[Any] , _lowercase : int=7 , _lowercase : List[str]=3 , _lowercase : Tuple=18 , _lowercase : Dict=30 , _lowercase : Any=400 , _lowercase : int=True , _lowercase : List[Any]=None , _lowercase : Tuple=True , _lowercase : List[Any]=False , _lowercase : str=True , _lowercase : List[str]=True , _lowercase : int=[0.5, 0.5, 0.5] , _lowercase : Optional[int]=[0.5, 0.5, 0.5] , ): A = parent A = batch_size A = num_channels A = image_size A = min_resolution A = max_resolution A = do_resize A = size if size is not None else {'height': 18, 'width': 20} A = do_thumbnail A = do_align_axis A = do_pad A = do_normalize A = image_mean A = image_std def __a ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = DonutImageProcessor if is_vision_available() else None def __a ( self : List[str] ): A = DonutImageProcessingTester(self ) @property def __a ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self : Union[str, Any] ): A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , 'do_resize' ) ) self.assertTrue(hasattr(_lowercase , 'size' ) ) self.assertTrue(hasattr(_lowercase , 'do_thumbnail' ) ) self.assertTrue(hasattr(_lowercase , 'do_align_long_axis' ) ) self.assertTrue(hasattr(_lowercase , 'do_pad' ) ) self.assertTrue(hasattr(_lowercase , 'do_normalize' ) ) self.assertTrue(hasattr(_lowercase , 'image_mean' ) ) self.assertTrue(hasattr(_lowercase , 'image_std' ) ) def __a ( self : int ): A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 20} ) A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) # Previous config had dimensions in (width, height) order A = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {'height': 84, 'width': 42} ) def __a ( self : Any ): pass @is_flaky() def __a ( self : int ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[str] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) @is_flaky() def __a ( self : List[Any] ): # Initialize image_processing A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched A = image_processing(_lowercase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
690
1
'''simple docstring''' import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCAmelCase (__A): """simple docstring""" _a = fname.split(os.path.sep)[-1] return re.search(r'''^(.*)_\d+\.jpg$''' , lowerCAmelCase__).groups()[0] class __A ( A ): '''simple docstring''' def __init__(self , A , A=None , A=None ) -> Optional[Any]: """simple docstring""" _a = file_names _a = image_transform _a = label_to_id def __len__(self ) -> int: """simple docstring""" return len(self.file_names ) def __getitem__(self , A ) -> Tuple: """simple docstring""" _a = self.file_names[idx] _a = PIL.Image.open(_UpperCAmelCase ) _a = raw_image.convert('''RGB''' ) if self.image_transform is not None: _a = self.image_transform(_UpperCAmelCase ) _a = extract_label(_UpperCAmelCase ) if self.label_to_id is not None: _a = self.label_to_id[label] return {"image": image, "label": label} def lowerCAmelCase (__A , __A): """simple docstring""" if args.with_tracking: _a = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir) else: _a = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a = config['''lr'''] _a = int(config['''num_epochs''']) _a = int(config['''seed''']) _a = int(config['''batch_size''']) _a = config['''image_size'''] if not isinstance(lowerCAmelCase__ , (list, tuple)): _a = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , '''isdigit'''): if args.checkpointing_steps == "epoch": _a = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): _a = int(args.checkpointing_steps) else: raise ValueError( F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''') else: _a = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: _a = os.path.split(lowerCAmelCase__)[-1].split('''.''')[0] accelerator.init_trackers(lowerCAmelCase__ , lowerCAmelCase__) # Grab all the image filenames _a = [os.path.join(args.data_dir , lowerCAmelCase__) for fname in os.listdir(args.data_dir) if fname.endswith('''.jpg''')] # Build the label correspondences _a = [extract_label(lowerCAmelCase__) for fname in file_names] _a = list(set(lowerCAmelCase__)) id_to_label.sort() _a = {lbl: i for i, lbl in enumerate(lowerCAmelCase__)} # Set the seed before splitting the data. np.random.seed(lowerCAmelCase__) torch.manual_seed(lowerCAmelCase__) torch.cuda.manual_seed_all(lowerCAmelCase__) # Split our filenames between train and validation _a = np.random.permutation(len(lowerCAmelCase__)) _a = int(0.8 * len(lowerCAmelCase__)) _a = random_perm[:cut] _a = random_perm[cut:] # For training we use a simple RandomResizedCrop _a = Compose([RandomResizedCrop(lowerCAmelCase__ , scale=(0.5, 1.0)), ToTensor()]) _a = PetsDataset( [file_names[i] for i in train_split] , image_transform=lowerCAmelCase__ , label_to_id=lowerCAmelCase__) # For evaluation, we use a deterministic Resize _a = Compose([Resize(lowerCAmelCase__), ToTensor()]) _a = PetsDataset([file_names[i] for i in eval_split] , image_transform=lowerCAmelCase__ , label_to_id=lowerCAmelCase__) # Instantiate dataloaders. _a = DataLoader(lowerCAmelCase__ , shuffle=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , num_workers=4) _a = DataLoader(lowerCAmelCase__ , shuffle=lowerCAmelCase__ , batch_size=lowerCAmelCase__ , num_workers=4) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a = create_model('''resnet50d''' , pretrained=lowerCAmelCase__ , num_classes=len(lowerCAmelCase__)) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _a = model.to(accelerator.device) # Freezing the base model for param in model.parameters(): _a = False for param in model.get_classifier().parameters(): _a = True # We normalize the batches of images to be a bit faster. _a = torch.tensor(model.default_cfg['''mean'''])[None, :, None, None].to(accelerator.device) _a = torch.tensor(model.default_cfg['''std'''])[None, :, None, None].to(accelerator.device) # Instantiate optimizer _a = torch.optim.Adam(params=model.parameters() , lr=lr / 25) # Instantiate learning rate scheduler _a = OneCycleLR(optimizer=lowerCAmelCase__ , max_lr=lowerCAmelCase__ , epochs=lowerCAmelCase__ , steps_per_epoch=len(lowerCAmelCase__)) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a , _a , _a , _a , _a = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) # We need to keep track of how many total steps we have iterated over _a = 0 # We also need to keep track of the starting epoch so files are named properly _a = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''') accelerator.load_state(args.resume_from_checkpoint) _a = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint _a = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) _a = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` _a = os.path.splitext(lowerCAmelCase__)[0] if "epoch" in training_difference: _a = int(training_difference.replace('''epoch_''' , '''''')) + 1 _a = None else: _a = int(training_difference.replace('''step_''' , '''''')) _a = resume_step // len(lowerCAmelCase__) resume_step -= starting_epoch * len(lowerCAmelCase__) # Now we train the model for epoch in range(lowerCAmelCase__ , lowerCAmelCase__): model.train() if args.with_tracking: _a = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step _a = accelerator.skip_first_batches(lowerCAmelCase__ , lowerCAmelCase__) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader _a = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. _a = {k: v.to(accelerator.device) for k, v in batch.items()} _a = (batch['''image'''] - mean) / std _a = model(lowerCAmelCase__) _a = torch.nn.functional.cross_entropy(lowerCAmelCase__ , batch['''label''']) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(lowerCAmelCase__) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(lowerCAmelCase__ , lowerCAmelCase__): _a = F'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: _a = os.path.join(args.output_dir , lowerCAmelCase__) accelerator.save_state(lowerCAmelCase__) model.eval() _a = 0 _a = 0 for step, batch in enumerate(lowerCAmelCase__): # We could avoid this line since we set the accelerator with `device_placement=True`. _a = {k: v.to(accelerator.device) for k, v in batch.items()} _a = (batch['''image'''] - mean) / std with torch.no_grad(): _a = model(lowerCAmelCase__) _a = outputs.argmax(dim=-1) _a , _a = accelerator.gather_for_metrics((predictions, batch['''label'''])) _a = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() _a = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}: {100 * eval_metric:.2f}''') if args.with_tracking: accelerator.log( { '''accuracy''': 100 * eval_metric, '''train_loss''': total_loss.item() / len(lowerCAmelCase__), '''epoch''': epoch, } , step=lowerCAmelCase__ , ) if checkpointing_steps == "epoch": _a = F'''epoch_{epoch}''' if args.output_dir is not None: _a = os.path.join(args.output_dir , lowerCAmelCase__) accelerator.save_state(lowerCAmelCase__) if args.with_tracking: accelerator.end_training() def lowerCAmelCase (): """simple docstring""" _a = argparse.ArgumentParser(description='''Simple example of training script.''') parser.add_argument('''--data_dir''' , required=lowerCAmelCase__ , help='''The data folder on disk.''') parser.add_argument('''--fp16''' , action='''store_true''' , help='''If passed, will use FP16 training.''') parser.add_argument( '''--mixed_precision''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''') parser.add_argument( '''--checkpointing_steps''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.''' , ) parser.add_argument( '''--output_dir''' , type=lowerCAmelCase__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=lowerCAmelCase__ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) _a = parser.parse_args() _a = {'''lr''': 3e-2, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 64, '''image_size''': 224} training_function(lowerCAmelCase__ , lowerCAmelCase__) if __name__ == "__main__": main()
714
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests lowercase_ = open # noqa: we just need to have a builtin inside this module to test it properly
352
0
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase: Tuple = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( _lowercase : str , _lowercase : Optional[Any]=False ) -> List[Any]: '''simple docstring''' lowercase__ : Optional[int] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" lowercase__ : Any = [(pair[0], pair[1][4:]) if pair[1].startswith('deit' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE__ ( _lowercase : List[Any] , _lowercase : int , _lowercase : Any=False ) -> List[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: lowercase__ : List[Any] = "" else: lowercase__ : Optional[int] = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase__ : int = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) lowercase__ : List[Any] = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase__ : Tuple = in_proj_weight[ : config.hidden_size, : ] lowercase__ : Dict = in_proj_bias[: config.hidden_size] lowercase__ : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase__ : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] lowercase__ : List[Any] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( _lowercase : Optional[Any] , _lowercase : Any , _lowercase : int ) -> List[str]: '''simple docstring''' lowercase__ : int = dct.pop(__UpperCamelCase ) lowercase__ : Dict = val def SCREAMING_SNAKE_CASE__ ( ) -> Any: '''simple docstring''' lowercase__ : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( _lowercase : List[Any] , _lowercase : int ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = DeiTConfig() # all deit models have fine-tuned heads lowercase__ : Optional[int] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size lowercase__ : Optional[int] = 1_000 lowercase__ : Union[str, Any] = "huggingface/label-files" lowercase__ : Tuple = "imagenet-1k-id2label.json" lowercase__ : List[Any] = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type='dataset' ) , 'r' ) ) lowercase__ : Any = {int(__UpperCamelCase ): v for k, v in idalabel.items()} lowercase__ : List[str] = idalabel lowercase__ : List[Any] = {v: k for k, v in idalabel.items()} lowercase__ : Dict = int(deit_name[-6:-4] ) lowercase__ : str = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('tiny' ): lowercase__ : Optional[int] = 192 lowercase__ : Dict = 768 lowercase__ : List[Any] = 12 lowercase__ : List[str] = 3 elif deit_name[9:].startswith('small' ): lowercase__ : int = 384 lowercase__ : Any = 1_536 lowercase__ : Any = 12 lowercase__ : List[Any] = 6 if deit_name[9:].startswith('base' ): pass elif deit_name[4:].startswith('large' ): lowercase__ : Optional[Any] = 1_024 lowercase__ : str = 4_096 lowercase__ : Tuple = 24 lowercase__ : Optional[Any] = 16 # load original model from timm lowercase__ : List[Any] = timm.create_model(__UpperCamelCase , pretrained=__UpperCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowercase__ : Union[str, Any] = timm_model.state_dict() lowercase__ : List[Any] = create_rename_keys(__UpperCamelCase , __UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) read_in_q_k_v(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # load HuggingFace model lowercase__ : Optional[Any] = DeiTForImageClassificationWithTeacher(__UpperCamelCase ).eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor lowercase__ : Any = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 lowercase__ : Optional[int] = DeiTImageProcessor(size=__UpperCamelCase , crop_size=config.image_size ) lowercase__ : List[Any] = image_processor(images=prepare_img() , return_tensors='pt' ) lowercase__ : Dict = encoding["pixel_values"] lowercase__ : Optional[Any] = model(__UpperCamelCase ) lowercase__ : str = timm_model(__UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCamelCase , outputs.logits , atol=1e-3 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __UpperCamelCase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--deit_name""", default="""vit_deit_base_distilled_patch16_224""", type=str, help="""Name of the DeiT timm model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) __UpperCamelCase: Optional[int] = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
266
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") lowerCamelCase = logging.getLogger(__name__) @dataclass class _a : '''simple docstring''' A :Optional[int] = field( default=1_28 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A :bool = field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) A :bool = field( default=SCREAMING_SNAKE_CASE , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) A :Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) A :Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) A :Optional[int] = field( default=SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class _a : '''simple docstring''' A :str = field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) A :str = field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) A :Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Train language if it is different from the evaluation language."} ) A :Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) A :Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) A :Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) A :Optional[bool] = field( default=SCREAMING_SNAKE_CASE , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) A :bool = field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) A :str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) A :bool = field( default=SCREAMING_SNAKE_CASE , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) A :bool = field( default=SCREAMING_SNAKE_CASE , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def SCREAMING_SNAKE_CASE( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) a__ , a__ , a__ : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" , __UpperCamelCase ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() a__ : int = training_args.get_process_log_level() logger.setLevel(__UpperCamelCase ) datasets.utils.logging.set_verbosity(__UpperCamelCase ) transformers.utils.logging.set_verbosity(__UpperCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Detecting last checkpoint. a__ : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a__ : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: a__ : Any = load_dataset( "xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: a__ : List[str] = load_dataset( "xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) a__ : List[Any] = train_dataset.features["label"].names if training_args.do_eval: a__ : Tuple = load_dataset( "xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) a__ : int = eval_dataset.features["label"].names if training_args.do_predict: a__ : Dict = load_dataset( "xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) a__ : Optional[Any] = predict_dataset.features["label"].names # Labels a__ : List[Any] = len(__UpperCamelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a__ : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCamelCase , idalabel={str(__UpperCamelCase ): label for i, label in enumerate(__UpperCamelCase )} , labelaid={label: i for i, label in enumerate(__UpperCamelCase )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) a__ : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) a__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: a__ : Dict = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch a__ : Optional[Any] = False def preprocess_function(__UpperCamelCase ): # Tokenize the texts return tokenizer( examples["premise"] , examples["hypothesis"] , padding=__UpperCamelCase , max_length=data_args.max_seq_length , truncation=__UpperCamelCase , ) if training_args.do_train: if data_args.max_train_samples is not None: a__ : int = min(len(__UpperCamelCase ) , data_args.max_train_samples ) a__ : Tuple = train_dataset.select(range(__UpperCamelCase ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): a__ : Optional[int] = train_dataset.map( __UpperCamelCase , batched=__UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , ) # Log a few random samples from the training set: for index in random.sample(range(len(__UpperCamelCase ) ) , 3 ): logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' ) if training_args.do_eval: if data_args.max_eval_samples is not None: a__ : Optional[int] = min(len(__UpperCamelCase ) , data_args.max_eval_samples ) a__ : Optional[Any] = eval_dataset.select(range(__UpperCamelCase ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): a__ : List[Any] = eval_dataset.map( __UpperCamelCase , batched=__UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , ) if training_args.do_predict: if data_args.max_predict_samples is not None: a__ : int = min(len(__UpperCamelCase ) , data_args.max_predict_samples ) a__ : List[str] = predict_dataset.select(range(__UpperCamelCase ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): a__ : Union[str, Any] = predict_dataset.map( __UpperCamelCase , batched=__UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , ) # Get the metric function a__ : List[Any] = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(__UpperCamelCase ): a__ : Dict = p.predictions[0] if isinstance(p.predictions , __UpperCamelCase ) else p.predictions a__ : Any = np.argmax(__UpperCamelCase , axis=1 ) return metric.compute(predictions=__UpperCamelCase , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: a__ : List[Any] = default_data_collator elif training_args.fpaa: a__ : List[Any] = DataCollatorWithPadding(__UpperCamelCase , pad_to_multiple_of=8 ) else: a__ : Tuple = None # Initialize our Trainer a__ : List[str] = Trainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__UpperCamelCase , tokenizer=__UpperCamelCase , data_collator=__UpperCamelCase , ) # Training if training_args.do_train: a__ : str = None if training_args.resume_from_checkpoint is not None: a__ : int = training_args.resume_from_checkpoint elif last_checkpoint is not None: a__ : Optional[int] = last_checkpoint a__ : Any = trainer.train(resume_from_checkpoint=__UpperCamelCase ) a__ : Tuple = train_result.metrics a__ : Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCamelCase ) ) a__ : Optional[int] = min(__UpperCamelCase , len(__UpperCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , __UpperCamelCase ) trainer.save_metrics("train" , __UpperCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) a__ : Optional[int] = trainer.evaluate(eval_dataset=__UpperCamelCase ) a__ : Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCamelCase ) a__ : List[Any] = min(__UpperCamelCase , len(__UpperCamelCase ) ) trainer.log_metrics("eval" , __UpperCamelCase ) trainer.save_metrics("eval" , __UpperCamelCase ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) a__ , a__ , a__ : int = trainer.predict(__UpperCamelCase , metric_key_prefix="predict" ) a__ : int = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__UpperCamelCase ) ) a__ : Union[str, Any] = min(__UpperCamelCase , len(__UpperCamelCase ) ) trainer.log_metrics("predict" , __UpperCamelCase ) trainer.save_metrics("predict" , __UpperCamelCase ) a__ : Dict = np.argmax(__UpperCamelCase , axis=1 ) a__ : str = os.path.join(training_args.output_dir , "predictions.txt" ) if trainer.is_world_process_zero(): with open(__UpperCamelCase , "w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(__UpperCamelCase ): a__ : int = label_list[item] writer.write(F'{index}\t{item}\n' ) if __name__ == "__main__": main()
191
0
def snake_case_ ( __lowercase ): if num <= 0: raise ValueError('''Input must be a positive integer''' ) UpperCAmelCase_ : Any = [True] * (num + 1) UpperCAmelCase_ : Any = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __lowercase ): UpperCAmelCase_ : Optional[Any] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Optional[Any] = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
701
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def snake_case_ ( ): UpperCAmelCase_ : str = HfArgumentParser(__lowercase ) UpperCAmelCase_ : Optional[Any] = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[int] = TensorFlowBenchmark(args=__lowercase ) try: UpperCAmelCase_ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: UpperCAmelCase_ : List[Any] = '''Arg --no_{0} is no longer used, please use --no-{0} instead.''' UpperCAmelCase_ : List[str] = ''' '''.join(str(__lowercase ).split(''' ''' )[:-1] ) UpperCAmelCase_ : Optional[int] = '''''' UpperCAmelCase_ : Dict = eval(str(__lowercase ).split(''' ''' )[-1] ) UpperCAmelCase_ : int = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(__lowercase ) if len(__lowercase ) > 0: UpperCAmelCase_ : Tuple = full_error_msg + begin_error_msg + str(__lowercase ) raise ValueError(__lowercase ) benchmark.run() if __name__ == "__main__": main()
641
0
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __A ( _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = [] embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', f'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', f'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', f'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( f'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', f'stage{idx}.patch_embed.norm.bias', ) ) return embed def __A ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = [] attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', f'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', f'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', f'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', f'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', f'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', f'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', f'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', f'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( f'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', f'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', f'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', f'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', f'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', f'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', f'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (f'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', f'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def __A ( _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] token.append((f'cvt.encoder.stages.{idx}.cls_token', "stage2.cls_token") ) return token def __A ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def __A ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = "imagenet-1k-id2label.json" __SCREAMING_SNAKE_CASE : Dict = 1_0_0_0 __SCREAMING_SNAKE_CASE : List[Any] = "huggingface/label-files" __SCREAMING_SNAKE_CASE : Optional[Any] = num_labels __SCREAMING_SNAKE_CASE : int = json.load(open(cached_download(hf_hub_url(__lowerCamelCase , __lowerCamelCase , repo_type="dataset" ) ) , "r" ) ) __SCREAMING_SNAKE_CASE : Dict = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : List[Any] = idalabel __SCREAMING_SNAKE_CASE : int = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Union[str, Any] = CvtConfig(num_labels=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13": __SCREAMING_SNAKE_CASE : Any = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21": __SCREAMING_SNAKE_CASE : str = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: __SCREAMING_SNAKE_CASE : Optional[int] = [2, 2, 2_0] __SCREAMING_SNAKE_CASE : str = [3, 1_2, 1_6] __SCREAMING_SNAKE_CASE : List[str] = [1_9_2, 7_6_8, 1_0_2_4] __SCREAMING_SNAKE_CASE : Dict = CvtForImageClassification(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) __SCREAMING_SNAKE_CASE : int = image_size __SCREAMING_SNAKE_CASE : List[Any] = torch.load(__lowerCamelCase , map_location=torch.device("cpu" ) ) __SCREAMING_SNAKE_CASE : Dict = OrderedDict() __SCREAMING_SNAKE_CASE : Any = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: __SCREAMING_SNAKE_CASE : List[Any] = list_of_state_dict + cls_token(__lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = list_of_state_dict + embeddings(__lowerCamelCase ) for cnt in range(config.depth[idx] ): __SCREAMING_SNAKE_CASE : Dict = list_of_state_dict + attention(__lowerCamelCase , __lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): __SCREAMING_SNAKE_CASE : Union[str, Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCamelCase ) model.save_pretrained(__lowerCamelCase ) image_processor.save_pretrained(__lowerCamelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowercase = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
211
'''simple docstring''' from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging _lowercase = logging.get_logger(__name__) class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : List[str] = ['''input_values''', '''padding_mask'''] def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ): """simple docstring""" super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase ) _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowercase ( self ): """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of' F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with' F' {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if padding and truncation: raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" ) elif padding is None: # by default let's pad the inputs _lowerCAmelCase = True _lowerCAmelCase = bool( isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: _lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(_lowercase , np.ndarray ): _lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa ) elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): _lowerCAmelCase = raw_audio.astype(np.floataa ) # always return batch if not is_batched: _lowerCAmelCase = [np.asarray(_lowercase ).T] # verify inputs are valid for idx, example in enumerate(_lowercase ): if example.ndim > 2: raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' ) _lowerCAmelCase = None _lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: _lowerCAmelCase = min(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: _lowerCAmelCase = max(array.shape[0] for array in raw_audio ) _lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) ) _lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length _lowerCAmelCase = """max_length""" else: _lowerCAmelCase = input_values # normal padding on batch if padded_inputs is None: _lowerCAmelCase = self.pad( _lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , ) if padding: _lowerCAmelCase = padded_inputs.pop("""attention_mask""" ) _lowerCAmelCase = [] for example in padded_inputs.pop("""input_values""" ): if self.feature_size == 1: _lowerCAmelCase = example[..., None] input_values.append(example.T ) _lowerCAmelCase = input_values if return_tensors is not None: _lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase ) return padded_inputs
5
0
import argparse import json import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinConfig, SwinForImageClassification def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = SwinConfig() __SCREAMING_SNAKE_CASE : Tuple = swin_name.split('''_''' ) __SCREAMING_SNAKE_CASE : List[str] = name_split[1] __SCREAMING_SNAKE_CASE : List[str] = int(name_split[4] ) __SCREAMING_SNAKE_CASE : Optional[int] = int(name_split[3][-1] ) if model_size == "tiny": __SCREAMING_SNAKE_CASE : List[str] = 96 __SCREAMING_SNAKE_CASE : Optional[int] = (2, 2, 6, 2) __SCREAMING_SNAKE_CASE : Optional[int] = (3, 6, 12, 24) elif model_size == "small": __SCREAMING_SNAKE_CASE : Optional[Any] = 96 __SCREAMING_SNAKE_CASE : List[Any] = (2, 2, 18, 2) __SCREAMING_SNAKE_CASE : Optional[int] = (3, 6, 12, 24) elif model_size == "base": __SCREAMING_SNAKE_CASE : Dict = 128 __SCREAMING_SNAKE_CASE : List[str] = (2, 2, 18, 2) __SCREAMING_SNAKE_CASE : Optional[int] = (4, 8, 16, 32) else: __SCREAMING_SNAKE_CASE : str = 192 __SCREAMING_SNAKE_CASE : Optional[int] = (2, 2, 18, 2) __SCREAMING_SNAKE_CASE : Optional[Any] = (6, 12, 24, 48) if "in22k" in swin_name: __SCREAMING_SNAKE_CASE : int = 21_841 else: __SCREAMING_SNAKE_CASE : List[Any] = 1_000 __SCREAMING_SNAKE_CASE : int = '''huggingface/label-files''' __SCREAMING_SNAKE_CASE : Union[str, Any] = '''imagenet-1k-id2label.json''' __SCREAMING_SNAKE_CASE : int = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type='''dataset''' ) , '''r''' ) ) __SCREAMING_SNAKE_CASE : List[str] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : str = idalabel __SCREAMING_SNAKE_CASE : Optional[Any] = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE : Union[str, Any] = img_size __SCREAMING_SNAKE_CASE : Optional[Any] = num_classes __SCREAMING_SNAKE_CASE : Optional[int] = embed_dim __SCREAMING_SNAKE_CASE : List[str] = depths __SCREAMING_SNAKE_CASE : str = num_heads __SCREAMING_SNAKE_CASE : Tuple = window_size return config def a__ ( snake_case ): """simple docstring""" if "patch_embed.proj" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: __SCREAMING_SNAKE_CASE : Any = '''encoder.''' + name if "attn.proj" in name: __SCREAMING_SNAKE_CASE : Any = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __SCREAMING_SNAKE_CASE : str = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __SCREAMING_SNAKE_CASE : List[Any] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __SCREAMING_SNAKE_CASE : Any = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __SCREAMING_SNAKE_CASE : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __SCREAMING_SNAKE_CASE : Optional[Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "norm.weight": __SCREAMING_SNAKE_CASE : List[Any] = '''layernorm.weight''' if name == "norm.bias": __SCREAMING_SNAKE_CASE : Dict = '''layernorm.bias''' if "head" in name: __SCREAMING_SNAKE_CASE : Dict = name.replace('''head''' , '''classifier''' ) else: __SCREAMING_SNAKE_CASE : Optional[int] = '''swin.''' + name return name def a__ ( snake_case , snake_case ): """simple docstring""" for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE : Any = orig_state_dict.pop(lowerCamelCase__ ) if "mask" in key: continue elif "qkv" in key: __SCREAMING_SNAKE_CASE : Optional[int] = key.split('''.''' ) __SCREAMING_SNAKE_CASE : List[str] = int(key_split[1] ) __SCREAMING_SNAKE_CASE : int = int(key_split[3] ) __SCREAMING_SNAKE_CASE : int = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __SCREAMING_SNAKE_CASE : List[str] = val[:dim, :] __SCREAMING_SNAKE_CASE : List[str] = val[ dim : dim * 2, : ] __SCREAMING_SNAKE_CASE : List[str] = val[-dim:, :] else: __SCREAMING_SNAKE_CASE : Optional[int] = val[ :dim ] __SCREAMING_SNAKE_CASE : List[str] = val[ dim : dim * 2 ] __SCREAMING_SNAKE_CASE : List[str] = val[ -dim: ] else: __SCREAMING_SNAKE_CASE : int = val return orig_state_dict def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = timm.create_model(lowerCamelCase__ , pretrained=lowerCamelCase__ ) timm_model.eval() __SCREAMING_SNAKE_CASE : Union[str, Any] = get_swin_config(lowerCamelCase__ ) __SCREAMING_SNAKE_CASE : int = SwinForImageClassification(lowerCamelCase__ ) model.eval() __SCREAMING_SNAKE_CASE : Any = convert_state_dict(timm_model.state_dict() , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __SCREAMING_SNAKE_CASE : List[Any] = AutoImageProcessor.from_pretrained('''microsoft/{}'''.format(swin_name.replace('''_''' , '''-''' ) ) ) __SCREAMING_SNAKE_CASE : Tuple = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) __SCREAMING_SNAKE_CASE : Optional[Any] = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : Dict = timm_model(inputs['''pixel_values'''] ) __SCREAMING_SNAKE_CASE : Dict = model(**lowerCamelCase__ ).logits assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) print(F'''Saving model {swin_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swin_name""", default="""swin_tiny_patch4_window7_224""", type=str, help="""Name of the Swin timm model you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowercase_ = parser.parse_args() convert_swin_checkpoint(args.swin_name, args.pytorch_dump_folder_path)
721
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """snap-research/efficientformer-l1-300""": ( """https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json""" ), } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''efficientformer''' def __init__( self : Dict , _A : List[int] = [3, 2, 6, 4] , _A : List[int] = [48, 96, 224, 448] , _A : List[bool] = [True, True, True, True] , _A : int = 448 , _A : int = 32 , _A : int = 4 , _A : int = 7 , _A : int = 5 , _A : int = 8 , _A : int = 4 , _A : float = 0.0 , _A : int = 16 , _A : int = 3 , _A : int = 3 , _A : int = 3 , _A : int = 2 , _A : int = 1 , _A : float = 0.0 , _A : int = 1 , _A : bool = True , _A : bool = True , _A : float = 1e-5 , _A : str = "gelu" , _A : float = 0.02 , _A : float = 1e-12 , _A : int = 224 , _A : float = 1e-05 , **_A : Tuple , ): """simple docstring""" super().__init__(**_A ) __SCREAMING_SNAKE_CASE : Optional[int] = hidden_act __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = hidden_sizes __SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers __SCREAMING_SNAKE_CASE : List[str] = num_attention_heads __SCREAMING_SNAKE_CASE : str = initializer_range __SCREAMING_SNAKE_CASE : Any = layer_norm_eps __SCREAMING_SNAKE_CASE : Dict = patch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = num_channels __SCREAMING_SNAKE_CASE : List[Any] = depths __SCREAMING_SNAKE_CASE : Optional[Any] = mlp_expansion_ratio __SCREAMING_SNAKE_CASE : List[str] = downsamples __SCREAMING_SNAKE_CASE : str = dim __SCREAMING_SNAKE_CASE : Any = key_dim __SCREAMING_SNAKE_CASE : Tuple = attention_ratio __SCREAMING_SNAKE_CASE : Dict = resolution __SCREAMING_SNAKE_CASE : Dict = pool_size __SCREAMING_SNAKE_CASE : List[str] = downsample_patch_size __SCREAMING_SNAKE_CASE : int = downsample_stride __SCREAMING_SNAKE_CASE : Optional[Any] = downsample_pad __SCREAMING_SNAKE_CASE : Optional[int] = drop_path_rate __SCREAMING_SNAKE_CASE : Optional[Any] = num_metaad_blocks __SCREAMING_SNAKE_CASE : int = distillation __SCREAMING_SNAKE_CASE : List[Any] = use_layer_scale __SCREAMING_SNAKE_CASE : Optional[int] = layer_scale_init_value __SCREAMING_SNAKE_CASE : Dict = image_size __SCREAMING_SNAKE_CASE : List[str] = batch_norm_eps
131
0
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger() @dataclass class _lowerCAmelCase : """simple docstring""" snake_case_ = 42 snake_case_ = field(default_factory=A__ ) snake_case_ = field(default_factory=A__ ) def lowerCAmelCase ( self : List[Any] , __snake_case : Optional[Any] , __snake_case : Tensor , __snake_case : Tensor )-> Dict: snake_case = len(list(m.modules() ) ) == 1 or isinstance(__snake_case , nn.Convad ) or isinstance(__snake_case , nn.BatchNormad ) if has_not_submodules: self.traced.append(__snake_case ) def __call__( self : int , __snake_case : Tensor )-> Optional[int]: for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__snake_case ) [x.remove() for x in self.handles] return self @property def lowerCAmelCase ( self : Tuple )-> int: # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda __snake_case : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class _lowerCAmelCase : """simple docstring""" snake_case_ = 42 snake_case_ = 42 snake_case_ = 1 snake_case_ = field(default_factory=A__ ) snake_case_ = field(default_factory=A__ ) snake_case_ = True def __call__( self : Optional[int] , __snake_case : Tensor )-> Tuple: snake_case = Tracker(self.dest )(__snake_case ).parametrized snake_case = Tracker(self.src )(__snake_case ).parametrized snake_case = list(filter(lambda __snake_case : type(__snake_case ) not in self.src_skip , __snake_case ) ) snake_case = list(filter(lambda __snake_case : type(__snake_case ) not in self.dest_skip , __snake_case ) ) if len(__snake_case ) != len(__snake_case ) and self.raise_if_mismatch: raise Exception( f'''Numbers of operations are different. Source module has {len(__snake_case )} operations while''' f''' destination module has {len(__snake_case )}.''' ) for dest_m, src_m in zip(__snake_case , __snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(f'''Transfered from={src_m} to={dest_m}''' ) class _lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __snake_case : nn.Module )-> str: super().__init__() snake_case = [] # - get the stem feature_blocks.append(("""conv1""", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("""block""" ), f'''Unexpected layer name {k}''' snake_case = len(__snake_case ) + 1 feature_blocks.append((f'''res{block_index}''', v) ) snake_case = nn.ModuleDict(__snake_case ) def lowerCAmelCase ( self : List[str] , __snake_case : Tensor )-> Dict: return get_trunk_forward_outputs( __snake_case , out_feat_keys=__snake_case , feature_blocks=self._feature_blocks , ) class _lowerCAmelCase ( A__ ): """simple docstring""" def lowerCAmelCase ( self : List[Any] , __snake_case : str )-> str: snake_case = x.split("""-""" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[int] , __snake_case : str )-> Callable[[], Tuple[nn.Module, Dict]]: # default to timm! if x not in self: snake_case = self.convert_name_to_timm(__snake_case ) snake_case = partial(lambda: (timm.create_model(__snake_case , pretrained=__snake_case ).eval(), None) ) else: snake_case = super().__getitem__(__snake_case ) return val class _lowerCAmelCase ( A__ ): """simple docstring""" def __getitem__( self : int , __snake_case : str )-> Callable[[], nn.Module]: if "seer" in x and "in1k" not in x: snake_case = RegNetModel else: snake_case = RegNetForImageClassification return val def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[Tuple[str, str]] ) -> str: for from_key, to_key in keys: snake_case = from_state_dict[from_key].clone() print(F'''Copied key={from_key} to={to_key}''' ) return to_state_dict def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : Callable[[], nn.Module] , __lowerCAmelCase : Callable[[], nn.Module] , __lowerCAmelCase : RegNetConfig , __lowerCAmelCase : Path , __lowerCAmelCase : bool = True , ) -> Union[str, Any]: print(F'''Converting {name}...''' ) with torch.no_grad(): snake_case , snake_case = from_model_func() snake_case = our_model_func(__lowerCAmelCase ).eval() snake_case = ModuleTransfer(src=__lowerCAmelCase , dest=__lowerCAmelCase , raise_if_mismatch=__lowerCAmelCase ) snake_case = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(__lowerCAmelCase ) if from_state_dict is not None: snake_case = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: snake_case = [("""0.clf.0.weight""", """classifier.1.weight"""), ("""0.clf.0.bias""", """classifier.1.bias""")] snake_case = manually_copy_vissl_head(__lowerCAmelCase , our_model.state_dict() , __lowerCAmelCase ) our_model.load_state_dict(__lowerCAmelCase ) snake_case = our_model(__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) snake_case = ( our_outputs.logits if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else our_outputs.last_hidden_state ) snake_case = from_model(__lowerCAmelCase ) snake_case = from_output[-1] if type(__lowerCAmelCase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: snake_case = our_outputs.hidden_states[-1] assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add model""" , use_temp_dir=__lowerCAmelCase , ) snake_case = 2_24 if """seer""" not in name else 3_84 # we can use the convnext one snake_case = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" , size=__lowerCAmelCase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add image processor""" , use_temp_dir=__lowerCAmelCase , ) print(F'''Pushed {name}''' ) def __lowerCamelCase ( __lowerCAmelCase : Path , __lowerCAmelCase : str = None , __lowerCAmelCase : bool = True ) -> Optional[int]: snake_case = """imagenet-1k-id2label.json""" snake_case = 10_00 snake_case = (1, num_labels) snake_case = """huggingface/label-files""" snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = partial(__lowerCAmelCase , num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) snake_case = { """regnet-x-002""": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 1_52, 3_68] , groups_width=8 , layer_type="""x""" ), """regnet-x-004""": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 1_60, 3_84] , groups_width=16 , layer_type="""x""" ), """regnet-x-006""": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 2_40, 5_28] , groups_width=24 , layer_type="""x""" ), """regnet-x-008""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 1_28, 2_88, 6_72] , groups_width=16 , layer_type="""x""" ), """regnet-x-016""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 1_68, 4_08, 9_12] , groups_width=24 , layer_type="""x""" ), """regnet-x-032""": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 1_92, 4_32, 10_08] , groups_width=48 , layer_type="""x""" ), """regnet-x-040""": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 2_40, 5_60, 13_60] , groups_width=40 , layer_type="""x""" ), """regnet-x-064""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[1_68, 3_92, 7_84, 16_24] , groups_width=56 , layer_type="""x""" ), """regnet-x-080""": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 2_40, 7_20, 19_20] , groups_width=1_20 , layer_type="""x""" ), """regnet-x-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[2_24, 4_48, 8_96, 22_40] , groups_width=1_12 , layer_type="""x""" ), """regnet-x-160""": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[2_56, 5_12, 8_96, 20_48] , groups_width=1_28 , layer_type="""x""" ), """regnet-x-320""": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[3_36, 6_72, 13_44, 25_20] , groups_width=1_68 , layer_type="""x""" ), # y variant """regnet-y-002""": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 1_52, 3_68] , groups_width=8 ), """regnet-y-004""": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 1_04, 2_08, 4_40] , groups_width=8 ), """regnet-y-006""": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 1_12, 2_56, 6_08] , groups_width=16 ), """regnet-y-008""": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 1_28, 3_20, 7_68] , groups_width=16 ), """regnet-y-016""": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 1_20, 3_36, 8_88] , groups_width=24 ), """regnet-y-032""": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 2_16, 5_76, 15_12] , groups_width=24 ), """regnet-y-040""": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[1_28, 1_92, 5_12, 10_88] , groups_width=64 ), """regnet-y-064""": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[1_44, 2_88, 5_76, 12_96] , groups_width=72 ), """regnet-y-080""": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[1_68, 4_48, 8_96, 20_16] , groups_width=56 ), """regnet-y-120""": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[2_24, 4_48, 8_96, 22_40] , groups_width=1_12 ), """regnet-y-160""": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[2_24, 4_48, 12_32, 30_24] , groups_width=1_12 ), """regnet-y-320""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 """regnet-y-320-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), """regnet-y-640-seer""": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[3_28, 9_84, 19_68, 49_20] , groups_width=3_28 ), """regnet-y-1280-seer""": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[5_28, 10_56, 29_04, 73_92] , groups_width=2_64 ), """regnet-y-2560-seer""": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[6_40, 16_96, 25_44, 50_88] , groups_width=6_40 ), """regnet-y-10b-seer""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80] , groups_width=10_10 ), # finetuned on imagenet """regnet-y-320-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), """regnet-y-640-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[3_28, 9_84, 19_68, 49_20] , groups_width=3_28 ), """regnet-y-1280-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[5_28, 10_56, 29_04, 73_92] , groups_width=2_64 ), """regnet-y-2560-seer-in1k""": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[6_40, 16_96, 25_44, 50_88] , groups_width=6_40 ), """regnet-y-10b-seer-in1k""": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80] , groups_width=10_10 ), } snake_case = NameToOurModelFuncMap() snake_case = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(__lowerCAmelCase : str , __lowerCAmelCase : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: snake_case = torch.hub.load_state_dict_from_url(__lowerCAmelCase , model_dir=str(__lowerCAmelCase ) , map_location="""cpu""" ) snake_case = model_func() # check if we have a head, if yes add it snake_case = files["""classy_state_dict"""]["""base_model"""]["""model"""] snake_case = model_state_dict["""trunk"""] model.load_state_dict(__lowerCAmelCase ) return model.eval(), model_state_dict["heads"] # pretrained snake_case = partial( __lowerCAmelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case = partial( __lowerCAmelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case = partial( __lowerCAmelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) snake_case = partial( __lowerCAmelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=10_10 , w_a=17_44 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned snake_case = partial( __lowerCAmelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case = partial( __lowerCAmelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case = partial( __lowerCAmelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) snake_case = partial( __lowerCAmelCase , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=10_10 , w_a=17_44 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( __lowerCAmelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __lowerCAmelCase , __lowerCAmelCase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __lowerCAmelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) return config, expected_shape if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default=None, type=str, help=( "The name of the model you wish to convert, it must be one of the supported regnet* architecture," " currently: regnetx-*, regnety-*. If `None`, all of them will the converted." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=Path, required=True, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=True, type=bool, required=False, help="If True, push model and image processor to the hub.", ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
369
'''simple docstring''' # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class _lowerCAmelCase ( A__ ): """simple docstring""" snake_case_ = 42 snake_case_ = 42 class _lowerCAmelCase ( A__ , A__ ): """simple docstring""" snake_case_ = 1 @register_to_config def __init__( self : str , __snake_case : int = 20_00 , __snake_case : float = 0.15 , __snake_case : float = 0.01 , __snake_case : float = 13_48.0 , __snake_case : float = 1e-5 , __snake_case : int = 1 , )-> str: # standard deviation of the initial noise distribution snake_case = sigma_max # setable values snake_case = None self.set_sigmas(__snake_case , __snake_case , __snake_case , __snake_case ) def lowerCAmelCase ( self : List[Any] , __snake_case : torch.FloatTensor , __snake_case : Optional[int] = None )-> torch.FloatTensor: return sample def lowerCAmelCase ( self : List[str] , __snake_case : int , __snake_case : float = None , __snake_case : Union[str, torch.device] = None )-> Optional[Any]: snake_case = sampling_eps if sampling_eps is not None else self.config.sampling_eps snake_case = torch.linspace(1 , __snake_case , __snake_case , device=__snake_case ) def lowerCAmelCase ( self : Union[str, Any] , __snake_case : int , __snake_case : float = None , __snake_case : float = None , __snake_case : float = None )-> str: snake_case = sigma_min if sigma_min is not None else self.config.sigma_min snake_case = sigma_max if sigma_max is not None else self.config.sigma_max snake_case = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__snake_case , __snake_case ) snake_case = sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) snake_case = torch.exp(torch.linspace(math.log(__snake_case ) , math.log(__snake_case ) , __snake_case ) ) snake_case = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps] ) def lowerCAmelCase ( self : str , __snake_case : List[str] , __snake_case : str )-> Optional[int]: return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device ) ) , self.discrete_sigmas[timesteps - 1].to(timesteps.device ) , ) def lowerCAmelCase ( self : int , __snake_case : torch.FloatTensor , __snake_case : int , __snake_case : torch.FloatTensor , __snake_case : Optional[torch.Generator] = None , __snake_case : bool = True , )-> Union[SdeVeOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) snake_case = timestep * torch.ones( sample.shape[0] , device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) snake_case = (timestep * (len(self.timesteps ) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda snake_case = timesteps.to(self.discrete_sigmas.device ) snake_case = self.discrete_sigmas[timesteps].to(sample.device ) snake_case = self.get_adjacent_sigma(__snake_case , __snake_case ).to(sample.device ) snake_case = torch.zeros_like(__snake_case ) snake_case = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods snake_case = diffusion.flatten() while len(diffusion.shape ) < len(sample.shape ): snake_case = diffusion.unsqueeze(-1 ) snake_case = drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of snake_case = randn_tensor( sample.shape , layout=sample.layout , generator=__snake_case , device=sample.device , dtype=sample.dtype ) snake_case = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? snake_case = prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__snake_case , prev_sample_mean=__snake_case ) def lowerCAmelCase ( self : Optional[Any] , __snake_case : torch.FloatTensor , __snake_case : torch.FloatTensor , __snake_case : Optional[torch.Generator] = None , __snake_case : bool = True , )-> Union[SchedulerOutput, Tuple]: if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction snake_case = randn_tensor(sample.shape , layout=sample.layout , generator=__snake_case ).to(sample.device ) # compute step size from the model_output, the noise, and the snr snake_case = torch.norm(model_output.reshape(model_output.shape[0] , -1 ) , dim=-1 ).mean() snake_case = torch.norm(noise.reshape(noise.shape[0] , -1 ) , dim=-1 ).mean() snake_case = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 snake_case = step_size * torch.ones(sample.shape[0] ).to(sample.device ) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term snake_case = step_size.flatten() while len(step_size.shape ) < len(sample.shape ): snake_case = step_size.unsqueeze(-1 ) snake_case = sample + step_size * model_output snake_case = prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__snake_case ) def lowerCAmelCase ( self : str , __snake_case : torch.FloatTensor , __snake_case : torch.FloatTensor , __snake_case : torch.FloatTensor , )-> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples snake_case = timesteps.to(original_samples.device ) snake_case = self.discrete_sigmas.to(original_samples.device )[timesteps] snake_case = ( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__snake_case ) * sigmas[:, None, None, None] ) snake_case = noise + original_samples return noisy_samples def __len__( self : str )-> Any: return self.config.num_train_timesteps
369
1
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A : Union[str, Any] ={'''configuration_timm_backbone''': ['''TimmBackboneConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any =['''TimmBackbone'''] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys _A : Dict =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _A : int =logging.get_logger(__name__) _A : Union[str, Any] ={ '''Salesforce/instruct-blip-flan-t5''': '''https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json''', } class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_vision_model""" def __init__( self : Union[str, Any] , UpperCamelCase_ : str=1408 , UpperCamelCase_ : Tuple=6144 , UpperCamelCase_ : Union[str, Any]=39 , UpperCamelCase_ : Optional[Any]=16 , UpperCamelCase_ : str=224 , UpperCamelCase_ : Dict=14 , UpperCamelCase_ : Dict="gelu" , UpperCamelCase_ : int=1E-6 , UpperCamelCase_ : int=0.0 , UpperCamelCase_ : List[str]=1E-10 , UpperCamelCase_ : str=True , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(**UpperCamelCase_ ) _lowercase : Optional[Any] = hidden_size _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[int] = num_hidden_layers _lowercase : str = num_attention_heads _lowercase : Tuple = patch_size _lowercase : Dict = image_size _lowercase : Optional[int] = initializer_range _lowercase : List[Any] = attention_dropout _lowercase : int = layer_norm_eps _lowercase : Optional[int] = hidden_act _lowercase : str = qkv_bias @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : Tuple = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Any = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip_qformer""" def __init__( self : Tuple , UpperCamelCase_ : Union[str, Any]=3_0522 , UpperCamelCase_ : Union[str, Any]=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Optional[Any]=12 , UpperCamelCase_ : List[str]=3072 , UpperCamelCase_ : List[str]="gelu" , UpperCamelCase_ : Union[str, Any]=0.1 , UpperCamelCase_ : List[str]=0.1 , UpperCamelCase_ : Any=512 , UpperCamelCase_ : Union[str, Any]=0.02 , UpperCamelCase_ : List[Any]=1E-12 , UpperCamelCase_ : Optional[Any]=0 , UpperCamelCase_ : str="absolute" , UpperCamelCase_ : List[Any]=2 , UpperCamelCase_ : Any=1408 , **UpperCamelCase_ : Dict , ) -> Any: '''simple docstring''' super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Dict = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : Any = num_hidden_layers _lowercase : List[Any] = num_attention_heads _lowercase : Optional[int] = hidden_act _lowercase : Union[str, Any] = intermediate_size _lowercase : List[Any] = hidden_dropout_prob _lowercase : Dict = attention_probs_dropout_prob _lowercase : Any = max_position_embeddings _lowercase : Optional[int] = initializer_range _lowercase : Tuple = layer_norm_eps _lowercase : List[str] = position_embedding_type _lowercase : str = cross_attention_frequency _lowercase : int = encoder_hidden_size @classmethod def __UpperCAmelCase ( cls : List[Any] , UpperCamelCase_ : Union[str, os.PathLike] , **UpperCamelCase_ : List[str] ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase_ ) _lowercase , _lowercase : List[str] = cls.get_config_dict(UpperCamelCase_ , **UpperCamelCase_ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": _lowercase : Optional[int] = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) class lowerCamelCase__ ( A ): '''simple docstring''' A_ = """instructblip""" A_ = True def __init__( self : Any , UpperCamelCase_ : List[Any]=None , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Union[str, Any]=32 , **UpperCamelCase_ : int ) -> List[str]: '''simple docstring''' super().__init__(**UpperCamelCase_ ) if vision_config is None: _lowercase : Any = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: _lowercase : List[Any] = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: _lowercase : List[Any] = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) _lowercase : List[Any] = InstructBlipVisionConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = InstructBlipQFormerConfig(**UpperCamelCase_ ) _lowercase : Union[str, Any] = text_config['model_type'] if 'model_type' in text_config else 'opt' _lowercase : int = CONFIG_MAPPING[text_model_type](**UpperCamelCase_ ) _lowercase : str = self.text_config.tie_word_embeddings _lowercase : int = self.text_config.is_encoder_decoder _lowercase : Tuple = num_query_tokens _lowercase : str = self.vision_config.hidden_size _lowercase : Union[str, Any] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _lowercase : List[Any] = 1.0 _lowercase : int = 0.02 @classmethod def __UpperCAmelCase ( cls : Tuple , UpperCamelCase_ : InstructBlipVisionConfig , UpperCamelCase_ : InstructBlipQFormerConfig , UpperCamelCase_ : PretrainedConfig , **UpperCamelCase_ : Dict , ) -> List[str]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCamelCase_ , ) def __UpperCAmelCase ( self : Dict ) -> List[str]: '''simple docstring''' _lowercase : List[Any] = copy.deepcopy(self.__dict__ ) _lowercase : Optional[int] = self.vision_config.to_dict() _lowercase : Optional[Any] = self.qformer_config.to_dict() _lowercase : Tuple = self.text_config.to_dict() _lowercase : Dict = self.__class__.model_type return output
4
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase = { """configuration_resnet""": ["""RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ResNetConfig""", """ResNetOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """ResNetForImageClassification""", """ResNetModel""", """ResNetPreTrainedModel""", """ResNetBackbone""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFResNetForImageClassification""", """TFResNetModel""", """TFResNetPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """FlaxResNetForImageClassification""", """FlaxResNetModel""", """FlaxResNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
82
"""simple docstring""" def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): return round(float(moles / volume ) * nfactor ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): return round(float((moles * 0.0821 * temperature) / (volume) ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
82
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class a : """simple docstring""" def __init__( self : Any , snake_case_ : str , snake_case_ : Optional[Any]=1_3 , snake_case_ : int=7 , snake_case_ : int=True , snake_case_ : Optional[Any]=True , snake_case_ : Dict=True , snake_case_ : int=True , snake_case_ : Optional[Any]=9_9 , snake_case_ : int=6_4 , snake_case_ : Dict=5 , snake_case_ : List[Any]=4 , snake_case_ : Union[str, Any]=3_7 , snake_case_ : Dict="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Dict=0.1 , snake_case_ : Any=5_1_2 , snake_case_ : Any=1_6 , snake_case_ : Any=2 , snake_case_ : Dict=0.0_2 , snake_case_ : List[str]=3 , snake_case_ : Optional[int]=4 , snake_case_ : str=None , ): '''simple docstring''' snake_case__ : List[Any] = parent snake_case__ : int = batch_size snake_case__ : Dict = seq_length snake_case__ : int = is_training snake_case__ : Optional[Any] = use_input_mask snake_case__ : Optional[Any] = use_token_type_ids snake_case__ : Dict = use_labels snake_case__ : int = vocab_size snake_case__ : Any = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : Union[str, Any] = num_attention_heads snake_case__ : List[Any] = intermediate_size snake_case__ : int = hidden_act snake_case__ : int = hidden_dropout_prob snake_case__ : List[Any] = attention_probs_dropout_prob snake_case__ : Optional[int] = max_position_embeddings snake_case__ : Optional[int] = type_vocab_size snake_case__ : Any = type_sequence_label_size snake_case__ : str = initializer_range snake_case__ : List[str] = num_labels snake_case__ : Dict = num_choices snake_case__ : Union[str, Any] = scope snake_case__ : List[Any] = vocab_size - 1 def __magic_name__ ( self : List[Any] ): '''simple docstring''' snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Optional[int] = None if self.use_input_mask: snake_case__ : int = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Dict = self.get_config() return config, input_ids, input_mask, token_labels def __magic_name__ ( self : List[Any] ): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = self.prepare_config_and_inputs() snake_case__ : List[str] = True return config, input_ids, input_mask, token_labels def __magic_name__ ( self : Tuple , snake_case_ : Any , snake_case_ : str , snake_case_ : str ): '''simple docstring''' snake_case__ : Any = GPTNeoXModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Union[str, Any] = model(snake_case_ , attention_mask=snake_case_ ) snake_case__ : int = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : List[Any] , snake_case_ : Any , snake_case_ : List[Any] , snake_case_ : Optional[int] ): '''simple docstring''' snake_case__ : Union[str, Any] = True snake_case__ : Tuple = GPTNeoXModel(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Dict = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : Any , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : List[Any] ): '''simple docstring''' snake_case__ : Union[str, Any] = GPTNeoXForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Tuple = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : Optional[int] , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : List[str] ): '''simple docstring''' snake_case__ : Dict = self.num_labels snake_case__ : List[Any] = GPTNeoXForQuestionAnswering(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Any = model(snake_case_ , attention_mask=snake_case_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : List[Any] , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : Dict ): '''simple docstring''' snake_case__ : str = self.num_labels snake_case__ : List[str] = GPTNeoXForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : str = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : Dict , snake_case_ : Optional[int] ): '''simple docstring''' snake_case__ : Any = self.num_labels snake_case__ : Any = GPTNeoXForTokenClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : int , snake_case_ : Union[str, Any] , snake_case_ : Tuple ): '''simple docstring''' snake_case__ : Optional[Any] = True snake_case__ : Union[str, Any] = GPTNeoXForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() # first forward pass snake_case__ : int = model(snake_case_ , attention_mask=snake_case_ , use_cache=snake_case_ ) snake_case__ : Dict = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ : Dict = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ , output_hidden_states=snake_case_ ) snake_case__ : Union[str, Any] = output_from_no_past['''hidden_states'''][0] snake_case__ : str = model( snake_case_ , attention_mask=snake_case_ , past_key_values=snake_case_ , output_hidden_states=snake_case_ , )['''hidden_states'''][0] # select random slice snake_case__ : str = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : str = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1e-3 ) ) def __magic_name__ ( self : Optional[int] ): '''simple docstring''' snake_case__ : Dict = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : Tuple = config_and_inputs snake_case__ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) __UpperCAmelCase = (GPTNeoXForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { """feature-extraction""": GPTNeoXModel, """question-answering""": GPTNeoXForQuestionAnswering, """text-classification""": GPTNeoXForSequenceClassification, """text-generation""": GPTNeoXForCausalLM, """token-classification""": GPTNeoXForTokenClassification, """zero-shot""": GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def __magic_name__ ( self : int ): '''simple docstring''' snake_case__ : Optional[int] = GPTNeoXModelTester(self ) snake_case__ : List[str] = ConfigTester(self , config_class=snake_case_ , hidden_size=6_4 , num_attention_heads=8 ) def __magic_name__ ( self : List[str] ): '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self : Dict ): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : Dict ): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : Union[str, Any] ): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ , snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case__ : Optional[int] = None self.model_tester.create_and_check_model_as_decoder(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : Optional[int] ): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ , snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : int ): '''simple docstring''' snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*snake_case_ ) def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) def __magic_name__ ( self : Any ): '''simple docstring''' snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case_ ) def __magic_name__ ( self : List[Any] ): '''simple docstring''' snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) @unittest.skip(reason='''Feed forward chunking is not implemented''' ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def __magic_name__ ( self : Optional[int] , snake_case_ : Optional[Any] ): '''simple docstring''' snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = ids_tensor([1, 1_0] , config.vocab_size ) snake_case__ : List[Any] = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : Tuple = GPTNeoXModel(snake_case_ ) original_model.to(snake_case_ ) original_model.eval() snake_case__ : Any = original_model(snake_case_ ).last_hidden_state snake_case__ : List[str] = original_model(snake_case_ ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights snake_case__ : Optional[Any] = {'''type''': scaling_type, '''factor''': 1_0.0} snake_case__ : Optional[Any] = GPTNeoXModel(snake_case_ ) scaled_model.to(snake_case_ ) scaled_model.eval() snake_case__ : Optional[int] = scaled_model(snake_case_ ).last_hidden_state snake_case__ : List[str] = scaled_model(snake_case_ ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(snake_case_ , snake_case_ , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(snake_case_ , snake_case_ , atol=1e-5 ) ) @require_torch class a ( unittest.TestCase ): """simple docstring""" @slow def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ : Dict = AutoTokenizer.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) for checkpointing in [True, False]: snake_case__ : str = GPTNeoXForCausalLM.from_pretrained('''EleutherAI/pythia-410m-deduped''' ) if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(snake_case_ ) snake_case__ : Tuple = tokenizer('''My favorite food is''' , return_tensors='''pt''' ).to(snake_case_ ) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 snake_case__ : List[str] = '''My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure''' snake_case__ : Optional[int] = model.generate(**snake_case_ , do_sample=snake_case_ , max_new_tokens=2_0 ) snake_case__ : Tuple = tokenizer.batch_decode(snake_case_ )[0] self.assertEqual(snake_case_ , snake_case_ )
502
'''simple docstring''' from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run lowerCAmelCase__ : Any = True except (ImportError, AttributeError): lowerCAmelCase__ : Dict = object def _a ( *__lowerCAmelCase : List[str] , **__lowerCAmelCase : Tuple ): """simple docstring""" pass lowerCAmelCase__ : str = False lowerCAmelCase__ : List[str] = logging.get_logger("""transformers-cli/serving""") def _a ( __lowerCAmelCase : Namespace ): """simple docstring""" snake_case__ : Union[str, Any] = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(__lowerCAmelCase , args.host , args.port , args.workers ) class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = 42 class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = 42 __UpperCAmelCase = 42 class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = 42 class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = 42 class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" @staticmethod def __magic_name__ ( snake_case_ : ArgumentParser ): '''simple docstring''' snake_case__ : Optional[Any] = parser.add_parser( '''serve''' , help='''CLI tool to run inference requests through REST and GraphQL endpoints.''' ) serve_parser.add_argument( '''--task''' , type=snake_case_ , choices=get_supported_tasks() , help='''The task to run the pipeline on''' , ) serve_parser.add_argument('''--host''' , type=snake_case_ , default='''localhost''' , help='''Interface the server will listen on.''' ) serve_parser.add_argument('''--port''' , type=snake_case_ , default=8_8_8_8 , help='''Port the serving will listen to.''' ) serve_parser.add_argument('''--workers''' , type=snake_case_ , default=1 , help='''Number of http workers''' ) serve_parser.add_argument('''--model''' , type=snake_case_ , help='''Model\'s name or path to stored model.''' ) serve_parser.add_argument('''--config''' , type=snake_case_ , help='''Model\'s config name or path to stored model.''' ) serve_parser.add_argument('''--tokenizer''' , type=snake_case_ , help='''Tokenizer name to use.''' ) serve_parser.add_argument( '''--device''' , type=snake_case_ , default=-1 , help='''Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)''' , ) serve_parser.set_defaults(func=snake_case_ ) def __init__( self : Union[str, Any] , snake_case_ : Pipeline , snake_case_ : str , snake_case_ : int , snake_case_ : int ): '''simple docstring''' snake_case__ : Any = pipeline snake_case__ : Tuple = host snake_case__ : Optional[Any] = port snake_case__ : Tuple = workers if not _serve_dependencies_installed: raise RuntimeError( '''Using serve command requires FastAPI and uvicorn. ''' '''Please install transformers with [serving]: pip install "transformers[serving]".''' '''Or install FastAPI and uvicorn separately.''' ) else: logger.info(F"""Serving model over {host}:{port}""" ) snake_case__ : str = FastAPI( routes=[ APIRoute( '''/''' , self.model_info , response_model=snake_case_ , response_class=snake_case_ , methods=['''GET'''] , ), APIRoute( '''/tokenize''' , self.tokenize , response_model=snake_case_ , response_class=snake_case_ , methods=['''POST'''] , ), APIRoute( '''/detokenize''' , self.detokenize , response_model=snake_case_ , response_class=snake_case_ , methods=['''POST'''] , ), APIRoute( '''/forward''' , self.forward , response_model=snake_case_ , response_class=snake_case_ , methods=['''POST'''] , ), ] , timeout=6_0_0 , ) def __magic_name__ ( self : str ): '''simple docstring''' run(self._app , host=self.host , port=self.port , workers=self.workers ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def __magic_name__ ( self : List[str] , snake_case_ : str = Body(snake_case_ , embed=snake_case_ ) , snake_case_ : bool = Body(snake_case_ , embed=snake_case_ ) ): '''simple docstring''' try: snake_case__ : Optional[Any] = self._pipeline.tokenizer.tokenize(snake_case_ ) if return_ids: snake_case__ : Optional[int] = self._pipeline.tokenizer.convert_tokens_to_ids(snake_case_ ) return ServeTokenizeResult(tokens=snake_case_ , tokens_ids=snake_case_ ) else: return ServeTokenizeResult(tokens=snake_case_ ) except Exception as e: raise HTTPException(status_code=5_0_0 , detail={'''model''': '''''', '''error''': str(snake_case_ )} ) def __magic_name__ ( self : List[Any] , snake_case_ : List[int] = Body(snake_case_ , embed=snake_case_ ) , snake_case_ : bool = Body(snake_case_ , embed=snake_case_ ) , snake_case_ : bool = Body(snake_case_ , embed=snake_case_ ) , ): '''simple docstring''' try: snake_case__ : Optional[int] = self._pipeline.tokenizer.decode(snake_case_ , snake_case_ , snake_case_ ) return ServeDeTokenizeResult(model='''''' , text=snake_case_ ) except Exception as e: raise HTTPException(status_code=5_0_0 , detail={'''model''': '''''', '''error''': str(snake_case_ )} ) async def __magic_name__ ( self : Tuple , snake_case_ : List[str]=Body(snake_case_ , embed=snake_case_ ) ): '''simple docstring''' if len(snake_case_ ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model snake_case__ : Tuple = self._pipeline(snake_case_ ) return ServeForwardResult(output=snake_case_ ) except Exception as e: raise HTTPException(5_0_0 , {'''error''': str(snake_case_ )} )
502
1
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor __A : str = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( __snake_case ): '''simple docstring''' def __init__( self : List[str] , *__lowerCamelCase : Optional[Any] , **__lowerCamelCase : List[Any] ): warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
16
def __a ( A__ : int ): if not isinstance(A__ , A__ ): raise ValueError("Input must be an integer" ) if input_num <= 0: raise ValueError("Input must be positive" ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
16
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A__ : List[str] = logging.get_logger(__name__) A__ : List[Any] = '▁' A__ : Any = {'vocab_file': 'sentencepiece.bpe.model'} A__ : List[Any] = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), } } A__ : int = { 'facebook/mbart-large-en-ro': 1_024, 'facebook/mbart-large-cc25': 1_024, } # fmt: off A__ : Tuple = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class lowercase__ ( snake_case__ ): _UpperCAmelCase :int = VOCAB_FILES_NAMES _UpperCAmelCase :Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :str = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Optional[Any] = ["input_ids", "attention_mask"] _UpperCAmelCase :List[int] = [] _UpperCAmelCase :List[int] = [] def __init__( self : Any , snake_case__ : List[str] , snake_case__ : Union[str, Any]="<s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Any="</s>" , snake_case__ : Optional[int]="<s>" , snake_case__ : Dict="<unk>" , snake_case__ : Optional[Any]="<pad>" , snake_case__ : Union[str, Any]="<mask>" , snake_case__ : Dict=None , snake_case__ : int=None , snake_case__ : List[str]=None , snake_case__ : Optional[Dict[str, Any]] = None , snake_case__ : Optional[int]=None , **snake_case__ : Optional[Any] , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : Union[str, Any] =AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token lowerCamelCase_ : int ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , tokenizer_file=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ , additional_special_tokens=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) lowerCamelCase_ : Optional[int] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(snake_case__ ) ) lowerCamelCase_ : Optional[int] =vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase_ : List[Any] ={"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase_ : Dict =1 lowerCamelCase_ : Union[str, Any] =len(self.sp_model ) lowerCamelCase_ : List[str] ={ code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(snake_case__ ) } lowerCamelCase_ : Optional[int] ={v: k for k, v in self.lang_code_to_id.items()} lowerCamelCase_ : Dict =len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowerCamelCase_ : Any ={v: k for k, v in self.fairseq_tokens_to_ids.items()} lowerCamelCase_ : Optional[int] =list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowerCamelCase_ : Dict =src_lang if src_lang is not None else "en_XX" lowerCamelCase_ : Dict =self.lang_code_to_id[self._src_lang] lowerCamelCase_ : Tuple =tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Union[str, Any] ): lowerCamelCase_ : Tuple =self.__dict__.copy() lowerCamelCase_ : int =None lowerCamelCase_ : int =self.sp_model.serialized_model_proto() return state def __setstate__( self : List[Any] , snake_case__ : List[str] ): lowerCamelCase_ : Any =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase_ : List[Any] ={} lowerCamelCase_ : List[str] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def UpperCAmelCase__ ( self : Optional[int] ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCAmelCase__ ( self : Optional[int] ): return self._src_lang @src_lang.setter def UpperCAmelCase__ ( self : Any , snake_case__ : str ): lowerCamelCase_ : List[str] =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase__ ( self : Optional[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) lowerCamelCase_ : str =[1] * len(self.prefix_tokens ) lowerCamelCase_ : Any =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(snake_case__ )) + suffix_ones return prefix_ones + ([0] * len(snake_case__ )) + ([0] * len(snake_case__ )) + suffix_ones def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase__ ( self : List[Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): lowerCamelCase_ : Union[str, Any] =[self.sep_token_id] lowerCamelCase_ : str =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self : Tuple , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : Optional[str] , snake_case__ : Optional[str] , **snake_case__ : Any ): if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) lowerCamelCase_ : str =src_lang lowerCamelCase_ : str =self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) lowerCamelCase_ : Any =self.convert_tokens_to_ids(snake_case__ ) lowerCamelCase_ : Optional[int] =tgt_lang_id return inputs def UpperCAmelCase__ ( self : List[Any] ): lowerCamelCase_ : Dict ={self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ ( self : int , snake_case__ : str ): return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def UpperCAmelCase__ ( self : int , snake_case__ : Dict ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase_ : Union[str, Any] =self.sp_model.PieceToId(snake_case__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase__ ( self : Any , snake_case__ : Optional[int] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase__ ( self : List[str] , snake_case__ : Optional[Any] ): lowerCamelCase_ : str ="".join(snake_case__ ).replace(snake_case__ , " " ).strip() return out_string def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): if not os.path.isdir(snake_case__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ : str =os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: lowerCamelCase_ : Tuple =self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def UpperCAmelCase__ ( self : Tuple , snake_case__ : List[str] , snake_case__ : str = "en_XX" , snake_case__ : Optional[List[str]] = None , snake_case__ : str = "ro_RO" , **snake_case__ : List[str] , ): lowerCamelCase_ : Optional[int] =src_lang lowerCamelCase_ : Any =tgt_lang return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self : List[str] ): return self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase__ ( self : Dict ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase__ ( self : List[Any] , snake_case__ : List[Any] ): lowerCamelCase_ : Dict =self.lang_code_to_id[src_lang] lowerCamelCase_ : Dict =[] lowerCamelCase_ : List[str] =[self.eos_token_id, self.cur_lang_code] def UpperCAmelCase__ ( self : int , snake_case__ : str ): lowerCamelCase_ : Union[str, Any] =self.lang_code_to_id[lang] lowerCamelCase_ : int =[] lowerCamelCase_ : Optional[Any] =[self.eos_token_id, self.cur_lang_code]
244
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase__ ( snake_case__ ): _UpperCAmelCase :Tuple = ["image_processor", "tokenizer"] _UpperCAmelCase :Dict = "LayoutLMv3ImageProcessor" _UpperCAmelCase :Any = ("LayoutLMv3Tokenizer", "LayoutLMv3TokenizerFast") def __init__( self : List[Any] , snake_case__ : str=None , snake_case__ : int=None , **snake_case__ : Dict ): lowerCamelCase_ : List[str] =None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , snake_case__ , ) lowerCamelCase_ : List[str] =kwargs.pop("feature_extractor" ) lowerCamelCase_ : Union[str, Any] =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(snake_case__ , snake_case__ ) def __call__( self : Optional[Any] , snake_case__ : Any , snake_case__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , snake_case__ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , snake_case__ : Union[List[List[int]], List[List[List[int]]]] = None , snake_case__ : Optional[Union[List[int], List[List[int]]]] = None , snake_case__ : bool = True , snake_case__ : Union[bool, str, PaddingStrategy] = False , snake_case__ : Union[bool, str, TruncationStrategy] = None , snake_case__ : Optional[int] = None , snake_case__ : int = 0 , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : bool = True , snake_case__ : Optional[Union[str, TensorType]] = None , **snake_case__ : int , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor lowerCamelCase_ : Dict =self.image_processor(images=snake_case__ , return_tensors=snake_case__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(snake_case__ , snake_case__ ): lowerCamelCase_ : List[Any] =[text] # add batch dimension (as the image processor always adds a batch dimension) lowerCamelCase_ : List[str] =features["words"] lowerCamelCase_ : List[str] =self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , stride=snake_case__ , pad_to_multiple_of=snake_case__ , return_token_type_ids=snake_case__ , return_attention_mask=snake_case__ , return_overflowing_tokens=snake_case__ , return_special_tokens_mask=snake_case__ , return_offsets_mapping=snake_case__ , return_length=snake_case__ , verbose=snake_case__ , return_tensors=snake_case__ , **snake_case__ , ) # add pixel values lowerCamelCase_ : str =features.pop("pixel_values" ) if return_overflowing_tokens is True: lowerCamelCase_ : Tuple =self.get_overflowing_images(snake_case__ , encoded_inputs["overflow_to_sample_mapping"] ) lowerCamelCase_ : Dict =images return encoded_inputs def UpperCAmelCase__ ( self : List[str] , snake_case__ : Union[str, Any] , snake_case__ : Any ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image lowerCamelCase_ : Optional[int] =[] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(snake_case__ ) != len(snake_case__ ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" F""" {len(snake_case__ )} and {len(snake_case__ )}""" ) return images_with_overflow def UpperCAmelCase__ ( self : str , *snake_case__ : List[str] , **snake_case__ : List[str] ): return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def UpperCAmelCase__ ( self : List[Any] , *snake_case__ : Tuple , **snake_case__ : Any ): return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @property def UpperCAmelCase__ ( self : Optional[Any] ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def UpperCAmelCase__ ( self : Union[str, Any] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , snake_case__ , ) return self.image_processor_class @property def UpperCAmelCase__ ( self : List[Any] ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , snake_case__ , ) return self.image_processor
244
1
"""simple docstring""" from itertools import product def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> list[int]: '''simple docstring''' a__ : Optional[Any] = sides_number a__ : Tuple = max_face_number * dice_number a__ : Any = [0] * (max_total + 1) a__ : Optional[int] = 1 a__ : Optional[int] = range(lowerCAmelCase__ , max_face_number + 1 ) for dice_numbers in product(lowerCAmelCase__ , repeat=lowerCAmelCase__ ): a__ : str = sum(lowerCAmelCase__ ) totals_frequencies[total] += 1 return totals_frequencies def lowercase__ ( ) -> float: '''simple docstring''' a__ : Optional[Any] = total_frequency_distribution( sides_number=4 , dice_number=9 ) a__ : List[str] = total_frequency_distribution( sides_number=6 , dice_number=6 ) a__ : Union[str, Any] = 0 a__ : Dict = 9 a__ : Union[str, Any] = 4 * 9 a__ : List[Any] = 6 for peter_total in range(lowerCAmelCase__ , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) a__ : Any = (4**9) * (6**6) a__ : Union[str, Any] = peter_wins_count / total_games_number a__ : Union[str, Any] = round(lowerCAmelCase__ , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f"{solution() = }")
642
"""simple docstring""" import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): __lowerCamelCase : List[Any] = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def UpperCAmelCase ( self : str , a_ : Optional[Any]=0 ) -> Union[str, Any]: '''simple docstring''' a__ : Union[str, Any] = np.random.RandomState(a_ ) a__ : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCAmelCase ( self : Dict ) -> Optional[Any]: '''simple docstring''' a__ : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=a_ ) a__ : Optional[int] = self.get_dummy_inputs() a__ : Union[str, Any] = pipe(**a_ ).images a__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__ : List[str] = np.array([0.6_5072, 0.5_8492, 0.4_8219, 0.5_5521, 0.5_3180, 0.5_5939, 0.5_0697, 0.3_9800, 0.4_6455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' a__ : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a__ : List[str] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a_ ) pipe.set_progress_bar_config(disable=a_ ) a__ : Optional[int] = self.get_dummy_inputs() a__ : List[Any] = pipe(**a_ ).images a__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__ : List[str] = np.array([0.6_5863, 0.5_9425, 0.4_9326, 0.5_6313, 0.5_3875, 0.5_6627, 0.5_1065, 0.3_9777, 0.4_6330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : Tuple ) -> Tuple: '''simple docstring''' a__ : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a__ : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) a__ : List[Any] = self.get_dummy_inputs() a__ : Optional[Any] = pipe(**a_ ).images a__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__ : Dict = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' a__ : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a__ : Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) a__ : Optional[int] = self.get_dummy_inputs() a__ : int = pipe(**a_ ).images a__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__ : str = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' a__ : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a__ : Dict = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) a__ : Any = self.get_dummy_inputs() a__ : List[str] = pipe(**a_ ).images a__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__ : Any = np.array([0.5_3817, 0.6_0812, 0.4_7384, 0.4_9530, 0.5_1894, 0.4_9814, 0.4_7984, 0.3_8958, 0.4_4271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : Tuple ) -> Any: '''simple docstring''' a__ : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) a__ : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a_ ) a__ : Tuple = self.get_dummy_inputs() a__ : List[str] = pipe(**a_ ).images a__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) a__ : Any = np.array([0.5_3895, 0.6_0808, 0.4_7933, 0.4_9608, 0.5_1886, 0.4_9950, 0.4_8053, 0.3_8957, 0.4_4200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : str ) -> Tuple: '''simple docstring''' a__ : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=a_ ) a__ : Any = self.get_dummy_inputs() a__ : Any = 3 * [inputs["prompt"]] # forward a__ : Union[str, Any] = pipe(**a_ ) a__ : int = output.images[0, -3:, -3:, -1] a__ : Union[str, Any] = self.get_dummy_inputs() a__ : List[Any] = 3 * [inputs.pop("prompt" )] a__ : Optional[Any] = pipe.tokenizer( a_ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=a_ , return_tensors="np" , ) a__ : List[str] = text_inputs["input_ids"] a__ : int = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] a__ : List[Any] = prompt_embeds # forward a__ : List[Any] = pipe(**a_ ) a__ : List[str] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def UpperCAmelCase ( self : Dict ) -> Optional[int]: '''simple docstring''' a__ : Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=a_ ) a__ : Tuple = self.get_dummy_inputs() a__ : Dict = 3 * ["this is a negative prompt"] a__ : Optional[Any] = negative_prompt a__ : Any = 3 * [inputs["prompt"]] # forward a__ : str = pipe(**a_ ) a__ : List[str] = output.images[0, -3:, -3:, -1] a__ : Union[str, Any] = self.get_dummy_inputs() a__ : Union[str, Any] = 3 * [inputs.pop("prompt" )] a__ : List[Any] = [] for p in [prompt, negative_prompt]: a__ : int = pipe.tokenizer( a_ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=a_ , return_tensors="np" , ) a__ : Any = text_inputs["input_ids"] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) a__ , a__ : Union[str, Any] = embeds # forward a__ : Dict = pipe(**a_ ) a__ : Any = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): @property def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase ( self : Optional[int] ) -> Tuple: '''simple docstring''' a__ : List[str] = ort.SessionOptions() a__ : List[str] = False return options def UpperCAmelCase ( self : Optional[int] ) -> List[Any]: '''simple docstring''' a__ : Dict = OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=a_ , feature_extractor=a_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=a_ ) a__ : Optional[int] = "A painting of a squirrel eating a burger" np.random.seed(0 ) a__ : Dict = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="np" ) a__ : Any = output.images a__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a__ : str = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' a__ : Any = DDIMScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) a__ : str = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=a_ , safety_checker=a_ , feature_extractor=a_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=a_ ) a__ : str = "open neural network exchange" a__ : Tuple = np.random.RandomState(0 ) a__ : Dict = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=a_ , output_type="np" ) a__ : Dict = output.images a__ : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a__ : Dict = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase ( self : Optional[int] ) -> Dict: '''simple docstring''' a__ : List[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) a__ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=a_ , safety_checker=a_ , feature_extractor=a_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=a_ ) a__ : Any = "open neural network exchange" a__ : Optional[Any] = np.random.RandomState(0 ) a__ : Optional[int] = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=a_ , output_type="np" ) a__ : int = output.images a__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) a__ : Dict = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase ( self : int ) -> Optional[Any]: '''simple docstring''' a__ : List[str] = 0 def test_callback_fn(a_ : int , a_ : int , a_ : np.ndarray ) -> None: a__ : Optional[int] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) a__ : Any = latents[0, -3:, -3:, -1] a__ : Union[str, Any] = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) a__ : Union[str, Any] = latents[0, -3:, -3:, -1] a__ : Optional[int] = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 a__ : Tuple = False a__ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=a_ , feature_extractor=a_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a_ ) a__ : List[Any] = "Andromeda galaxy in a bottle" a__ : str = np.random.RandomState(0 ) pipe( prompt=a_ , num_inference_steps=5 , guidance_scale=7.5 , generator=a_ , callback=a_ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def UpperCAmelCase ( self : Tuple ) -> List[str]: '''simple docstring''' a__ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=a_ , feature_extractor=a_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(a_ , a_ ) assert pipe.safety_checker is None a__ : Tuple = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) a__ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None a__ : Dict = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None
642
1
"""simple docstring""" import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCamelCase__ = logging.getLogger(__name__) lowerCamelCase__ = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) lowerCamelCase__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={ "help": ( "The model checkpoint for weights initialization. Leave None if you want to train a model from" " scratch." ) } , ) SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(_UpperCamelCase )} , ) SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={"help": "The input training data file (a text file)."} ) SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={ "help": ( "The input training data files (multiple files in glob format). " "Very often splitting large files to smaller files can prevent tokenizer going out of memory" ) } , ) SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={"help": "An optional input evaluation data file to evaluate the perplexity on (a text file)."} , ) SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={"help": "An optional input train ref data file for whole word mask in Chinese."} , ) SCREAMING_SNAKE_CASE__ :Optional[str] = field( default=_UpperCamelCase , metadata={"help": "An optional input eval ref data file for whole word mask in Chinese."} , ) SCREAMING_SNAKE_CASE__ :bool = field( default=_UpperCamelCase , metadata={"help": "Whether distinct lines of text in the dataset are to be handled as distinct sequences."} , ) SCREAMING_SNAKE_CASE__ :bool = field( default=_UpperCamelCase , metadata={"help": "Train with masked-language modeling loss instead of language modeling."} ) SCREAMING_SNAKE_CASE__ :bool = field(default=_UpperCamelCase , metadata={"help": "Whether ot not to use whole word mask."} ) SCREAMING_SNAKE_CASE__ :float = field( default=0.15 , metadata={"help": "Ratio of tokens to mask for masked language modeling loss"} ) SCREAMING_SNAKE_CASE__ :float = field( default=1 / 6 , metadata={ "help": ( "Ratio of length of a span of masked tokens to surrounding context length for permutation language" " modeling." ) } , ) SCREAMING_SNAKE_CASE__ :int = field( default=5 , metadata={"help": "Maximum length of a span of masked tokens for permutation language modeling."} ) SCREAMING_SNAKE_CASE__ :int = field( default=-1 , metadata={ "help": ( "Optional input sequence length after tokenization." "The training dataset will be truncated in block of this size for training." "Default to the model max input length for single sentence inputs (take into account special tokens)." ) } , ) SCREAMING_SNAKE_CASE__ :bool = field( default=_UpperCamelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ = False ,lowercase_ = None ,) -> List[str]: """simple docstring""" def _dataset(lowercase_ ,lowercase_=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=lowercase_ ,file_path=lowercase_ ,block_size=args.block_size ,ref_path=lowercase_ ,) return LineByLineTextDataset(tokenizer=lowercase_ ,file_path=lowercase_ ,block_size=args.block_size ) else: return TextDataset( tokenizer=lowercase_ ,file_path=lowercase_ ,block_size=args.block_size ,overwrite_cache=args.overwrite_cache ,cache_dir=lowercase_ ,) if evaluate: return _dataset(args.eval_data_file ,args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowercase_ ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file ,args.train_ref_file ) def lowercase__ ( ) -> int: """simple docstring""" _UpperCamelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCamelCase : int = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.local_rank != -1 ) ,training_args.fpaa ,) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" ,lowercase_ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _UpperCamelCase : Optional[int] = AutoConfig.from_pretrained(model_args.config_name ,cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _UpperCamelCase : List[Any] = AutoConfig.from_pretrained(model_args.model_name_or_path ,cache_dir=model_args.cache_dir ) else: _UpperCamelCase : Dict = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: _UpperCamelCase : int = AutoTokenizer.from_pretrained(model_args.tokenizer_name ,cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path ,cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: _UpperCamelCase : List[Any] = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path ,from_tf=bool(".ckpt" in model_args.model_name_or_path ) ,config=lowercase_ ,cache_dir=model_args.cache_dir ,) else: logger.info("Training new model from scratch" ) _UpperCamelCase : List[Any] = AutoModelWithLMHead.from_config(lowercase_ ) model.resize_token_embeddings(len(lowercase_ ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: _UpperCamelCase : Dict = tokenizer.max_len # Our input block size will be the max possible for the model else: _UpperCamelCase : Union[str, Any] = min(data_args.block_size ,tokenizer.max_len ) # Get datasets _UpperCamelCase : int = ( get_dataset(lowercase_ ,tokenizer=lowercase_ ,cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _UpperCamelCase : int = ( get_dataset(lowercase_ ,tokenizer=lowercase_ ,evaluate=lowercase_ ,cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _UpperCamelCase : Dict = DataCollatorForPermutationLanguageModeling( tokenizer=lowercase_ ,plm_probability=data_args.plm_probability ,max_span_length=data_args.max_span_length ,) else: if data_args.mlm and data_args.whole_word_mask: _UpperCamelCase : Optional[Any] = DataCollatorForWholeWordMask( tokenizer=lowercase_ ,mlm_probability=data_args.mlm_probability ) else: _UpperCamelCase : Union[str, Any] = DataCollatorForLanguageModeling( tokenizer=lowercase_ ,mlm=data_args.mlm ,mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _UpperCamelCase : str = Trainer( model=lowercase_ ,args=lowercase_ ,data_collator=lowercase_ ,train_dataset=lowercase_ ,eval_dataset=lowercase_ ,prediction_loss_only=lowercase_ ,) # Training if training_args.do_train: _UpperCamelCase : Tuple = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowercase_ ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _UpperCamelCase : int = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) _UpperCamelCase : Union[str, Any] = trainer.evaluate() _UpperCamelCase : Dict = math.exp(eval_output["eval_loss"] ) _UpperCamelCase : int = {"perplexity": perplexity} _UpperCamelCase : int = os.path.join(training_args.output_dir ,"eval_results_lm.txt" ) if trainer.is_world_master(): with open(lowercase_ ,"w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" ,lowercase_ ,str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(lowercase_ ) return results def lowercase__ ( lowercase_ ) -> Optional[int]: """simple docstring""" main() if __name__ == "__main__": main()
706
"""simple docstring""" import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Union[str, Any] = RoCBertTokenizer SCREAMING_SNAKE_CASE__ :Dict = None SCREAMING_SNAKE_CASE__ :List[Any] = False SCREAMING_SNAKE_CASE__ :Union[str, Any] = True SCREAMING_SNAKE_CASE__ :Union[str, Any] = filter_non_english def __SCREAMING_SNAKE_CASE ( self : str ) -> Dict: super().setUp() _UpperCamelCase : Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "你", "好", "是", "谁", "a", "b", "c", "d"] _UpperCamelCase : List[str] = {} _UpperCamelCase : Tuple = {} for i, value in enumerate(__a ): _UpperCamelCase : List[str] = i _UpperCamelCase : Optional[Any] = i _UpperCamelCase : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _UpperCamelCase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_shape_file"] ) _UpperCamelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["word_pronunciation_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.word_shape_file , "w" , encoding="utf-8" ) as word_shape_writer: json.dump(__a , __a , ensure_ascii=__a ) with open(self.word_pronunciation_file , "w" , encoding="utf-8" ) as word_pronunciation_writer: json.dump(__a , __a , ensure_ascii=__a ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: _UpperCamelCase : Tuple = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _UpperCamelCase : int = tokenizer.tokenize("你好[SEP]你是谁" ) self.assertListEqual(__a , ["你", "好", "[SEP]", "你", "是", "谁"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(__a ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(__a ) , [5, 6, 2, 5, 7, 8] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: _UpperCamelCase : Dict = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Any: _UpperCamelCase : List[Any] = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple: _UpperCamelCase : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : Dict = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: _UpperCamelCase : List[str] = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: _UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: _UpperCamelCase : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[Any]: _UpperCamelCase : Tuple = RoCBertBasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : int = RoCBertBasicTokenizer(do_lower_case=__a , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: _UpperCamelCase : Optional[int] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _UpperCamelCase : Any = {} for i, token in enumerate(__a ): _UpperCamelCase : str = i _UpperCamelCase : Optional[int] = RoCBertWordpieceTokenizer(vocab=__a , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> Optional[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Optional[Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) if self.test_rust_tokenizer: _UpperCamelCase : Tuple = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(__a ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : int = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Union[str, Any] = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' _UpperCamelCase : Optional[Any] = tokenizer_r.encode_plus( __a , return_attention_mask=__a , return_token_type_ids=__a , return_offsets_mapping=__a , add_special_tokens=__a , ) _UpperCamelCase : List[Any] = tokenizer_r.do_lower_case if hasattr(__a , "do_lower_case" ) else False _UpperCamelCase : Dict = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def __SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: _UpperCamelCase : Optional[Any] = ["的", "人", "有"] _UpperCamelCase : int = "".join(__a ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _UpperCamelCase : int = True _UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : int = tokenizer_p.encode(__a , add_special_tokens=__a ) _UpperCamelCase : int = tokenizer_r.encode(__a , add_special_tokens=__a ) _UpperCamelCase : List[Any] = tokenizer_r.convert_ids_to_tokens(__a ) _UpperCamelCase : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) _UpperCamelCase : Any = False _UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Any = self.tokenizer_class.from_pretrained(__a , **__a ) _UpperCamelCase : Any = tokenizer_r.encode(__a , add_special_tokens=__a ) _UpperCamelCase : Any = tokenizer_p.encode(__a , add_special_tokens=__a ) _UpperCamelCase : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(__a ) _UpperCamelCase : Dict = tokenizer_p.convert_ids_to_tokens(__a ) # it is expected that only the first Chinese character is not preceded by "##". _UpperCamelCase : Any = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__a ) ] self.assertListEqual(__a , __a ) self.assertListEqual(__a , __a ) @slow def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Any: _UpperCamelCase : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) _UpperCamelCase : Optional[int] = tokenizer.encode("你好" , add_special_tokens=__a ) _UpperCamelCase : Dict = tokenizer.encode("你是谁" , add_special_tokens=__a ) _UpperCamelCase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(__a ) _UpperCamelCase : Tuple = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: _UpperCamelCase : Optional[Any] = self.get_tokenizers(do_lower_case=__a ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): _UpperCamelCase : int = "你好,你是谁" _UpperCamelCase : Any = tokenizer.tokenize(__a ) _UpperCamelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(__a ) _UpperCamelCase : List[str] = tokenizer.convert_tokens_to_shape_ids(__a ) _UpperCamelCase : Any = tokenizer.convert_tokens_to_pronunciation_ids(__a ) _UpperCamelCase : Optional[int] = tokenizer.prepare_for_model( __a , __a , __a , add_special_tokens=__a ) _UpperCamelCase : Tuple = tokenizer.encode_plus(__a , add_special_tokens=__a ) self.assertEqual(__a , __a )
51
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def __lowerCamelCase ( ) -> Optional[int]: __SCREAMING_SNAKE_CASE :Any = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=_lowerCAmelCase ) __SCREAMING_SNAKE_CASE :Optional[Any] = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=_lowerCAmelCase ) env_command_parser(subparsers=_lowerCAmelCase ) launch_command_parser(subparsers=_lowerCAmelCase ) tpu_command_parser(subparsers=_lowerCAmelCase ) test_command_parser(subparsers=_lowerCAmelCase ) # Let's go __SCREAMING_SNAKE_CASE :int = parser.parse_args() if not hasattr(_lowerCAmelCase , '''func''' ): parser.print_help() exit(1 ) # Run args.func(_lowerCAmelCase ) if __name__ == "__main__": main()
498
from ... import PretrainedConfig lowercase : Dict = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : List[str] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP lowercase : Union[str, Any] = 'nezha' def __init__( self , __UpperCamelCase=2_11_28 , __UpperCamelCase=7_68 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=30_72 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_12 , __UpperCamelCase=64 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-12 , __UpperCamelCase=0.1 , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase=3 , __UpperCamelCase=True , **__UpperCamelCase , ) -> int: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) __UpperCamelCase : int = vocab_size __UpperCamelCase : int = hidden_size __UpperCamelCase : Tuple = num_hidden_layers __UpperCamelCase : Tuple = num_attention_heads __UpperCamelCase : Optional[int] = hidden_act __UpperCamelCase : List[str] = intermediate_size __UpperCamelCase : Union[str, Any] = hidden_dropout_prob __UpperCamelCase : Tuple = attention_probs_dropout_prob __UpperCamelCase : Optional[int] = max_position_embeddings __UpperCamelCase : str = max_relative_position __UpperCamelCase : List[str] = type_vocab_size __UpperCamelCase : Dict = initializer_range __UpperCamelCase : Optional[int] = layer_norm_eps __UpperCamelCase : int = classifier_dropout __UpperCamelCase : List[str] = use_cache
327
0
from __future__ import annotations def _A ( lowerCAmelCase_ : list[int | str] ): """simple docstring""" create_state_space_tree(lowerCAmelCase_ , [] , 0 , [0 for i in range(len(lowerCAmelCase_ ) )] ) def _A ( lowerCAmelCase_ : list[int | str] , lowerCAmelCase_ : list[int | str] , lowerCAmelCase_ : int , lowerCAmelCase_ : list[int] , ): """simple docstring""" if index == len(lowerCAmelCase_ ): print(lowerCAmelCase_ ) return for i in range(len(lowerCAmelCase_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) lowerCAmelCase__ = True create_state_space_tree(lowerCAmelCase_ , lowerCAmelCase_ , index + 1 , lowerCAmelCase_ ) current_sequence.pop() lowerCAmelCase__ = False UpperCamelCase = [3, 1, 2, 4] generate_all_permutations(sequence) UpperCamelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
125
import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = (PNDMScheduler,) snake_case__ = (("num_inference_steps", 5_0),) def a ( self : int , **SCREAMING_SNAKE_CASE__ : List[str] ) -> Optional[int]: lowerCAmelCase__ = { "num_train_timesteps": 1_000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**SCREAMING_SNAKE_CASE__ ) return config def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str=0 , **SCREAMING_SNAKE_CASE__ : int ) -> List[str]: lowerCAmelCase__ = dict(self.forward_default_kwargs ) lowerCAmelCase__ = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.dummy_sample lowerCAmelCase__ = 0.1 * sample lowerCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase__ = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals lowerCAmelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals lowerCAmelCase__ = dummy_past_residuals[:] lowerCAmelCase__ = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ = new_scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCAmelCase__ = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ = new_scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a ( self : Dict ) -> Any: pass def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]=0 , **SCREAMING_SNAKE_CASE__ : List[str] ) -> str: lowerCAmelCase__ = dict(self.forward_default_kwargs ) lowerCAmelCase__ = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.dummy_sample lowerCAmelCase__ = 0.1 * sample lowerCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase__ = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler_class.from_pretrained(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residuals new_scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase__ = dummy_past_residuals[:] lowerCAmelCase__ = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ = new_scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" lowerCAmelCase__ = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ = new_scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def a ( self : List[str] , **SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = 10 lowerCAmelCase__ = self.dummy_model() lowerCAmelCase__ = self.dummy_sample_deter scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(scheduler.prk_timesteps ): lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample return sample def a ( self : Optional[int] ) -> List[str]: lowerCAmelCase__ = dict(self.forward_default_kwargs ) lowerCAmelCase__ = kwargs.pop("num_inference_steps" , SCREAMING_SNAKE_CASE__ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.dummy_sample lowerCAmelCase__ = 0.1 * sample if num_inference_steps is not None and hasattr(SCREAMING_SNAKE_CASE__ , "set_timesteps" ): scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) elif num_inference_steps is not None and not hasattr(SCREAMING_SNAKE_CASE__ , "set_timesteps" ): lowerCAmelCase__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowerCAmelCase__ = dummy_past_residuals[:] lowerCAmelCase__ = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , 1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCAmelCase__ = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , 0 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample lowerCAmelCase__ = scheduler.step_plms(SCREAMING_SNAKE_CASE__ , 1 , SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def a ( self : Tuple ) -> int: for timesteps in [100, 1_000]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__ ) def a ( self : Tuple ) -> List[str]: for steps_offset in [0, 1]: self.check_over_configs(steps_offset=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config(steps_offset=1 ) lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(10 ) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1] ) , ) def a ( self : List[str] ) -> Union[str, Any]: for beta_start, beta_end in zip([0.0_001, 0.001] , [0.002, 0.02] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE__ , beta_end=SCREAMING_SNAKE_CASE__ ) def a ( self : Union[str, Any] ) -> Union[str, Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE__ ) def a ( self : Any ) -> Union[str, Any]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__ ) def a ( self : str ) -> Union[str, Any]: for t in [1, 5, 10]: self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=SCREAMING_SNAKE_CASE__ ) def a ( self : List[str] ) -> List[str]: # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 lowerCAmelCase__ = 27 for scheduler_class in self.scheduler_classes: lowerCAmelCase__ = self.dummy_sample lowerCAmelCase__ = 0.1 * sample lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): lowerCAmelCase__ = scheduler.step_prk(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).prev_sample def a ( self : Union[str, Any] ) -> Optional[Any]: with self.assertRaises(SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE__ ) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample ).prev_sample def a ( self : Any ) -> Tuple: lowerCAmelCase__ = self.full_loop() lowerCAmelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 198.1_318 ) < 1e-2 assert abs(result_mean.item() - 0.2_580 ) < 1e-3 def a ( self : int ) -> Dict: lowerCAmelCase__ = self.full_loop(prediction_type="v_prediction" ) lowerCAmelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 67.3_986 ) < 1e-2 assert abs(result_mean.item() - 0.0_878 ) < 1e-3 def a ( self : Any ) -> Tuple: # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase__ = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 ) lowerCAmelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 230.0_399 ) < 1e-2 assert abs(result_mean.item() - 0.2_995 ) < 1e-3 def a ( self : int ) -> List[Any]: # We specify different beta, so that the first alpha is 0.99 lowerCAmelCase__ = self.full_loop(set_alpha_to_one=SCREAMING_SNAKE_CASE__ , beta_start=0.01 ) lowerCAmelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__ ) ) assert abs(result_sum.item() - 186.9_482 ) < 1e-2 assert abs(result_mean.item() - 0.2_434 ) < 1e-3
125
1
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class A : '''simple docstring''' A__ = 42 A__ = 42 class A : '''simple docstring''' def __init__(self : Any , _UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" lowercase__ = [[] for _ in range(_UpperCAmelCase )] lowercase__ = size def __getitem__(self : Optional[int] , _UpperCAmelCase : int ) -> Iterator[Edge]: """simple docstring""" return iter(self._graph[vertex] ) @property def lowerCamelCase__ (self : int ) -> Optional[int]: """simple docstring""" return self._size def lowerCamelCase__ (self : int , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> Dict: """simple docstring""" if weight not in (0, 1): raise ValueError("""Edge weight must be either 0 or 1.""" ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("""Vertex indexes must be in [0; size).""" ) self._graph[from_vertex].append(Edge(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int | None: """simple docstring""" lowercase__ = deque([start_vertex] ) lowercase__ = [None] * self.size lowercase__ = 0 while queue: lowercase__ = queue.popleft() lowercase__ = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowercase__ = current_distance + edge.weight lowercase__ = distances[edge.destination_vertex] if ( isinstance(_UpperCAmelCase , _UpperCAmelCase ) and new_distance >= dest_vertex_distance ): continue lowercase__ = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("""No path from start_vertex to finish_vertex.""" ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
15
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer __lowerCamelCase :str = logging.get_logger(__name__) __lowerCamelCase :Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} __lowerCamelCase :str = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } __lowerCamelCase :List[Any] = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } __lowerCamelCase :Tuple = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class A__ ( __lowercase): """simple docstring""" snake_case__ : Union[str, Any] =VOCAB_FILES_NAMES snake_case__ : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP snake_case__ : int =PRETRAINED_INIT_CONFIGURATION snake_case__ : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : str =BertTokenizer def __init__( self: str , __a: Union[str, Any]=None , __a: Tuple=None , __a: int=True , __a: List[str]="[UNK]" , __a: Optional[Any]="[SEP]" , __a: Union[str, Any]="[PAD]" , __a: Optional[Any]="[CLS]" , __a: Optional[Any]="[MASK]" , __a: List[Any]=True , __a: int=None , **__a: Union[str, Any] , )-> int: super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , tokenize_chinese_chars=__a , strip_accents=__a , **__a , ) lowerCamelCase : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , __a ) != do_lower_case or normalizer_state.get("""strip_accents""" , __a ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , __a ) != tokenize_chinese_chars ): lowerCamelCase : int = getattr(__a , normalizer_state.pop("""type""" ) ) lowerCamelCase : str = do_lower_case lowerCamelCase : List[Any] = strip_accents lowerCamelCase : Tuple = tokenize_chinese_chars lowerCamelCase : str = normalizer_class(**__a ) lowerCamelCase : Union[str, Any] = do_lower_case def a__ ( self: Tuple , __a: List[Any] , __a: int=None )-> Optional[Any]: lowerCamelCase : Optional[int] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def a__ ( self: Any , __a: List[int] , __a: Optional[List[int]] = None )-> List[int]: lowerCamelCase : Dict = [self.sep_token_id] lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self: Optional[int] , __a: str , __a: Optional[str] = None )-> Tuple[str]: lowerCamelCase : Optional[Any] = self._tokenizer.model.save(__a , name=__a ) return tuple(__a )
222
0
"""simple docstring""" def UpperCAmelCase ( A__: int = 1000 ) -> int: __lowerCamelCase , __lowerCamelCase : Optional[Any] = 1, 1 __lowerCamelCase : Union[str, Any] = [] for i in range(1 , n + 1 ): __lowerCamelCase : Any = prev_numerator + 2 * prev_denominator __lowerCamelCase : Any = prev_numerator + prev_denominator if len(str(A__ ) ) > len(str(A__ ) ): result.append(A__ ) __lowerCamelCase : int = numerator __lowerCamelCase : Optional[Any] = denominator return len(A__ ) if __name__ == "__main__": print(F"""{solution() = }""")
263
"""simple docstring""" import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig a_ : Tuple = logging.get_logger(__name__) # General docstring a_ : List[str] = '''PoolFormerConfig''' # Base docstring a_ : Optional[Any] = '''sail/poolformer_s12''' a_ : List[Any] = [1, 5_12, 7, 7] # Image classification docstring a_ : Any = '''sail/poolformer_s12''' a_ : Optional[int] = '''tabby, tabby cat''' a_ : Optional[Any] = [ '''sail/poolformer_s12''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def UpperCAmelCase ( A__: Optional[Any] , A__: float = 0.0 , A__: bool = False ) -> Tuple: if drop_prob == 0.0 or not training: return input __lowerCamelCase : Dict = 1 - drop_prob __lowerCamelCase : List[Any] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets __lowerCamelCase : List[Any] = keep_prob + torch.rand(A__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize __lowerCamelCase : Any = input.div(A__ ) * random_tensor return output class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a = None ): super().__init__() __lowerCamelCase : int = drop_prob def snake_case_ ( self , __a ): return drop_path(__a , self.drop_prob , self.training ) def snake_case_ ( self ): return "p={}".format(self.drop_prob ) class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a , __a , __a , __a , __a , __a=None ): super().__init__() __lowerCamelCase : int = patch_size if isinstance(__a , collections.abc.Iterable ) else (patch_size, patch_size) __lowerCamelCase : int = stride if isinstance(__a , collections.abc.Iterable ) else (stride, stride) __lowerCamelCase : Optional[int] = padding if isinstance(__a , collections.abc.Iterable ) else (padding, padding) __lowerCamelCase : Optional[Any] = nn.Convad(__a , __a , kernel_size=__a , stride=__a , padding=__a ) __lowerCamelCase : List[str] = norm_layer(__a ) if norm_layer else nn.Identity() def snake_case_ ( self , __a ): __lowerCamelCase : List[Any] = self.projection(__a ) __lowerCamelCase : Dict = self.norm(__a ) return embeddings class __lowercase( nn.GroupNorm ): '''simple docstring''' def __init__( self , __a , **__a ): super().__init__(1 , __a , **__a ) class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a ): super().__init__() __lowerCamelCase : str = nn.AvgPoolad(__a , stride=1 , padding=pool_size // 2 , count_include_pad=__a ) def snake_case_ ( self , __a ): return self.pool(__a ) - hidden_states class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a , __a , __a , __a ): super().__init__() __lowerCamelCase : Any = nn.Convad(__a , __a , 1 ) __lowerCamelCase : Dict = nn.Convad(__a , __a , 1 ) __lowerCamelCase : List[Any] = PoolFormerDropPath(__a ) if isinstance(config.hidden_act , __a ): __lowerCamelCase : List[str] = ACTaFN[config.hidden_act] else: __lowerCamelCase : str = config.hidden_act def snake_case_ ( self , __a ): __lowerCamelCase : int = self.conva(__a ) __lowerCamelCase : Dict = self.act_fn(__a ) __lowerCamelCase : List[str] = self.drop(__a ) __lowerCamelCase : int = self.conva(__a ) __lowerCamelCase : str = self.drop(__a ) return hidden_states class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a , __a , __a , __a , __a , __a ): super().__init__() __lowerCamelCase : Tuple = PoolFormerPooling(__a ) __lowerCamelCase : Union[str, Any] = PoolFormerOutput(__a , __a , __a , __a ) __lowerCamelCase : List[Any] = PoolFormerGroupNorm(__a ) __lowerCamelCase : List[Any] = PoolFormerGroupNorm(__a ) # Useful for training neural nets __lowerCamelCase : Any = PoolFormerDropPath(__a ) if drop_path > 0.0 else nn.Identity() __lowerCamelCase : Tuple = config.use_layer_scale if config.use_layer_scale: __lowerCamelCase : List[str] = nn.Parameter( config.layer_scale_init_value * torch.ones((__a) ) , requires_grad=__a ) __lowerCamelCase : Optional[int] = nn.Parameter( config.layer_scale_init_value * torch.ones((__a) ) , requires_grad=__a ) def snake_case_ ( self , __a ): if self.use_layer_scale: __lowerCamelCase : Union[str, Any] = self.pooling(self.before_norm(__a ) ) __lowerCamelCase : Any = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection __lowerCamelCase : Optional[Any] = hidden_states + self.drop_path(__a ) __lowerCamelCase : Tuple = () __lowerCamelCase : Optional[Any] = self.output(self.after_norm(__a ) ) __lowerCamelCase : List[Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection __lowerCamelCase : List[Any] = hidden_states + self.drop_path(__a ) __lowerCamelCase : Optional[Any] = (output,) + outputs return outputs else: __lowerCamelCase : Tuple = self.drop_path(self.pooling(self.before_norm(__a ) ) ) # First residual connection __lowerCamelCase : List[str] = pooling_output + hidden_states __lowerCamelCase : int = () # Second residual connection inside the PoolFormerOutput block __lowerCamelCase : List[str] = self.drop_path(self.output(self.after_norm(__a ) ) ) __lowerCamelCase : str = hidden_states + layer_output __lowerCamelCase : int = (output,) + outputs return outputs class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a ): super().__init__() __lowerCamelCase : int = config # stochastic depth decay rule __lowerCamelCase : int = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings __lowerCamelCase : List[str] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) __lowerCamelCase : Optional[int] = nn.ModuleList(__a ) # Transformer blocks __lowerCamelCase : Any = [] __lowerCamelCase : int = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers __lowerCamelCase : Optional[int] = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __a , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__a ) ) __lowerCamelCase : str = nn.ModuleList(__a ) def snake_case_ ( self , __a , __a=False , __a=True ): __lowerCamelCase : Union[str, Any] = () if output_hidden_states else None __lowerCamelCase : int = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): __lowerCamelCase , __lowerCamelCase : Any = layers # Get patch embeddings from hidden_states __lowerCamelCase : Any = embedding_layer(__a ) # Send the embeddings through the blocks for _, blk in enumerate(__a ): __lowerCamelCase : Optional[int] = blk(__a ) __lowerCamelCase : Tuple = layer_outputs[0] if output_hidden_states: __lowerCamelCase : Union[str, Any] = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__a , hidden_states=__a ) class __lowercase( lowercase__ ): '''simple docstring''' __a : Tuple = PoolFormerConfig __a : Tuple = 'poolformer' __a : Optional[int] = 'pixel_values' __a : Optional[Any] = True def snake_case_ ( self , __a ): if isinstance(__a , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__a , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def snake_case_ ( self , __a , __a=False ): if isinstance(__a , __a ): __lowerCamelCase : Union[str, Any] = value a_ : Union[str, Any] = R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' a_ : List[str] = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. ''' @add_start_docstrings( 'The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.' , lowercase__ , ) class __lowercase( lowercase__ ): '''simple docstring''' def __init__( self , __a ): super().__init__(__a ) __lowerCamelCase : Optional[Any] = config __lowerCamelCase : Any = PoolFormerEncoder(__a ) # Initialize weights and apply final processing self.post_init() def snake_case_ ( self ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__a , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case_ ( self , __a = None , __a = None , __a = None , ): __lowerCamelCase : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase : Dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) __lowerCamelCase : Any = self.encoder( __a , output_hidden_states=__a , return_dict=__a , ) __lowerCamelCase : int = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__a , hidden_states=encoder_outputs.hidden_states , ) class __lowercase( nn.Module ): '''simple docstring''' def __init__( self , __a ): super().__init__() __lowerCamelCase : Optional[Any] = nn.Linear(config.hidden_size , config.hidden_size ) def snake_case_ ( self , __a ): __lowerCamelCase : List[Any] = self.dense(__a ) return output @add_start_docstrings( '\n PoolFormer Model transformer with an image classification head on top\n ' , lowercase__ , ) class __lowercase( lowercase__ ): '''simple docstring''' def __init__( self , __a ): super().__init__(__a ) __lowerCamelCase : str = config.num_labels __lowerCamelCase : Optional[Any] = PoolFormerModel(__a ) # Final norm __lowerCamelCase : str = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head __lowerCamelCase : Optional[Any] = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case_ ( self , __a = None , __a = None , __a = None , __a = None , ): __lowerCamelCase : Any = return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase : Tuple = self.poolformer( __a , output_hidden_states=__a , return_dict=__a , ) __lowerCamelCase : int = outputs[0] __lowerCamelCase : Optional[int] = self.classifier(self.norm(__a ).mean([-2, -1] ) ) __lowerCamelCase : Union[str, Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __lowerCamelCase : Any = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __lowerCamelCase : Any = 'single_label_classification' else: __lowerCamelCase : Optional[Any] = 'multi_label_classification' if self.config.problem_type == "regression": __lowerCamelCase : int = MSELoss() if self.num_labels == 1: __lowerCamelCase : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze() ) else: __lowerCamelCase : Optional[Any] = loss_fct(__a , __a ) elif self.config.problem_type == "single_label_classification": __lowerCamelCase : Tuple = CrossEntropyLoss() __lowerCamelCase : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __lowerCamelCase : List[Any] = BCEWithLogitsLoss() __lowerCamelCase : Optional[Any] = loss_fct(__a , __a ) if not return_dict: __lowerCamelCase : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__a , logits=__a , hidden_states=outputs.hidden_states )
263
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer _lowercase : Tuple =["gpt2"] _lowercase : Optional[Any] ="gpt2" if is_tf_available(): class snake_case__ (tf.Module ): """simple docstring""" def __init__( self , __lowercase ) -> Optional[int]: """simple docstring""" super().__init__() a__ : List[str] = tokenizer a__ : Optional[int] = AutoConfig.from_pretrained(__UpperCAmelCase ) a__ : Optional[Any] = TFGPTaLMHeadModel.from_config(__UpperCAmelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Optional[Any]: """simple docstring""" a__ : str = self.tokenizer(__UpperCAmelCase ) a__ : int = tokenized['input_ids'].to_tensor() a__ : Optional[Any] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) a__ : int = self.model(input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase )['logits'] return outputs @require_tf @require_keras_nlp class snake_case__ (unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" super().setUp() a__ : List[str] = [GPTaTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] a__ : Union[str, Any] = [TFGPTaTokenizer.from_pretrained(__UpperCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) a__ : int = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] a__ : str = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: a__ : int = tokenizer([test_inputs] , return_tensors="""tf""" ) a__ : Optional[int] = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors a__ : Optional[int] = python_outputs[key].numpy() a__ : List[str] = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(__UpperCAmelCase , tf.intaa ) == tf_outputs_values ) ) @slow def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: a__ : Optional[int] = tf.function(__UpperCAmelCase ) for test_inputs in self.test_sentences: a__ : Any = tf.constant(__UpperCAmelCase ) a__ : int = compiled_tokenizer(__UpperCAmelCase ) a__ : Any = tf_tokenizer(__UpperCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: a__ : List[str] = ModelToSave(tokenizer=__UpperCAmelCase ) a__ : Union[str, Any] = tf.convert_to_tensor([self.test_sentences[0]] ) a__ : List[str] = model.serving(__UpperCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: a__ : Union[str, Any] = Path(__UpperCAmelCase ) / 'saved.model' tf.saved_model.save(__UpperCAmelCase , __UpperCAmelCase , signatures={"""serving_default""": model.serving} ) a__ : str = tf.saved_model.load(__UpperCAmelCase ) a__ : Dict = loaded_model.signatures['serving_default'](__UpperCAmelCase )['output_0'] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: a__ : List[str] = tf.convert_to_tensor([self.test_sentences[0]] ) a__ : List[str] = tf_tokenizer(__UpperCAmelCase ) # Build model with some sample inputs a__ : Union[str, Any] = tf_tokenizer.get_config() a__ : Tuple = TFGPTaTokenizer.from_config(__UpperCAmelCase ) a__ : Tuple = model_from_config(__UpperCAmelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run a__ : int = 1_2_3_1_2_3 for max_length in [3, 5, 1_0_2_4]: a__ : Tuple = tf.convert_to_tensor([self.test_sentences[0]] ) a__ : List[str] = tf_tokenizer(__UpperCAmelCase , max_length=__UpperCAmelCase ) a__ : Union[str, Any] = out['input_ids'].numpy().shape[1] assert out_length == max_length
136
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __magic_name__ :int = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def snake_case ( self , __UpperCAmelCase=0 ): '''simple docstring''' lowerCAmelCase__ :List[str] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(__UpperCAmelCase ) ) lowerCAmelCase__ :List[str] = np.random.RandomState(__UpperCAmelCase ) lowerCAmelCase__ :List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Union[str, Any] = self.get_dummy_inputs() lowerCAmelCase__ :Optional[int] = pipe(**__UpperCAmelCase ).images lowerCAmelCase__ :Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) lowerCAmelCase__ :Union[str, Any] = np.array([0.6_96_43, 0.5_84_84, 0.5_03_14, 0.5_87_60, 0.5_53_68, 0.5_96_43, 0.5_15_29, 0.4_12_17, 0.4_90_87] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCAmelCase__ :str = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = self.get_dummy_inputs() lowerCAmelCase__ :Optional[Any] = pipe(**__UpperCAmelCase ).images lowerCAmelCase__ :Any = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowerCAmelCase__ :int = np.array([0.6_17_37, 0.5_46_42, 0.5_31_83, 0.5_44_65, 0.5_27_42, 0.6_05_25, 0.4_99_69, 0.4_06_55, 0.4_81_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCAmelCase__ :List[str] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) # warmup pass to apply optimizations lowerCAmelCase__ :List[Any] = pipe(**self.get_dummy_inputs() ) lowerCAmelCase__ :Tuple = self.get_dummy_inputs() lowerCAmelCase__ :int = pipe(**__UpperCAmelCase ).images lowerCAmelCase__ :Any = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowerCAmelCase__ :Union[str, Any] = np.array([0.5_27_61, 0.5_99_77, 0.4_90_33, 0.4_96_19, 0.5_42_82, 0.5_03_11, 0.4_76_00, 0.4_09_18, 0.4_52_03] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCAmelCase__ :Dict = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Any = self.get_dummy_inputs() lowerCAmelCase__ :List[str] = pipe(**__UpperCAmelCase ).images lowerCAmelCase__ :List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowerCAmelCase__ :Optional[int] = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCAmelCase__ :str = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Tuple = self.get_dummy_inputs() lowerCAmelCase__ :Any = pipe(**__UpperCAmelCase ).images lowerCAmelCase__ :Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowerCAmelCase__ :int = np.array([0.5_29_11, 0.6_00_04, 0.4_92_29, 0.4_98_05, 0.5_45_02, 0.5_06_80, 0.4_77_77, 0.4_10_28, 0.4_53_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :List[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) lowerCAmelCase__ :List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :Any = self.get_dummy_inputs() lowerCAmelCase__ :List[Any] = pipe(**__UpperCAmelCase ).images lowerCAmelCase__ :int = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) lowerCAmelCase__ :Optional[Any] = np.array([0.6_53_31, 0.5_82_77, 0.4_82_04, 0.5_60_59, 0.5_36_65, 0.5_62_35, 0.5_09_69, 0.4_00_09, 0.4_65_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @property def snake_case ( self ): '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = ort.SessionOptions() lowerCAmelCase__ :Optional[int] = False return options def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) lowerCAmelCase__ :Any = init_image.resize((7_6_8, 5_1_2) ) # using the PNDM scheduler by default lowerCAmelCase__ :Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = 'A fantasy landscape, trending on artstation' lowerCAmelCase__ :Optional[Any] = np.random.RandomState(0 ) lowerCAmelCase__ :List[str] = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=__UpperCAmelCase , output_type='np' , ) lowerCAmelCase__ :Any = output.images lowerCAmelCase__ :List[str] = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) lowerCAmelCase__ :List[Any] = np.array([0.49_09, 0.50_59, 0.53_72, 0.46_23, 0.48_76, 0.50_49, 0.48_20, 0.49_56, 0.50_19] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) lowerCAmelCase__ :Optional[Any] = init_image.resize((7_6_8, 5_1_2) ) lowerCAmelCase__ :List[Any] = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) lowerCAmelCase__ :Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = 'A fantasy landscape, trending on artstation' lowerCAmelCase__ :List[Any] = np.random.RandomState(0 ) lowerCAmelCase__ :List[Any] = pipe( prompt=__UpperCAmelCase , image=__UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=__UpperCAmelCase , output_type='np' , ) lowerCAmelCase__ :Optional[Any] = output.images lowerCAmelCase__ :int = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) lowerCAmelCase__ :List[Any] = np.array([0.80_43, 0.9_26, 0.95_81, 0.81_19, 0.89_54, 0.9_13, 0.72_09, 0.74_63, 0.74_31] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
93
0
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def UpperCamelCase_( ) -> None: print('Making key files...' ) make_key_files('rsa' , 1024 ) print('Key files generation successful.' ) def UpperCamelCase_( lowerCamelCase_ ) -> tuple[tuple[int, int], tuple[int, int]]: print('Generating prime p...' ) _lowercase : List[Any] = rabinMiller.generate_large_prime(lowerCamelCase_ ) print('Generating prime q...' ) _lowercase : int = rabinMiller.generate_large_prime(lowerCamelCase_ ) _lowercase : Tuple = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: _lowercase : Tuple = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(lowerCamelCase_ , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) _lowercase : List[Any] = cryptoMath.find_mod_inverse(lowerCamelCase_ , (p - 1) * (q - 1) ) _lowercase : Optional[Any] = (n, e) _lowercase : List[Any] = (n, d) return (public_key, private_key) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> None: if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ): print('\nWARNING:' ) print( F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' 'Use a different name or delete these files and re-run this program.' ) sys.exit() _lowercase , _lowercase : List[str] = generate_key(lowerCamelCase_ ) print(F'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(F'''{name}_pubkey.txt''' , 'w' ) as out_file: out_file.write(F'''{key_size},{public_key[0]},{public_key[1]}''' ) print(F'''Writing private key to file {name}_privkey.txt...''' ) with open(F'''{name}_privkey.txt''' , 'w' ) as out_file: out_file.write(F'''{key_size},{private_key[0]},{private_key[1]}''' ) if __name__ == "__main__": main()
354
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys SCREAMING_SNAKE_CASE : List[Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") SCREAMING_SNAKE_CASE : Optional[int] = ( subprocess.check_output(F"git diff --diff-filter=d --name-only {fork_point_sha}".split()).decode("utf-8").split() ) SCREAMING_SNAKE_CASE : Any = "|".join(sys.argv[1:]) SCREAMING_SNAKE_CASE : Union[str, Any] = re.compile(rF"^({joined_dirs}).*?\.py$") SCREAMING_SNAKE_CASE : List[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
354
1
def __lowerCAmelCase ( ): for n in range(1 , 100_0000 ): yield n * (n + 1) // 2 def __lowerCAmelCase ( __snake_case ): __lowerCAmelCase = 1 __lowerCAmelCase = 2 while i * i <= n: __lowerCAmelCase = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def __lowerCAmelCase ( ): return next(i for i in triangle_number_generator() if count_divisors(__snake_case ) > 500 ) if __name__ == "__main__": print(solution())
367
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _UpperCamelCase (unittest.TestCase ): def __UpperCAmelCase ( self )-> List[Any]: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __lowerCAmelCase = [[1, 2, 4], [1, 2, 3, 4]] __lowerCAmelCase = DisjunctiveConstraint(__UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids , __UpperCamelCase ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __UpperCAmelCase ( self )-> Tuple: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __lowerCAmelCase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(__UpperCamelCase ) # fails here def __UpperCAmelCase ( self )-> List[Any]: __lowerCAmelCase = [[1, 2, 3], [1, 2, 4]] __lowerCAmelCase = DisjunctiveConstraint(__UpperCamelCase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) __lowerCAmelCase = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(3 ) __lowerCAmelCase = stepped is True and completed is True and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __UpperCAmelCase ( self )-> int: __lowerCAmelCase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __lowerCAmelCase = DisjunctiveConstraint(__UpperCamelCase ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
367
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __lowerCamelCase : Optional[Any] = {"""configuration_deit""": ["""DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DeiTConfig""", """DeiTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = ["""DeiTFeatureExtractor"""] __lowerCamelCase : Union[str, Any] = ["""DeiTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ """DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DeiTForImageClassification""", """DeiTForImageClassificationWithTeacher""", """DeiTForMaskedImageModeling""", """DeiTModel""", """DeiTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Any = [ """TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDeiTForImageClassification""", """TFDeiTForImageClassificationWithTeacher""", """TFDeiTForMaskedImageModeling""", """TFDeiTModel""", """TFDeiTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
448
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _lowercase ( unittest.TestCase ): def __init__( self , a , a=1_3 , a=7 , a=True , a=True , a=True , a=True , a=9_9 , a=3_2 , a=5 , a=4 , a=3_7 , a="gelu" , a=0.1 , a=0.1 , a=5_1_2 , a=1_6 , a=2 , a=0.02 , a=4 , ): snake_case__ : Any =parent snake_case__ : Dict =batch_size snake_case__ : List[Any] =seq_length snake_case__ : str =is_training snake_case__ : Union[str, Any] =use_attention_mask snake_case__ : str =use_token_type_ids snake_case__ : int =use_labels snake_case__ : Tuple =vocab_size snake_case__ : List[str] =hidden_size snake_case__ : Dict =num_hidden_layers snake_case__ : Optional[Any] =num_attention_heads snake_case__ : List[str] =intermediate_size snake_case__ : str =hidden_act snake_case__ : Union[str, Any] =hidden_dropout_prob snake_case__ : Tuple =attention_probs_dropout_prob snake_case__ : Tuple =max_position_embeddings snake_case__ : str =type_vocab_size snake_case__ : Optional[Any] =type_sequence_label_size snake_case__ : str =initializer_range snake_case__ : List[Any] =num_choices def lowercase__ ( self ): snake_case__ : Union[str, Any] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Tuple =None if self.use_attention_mask: snake_case__ : Union[str, Any] =random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] =None if self.use_token_type_ids: snake_case__ : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : Tuple =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self ): snake_case__ : Optional[int] =self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[Any] =config_and_inputs snake_case__ : Dict ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _lowercase ( _A , unittest.TestCase ): _a : str = True _a : Optional[Any] = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowercase__ ( self ): snake_case__ : Optional[Any] =FlaxRoFormerModelTester(self ) @slow def lowercase__ ( self ): for model_class_name in self.all_model_classes: snake_case__ : Tuple =model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=a ) snake_case__ : List[Any] =model(np.ones((1, 1) ) ) self.assertIsNotNone(a ) @require_flax class _lowercase ( unittest.TestCase ): @slow def lowercase__ ( self ): snake_case__ : Optional[int] =FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) snake_case__ : Tuple =jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case__ : str =model(a )[0] snake_case__ : List[str] =5_0_0_0_0 snake_case__ : str =(1, 6, vocab_size) self.assertEqual(output.shape , a ) snake_case__ : Optional[int] =jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , a , atol=1e-4 ) )
448
1
'''simple docstring''' import dataclasses import json import warnings from dataclasses import dataclass, field from time import time from typing import List from ..utils import logging _UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) def UpperCamelCase ( lowercase_ : Optional[int]=None , lowercase_ : Union[str, Any]=None ) -> Dict: '''simple docstring''' return field(default_factory=lambda: default , metadata=lowercase_ ) @dataclass class __magic_name__ : UpperCamelCase__ = list_field( default=[] , metadata={ 'help': ( 'Model checkpoints to be provided to the AutoModel classes. Leave blank to benchmark the base version' ' of all available models' ) } , ) UpperCamelCase__ = list_field( default=[8] , metadata={'help': 'List of batch sizes for which memory and time performance will be evaluated'} ) UpperCamelCase__ = list_field( default=[8, 32, 1_28, 5_12] , metadata={'help': 'List of sequence lengths for which memory and time performance will be evaluated'} , ) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to benchmark inference of model. Inference can be disabled via --no-inference.'} , ) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to run on available cuda devices. Cuda can be disabled via --no-cuda.'} , ) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to run on available tpu devices. TPU can be disabled via --no-tpu.'} ) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Use FP16 to accelerate inference.'} ) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Benchmark training of model'} ) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Verbose memory tracing'} ) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to perform speed measurements. Speed measurements can be disabled via --no-speed.'} , ) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': 'Whether to perform memory measurements. Memory measurements can be disabled via --no-memory' } , ) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Trace memory line by line'} ) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Save result to a CSV file'} ) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Save all print statements in a log file'} ) UpperCamelCase__ = field(default=__SCREAMING_SNAKE_CASE , metadata={'help': 'Whether to print environment information'} ) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'Whether to use multiprocessing for memory and speed measurement. It is highly recommended to use' ' multiprocessing for accurate CPU and GPU memory measurements. This option should only be disabled' ' for debugging / testing and on TPU.' ) } , ) UpperCamelCase__ = field( default=f"""inference_time_{round(time() )}.csv""" , metadata={'help': 'CSV filename used if saving time results to csv.'} , ) UpperCamelCase__ = field( default=f"""inference_memory_{round(time() )}.csv""" , metadata={'help': 'CSV filename used if saving memory results to csv.'} , ) UpperCamelCase__ = field( default=f"""train_time_{round(time() )}.csv""" , metadata={'help': 'CSV filename used if saving time results to csv for training.'} , ) UpperCamelCase__ = field( default=f"""train_memory_{round(time() )}.csv""" , metadata={'help': 'CSV filename used if saving memory results to csv for training.'} , ) UpperCamelCase__ = field( default=f"""env_info_{round(time() )}.csv""" , metadata={'help': 'CSV filename used if saving environment information.'} , ) UpperCamelCase__ = field( default=f"""log_{round(time() )}.csv""" , metadata={'help': 'Log filename used if print statements are saved in log.'} , ) UpperCamelCase__ = field(default=3 , metadata={'help': 'Times an experiment will be run.'} ) UpperCamelCase__ = field( default=__SCREAMING_SNAKE_CASE , metadata={ 'help': ( 'Instead of loading the model as defined in `config.architectures` if exists, just load the pretrain' ' model weights.' ) } , ) def _A( self ): warnings.warn( f'The class {self.__class__} is deprecated. Hugging Face Benchmarking utils' ''' are deprecated in general and it is advised to use external Benchmarking libraries ''' ''' to benchmark Transformer models.''' , snake_case_ , ) def _A( self ): return json.dumps(dataclasses.asdict(self ) , indent=2 ) @property def _A( self ): if len(self.models ) <= 0: raise ValueError( '''Please make sure you provide at least one model name / model identifier, *e.g.* `--models''' ''' bert-base-cased` or `args.models = [\'bert-base-cased\'].''' ) return self.models @property def _A( self ): if not self.multi_process: return False elif self.is_tpu: logger.info('''Multiprocessing is currently not possible on TPU.''' ) return False else: return True
72
import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" lowerCamelCase__ : Tuple = np.array([[1, item, train_mtch[i]] for i, item in enumerate(UpperCAmelCase )] ) lowerCamelCase__ : str = np.array(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , UpperCAmelCase ) ) , x.transpose() ) , UpperCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" lowerCamelCase__ : Optional[int] = (1, 2, 1) lowerCamelCase__ : List[str] = (1, 1, 0, 7) lowerCamelCase__ : Union[str, Any] = SARIMAX( UpperCAmelCase , exog=UpperCAmelCase , order=UpperCAmelCase , seasonal_order=UpperCAmelCase ) lowerCamelCase__ : int = model.fit(disp=UpperCAmelCase , maxiter=600 , method='''nm''' ) lowerCamelCase__ : Optional[int] = model_fit.predict(1 , len(UpperCAmelCase ) , exog=[test_match] ) return result[0] def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> float: """simple docstring""" lowerCamelCase__ : Dict = SVR(kernel='''rbf''' , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Tuple = regressor.predict(UpperCAmelCase ) return y_pred[0] def _a ( UpperCAmelCase ) -> float: """simple docstring""" train_user.sort() lowerCamelCase__ : Any = np.percentile(UpperCAmelCase , 25 ) lowerCamelCase__ : Any = np.percentile(UpperCAmelCase , 75 ) lowerCamelCase__ : Optional[Any] = qa - qa lowerCamelCase__ : Any = qa - (iqr * 0.1) return low_lim def _a ( UpperCAmelCase , UpperCAmelCase ) -> bool: """simple docstring""" lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Any = 0 for i in list_vote: if i > actual_result: lowerCamelCase__ : List[str] = not_safe + 1 else: if abs(abs(UpperCAmelCase ) - abs(UpperCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) _A : Dict = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] _A : Dict = pd.DataFrame( data_input, columns=['total_user', 'total_even', 'days'] ) _A : Optional[int] = Normalizer().fit_transform(data_input_df.values) # split data _A : str = normalize_df[:, 2].tolist() _A : Union[str, Any] = normalize_df[:, 0].tolist() _A : Union[str, Any] = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) _A : int = normalize_df[:, [1, 2]].tolist() _A : str = x[: len(x) - 1] _A : Optional[Any] = x[len(x) - 1 :] # for linear regression & sarimax _A : Any = total_date[: len(total_date) - 1] _A : List[str] = total_user[: len(total_user) - 1] _A : List[str] = total_match[: len(total_match) - 1] _A : Any = total_date[len(total_date) - 1 :] _A : Optional[int] = total_user[len(total_user) - 1 :] _A : str = total_match[len(total_match) - 1 :] # voting system with forecasting _A : Any = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data _A : Union[str, Any] = '' if data_safety_checker(res_vote, tst_user) else 'not ' print('Today\'s data is {not_str}safe.')
315
0
"""simple docstring""" import datasets SCREAMING_SNAKE_CASE__ : Optional[int] = "\\n@InProceedings{conneau2018xnli,\n author = \"Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin\",\n title = \"XNLI: Evaluating Cross-lingual Sentence Representations\",\n booktitle = \"Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing\",\n year = \"2018\",\n publisher = \"Association for Computational Linguistics\",\n location = \"Brussels, Belgium\",\n}\n" SCREAMING_SNAKE_CASE__ : str = "\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n" SCREAMING_SNAKE_CASE__ : Any = "\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n 'accuracy': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric(\"xnli\")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n" def A_ ( UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): """simple docstring""" def lowercase_ ( self ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'sts-b' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def lowercase_ ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: return {"accuracy": simple_accuracy(__UpperCAmelCase , __UpperCAmelCase )}
509
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE__ : int = get_tests_dir("fixtures/test_sentencepiece.model") SCREAMING_SNAKE_CASE__ : Optional[int] = get_tests_dir("fixtures/test_sentencepiece_bpe.model") SCREAMING_SNAKE_CASE__ : Tuple = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class A_ ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowercase : str = CamembertTokenizer lowercase : str = CamembertTokenizerFast lowercase : List[str] = True lowercase : Tuple = True def lowercase_ ( self ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing a : List[str] = CamembertTokenizer(__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self ) -> int: a : Dict = '<pad>' a : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase ) def lowercase_ ( self ) -> List[str]: a : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>NOTUSED' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(__UpperCAmelCase ) , 10_04 ) def lowercase_ ( self ) -> Optional[int]: self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def lowercase_ ( self ) -> int: a : List[str] = CamembertTokenizer(__UpperCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) a : str = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) a : Tuple = 'I was born in 92000, and this is falsé.' a : Union[str, Any] = tokenizer.encode(__UpperCAmelCase ) a : Union[str, Any] = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a : Dict = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) a : Tuple = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) a : Tuple = tokenizer.convert_ids_to_tokens(__UpperCAmelCase ) a : Tuple = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ ( self ) -> str: if not self.test_rust_tokenizer: return a : Tuple = self.get_tokenizer() a : List[str] = self.get_rust_tokenizer() a : Optional[Any] = 'I was born in 92000, and this is falsé.' a : Optional[int] = tokenizer.tokenize(__UpperCAmelCase ) a : str = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a : Optional[int] = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) a : Tuple = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a : str = self.get_rust_tokenizer() a : List[Any] = tokenizer.encode(__UpperCAmelCase ) a : List[Any] = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @slow def lowercase_ ( self ) -> List[str]: # fmt: off a : Optional[int] = {'input_ids': [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. a : Any = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=__UpperCAmelCase , model_name='camembert-base' , revision='3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf' , sequences=__UpperCAmelCase , )
509
1
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration lowercase_ : int = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def A__ ( snake_case_ : List[Any] ): SCREAMING_SNAKE_CASE__: Dict= ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) lowercase_ : Tuple = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def A__ ( snake_case_ : Optional[int] ): SCREAMING_SNAKE_CASE__: Optional[int]= list(s_dict.keys() ) for key in keys: SCREAMING_SNAKE_CASE__: List[Any]= key for k, v in WHISPER_MAPPING.items(): if k in key: SCREAMING_SNAKE_CASE__: int= new_key.replace(snake_case_ , snake_case_ ) print(F'{key} -> {new_key}' ) SCREAMING_SNAKE_CASE__: Union[str, Any]= s_dict.pop(snake_case_ ) return s_dict def A__ ( snake_case_ : Tuple ): SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: str= emb.weight.shape SCREAMING_SNAKE_CASE__: str= nn.Linear(snake_case_ , snake_case_ , bias=snake_case_ ) SCREAMING_SNAKE_CASE__: Any= emb.weight.data return lin_layer def A__ ( snake_case_ : str , snake_case_ : str ): os.makedirs(snake_case_ , exist_ok=snake_case_ ) SCREAMING_SNAKE_CASE__: Tuple= os.path.basename(snake_case_ ) SCREAMING_SNAKE_CASE__: Optional[Any]= url.split('''/''' )[-2] SCREAMING_SNAKE_CASE__: List[Any]= os.path.join(snake_case_ , snake_case_ ) if os.path.exists(snake_case_ ) and not os.path.isfile(snake_case_ ): raise RuntimeError(F'{download_target} exists and is not a regular file' ) if os.path.isfile(snake_case_ ): SCREAMING_SNAKE_CASE__: Tuple= open(snake_case_ , '''rb''' ).read() if hashlib.shaaaa(snake_case_ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'{download_target} exists, but the SHA256 checksum does not match; re-downloading the file' ) with urllib.request.urlopen(snake_case_ ) as source, open(snake_case_ , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=80 , unit='''iB''' , unit_scale=snake_case_ , unit_divisor=1_024 ) as loop: while True: SCREAMING_SNAKE_CASE__: List[str]= source.read(8_192 ) if not buffer: break output.write(snake_case_ ) loop.update(len(snake_case_ ) ) SCREAMING_SNAKE_CASE__: Optional[Any]= open(snake_case_ , '''rb''' ).read() if hashlib.shaaaa(snake_case_ ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def A__ ( snake_case_ : Optional[Any] , snake_case_ : int ): if ".pt" not in checkpoint_path: SCREAMING_SNAKE_CASE__: Dict= _download(_MODELS[checkpoint_path] ) else: SCREAMING_SNAKE_CASE__: Tuple= torch.load(snake_case_ , map_location='''cpu''' ) SCREAMING_SNAKE_CASE__: str= original_checkpoint['''dims'''] SCREAMING_SNAKE_CASE__: Optional[Any]= original_checkpoint['''model_state_dict'''] SCREAMING_SNAKE_CASE__: Any= state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(snake_case_ ) rename_keys(snake_case_ ) SCREAMING_SNAKE_CASE__: Optional[Any]= True SCREAMING_SNAKE_CASE__: Optional[int]= state_dict['''decoder.layers.0.fc1.weight'''].shape[0] SCREAMING_SNAKE_CASE__: Dict= WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=snake_case_ , decoder_ffn_dim=snake_case_ , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) SCREAMING_SNAKE_CASE__: str= WhisperForConditionalGeneration(snake_case_ ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Dict= model.model.load_state_dict(snake_case_ , strict=snake_case_ ) if len(snake_case_ ) > 0 and not set(snake_case_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F' but all the following weights are missing {missing}' ) if tie_embeds: SCREAMING_SNAKE_CASE__: List[Any]= make_linear_from_emb(model.model.decoder.embed_tokens ) else: SCREAMING_SNAKE_CASE__: str= proj_out_weights model.save_pretrained(snake_case_ ) if __name__ == "__main__": lowercase_ : int = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowercase_ : int = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
64
from collections import OrderedDict from ...utils import logging from .auto_factory import _BaseAutoModelClass, _LazyAutoMapping, auto_class_update from .configuration_auto import CONFIG_MAPPING_NAMES __UpperCamelCase : List[str] = logging.get_logger(__name__) __UpperCamelCase : List[str] = OrderedDict( [ # Base model mapping ("""albert""", """FlaxAlbertModel"""), ("""bart""", """FlaxBartModel"""), ("""beit""", """FlaxBeitModel"""), ("""bert""", """FlaxBertModel"""), ("""big_bird""", """FlaxBigBirdModel"""), ("""blenderbot""", """FlaxBlenderbotModel"""), ("""blenderbot-small""", """FlaxBlenderbotSmallModel"""), ("""clip""", """FlaxCLIPModel"""), ("""distilbert""", """FlaxDistilBertModel"""), ("""electra""", """FlaxElectraModel"""), ("""gpt-sw3""", """FlaxGPT2Model"""), ("""gpt2""", """FlaxGPT2Model"""), ("""gpt_neo""", """FlaxGPTNeoModel"""), ("""gptj""", """FlaxGPTJModel"""), ("""longt5""", """FlaxLongT5Model"""), ("""marian""", """FlaxMarianModel"""), ("""mbart""", """FlaxMBartModel"""), ("""mt5""", """FlaxMT5Model"""), ("""opt""", """FlaxOPTModel"""), ("""pegasus""", """FlaxPegasusModel"""), ("""regnet""", """FlaxRegNetModel"""), ("""resnet""", """FlaxResNetModel"""), ("""roberta""", """FlaxRobertaModel"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormModel"""), ("""roformer""", """FlaxRoFormerModel"""), ("""t5""", """FlaxT5Model"""), ("""vision-text-dual-encoder""", """FlaxVisionTextDualEncoderModel"""), ("""vit""", """FlaxViTModel"""), ("""wav2vec2""", """FlaxWav2Vec2Model"""), ("""whisper""", """FlaxWhisperModel"""), ("""xglm""", """FlaxXGLMModel"""), ("""xlm-roberta""", """FlaxXLMRobertaModel"""), ] ) __UpperCamelCase : Tuple = OrderedDict( [ # Model for pre-training mapping ("""albert""", """FlaxAlbertForPreTraining"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForPreTraining"""), ("""big_bird""", """FlaxBigBirdForPreTraining"""), ("""electra""", """FlaxElectraForPreTraining"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ("""wav2vec2""", """FlaxWav2Vec2ForPreTraining"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) __UpperCamelCase : Optional[Any] = OrderedDict( [ # Model for Masked LM mapping ("""albert""", """FlaxAlbertForMaskedLM"""), ("""bart""", """FlaxBartForConditionalGeneration"""), ("""bert""", """FlaxBertForMaskedLM"""), ("""big_bird""", """FlaxBigBirdForMaskedLM"""), ("""distilbert""", """FlaxDistilBertForMaskedLM"""), ("""electra""", """FlaxElectraForMaskedLM"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""roberta""", """FlaxRobertaForMaskedLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMaskedLM"""), ("""roformer""", """FlaxRoFormerForMaskedLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForMaskedLM"""), ] ) __UpperCamelCase : Optional[Any] = OrderedDict( [ # Model for Seq2Seq Causal LM mapping ("""bart""", """FlaxBartForConditionalGeneration"""), ("""blenderbot""", """FlaxBlenderbotForConditionalGeneration"""), ("""blenderbot-small""", """FlaxBlenderbotSmallForConditionalGeneration"""), ("""encoder-decoder""", """FlaxEncoderDecoderModel"""), ("""longt5""", """FlaxLongT5ForConditionalGeneration"""), ("""marian""", """FlaxMarianMTModel"""), ("""mbart""", """FlaxMBartForConditionalGeneration"""), ("""mt5""", """FlaxMT5ForConditionalGeneration"""), ("""pegasus""", """FlaxPegasusForConditionalGeneration"""), ("""t5""", """FlaxT5ForConditionalGeneration"""), ] ) __UpperCamelCase : int = OrderedDict( [ # Model for Image-classsification ("""beit""", """FlaxBeitForImageClassification"""), ("""regnet""", """FlaxRegNetForImageClassification"""), ("""resnet""", """FlaxResNetForImageClassification"""), ("""vit""", """FlaxViTForImageClassification"""), ] ) __UpperCamelCase : List[Any] = OrderedDict( [ ("""vision-encoder-decoder""", """FlaxVisionEncoderDecoderModel"""), ] ) __UpperCamelCase : List[Any] = OrderedDict( [ # Model for Causal LM mapping ("""bart""", """FlaxBartForCausalLM"""), ("""bert""", """FlaxBertForCausalLM"""), ("""big_bird""", """FlaxBigBirdForCausalLM"""), ("""electra""", """FlaxElectraForCausalLM"""), ("""gpt-sw3""", """FlaxGPT2LMHeadModel"""), ("""gpt2""", """FlaxGPT2LMHeadModel"""), ("""gpt_neo""", """FlaxGPTNeoForCausalLM"""), ("""gptj""", """FlaxGPTJForCausalLM"""), ("""opt""", """FlaxOPTForCausalLM"""), ("""roberta""", """FlaxRobertaForCausalLM"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForCausalLM"""), ("""xglm""", """FlaxXGLMForCausalLM"""), ("""xlm-roberta""", """FlaxXLMRobertaForCausalLM"""), ] ) __UpperCamelCase : List[str] = OrderedDict( [ # Model for Sequence Classification mapping ("""albert""", """FlaxAlbertForSequenceClassification"""), ("""bart""", """FlaxBartForSequenceClassification"""), ("""bert""", """FlaxBertForSequenceClassification"""), ("""big_bird""", """FlaxBigBirdForSequenceClassification"""), ("""distilbert""", """FlaxDistilBertForSequenceClassification"""), ("""electra""", """FlaxElectraForSequenceClassification"""), ("""mbart""", """FlaxMBartForSequenceClassification"""), ("""roberta""", """FlaxRobertaForSequenceClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForSequenceClassification"""), ("""roformer""", """FlaxRoFormerForSequenceClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForSequenceClassification"""), ] ) __UpperCamelCase : List[str] = OrderedDict( [ # Model for Question Answering mapping ("""albert""", """FlaxAlbertForQuestionAnswering"""), ("""bart""", """FlaxBartForQuestionAnswering"""), ("""bert""", """FlaxBertForQuestionAnswering"""), ("""big_bird""", """FlaxBigBirdForQuestionAnswering"""), ("""distilbert""", """FlaxDistilBertForQuestionAnswering"""), ("""electra""", """FlaxElectraForQuestionAnswering"""), ("""mbart""", """FlaxMBartForQuestionAnswering"""), ("""roberta""", """FlaxRobertaForQuestionAnswering"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForQuestionAnswering"""), ("""roformer""", """FlaxRoFormerForQuestionAnswering"""), ("""xlm-roberta""", """FlaxXLMRobertaForQuestionAnswering"""), ] ) __UpperCamelCase : int = OrderedDict( [ # Model for Token Classification mapping ("""albert""", """FlaxAlbertForTokenClassification"""), ("""bert""", """FlaxBertForTokenClassification"""), ("""big_bird""", """FlaxBigBirdForTokenClassification"""), ("""distilbert""", """FlaxDistilBertForTokenClassification"""), ("""electra""", """FlaxElectraForTokenClassification"""), ("""roberta""", """FlaxRobertaForTokenClassification"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForTokenClassification"""), ("""roformer""", """FlaxRoFormerForTokenClassification"""), ("""xlm-roberta""", """FlaxXLMRobertaForTokenClassification"""), ] ) __UpperCamelCase : Dict = OrderedDict( [ # Model for Multiple Choice mapping ("""albert""", """FlaxAlbertForMultipleChoice"""), ("""bert""", """FlaxBertForMultipleChoice"""), ("""big_bird""", """FlaxBigBirdForMultipleChoice"""), ("""distilbert""", """FlaxDistilBertForMultipleChoice"""), ("""electra""", """FlaxElectraForMultipleChoice"""), ("""roberta""", """FlaxRobertaForMultipleChoice"""), ("""roberta-prelayernorm""", """FlaxRobertaPreLayerNormForMultipleChoice"""), ("""roformer""", """FlaxRoFormerForMultipleChoice"""), ("""xlm-roberta""", """FlaxXLMRobertaForMultipleChoice"""), ] ) __UpperCamelCase : str = OrderedDict( [ ("""bert""", """FlaxBertForNextSentencePrediction"""), ] ) __UpperCamelCase : Optional[int] = OrderedDict( [ ("""speech-encoder-decoder""", """FlaxSpeechEncoderDecoderModel"""), ("""whisper""", """FlaxWhisperForConditionalGeneration"""), ] ) __UpperCamelCase : Dict = OrderedDict( [ ("""whisper""", """FlaxWhisperForAudioClassification"""), ] ) __UpperCamelCase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_MAPPING_NAMES) __UpperCamelCase : str = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_PRETRAINING_MAPPING_NAMES) __UpperCamelCase : Optional[int] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MASKED_LM_MAPPING_NAMES) __UpperCamelCase : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES ) __UpperCamelCase : Dict = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES ) __UpperCamelCase : int = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING_NAMES) __UpperCamelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_CAUSAL_LM_MAPPING_NAMES) __UpperCamelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES ) __UpperCamelCase : Any = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES ) __UpperCamelCase : Union[str, Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES ) __UpperCamelCase : Tuple = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES ) __UpperCamelCase : str = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES ) __UpperCamelCase : List[str] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES ) __UpperCamelCase : Optional[Any] = _LazyAutoMapping( CONFIG_MAPPING_NAMES, FLAX_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES ) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Tuple = FLAX_MODEL_MAPPING __UpperCamelCase : Tuple = auto_class_update(FlaxAutoModel) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Union[str, Any] = FLAX_MODEL_FOR_PRETRAINING_MAPPING __UpperCamelCase : List[Any] = auto_class_update(FlaxAutoModelForPreTraining, head_doc="""pretraining""") class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Dict = FLAX_MODEL_FOR_CAUSAL_LM_MAPPING __UpperCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForCausalLM, head_doc="""causal language modeling""") class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :List[Any] = FLAX_MODEL_FOR_MASKED_LM_MAPPING __UpperCamelCase : Dict = auto_class_update(FlaxAutoModelForMaskedLM, head_doc="""masked language modeling""") class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Optional[Any] = FLAX_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING __UpperCamelCase : Optional[Any] = auto_class_update( FlaxAutoModelForSeqaSeqLM, head_doc="""sequence-to-sequence language modeling""", checkpoint_for_example="""t5-base""" ) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Optional[Any] = FLAX_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __UpperCamelCase : Optional[int] = auto_class_update( FlaxAutoModelForSequenceClassification, head_doc="""sequence classification""" ) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Optional[Any] = FLAX_MODEL_FOR_QUESTION_ANSWERING_MAPPING __UpperCamelCase : Union[str, Any] = auto_class_update(FlaxAutoModelForQuestionAnswering, head_doc="""question answering""") class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :List[Any] = FLAX_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __UpperCamelCase : Optional[int] = auto_class_update( FlaxAutoModelForTokenClassification, head_doc="""token classification""" ) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Optional[int] = FLAX_MODEL_FOR_MULTIPLE_CHOICE_MAPPING __UpperCamelCase : int = auto_class_update(FlaxAutoModelForMultipleChoice, head_doc="""multiple choice""") class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :str = FLAX_MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING __UpperCamelCase : int = auto_class_update( FlaxAutoModelForNextSentencePrediction, head_doc="""next sentence prediction""" ) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Dict = FLAX_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING __UpperCamelCase : Optional[Any] = auto_class_update( FlaxAutoModelForImageClassification, head_doc="""image classification""" ) class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Dict = FLAX_MODEL_FOR_VISION_2_SEQ_MAPPING __UpperCamelCase : Tuple = auto_class_update(FlaxAutoModelForVisionaSeq, head_doc="""vision-to-text modeling""") class __UpperCamelCase ( _BaseAutoModelClass ): __snake_case :Optional[Any] = FLAX_MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING __UpperCamelCase : str = auto_class_update( FlaxAutoModelForSpeechSeqaSeq, head_doc="""sequence-to-sequence speech-to-text modeling""" )
80
0
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase_ ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Optional[Any] = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Any=0 ): _A = floats_tensor((1, 3, 128, 128) , rng=random.Random(_UpperCAmelCase ) ) _A = np.random.RandomState(_UpperCAmelCase ) _A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def lowerCAmelCase_ ( self : Tuple ): _A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _A = self.get_dummy_inputs() _A = pipe(**_UpperCAmelCase ).images _A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) _A = np.array([0.6_9643, 0.5_8484, 0.5_0314, 0.5_8760, 0.5_5368, 0.5_9643, 0.5_1529, 0.4_1217, 0.4_9087] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def lowerCAmelCase_ ( self : int ): _A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _A = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _A = self.get_dummy_inputs() _A = pipe(**_UpperCAmelCase ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A = np.array([0.6_1737, 0.5_4642, 0.5_3183, 0.5_4465, 0.5_2742, 0.6_0525, 0.4_9969, 0.4_0655, 0.4_8154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase_ ( self : List[Any] ): _A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # warmup pass to apply optimizations _A = pipe(**self.get_dummy_inputs() ) _A = self.get_dummy_inputs() _A = pipe(**_UpperCAmelCase ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A = np.array([0.5_2761, 0.5_9977, 0.4_9033, 0.4_9619, 0.5_4282, 0.5_0311, 0.4_7600, 0.4_0918, 0.4_5203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase_ ( self : Dict ): _A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _A = self.get_dummy_inputs() _A = pipe(**_UpperCAmelCase ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A = np.array([0.5_2911, 0.6_0004, 0.4_9229, 0.4_9805, 0.5_4502, 0.5_0680, 0.4_7777, 0.4_1028, 0.4_5304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase_ ( self : int ): _A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _A = self.get_dummy_inputs() _A = pipe(**_UpperCAmelCase ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A = np.array([0.5_2911, 0.6_0004, 0.4_9229, 0.4_9805, 0.5_4502, 0.5_0680, 0.4_7777, 0.4_1028, 0.4_5304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def lowerCAmelCase_ ( self : Dict ): _A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='CPUExecutionProvider' ) _A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _A = self.get_dummy_inputs() _A = pipe(**_UpperCAmelCase ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) _A = np.array([0.6_5331, 0.5_8277, 0.4_8204, 0.5_6059, 0.5_3665, 0.5_6235, 0.5_0969, 0.4_0009, 0.4_6552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class lowercase_ ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase_ ( self : Union[str, Any] ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCAmelCase_ ( self : Dict ): _A = ort.SessionOptions() _A = False return options def lowerCAmelCase_ ( self : List[str] ): _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) _A = init_image.resize((768, 512) ) # using the PNDM scheduler by default _A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='onnx' , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _A = 'A fantasy landscape, trending on artstation' _A = np.random.RandomState(0 ) _A = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=_UpperCAmelCase , output_type='np' , ) _A = output.images _A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) _A = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowerCAmelCase_ ( self : Any ): _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) _A = init_image.resize((768, 512) ) _A = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5' , subfolder='scheduler' , revision='onnx' ) _A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , revision='onnx' , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _A = 'A fantasy landscape, trending on artstation' _A = np.random.RandomState(0 ) _A = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=_UpperCAmelCase , output_type='np' , ) _A = output.images _A = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) _A = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
505
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging a = logging.get_logger(__name__) a = { '''Visual-Attention-Network/van-base''': ( '''https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json''' ), } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[str] = '''van''' def __init__( self : Optional[Any] , _UpperCAmelCase : Union[str, Any]=224 , _UpperCAmelCase : Optional[Any]=3 , _UpperCAmelCase : Optional[Any]=[7, 3, 3, 3] , _UpperCAmelCase : Optional[int]=[4, 2, 2, 2] , _UpperCAmelCase : Tuple=[64, 128, 320, 512] , _UpperCAmelCase : Optional[int]=[3, 3, 12, 3] , _UpperCAmelCase : Union[str, Any]=[8, 8, 4, 4] , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : List[Any]=1E-6 , _UpperCAmelCase : Optional[Any]=1E-2 , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Union[str, Any]=0.0 , **_UpperCAmelCase : str , ): super().__init__(**_UpperCAmelCase ) _A = image_size _A = num_channels _A = patch_sizes _A = strides _A = hidden_sizes _A = depths _A = mlp_ratios _A = hidden_act _A = initializer_range _A = layer_norm_eps _A = layer_scale_init_value _A = drop_path_rate _A = dropout_rate
505
1
"""simple docstring""" from typing import Any class a : def __init__( self , _snake_case ): """simple docstring""" lowerCAmelCase = data lowerCAmelCase = None def __repr__( self ): """simple docstring""" return F'Node({self.data})' class a : def __init__( self ): """simple docstring""" lowerCAmelCase = None def __iter__( self ): """simple docstring""" lowerCAmelCase = self.head while node: yield node.data lowerCAmelCase = node.next def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join([str(_snake_case ) for item in self] ) def __getitem__( self , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) lowerCAmelCase = self.head for _ in range(_snake_case ): lowerCAmelCase = current.next lowerCAmelCase = data def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(len(self ) , _snake_case ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" self.insert_nth(0 , _snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case ): """simple docstring""" if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) lowerCAmelCase = Node(_snake_case ) if self.head is None: lowerCAmelCase = new_node elif index == 0: lowerCAmelCase = self.head # link new_node to head lowerCAmelCase = new_node else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = new_node def UpperCamelCase__ ( self ): # print every node data """simple docstring""" print(self ) def UpperCamelCase__ ( self ): """simple docstring""" return self.delete_nth(0 ) def UpperCamelCase__ ( self ): # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def UpperCamelCase__ ( self , _snake_case = 0 ): """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) lowerCAmelCase = self.head # default first node if index == 0: lowerCAmelCase = self.head.next else: lowerCAmelCase = self.head for _ in range(index - 1 ): lowerCAmelCase = temp.next lowerCAmelCase = temp.next lowerCAmelCase = temp.next.next return delete_node.data def UpperCamelCase__ ( self ): """simple docstring""" return self.head is None def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = None lowerCAmelCase = self.head while current: # Store the current node's next node. lowerCAmelCase = current.next # Make the current node's next point backwards lowerCAmelCase = prev # Make the previous node be the current node lowerCAmelCase = current # Make the current node the next node (to progress iteration) lowerCAmelCase = next_node # Return prev in order to put the head at the end lowerCAmelCase = prev def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = LinkedList() assert linked_list.is_empty() is True assert str(_UpperCAmelCase ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(_UpperCAmelCase ) == i linked_list.insert_nth(_UpperCAmelCase , i + 1 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(_UpperCAmelCase ) == 9 assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): lowerCAmelCase = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(-8 , 1 ) ) def _SCREAMING_SNAKE_CASE (): lowerCAmelCase = [ -9, 100, Node(7734_5112 ), 'dlrow olleH', 7, 5555, 0, -192.5_5555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] lowerCAmelCase = LinkedList() for i in test_input: linked_list.insert_tail(_UpperCAmelCase ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(_UpperCAmelCase ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head lowerCAmelCase = linked_list.delete_head() assert result == -9 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail lowerCAmelCase = linked_list.delete_tail() assert result == 12.2 assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list lowerCAmelCase = linked_list.delete_nth(10 ) assert result is None assert ( str(_UpperCAmelCase ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(_UpperCAmelCase ) assert ( str(_UpperCAmelCase ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(_UpperCAmelCase ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _SCREAMING_SNAKE_CASE (): from doctest import testmod testmod() lowerCAmelCase = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(_UpperCAmelCase ) print('\nReading/changing Node data using indexing:' ) print(F'Element at Position 1: {linked_list[1]}' ) lowerCAmelCase = input('Enter New Value: ' ).strip() print('New list:' ) print(_UpperCAmelCase ) print(F'length of linked_list is : {len(_UpperCAmelCase )}' ) if __name__ == "__main__": main()
4
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Dict = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Optional[Any] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
27
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class UpperCAmelCase ( __snake_case ): a: Dict = ["image_processor"] a: Optional[int] = "SamImageProcessor" def __init__( self: Optional[int] , __UpperCamelCase: Optional[Any] ): super().__init__(__UpperCamelCase ) _a = self.image_processor _a = -10 _a = self.image_processor.size['''longest_edge'''] def __call__( self: Tuple , __UpperCamelCase: Union[str, Any]=None , __UpperCamelCase: int=None , __UpperCamelCase: Tuple=None , __UpperCamelCase: Optional[int]=None , __UpperCamelCase: Optional[Union[str, TensorType]] = None , **__UpperCamelCase: int , ): _a = self.image_processor( __UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) # pop arguments that are not used in the foward but used nevertheless _a = encoding_image_processor['''original_sizes'''] if hasattr(__UpperCamelCase , '''numpy''' ): # Checks if Torch or TF tensor _a = original_sizes.numpy() _a , _a , _a = self._check_and_preprocess_points( input_points=__UpperCamelCase , input_labels=__UpperCamelCase , input_boxes=__UpperCamelCase , ) _a = self._normalize_and_convert( __UpperCamelCase , __UpperCamelCase , input_points=__UpperCamelCase , input_labels=__UpperCamelCase , input_boxes=__UpperCamelCase , return_tensors=__UpperCamelCase , ) return encoding_image_processor def _A ( self: Optional[int] , __UpperCamelCase: Tuple , __UpperCamelCase: Optional[Any] , __UpperCamelCase: str=None , __UpperCamelCase: int=None , __UpperCamelCase: List[Any]=None , __UpperCamelCase: Tuple="pt" , ): if input_points is not None: if len(__UpperCamelCase ) != len(__UpperCamelCase ): _a = [ self._normalize_coordinates(self.target_size , __UpperCamelCase , original_sizes[0] ) for point in input_points ] else: _a = [ self._normalize_coordinates(self.target_size , __UpperCamelCase , __UpperCamelCase ) for point, original_size in zip(__UpperCamelCase , __UpperCamelCase ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: _a , _a = self._pad_points_and_labels(__UpperCamelCase , __UpperCamelCase ) _a = np.array(__UpperCamelCase ) if input_labels is not None: _a = np.array(__UpperCamelCase ) if input_boxes is not None: if len(__UpperCamelCase ) != len(__UpperCamelCase ): _a = [ self._normalize_coordinates(self.target_size , __UpperCamelCase , original_sizes[0] , is_bounding_box=__UpperCamelCase ) for box in input_boxes ] else: _a = [ self._normalize_coordinates(self.target_size , __UpperCamelCase , __UpperCamelCase , is_bounding_box=__UpperCamelCase ) for box, original_size in zip(__UpperCamelCase , __UpperCamelCase ) ] _a = np.array(__UpperCamelCase ) if input_boxes is not None: if return_tensors == "pt": _a = torch.from_numpy(__UpperCamelCase ) # boxes batch size of 1 by default _a = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": _a = tf.convert_to_tensor(__UpperCamelCase ) # boxes batch size of 1 by default _a = tf.expand_dims(__UpperCamelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({'''input_boxes''': input_boxes} ) if input_points is not None: if return_tensors == "pt": _a = torch.from_numpy(__UpperCamelCase ) # point batch size of 1 by default _a = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": _a = tf.convert_to_tensor(__UpperCamelCase ) # point batch size of 1 by default _a = tf.expand_dims(__UpperCamelCase , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({'''input_points''': input_points} ) if input_labels is not None: if return_tensors == "pt": _a = torch.from_numpy(__UpperCamelCase ) # point batch size of 1 by default _a = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": _a = tf.convert_to_tensor(__UpperCamelCase ) # point batch size of 1 by default _a = tf.expand_dims(__UpperCamelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({'''input_labels''': input_labels} ) return encoding_image_processor def _A ( self: Tuple , __UpperCamelCase: str , __UpperCamelCase: Tuple ): _a = max([point.shape[0] for point in input_points] ) _a = [] for i, point in enumerate(__UpperCamelCase ): if point.shape[0] != expected_nb_points: _a = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) _a = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(__UpperCamelCase ) _a = processed_input_points return input_points, input_labels def _A ( self: List[str] , __UpperCamelCase: int , __UpperCamelCase: np.ndarray , __UpperCamelCase: Dict , __UpperCamelCase: Optional[Any]=False ): _a , _a = original_size _a , _a = self.image_processor._get_preprocess_shape(__UpperCamelCase , longest_edge=__UpperCamelCase ) _a = deepcopy(__UpperCamelCase ).astype(__UpperCamelCase ) if is_bounding_box: _a = coords.reshape(-1 , 2 , 2 ) _a = coords[..., 0] * (new_w / old_w) _a = coords[..., 1] * (new_h / old_h) if is_bounding_box: _a = coords.reshape(-1 , 4 ) return coords def _A ( self: List[Any] , __UpperCamelCase: Tuple=None , __UpperCamelCase: List[Any]=None , __UpperCamelCase: Dict=None , ): if input_points is not None: if hasattr(__UpperCamelCase , '''numpy''' ): # Checks for TF or Torch tensor _a = input_points.numpy().tolist() if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not isinstance(input_points[0] , __UpperCamelCase ): raise ValueError('''Input points must be a list of list of floating points.''' ) _a = [np.array(__UpperCamelCase ) for input_point in input_points] else: _a = None if input_labels is not None: if hasattr(__UpperCamelCase , '''numpy''' ): _a = input_labels.numpy().tolist() if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not isinstance(input_labels[0] , __UpperCamelCase ): raise ValueError('''Input labels must be a list of list integers.''' ) _a = [np.array(__UpperCamelCase ) for label in input_labels] else: _a = None if input_boxes is not None: if hasattr(__UpperCamelCase , '''numpy''' ): _a = input_boxes.numpy().tolist() if ( not isinstance(__UpperCamelCase , __UpperCamelCase ) or not isinstance(input_boxes[0] , __UpperCamelCase ) or not isinstance(input_boxes[0][0] , __UpperCamelCase ) ): raise ValueError('''Input boxes must be a list of list of list of floating points.''' ) _a = [np.array(__UpperCamelCase ).astype(np.floataa ) for box in input_boxes] else: _a = None return input_points, input_labels, input_boxes @property def _A ( self: Optional[Any] ): _a = self.image_processor.model_input_names return list(dict.fromkeys(__UpperCamelCase ) ) def _A ( self: str , *__UpperCamelCase: Union[str, Any] , **__UpperCamelCase: Optional[int] ): return self.image_processor.post_process_masks(*__UpperCamelCase , **__UpperCamelCase )
346
from collections.abc import Generator from math import sin def __snake_case ( _UpperCamelCase ) -> bytes: if len(_UpperCamelCase ) != 32: raise ValueError('''Input must be of length 32''' ) _a = b'''''' for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def __snake_case ( _UpperCamelCase ) -> bytes: if i < 0: raise ValueError('''Input must be non-negative''' ) _a = format(_UpperCamelCase , '''08x''' )[-8:] _a = b'''''' for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode('''utf-8''' ) return little_endian_hex def __snake_case ( _UpperCamelCase ) -> bytes: _a = b'''''' for char in message: bit_string += format(_UpperCamelCase , '''08b''' ).encode('''utf-8''' ) _a = format(len(_UpperCamelCase ) , '''064b''' ).encode('''utf-8''' ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(_UpperCamelCase ) % 5_12 != 4_48: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def __snake_case ( _UpperCamelCase ) -> Generator[list[int], None, None]: if len(_UpperCamelCase ) % 5_12 != 0: raise ValueError('''Input must have length that\'s a multiple of 512''' ) for pos in range(0 , len(_UpperCamelCase ) , 5_12 ): _a = bit_string[pos : pos + 5_12] _a = [] for i in range(0 , 5_12 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def __snake_case ( _UpperCamelCase ) -> int: if i < 0: raise ValueError('''Input must be non-negative''' ) _a = format(_UpperCamelCase , '''032b''' ) _a = '''''' for c in i_str: new_str += "1" if c == "0" else "0" return int(_UpperCamelCase , 2 ) def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> int: return (a + b) % 2**32 def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> int: if i < 0: raise ValueError('''Input must be non-negative''' ) if shift < 0: raise ValueError('''Shift must be non-negative''' ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def __snake_case ( _UpperCamelCase ) -> bytes: _a = preprocess(_UpperCamelCase ) _a = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states _a = 0X67_45_23_01 _a = 0XEF_CD_AB_89 _a = 0X98_BA_DC_FE _a = 0X10_32_54_76 _a = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(_UpperCamelCase ): _a = aa _a = ba _a = ca _a = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f _a = d ^ (b & (c ^ d)) _a = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f _a = c ^ (d & (b ^ c)) _a = (5 * i + 1) % 16 elif i <= 47: _a = b ^ c ^ d _a = (3 * i + 5) % 16 else: _a = c ^ (b | not_aa(_UpperCamelCase )) _a = (7 * i) % 16 _a = (f + a + added_consts[i] + block_words[g]) % 2**32 _a = d _a = c _a = b _a = sum_aa(_UpperCamelCase , left_rotate_aa(_UpperCamelCase , shift_amounts[i] ) ) # Add hashed chunk to running total _a = sum_aa(_UpperCamelCase , _UpperCamelCase ) _a = sum_aa(_UpperCamelCase , _UpperCamelCase ) _a = sum_aa(_UpperCamelCase , _UpperCamelCase ) _a = sum_aa(_UpperCamelCase , _UpperCamelCase ) _a = reformat_hex(_UpperCamelCase ) + reformat_hex(_UpperCamelCase ) + reformat_hex(_UpperCamelCase ) + reformat_hex(_UpperCamelCase ) return digest if __name__ == "__main__": import doctest doctest.testmod()
346
1
'''simple docstring''' import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase_ : List[Any] = [ # tf -> hf ('/', '.'), ('layer_', 'layers.'), ('kernel', 'weight'), ('beta', 'bias'), ('gamma', 'weight'), ('pegasus', 'model'), ] lowerCAmelCase_ : Optional[int] = [ ('.output.dense', '.fc2'), ('intermediate.LayerNorm', 'final_layer_norm'), ('intermediate.dense', 'fc1'), ] lowerCAmelCase_ : Any = ( INIT_COMMON + [ ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.out_proj'), ('attention.self', 'self_attn'), ('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'), ('attention.encdec_output.dense', 'encoder_attn.out_proj'), ('attention.encdec', 'encoder_attn'), ('key', 'k_proj'), ('value', 'v_proj'), ('query', 'q_proj'), ('decoder.LayerNorm', 'decoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Tuple = ( INIT_COMMON + [ ('embeddings.word_embeddings', 'shared.weight'), ('embeddings.position_embeddings', 'embed_positions.weight'), ('attention.self.LayerNorm', 'self_attn_layer_norm'), ('attention.output.dense', 'self_attn.output'), ('attention.self', 'self_attn.self'), ('encoder.LayerNorm', 'encoder.layernorm_embedding'), ] + END_COMMON ) lowerCAmelCase_ : Optional[int] = [ 'encdec/key/bias', 'encdec/query/bias', 'encdec/value/bias', 'self/key/bias', 'self/query/bias', 'self/value/bias', 'encdec_output/dense/bias', 'attention/output/dense/bias', ] def _lowerCamelCase ( lowercase : Any , lowercase : Any ) -> Optional[Any]: for tf_name, hf_name in patterns: _a = k.replace(lowercase , lowercase ) return k def _lowerCamelCase ( lowercase : dict , lowercase : dict ) -> BigBirdPegasusForConditionalGeneration: _a = BigBirdPegasusConfig(**lowercase ) _a = BigBirdPegasusForConditionalGeneration(lowercase ) _a = torch_model.state_dict() _a = {} # separating decoder weights _a = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} _a = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = DECODER_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict: raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): _a = [k.endswith(lowercase ) for ending in KEYS_TO_IGNORE] if any(lowercase ): continue _a = REMAINING_PATTERNS _a = rename_state_dict_key(lowercase , lowercase ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F'could not find new key {new_k} in state dict. (converted from {k})' ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): _a = v.T _a = torch.from_numpy(lowercase ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F'{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}' _a = mapping["model.embed_positions.weight"] _a = mapping.pop("model.embed_positions.weight" ) _a , _a = torch_model.load_state_dict(lowercase , strict=lowercase ) _a = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F'no matches found for the following torch keys {unexpected_missing}' assert extra == [], F'no matches found for the following tf keys {extra}' return torch_model def _lowerCamelCase ( lowercase : List[Any] ) -> Dict: _a = tf.train.list_variables(lowercase ) _a = {} _a = ["global_step"] for name, shape in tqdm(lowercase , desc="converting tf checkpoint to dict" ): _a = any(pat in name for pat in ignore_name ) if skip_key: continue _a = tf.train.load_variable(lowercase , lowercase ) _a = array return tf_weights def _lowerCamelCase ( lowercase : str , lowercase : str , lowercase : dict ) -> Union[str, Any]: _a = get_tf_weights_as_numpy(lowercase ) _a = convert_bigbird_pegasus(lowercase , lowercase ) torch_model.save_pretrained(lowercase ) if __name__ == "__main__": lowerCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables') parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ : Optional[Any] = parser.parse_args() lowerCAmelCase_ : Optional[Any] = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
692
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class __SCREAMING_SNAKE_CASE (lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __a =PhobertTokenizer __a =False def UpperCamelCase__ ( self : int ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _a = ["T@@", "i", "I", "R@@", "r", "e@@"] _a = dict(zip(__a , range(len(__a ) ) ) ) _a = ["#version: 0.2", "l à</w>"] _a = {"unk_token": "<unk>"} _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__a ) ) def UpperCamelCase__ ( self : str , **__a : List[str] ): kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **__a ) def UpperCamelCase__ ( self : Optional[Any] , __a : Optional[int] ): _a = "Tôi là VinAI Research" _a = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def UpperCamelCase__ ( self : Dict ): _a = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _a = "Tôi là VinAI Research" _a = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() _a = tokenizer.tokenize(__a ) print(__a ) self.assertListEqual(__a , __a ) _a = tokens + [tokenizer.unk_token] _a = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , __a )
692
1
from itertools import count def snake_case_ ( snake_case = 50 ) -> int: lowercase__: List[Any] = [1] * min_block_length for n in count(snake_case ): fill_count_functions.append(1 ) for block_length in range(snake_case , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_00_00_00: break return n if __name__ == "__main__": print(F'''{solution() = }''')
335
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger __lowerCAmelCase = '''<<<<<<< This should probably be modified because it mentions: ''' __lowerCAmelCase = '''======= >>>>>>> ''' __lowerCAmelCase = [ '''TextEncoderConfig''', '''ByteTextEncoder''', '''SubwordTextEncoder''', '''encoder_config''', '''maybe_build_from_corpus''', '''manual_dir''', ] __lowerCAmelCase = [ # (pattern, replacement) # Order is important here for some replacements (r'''tfds\.core''', r'''datasets'''), (r'''tf\.io\.gfile\.GFile''', r'''open'''), (r'''tf\.([\w\d]+)''', r'''datasets.Value(\'\1\')'''), (r'''tfds\.features\.Text\(\)''', r'''datasets.Value(\'string\')'''), (r'''tfds\.features\.Text\(''', r'''datasets.Value(\'string\'),'''), (r'''features\s*=\s*tfds.features.FeaturesDict\(''', r'''features=datasets.Features('''), (r'''tfds\.features\.FeaturesDict\(''', r'''dict('''), (r'''The TensorFlow Datasets Authors''', r'''The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'''), (r'''tfds\.''', r'''datasets.'''), (r'''dl_manager\.manual_dir''', r'''self.config.data_dir'''), (r'''self\.builder_config''', r'''self.config'''), ] def snake_case_ ( snake_case ) -> Union[str, Any]: return ConvertCommand(args.tfds_path , args.datasets_directory ) class __a ( __UpperCamelCase ): @staticmethod def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' lowercase__: List[str] = parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=lowerCAmelCase__ , required=lowerCAmelCase__ , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=lowerCAmelCase__ ) def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , *lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: Tuple = get_logger('datasets-cli/converting' ) lowercase__: Any = tfds_path lowercase__: str = datasets_directory def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' if os.path.isdir(self._tfds_path ): lowercase__: int = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): lowercase__: Optional[int] = os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) lowercase__: str = os.path.abspath(self._datasets_directory ) self._logger.info(F'Converting datasets from {abs_tfds_path} to {abs_datasets_path}' ) lowercase__: Union[str, Any] = [] lowercase__: List[str] = [] lowercase__: str = {} if os.path.isdir(self._tfds_path ): lowercase__: List[Any] = os.listdir(lowerCAmelCase__ ) else: lowercase__: Optional[Any] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F'Looking at file {f_name}' ) lowercase__: List[str] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: int = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) if not os.path.isfile(lowerCAmelCase__ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(lowerCAmelCase__ , encoding='utf-8' ) as f: lowercase__: Any = f.readlines() lowercase__: List[str] = [] lowercase__: List[Any] = False lowercase__: Any = False lowercase__: Dict = [] for line in lines: lowercase__: Tuple = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: lowercase__: List[Any] = 'import datasets\n' elif "import tensorflow" in out_line: # order is important here lowercase__: Optional[Any] = '' continue elif "from absl import logging" in out_line: lowercase__: str = 'from datasets import logging\n' elif "getLogger" in out_line: lowercase__: Dict = out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): lowercase__: Tuple = True lowercase__: int = list(filter(lambda lowerCAmelCase__ : e in out_line , lowerCAmelCase__ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCAmelCase__ ) + '\n' ) out_lines.append(lowerCAmelCase__ ) out_lines.append(lowerCAmelCase__ ) continue else: for pattern, replacement in TO_CONVERT: lowercase__: Any = re.sub(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: lowercase__: Tuple = re.match(R'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , lowerCAmelCase__ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) lowercase__: Dict = 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'Error converting {out_line.strip()}' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: lowercase__: List[str] = True out_lines.append(lowerCAmelCase__ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset lowercase__: Dict = f_name.replace('.py' , '' ) lowercase__: Optional[Any] = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: Any = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) self._logger.info(F'Adding directory {output_dir}' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCAmelCase__ ) if needs_manual_update: with_manual_update.append(lowerCAmelCase__ ) with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.writelines(lowerCAmelCase__ ) self._logger.info(F'Converted in {output_file}' ) for utils_file in utils_files: try: lowercase__: str = os.path.basename(lowerCAmelCase__ ) lowercase__: int = imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(F'Moving {dest_folder} to {utils_file}' ) shutil.copy(lowerCAmelCase__ , lowerCAmelCase__ ) except KeyError: self._logger.error(F'Cannot find destination folder for {utils_file}. Please copy manually.' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.' )
335
1
def SCREAMING_SNAKE_CASE ( snake_case_ : str ): snake_case__ : Optional[Any] = [0 for i in range(len(_lowerCAmelCase ) )] # initialize interval's left pointer and right pointer snake_case__ : Union[str, Any] = 0, 0 for i in range(1 , len(_lowerCAmelCase ) ): # case when current index is inside the interval if i <= right_pointer: snake_case__ : Tuple = min(right_pointer - i + 1 , z_result[i - left_pointer] ) snake_case__ : List[Any] = min_edge while go_next(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: snake_case__ : str = i, i + z_result[i] - 1 return z_result def SCREAMING_SNAKE_CASE ( snake_case_ : int , snake_case_ : list[int] , snake_case_ : str ): return i + z_result[i] < len(_lowerCAmelCase ) and s[z_result[i]] == s[i + z_result[i]] def SCREAMING_SNAKE_CASE ( snake_case_ : str , snake_case_ : str ): snake_case__ : Any = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string snake_case__ : Any = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_lowerCAmelCase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
297
'''simple docstring''' import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Tuple ) -> Optional[Any]: UpperCAmelCase : Any = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__snake_case ) ) def A ( self : Tuple ) -> Tuple: UpperCAmelCase : Optional[Any] = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__snake_case ) ) def A ( self : str ) -> str: UpperCAmelCase : int = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', '''unet/diffusion_pytorch_model.bin''', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__snake_case ) ) def A ( self : str ) -> Tuple: UpperCAmelCase : Optional[Any] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] self.assertTrue(is_safetensors_compatible(__snake_case ) ) def A ( self : Tuple ) -> Optional[int]: UpperCAmelCase : List[str] = [ '''safety_checker/pytorch_model.bin''', '''safety_checker/model.safetensors''', '''vae/diffusion_pytorch_model.bin''', '''vae/diffusion_pytorch_model.safetensors''', '''text_encoder/pytorch_model.bin''', # Removed: 'text_encoder/model.safetensors', '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] self.assertFalse(is_safetensors_compatible(__snake_case ) ) def A ( self : int ) -> List[Any]: UpperCAmelCase : Union[str, Any] = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] UpperCAmelCase : List[Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(__snake_case , variant=__snake_case ) ) def A ( self : Union[str, Any] ) -> str: UpperCAmelCase : Optional[int] = [ '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] UpperCAmelCase : int = '''fp16''' self.assertTrue(is_safetensors_compatible(__snake_case , variant=__snake_case ) ) def A ( self : Dict ) -> Tuple: # pass variant but use the non-variant filenames UpperCAmelCase : str = [ '''unet/diffusion_pytorch_model.bin''', '''unet/diffusion_pytorch_model.safetensors''', ] UpperCAmelCase : int = '''fp16''' self.assertTrue(is_safetensors_compatible(__snake_case , variant=__snake_case ) ) def A ( self : Optional[int] ) -> List[str]: UpperCAmelCase : str = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', '''unet/diffusion_pytorch_model.fp16.bin''', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCAmelCase : Optional[int] = '''fp16''' self.assertFalse(is_safetensors_compatible(__snake_case , variant=__snake_case ) ) def A ( self : str ) -> Union[str, Any]: UpperCAmelCase : List[str] = [ '''text_encoder/pytorch_model.fp16.bin''', '''text_encoder/model.fp16.safetensors''', ] UpperCAmelCase : List[str] = '''fp16''' self.assertTrue(is_safetensors_compatible(__snake_case , variant=__snake_case ) ) def A ( self : Optional[int] ) -> List[str]: # pass variant but use the non-variant filenames UpperCAmelCase : Optional[int] = [ '''text_encoder/pytorch_model.bin''', '''text_encoder/model.safetensors''', ] UpperCAmelCase : List[Any] = '''fp16''' self.assertTrue(is_safetensors_compatible(__snake_case , variant=__snake_case ) ) def A ( self : int ) -> Union[str, Any]: UpperCAmelCase : Any = [ '''safety_checker/pytorch_model.fp16.bin''', '''safety_checker/model.fp16.safetensors''', '''vae/diffusion_pytorch_model.fp16.bin''', '''vae/diffusion_pytorch_model.fp16.safetensors''', '''text_encoder/pytorch_model.fp16.bin''', # 'text_encoder/model.fp16.safetensors', '''unet/diffusion_pytorch_model.fp16.bin''', '''unet/diffusion_pytorch_model.fp16.safetensors''', ] UpperCAmelCase : Dict = '''fp16''' self.assertFalse(is_safetensors_compatible(__snake_case , variant=__snake_case ) )
127
0
import argparse import json import math import os import time import traceback import zipfile from collections import Counter import requests def __a ( __lowerCAmelCase , __lowerCAmelCase=None ) -> Tuple: SCREAMING_SNAKE_CASE : Dict = None if token is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = {'Accept': 'application/vnd.github+json', 'Authorization': F'''Bearer {token}'''} SCREAMING_SNAKE_CASE : str = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100''' SCREAMING_SNAKE_CASE : List[str] = requests.get(__lowerCAmelCase , headers=__lowerCAmelCase ).json() SCREAMING_SNAKE_CASE : str = {} try: job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) SCREAMING_SNAKE_CASE : str = math.ceil((result['total_count'] - 100) / 100 ) for i in range(__lowerCAmelCase ): SCREAMING_SNAKE_CASE : Tuple = requests.get(url + F'''&page={i + 2}''' , headers=__lowerCAmelCase ).json() job_links.update({job['name']: job['html_url'] for job in result['jobs']} ) return job_links except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a ( __lowerCAmelCase , __lowerCAmelCase=None ) -> Optional[int]: SCREAMING_SNAKE_CASE : str = None if token is not None: SCREAMING_SNAKE_CASE : str = {'Accept': 'application/vnd.github+json', 'Authorization': F'''Bearer {token}'''} SCREAMING_SNAKE_CASE : Union[str, Any] = F'''https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100''' SCREAMING_SNAKE_CASE : Dict = requests.get(__lowerCAmelCase , headers=__lowerCAmelCase ).json() SCREAMING_SNAKE_CASE : str = {} try: artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) SCREAMING_SNAKE_CASE : Any = math.ceil((result['total_count'] - 100) / 100 ) for i in range(__lowerCAmelCase ): SCREAMING_SNAKE_CASE : Optional[int] = requests.get(url + F'''&page={i + 2}''' , headers=__lowerCAmelCase ).json() artifacts.update({artifact['name']: artifact['archive_download_url'] for artifact in result['artifacts']} ) return artifacts except Exception: print(F'''Unknown error, could not fetch links:\n{traceback.format_exc()}''' ) return {} def __a ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE : int = None if token is not None: SCREAMING_SNAKE_CASE : Optional[int] = {'Accept': 'application/vnd.github+json', 'Authorization': F'''Bearer {token}'''} SCREAMING_SNAKE_CASE : List[str] = requests.get(__lowerCAmelCase , headers=__lowerCAmelCase , allow_redirects=__lowerCAmelCase ) SCREAMING_SNAKE_CASE : List[Any] = result.headers['Location'] SCREAMING_SNAKE_CASE : List[str] = requests.get(__lowerCAmelCase , allow_redirects=__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(__lowerCAmelCase , F'''{artifact_name}.zip''' ) with open(__lowerCAmelCase , 'wb' ) as fp: fp.write(response.content ) def __a ( __lowerCAmelCase , __lowerCAmelCase=None ) -> str: SCREAMING_SNAKE_CASE : Any = [] SCREAMING_SNAKE_CASE : int = [] SCREAMING_SNAKE_CASE : Tuple = None with zipfile.ZipFile(__lowerCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__lowerCAmelCase ): # read the file if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]: with z.open(__lowerCAmelCase ) as f: for line in f: SCREAMING_SNAKE_CASE : Dict = line.decode('UTF-8' ).strip() if filename == "failures_line.txt": try: # `error_line` is the place where `error` occurs SCREAMING_SNAKE_CASE : List[str] = line[: line.index(': ' )] SCREAMING_SNAKE_CASE : Tuple = line[line.index(': ' ) + len(': ' ) :] errors.append([error_line, error] ) except Exception: # skip un-related lines pass elif filename == "summary_short.txt" and line.startswith('FAILED ' ): # `test` is the test method that failed SCREAMING_SNAKE_CASE : Tuple = line[len('FAILED ' ) :] failed_tests.append(__lowerCAmelCase ) elif filename == "job_name.txt": SCREAMING_SNAKE_CASE : Optional[Any] = line if len(__lowerCAmelCase ) != len(__lowerCAmelCase ): raise ValueError( F'''`errors` and `failed_tests` should have the same number of elements. Got {len(__lowerCAmelCase )} for `errors` ''' F'''and {len(__lowerCAmelCase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some''' ' problem.' ) SCREAMING_SNAKE_CASE : Any = None if job_name and job_links: SCREAMING_SNAKE_CASE : str = job_links.get(__lowerCAmelCase , __lowerCAmelCase ) # A list with elements of the form (line of error, error, failed test) SCREAMING_SNAKE_CASE : List[str] = [x + [y] + [job_link] for x, y in zip(__lowerCAmelCase , __lowerCAmelCase )] return result def __a ( __lowerCAmelCase , __lowerCAmelCase=None ) -> Any: SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : List[str] = [os.path.join(__lowerCAmelCase , __lowerCAmelCase ) for p in os.listdir(__lowerCAmelCase ) if p.endswith('.zip' )] for p in paths: errors.extend(get_errors_from_single_artifact(__lowerCAmelCase , job_links=__lowerCAmelCase ) ) return errors def __a ( __lowerCAmelCase , __lowerCAmelCase=None ) -> Optional[int]: SCREAMING_SNAKE_CASE : Union[str, Any] = Counter() counter.update([x[1] for x in logs] ) SCREAMING_SNAKE_CASE : Optional[Any] = counter.most_common() SCREAMING_SNAKE_CASE : Any = {} for error, count in counts: if error_filter is None or error not in error_filter: SCREAMING_SNAKE_CASE : Union[str, Any] = {'count': count, 'failed_tests': [(x[2], x[0]) for x in logs if x[1] == error]} SCREAMING_SNAKE_CASE : Optional[Any] = dict(sorted(r.items() , key=lambda __lowerCAmelCase : item[1]["count"] , reverse=__lowerCAmelCase ) ) return r def __a ( __lowerCAmelCase ) -> Optional[Any]: SCREAMING_SNAKE_CASE : str = test.split('::' )[0] if test.startswith('tests/models/' ): SCREAMING_SNAKE_CASE : int = test.split('/' )[2] else: SCREAMING_SNAKE_CASE : Optional[int] = None return test def __a ( __lowerCAmelCase , __lowerCAmelCase=None ) -> Dict: SCREAMING_SNAKE_CASE : int = [(x[0], x[1], get_model(x[2] )) for x in logs] SCREAMING_SNAKE_CASE : List[str] = [x for x in logs if x[2] is not None] SCREAMING_SNAKE_CASE : str = {x[2] for x in logs} SCREAMING_SNAKE_CASE : Optional[int] = {} for test in tests: SCREAMING_SNAKE_CASE : str = Counter() # count by errors in `test` counter.update([x[1] for x in logs if x[2] == test] ) SCREAMING_SNAKE_CASE : Dict = counter.most_common() SCREAMING_SNAKE_CASE : int = {error: count for error, count in counts if (error_filter is None or error not in error_filter)} SCREAMING_SNAKE_CASE : List[str] = sum(error_counts.values() ) if n_errors > 0: SCREAMING_SNAKE_CASE : Any = {'count': n_errors, 'errors': error_counts} SCREAMING_SNAKE_CASE : List[Any] = dict(sorted(r.items() , key=lambda __lowerCAmelCase : item[1]["count"] , reverse=__lowerCAmelCase ) ) return r def __a ( __lowerCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE : Tuple = '| no. | error | status |' SCREAMING_SNAKE_CASE : List[str] = '|-:|:-|:-|' SCREAMING_SNAKE_CASE : Union[str, Any] = [header, sep] for error in reduced_by_error: SCREAMING_SNAKE_CASE : Dict = reduced_by_error[error]['count'] SCREAMING_SNAKE_CASE : List[Any] = F'''| {count} | {error[:100]} | |''' lines.append(__lowerCAmelCase ) return "\n".join(__lowerCAmelCase ) def __a ( __lowerCAmelCase ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : Tuple = '| model | no. of errors | major error | count |' SCREAMING_SNAKE_CASE : List[str] = '|-:|-:|-:|-:|' SCREAMING_SNAKE_CASE : int = [header, sep] for model in reduced_by_model: SCREAMING_SNAKE_CASE : str = reduced_by_model[model]['count'] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = list(reduced_by_model[model]['errors'].items() )[0] SCREAMING_SNAKE_CASE : List[str] = F'''| {model} | {count} | {error[:60]} | {_count} |''' lines.append(__lowerCAmelCase ) return "\n".join(__lowerCAmelCase ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") _lowerCamelCase : str = parser.parse_args() os.makedirs(args.output_dir, exist_ok=True) _lowerCamelCase : Dict = get_job_links(args.workflow_run_id, token=args.token) _lowerCamelCase : str = {} # To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee. # For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`. if _job_links: for k, v in _job_links.items(): # This is how GitHub actions combine job names. if " / " in k: _lowerCamelCase : List[str] = k.find(""" / """) _lowerCamelCase : Union[str, Any] = k[index + len(""" / """) :] _lowerCamelCase : Tuple = v with open(os.path.join(args.output_dir, """job_links.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(job_links, fp, ensure_ascii=False, indent=4) _lowerCamelCase : Any = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) for idx, (name, url) in enumerate(artifacts.items()): download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) _lowerCamelCase : List[Any] = get_all_errors(args.output_dir, job_links=job_links) # `e[1]` is the error _lowerCamelCase : List[Any] = Counter() counter.update([e[1] for e in errors]) # print the top 30 most common test errors _lowerCamelCase : Any = counter.most_common(30) for item in most_common: print(item) with open(os.path.join(args.output_dir, """errors.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(errors, fp, ensure_ascii=False, indent=4) _lowerCamelCase : str = reduce_by_error(errors) _lowerCamelCase : Tuple = reduce_by_model(errors) _lowerCamelCase : Optional[Any] = make_github_table(reduced_by_error) _lowerCamelCase : Optional[Any] = make_github_table_per_model(reduced_by_model) with open(os.path.join(args.output_dir, """reduced_by_error.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa) with open(os.path.join(args.output_dir, """reduced_by_model.txt"""), """w""", encoding="""UTF-8""") as fp: fp.write(sa)
308
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class lowercase : '''simple docstring''' def __init__( self : Tuple , snake_case : Union[str, Any] ): '''simple docstring''' if isinstance(snake_case , snake_case ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden SCREAMING_SNAKE_CASE : int = deepcopy(snake_case ) elif os.path.exists(snake_case ): with io.open(snake_case , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE : List[str] = json.load(snake_case ) else: try: SCREAMING_SNAKE_CASE : Union[str, Any] = baseaa.urlsafe_baadecode(snake_case ).decode('utf-8' ) SCREAMING_SNAKE_CASE : Any = json.loads(snake_case ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) SCREAMING_SNAKE_CASE : Tuple = config self.set_stage_and_offload() def lowerCamelCase_ ( self : int ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = self.get_value('zero_optimization.stage' , -1 ) # offload SCREAMING_SNAKE_CASE : int = False if self.is_zeroa() or self.is_zeroa(): SCREAMING_SNAKE_CASE : Union[str, Any] = set(['cpu', 'nvme'] ) SCREAMING_SNAKE_CASE : Tuple = set( [ self.get_value('zero_optimization.offload_optimizer.device' ), self.get_value('zero_optimization.offload_param.device' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: SCREAMING_SNAKE_CASE : List[Any] = True def lowerCamelCase_ ( self : List[str] , snake_case : Any ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.config # find the config node of interest if it exists SCREAMING_SNAKE_CASE : List[str] = ds_key_long.split('.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = nodes.pop() for node in nodes: SCREAMING_SNAKE_CASE : List[str] = config.get(snake_case ) if config is None: return None, ds_key return config, ds_key def lowerCamelCase_ ( self : Dict , snake_case : Any , snake_case : Any=None ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = self.find_config_node(snake_case ) if config is None: return default return config.get(snake_case , snake_case ) def lowerCamelCase_ ( self : Union[str, Any] , snake_case : Union[str, Any] , snake_case : Tuple=False ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.config # find the config node of interest if it exists SCREAMING_SNAKE_CASE : str = ds_key_long.split('.' ) for node in nodes: SCREAMING_SNAKE_CASE : List[Any] = config SCREAMING_SNAKE_CASE : List[Any] = config.get(snake_case ) if config is None: if must_exist: raise ValueError(f'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(snake_case ) def lowerCamelCase_ ( self : Optional[int] , snake_case : str ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.get_value(snake_case ) return False if value is None else bool(snake_case ) def lowerCamelCase_ ( self : Dict , snake_case : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_value(snake_case ) return False if value is None else not bool(snake_case ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' return self._stage == 2 def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return self._stage == 3 def lowerCamelCase_ ( self : str ): '''simple docstring''' return self._offload class lowercase : '''simple docstring''' def __init__( self : Optional[int] , snake_case : Dict ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = engine def lowerCamelCase_ ( self : str , snake_case : Optional[int] , **snake_case : Any ): '''simple docstring''' self.engine.backward(snake_case , **snake_case ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' def __init__( self : Any , snake_case : int ): '''simple docstring''' super().__init__(snake_case , device_placement=snake_case , scaler=snake_case ) SCREAMING_SNAKE_CASE : Dict = hasattr(self.optimizer , 'overflow' ) def lowerCamelCase_ ( self : Optional[int] , snake_case : Optional[Any]=None ): '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def lowerCamelCase_ ( self : Any ): '''simple docstring''' if self.__has_overflow__: return self.optimizer.overflow return False class lowercase ( SCREAMING_SNAKE_CASE_): '''simple docstring''' def __init__( self : Optional[Any] , snake_case : int , snake_case : Any ): '''simple docstring''' super().__init__(snake_case , snake_case ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class lowercase : '''simple docstring''' def __init__( self : Tuple , snake_case : Optional[Any] , snake_case : Any=0.001 , snake_case : Tuple=0 , **snake_case : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = params SCREAMING_SNAKE_CASE : Optional[int] = lr SCREAMING_SNAKE_CASE : Tuple = weight_decay SCREAMING_SNAKE_CASE : int = kwargs class lowercase : '''simple docstring''' def __init__( self : Optional[Any] , snake_case : int , snake_case : Optional[int]=None , snake_case : Any=0 , **snake_case : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = optimizer SCREAMING_SNAKE_CASE : List[Any] = total_num_steps SCREAMING_SNAKE_CASE : Optional[Any] = warmup_num_steps SCREAMING_SNAKE_CASE : int = kwargs
308
1
'''simple docstring''' import importlib import os import sys # This is required to make the module import works (when the python process is running from the root of the repo) sys.path.append('''.''') def _UpperCamelCase (_lowerCamelCase : Union[str, Any] )-> Dict: '''simple docstring''' __snake_case = test_file.split(os.path.sep ) if components[0:2] != ["tests", "models"]: raise ValueError( '''`test_file` should start with `tests/models/` (with `/` being the OS specific path separator). Got ''' f'''{test_file} instead.''' ) __snake_case = components[-1] if not test_fn.endswith('''py''' ): raise ValueError(f'''`test_file` should be a python file. Got {test_fn} instead.''' ) if not test_fn.startswith('''test_modeling_''' ): raise ValueError( f'''`test_file` should point to a file name of the form `test_modeling_*.py`. Got {test_fn} instead.''' ) __snake_case = components[:-1] + [test_fn.replace('''.py''' , '''''' )] __snake_case = '''.'''.join(_lowerCamelCase ) return test_module_path def _UpperCamelCase (_lowerCamelCase : Union[str, Any] )-> Dict: '''simple docstring''' __snake_case = get_module_path(_lowerCamelCase ) __snake_case = importlib.import_module(_lowerCamelCase ) return test_module def _UpperCamelCase (_lowerCamelCase : int )-> List[str]: '''simple docstring''' __snake_case = [] __snake_case = get_test_module(_lowerCamelCase ) for attr in dir(_lowerCamelCase ): if attr.endswith('''ModelTester''' ): tester_classes.append(getattr(_lowerCamelCase , _lowerCamelCase ) ) # sort with class names return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x.__name__ ) def _UpperCamelCase (_lowerCamelCase : Optional[Any] )-> List[Any]: '''simple docstring''' __snake_case = [] __snake_case = get_test_module(_lowerCamelCase ) for attr in dir(_lowerCamelCase ): __snake_case = getattr(_lowerCamelCase , _lowerCamelCase ) # (TF/Flax)ModelTesterMixin is also an attribute in specific model test module. Let's exclude them by checking # `all_model_classes` is not empty (which also excludes other special classes). __snake_case = getattr(_lowerCamelCase , '''all_model_classes''' , [] ) if len(_lowerCamelCase ) > 0: test_classes.append(_lowerCamelCase ) # sort with class names return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x.__name__ ) def _UpperCamelCase (_lowerCamelCase : List[str] )-> str: '''simple docstring''' __snake_case = get_test_classes(_lowerCamelCase ) __snake_case = set() for test_class in test_classes: model_classes.update(test_class.all_model_classes ) # sort with class names return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x.__name__ ) def _UpperCamelCase (_lowerCamelCase : Tuple )-> Any: '''simple docstring''' __snake_case = test_class() if hasattr(_lowerCamelCase , '''setUp''' ): test.setUp() __snake_case = None if hasattr(_lowerCamelCase , '''model_tester''' ): # `(TF/Flax)ModelTesterMixin` has this attribute default to `None`. Let's skip this case. if test.model_tester is not None: __snake_case = test.model_tester.__class__ return model_tester def _UpperCamelCase (_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] )-> str: '''simple docstring''' __snake_case = get_test_classes(_lowerCamelCase ) __snake_case = [] for test_class in test_classes: if model_class in test_class.all_model_classes: target_test_classes.append(_lowerCamelCase ) # sort with class names return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x.__name__ ) def _UpperCamelCase (_lowerCamelCase : List[Any] , _lowerCamelCase : int )-> Optional[int]: '''simple docstring''' __snake_case = get_test_classes_for_model(_lowerCamelCase , _lowerCamelCase ) __snake_case = [] for test_class in test_classes: __snake_case = get_model_tester_from_test_class(_lowerCamelCase ) if tester_class is not None: tester_classes.append(_lowerCamelCase ) # sort with class names return sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x.__name__ ) def _UpperCamelCase (_lowerCamelCase : Union[str, Any] )-> Union[str, Any]: '''simple docstring''' __snake_case = get_test_classes(_lowerCamelCase ) __snake_case = {test_class: get_model_tester_from_test_class(_lowerCamelCase ) for test_class in test_classes} return test_tester_mapping def _UpperCamelCase (_lowerCamelCase : Optional[Any] )-> Union[str, Any]: '''simple docstring''' __snake_case = get_model_classes(_lowerCamelCase ) __snake_case = { model_class: get_test_classes_for_model(_lowerCamelCase , _lowerCamelCase ) for model_class in model_classes } return model_test_mapping def _UpperCamelCase (_lowerCamelCase : Optional[Any] )-> Dict: '''simple docstring''' __snake_case = get_model_classes(_lowerCamelCase ) __snake_case = { model_class: get_tester_classes_for_model(_lowerCamelCase , _lowerCamelCase ) for model_class in model_classes } return model_to_tester_mapping def _UpperCamelCase (_lowerCamelCase : Optional[Any] )-> str: '''simple docstring''' if isinstance(_lowerCamelCase , _lowerCamelCase ): return o elif isinstance(_lowerCamelCase , _lowerCamelCase ): return o.__name__ elif isinstance(_lowerCamelCase , (list, tuple) ): return [to_json(_lowerCamelCase ) for x in o] elif isinstance(_lowerCamelCase , _lowerCamelCase ): return {to_json(_lowerCamelCase ): to_json(_lowerCamelCase ) for k, v in o.items()} else: return o
24
def __UpperCamelCase ( _lowerCAmelCase ): """simple docstring""" if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True UpperCAmelCase = 4 UpperCAmelCase = (1 << p) - 1 for _ in range(p - 2 ): UpperCAmelCase = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
333
0
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self , snake_case , snake_case=None , snake_case=None , snake_case=0 ): lowercase = 1.0 if scale is None else scale lowercase = 0.0 if loc is None else loc super().__init__(snake_case , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=snake_case )] ) @property def SCREAMING_SNAKE_CASE__ ( self ): return self.base_dist.mean * self.scale + self.loc @property def SCREAMING_SNAKE_CASE__ ( self ): return self.base_dist.variance * self.scale**2 @property def SCREAMING_SNAKE_CASE__ ( self ): return self.variance.sqrt() class A_ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case , snake_case , snake_case , **snake_case ): super().__init__(**snake_case ) lowercase = args_dim lowercase = nn.ModuleList([nn.Linear(snake_case , snake_case ) for dim in args_dim.values()] ) lowercase = domain_map def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = [proj(snake_case ) for proj in self.proj] return self.domain_map(*snake_case ) class A_ ( nn.Module ): '''simple docstring''' def __init__( self , snake_case ): super().__init__() lowercase = function def SCREAMING_SNAKE_CASE__ ( self , snake_case , *snake_case ): return self.function(snake_case , *snake_case ) class A_ : '''simple docstring''' _UpperCamelCase : type _UpperCamelCase : int _UpperCamelCase : Dict[str, int] def __init__( self , snake_case = 1 ): lowercase = dim lowercase = {k: dim * self.args_dim[k] for k in self.args_dim} def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if self.dim == 1: return self.distribution_class(*snake_case ) else: return Independent(self.distribution_class(*snake_case ) , 1 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None , snake_case = None , ): lowercase = self._base_distribution(snake_case ) if loc is None and scale is None: return distr else: return AffineTransformed(snake_case , loc=snake_case , scale=snake_case , event_dim=self.event_dim ) @property def SCREAMING_SNAKE_CASE__ ( self ): return () if self.dim == 1 else (self.dim,) @property def SCREAMING_SNAKE_CASE__ ( self ): return len(self.event_shape ) @property def SCREAMING_SNAKE_CASE__ ( self ): return 0.0 def SCREAMING_SNAKE_CASE__ ( self , snake_case ): return ParameterProjection( in_features=snake_case , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def SCREAMING_SNAKE_CASE__ ( self , *snake_case ): raise NotImplementedError() @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case ): return (x + torch.sqrt(torch.square(snake_case ) + 4.0 )) / 2.0 class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Dict[str, int] = {"df": 1, "loc": 1, "scale": 1} _UpperCamelCase : type = StudentT @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , snake_case , snake_case ): lowercase = cls.squareplus(snake_case ).clamp_min(torch.finfo(scale.dtype ).eps ) lowercase = 2.0 + cls.squareplus(snake_case ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Dict[str, int] = {"loc": 1, "scale": 1} _UpperCamelCase : type = Normal @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , snake_case ): lowercase = cls.squareplus(snake_case ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : Dict[str, int] = {"total_count": 1, "logits": 1} _UpperCamelCase : type = NegativeBinomial @classmethod def SCREAMING_SNAKE_CASE__ ( cls , snake_case , snake_case ): lowercase = cls.squareplus(snake_case ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase , lowercase = distr_args if self.dim == 1: return self.distribution_class(total_count=snake_case , logits=snake_case ) else: return Independent(self.distribution_class(total_count=snake_case , logits=snake_case ) , 1 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None , snake_case = None ): lowercase , lowercase = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
565
from abc import ABC, abstractmethod from typing import List, Optional class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self ): # test for the above condition self.test() def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 0 lowercase = False while not completed: if counter == 1: self.reset() lowercase = self.advance() if not self.does_advance(snake_case ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) lowercase , lowercase , lowercase = self.update(snake_case ) counter += 1 if counter > 1_0000: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self , snake_case ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self , snake_case ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE__ ( self , snake_case=False ): raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self , snake_case ): super(snake_case , self ).__init__() if not isinstance(snake_case , snake_case ) or len(snake_case ) == 0: raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(snake_case , snake_case ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) lowercase = token_ids lowercase = len(self.token_ids ) lowercase = -1 # the index of the currently fulfilled step lowercase = False def SCREAMING_SNAKE_CASE__ ( self ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if not isinstance(snake_case , snake_case ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(snake_case )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if not isinstance(snake_case , snake_case ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(snake_case )}''' ) lowercase = False lowercase = False lowercase = False if self.does_advance(snake_case ): self.fulfilled_idx += 1 lowercase = True if self.fulfilled_idx == (self.seqlen - 1): lowercase = True lowercase = completed else: # failed to make progress. lowercase = True self.reset() return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self ): lowercase = False lowercase = 0 def SCREAMING_SNAKE_CASE__ ( self ): return self.seqlen - (self.fulfilled_idx + 1) def SCREAMING_SNAKE_CASE__ ( self , snake_case=False ): lowercase = PhrasalConstraint(self.token_ids ) if stateful: lowercase = self.seqlen lowercase = self.fulfilled_idx lowercase = self.completed return new_constraint class A_ : '''simple docstring''' def __init__( self , snake_case , snake_case=True ): lowercase = max([len(snake_case ) for one in nested_token_ids] ) lowercase = {} for token_ids in nested_token_ids: lowercase = root for tidx, token_id in enumerate(snake_case ): if token_id not in level: lowercase = {} lowercase = level[token_id] if no_subsets and self.has_subsets(snake_case , snake_case ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F''' {nested_token_ids}.''' ) lowercase = root def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = self.trie for current_token in current_seq: lowercase = start[current_token] lowercase = list(start.keys() ) return next_tokens def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = self.next_tokens(snake_case ) return len(snake_case ) == 0 def SCREAMING_SNAKE_CASE__ ( self , snake_case ): lowercase = list(root.values() ) if len(snake_case ) == 0: return 1 else: return sum([self.count_leaves(snake_case ) for nn in next_nodes] ) def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case ): lowercase = self.count_leaves(snake_case ) return len(snake_case ) != leaf_count class A_ ( __lowerCamelCase ): '''simple docstring''' def __init__( self , snake_case ): super(snake_case , self ).__init__() if not isinstance(snake_case , snake_case ) or len(snake_case ) == 0: raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(snake_case , snake_case ) for token_ids in nested_token_ids ): raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(snake_case , snake_case ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) lowercase = DisjunctiveTrie(snake_case ) lowercase = nested_token_ids lowercase = self.trie.max_height lowercase = [] lowercase = False def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.trie.next_tokens(self.current_seq ) if len(snake_case ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if not isinstance(snake_case , snake_case ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(snake_case )}''' ) lowercase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if not isinstance(snake_case , snake_case ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(snake_case )}''' ) lowercase = False lowercase = False lowercase = False if self.does_advance(snake_case ): self.current_seq.append(snake_case ) lowercase = True else: lowercase = True self.reset() lowercase = self.trie.reached_leaf(self.current_seq ) lowercase = completed return stepped, completed, reset def SCREAMING_SNAKE_CASE__ ( self ): lowercase = False lowercase = [] def SCREAMING_SNAKE_CASE__ ( self ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def SCREAMING_SNAKE_CASE__ ( self , snake_case=False ): lowercase = DisjunctiveConstraint(self.token_ids ) if stateful: lowercase = self.seqlen lowercase = self.current_seq lowercase = self.completed return new_constraint class A_ : '''simple docstring''' def __init__( self , snake_case ): lowercase = constraints # max # of steps required to fulfill a given constraint lowercase = max([c.seqlen for c in constraints] ) lowercase = len(snake_case ) lowercase = False self.init_state() def SCREAMING_SNAKE_CASE__ ( self ): lowercase = [] lowercase = None lowercase = [constraint.copy(stateful=snake_case ) for constraint in self.constraints] def SCREAMING_SNAKE_CASE__ ( self ): lowercase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def SCREAMING_SNAKE_CASE__ ( self ): lowercase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowercase = constraint.advance() if isinstance(snake_case , snake_case ): token_list.append(snake_case ) elif isinstance(snake_case , snake_case ): token_list.extend(snake_case ) else: lowercase = self.inprogress_constraint.advance() if isinstance(snake_case , snake_case ): token_list.append(snake_case ) elif isinstance(snake_case , snake_case ): token_list.extend(snake_case ) if len(snake_case ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE__ ( self , snake_case ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowercase , lowercase = self.add(snake_case ) # the entire list of constraints are fulfilled if self.completed: break def SCREAMING_SNAKE_CASE__ ( self , snake_case ): if not isinstance(snake_case , snake_case ): raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' ) lowercase , lowercase = False, False if self.completed: lowercase = True lowercase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowercase , lowercase , lowercase = self.inprogress_constraint.update(snake_case ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=snake_case ) ) lowercase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) lowercase = None if len(self.pending_constraints ) == 0: # we're done! lowercase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(snake_case ): lowercase , lowercase , lowercase = pending_constraint.update(snake_case ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(snake_case ) lowercase = None if not complete and stepped: lowercase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowercase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowercase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def SCREAMING_SNAKE_CASE__ ( self , snake_case=True ): lowercase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowercase = [ constraint.copy(stateful=snake_case ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowercase = self.inprogress_constraint.copy(stateful=snake_case ) lowercase = [constraint.copy() for constraint in self.pending_constraints] return new_state
565
1
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class __A ( unittest.TestCase ): def __init__( self :str , __snake_case :str , __snake_case :Tuple=13 , __snake_case :List[str]=7 , __snake_case :List[str]=True , __snake_case :Dict=True , __snake_case :str=True , __snake_case :Optional[int]=True , __snake_case :Union[str, Any]=99 , __snake_case :List[str]=32 , __snake_case :Tuple=5 , __snake_case :Optional[int]=4 , __snake_case :Any=37 , __snake_case :Any="gelu" , __snake_case :Dict=0.1 , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=5_12 , __snake_case :int=16 , __snake_case :List[Any]=2 , __snake_case :str=0.02 , __snake_case :Dict=4 , ): '''simple docstring''' __magic_name__ : int =parent __magic_name__ : Dict =batch_size __magic_name__ : List[str] =seq_length __magic_name__ : Optional[int] =is_training __magic_name__ : Any =use_attention_mask __magic_name__ : List[str] =use_token_type_ids __magic_name__ : Any =use_labels __magic_name__ : List[Any] =vocab_size __magic_name__ : Optional[Any] =hidden_size __magic_name__ : Tuple =num_hidden_layers __magic_name__ : List[str] =num_attention_heads __magic_name__ : int =intermediate_size __magic_name__ : Optional[int] =hidden_act __magic_name__ : str =hidden_dropout_prob __magic_name__ : int =attention_probs_dropout_prob __magic_name__ : str =max_position_embeddings __magic_name__ : List[str] =type_vocab_size __magic_name__ : Tuple =type_sequence_label_size __magic_name__ : List[str] =initializer_range __magic_name__ : Any =num_choices def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Optional[int] =None if self.use_attention_mask: __magic_name__ : str =random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : Union[str, Any] =None if self.use_token_type_ids: __magic_name__ : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : Any =RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Dict =self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ : Tuple =config_and_inputs __magic_name__ : Union[str, Any] ={"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class __A ( UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = True UpperCamelCase = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Tuple =FlaxRoFormerModelTester(self ) @slow def A__ ( self :List[str] ): '''simple docstring''' for model_class_name in self.all_model_classes: __magic_name__ : Optional[Any] =model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=__snake_case ) __magic_name__ : List[str] =model(np.ones((1, 1) ) ) self.assertIsNotNone(__snake_case ) @require_flax class __A ( unittest.TestCase ): @slow def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : Union[str, Any] =FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""" ) __magic_name__ : Tuple =jnp.array([[0, 1, 2, 3, 4, 5]] ) __magic_name__ : str =model(__snake_case )[0] __magic_name__ : int =5_00_00 __magic_name__ : Dict =(1, 6, vocab_size) self.assertEqual(output.shape , __snake_case ) __magic_name__ : List[Any] =jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3] , __snake_case , atol=1E-4 ) )
21
def _lowerCAmelCase ( __magic_name__ :list ): if any(not isinstance(__magic_name__ , __magic_name__ ) or x < 0 for x in sequence ): raise TypeError('''Sequence must be list of non-negative integers''' ) for _ in range(len(__magic_name__ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(__magic_name__ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
121
0
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class a__ ( A__ ): def lowerCamelCase_ ( self :List[Any] , _lowerCamelCase :str ): '''simple docstring''' with open(_lowerCamelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ : List[Any] =re.compile(r'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)' ) UpperCamelCase_ : Any =input_file.read() UpperCamelCase_ : Dict =regexp.search(_lowerCamelCase ) return match def lowerCamelCase_ ( self :int , _lowerCamelCase :str ): '''simple docstring''' with open(_lowerCamelCase , encoding='utf-8' ) as input_file: UpperCamelCase_ : Any =re.compile(r'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL ) UpperCamelCase_ : Dict =input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCamelCase_ : Union[str, Any] =regexp.finditer(_lowerCamelCase ) UpperCamelCase_ : str =[match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def lowerCamelCase_ ( self :Tuple ): '''simple docstring''' UpperCamelCase_ : Dict =Path('./datasets' ) UpperCamelCase_ : Optional[Any] =list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(_lowerCamelCase ) ): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' ) def lowerCamelCase_ ( self :Optional[Any] ): '''simple docstring''' UpperCamelCase_ : str =Path('./datasets' ) UpperCamelCase_ : Optional[int] =list(dataset_paths.absolute().glob('**/*.py' ) ) for dataset in dataset_files: if self._no_print_statements(str(_lowerCamelCase ) ): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
395
"""simple docstring""" from __future__ import annotations import math def A_ ( __lowercase ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True __SCREAMING_SNAKE_CASE = [num for num in range(3, 100_001, 2) if not is_prime(num)] def A_ ( __lowercase ): if not isinstance(__lowercase , __lowercase ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) UpperCamelCase_ : int =[] for num in range(len(__lowercase ) ): UpperCamelCase_ : Any =0 while 2 * i * i <= odd_composites[num]: UpperCamelCase_ : str =odd_composites[num] - 2 * i * i if is_prime(__lowercase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__lowercase ) == n: return list_nums return [] def A_ ( ): return compute_nums(1 )[0] if __name__ == "__main__": print(F"""{solution() = }""")
395
1
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' def __init__( self : List[Any] , UpperCAmelCase__ : Optional[NestedDataStructureLike[PathLike]] = None , UpperCAmelCase__ : Optional[NamedSplit] = None , UpperCAmelCase__ : Optional[Features] = None , UpperCAmelCase__ : str = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[int] = None , **UpperCAmelCase__ : str , ) ->Any: UpperCAmelCase_ = path_or_paths UpperCAmelCase_ = split if split or isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else '''train''' UpperCAmelCase_ = features UpperCAmelCase_ = cache_dir UpperCAmelCase_ = keep_in_memory UpperCAmelCase_ = streaming UpperCAmelCase_ = num_proc UpperCAmelCase_ = kwargs @abstractmethod def lowerCAmelCase__ ( self : Optional[Any] ) ->Union[Dataset, DatasetDict, IterableDataset, IterableDatasetDict]: pass class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' def __init__( self : Optional[Any] , UpperCAmelCase__ : Optional[Features] = None , UpperCAmelCase__ : str = None , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[int] = None , **UpperCAmelCase__ : List[Any] , ) ->int: UpperCAmelCase_ = features UpperCAmelCase_ = cache_dir UpperCAmelCase_ = keep_in_memory UpperCAmelCase_ = streaming UpperCAmelCase_ = num_proc UpperCAmelCase_ = kwargs @abstractmethod def lowerCAmelCase__ ( self : str ) ->Union[Dataset, IterableDataset]: pass
390
'''simple docstring''' import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = [ "word_embeddings_layernorm.weight", "word_embeddings_layernorm.bias", "input_layernorm.weight", "input_layernorm.bias", "post_attention_layernorm.weight", "post_attention_layernorm.bias", "self_attention.dense.bias", "mlp.dense_4h_to_h.bias", "ln_f.weight", "ln_f.bias", ] lowercase__ : Dict = [ "mlp.dense_4h_to_h.weight", "self_attention.dense.weight", ] def __lowerCamelCase ( _UpperCamelCase : int , _UpperCamelCase : Tuple ): '''simple docstring''' UpperCAmelCase_ = { '''word_embeddings.weight''': '''word_embeddings.weight''', '''word_embeddings.norm.weight''': '''word_embeddings_layernorm.weight''', '''word_embeddings.norm.bias''': '''word_embeddings_layernorm.bias''', '''weight''': '''ln_f.weight''', '''bias''': '''ln_f.bias''', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks UpperCAmelCase_ = int(re.match(R'''.*layer_(\d*).*''' , _UpperCamelCase )[1] ) layer_number -= 3 return F"""h.{layer_number}.""" + key def __lowerCamelCase ( _UpperCamelCase : Optional[Any] ): '''simple docstring''' if dtype == torch.bool: return 1 / 8 UpperCAmelCase_ = re.search(R'''[^\d](\d+)$''' , str(_UpperCamelCase ) ) if bit_search is None: raise ValueError(F"""`dtype` is not a valid dtype: {dtype}.""" ) UpperCAmelCase_ = int(bit_search.groups()[0] ) return bit_size // 8 def __lowerCamelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : str , _UpperCamelCase : Tuple , _UpperCamelCase : Dict , _UpperCamelCase : Dict ): '''simple docstring''' if bloom_config_file == "": UpperCAmelCase_ = BloomConfig() else: UpperCAmelCase_ = BloomConfig.from_json_file(_UpperCamelCase ) if shard_model: UpperCAmelCase_ = os.listdir(_UpperCamelCase ) UpperCAmelCase_ = sorted(filter(lambda _UpperCamelCase : s.startswith('''layer''' ) and "model_00" in s , _UpperCamelCase ) ) UpperCAmelCase_ = {'''weight_map''': {}, '''metadata''': {}} UpperCAmelCase_ = 0 UpperCAmelCase_ = None UpperCAmelCase_ = BloomConfig() for j, file in enumerate(_UpperCamelCase ): print('''Processing file: {}'''.format(_UpperCamelCase ) ) UpperCAmelCase_ = None for i in range(_UpperCamelCase ): # load all TP files UpperCAmelCase_ = file.replace('''model_00''' , F"""model_0{i}""" ) UpperCAmelCase_ = torch.load(os.path.join(_UpperCamelCase , _UpperCamelCase ) , map_location='''cpu''' ) # Rename keys in the transformers names UpperCAmelCase_ = list(temp.keys() ) for key in keys: UpperCAmelCase_ = temp.pop(_UpperCamelCase ) if tensors is None: UpperCAmelCase_ = temp else: for key in tensors.keys(): if any(key.endswith(_UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCAmelCase_ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCAmelCase_ = torch.cat([tensors[key], temp[key]] , dim=_UpperCamelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCAmelCase_ = tensors[key] / pretraining_tp torch.save( _UpperCamelCase , os.path.join( _UpperCamelCase , '''pytorch_model_{}-of-{}.bin'''.format(str(j + 1 ).zfill(5 ) , str(len(_UpperCamelCase ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): UpperCAmelCase_ = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: UpperCAmelCase_ = '''pytorch_model_{}-of-{}.bin'''.format( str(j + 1 ).zfill(5 ) , str(len(_UpperCamelCase ) ).zfill(5 ) ) UpperCAmelCase_ = BloomConfig() UpperCAmelCase_ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME UpperCAmelCase_ = total_size with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) with open(os.path.join(_UpperCamelCase , WEIGHTS_NAME + '''.index.json''' ) , '''w''' , encoding='''utf-8''' ) as f: UpperCAmelCase_ = json.dumps(_UpperCamelCase , indent=2 , sort_keys=_UpperCamelCase ) + '''\n''' f.write(_UpperCamelCase ) else: UpperCAmelCase_ = BloomModel(_UpperCamelCase ) UpperCAmelCase_ = os.listdir(_UpperCamelCase ) UpperCAmelCase_ = sorted(filter(lambda _UpperCamelCase : s.startswith('''layer''' ) and "model_00" in s , _UpperCamelCase ) ) UpperCAmelCase_ = None for i, file in enumerate(_UpperCamelCase ): UpperCAmelCase_ = None for i in range(_UpperCamelCase ): # load all TP files UpperCAmelCase_ = file.replace('''model_00''' , F"""model_0{i}""" ) UpperCAmelCase_ = torch.load(os.path.join(_UpperCamelCase , _UpperCamelCase ) , map_location='''cpu''' ) # Rename keys in the transformers names UpperCAmelCase_ = list(temp.keys() ) for key in keys: UpperCAmelCase_ = temp.pop(_UpperCamelCase ) if tensors is None: UpperCAmelCase_ = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(_UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel UpperCAmelCase_ = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks UpperCAmelCase_ = torch.cat([tensors[key], temp[key]] , dim=_UpperCamelCase ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(_UpperCamelCase ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): UpperCAmelCase_ = tensors[key] / pretraining_tp UpperCAmelCase_ = model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) assert not other_keys.unexpected_keys, F"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: UpperCAmelCase_ = set(other_keys.missing_keys ) else: UpperCAmelCase_ = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) UpperCAmelCase_ = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME UpperCAmelCase_ = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: UpperCAmelCase_ = model.to(config.torch_dtype ) torch.save(model.state_dict() , _UpperCamelCase ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--bloom_checkpoint_path", default=None, type=str, required=True, help="Path to the Megatron-LM checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--bloom_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--shard_model", action="store_true", help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", ) parser.add_argument( "--pretraining_tp", default=4, type=int, help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", ) lowercase__ : Any = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
390
1
'''simple docstring''' import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __SCREAMING_SNAKE_CASE : def __init__( self , __UpperCamelCase , __UpperCamelCase=13 , __UpperCamelCase=32 , __UpperCamelCase=3 , __UpperCamelCase=4 , __UpperCamelCase=[10, 20, 30, 40] , __UpperCamelCase=[2, 2, 3, 2] , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase=37 , __UpperCamelCase="gelu" , __UpperCamelCase=10 , __UpperCamelCase=0.02 , __UpperCamelCase=["stage2", "stage3", "stage4"] , __UpperCamelCase=[2, 3, 4] , __UpperCamelCase=None , ) -> Optional[Any]: _a = parent _a = batch_size _a = image_size _a = num_channels _a = num_stages _a = hidden_sizes _a = depths _a = is_training _a = use_labels _a = intermediate_size _a = hidden_act _a = num_labels _a = initializer_range _a = out_features _a = out_indices _a = scope def a_ ( self ) -> Tuple: _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.num_labels ) _a = self.get_config() return config, pixel_values, labels def a_ ( self ) -> List[str]: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def a_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: _a = ConvNextVaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _a = model(__UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def a_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: _a = ConvNextVaForImageClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _a = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: _a = ConvNextVaBackbone(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _a = model(__UpperCamelCase ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None _a = None _a = ConvNextVaBackbone(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _a = model(__UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def a_ ( self ) -> Optional[int]: _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {"pixel_values": pixel_values} return config, inputs_dict def a_ ( self ) -> int: _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): UpperCAmelCase = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) UpperCAmelCase = ( {'''feature-extraction''': ConvNextVaModel, '''image-classification''': ConvNextVaForImageClassification} if is_torch_available() else {} ) UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def a_ ( self ) -> Union[str, Any]: _a = ConvNextVaModelTester(self ) _a = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def a_ ( self ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a_ ( self ) -> List[str]: return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def a_ ( self ) -> Optional[Any]: pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def a_ ( self ) -> Optional[Any]: pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def a_ ( self ) -> str: pass def a_ ( self ) -> Optional[int]: if not self.model_tester.is_training: return for model_class in self.all_model_classes: _a , _a = self.model_tester.prepare_config_and_inputs_with_labels() _a = True if model_class.__name__ in [ *get_values(__UpperCamelCase ), *get_values(__UpperCamelCase ), ]: continue _a = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() _a = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) _a = model(**__UpperCamelCase ).loss loss.backward() def a_ ( self ) -> Any: if not self.model_tester.is_training: return for model_class in self.all_model_classes: _a , _a = self.model_tester.prepare_config_and_inputs_with_labels() _a = False _a = True if ( model_class.__name__ in [*get_values(__UpperCamelCase ), *get_values(__UpperCamelCase )] or not model_class.supports_gradient_checkpointing ): continue _a = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.gradient_checkpointing_enable() model.train() _a = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) _a = model(**__UpperCamelCase ).loss loss.backward() def a_ ( self ) -> Tuple: _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__UpperCamelCase ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def a_ ( self ) -> str: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def a_ ( self ) -> Tuple: def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): _a = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) ) _a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def a_ ( self ) -> int: _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def a_ ( self ) -> Dict: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = ConvNextVaModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __UpperCamelCase ( ) -> List[Any]: '''simple docstring''' _a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def a_ ( self ) -> Optional[int]: return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def a_ ( self ) -> List[str]: _a = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(__UpperCamelCase ) _a = self.default_image_processor _a = prepare_img() _a = preprocessor(images=__UpperCamelCase , return_tensors="pt" ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): _a = model(**__UpperCamelCase ) # verify the logits _a = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) _a = torch.tensor([0.99_96, 0.19_66, -0.43_86] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
276
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __UpperCamelCase ( ) -> Tuple: '''simple docstring''' _a , _a = 9, 14 # noqa: F841 _a = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _a = defaultdict(__lowerCamelCase ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) _a = mst(__lowerCamelCase ) _a = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: _a = tuple(answer[:2] ) _a = tuple(edge[::-1] ) assert edge in result or reverse in result
276
1
import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self :Optional[int] , __snake_case :int="</s>" , __snake_case :List[Any]="<unk>" , __snake_case :Optional[int]="<pad>" , __snake_case :Any=1_25 , __snake_case :Optional[Any]=None , **__snake_case :Optional[int] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: __magic_name__ : Tuple =[f"<extra_id_{i}>" for i in range(__snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __magic_name__ : List[Any] =len(set(filter(lambda __snake_case : bool("""extra_id""" in str(__snake_case ) ) , __snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" """ provided to ByT5Tokenizer. In this case the additional_special_tokens must include the""" """ extra_ids tokens""" ) __magic_name__ : Tuple =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else pad_token __magic_name__ : List[str] =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else eos_token __magic_name__ : int =AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else unk_token super().__init__( eos_token=__snake_case , unk_token=__snake_case , pad_token=__snake_case , extra_ids=__snake_case , additional_special_tokens=__snake_case , **__snake_case , ) __magic_name__ : Union[str, Any] =extra_ids __magic_name__ : Tuple =2**8 # utf is 8 bits # define special tokens dict __magic_name__ : Dict[int, str] ={ self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } __magic_name__ : Optional[int] =len(self.special_tokens_encoder ) __magic_name__ : Any =len(__snake_case ) for i, token in enumerate(__snake_case ): __magic_name__ : Union[str, Any] =self.vocab_size + i - n __magic_name__ : Dict[str, int] ={v: k for k, v in self.special_tokens_encoder.items()} @property def A__ ( self :Optional[Any] ): '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def A__ ( self :Tuple , __snake_case :List[int] , __snake_case :Optional[List[int]] = None , __snake_case :bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__snake_case )) + [1] return ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1] def A__ ( self :Union[str, Any] , __snake_case :List[int] ): '''simple docstring''' if len(__snake_case ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def A__ ( self :Any , __snake_case :List[int] , __snake_case :Optional[List[int]] = None ): '''simple docstring''' __magic_name__ : Union[str, Any] =[self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def A__ ( self :Union[str, Any] , __snake_case :List[int] , __snake_case :Optional[List[int]] = None ): '''simple docstring''' __magic_name__ : Optional[Any] =self._add_eos_if_not_present(__snake_case ) if token_ids_a is None: return token_ids_a else: __magic_name__ : List[str] =self._add_eos_if_not_present(__snake_case ) return token_ids_a + token_ids_a def A__ ( self :Tuple , __snake_case :str ): '''simple docstring''' __magic_name__ : Dict =[chr(__snake_case ) for i in text.encode("""utf-8""" )] return tokens def A__ ( self :int , __snake_case :List[str] ): '''simple docstring''' if token in self.special_tokens_encoder: __magic_name__ : Dict =self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: __magic_name__ : int =self.added_tokens_encoder[token] elif len(__snake_case ) != 1: __magic_name__ : Optional[Any] =self.unk_token_id else: __magic_name__ : Any =ord(__snake_case ) + self._num_special_tokens return token_id def A__ ( self :Optional[Any] , __snake_case :int ): '''simple docstring''' if index in self.special_tokens_decoder: __magic_name__ : Any =self.special_tokens_decoder[index] else: __magic_name__ : int =chr(index - self._num_special_tokens ) return token def A__ ( self :Union[str, Any] , __snake_case :int ): '''simple docstring''' __magic_name__ : Any =B"""""" for token in tokens: if token in self.special_tokens_decoder: __magic_name__ : int =self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.added_tokens_decoder: __magic_name__ : Union[str, Any] =self.special_tokens_decoder[token].encode("""utf-8""" ) elif token in self.special_tokens_encoder: __magic_name__ : str =token.encode("""utf-8""" ) elif token in self.added_tokens_encoder: __magic_name__ : Optional[int] =token.encode("""utf-8""" ) else: __magic_name__ : Tuple =bytes([ord(__snake_case )] ) bstring += tok_string __magic_name__ : str =bstring.decode("""utf-8""" , errors="""ignore""" ) return string def A__ ( self :Tuple , __snake_case :str , __snake_case :Optional[str] = None ): '''simple docstring''' return ()
21
import unittest from accelerate import debug_launcher from accelerate.test_utils import require_cpu, test_ops, test_script @require_cpu class __A ( unittest.TestCase ): def A__ ( self :Tuple ): '''simple docstring''' debug_launcher(test_script.main ) def A__ ( self :Dict ): '''simple docstring''' debug_launcher(test_ops.main )
21
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : List[str] =logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] ={ "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class __snake_case ( lowercase_ ): '''simple docstring''' _snake_case = '''swinv2''' _snake_case = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self : str , _UpperCamelCase : Dict=224 , _UpperCamelCase : List[Any]=4 , _UpperCamelCase : Tuple=3 , _UpperCamelCase : List[str]=96 , _UpperCamelCase : str=[2, 2, 6, 2] , _UpperCamelCase : Tuple=[3, 6, 12, 24] , _UpperCamelCase : List[str]=7 , _UpperCamelCase : str=4.0 , _UpperCamelCase : List[str]=True , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Tuple=0.0 , _UpperCamelCase : Optional[int]=0.1 , _UpperCamelCase : Any="gelu" , _UpperCamelCase : List[Any]=False , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : Optional[int]=1E-5 , _UpperCamelCase : Dict=32 , **_UpperCamelCase : str , ) ->Optional[Any]: """simple docstring""" super().__init__(**UpperCamelCase__) _lowerCamelCase : Tuple = image_size _lowerCamelCase : Dict = patch_size _lowerCamelCase : Optional[Any] = num_channels _lowerCamelCase : Union[str, Any] = embed_dim _lowerCamelCase : Dict = depths _lowerCamelCase : str = len(UpperCamelCase__) _lowerCamelCase : int = num_heads _lowerCamelCase : Optional[Any] = window_size _lowerCamelCase : Any = mlp_ratio _lowerCamelCase : Dict = qkv_bias _lowerCamelCase : Dict = hidden_dropout_prob _lowerCamelCase : Dict = attention_probs_dropout_prob _lowerCamelCase : str = drop_path_rate _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : Optional[int] = use_absolute_embeddings _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : List[str] = initializer_range _lowerCamelCase : Any = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCamelCase : Dict = int(embed_dim * 2 ** (len(UpperCamelCase__) - 1)) _lowerCamelCase : Optional[Any] = (0, 0, 0, 0)
710
from __future__ import annotations from math import pi from typing import Protocol import matplotlib.pyplot as plt import numpy as np class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : float) ->float: """simple docstring""" return 0.0 def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : int = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] ) _lowerCamelCase : Tuple = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] ) return lowest, highest def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Tuple = [1] + [0] * (size - 1) _lowerCamelCase : Optional[Any] = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Tuple = np.abs(np.fft.fft(__A ) ) _lowerCamelCase : List[Any] = 20 * np.logaa(__A ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) # Display within reasonable bounds _lowerCamelCase : Any = get_bounds(__A , __A ) plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) ) plt.ylabel("""Gain (dB)""" ) plt.plot(__A ) plt.show() def A__ ( __A , __A ): '''simple docstring''' _lowerCamelCase : Tuple = 512 _lowerCamelCase : Union[str, Any] = [1] + [0] * (size - 1) _lowerCamelCase : int = [filter_type.process(__A ) for item in inputs] _lowerCamelCase : Optional[Any] = [0] * (samplerate - size) # zero-padding outputs += filler _lowerCamelCase : Any = np.angle(np.fft.fft(__A ) ) # Frequencies on log scale from 24 to nyquist frequency plt.xlim(24 , samplerate / 2 - 1 ) plt.xlabel("""Frequency (Hz)""" ) plt.xscale("""log""" ) plt.ylim(-2 * pi , 2 * pi ) plt.ylabel("""Phase shift (Radians)""" ) plt.plot(np.unwrap(__A , -2 * pi ) ) plt.show()
15
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue_model_parallelism.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 16_00, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 16_00, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, ] ) class __UpperCamelCase ( unittest.TestCase ): def lowercase__ ( self ): """simple docstring""" if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split(), encoding='''utf-8''', check=lowerCAmelCase, ) assert hasattr(self, '''env''' ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ ={ 'enabled': True, 'processes_per_host': 8, } lowerCamelCase_ ={ 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } lowerCamelCase_ ={'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} lowerCamelCase_ ='trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=f'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''', instance_count=lowerCAmelCase, instance_type=self.instance_type, debugger_hook_config=lowerCAmelCase, hyperparameters={ **self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path, '''max_steps''': 500, }, metric_definitions=self.env.metric_definitions, distribution=lowerCAmelCase, py_version='''py36''', ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" TrainingJobAnalytics(lowerCAmelCase ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def lowercase__ ( self, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.create_estimator(lowerCAmelCase ) # run training estimator.fit() # result dataframe lowerCamelCase_ =TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowerCamelCase_ =list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) lowerCamelCase_ =list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowerCamelCase_ =( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''', 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''', '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss}, lowerCAmelCase )
676
def _lowercase ( __SCREAMING_SNAKE_CASE ) -> bool: UpperCamelCase__ : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack UpperCamelCase__ : set[int] = set() return any( node not in visited and depth_first_search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for node in graph ) def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> bool: visited.add(__SCREAMING_SNAKE_CASE ) rec_stk.add(__SCREAMING_SNAKE_CASE ) for node in graph[vertex]: if node not in visited: if depth_first_search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(__SCREAMING_SNAKE_CASE ) return False if __name__ == "__main__": from doctest import testmod testmod()
410
0
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy a_ : List[str] = logging.getLogger(__name__) def _A (lowerCAmelCase__ :torch.nn.Module , lowerCAmelCase__ :BnbQuantizationConfig , lowerCAmelCase__ :Union[str, os.PathLike] = None , lowerCAmelCase__ :Optional[Dict[str, Union[int, str, torch.device]]] = None , lowerCAmelCase__ :Optional[List[str]] = None , lowerCAmelCase__ :Optional[Dict[Union[int, str], Union[int, str]]] = None , lowerCAmelCase__ :Optional[Union[str, os.PathLike]] = None , lowerCAmelCase__ :bool = False , ) -> List[str]: '''simple docstring''' _a = bnb_quantization_config.load_in_abit _a = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( 'You have a version of `bitsandbytes` that is not compatible with 8bit quantization,' ' make sure you have the latest version of `bitsandbytes` installed.' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( 'You have a version of `bitsandbytes` that is not compatible with 4bit quantization,' 'make sure you have the latest version of `bitsandbytes` installed.' ) _a = [] # custom device map if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(device_map.keys() ) > 1: _a = [key for key, value in device_map.items() if value in ['disk', 'cpu']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: _a = get_keys_to_not_convert(lowerCAmelCase__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(lowerCAmelCase__ ) _a = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: _a = [] _a = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(lowerCAmelCase__ ) # compatibility with peft _a = load_in_abit _a = load_in_abit _a = get_parameter_device(lowerCAmelCase__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( 'It is not recommended to quantize a loaded model. ' 'The model should be instantiated under the `init_empty_weights` context manager.' ) _a = replace_with_bnb_layers(lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ ) # convert param to the right dtype _a = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: _a = name.replace('.weight' , '' ).replace('.bias' , '' ) _a = getattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(lowerCAmelCase__ ): param.to(lowerCAmelCase__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info( f'The model device type is {model_device.type}. However, cuda is needed for quantization.' 'We move the model to cuda.' ) return model elif weights_location is None: raise RuntimeError( f'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): _a = replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , modules_to_not_convert=lowerCAmelCase__ ) _a = get_quantized_model_device_map( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , max_memory=lowerCAmelCase__ , no_split_module_classes=lowerCAmelCase__ , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): _a = True _a = any(x in list(device_map.values() ) for x in ['cpu', 'disk'] ) load_checkpoint_in_model( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , dtype=bnb_quantization_config.torch_dtype , offload_folder=lowerCAmelCase__ , offload_state_dict=lowerCAmelCase__ , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(lowerCAmelCase__ , device_map=lowerCAmelCase__ , offload_dir=lowerCAmelCase__ ) def _A (lowerCAmelCase__ :Tuple , lowerCAmelCase__ :Dict , lowerCAmelCase__ :List[Any]=None , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :List[Any]=None ) -> List[Any]: '''simple docstring''' if device_map is None: if torch.cuda.is_available(): _a = {'': torch.cuda.current_device()} else: raise RuntimeError('No GPU found. A GPU is needed for quantization.' ) logger.info('The device_map was not initialized.' 'Setting device_map to `{\'\':torch.cuda.current_device()}`.' ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( 'If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ' '\'sequential\'.' ) _a = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) _a = {} _a = special_dtypes _a = no_split_module_classes _a = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": _a = get_balanced_memory( lowerCAmelCase__ , low_zero=(device_map == 'balanced_low_0') , max_memory=lowerCAmelCase__ , **lowerCAmelCase__ , ) _a = max_memory _a = infer_auto_device_map(lowerCAmelCase__ , **lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # check if don't have any quantized module on the cpu _a = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules _a = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( '\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n ' ) else: logger.info( 'Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit' ) del device_map_without_some_modules return device_map def _A (lowerCAmelCase__ :Dict , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Optional[Any]=None , lowerCAmelCase__ :Any=None ) -> Tuple: '''simple docstring''' if modules_to_not_convert is None: _a = [] _a , _a = _replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if not has_been_replaced: logger.warning( 'You are loading your model in 8bit or 4bit but no linear modules were found in your model.' ' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.' ' Please double check your model architecture, or submit an issue on github if you think this is' ' a bug.' ) return model def _A (lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :Union[str, Any]=None , lowerCAmelCase__ :Optional[Any]=None , ) -> List[Any]: '''simple docstring''' _a = False for name, module in model.named_children(): if current_key_name is None: _a = [] current_key_name.append(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` _a = '.'.join(lowerCAmelCase__ ) _a = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: _a = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: _a = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=lowerCAmelCase__ , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: _a = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('load_in_8bit and load_in_4bit can\'t be both False' ) _a = module.weight.data if module.bias is not None: _a = module.bias.data bnb_module.requires_grad_(lowerCAmelCase__ ) setattr(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _a = True if len(list(module.children() ) ) > 0: _a , _a = _replace_with_bnb_layers( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) _a = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _A (lowerCAmelCase__ :Union[str, Any] ) -> Optional[int]: '''simple docstring''' with init_empty_weights(): _a = deepcopy(lowerCAmelCase__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` _a = find_tied_parameters(lowerCAmelCase__ ) # For compatibility with Accelerate < 0.18 if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): _a = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _a = sum(lowerCAmelCase__ , [] ) _a = len(lowerCAmelCase__ ) > 0 # Check if it is a base model _a = False if hasattr(lowerCAmelCase__ , 'base_model_prefix' ): _a = not hasattr(lowerCAmelCase__ , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _a = list(model.named_children() ) _a = [list_modules[-1][0]] # add last module together with tied weights _a = set(lowerCAmelCase__ ) - set(lowerCAmelCase__ ) _a = list(set(lowerCAmelCase__ ) ) + list(lowerCAmelCase__ ) # remove ".weight" from the keys _a = ['.weight', '.bias'] _a = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _a = name.replace(lowerCAmelCase__ , '' ) filtered_module_names.append(lowerCAmelCase__ ) return filtered_module_names def _A (lowerCAmelCase__ :List[Any] ) -> List[str]: '''simple docstring''' for m in model.modules(): if isinstance(lowerCAmelCase__ , bnb.nn.Linearabit ): return True return False def _A (lowerCAmelCase__ :nn.Module ) -> Union[str, Any]: '''simple docstring''' return next(parameter.parameters() ).device def _A (lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict ) -> Tuple: '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , 0 , dtype=lowerCAmelCase__ , value=lowerCAmelCase__ ) _a = param_name _a = model if "." in tensor_name: _a = tensor_name.split('.' ) for split in splits[:-1]: _a = getattr(lowerCAmelCase__ , lowerCAmelCase__ ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) _a = new_module _a = splits[-1] # offload weights _a = False offload_weight(module._parameters[tensor_name] , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ ) if hasattr(module._parameters[tensor_name] , 'SCB' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('weight' , 'SCB' ) , lowerCAmelCase__ , index=lowerCAmelCase__ , ) else: offload_weight(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , index=lowerCAmelCase__ ) offload_weight(lowerCAmelCase__ , param_name.replace('weight' , 'SCB' ) , lowerCAmelCase__ , index=lowerCAmelCase__ ) set_module_tensor_to_device(lowerCAmelCase__ , lowerCAmelCase__ , 'meta' , dtype=lowerCAmelCase__ , value=torch.empty(*param.size() ) )
532
'''simple docstring''' class a : def __init__( self , __magic_name__ ) -> Optional[int]: _a = n _a = [None] * self.n _a = 0 # index of the first element _a = 0 _a = 0 def __len__( self ) -> int: return self.size def __UpperCAmelCase ( self ) -> bool: return self.size == 0 def __UpperCAmelCase ( self ) -> Optional[Any]: return False if self.is_empty() else self.array[self.front] def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[Any]: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) _a = data _a = (self.rear + 1) % self.n self.size += 1 return self def __UpperCAmelCase ( self ) -> Any: if self.size == 0: raise Exception('UNDERFLOW' ) _a = self.array[self.front] _a = None _a = (self.front + 1) % self.n self.size -= 1 return temp
532
1
'''simple docstring''' import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch lowerCAmelCase : Tuple = 'sshleifer/bart-tiny-random' lowerCAmelCase : Tuple = 'patrickvonplaten/t5-tiny-random' @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): @cached_property def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' return AutoConfig.from_pretrained(A_ ) def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase , *UpperCamelCase = create_student_by_copying_alternating_layers(A_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def UpperCAmelCase_ ( self )-> str: '''simple docstring''' UpperCamelCase , *UpperCamelCase = create_student_by_copying_alternating_layers(A_ , tempfile.mkdtemp() , e=1 , d=A_ ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase , *UpperCamelCase = create_student_by_copying_alternating_layers(A_ , tempfile.mkdtemp() , e=1 , d=A_ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def UpperCAmelCase_ ( self )-> Optional[int]: '''simple docstring''' UpperCamelCase , *UpperCamelCase = create_student_by_copying_alternating_layers(A_ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def UpperCAmelCase_ ( self )-> int: '''simple docstring''' with self.assertRaises(A_ ): create_student_by_copying_alternating_layers(A_ , tempfile.mkdtemp() , e=A_ , d=A_ )
3
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a : """simple docstring""" def __init__( self : Optional[Any] , snake_case_ : List[str]=2 , snake_case_ : Optional[int]=3 , snake_case_ : Union[str, Any]=6_4 , snake_case_ : Optional[Any]=None ): '''simple docstring''' snake_case__ : List[str] = np.random.default_rng(snake_case_ ) snake_case__ : int = length snake_case__ : Tuple = rng.normal(size=(length,) ).astype(np.floataa ) snake_case__ : Optional[Any] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : List[Any] ): '''simple docstring''' return self.length def __getitem__( self : List[str] , snake_case_ : int ): '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class a ( torch.nn.Module ): """simple docstring""" def __init__( self : int , snake_case_ : str=0 , snake_case_ : Optional[Any]=0 , snake_case_ : Tuple=False ): '''simple docstring''' super().__init__() snake_case__ : List[str] = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) snake_case__ : Any = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) snake_case__ : int = True def __magic_name__ ( self : int , snake_case_ : str=None ): '''simple docstring''' if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) snake_case__ : str = False return x * self.a[0] + self.b[0] class a ( torch.nn.Module ): """simple docstring""" def __init__( self : List[str] , snake_case_ : Tuple=0 , snake_case_ : int=0 , snake_case_ : int=False ): '''simple docstring''' super().__init__() snake_case__ : Tuple = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) snake_case__ : int = torch.nn.Parameter(torch.tensor(snake_case_ ).float() ) snake_case__ : Union[str, Any] = True def __magic_name__ ( self : Union[str, Any] , snake_case_ : List[str]=None ): '''simple docstring''' if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) snake_case__ : List[Any] = False return x * self.a + self.b def _a ( __lowerCAmelCase : Any , __lowerCAmelCase : int = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer snake_case__ : List[str] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case__ : Optional[int] = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} snake_case__ : List[Any] = load_dataset('''csv''' , data_files=__lowerCAmelCase ) snake_case__ : Union[str, Any] = datasets['''train'''].unique('''label''' ) snake_case__ : Optional[Any] = {v: i for i, v in enumerate(__lowerCAmelCase )} def tokenize_function(__lowerCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Union[str, Any] = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) if "label" in examples: snake_case__ : List[Any] = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case__ : List[Any] = datasets.map( __lowerCAmelCase , batched=__lowerCAmelCase , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(__lowerCAmelCase : Optional[Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowerCAmelCase , padding='''max_length''' , max_length=1_28 , return_tensors='''pt''' ) return tokenizer.pad(__lowerCAmelCase , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. snake_case__ : str = DataLoader(tokenized_datasets['''train'''] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=2 ) snake_case__ : List[Any] = DataLoader(tokenized_datasets['''validation'''] , shuffle=__lowerCAmelCase , collate_fn=__lowerCAmelCase , batch_size=1 ) return train_dataloader, eval_dataloader
347
0
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowerCamelCase (unittest.TestCase ): def __UpperCAmelCase ( self : int ): """simple docstring""" super().tearDown() gc.collect() def __UpperCAmelCase ( self : Tuple ): """simple docstring""" _lowercase , _lowercase : str = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=lowerCamelCase_ , dtype=jnp.bfloataa ) _lowercase , _lowercase : int = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=lowerCamelCase_ , from_pt=lowerCamelCase_ , dtype=jnp.bfloataa ) _lowercase : Union[str, Any] = controlnet_params _lowercase : List[Any] = 'bird' _lowercase : str = jax.device_count() _lowercase : List[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) _lowercase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) _lowercase : List[Any] = pipe.prepare_image_inputs([canny_image] * num_samples ) _lowercase : str = jax.random.PRNGKey(0 ) _lowercase : Tuple = jax.random.split(lowerCamelCase_ , jax.device_count() ) _lowercase : List[Any] = replicate(lowerCamelCase_ ) _lowercase : Union[str, Any] = shard(lowerCamelCase_ ) _lowercase : Optional[int] = shard(lowerCamelCase_ ) _lowercase : List[Any] = pipe( prompt_ids=lowerCamelCase_ , image=lowerCamelCase_ , params=lowerCamelCase_ , prng_seed=lowerCamelCase_ , num_inference_steps=5_0 , jit=lowerCamelCase_ , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) _lowercase : Optional[Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _lowercase : int = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowercase : Optional[int] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowercase : str = jnp.array( [0.16_7969, 0.11_6699, 0.08_1543, 0.15_4297, 0.13_2812, 0.10_8887, 0.16_9922, 0.16_9922, 0.20_5078] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def __UpperCAmelCase ( self : List[Any] ): """simple docstring""" _lowercase , _lowercase : Dict = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=lowerCamelCase_ , dtype=jnp.bfloataa ) _lowercase , _lowercase : Union[str, Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=lowerCamelCase_ , from_pt=lowerCamelCase_ , dtype=jnp.bfloataa ) _lowercase : Optional[Any] = controlnet_params _lowercase : Optional[int] = 'Chef in the kitchen' _lowercase : Optional[Any] = jax.device_count() _lowercase : Optional[Any] = pipe.prepare_text_inputs([prompts] * num_samples ) _lowercase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) _lowercase : Dict = pipe.prepare_image_inputs([pose_image] * num_samples ) _lowercase : Dict = jax.random.PRNGKey(0 ) _lowercase : Dict = jax.random.split(lowerCamelCase_ , jax.device_count() ) _lowercase : Optional[Any] = replicate(lowerCamelCase_ ) _lowercase : int = shard(lowerCamelCase_ ) _lowercase : Dict = shard(lowerCamelCase_ ) _lowercase : Any = pipe( prompt_ids=lowerCamelCase_ , image=lowerCamelCase_ , params=lowerCamelCase_ , prng_seed=lowerCamelCase_ , num_inference_steps=5_0 , jit=lowerCamelCase_ , ).images assert images.shape == (jax.device_count(), 1, 7_6_8, 5_1_2, 3) _lowercase : List[Any] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _lowercase : Optional[Any] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _lowercase : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _lowercase : int = jnp.array( [[0.27_1484, 0.26_1719, 0.27_5391, 0.27_7344, 0.27_9297, 0.29_1016, 0.29_4922, 0.30_2734, 0.30_2734]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
283
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class _lowerCamelCase (__lowerCamelCase ): _snake_case = ["pixel_values"] def __init__( self : Optional[int] , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Dict[str, int]] = None , lowerCamelCase_ : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase_ : bool = True , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : bool = True , lowerCamelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCamelCase_ : bool = True , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , **lowerCamelCase_ : int , ): """simple docstring""" super().__init__(**lowerCamelCase_ ) _lowercase : Optional[Any] = size if size is not None else {'shortest_edge': 2_5_6} _lowercase : Optional[int] = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) _lowercase : List[str] = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} _lowercase : Any = get_size_dict(lowerCamelCase_ ) _lowercase : Optional[int] = do_resize _lowercase : Optional[int] = size _lowercase : Union[str, Any] = resample _lowercase : Optional[Any] = do_center_crop _lowercase : Union[str, Any] = crop_size _lowercase : Any = do_rescale _lowercase : Tuple = rescale_factor _lowercase : Optional[int] = do_normalize _lowercase : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowercase : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : Tuple , ): """simple docstring""" _lowercase : Optional[Any] = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) if "shortest_edge" not in size: raise ValueError(F'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _lowercase : Dict = get_resize_output_image_size(lowerCamelCase_ , size=size['shortest_edge'] , default_to_square=lowerCamelCase_ ) return resize(lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Dict[str, int] , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : str , ): """simple docstring""" _lowercase : Tuple = get_size_dict(lowerCamelCase_ ) return center_crop(lowerCamelCase_ , size=(size['height'], size['width']) , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : float , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : Optional[Any] ): """simple docstring""" return rescale(lowerCamelCase_ , scale=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : np.ndarray , lowerCamelCase_ : Union[float, List[float]] , lowerCamelCase_ : Union[float, List[float]] , lowerCamelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase_ : List[Any] , ): """simple docstring""" return normalize(lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ , data_format=lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : ImageInput , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : PILImageResampling = None , lowerCamelCase_ : bool = None , lowerCamelCase_ : Dict[str, int] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[float] = None , lowerCamelCase_ : Optional[bool] = None , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : Optional[Union[float, List[float]]] = None , lowerCamelCase_ : Optional[Union[str, TensorType]] = None , lowerCamelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCamelCase_ : int , ): """simple docstring""" _lowercase : Optional[Any] = do_resize if do_resize is not None else self.do_resize _lowercase : List[Any] = size if size is not None else self.size _lowercase : Union[str, Any] = get_size_dict(lowerCamelCase_ , default_to_square=lowerCamelCase_ ) _lowercase : Any = resample if resample is not None else self.resample _lowercase : Tuple = do_center_crop if do_center_crop is not None else self.do_center_crop _lowercase : List[Any] = crop_size if crop_size is not None else self.crop_size _lowercase : Tuple = get_size_dict(lowerCamelCase_ ) _lowercase : List[Any] = do_rescale if do_rescale is not None else self.do_rescale _lowercase : int = rescale_factor if rescale_factor is not None else self.rescale_factor _lowercase : int = do_normalize if do_normalize is not None else self.do_normalize _lowercase : str = image_mean if image_mean is not None else self.image_mean _lowercase : List[Any] = image_std if image_std is not None else self.image_std _lowercase : Union[str, Any] = make_list_of_images(lowerCamelCase_ ) if not valid_images(lowerCamelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _lowercase : Optional[Any] = [to_numpy_array(lowerCamelCase_ ) for image in images] if do_resize: _lowercase : Optional[Any] = [self.resize(image=lowerCamelCase_ , size=lowerCamelCase_ , resample=lowerCamelCase_ ) for image in images] if do_center_crop: _lowercase : List[Any] = [self.center_crop(image=lowerCamelCase_ , size=lowerCamelCase_ ) for image in images] if do_rescale: _lowercase : str = [self.rescale(image=lowerCamelCase_ , scale=lowerCamelCase_ ) for image in images] if do_normalize: _lowercase : Any = [self.normalize(image=lowerCamelCase_ , mean=lowerCamelCase_ , std=lowerCamelCase_ ) for image in images] _lowercase : int = [to_channel_dimension_format(lowerCamelCase_ , lowerCamelCase_ ) for image in images] _lowercase : Tuple = {'pixel_values': images} return BatchFeature(data=lowerCamelCase_ , tensor_type=lowerCamelCase_ )
283
1
"""simple docstring""" import numpy as np def lowerCamelCase (a_ :np.array) -> np.array: return 1 / (1 + np.exp(-vector)) def lowerCamelCase (a_ :np.array) -> np.array: return vector * sigmoid(1.7_02 * vector) if __name__ == "__main__": import doctest doctest.testmod()
677
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase (a_ :List[Any] , a_ :Union[str, Any] , a_ :Tuple , a_ :List[str] , a_ :str=True , a_ :str="pt") -> List[str]: lowercase :Optional[int] = {'''add_prefix_space''': True} if isinstance(a_ , a_) and not line.startswith(''' ''') else {} lowercase :Optional[int] = padding_side return tokenizer( [line] , max_length=a_ , padding='''max_length''' if pad_to_max_length else None , truncation=a_ , return_tensors=a_ , add_special_tokens=a_ , **a_ , ) def lowerCamelCase (a_ :str , a_ :Tuple , a_ :Optional[Any]=None , ) -> Tuple: lowercase :Optional[Any] = input_ids.ne(a_).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __magic_name__ ( __UpperCAmelCase ): def __init__( self : Union[str, Any] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[Any] , snake_case__ : str="train" , snake_case__ : Optional[Any]=None , snake_case__ : Tuple=None , snake_case__ : Any=None , snake_case__ : Dict="" , ): '''simple docstring''' super().__init__() lowercase :Tuple = Path(snake_case__ ).joinpath(type_path + '''.source''' ) lowercase :Union[str, Any] = Path(snake_case__ ).joinpath(type_path + '''.target''' ) lowercase :List[Any] = self.get_char_lens(self.src_file ) lowercase :Tuple = max_source_length lowercase :Optional[int] = max_target_length assert min(self.src_lens ) > 0, f"""found empty line in {self.src_file}""" lowercase :Any = tokenizer lowercase :Tuple = prefix if n_obs is not None: lowercase :List[str] = self.src_lens[:n_obs] lowercase :List[Any] = src_lang lowercase :str = tgt_lang def __len__( self : Any ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self : str , snake_case__ : Any ): '''simple docstring''' lowercase :Optional[int] = index + 1 # linecache starts at 1 lowercase :Optional[Any] = self.prefix + linecache.getline(str(self.src_file ) , snake_case__ ).rstrip('''\n''' ) lowercase :Dict = linecache.getline(str(self.tgt_file ) , snake_case__ ).rstrip('''\n''' ) assert source_line, f"""empty source line for index {index}""" assert tgt_line, f"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , snake_case__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right lowercase :Dict = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer ) lowercase :Optional[int] = self.tokenizer.generator if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer lowercase :Optional[int] = encode_line(snake_case__ , snake_case__ , self.max_source_length , '''right''' ) lowercase :Tuple = encode_line(snake_case__ , snake_case__ , self.max_target_length , '''right''' ) lowercase :List[str] = source_inputs['''input_ids'''].squeeze() lowercase :Optional[Any] = target_inputs['''input_ids'''].squeeze() lowercase :List[str] = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __snake_case ( snake_case__ : Optional[int] ): '''simple docstring''' return [len(snake_case__ ) for x in Path(snake_case__ ).open().readlines()] def __snake_case ( self : Tuple , snake_case__ : Union[str, Any] ): '''simple docstring''' lowercase :Optional[Any] = torch.stack([x['''input_ids'''] for x in batch] ) lowercase :Tuple = torch.stack([x['''attention_mask'''] for x in batch] ) lowercase :Tuple = torch.stack([x['''decoder_input_ids'''] for x in batch] ) lowercase :str = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) lowercase :Optional[int] = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) lowercase :List[Any] = trim_batch(snake_case__ , snake_case__ ) lowercase , lowercase :List[str] = trim_batch(snake_case__ , snake_case__ , attention_mask=snake_case__ ) lowercase :Optional[int] = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch UpperCAmelCase = getLogger(__name__) def lowerCamelCase (a_ :List[List]) -> Tuple: return list(itertools.chain.from_iterable(a_)) def lowerCamelCase (a_ :str) -> None: lowercase :List[str] = get_git_info() save_json(a_ , os.path.join(a_ , '''git_log.json''')) def lowerCamelCase (a_ :Optional[int] , a_ :Optional[int] , a_ :Optional[Any]=4 , **a_ :Optional[Any]) -> str: with open(a_ , '''w''') as f: json.dump(a_ , a_ , indent=a_ , **a_) def lowerCamelCase (a_ :Dict) -> Union[str, Any]: with open(a_) as f: return json.load(a_) def lowerCamelCase () -> List[str]: lowercase :Dict = git.Repo(search_parent_directories=a_) lowercase :int = { '''repo_id''': str(a_), '''repo_sha''': str(repo.head.object.hexsha), '''repo_branch''': str(repo.active_branch), '''hostname''': str(socket.gethostname()), } return repo_infos def lowerCamelCase (a_ :Callable , a_ :Iterable) -> List: return list(map(a_ , a_)) def lowerCamelCase (a_ :Optional[Any] , a_ :str) -> Any: with open(a_ , '''wb''') as f: return pickle.dump(a_ , a_) def lowerCamelCase (a_ :List[str]) -> List[str]: def remove_articles(a_ :Union[str, Any]): return re.sub(R'''\b(a|an|the)\b''' , ''' ''' , a_) def white_space_fix(a_ :Tuple): return " ".join(text.split()) def remove_punc(a_ :int): lowercase :List[Any] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(a_ :int): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(a_)))) def lowerCamelCase (a_ :List[str] , a_ :Any) -> List[str]: lowercase :Dict = normalize_answer(a_).split() lowercase :int = normalize_answer(a_).split() lowercase :List[Any] = Counter(a_) & Counter(a_) lowercase :Optional[int] = sum(common.values()) if num_same == 0: return 0 lowercase :str = 1.0 * num_same / len(a_) lowercase :Tuple = 1.0 * num_same / len(a_) lowercase :Tuple = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase (a_ :Tuple , a_ :Optional[Any]) -> List[Any]: return normalize_answer(a_) == normalize_answer(a_) def lowerCamelCase (a_ :List[str] , a_ :List[str]) -> Dict: assert len(a_) == len(a_) lowercase :Any = 0 for hypo, pred in zip(a_ , a_): em += exact_match_score(a_ , a_) if len(a_) > 0: em /= len(a_) return {"em": em} def lowerCamelCase (a_ :Union[str, Any]) -> Optional[Any]: return model_prefix.startswith('''rag''') def lowerCamelCase (a_ :List[str] , a_ :Tuple , a_ :List[str]) -> Any: lowercase :List[str] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead lowercase :str = '''dropout_rate''' for p in extra_params: if getattr(a_ , a_ , a_): if not hasattr(a_ , a_) and not hasattr(a_ , equivalent_param[p]): logger.info('''config doesn\'t have a `{}` attribute'''.format(a_)) delattr(a_ , a_) continue lowercase :List[str] = p if hasattr(a_ , a_) else equivalent_param[p] setattr(a_ , a_ , getattr(a_ , a_)) delattr(a_ , a_) return hparams, config
677
1
"""simple docstring""" from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax UpperCAmelCase = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE__) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__): def __init__( self : int , **__UpperCamelCase : Dict ) -> Union[str, Any]: super().__init__(**snake_case__ ) requires_backends(self , '''vision''' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : str , __UpperCamelCase : int , **__UpperCamelCase : Any ) -> List[str]: return super().__call__(snake_case__ , **snake_case__ ) def _UpperCamelCase ( self : List[str] , **__UpperCamelCase : Any ) -> Optional[int]: _UpperCamelCase = {} if "candidate_labels" in kwargs: _UpperCamelCase = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: _UpperCamelCase = kwargs["hypothesis_template"] return preprocess_params, {}, {} def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : int , __UpperCamelCase : int=None , __UpperCamelCase : List[str]="This is a photo of {}." ) -> Optional[int]: _UpperCamelCase = load_image(snake_case__ ) _UpperCamelCase = self.image_processor(images=[image] , return_tensors=self.framework ) _UpperCamelCase = candidate_labels _UpperCamelCase = [hypothesis_template.format(snake_case__ ) for x in candidate_labels] _UpperCamelCase = self.tokenizer(snake_case__ , return_tensors=self.framework , padding=snake_case__ ) _UpperCamelCase = [text_inputs] return inputs def _UpperCamelCase ( self : Any , __UpperCamelCase : List[str] ) -> Optional[Any]: _UpperCamelCase = model_inputs.pop('''candidate_labels''' ) _UpperCamelCase = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , snake_case__ ): _UpperCamelCase = text_inputs[0] else: # Batching case. _UpperCamelCase = text_inputs[0][0] _UpperCamelCase = self.model(**snake_case__ , **snake_case__ ) _UpperCamelCase = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_image, } return model_outputs def _UpperCamelCase ( self : Dict , __UpperCamelCase : str ) -> Optional[Any]: _UpperCamelCase = model_outputs.pop('''candidate_labels''' ) _UpperCamelCase = model_outputs["logits"][0] if self.framework == "pt": _UpperCamelCase = logits.softmax(dim=-1 ).squeeze(-1 ) _UpperCamelCase = probs.tolist() if not isinstance(snake_case__ , snake_case__ ): _UpperCamelCase = [scores] elif self.framework == "tf": _UpperCamelCase = stable_softmax(snake_case__ , axis=-1 ) _UpperCamelCase = probs.numpy().tolist() else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _UpperCamelCase = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(snake_case__ , snake_case__ ) , key=lambda __UpperCamelCase : -x[0] ) ] return result
719
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {"""vocab_file""": """vocab.txt"""} UpperCAmelCase = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } UpperCAmelCase = { """YituTech/conv-bert-base""": 512, """YituTech/conv-bert-medium-small""": 512, """YituTech/conv-bert-small""": 512, } UpperCAmelCase = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class UpperCAmelCase_ ( _lowercase): snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_INIT_CONFIGURATION snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = ConvBertTokenizer def __init__( self : Union[str, Any] , __UpperCamelCase : Dict=None , __UpperCamelCase : Dict=None , __UpperCamelCase : List[str]=True , __UpperCamelCase : Optional[int]="[UNK]" , __UpperCamelCase : Tuple="[SEP]" , __UpperCamelCase : Tuple="[PAD]" , __UpperCamelCase : Tuple="[CLS]" , __UpperCamelCase : Any="[MASK]" , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : List[Any]=None , **__UpperCamelCase : Optional[Any] , ) -> Any: super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , tokenize_chinese_chars=__UpperCamelCase , strip_accents=__UpperCamelCase , **__UpperCamelCase , ) _UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , __UpperCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , __UpperCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __UpperCamelCase ) != tokenize_chinese_chars ): _UpperCamelCase = getattr(__UpperCamelCase , normalizer_state.pop('''type''' ) ) _UpperCamelCase = do_lower_case _UpperCamelCase = strip_accents _UpperCamelCase = tokenize_chinese_chars _UpperCamelCase = normalizer_class(**__UpperCamelCase ) _UpperCamelCase = do_lower_case def _UpperCamelCase ( self : Tuple , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Any=None ) -> str: _UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCamelCase ( self : List[str] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) -> List[int]: _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCamelCase ( self : str , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) -> Tuple[str]: _UpperCamelCase = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase )
342
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCamelCase : Tuple = logging.get_logger(__name__) class a ( a__ ): snake_case__ = ['''input_features''', '''is_longer'''] def __init__( self , _snake_case=64 , _snake_case=4_80_00 , _snake_case=4_80 , _snake_case=10 , _snake_case=10_24 , _snake_case=0.0 , _snake_case=False , _snake_case = 0 , _snake_case = 1_40_00 , _snake_case = None , _snake_case = "fusion" , _snake_case = "repeatpad" , **_snake_case , ): """simple docstring""" super().__init__( feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) lowerCAmelCase = top_db lowerCAmelCase = truncation lowerCAmelCase = padding lowerCAmelCase = fft_window_size lowerCAmelCase = (fft_window_size >> 1) + 1 lowerCAmelCase = hop_length lowerCAmelCase = max_length_s lowerCAmelCase = max_length_s * sampling_rate lowerCAmelCase = sampling_rate lowerCAmelCase = frequency_min lowerCAmelCase = frequency_max lowerCAmelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_snake_case , min_frequency=_snake_case , max_frequency=_snake_case , sampling_rate=_snake_case , norm=_snake_case , mel_scale='htk' , ) lowerCAmelCase = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_snake_case , min_frequency=_snake_case , max_frequency=_snake_case , sampling_rate=_snake_case , norm='slaney' , mel_scale='slaney' , ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = copy.deepcopy(self.__dict__ ) lowerCAmelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def UpperCamelCase__ ( self , _snake_case , _snake_case = None ): """simple docstring""" lowerCAmelCase = spectrogram( _snake_case , window_function(self.fft_window_size , 'hann' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_snake_case , log_mel='dB' , ) return log_mel_spectrogram.T def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase = [0] # randomly choose index for each part lowerCAmelCase = np.random.choice(ranges[0] ) lowerCAmelCase = np.random.choice(ranges[1] ) lowerCAmelCase = np.random.choice(ranges[2] ) lowerCAmelCase = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase = torch.tensor(mel[None, None, :] ) lowerCAmelCase = torch.nn.functional.interpolate( _snake_case , size=[chunk_frames, 64] , mode='bilinear' , align_corners=_snake_case ) lowerCAmelCase = mel_shrink[0][0].numpy() lowerCAmelCase = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase = len(_snake_case ) - max_length lowerCAmelCase = np.random.randint(0 , overflow + 1 ) lowerCAmelCase = waveform[idx : idx + max_length] lowerCAmelCase = self._np_extract_fbank_features(_snake_case , self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase = self._np_extract_fbank_features(_snake_case , self.mel_filters ) lowerCAmelCase = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase = np.stack([mel, mel, mel, mel] , axis=0 ) lowerCAmelCase = False else: lowerCAmelCase = self._random_mel_fusion(_snake_case , _snake_case , _snake_case ) lowerCAmelCase = True else: raise NotImplementedError(F'data_truncating {truncation} not implemented' ) else: lowerCAmelCase = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase = int(max_length / len(_snake_case ) ) lowerCAmelCase = np.stack(np.tile(_snake_case , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase = int(max_length / len(_snake_case ) ) lowerCAmelCase = np.stack(np.tile(_snake_case , _snake_case ) ) lowerCAmelCase = np.pad(_snake_case , (0, max_length - waveform.shape[0]) , mode='constant' , constant_values=0 ) if truncation == "fusion": lowerCAmelCase = self._np_extract_fbank_features(_snake_case , self.mel_filters ) lowerCAmelCase = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: lowerCAmelCase = self._np_extract_fbank_features(_snake_case , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _snake_case , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , **_snake_case , ): """simple docstring""" lowerCAmelCase = truncation if truncation is not None else self.truncation lowerCAmelCase = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowerCAmelCase = isinstance(_snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowerCAmelCase = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase = [np.asarray(_snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): lowerCAmelCase = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase = [np.asarray(_snake_case )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase = [ self._get_input_mel(_snake_case , max_length if max_length else self.nb_max_samples , _snake_case , _snake_case ) for waveform in raw_speech ] lowerCAmelCase = [] lowerCAmelCase = [] for mel, longer in padded_inputs: input_mel.append(_snake_case ) is_longer.append(_snake_case ) if truncation == "fusion" and sum(_snake_case ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase = np.random.randint(0 , len(_snake_case ) ) lowerCAmelCase = True if isinstance(input_mel[0] , _snake_case ): lowerCAmelCase = [np.asarray(_snake_case , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase = [[longer] for longer in is_longer] lowerCAmelCase = {'input_features': input_mel, 'is_longer': is_longer} lowerCAmelCase = BatchFeature(_snake_case ) if return_tensors is not None: lowerCAmelCase = input_features.convert_to_tensors(_snake_case ) return input_features
4
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( a__ , a__ , unittest.TestCase ): snake_case__ = IFInpaintingPipeline snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} snake_case__ = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def UpperCamelCase__ ( self ): """simple docstring""" return self._get_dummy_components() def UpperCamelCase__ ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(_snake_case ) else: lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_snake_case ) ).to(_snake_case ) lowerCAmelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCamelCase__ ( self ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCamelCase__ ( self ): """simple docstring""" self._test_save_load_local() def UpperCamelCase__ ( self ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
4
1
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase__ = TypeVar('''KEY''') UpperCamelCase__ = TypeVar('''VAL''') @dataclass(frozen=UpperCamelCase_ , slots=UpperCamelCase_ ) class a__ ( Generic[KEY, VAL] ): snake_case__ = 4_2 snake_case__ = 4_2 class a__ ( _Item ): def __init__( self : Dict) -> None: """simple docstring""" super().__init__(__a ,__a) def __bool__( self : Any) -> bool: """simple docstring""" return False UpperCamelCase__ = _DeletedItem() class a__ ( MutableMapping[KEY, VAL] ): def __init__( self : Union[str, Any] ,a__ : List[str] = 8 ,a__ : int = 0.75) -> None: """simple docstring""" _lowerCAmelCase:Any = initial_block_size _lowerCAmelCase:list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 _lowerCAmelCase:List[str] = capacity_factor _lowerCAmelCase:Dict = 0 def __UpperCamelCase ( self : Optional[Any] ,a__ : List[str]) -> int: """simple docstring""" return hash(__a) % len(self._buckets) def __UpperCamelCase ( self : str ,a__ : Tuple) -> int: """simple docstring""" return (ind + 1) % len(self._buckets) def __UpperCamelCase ( self : int ,a__ : Optional[Any] ,a__ : List[Any] ,a__ : str) -> bool: """simple docstring""" _lowerCAmelCase:List[str] = self._buckets[ind] if not stored: _lowerCAmelCase:Optional[Any] = _Item(__a ,__a) self._len += 1 return True elif stored.key == key: _lowerCAmelCase:Dict = _Item(__a ,__a) return True else: return False def __UpperCamelCase ( self : int) -> bool: """simple docstring""" _lowerCAmelCase:str = len(self._buckets) * self._capacity_factor return len(self) >= int(__a) def __UpperCamelCase ( self : List[str]) -> bool: """simple docstring""" if len(self._buckets) <= self._initial_block_size: return False _lowerCAmelCase:str = len(self._buckets) * self._capacity_factor / 2 return len(self) < limit def __UpperCamelCase ( self : int ,a__ : str) -> None: """simple docstring""" _lowerCAmelCase:Optional[int] = self._buckets _lowerCAmelCase:Dict = [None] * new_size _lowerCAmelCase:Optional[Any] = 0 for item in old_buckets: if item: self._add_item(item.key ,item.val) def __UpperCamelCase ( self : Tuple) -> None: """simple docstring""" self._resize(len(self._buckets) * 2) def __UpperCamelCase ( self : str) -> None: """simple docstring""" self._resize(len(self._buckets) // 2) def __UpperCamelCase ( self : int ,a__ : Tuple) -> Iterator[int]: """simple docstring""" _lowerCAmelCase:List[Any] = self._get_bucket_index(__a) for _ in range(len(self._buckets)): yield ind _lowerCAmelCase:Union[str, Any] = self._get_next_ind(__a) def __UpperCamelCase ( self : List[str] ,a__ : str ,a__ : Optional[int]) -> None: """simple docstring""" for ind in self._iterate_buckets(__a): if self._try_set(__a ,__a ,__a): break def __setitem__( self : Dict ,a__ : Union[str, Any] ,a__ : str) -> None: """simple docstring""" if self._is_full(): self._size_up() self._add_item(__a ,__a) def __delitem__( self : str ,a__ : Optional[Any]) -> None: """simple docstring""" for ind in self._iterate_buckets(__a): _lowerCAmelCase:Optional[int] = self._buckets[ind] if item is None: raise KeyError(__a) if item is _deleted: continue if item.key == key: _lowerCAmelCase:int = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self : Union[str, Any] ,a__ : List[Any]) -> VAL: """simple docstring""" for ind in self._iterate_buckets(__a): _lowerCAmelCase:Union[str, Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__a) def __len__( self : Dict) -> int: """simple docstring""" return self._len def __iter__( self : List[str]) -> Iterator[KEY]: """simple docstring""" yield from (item.key for item in self._buckets if item) def __repr__( self : Optional[Any]) -> str: """simple docstring""" _lowerCAmelCase:str = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item) return F'HashMap({val_string})'
717
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class a__ ( UpperCamelCase_ , UpperCamelCase_ ): snake_case__ = 1 @register_to_config def __init__( self : Union[str, Any] ,a__ : List[str]=2000 ,a__ : Tuple=0.1 ,a__ : Union[str, Any]=20 ,a__ : int=1E-3) -> Any: """simple docstring""" _lowerCAmelCase:Optional[Any] = None _lowerCAmelCase:List[Any] = None _lowerCAmelCase:Dict = None def __UpperCamelCase ( self : int ,a__ : Any ,a__ : Union[str, torch.device] = None) -> List[str]: """simple docstring""" _lowerCAmelCase:str = torch.linspace(1 ,self.config.sampling_eps ,a__ ,device=a__) def __UpperCamelCase ( self : Union[str, Any] ,a__ : str ,a__ : List[Any] ,a__ : Union[str, Any] ,a__ : Any=None) -> Tuple: """simple docstring""" if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''') # TODO(Patrick) better comments + non-PyTorch # postprocess model score _lowerCAmelCase:Union[str, Any] = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) _lowerCAmelCase:Dict = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff)) _lowerCAmelCase:Optional[Any] = std.flatten() while len(std.shape) < len(score.shape): _lowerCAmelCase:str = std.unsqueeze(-1) _lowerCAmelCase:Optional[int] = -score / std # compute _lowerCAmelCase:Optional[Any] = -1.0 / len(self.timesteps) _lowerCAmelCase:Union[str, Any] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) _lowerCAmelCase:Any = beta_t.flatten() while len(beta_t.shape) < len(x.shape): _lowerCAmelCase:List[str] = beta_t.unsqueeze(-1) _lowerCAmelCase:Tuple = -0.5 * beta_t * x _lowerCAmelCase:str = torch.sqrt(a__) _lowerCAmelCase:Union[str, Any] = drift - diffusion**2 * score _lowerCAmelCase:List[str] = x + drift * dt # add noise _lowerCAmelCase:Any = randn_tensor(x.shape ,layout=x.layout ,generator=a__ ,device=x.device ,dtype=x.dtype) _lowerCAmelCase:Union[str, Any] = x_mean + diffusion * math.sqrt(-dt) * noise return x, x_mean def __len__( self : int) -> Tuple: """simple docstring""" return self.config.num_train_timesteps
439
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Dict = ViTImageProcessor if is_vision_available() else None @property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self : List[str] ): '''simple docstring''' _a : Any = (3, 32, 128) _a : List[Any] = tempfile.mkdtemp() # fmt: off _a : int = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on _a : Tuple = dict(zip(_a ,range(len(_a ) ) ) ) _a : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(_a ) + '\n' ) _a : Optional[int] = { 'do_normalize': False, 'do_resize': True, 'image_processor_type': 'ViTImageProcessor', 'resample': 3, 'size': {'height': 32, 'width': 128}, } _a : List[str] = os.path.join(self.tmpdirname ,_a ) with open(self.image_processor_file ,'w' ,encoding='utf-8' ) as fp: json.dump(_a ,_a ) def __lowercase ( self : List[Any] ,**_a : Union[str, Any] ): '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : str ,**_a : Optional[int] ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname ,**_a ) def __lowercase ( self : List[str] ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __lowercase ( self : List[str] ): '''simple docstring''' _a : List[Any] = np.random.randint(255 ,size=(3, 30, 400) ,dtype=np.uinta ) _a : str = Image.fromarray(np.moveaxis(_a ,0 ,-1 ) ) return image_input def __lowercase ( self : str ): '''simple docstring''' _a : Tuple = self.get_tokenizer() _a : Tuple = self.get_image_processor() _a : Dict = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Any = MgpstrProcessor.from_pretrained(self.tmpdirname ,use_fast=_a ) self.assertEqual(processor.char_tokenizer.get_vocab() ,tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer ,_a ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor ,_a ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : int = self.get_tokenizer() _a : Optional[int] = self.get_image_processor() _a : List[Any] = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) processor.save_pretrained(self.tmpdirname ) _a : Any = self.get_tokenizer(bos_token='(BOS)' ,eos_token='(EOS)' ) _a : Optional[int] = self.get_image_processor(do_normalize=_a ,padding_value=1.0 ) _a : List[str] = MgpstrProcessor.from_pretrained( self.tmpdirname ,bos_token='(BOS)' ,eos_token='(EOS)' ,do_normalize=_a ,padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer ,_a ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_a ) def __lowercase ( self : Tuple ): '''simple docstring''' _a : Optional[Any] = self.get_image_processor() _a : Any = self.get_tokenizer() _a : List[Any] = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) _a : List[str] = self.prepare_image_inputs() _a : Tuple = image_processor(_a ,return_tensors='np' ) _a : Tuple = processor(images=_a ,return_tensors='np' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Dict = self.get_image_processor() _a : int = self.get_tokenizer() _a : List[Any] = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) _a : str = 'test' _a : int = processor(text=_a ) _a : List[Any] = tokenizer(_a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : List[str] = self.get_image_processor() _a : int = self.get_tokenizer() _a : int = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) _a : Optional[Any] = 'test' _a : str = self.prepare_image_inputs() _a : Dict = processor(text=_a ,images=_a ) self.assertListEqual(list(inputs.keys() ) ,['pixel_values', 'labels'] ) # test if it raises when no input is passed with pytest.raises(_a ): processor() def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Tuple = self.get_image_processor() _a : Any = self.get_tokenizer() _a : Tuple = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) _a : List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] _a : str = processor.char_decode(_a ) _a : List[Any] = tokenizer.batch_decode(_a ) _a : Optional[int] = [seq.replace(' ' ,'' ) for seq in decoded_tok] self.assertListEqual(_a ,_a ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Union[str, Any] = self.get_image_processor() _a : List[Any] = self.get_tokenizer() _a : List[Any] = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) _a : Optional[int] = None _a : List[Any] = self.prepare_image_inputs() _a : Dict = processor(text=_a ,images=_a ) self.assertListEqual(list(inputs.keys() ) ,processor.model_input_names ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Tuple = self.get_image_processor() _a : Dict = self.get_tokenizer() _a : Union[str, Any] = MgpstrProcessor(tokenizer=_a ,image_processor=_a ) _a : Optional[Any] = torch.randn(1 ,27 ,38 ) _a : List[str] = torch.randn(1 ,27 ,5_0257 ) _a : int = torch.randn(1 ,27 ,3_0522 ) _a : int = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) ,['generated_text', 'scores', 'char_preds', 'bpe_preds', 'wp_preds'] )
229
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { """configuration_clap""": [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapAudioConfig""", """ClapConfig""", """ClapTextConfig""", ], """processing_clap""": ["""ClapProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """CLAP_PRETRAINED_MODEL_ARCHIVE_LIST""", """ClapModel""", """ClapPreTrainedModel""", """ClapTextModel""", """ClapTextModelWithProjection""", """ClapAudioModel""", """ClapAudioModelWithProjection""", ] __lowerCAmelCase = ["""ClapFeatureExtractor"""] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
229
1
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def snake_case ( self : Optional[int] )-> Dict: lowerCamelCase__ : List[str] =tempfile.mkdtemp() lowerCamelCase__ : List[str] =5 # Realm tok lowerCamelCase__ : Optional[int] =[ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase__ : Optional[int] =os.path.join(self.tmpdirname, '''realm_tokenizer''' ) os.makedirs(lowerCamelCase, exist_ok=lowerCamelCase ) lowerCamelCase__ : Dict =os.path.join(lowerCamelCase, VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file, '''w''', encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase__ : Dict =os.path.join(self.tmpdirname, '''realm_block_records''' ) os.makedirs(lowerCamelCase, exist_ok=lowerCamelCase ) def snake_case ( self : str )-> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname, '''realm_tokenizer''' ) ) def snake_case ( self : str )-> List[Any]: shutil.rmtree(self.tmpdirname ) def snake_case ( self : Optional[int] )-> Union[str, Any]: lowerCamelCase__ : List[str] =RealmConfig(num_block_records=self.num_block_records ) return config def snake_case ( self : Tuple )-> int: lowerCamelCase__ : Union[str, Any] =Dataset.from_dict( { '''id''': ['''0''', '''1'''], '''question''': ['''foo''', '''bar'''], '''answers''': [['''Foo''', '''Bar'''], ['''Bar''']], } ) return dataset def snake_case ( self : Dict )-> Tuple: lowerCamelCase__ : Any =np.array( [ b'''This is the first record''', b'''This is the second record''', b'''This is the third record''', b'''This is the fourth record''', b'''This is the fifth record''', b'''This is a longer longer longer record''', ], dtype=lowerCamelCase, ) return block_records def snake_case ( self : Optional[Any] )-> Any: lowerCamelCase__ : List[str] =RealmRetriever( block_records=self.get_dummy_block_records(), tokenizer=self.get_tokenizer(), ) return retriever def snake_case ( self : List[str] )-> Optional[Any]: lowerCamelCase__ : Dict =self.get_config() lowerCamelCase__ : List[Any] =self.get_dummy_retriever() lowerCamelCase__ : Any =retriever.tokenizer lowerCamelCase__ : Union[str, Any] =np.array([0, 3], dtype='''long''' ) lowerCamelCase__ : Optional[int] =tokenizer(['''Test question'''] ).input_ids lowerCamelCase__ : List[str] =tokenizer( ['''the fourth'''], add_special_tokens=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_attention_mask=lowerCamelCase, ).input_ids lowerCamelCase__ : Dict =config.reader_seq_len lowerCamelCase__ : Tuple =retriever( lowerCamelCase, lowerCamelCase, answer_ids=lowerCamelCase, max_length=lowerCamelCase, return_tensors='''np''' ) self.assertEqual(len(lowerCamelCase ), 2 ) self.assertEqual(len(lowerCamelCase ), 2 ) self.assertEqual(len(lowerCamelCase ), 2 ) self.assertEqual(concat_inputs.input_ids.shape, (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape, (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape, (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape, (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ), ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''first''', '''record''', '''[SEP]'''], ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ), ['''[CLS]''', '''test''', '''question''', '''[SEP]''', '''this''', '''is''', '''the''', '''fourth''', '''record''', '''[SEP]'''], ) def snake_case ( self : Optional[Any] )-> List[Any]: lowerCamelCase__ : Any =self.get_config() lowerCamelCase__ : Dict =self.get_dummy_retriever() lowerCamelCase__ : Any =retriever.tokenizer lowerCamelCase__ : Optional[Any] =np.array([0, 3, 5], dtype='''long''' ) lowerCamelCase__ : int =tokenizer(['''Test question'''] ).input_ids lowerCamelCase__ : Optional[Any] =tokenizer( ['''the fourth''', '''longer longer'''], add_special_tokens=lowerCamelCase, return_token_type_ids=lowerCamelCase, return_attention_mask=lowerCamelCase, ).input_ids lowerCamelCase__ : Union[str, Any] =config.reader_seq_len lowerCamelCase__ : List[Any] =retriever( lowerCamelCase, lowerCamelCase, answer_ids=lowerCamelCase, max_length=lowerCamelCase, return_tensors='''np''' ) self.assertEqual([False, True, True], lowerCamelCase ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]], lowerCamelCase ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]], lowerCamelCase ) def snake_case ( self : int )-> Tuple: lowerCamelCase__ : List[str] =self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname, '''realm_block_records''' ) ) # Test local path lowerCamelCase__ : Any =retriever.from_pretrained(os.path.join(self.tmpdirname, '''realm_block_records''' ) ) self.assertEqual(retriever.block_records[0], b'''This is the first record''' ) # Test mocked remote path with patch('''transformers.models.realm.retrieval_realm.hf_hub_download''' ) as mock_hf_hub_download: lowerCamelCase__ : Optional[int] =os.path.join( os.path.join(self.tmpdirname, '''realm_block_records''' ), _REALM_BLOCK_RECORDS_FILENAME ) lowerCamelCase__ : Dict =RealmRetriever.from_pretrained('''google/realm-cc-news-pretrained-openqa''' ) self.assertEqual(retriever.block_records[0], b'''This is the first record''' )
709
"""simple docstring""" import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def snake_case__ ( __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : Tuple ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =AutoConfig.from_pretrained(__lowerCamelCase ) lowerCamelCase__ : Any =FlaxAutoModelForSeqaSeqLM.from_config(config=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =checkpoints.load_tax_checkpoint(__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] ='''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": lowerCamelCase__ : List[str] ='''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": lowerCamelCase__ : List[Any] ='''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase__ : Optional[Any] ='''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): lowerCamelCase__ : List[Any] =f'''layers_{str(__lowerCamelCase )}''' # Self-Attention lowerCamelCase__ : List[str] =tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] lowerCamelCase__ : Optional[int] =tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] lowerCamelCase__ : List[str] =tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] lowerCamelCase__ : List[Any] =tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase__ : str =tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization lowerCamelCase__ : List[Any] =tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: lowerCamelCase__ : Optional[Any] =tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] lowerCamelCase__ : Dict =tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: lowerCamelCase__ : List[str] =tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] lowerCamelCase__ : Union[str, Any] =tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization lowerCamelCase__ : Tuple =tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning lowerCamelCase__ : str =flax_model.params['''encoder''']['''block'''][str(__lowerCamelCase )]['''layer'''] lowerCamelCase__ : int =tax_attention_key lowerCamelCase__ : Optional[int] =tax_attention_out lowerCamelCase__ : List[Any] =tax_attention_query lowerCamelCase__ : Optional[Any] =tax_attention_value lowerCamelCase__ : List[str] =tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase__ : Optional[int] =tax_global_layer_norm if split_mlp_wi: lowerCamelCase__ : Optional[int] =tax_mlp_wi_a lowerCamelCase__ : Optional[int] =tax_mlp_wi_a else: lowerCamelCase__ : Union[str, Any] =tax_mlp_wi lowerCamelCase__ : str =tax_mlp_wo lowerCamelCase__ : Optional[Any] =tax_mlp_layer_norm lowerCamelCase__ : Optional[int] =flax_model_encoder_layer_block # Only for layer 0: lowerCamelCase__ : Union[str, Any] =tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T lowerCamelCase__ : str =tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": lowerCamelCase__ : Optional[int] =tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T lowerCamelCase__ : Optional[int] =tax_encoder_global_rel_embedding # Assigning lowerCamelCase__ : int =tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] lowerCamelCase__ : List[Any] =tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): lowerCamelCase__ : Dict =f'''layers_{str(__lowerCamelCase )}''' # Self-Attention lowerCamelCase__ : Dict =tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] lowerCamelCase__ : List[Any] =tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] lowerCamelCase__ : Optional[int] =tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] lowerCamelCase__ : Union[str, Any] =tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization lowerCamelCase__ : int =tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention lowerCamelCase__ : int =tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] lowerCamelCase__ : List[Any] =tax_enc_dec_attention_module['''key''']['''kernel'''] lowerCamelCase__ : Any =tax_enc_dec_attention_module['''out''']['''kernel'''] lowerCamelCase__ : Dict =tax_enc_dec_attention_module['''query''']['''kernel'''] lowerCamelCase__ : List[str] =tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization lowerCamelCase__ : Dict =tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: lowerCamelCase__ : str =tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] lowerCamelCase__ : Any =tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: lowerCamelCase__ : List[Any] =tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] lowerCamelCase__ : Optional[Any] =tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization lowerCamelCase__ : str =tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning lowerCamelCase__ : str =flax_model.params['''decoder''']['''block'''][str(__lowerCamelCase )]['''layer'''] lowerCamelCase__ : Union[str, Any] =tax_attention_key lowerCamelCase__ : str =tax_attention_out lowerCamelCase__ : Optional[int] =tax_attention_query lowerCamelCase__ : Dict =tax_attention_value lowerCamelCase__ : List[str] =tax_pre_attention_layer_norm lowerCamelCase__ : List[Any] =tax_enc_dec_attention_key lowerCamelCase__ : Any =tax_enc_dec_attention_out lowerCamelCase__ : Any =tax_enc_dec_attention_query lowerCamelCase__ : Optional[int] =tax_enc_dec_attention_value lowerCamelCase__ : Dict =tax_cross_layer_norm if split_mlp_wi: lowerCamelCase__ : Tuple =tax_mlp_wi_a lowerCamelCase__ : int =tax_mlp_wi_a else: lowerCamelCase__ : List[Any] =tax_mlp_wi lowerCamelCase__ : Dict =tax_mlp_wo lowerCamelCase__ : Tuple =txa_mlp_layer_norm lowerCamelCase__ : Optional[Any] =flax_model_decoder_layer_block # Decoder Normalization lowerCamelCase__ : Dict =tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] lowerCamelCase__ : int =txa_decoder_norm # Only for layer 0: lowerCamelCase__ : Tuple =tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T lowerCamelCase__ : Tuple =tax_decoder_rel_embedding # Token Embeddings lowerCamelCase__ : Union[str, Any] =tax_model['''target''']['''token_embedder''']['''embedding'''] lowerCamelCase__ : Dict =txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: lowerCamelCase__ : int =tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(__lowerCamelCase ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": _lowercase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path the T5X checkpoint." ) parser.add_argument("--config_name", default=None, type=str, required=True, help="Config name of LongT5/T5 model.") parser.add_argument( "--flax_dump_folder_path", default=None, type=str, required=True, help="Path to the output FLAX model." ) _lowercase : List[Any] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
625
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class A__ : """simple docstring""" def __init__( self : str , lowerCamelCase__ : str , lowerCamelCase__ : str=2 , lowerCamelCase__ : Dict=True , lowerCamelCase__ : List[str]=False , lowerCamelCase__ : Tuple=10 , lowerCamelCase__ : int=3 , lowerCamelCase__ : Tuple=32 * 8 , lowerCamelCase__ : Union[str, Any]=32 * 8 , lowerCamelCase__ : List[Any]=4 , lowerCamelCase__ : Optional[int]=64 , ): a__ : List[str] = parent a__ : List[Any] = batch_size a__ : Any = is_training a__ : Optional[Any] = use_auxiliary_loss a__ : Dict = num_queries a__ : Any = num_channels a__ : List[Any] = min_size a__ : Dict = max_size a__ : Dict = num_labels a__ : str = hidden_dim a__ : int = hidden_dim def _UpperCamelCase( self : Union[str, Any] ): a__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) a__ : List[str] = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowerCamelCase__ ) a__ : List[str] = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowerCamelCase__ ) > 0.5 ).float() a__ : Optional[int] = (torch.rand((self.batch_size, self.num_labels) , device=lowerCamelCase__ ) > 0.5).long() a__ : Tuple = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def _UpperCamelCase( self : Union[str, Any] ): a__ : Dict = MaskaFormerConfig( hidden_size=self.hidden_dim , ) a__ : str = self.num_queries a__ : Tuple = self.num_labels a__ : Optional[int] = [1, 1, 1, 1] a__ : Dict = self.num_channels a__ : int = 64 a__ : Optional[Any] = 128 a__ : Optional[int] = self.hidden_dim a__ : Dict = self.hidden_dim a__ : Optional[Any] = self.hidden_dim return config def _UpperCamelCase( self : Optional[Any] ): a__, a__, a__, a__, a__ : Union[str, Any] = self.prepare_config_and_inputs() a__ : Dict = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def _UpperCamelCase( self : Optional[int] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] ): a__ : Any = output.encoder_hidden_states a__ : Optional[Any] = output.pixel_decoder_hidden_states a__ : str = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) , config.decoder_layers ) def _UpperCamelCase( self : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int]=False ): with torch.no_grad(): a__ : List[str] = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() a__ : int = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) a__ : List[str] = model(lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : int , lowerCamelCase__ : List[str] , lowerCamelCase__ : Dict ): a__ : str = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ : Optional[Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): a__ : Tuple = model(pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ ) a__ : int = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) a__ : Optional[Any] = model( pixel_values=lowerCamelCase__ , pixel_mask=lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class A__ ( A__ , A__ , unittest.TestCase ): """simple docstring""" _lowercase = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () _lowercase = {'feature-extraction': MaskaFormerModel} if is_torch_available() else {} _lowercase = False _lowercase = False _lowercase = False _lowercase = False def _UpperCamelCase( self : List[Any] ): a__ : Dict = MaskaFormerModelTester(self ) a__ : List[str] = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ ) def _UpperCamelCase( self : List[Any] ): self.config_tester.run_common_tests() def _UpperCamelCase( self : int ): a__, a__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def _UpperCamelCase( self : List[str] ): a__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def _UpperCamelCase( self : str ): pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def _UpperCamelCase( self : Optional[Any] ): pass @unittest.skip(reason="Mask2Former is not a generative model" ) def _UpperCamelCase( self : Dict ): pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def _UpperCamelCase( self : Union[str, Any] ): pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _UpperCamelCase( self : Tuple ): pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _UpperCamelCase( self : int ): pass def _UpperCamelCase( self : Optional[int] ): a__, a__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Dict = model_class(lowerCamelCase__ ) a__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : List[str] = [*signature.parameters.keys()] a__ : Optional[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) @slow def _UpperCamelCase( self : Any ): for model_name in ["facebook/mask2former-swin-small-coco-instance"]: a__ : Union[str, Any] = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _UpperCamelCase( self : int ): a__ : int = (self.model_tester.min_size,) * 2 a__ : Tuple = { "pixel_values": torch.randn((2, 3, *size) , device=lowerCamelCase__ ), "mask_labels": torch.randn((2, 10, *size) , device=lowerCamelCase__ ), "class_labels": torch.zeros(2 , 10 , device=lowerCamelCase__ ).long(), } a__ : int = self.model_tester.get_config() a__ : Any = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) a__ : Optional[int] = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def _UpperCamelCase( self : Optional[Any] ): a__, a__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ , **lowerCamelCase__ , output_hidden_states=lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): a__, a__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Optional[Any] = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) a__ : Any = model(**lowerCamelCase__ , output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def _UpperCamelCase( self : Optional[Any] ): if not self.model_tester.is_training: return a__ : Union[str, Any] = self.all_model_classes[1] a__, a__, a__, a__, a__ : List[str] = self.model_tester.prepare_config_and_inputs() a__ : Tuple = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() a__ : int = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ).loss loss.backward() def _UpperCamelCase( self : Optional[int] ): a__ : str = self.all_model_classes[1] a__, a__, a__, a__, a__ : int = self.model_tester.prepare_config_and_inputs() a__ : Optional[Any] = True a__ : str = True a__ : Any = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() a__ : Union[str, Any] = model(lowerCamelCase__ , mask_labels=lowerCamelCase__ , class_labels=lowerCamelCase__ ) a__ : Dict = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() a__ : Optional[Any] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() a__ : List[Any] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() a__ : List[str] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) UpperCamelCase : Any = 1E-4 def UpperCamelCase_ ( ) -> str: a__ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase( self : str ): return "facebook/mask2former-swin-small-coco-instance" @cached_property def _UpperCamelCase( self : str ): return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def _UpperCamelCase( self : Dict ): a__ : Dict = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) a__ : List[Any] = self.default_image_processor a__ : List[Any] = prepare_img() a__ : Optional[Any] = image_processor(lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) a__ : Dict = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): a__ : str = model(**lowerCamelCase__ ) a__ : str = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) a__ : List[str] = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) a__ : Tuple = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def _UpperCamelCase( self : List[Any] ): a__ : str = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() a__ : List[Any] = self.default_image_processor a__ : str = prepare_img() a__ : Union[str, Any] = image_processor(lowerCamelCase__ , return_tensors="pt" ).to(lowerCamelCase__ ) a__ : str = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ , (1, 3, 384, 384) ) with torch.no_grad(): a__ : Union[str, Any] = model(**lowerCamelCase__ ) # masks_queries_logits a__ : Tuple = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) a__ : Optional[int] = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] a__ : int = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) # class_queries_logits a__ : Any = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) a__ : List[str] = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowerCamelCase__ , atol=lowerCamelCase__ ) ) def _UpperCamelCase( self : str ): a__ : Optional[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() a__ : List[Any] = self.default_image_processor a__ : Union[str, Any] = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) a__ : Any = inputs["pixel_values"].to(lowerCamelCase__ ) a__ : List[Any] = [el.to(lowerCamelCase__ ) for el in inputs["mask_labels"]] a__ : List[Any] = [el.to(lowerCamelCase__ ) for el in inputs["class_labels"]] with torch.no_grad(): a__ : List[Any] = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
37
import os from datetime import datetime as dt from github import Github __lowerCAmelCase : List[Any] =[ 'good first issue', 'good second issue', 'good difficult issue', 'enhancement', 'new pipeline/model', 'new scheduler', 'wip', ] def _UpperCamelCase ( ): __SCREAMING_SNAKE_CASE : Tuple = Github(os.environ['''GITHUB_TOKEN'''] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = g.get_repo('''huggingface/diffusers''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = repo.get_issues(state='''open''' ) for issue in open_issues: __SCREAMING_SNAKE_CASE : Optional[int] = sorted(issue.get_comments() , key=lambda lowercase__ : i.created_at , reverse=lowercase__ ) __SCREAMING_SNAKE_CASE : List[Any] = comments[0] if len(lowercase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
696
0
from __future__ import annotations from typing import Any def __lowercase ( _SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' if not postfix_notation: return 0 SCREAMING_SNAKE_CASE = {"""+""", """-""", """*""", """/"""} SCREAMING_SNAKE_CASE = [] for token in postfix_notation: if token in operations: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(_SCREAMING_SNAKE_CASE ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
116
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class UpperCamelCase__ : '''simple docstring''' def __init__( self : Tuple ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Tuple=2 ,lowerCamelCase__ : Optional[int]=True ,lowerCamelCase__ : int=False ,lowerCamelCase__ : List[str]=10 ,lowerCamelCase__ : int=3 ,lowerCamelCase__ : Optional[Any]=32 * 8 ,lowerCamelCase__ : Tuple=32 * 8 ,lowerCamelCase__ : Tuple=4 ,lowerCamelCase__ : int=64 ,) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_auxiliary_loss SCREAMING_SNAKE_CASE = num_queries SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = min_size SCREAMING_SNAKE_CASE = max_size SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = hidden_dim SCREAMING_SNAKE_CASE = hidden_dim def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowerCamelCase__ ) SCREAMING_SNAKE_CASE = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=lowerCamelCase__ ) > 0.5 ).float() SCREAMING_SNAKE_CASE = (torch.rand((self.batch_size, self.num_labels) ,device=lowerCamelCase__ ) > 0.5).long() SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = MaskaFormerConfig( hidden_size=self.hidden_dim ,) SCREAMING_SNAKE_CASE = self.num_queries SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = [1, 1, 1, 1] SCREAMING_SNAKE_CASE = self.num_channels SCREAMING_SNAKE_CASE = 64 SCREAMING_SNAKE_CASE = 128 SCREAMING_SNAKE_CASE = self.hidden_dim SCREAMING_SNAKE_CASE = self.hidden_dim SCREAMING_SNAKE_CASE = self.hidden_dim return config def SCREAMING_SNAKE_CASE__ ( self : str ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : List[str] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = output.encoder_hidden_states SCREAMING_SNAKE_CASE = output.pixel_decoder_hidden_states SCREAMING_SNAKE_CASE = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowerCamelCase__ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) ,len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowerCamelCase__ ) ,config.decoder_layers ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ,lowerCamelCase__ : Optional[int] ,lowerCamelCase__ : Any ,lowerCamelCase__ : int ,lowerCamelCase__ : Optional[int]=False ) -> int: '''simple docstring''' with torch.no_grad(): SCREAMING_SNAKE_CASE = MaskaFormerModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() SCREAMING_SNAKE_CASE = model(pixel_values=lowerCamelCase__ ,pixel_mask=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ,output_hidden_states=lowerCamelCase__ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : Any ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : Any ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = MaskaFormerForUniversalSegmentation(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() def comm_check_on_output(lowerCamelCase__ : Optional[int] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(pixel_values=lowerCamelCase__ ,pixel_mask=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model( pixel_values=lowerCamelCase__ ,pixel_mask=lowerCamelCase__ ,mask_labels=lowerCamelCase__ ,class_labels=lowerCamelCase__ ) comm_check_on_output(lowerCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) ) @require_torch class UpperCamelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Union[str, Any] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () __snake_case : Optional[Any] = {"feature-extraction": MaskaFormerModel} if is_torch_available() else {} __snake_case : Dict = False __snake_case : Tuple = False __snake_case : Union[str, Any] = False __snake_case : Optional[Any] = False def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = MaskaFormerModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=lowerCamelCase__ ,has_text_modality=lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ ,**lowerCamelCase__ ,output_hidden_states=lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*lowerCamelCase__ ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int: '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Dict: '''simple docstring''' pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Any: '''simple docstring''' pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Tuple: '''simple docstring''' pass def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["""pixel_values"""] self.assertListEqual(arg_names[:1] ,lowerCamelCase__ ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Any: '''simple docstring''' for model_name in ["facebook/mask2former-swin-small-coco-instance"]: SCREAMING_SNAKE_CASE = MaskaFormerModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = (self.model_tester.min_size,) * 2 SCREAMING_SNAKE_CASE = { """pixel_values""": torch.randn((2, 3, *size) ,device=lowerCamelCase__ ), """mask_labels""": torch.randn((2, 10, *size) ,device=lowerCamelCase__ ), """class_labels""": torch.zeros(2 ,10 ,device=lowerCamelCase__ ).long(), } SCREAMING_SNAKE_CASE = self.model_tester.get_config() SCREAMING_SNAKE_CASE = MaskaFormerForUniversalSegmentation(lowerCamelCase__ ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(lowerCamelCase__ ,**lowerCamelCase__ ,output_hidden_states=lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = model(**lowerCamelCase__ ,output_attentions=lowerCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[str]: '''simple docstring''' if not self.model_tester.is_training: return SCREAMING_SNAKE_CASE = self.all_model_classes[1] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.train() SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ,mask_labels=lowerCamelCase__ ,class_labels=lowerCamelCase__ ).loss loss.backward() def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.all_model_classes[1] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = model_class(lowerCamelCase__ ).to(lowerCamelCase__ ) model.train() SCREAMING_SNAKE_CASE = model(lowerCamelCase__ ,mask_labels=lowerCamelCase__ ,class_labels=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() SCREAMING_SNAKE_CASE = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowerCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) SCREAMING_SNAKE_CASE_ = 1e-4 def __lowercase ( ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: '''simple docstring''' return "facebook/mask2former-swin-small-coco-instance" @cached_property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(lowerCamelCase__ ,return_tensors="""pt""" ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ ,(1, 3, 384, 384) ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = torch.tensor( [[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] ,lowerCamelCase__ ,atol=lowerCamelCase__ ) ) SCREAMING_SNAKE_CASE = torch.tensor( [[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,lowerCamelCase__ ,atol=lowerCamelCase__ ) ) SCREAMING_SNAKE_CASE = torch.tensor( [[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(lowerCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,lowerCamelCase__ ,atol=lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(lowerCamelCase__ ,return_tensors="""pt""" ).to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowerCamelCase__ ,(1, 3, 384, 384) ) with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**lowerCamelCase__ ) # masks_queries_logits SCREAMING_SNAKE_CASE = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) SCREAMING_SNAKE_CASE = [ [-8.7839, -9.0056, -8.8121], [-7.4104, -7.0313, -6.5401], [-6.6105, -6.3427, -6.4675], ] SCREAMING_SNAKE_CASE = torch.tensor(lowerCamelCase__ ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,lowerCamelCase__ ,atol=lowerCamelCase__ ) ) # class_queries_logits SCREAMING_SNAKE_CASE = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) ) SCREAMING_SNAKE_CASE = torch.tensor( [ [1.8324, -8.0835, -4.1922], [0.8450, -9.0050, -3.6053], [0.3045, -7.7293, -3.0275], ] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,lowerCamelCase__ ,atol=lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(lowerCamelCase__ ).eval() SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors="""pt""" ,) SCREAMING_SNAKE_CASE = inputs["""pixel_values"""].to(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = [el.to(lowerCamelCase__ ) for el in inputs["""mask_labels"""]] SCREAMING_SNAKE_CASE = [el.to(lowerCamelCase__ ) for el in inputs["""class_labels"""]] with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**lowerCamelCase__ ) self.assertTrue(outputs.loss is not None )
116
1
from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging lowerCamelCase__ : List[str] = logging.get_logger(__name__) def UpperCAmelCase_ ( __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] ) -> Union[str, Any]: try: with open(__UpperCAmelCase , 'rb' ) as flax_state_f: SCREAMING_SNAKE_CASE_ = from_bytes(__UpperCAmelCase , flax_state_f.read() ) except UnpicklingError as e: try: with open(__UpperCAmelCase ) as f: if f.read().startswith('version' ): raise OSError( 'You seem to have cloned a repository without having git-lfs installed. Please' ' install git-lfs and run `git lfs install` followed by `git lfs pull` in the' ' folder you cloned.' ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"Unable to convert {model_file} to Flax deserializable object. " ) return load_flax_weights_in_pytorch_model(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Optional[int] ) -> Dict: try: import torch # noqa: F401 except ImportError: logger.error( 'Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see' ' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation' ' instructions.' ) raise # check if we have bf16 weights SCREAMING_SNAKE_CASE_ = flatten_dict(jax.tree_util.tree_map(lambda __UpperCAmelCase : x.dtype == jnp.bfloataa , __UpperCAmelCase ) ).values() if any(__UpperCAmelCase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( 'Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ' 'before loading those in PyTorch model.' ) SCREAMING_SNAKE_CASE_ = jax.tree_util.tree_map( lambda __UpperCAmelCase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , __UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = '' SCREAMING_SNAKE_CASE_ = flatten_dict(__UpperCAmelCase , sep='.' ) SCREAMING_SNAKE_CASE_ = pt_model.state_dict() # keep track of unexpected & missing keys SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): SCREAMING_SNAKE_CASE_ = flax_key_tuple.split('.' ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: SCREAMING_SNAKE_CASE_ = flax_key_tuple_array[:-1] + ['weight'] SCREAMING_SNAKE_CASE_ = jnp.transpose(__UpperCAmelCase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": SCREAMING_SNAKE_CASE_ = flax_key_tuple_array[:-1] + ['weight'] SCREAMING_SNAKE_CASE_ = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": SCREAMING_SNAKE_CASE_ = flax_key_tuple_array[:-1] + ['weight'] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = ( flax_key_tuple_string.replace('_0' , '.0' ) .replace('_1' , '.1' ) .replace('_2' , '.2' ) .replace('_3' , '.3' ) .replace('_4' , '.4' ) .replace('_5' , '.5' ) .replace('_6' , '.6' ) .replace('_7' , '.7' ) .replace('_8' , '.8' ) .replace('_9' , '.9' ) ) SCREAMING_SNAKE_CASE_ = '.'.join(__UpperCAmelCase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected " f"to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}." ) else: # add weight to pytorch dict SCREAMING_SNAKE_CASE_ = np.asarray(__UpperCAmelCase ) if not isinstance(__UpperCAmelCase , np.ndarray ) else flax_tensor SCREAMING_SNAKE_CASE_ = torch.from_numpy(__UpperCAmelCase ) # remove from missing keys missing_keys.remove(__UpperCAmelCase ) else: # weight is not expected by PyTorch model unexpected_keys.append(__UpperCAmelCase ) pt_model.load_state_dict(__UpperCAmelCase ) # re-transform missing_keys to list SCREAMING_SNAKE_CASE_ = list(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: logger.warning( 'Some weights of the Flax model were not used when initializing the PyTorch model' f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" f" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture" ' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This' f" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect" ' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a' ' FlaxBertForSequenceClassification model).' ) if len(__UpperCAmelCase ) > 0: logger.warning( f"Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly" f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" ' use it for predictions and inference.' ) return pt_model
31
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowerCAmelCase = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self , _UpperCamelCase , _UpperCamelCase=7 , _UpperCamelCase=3 , _UpperCamelCase=18 , _UpperCamelCase=30 , _UpperCamelCase=400 , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=None , )-> Dict: _A = size if size is not None else {'height': 20, 'width': 20} _A = parent _A = batch_size _A = num_channels _A = image_size _A = min_resolution _A = max_resolution _A = size _A = do_normalize _A = do_convert_rgb _A = [512, 1024, 2048, 4096] _A = patch_size if patch_size is not None else {'height': 16, 'width': 16} def UpperCamelCase ( self )-> Dict: return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def UpperCamelCase ( self )-> Tuple: _A = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg' _A = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ).convert('RGB' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class lowerCAmelCase_ ( UpperCAmelCase , unittest.TestCase ): __UpperCAmelCase =PixaStructImageProcessor if is_vision_available() else None def UpperCamelCase ( self )-> Optional[int]: _A = PixaStructImageProcessingTester(self ) @property def UpperCamelCase ( self )-> Tuple: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self )-> List[Any]: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_convert_rgb' ) ) def UpperCamelCase ( self )-> Any: _A = self.image_processor_tester.prepare_dummy_image() _A = self.image_processing_class(**self.image_processor_dict ) _A = 2048 _A = image_processor(_UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0606 ) , atol=1e-3 , rtol=1e-3 ) ) def UpperCamelCase ( self )-> int: # Initialize image_processor _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input _A = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _A = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _A = image_processor( _UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCamelCase ( self )-> List[str]: # Initialize image_processor _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input _A = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 _A = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_UpperCamelCase ): _A = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches _A = 'Hello' _A = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase , header_text=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _A = image_processor( _UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase , header_text=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCamelCase ( self )-> Optional[int]: # Initialize image_processor _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , numpify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , np.ndarray ) _A = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _A = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _A = image_processor( _UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def UpperCamelCase ( self )-> Union[str, Any]: # Initialize image_processor _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase , torchify=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , torch.Tensor ) # Test not batched input _A = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _A = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _A = image_processor( _UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='`Pix2StructImageProcessor` requires `torch>=1.11.0`.' , ) @require_torch @require_vision class lowerCAmelCase_ ( UpperCAmelCase , unittest.TestCase ): __UpperCAmelCase =PixaStructImageProcessor if is_vision_available() else None def UpperCamelCase ( self )-> str: _A = PixaStructImageProcessingTester(self , num_channels=4 ) _A = 3 @property def UpperCamelCase ( self )-> str: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase ( self )-> Any: _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCamelCase , 'do_normalize' ) ) self.assertTrue(hasattr(_UpperCamelCase , 'do_convert_rgb' ) ) def UpperCamelCase ( self )-> Optional[Any]: # Initialize image_processor _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCamelCase ) for image in image_inputs: self.assertIsInstance(_UpperCamelCase , Image.Image ) # Test not batched input _A = ( (self.image_processor_tester.patch_size['height'] * self.image_processor_tester.patch_size['width']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input _A = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched _A = image_processor( _UpperCamelCase , return_tensors='pt' , max_patches=_UpperCamelCase ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
292
0
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging A: Tuple = logging.get_logger(__name__) A: List[Any] = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class __magic_name__ ( UpperCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = 'mctct' def __init__( self , _lowercase=8065 , _lowercase=1536 , _lowercase=36 , _lowercase=6144 , _lowercase=4 , _lowercase=384 , _lowercase=920 , _lowercase=1E-5 , _lowercase=0.3 , _lowercase="relu" , _lowercase=0.02 , _lowercase=0.3 , _lowercase=0.3 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase=1 , _lowercase=0.3 , _lowercase=1 , _lowercase=(7,) , _lowercase=(3,) , _lowercase=80 , _lowercase=1 , _lowercase=None , _lowercase="sum" , _lowercase=False , **_lowercase , ) -> Optional[Any]: super().__init__(**_lowercase , pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase ) lowercase_ : Union[str, Any] = vocab_size lowercase_ : List[Any] = hidden_size lowercase_ : Union[str, Any] = num_hidden_layers lowercase_ : str = intermediate_size lowercase_ : List[Any] = num_attention_heads lowercase_ : Optional[int] = attention_head_dim lowercase_ : Optional[Any] = max_position_embeddings lowercase_ : Optional[int] = layer_norm_eps lowercase_ : List[Any] = layerdrop lowercase_ : str = hidden_act lowercase_ : List[str] = initializer_range lowercase_ : List[Any] = hidden_dropout_prob lowercase_ : int = attention_probs_dropout_prob lowercase_ : Dict = pad_token_id lowercase_ : Dict = bos_token_id lowercase_ : Dict = eos_token_id lowercase_ : Dict = conv_glu_dim lowercase_ : int = conv_dropout lowercase_ : List[Any] = num_conv_layers lowercase_ : List[Any] = input_feat_per_channel lowercase_ : List[Any] = input_channels lowercase_ : List[Any] = conv_channels lowercase_ : List[Any] = ctc_loss_reduction lowercase_ : List[Any] = ctc_zero_infinity # prevents config testing fail with exporting to json lowercase_ : Optional[Any] = list(_lowercase ) lowercase_ : Optional[int] = list(_lowercase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel)` == `config.num_conv_layers` ' f"but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, " f"`config.num_conv_layers = {self.num_conv_layers}`." )
7
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( a : int = 4 ) -> list[list[int]]: """simple docstring""" lowercase_ : Tuple = abs(a ) or 4 return [[1 + x + y * row_size for x in range(a )] for y in range(a )] def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(transpose(a ) ) # OR.. transpose(reverse_column(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_row(reverse_column(a ) ) # OR.. reverse_column(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" return reverse_column(transpose(a ) ) # OR.. transpose(reverse_row(matrix)) def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : Any = [list(a ) for x in zip(*a )] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : List[str] = matrix[::-1] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> list[list[int]]: """simple docstring""" lowercase_ : str = [x[::-1] for x in matrix] return matrix def _UpperCAmelCase ( a : list[list[int]] ) -> None: """simple docstring""" for i in matrix: print(*a ) if __name__ == "__main__": A: Dict = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 90 counterclockwise:\n") print_matrix(rotate_aa(matrix)) A: List[Any] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 180:\n") print_matrix(rotate_aaa(matrix)) A: List[str] = make_matrix() print("\norigin:\n") print_matrix(matrix) print("\nrotate 270 counterclockwise:\n") print_matrix(rotate_aaa(matrix))
7
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase : Union[str, Any] = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[str] = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[Any] = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Optional[Any] = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Dict = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : int = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __UpperCAmelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
471
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase : List[Any] = logging.get_logger(__name__) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): _a : Union[str, Any] = b.T _a : List[str] = np.sum(np.square(UpperCamelCase_ ) , axis=1 ) _a : List[str] = np.sum(np.square(UpperCamelCase_ ) , axis=0 ) _a : Optional[int] = np.matmul(UpperCamelCase_ , UpperCamelCase_ ) _a : Optional[Any] = aa[:, None] - 2 * ab + ba[None, :] return d def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ ): _a : int = x.reshape(-1 , 3 ) _a : Any = squared_euclidean_distance(UpperCamelCase_ , UpperCamelCase_ ) return np.argmin(UpperCamelCase_ , axis=1 ) class lowerCamelCase ( SCREAMING_SNAKE_CASE ): UpperCAmelCase : Dict = ['pixel_values'] def __init__( self : List[Any] , __snake_case : Optional[Union[List[List[int]], np.ndarray]] = None , __snake_case : bool = True , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = PILImageResampling.BILINEAR , __snake_case : bool = True , __snake_case : bool = True , **__snake_case : str , ) -> None: super().__init__(**__snake_case ) _a : int = size if size is not None else {'''height''': 256, '''width''': 256} _a : Union[str, Any] = get_size_dict(__snake_case ) _a : Tuple = np.array(__snake_case ) if clusters is not None else None _a : List[Any] = do_resize _a : List[str] = size _a : List[Any] = resample _a : Optional[Any] = do_normalize _a : Dict = do_color_quantize def snake_case_ ( self : Dict , __snake_case : np.ndarray , __snake_case : Dict[str, int] , __snake_case : PILImageResampling = PILImageResampling.BILINEAR , __snake_case : Optional[Union[str, ChannelDimension]] = None , **__snake_case : List[Any] , ) -> np.ndarray: _a : List[str] = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dictionary must contain both height and width keys. Got {size.keys()}""" ) return resize( __snake_case , size=(size['''height'''], size['''width''']) , resample=__snake_case , data_format=__snake_case , **__snake_case ) def snake_case_ ( self : Optional[int] , __snake_case : np.ndarray , __snake_case : Optional[Union[str, ChannelDimension]] = None , ) -> np.ndarray: _a : List[Any] = rescale(image=__snake_case , scale=1 / 127.5 , data_format=__snake_case ) _a : List[Any] = image - 1 return image def snake_case_ ( self : Optional[Any] , __snake_case : ImageInput , __snake_case : bool = None , __snake_case : Dict[str, int] = None , __snake_case : PILImageResampling = None , __snake_case : bool = None , __snake_case : Optional[bool] = None , __snake_case : Optional[Union[List[List[int]], np.ndarray]] = None , __snake_case : Optional[Union[str, TensorType]] = None , __snake_case : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **__snake_case : List[Any] , ) -> PIL.Image.Image: _a : Any = do_resize if do_resize is not None else self.do_resize _a : Optional[int] = size if size is not None else self.size _a : List[Any] = get_size_dict(__snake_case ) _a : List[str] = resample if resample is not None else self.resample _a : List[str] = do_normalize if do_normalize is not None else self.do_normalize _a : Union[str, Any] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize _a : List[Any] = clusters if clusters is not None else self.clusters _a : int = np.array(__snake_case ) _a : Optional[int] = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_color_quantize and clusters is None: raise ValueError('''Clusters must be specified if do_color_quantize is True.''' ) # All transformations expect numpy arrays. _a : Any = [to_numpy_array(__snake_case ) for image in images] if do_resize: _a : Optional[int] = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_normalize: _a : Dict = [self.normalize(image=__snake_case ) for image in images] if do_color_quantize: _a : Optional[int] = [to_channel_dimension_format(__snake_case , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) _a : List[Any] = np.array(__snake_case ) _a : Optional[int] = color_quantize(__snake_case , __snake_case ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) _a : int = images.shape[0] _a : int = images.reshape(__snake_case , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. _a : Dict = list(__snake_case ) else: _a : Optional[Any] = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] _a : int = {'''input_ids''': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
471
1
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
683
from typing import Any def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validation( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) # Creates data structures and fill initial step lowerCAmelCase_ : dict = {} lowerCAmelCase_ : dict = {} for state in states_space: lowerCAmelCase_ : List[Any] = observations_space[0] lowerCAmelCase_ : int = ( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Dict = None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(snake_case__)): lowerCAmelCase_ : List[Any] = observations_space[o] lowerCAmelCase_ : Optional[Any] = observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCAmelCase_ : List[Any] = "" lowerCAmelCase_ : Tuple = -1 for k_state in states_space: lowerCAmelCase_ : int = ( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Optional[Any] = k_state # Update probabilities and pointers dicts lowerCAmelCase_ : Union[str, Any] = ( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCAmelCase_ : Any = arg_max # The final observation lowerCAmelCase_ : List[Any] = observations_space[len(snake_case__) - 1] # argmax for given final observation lowerCAmelCase_ : List[str] = "" lowerCAmelCase_ : List[str] = -1 for k_state in states_space: lowerCAmelCase_ : List[str] = probabilities[(k_state, final_observation)] if probability > max_probability: lowerCAmelCase_ : List[str] = probability lowerCAmelCase_ : Tuple = k_state lowerCAmelCase_ : str = arg_max # Process pointers backwards lowerCAmelCase_ : int = last_state lowerCAmelCase_ : int = [] for o in range(len(snake_case__) - 1 , -1 , -1): result.append(snake_case__) lowerCAmelCase_ : Optional[Any] = pointers[previous, observations_space[o]] result.reverse() return result def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): _validate_not_empty( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) _validate_lists(snake_case__ , snake_case__) _validate_dicts( snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ]): raise ValueError("There's an empty parameter") def UpperCamelCase ( snake_case__ , snake_case__): _validate_list(snake_case__ , "observations_space") _validate_list(snake_case__ , "states_space") def UpperCamelCase ( snake_case__ , snake_case__): if not isinstance(_object , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list''' raise ValueError(snake_case__) else: for x in _object: if not isinstance(snake_case__ , snake_case__): lowerCAmelCase_ : Optional[Any] = F'''{var_name} must be a list of strings''' raise ValueError(snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , ): _validate_dict(snake_case__ , "initial_probabilities" , snake_case__) _validate_nested_dict(snake_case__ , "transition_probabilities") _validate_nested_dict(snake_case__ , "emission_probabilities") def UpperCamelCase ( snake_case__ , snake_case__): _validate_dict(_object , snake_case__ , snake_case__) for x in _object.values(): _validate_dict(snake_case__ , snake_case__ , snake_case__ , snake_case__) def UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False): if not isinstance(_object , snake_case__): lowerCAmelCase_ : List[str] = F'''{var_name} must be a dict''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object): lowerCAmelCase_ : Dict = F'''{var_name} all keys must be strings''' raise ValueError(snake_case__) if not all(isinstance(snake_case__ , snake_case__) for x in _object.values()): lowerCAmelCase_ : Union[str, Any] = "nested dictionary " if nested else "" lowerCAmelCase_ : Any = F'''{var_name} {nested_text}all values must be {value_type.__name__}''' raise ValueError(snake_case__) if __name__ == "__main__": from doctest import testmod testmod()
683
1
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def a (lowerCAmelCase__ , lowerCAmelCase__=10 ): __a = [] for _ in range(lowerCAmelCase__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def a (lowerCAmelCase__ , lowerCAmelCase__=10 ): __a = [] for step in range(lowerCAmelCase__ ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: __a = os.path.join(lowerCAmelCase__ , """schedule.bin""" ) torch.save(scheduler.state_dict() , lowerCAmelCase__ ) __a = torch.load(lowerCAmelCase__ ) scheduler.load_state_dict(lowerCAmelCase__ ) return lrs @require_torch class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self , __A , __A , __A ): self.assertEqual(len(__A ) , len(__A ) ) for a, b in zip(__A , __A ): self.assertAlmostEqual(__A , __A , delta=__A ) def snake_case_ ( self ): __a = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__A ) __a = torch.tensor([0.4, 0.2, -0.5] ) __a = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __a = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(100 ): __a = criterion(__A , __A ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def snake_case_ ( self ): __a = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__A ) __a = torch.tensor([0.4, 0.2, -0.5] ) __a = nn.MSELoss() # No warmup, constant schedule, no gradient clipping __a = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=__A , weight_decay=0.0 , relative_step=__A , scale_parameter=__A , warmup_init=__A , ) for _ in range(1000 ): __a = criterion(__A , __A ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" _lowerCamelCase = nn.Linear(50 , 50 ) if is_torch_available() else None _lowerCamelCase = AdamW(m.parameters() , lr=10.0 ) if is_torch_available() else None _lowerCamelCase = 10 def snake_case_ ( self , __A , __A , __A , __A=None ): self.assertEqual(len(__A ) , len(__A ) ) for a, b in zip(__A , __A ): self.assertAlmostEqual(__A , __A , delta=__A , msg=__A ) def snake_case_ ( self ): __a = {"""num_warmup_steps""": 2, """num_training_steps""": 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) __a = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {"""num_warmup_steps""": 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, """num_cycles""": 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, """power""": 2.0, """lr_end""": 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {"""num_warmup_steps""": 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): __a , __a = data __a = scheduler_func(self.optimizer , **__A ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) __a = unwrap_schedule(__A , self.num_steps ) self.assertListAlmostEqual( __A , __A , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) __a = scheduler_func(self.optimizer , **__A ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__A ) # wrap to test picklability of the schedule __a = unwrap_and_save_reload_schedule(__A , self.num_steps ) self.assertListEqual(__A , __A , msg=f'''failed for {scheduler_func} in save and reload''' ) class __UpperCAmelCase : """simple docstring""" def __init__( self , __A ): __a = fn def __call__( self , *__A , **__A ): return self.fn(*__A , **__A ) @classmethod def snake_case_ ( self , __A ): __a = list(map(self , scheduler.lr_lambdas ) )
99
from collections.abc import Callable def a (lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): __a = a __a = b if function(lowerCAmelCase__ ) == 0: # one of the a or b is a root for the function return a elif function(lowerCAmelCase__ ) == 0: return b elif ( function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("""could not find root in given interval.""" ) else: __a = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(lowerCAmelCase__ ) == 0: return mid elif function(lowerCAmelCase__ ) * function(lowerCAmelCase__ ) < 0: __a = mid else: __a = mid __a = start + (end - start) / 2.0 return mid def a (lowerCAmelCase__ ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_0_0_0)) import doctest doctest.testmod()
99
1
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCamelCase ( snake_case , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = CodeGenTokenizer SCREAMING_SNAKE_CASE_ : str = CodeGenTokenizerFast SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : Dict = {"add_prefix_space": True} SCREAMING_SNAKE_CASE_ : List[Any] = False def lowerCamelCase__ ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase : Dict = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] _lowercase : List[Any] = dict(zip(UpperCAmelCase_ ,range(len(UpperCAmelCase_ ) ) ) ) _lowercase : Union[str, Any] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] _lowercase : List[Any] = {"""unk_token""": """<unk>"""} _lowercase : List[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) _lowercase : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(UpperCAmelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(UpperCAmelCase_ ) ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,**UpperCAmelCase_ ): kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname ,**UpperCAmelCase_ ) def lowerCamelCase__ ( self ,UpperCAmelCase_ ): _lowercase : int = """lower newer""" _lowercase : List[Any] = """lower newer""" return input_text, output_text def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = CodeGenTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _lowercase : str = """lower newer""" _lowercase : Optional[Any] = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] _lowercase : int = tokenizer.tokenize(UpperCAmelCase_ ,add_prefix_space=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) _lowercase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowercase : Union[str, Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): if not self.test_rust_tokenizer: return _lowercase : Union[str, Any] = self.get_tokenizer() _lowercase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=UpperCAmelCase_ ) _lowercase : Tuple = """lower newer""" # Testing tokenization _lowercase : Union[str, Any] = tokenizer.tokenize(UpperCAmelCase_ ,add_prefix_space=UpperCAmelCase_ ) _lowercase : List[str] = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) # Testing conversion to ids without special tokens _lowercase : Dict = tokenizer.encode(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ,add_prefix_space=UpperCAmelCase_ ) _lowercase : int = rust_tokenizer.encode(UpperCAmelCase_ ,add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) # Testing conversion to ids with special tokens _lowercase : int = self.get_rust_tokenizer(add_prefix_space=UpperCAmelCase_ ) _lowercase : int = tokenizer.encode(UpperCAmelCase_ ,add_prefix_space=UpperCAmelCase_ ) _lowercase : Optional[int] = rust_tokenizer.encode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) # Testing the unknown token _lowercase : str = tokens + [rust_tokenizer.unk_token] _lowercase : Optional[Any] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(UpperCAmelCase_ ) ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ,*UpperCAmelCase_ ,**UpperCAmelCase_ ): # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def lowerCamelCase__ ( self ,UpperCAmelCase_=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCAmelCase_ ,**UpperCAmelCase_ ) # Simple input _lowercase : Dict = """This is a simple input""" _lowercase : Any = ["""This is a simple input 1""", """This is a simple input 2"""] _lowercase : Optional[Any] = ("""This is a simple input""", """This is a pair""") _lowercase : Dict = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(UpperCAmelCase_ ,tokenizer_r.encode ,UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,padding="""max_length""" ) # Simple input self.assertRaises(UpperCAmelCase_ ,tokenizer_r.encode_plus ,UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,padding="""max_length""" ) # Simple input self.assertRaises( UpperCAmelCase_ ,tokenizer_r.batch_encode_plus ,UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,padding="""max_length""" ,) # Pair input self.assertRaises(UpperCAmelCase_ ,tokenizer_r.encode ,UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,padding="""max_length""" ) # Pair input self.assertRaises(UpperCAmelCase_ ,tokenizer_r.encode_plus ,UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,padding="""max_length""" ) # Pair input self.assertRaises( UpperCAmelCase_ ,tokenizer_r.batch_encode_plus ,UpperCAmelCase_ ,max_length=UpperCAmelCase_ ,padding="""max_length""" ,) def lowerCamelCase__ ( self ): _lowercase : int = CodeGenTokenizer.from_pretrained(self.tmpdirname ,pad_token="""<pad>""" ) # Simple input _lowercase : Optional[int] = """This is a simple input""" _lowercase : List[Any] = ["""This is a simple input looooooooong""", """This is a simple input"""] _lowercase : List[str] = ("""This is a simple input""", """This is a pair""") _lowercase : str = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] _lowercase : Union[str, Any] = tokenizer.pad_token_id _lowercase : Any = tokenizer(UpperCAmelCase_ ,padding="""max_length""" ,max_length=30 ,return_tensors="""np""" ) _lowercase : List[Any] = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncate=UpperCAmelCase_ ,return_tensors="""np""" ) _lowercase : Union[str, Any] = tokenizer(*UpperCAmelCase_ ,padding="""max_length""" ,max_length=60 ,return_tensors="""np""" ) _lowercase : Optional[int] = tokenizer(UpperCAmelCase_ ,padding=UpperCAmelCase_ ,truncate=UpperCAmelCase_ ,return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] ,30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] ,33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] ,60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] ,52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def lowerCamelCase__ ( self ): _lowercase : str = """$$$""" _lowercase : Optional[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname ,bos_token=UpperCAmelCase_ ,add_bos_token=UpperCAmelCase_ ) _lowercase : Tuple = """This is a simple input""" _lowercase : Tuple = ["""This is a simple input 1""", """This is a simple input 2"""] _lowercase : Union[str, Any] = tokenizer.bos_token_id _lowercase : Optional[int] = tokenizer(UpperCAmelCase_ ) _lowercase : Optional[int] = tokenizer(UpperCAmelCase_ ) self.assertEqual(out_s.input_ids[0] ,UpperCAmelCase_ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _lowercase : Dict = tokenizer.decode(out_s.input_ids ) _lowercase : Dict = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] ,UpperCAmelCase_ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def lowerCamelCase__ ( self ): _lowercase : List[Any] = CodeGenTokenizer.from_pretrained("""Salesforce/codegen-350M-mono""" ) _lowercase : Union[str, Any] = """\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#""" _lowercase : int = """\nif len_a > len_b: result = a\nelse: result = b""" _lowercase : int = tokenizer.encode(UpperCAmelCase_ ) _lowercase : Any = ["""^#""", re.escape("""<|endoftext|>""" ), """^'''""", """^\"\"\"""", """\n\n\n"""] _lowercase : Union[str, Any] = tokenizer.decode(UpperCAmelCase_ ,truncate_before_pattern=UpperCAmelCase_ ) self.assertEqual(UpperCAmelCase_ ,UpperCAmelCase_ ) def lowerCamelCase__ ( self ): pass
600
"""simple docstring""" import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder UpperCAmelCase: str = """base_with_context""" def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Dict = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) _lowercase : Any = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): _lowercase : Optional[Any] = weights[F"""layers_{lyr_num}"""] _lowercase : str = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) _lowercase : Optional[Any] = ly_weight["""attention"""] _lowercase : Dict = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _lowercase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _lowercase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _lowercase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _lowercase : int = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _lowercase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _lowercase : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _lowercase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _lowercase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : int = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) _lowercase : Optional[int] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCAmelCase ) for lyr_num, lyr in enumerate(model.encoders ): _lowercase : int = weights[F"""layers_{lyr_num}"""] _lowercase : Any = ly_weight["""attention"""] _lowercase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _lowercase : str = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _lowercase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _lowercase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _lowercase : Optional[Any] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) _lowercase : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _lowercase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _lowercase : str = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _lowercase : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _lowercase : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Dict = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) _lowercase : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) _lowercase : Optional[int] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=__UpperCAmelCase ) _lowercase : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): _lowercase : List[Any] = weights[F"""layers_{lyr_num}"""] _lowercase : Dict = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) _lowercase : int = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) _lowercase : List[Any] = ly_weight["""self_attention"""] _lowercase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _lowercase : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _lowercase : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _lowercase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _lowercase : Union[str, Any] = ly_weight["""MultiHeadDotProductAttention_0"""] _lowercase : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) _lowercase : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) _lowercase : Any = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) _lowercase : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) _lowercase : List[str] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) _lowercase : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) _lowercase : Any = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) _lowercase : str = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) _lowercase : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) _lowercase : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) _lowercase : str = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) _lowercase : Any = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): _lowercase : Tuple = checkpoints.load_tax_checkpoint(args.checkpoint_path ) _lowercase : List[Any] = jnp.tree_util.tree_map(onp.array , __UpperCAmelCase ) _lowercase : int = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] _lowercase : List[Any] = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) _lowercase : Optional[int] = inference.parse_training_gin_file(__UpperCAmelCase , __UpperCAmelCase ) _lowercase : Optional[Any] = inference.InferenceModel(args.checkpoint_path , __UpperCAmelCase ) _lowercase : List[Any] = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) _lowercase : List[str] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) _lowercase : Dict = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) _lowercase : int = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) _lowercase : str = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , __UpperCAmelCase ) _lowercase : Dict = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , __UpperCAmelCase ) _lowercase : List[str] = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , __UpperCAmelCase ) _lowercase : Any = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) _lowercase : str = SpectrogramDiffusionPipeline( notes_encoder=__UpperCAmelCase , continuous_encoder=__UpperCAmelCase , decoder=__UpperCAmelCase , scheduler=__UpperCAmelCase , melgan=__UpperCAmelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": UpperCAmelCase: Any = argparse.ArgumentParser() parser.add_argument("""--output_path""", default=None, type=str, required=True, help="""Path to the converted model.""") parser.add_argument( """--save""", default=True, type=bool, required=False, help="""Whether to save the converted model or not.""" ) parser.add_argument( """--checkpoint_path""", default=F'{MODEL}/checkpoint_500000', type=str, required=False, help="""Path to the original jax model checkpoint.""", ) UpperCAmelCase: Optional[Any] = parser.parse_args() main(args)
600
1
from __future__ import annotations UpperCamelCase__ = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class A : def __init__(self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[str] ) -> None: """simple docstring""" UpperCAmelCase__ = graph # mapping node to its parent in resulting breadth first tree UpperCAmelCase__ = {} UpperCAmelCase__ = source_vertex def lowercase_ (self : Optional[Any] ) -> None: """simple docstring""" UpperCAmelCase__ = {self.source_vertex} UpperCAmelCase__ = None UpperCAmelCase__ = [self.source_vertex] # first in first out queue while queue: UpperCAmelCase__ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(lowerCAmelCase__ ) UpperCAmelCase__ = vertex queue.append(lowerCAmelCase__ ) def lowercase_ (self : Tuple , __UpperCAmelCase : Optional[Any] ) -> str: """simple docstring""" if target_vertex == self.source_vertex: return self.source_vertex UpperCAmelCase__ = self.parent.get(lowerCAmelCase__ ) if target_vertex_parent is None: UpperCAmelCase__ = ( f"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(lowerCAmelCase__ ) return self.shortest_path(lowerCAmelCase__ ) + f"""->{target_vertex}""" if __name__ == "__main__": UpperCamelCase__ = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
486
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : list[int] ) ->float: '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("List is empty" ) a : Dict = sum(_lowercase ) / len(_lowercase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
633
0
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __lowercase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) __lowercase : Union[str, Any] = parser.parse_args() __lowercase : List[str] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __lowercase : int = CLIPImageProcessor() __lowercase : List[Any] = CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') __lowercase : str = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
719
'''simple docstring''' from __future__ import annotations def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> None: '''simple docstring''' if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): lowerCamelCase_, lowerCamelCase_ : str = array[indexa], array[indexa] def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> None: '''simple docstring''' if length > 1: lowerCamelCase_ : int = int(length / 2 ) for i in range(_lowercase , low + middle ): comp_and_swap(_lowercase , _lowercase , i + middle , _lowercase ) bitonic_merge(_lowercase , _lowercase , _lowercase , _lowercase ) bitonic_merge(_lowercase , low + middle , _lowercase , _lowercase ) def lowercase_ ( _lowercase , _lowercase , _lowercase , _lowercase ) -> None: '''simple docstring''' if length > 1: lowerCamelCase_ : Dict = int(length / 2 ) bitonic_sort(_lowercase , _lowercase , _lowercase , 1 ) bitonic_sort(_lowercase , low + middle , _lowercase , 0 ) bitonic_merge(_lowercase , _lowercase , _lowercase , _lowercase ) if __name__ == "__main__": __lowercase : Any = input('''Enter numbers separated by a comma:\n''').strip() __lowercase : Tuple = [int(item.strip()) for item in user_input.split(''',''')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('''\nSorted array in ascending order is: ''', end='''''') print(*unsorted, sep=''', ''') bitonic_merge(unsorted, 0, len(unsorted), 0) print('''Sorted array in descending order is: ''', end='''''') print(*unsorted, sep=''', ''')
357
0
"""simple docstring""" def UpperCamelCase (SCREAMING_SNAKE_CASE ): UpperCamelCase : List[str] = len(SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = len(matrix[0] ) UpperCamelCase : str = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for row in range(SCREAMING_SNAKE_CASE ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , SCREAMING_SNAKE_CASE ): UpperCamelCase : List[Any] = matrix[col][row] / matrix[row][row] for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows UpperCamelCase : Union[str, Any] = True for i in range(row + 1 , SCREAMING_SNAKE_CASE ): if matrix[i][row] != 0: UpperCamelCase , UpperCamelCase : Union[str, Any] = matrix[i], matrix[row] UpperCamelCase : Any = False break if reduce: rank -= 1 for i in range(SCREAMING_SNAKE_CASE ): UpperCamelCase : Dict = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
102
"""simple docstring""" import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __magic_name__ : Any = """pt""" elif is_tf_available(): __magic_name__ : Optional[Any] = """tf""" else: __magic_name__ : int = """jax""" class lowercase__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : Any = PerceiverTokenizer __lowerCAmelCase : int = False def _a ( self ): '''simple docstring''' super().setUp() UpperCamelCase : List[Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _a ( self ): '''simple docstring''' return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" ) def _a ( self , **_A ): '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **_A ) def _a ( self , _A , _A=False , _A=2_0 , _A=5 ): '''simple docstring''' UpperCamelCase : Tuple = [] for i in range(len(_A ) ): try: UpperCamelCase : List[str] = tokenizer.decode([i] , clean_up_tokenization_spaces=_A ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCamelCase : Dict = list(filter(lambda _A : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , _A ) ) UpperCamelCase : List[str] = list(filter(lambda _A : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_A ) , _A ) ) if max_length is not None and len(_A ) > max_length: UpperCamelCase : int = toks[:max_length] if min_length is not None and len(_A ) < min_length and len(_A ) > 0: while len(_A ) < min_length: UpperCamelCase : List[str] = toks + toks # toks_str = [t[1] for t in toks] UpperCamelCase : Any = [t[0] for t in toks] # Ensure consistency UpperCamelCase : List[str] = tokenizer.decode(_A , clean_up_tokenization_spaces=_A ) if " " not in output_txt and len(_A ) > 1: UpperCamelCase : Optional[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_A ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_A ) ) if with_prefix_space: UpperCamelCase : Dict = """ """ + output_txt UpperCamelCase : List[Any] = tokenizer.encode(_A , add_special_tokens=_A ) return output_txt, output_ids def _a ( self ): '''simple docstring''' UpperCamelCase : Any = self.perceiver_tokenizer UpperCamelCase : str = """Unicode €.""" UpperCamelCase : Dict = tokenizer(_A ) UpperCamelCase : Optional[Any] = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded["""input_ids"""] , _A ) # decoding UpperCamelCase : Optional[int] = tokenizer.decode(_A ) self.assertEqual(_A , """[CLS]Unicode €.[SEP]""" ) UpperCamelCase : str = tokenizer("""e è é ê ë""" ) UpperCamelCase : str = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded["""input_ids"""] , _A ) # decoding UpperCamelCase : Any = tokenizer.decode(_A ) self.assertEqual(_A , """[CLS]e è é ê ë[SEP]""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" ) def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[int] = self.perceiver_tokenizer UpperCamelCase : Optional[Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off UpperCamelCase : List[Any] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on UpperCamelCase : Dict = tokenizer(_A , padding=_A , return_tensors=_A ) self.assertIsInstance(_A , _A ) if FRAMEWORK != "jax": UpperCamelCase : Dict = list(batch.input_ids.numpy()[0] ) else: UpperCamelCase : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def _a ( self ): '''simple docstring''' UpperCamelCase : Any = self.perceiver_tokenizer UpperCamelCase : Optional[int] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] UpperCamelCase : Any = tokenizer(_A , padding=_A , return_tensors=_A ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , _A ) self.assertIn("""attention_mask""" , _A ) self.assertNotIn("""decoder_input_ids""" , _A ) self.assertNotIn("""decoder_attention_mask""" , _A ) def _a ( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.perceiver_tokenizer UpperCamelCase : int = [ """Summary of the text.""", """Another summary.""", ] UpperCamelCase : int = tokenizer( text_target=_A , max_length=3_2 , padding="""max_length""" , truncation=_A , return_tensors=_A ) self.assertEqual(3_2 , targets["""input_ids"""].shape[1] ) def _a ( self ): '''simple docstring''' UpperCamelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test UpperCamelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc UpperCamelCase : int = tempfile.mkdtemp() UpperCamelCase : Tuple = """ He is very happy, UNwant\u00E9d,running""" UpperCamelCase : Dict = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) UpperCamelCase : Any = tokenizer.__class__.from_pretrained(_A ) UpperCamelCase : Tuple = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) shutil.rmtree(_A ) UpperCamelCase : Union[str, Any] = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc UpperCamelCase : List[Any] = tempfile.mkdtemp() UpperCamelCase : Union[str, Any] = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) UpperCamelCase : int = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) UpperCamelCase : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) tokenizer.save_pretrained(_A ) UpperCamelCase : List[str] = tokenizer.__class__.from_pretrained(_A ) UpperCamelCase : Tuple = after_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) UpperCamelCase : Any = tokenizer.__class__.from_pretrained(_A , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(_A ) def _a ( self ): '''simple docstring''' UpperCamelCase : int = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_A ) with open(os.path.join(_A , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: UpperCamelCase : Union[str, Any] = json.load(_A ) with open(os.path.join(_A , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: UpperCamelCase : List[Any] = json.load(_A ) UpperCamelCase : Optional[int] = [f"""<extra_id_{i}>""" for i in range(1_2_5 )] UpperCamelCase : List[Any] = added_tokens_extra_ids + [ """an_additional_special_token""" ] UpperCamelCase : int = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(_A , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_A , _A ) with open(os.path.join(_A , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(_A , _A ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCamelCase : Tuple = tokenizer_class.from_pretrained( _A , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCamelCase : List[str] = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=_A )] UpperCamelCase : Optional[Any] = tokenizer_class.from_pretrained( _A , additional_special_tokens=_A , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def _a ( self ): '''simple docstring''' UpperCamelCase : Dict = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , """�""" ) def _a ( self ): '''simple docstring''' pass def _a ( self ): '''simple docstring''' pass def _a ( self ): '''simple docstring''' pass def _a ( self ): '''simple docstring''' pass def _a ( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.get_tokenizers(fast=_A , do_lower_case=_A ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCamelCase : Optional[Any] = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""] UpperCamelCase : Dict = tokenizer.convert_tokens_to_string(_A ) self.assertIsInstance(_A , _A )
102
1
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) UpperCAmelCase =pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def _A ( _a : str , _a : int ): """simple docstring""" inspect_dataset(_a , _a ) A = path + """.py""" assert script_name in os.listdir(_a ) assert "__pycache__" not in os.listdir(_a ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def _A ( _a : str , _a : Dict ): """simple docstring""" inspect_metric(_a , _a ) A = path + """.py""" assert script_name in os.listdir(_a ) assert "__pycache__" not in os.listdir(_a ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def _A ( _a : Any , _a : List[Any] , _a : Tuple ): """simple docstring""" A = get_dataset_config_info(_a , config_name=_a ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def _A ( _a : Optional[Any] , _a : Dict , _a : List[Any] ): """simple docstring""" with pytest.raises(_a ): get_dataset_config_info(_a , config_name=_a ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def _A ( _a : str , _a : Any ): """simple docstring""" A = get_dataset_config_names(_a ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def _A ( _a : Optional[int] , _a : Any , _a : Dict ): """simple docstring""" A = get_dataset_infos(_a ) assert list(infos.keys() ) == expected_configs A = expected_configs[0] assert expected_config in infos A = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def _A ( _a : Optional[int] , _a : Any , _a : List[Any] ): """simple docstring""" A = get_dataset_infos(_a ) assert expected_config in infos A = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def _A ( _a : str , _a : Union[str, Any] , _a : Any ): """simple docstring""" with pytest.raises(_a ): get_dataset_split_names(_a , config_name=_a )
255
"""simple docstring""" def _A ( _a : int | float | str ): """simple docstring""" try: A = float(_a ) except ValueError: raise ValueError("""Please enter a valid number""" ) A = decimal - int(_a ) if fractional_part == 0: return int(_a ), 1 else: A = len(str(_a ).split(""".""" )[1] ) A = int(decimal * (1_0**number_of_frac_digits) ) A = 1_0**number_of_frac_digits A , A = denominator, numerator while True: A = dividend % divisor if remainder == 0: break A , A = divisor, remainder A , A = numerator / divisor, denominator / divisor return int(_a ), int(_a ) if __name__ == "__main__": print(f"""{decimal_to_fraction(2) = }""") print(f"""{decimal_to_fraction(89.0) = }""") print(f"""{decimal_to_fraction("67") = }""") print(f"""{decimal_to_fraction("45.0") = }""") print(f"""{decimal_to_fraction(1.5) = }""") print(f"""{decimal_to_fraction("6.25") = }""") print(f"""{decimal_to_fraction("78td") = }""")
255
1
"""simple docstring""" A : Optional[int] = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A : Dict = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A : str = { 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def snake_case__ ( _snake_case : int , _snake_case : int , _snake_case : int ): """simple docstring""" assert len(str(_snake_case ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: UpperCamelCase__ = year // 1_00 UpperCamelCase__ = (5 * (century % 4) + 2) % 7 UpperCamelCase__ = year % 1_00 UpperCamelCase__ = centurian % 12 UpperCamelCase__ = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 UpperCamelCase__ = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 4_00) == 0) else DOOMSDAY_LEAP[month - 1] ) UpperCamelCase__ = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
516
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : List[Any] = { 'configuration_lilt': ['LILT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LiltConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'LILT_PRETRAINED_MODEL_ARCHIVE_LIST', 'LiltForQuestionAnswering', 'LiltForSequenceClassification', 'LiltForTokenClassification', 'LiltModel', 'LiltPreTrainedModel', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
516
1
"""simple docstring""" import numpy as np def __lowerCamelCase ( lowerCAmelCase__ ): return 1 / (1 + np.exp(-vector )) def __lowerCamelCase ( lowerCAmelCase__ ): return vector * sigmoid(lowerCAmelCase__ ) if __name__ == "__main__": import doctest doctest.testmod()
715
"""simple docstring""" from PIL import Image def __lowerCamelCase ( lowerCAmelCase__ ): A__ , A__ = image.size A__ = 0 A__ = image.load() for i in range(lowerCAmelCase__ ): for j in range(lowerCAmelCase__ ): A__ = pixels[j, i] mean += pixel mean //= width * height for j in range(lowerCAmelCase__ ): for i in range(lowerCAmelCase__ ): A__ = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": SCREAMING_SNAKE_CASE : Dict = mean_threshold(Image.open('''path_to_image''').convert('''L''')) image.save('''output_image_path''')
554
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { """google/vivit-b-16x2-kinetics400""": ( """https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json""" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class a__ ( __magic_name__ ): lowercase_ = "vivit" def __init__( self : Union[str, Any] , UpperCamelCase_ : Dict=224 , UpperCamelCase_ : Optional[Any]=32 , UpperCamelCase_ : List[Any]=[2, 16, 16] , UpperCamelCase_ : str=3 , UpperCamelCase_ : Tuple=768 , UpperCamelCase_ : Tuple=12 , UpperCamelCase_ : Any=12 , UpperCamelCase_ : Any=3072 , UpperCamelCase_ : int="gelu_fast" , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : Tuple=0.0 , UpperCamelCase_ : Optional[int]=0.02 , UpperCamelCase_ : Tuple=1e-06 , UpperCamelCase_ : Optional[int]=True , **UpperCamelCase_ : int , ): """simple docstring""" __UpperCAmelCase : List[Any] = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : Any = num_attention_heads __UpperCAmelCase : Tuple = intermediate_size __UpperCAmelCase : int = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Dict = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : List[Any] = layer_norm_eps __UpperCAmelCase : Dict = image_size __UpperCAmelCase : Optional[Any] = num_frames __UpperCAmelCase : List[Any] = tubelet_size __UpperCAmelCase : Optional[Any] = num_channels __UpperCAmelCase : Optional[int] = qkv_bias super().__init__(**UpperCamelCase_)
77
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase_ ( self : Any ): """simple docstring""" __snake_case = 0 @slow def UpperCamelCase_ ( self : Union[str, Any] ): """simple docstring""" for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,(BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_lowerCAmelCase ) ,0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,(GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_lowerCAmelCase ) ,0 ) def UpperCamelCase_ ( self : int ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def UpperCamelCase_ ( self : List[str] ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,(RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,20 ) def UpperCamelCase_ ( self : Optional[Any] ): """simple docstring""" __snake_case = AutoConfig.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase ) # Check that tokenizer_type ≠ model_type __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ,config=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,(BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size ,12 ) def UpperCamelCase_ ( self : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" ,os.path.join(_lowerCAmelCase ,"vocab.txt" ) ) __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ,tokenizer_type="bert" ,use_fast=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" ,os.path.join(_lowerCAmelCase ,"vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" ,os.path.join(_lowerCAmelCase ,"merges.txt" ) ) __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ,tokenizer_type="gpt2" ,use_fast=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase ) @require_tokenizers def UpperCamelCase_ ( self : Tuple ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.txt" ,os.path.join(_lowerCAmelCase ,"vocab.txt" ) ) __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ,tokenizer_type="bert" ) self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy("./tests/fixtures/vocab.json" ,os.path.join(_lowerCAmelCase ,"vocab.json" ) ) shutil.copy("./tests/fixtures/merges.txt" ,os.path.join(_lowerCAmelCase ,"merges.txt" ) ) __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ,tokenizer_type="gpt2" ) self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self : Dict ): """simple docstring""" with pytest.raises(_lowerCAmelCase ): AutoTokenizer.from_pretrained("./" ,tokenizer_type="xxx" ) @require_tokenizers def UpperCamelCase_ ( self : List[str] ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: __snake_case = tokenizer_class.from_pretrained("wietsedv/bert-base-dutch-cased" ) self.assertIsInstance(_lowerCAmelCase ,(BertTokenizer, BertTokenizerFast) ) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case ,_lowerCAmelCase ) else: self.assertEqual(tokenizer.do_lower_case ,_lowerCAmelCase ) self.assertEqual(tokenizer.model_max_length ,512 ) @require_tokenizers def UpperCamelCase_ ( self : Tuple ): """simple docstring""" for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _lowerCAmelCase ,"julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier" ,): __snake_case = tokenizer_class.from_pretrained("julien-c/herlolip-not-exists" ) def UpperCamelCase_ ( self : str ): """simple docstring""" __snake_case = TOKENIZER_MAPPING.values() __snake_case = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_lowerCAmelCase ) @require_tokenizers def UpperCamelCase_ ( self : Dict ): """simple docstring""" self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" ,use_fast=_lowerCAmelCase ) ,_lowerCAmelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained("bert-base-cased" ) ,_lowerCAmelCase ) @require_tokenizers def UpperCamelCase_ ( self : Dict ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained("distilbert-base-uncased" ,do_lower_case=_lowerCAmelCase ) __snake_case = "Hello, world. How are you?" __snake_case = tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual("[UNK]" ,tokens[0] ) __snake_case = AutoTokenizer.from_pretrained("microsoft/mpnet-base" ,do_lower_case=_lowerCAmelCase ) __snake_case = tokenizer.tokenize(_lowerCAmelCase ) self.assertEqual("[UNK]" ,tokens[0] ) @require_tokenizers def UpperCamelCase_ ( self : Optional[int] ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained("robot-test/dummy-tokenizer-fast-with-model-config" ) self.assertEqual(type(_lowerCAmelCase ) ,_lowerCAmelCase ) self.assertEqual(tokenizer.model_max_length ,512 ) self.assertEqual(tokenizer.vocab_size ,30_000 ) self.assertEqual(tokenizer.unk_token ,"[UNK]" ) self.assertEqual(tokenizer.padding_side ,"right" ) self.assertEqual(tokenizer.truncation_side ,"right" ) def UpperCamelCase_ ( self : List[Any] ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,(BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size ,12 ) def UpperCamelCase_ ( self : Any ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained("ctrl" ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self : Tuple ): """simple docstring""" __snake_case = get_tokenizer_config("bert-base-cased" ) __snake_case = config.pop("_commit_hash" ,_lowerCAmelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_lowerCAmelCase ,{"do_lower_case": False} ) # This model does not have a tokenizer_config so we get back an empty dict. __snake_case = get_tokenizer_config(_lowerCAmelCase ) self.assertDictEqual(_lowerCAmelCase ,{} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase ) __snake_case = get_tokenizer_config(_lowerCAmelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config["tokenizer_class"] ,"BertTokenizer" ) def UpperCamelCase_ ( self : str ): """simple docstring""" try: AutoConfig.register("custom" ,_lowerCAmelCase ) AutoTokenizer.register(_lowerCAmelCase ,slow_tokenizer_class=_lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase ): AutoTokenizer.register(_lowerCAmelCase ,slow_tokenizer_class=_lowerCAmelCase ) __snake_case = CustomTokenizer.from_pretrained(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def UpperCamelCase_ ( self : List[str] ): """simple docstring""" try: AutoConfig.register("custom" ,_lowerCAmelCase ) # Can register in two steps AutoTokenizer.register(_lowerCAmelCase ,slow_tokenizer_class=_lowerCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, None) ) AutoTokenizer.register(_lowerCAmelCase ,fast_tokenizer_class=_lowerCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _lowerCAmelCase ,slow_tokenizer_class=_lowerCAmelCase ,fast_tokenizer_class=_lowerCAmelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] ,(CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase ): AutoTokenizer.register(_lowerCAmelCase ,fast_tokenizer_class=_lowerCAmelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: __snake_case = BertTokenizerFast.from_pretrained(_lowerCAmelCase ) bert_tokenizer.save_pretrained(_lowerCAmelCase ) __snake_case = CustomTokenizerFast.from_pretrained(_lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ,use_fast=_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase ,_lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCamelCase_ ( self : Any ): """simple docstring""" with self.assertRaises(_lowerCAmelCase ): __snake_case = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCAmelCase ): __snake_case = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=_lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=_lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ,trust_remote_code=_lowerCAmelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizerFast" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,"NewTokenizerFast" ) # Test we can also load the slow version __snake_case = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=_lowerCAmelCase ,use_fast=_lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCAmelCase ) __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ,trust_remote_code=_lowerCAmelCase ,use_fast=_lowerCAmelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,"NewTokenizer" ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) self.assertEqual(reloaded_tokenizer.__class__.__name__ ,"NewTokenizer" ) @require_tokenizers def UpperCamelCase_ ( self : Optional[Any] ): """simple docstring""" class UpperCamelCase ( snake_case__ ): __UpperCamelCase = False class UpperCamelCase ( snake_case__ ): __UpperCamelCase = NewTokenizer __UpperCamelCase = False try: AutoConfig.register("custom" ,_lowerCAmelCase ) AutoTokenizer.register(_lowerCAmelCase ,slow_tokenizer_class=_lowerCAmelCase ) AutoTokenizer.register(_lowerCAmelCase ,fast_tokenizer_class=_lowerCAmelCase ) # If remote code is not set, the default is to use local __snake_case = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) __snake_case = AutoTokenizer.from_pretrained("hf-internal-testing/test_dynamic_tokenizer" ,use_fast=_lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. __snake_case = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=_lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizerFast" ) self.assertFalse(tokenizer.special_attribute_present ) __snake_case = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=_lowerCAmelCase ,use_fast=_lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub __snake_case = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=_lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizerFast" ) self.assertTrue(tokenizer.special_attribute_present ) __snake_case = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer" ,trust_remote_code=_lowerCAmelCase ,use_fast=_lowerCAmelCase ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def UpperCamelCase_ ( self : List[Any] ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" ,trust_remote_code=_lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizerFast" ) # Test we can also load the slow version __snake_case = AutoTokenizer.from_pretrained( "hf-internal-testing/test_dynamic_tokenizer_legacy" ,trust_remote_code=_lowerCAmelCase ,use_fast=_lowerCAmelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ ,"NewTokenizer" ) def UpperCamelCase_ ( self : Any ): """simple docstring""" with self.assertRaisesRegex( _lowerCAmelCase ,"bert-base is not a local folder and is not a valid model identifier" ): __snake_case = AutoTokenizer.from_pretrained("bert-base" ) def UpperCamelCase_ ( self : Union[str, Any] ): """simple docstring""" with self.assertRaisesRegex( _lowerCAmelCase ,r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __snake_case = AutoTokenizer.from_pretrained(_lowerCAmelCase ,revision="aaaaaa" ) def UpperCamelCase_ ( self : Dict ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: __snake_case = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count ,0 ) self.assertEqual(counter.head_request_count ,1 ) self.assertEqual(counter.other_request_count ,0 )
524
0
'''simple docstring''' import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __A : Any = get_logger() __A : Optional[dict] = None class lowercase ( TensorFormatter[Mapping, "jax.Array", Mapping] ): '''simple docstring''' def __init__( self : str , __lowerCamelCase : Optional[Any]=None , __lowerCamelCase : Dict=None , **__lowerCamelCase : str ) -> List[Any]: '''simple docstring''' super().__init__(features=__lowerCamelCase ) import jax from jaxlib.xla_client import Device if isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError( f'''Expected {device} to be a `str` not {type(__lowerCamelCase )}, as `jaxlib.xla_extension.Device` ''' "is not serializable neither with `pickle` nor with `dill`. Instead you can surround " "the device with `str()` to get its string identifier that will be internally mapped " "to the actual `jaxlib.xla_extension.Device`." ) lowerCamelCase__ = device if isinstance(__lowerCamelCase , __lowerCamelCase ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCamelCase__ = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( f'''Device with string identifier {self.device} not listed among the available ''' f'''devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ''' f'''device: {str(jax.devices()[0] )}.''' ) lowerCamelCase__ = str(jax.devices()[0] ) lowerCamelCase__ = jnp_array_kwargs @staticmethod def a__ ( ) -> Dict[str, "jaxlib.xla_extension.Device"]: '''simple docstring''' import jax return {str(__lowerCamelCase ): device for device in jax.devices()} def a__ ( self : Optional[Any] , __lowerCamelCase : Optional[int] ) -> List[str]: '''simple docstring''' import jax import jax.numpy as jnp if isinstance(__lowerCamelCase , __lowerCamelCase ) and column: if all( isinstance(__lowerCamelCase , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(__lowerCamelCase , axis=0 ) return column def a__ ( self : List[Any] , __lowerCamelCase : List[Any] ) -> Optional[int]: '''simple docstring''' import jax import jax.numpy as jnp if isinstance(__lowerCamelCase , (str, bytes, type(__lowerCamelCase )) ): return value elif isinstance(__lowerCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() lowerCamelCase__ = {} if isinstance(__lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowerCamelCase__ = {"dtype": jnp.intaa} else: lowerCamelCase__ = {"dtype": jnp.intaa} elif isinstance(__lowerCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): lowerCamelCase__ = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__lowerCamelCase , PIL.Image.Image ): lowerCamelCase__ = np.asarray(__lowerCamelCase ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCamelCase__ = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(__lowerCamelCase , **{**default_dtype, **self.jnp_array_kwargs} ) def a__ ( self : List[str] , __lowerCamelCase : Optional[Any] ) -> Dict: '''simple docstring''' import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(__lowerCamelCase , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(__lowerCamelCase , "__array__" ) and not isinstance(__lowerCamelCase , jax.Array ): lowerCamelCase__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__lowerCamelCase , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__lowerCamelCase ) for substruct in data_struct] ) elif isinstance(__lowerCamelCase , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__lowerCamelCase ) for substruct in data_struct] ) return self._tensorize(__lowerCamelCase ) def a__ ( self : Any , __lowerCamelCase : dict ) -> int: '''simple docstring''' return map_nested(self._recursive_tensorize , __lowerCamelCase , map_list=__lowerCamelCase ) def a__ ( self : Union[str, Any] , __lowerCamelCase : pa.Table ) -> Mapping: '''simple docstring''' lowerCamelCase__ = self.numpy_arrow_extractor().extract_row(__lowerCamelCase ) lowerCamelCase__ = self.python_features_decoder.decode_row(__lowerCamelCase ) return self.recursive_tensorize(__lowerCamelCase ) def a__ ( self : List[Any] , __lowerCamelCase : pa.Table ) -> "jax.Array": '''simple docstring''' lowerCamelCase__ = self.numpy_arrow_extractor().extract_column(__lowerCamelCase ) lowerCamelCase__ = self.python_features_decoder.decode_column(__lowerCamelCase , pa_table.column_names[0] ) lowerCamelCase__ = self.recursive_tensorize(__lowerCamelCase ) lowerCamelCase__ = self._consolidate(__lowerCamelCase ) return column def a__ ( self : List[str] , __lowerCamelCase : pa.Table ) -> Mapping: '''simple docstring''' lowerCamelCase__ = self.numpy_arrow_extractor().extract_batch(__lowerCamelCase ) lowerCamelCase__ = self.python_features_decoder.decode_batch(__lowerCamelCase ) lowerCamelCase__ = self.recursive_tensorize(__lowerCamelCase ) for column_name in batch: lowerCamelCase__ = self._consolidate(batch[column_name] ) return batch
715
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : Tuple = { """configuration_deberta""": ["""DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DebertaConfig""", """DebertaOnnxConfig"""], """tokenization_deberta""": ["""DebertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ["""DebertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : str = [ """DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """DebertaForMaskedLM""", """DebertaForQuestionAnswering""", """DebertaForSequenceClassification""", """DebertaForTokenClassification""", """DebertaModel""", """DebertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ """TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDebertaForMaskedLM""", """TFDebertaForQuestionAnswering""", """TFDebertaForSequenceClassification""", """TFDebertaForTokenClassification""", """TFDebertaModel""", """TFDebertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
187
0
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> tuple[float, list[float]]: """simple docstring""" UpperCamelCase = list(range(len(UpperCAmelCase_ ) ) ) UpperCamelCase = [v / w for v, w in zip(UpperCAmelCase_ , UpperCAmelCase_ )] index.sort(key=lambda UpperCAmelCase_ : ratio[i] , reverse=UpperCAmelCase_ ) UpperCamelCase = 0 UpperCamelCase = [0] * len(UpperCAmelCase_ ) for i in index: if weight[i] <= capacity: UpperCamelCase = 1 max_value += value[i] capacity -= weight[i] else: UpperCamelCase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
554
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py SCREAMING_SNAKE_CASE = """src/transformers""" # This is to make sure the transformers module imported is the one in the repo. SCREAMING_SNAKE_CASE = direct_transformers_import(PATH_TO_TRANSFORMERS) SCREAMING_SNAKE_CASE = transformers.models.auto.configuration_auto.CONFIG_MAPPING SCREAMING_SNAKE_CASE = { # used to compute the property `self.chunk_length` """EncodecConfig""": ["""overlap"""], # used as `self.bert_model = BertModel(config, ...)` """DPRConfig""": True, # not used in modeling files, but it's an important information """FSMTConfig""": ["""langs"""], # used internally in the configuration class file """GPTNeoConfig""": ["""attention_types"""], # used internally in the configuration class file """EsmConfig""": ["""is_folding_model"""], # used during training (despite we don't have training script for these models yet) """Mask2FormerConfig""": ["""ignore_value"""], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) """OneFormerConfig""": ["""ignore_value""", """norm"""], # used during preprocessing and collation, see `collating_graphormer.py` """GraphormerConfig""": ["""spatial_pos_max"""], # used internally in the configuration class file """T5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally """MT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], """UMT5Config""": ["""feed_forward_proj""", """tokenizer_class"""], # used internally in the configuration class file """LongT5Config""": ["""feed_forward_proj"""], # used internally in the configuration class file """SwitchTransformersConfig""": ["""feed_forward_proj"""], # having default values other than `1e-5` - we can't fix them without breaking """BioGptConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """GLPNConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """SegformerConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """CvtConfig""": ["""layer_norm_eps"""], # having default values other than `1e-5` - we can't fix them without breaking """PerceiverConfig""": ["""layer_norm_eps"""], # used internally to calculate the feature size """InformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """TimeSeriesTransformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate the feature size """AutoformerConfig""": ["""num_static_real_features""", """num_time_features"""], # used internally to calculate `mlp_dim` """SamVisionConfig""": ["""mlp_ratio"""], # For (head) training, but so far not implemented """ClapAudioConfig""": ["""num_classes"""], # Not used, but providing useful information to users """SpeechT5HifiGanConfig""": ["""sampling_rate"""], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { """CLIPSegConfig""": True, """DeformableDetrConfig""": True, """DetaConfig""": True, """DinatConfig""": True, """DonutSwinConfig""": True, """EfficientFormerConfig""": True, """FSMTConfig""": True, """JukeboxConfig""": True, """LayoutLMv2Config""": True, """MaskFormerSwinConfig""": True, """MT5Config""": True, """NatConfig""": True, """OneFormerConfig""": True, """PerceiverConfig""": True, """RagConfig""": True, """SpeechT5Config""": True, """SwinConfig""": True, """Swin2SRConfig""": True, """Swinv2Config""": True, """SwitchTransformersConfig""": True, """TableTransformerConfig""": True, """TapasConfig""": True, """TransfoXLConfig""": True, """UniSpeechConfig""": True, """UniSpeechSatConfig""": True, """WavLMConfig""": True, """WhisperConfig""": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) """JukeboxPriorConfig""": True, # TODO: @Younes (for `is_decoder`) """Pix2StructTextConfig""": True, } ) def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> Optional[Any]: """simple docstring""" UpperCamelCase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"config.{attribute}" in modeling_source or F"getattr(config, \"{attribute}\"" in modeling_source or F"getattr(self.config, \"{attribute}\"" in modeling_source ): UpperCamelCase = True # Deal with multi-line cases elif ( re.search( RF"getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"" , UpperCAmelCase_ , ) is not None ): UpperCamelCase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCamelCase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCamelCase = [ "bos_index", "eos_index", "pad_index", "unk_index", "mask_index", "image_size", "use_cache", "out_features", "out_indices", ] UpperCamelCase = ["encoder_no_repeat_ngram_size"] # Special cases to be allowed UpperCamelCase = True if not attribute_used: UpperCamelCase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCamelCase = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCamelCase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCamelCase = True elif attribute.endswith("_token_id" ): UpperCamelCase = True # configuration class specific cases if not case_allowed: UpperCamelCase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCamelCase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowerCamelCase__ ( UpperCAmelCase_ )-> Optional[Any]: """simple docstring""" UpperCamelCase = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCamelCase = [x for x in list(signature.keys() ) if x not in ["self", "kwargs"]] UpperCamelCase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCamelCase = {} if len(config_class.attribute_map ) > 0: UpperCamelCase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCamelCase = inspect.getsourcefile(UpperCAmelCase_ ) UpperCamelCase = os.path.dirname(UpperCAmelCase_ ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCamelCase = [os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) for fn in os.listdir(UpperCAmelCase_ ) if fn.startswith("modeling_" )] # Get the source code strings UpperCamelCase = [] for path in modeling_paths: if os.path.isfile(UpperCAmelCase_ ): with open(UpperCAmelCase_ ) as fp: modeling_sources.append(fp.read() ) UpperCamelCase = [] for config_param, default_value in zip(UpperCAmelCase_ , UpperCAmelCase_ ): # `attributes` here is all the variant names for `config_param` UpperCamelCase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): unused_attributes.append(attributes[0] ) return sorted(UpperCAmelCase_ ) def lowerCamelCase__ ( )-> List[str]: """simple docstring""" UpperCamelCase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCamelCase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda UpperCAmelCase_ : inspect.isclass(UpperCAmelCase_ ) and issubclass(UpperCAmelCase_ , UpperCAmelCase_ ) and inspect.getmodule(UpperCAmelCase_ ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCamelCase = check_config_attributes_being_used(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0: UpperCamelCase = unused_attributes if len(UpperCAmelCase_ ) > 0: UpperCamelCase = "The following configuration classes contain unused attributes in the corresponding modeling files:\n" for name, attributes in configs_with_unused_attributes.items(): error += F"{name}: {attributes}\n" raise ValueError(UpperCAmelCase_ ) if __name__ == "__main__": check_config_attributes()
554
1
'''simple docstring''' class a_ : def __init__( self : List[Any] ): __snake_case = 0 __snake_case = 0 __snake_case = {} def lowercase__ ( self : Any , __lowerCAmelCase : int ): if vertex not in self.adjacency: __snake_case = {} self.num_vertices += 1 def lowercase__ ( self : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : List[str] ): self.add_vertex(__lowerCAmelCase ) self.add_vertex(__lowerCAmelCase ) if head == tail: return __snake_case = weight __snake_case = weight def lowercase__ ( self : str ): __snake_case = self.get_edges() for edge in edges: __snake_case , __snake_case , __snake_case = edge edges.remove((tail, head, weight) ) for i in range(len(__lowerCAmelCase ) ): __snake_case = list(edges[i] ) edges.sort(key=lambda __lowerCAmelCase : e[2] ) for i in range(len(__lowerCAmelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __snake_case = edges[i][2] + 1 for edge in edges: __snake_case , __snake_case , __snake_case = edge __snake_case = weight __snake_case = weight def __str__( self : List[Any] ): __snake_case = '' for tail in self.adjacency: for head in self.adjacency[tail]: __snake_case = self.adjacency[head][tail] string += F'{head} -> {tail} == {weight}\n' return string.rstrip('\n' ) def lowercase__ ( self : int ): __snake_case = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowercase__ ( self : Optional[Any] ): return self.adjacency.keys() @staticmethod def lowercase__ ( __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : str=None ): __snake_case = Graph() if vertices is None: __snake_case = [] if edges is None: __snake_case = [] for vertex in vertices: g.add_vertex(__lowerCAmelCase ) for edge in edges: g.add_edge(*__lowerCAmelCase ) return g class a_ : def __init__( self : str ): __snake_case = {} __snake_case = {} def __len__( self : List[str] ): return len(self.parent ) def lowercase__ ( self : List[Any] , __lowerCAmelCase : List[Any] ): if item in self.parent: return self.find(__lowerCAmelCase ) __snake_case = item __snake_case = 0 return item def lowercase__ ( self : Optional[int] , __lowerCAmelCase : Any ): if item not in self.parent: return self.make_set(__lowerCAmelCase ) if item != self.parent[item]: __snake_case = self.find(self.parent[item] ) return self.parent[item] def lowercase__ ( self : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ): __snake_case = self.find(__lowerCAmelCase ) __snake_case = self.find(__lowerCAmelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __snake_case = roota return roota if self.rank[roota] < self.rank[roota]: __snake_case = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __snake_case = roota return roota return None @staticmethod def lowercase__ ( __lowerCAmelCase : Any ): __snake_case = graph.num_vertices __snake_case = Graph.UnionFind() __snake_case = [] while num_components > 1: __snake_case = {} for vertex in graph.get_vertices(): __snake_case = -1 __snake_case = graph.get_edges() for edge in edges: __snake_case , __snake_case , __snake_case = edge edges.remove((tail, head, weight) ) for edge in edges: __snake_case , __snake_case , __snake_case = edge __snake_case = union_find.find(__lowerCAmelCase ) __snake_case = union_find.find(__lowerCAmelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __snake_case = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __snake_case = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __snake_case , __snake_case , __snake_case = cheap_edge[vertex] if union_find.find(__lowerCAmelCase ) != union_find.find(__lowerCAmelCase ): union_find.union(__lowerCAmelCase , __lowerCAmelCase ) mst_edges.append(cheap_edge[vertex] ) __snake_case = num_components - 1 __snake_case = Graph.build(edges=__lowerCAmelCase ) return mst
427
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class a_ : def __init__( self : Tuple , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any]=1_3 , __lowerCAmelCase : str=7 , __lowerCAmelCase : Optional[int]=False , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : List[Any]=False , __lowerCAmelCase : Union[str, Any]=1_9 , __lowerCAmelCase : Optional[Any]=3_2 , __lowerCAmelCase : str=5 , __lowerCAmelCase : List[str]=4 , __lowerCAmelCase : str=3_7 , __lowerCAmelCase : List[Any]="gelu" , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : List[Any]=5_1_2 , __lowerCAmelCase : Optional[int]=1_6 , __lowerCAmelCase : Dict=2 , __lowerCAmelCase : str=0.02 , __lowerCAmelCase : str=3 , __lowerCAmelCase : List[Any]=4 , __lowerCAmelCase : Any=None , ): __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def lowercase__ ( self : int ): __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = ids_tensor([self.batch_size] , self.num_choices ) __snake_case = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : Any ): __snake_case = EsmConfig( vocab_size=3_3 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=__lowerCAmelCase , esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False} , ) return config def lowercase__ ( self : Union[str, Any] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] ): __snake_case = EsmForProteinFolding(config=__lowerCAmelCase ).float() model.to(__lowerCAmelCase ) model.eval() __snake_case = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) __snake_case = model(__lowerCAmelCase ) __snake_case = model(__lowerCAmelCase ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 1_4, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def lowercase__ ( self : Union[str, Any] ): __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class a_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): lowercase_ : Dict = False lowercase_ : Optional[int] = (EsmForProteinFolding,) if is_torch_available() else () lowercase_ : List[str] = () lowercase_ : List[str] = {} if is_torch_available() else {} lowercase_ : List[str] = False def lowercase__ ( self : List[Any] ): __snake_case = EsmFoldModelTester(self ) __snake_case = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def lowercase__ ( self : List[Any] ): self.config_tester.run_common_tests() def lowercase__ ( self : Union[str, Any] ): __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) @unittest.skip('Does not support attention outputs' ) def lowercase__ ( self : Optional[int] ): pass @unittest.skip def lowercase__ ( self : Any ): pass @unittest.skip('Esm does not support embedding resizing' ) def lowercase__ ( self : Optional[Any] ): pass @unittest.skip('Esm does not support embedding resizing' ) def lowercase__ ( self : List[Any] ): pass @unittest.skip('ESMFold does not support passing input embeds!' ) def lowercase__ ( self : List[str] ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase__ ( self : Union[str, Any] ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase__ ( self : int ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase__ ( self : Tuple ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase__ ( self : Optional[Any] ): pass @unittest.skip('ESMFold does not support head pruning.' ) def lowercase__ ( self : Dict ): pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def lowercase__ ( self : Union[str, Any] ): pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def lowercase__ ( self : int ): pass @unittest.skip('ESMFold only has one output format.' ) def lowercase__ ( self : Dict ): pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def lowercase__ ( self : Any ): pass @unittest.skip('ESMFold does not support input chunking.' ) def lowercase__ ( self : Optional[Any] ): pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def lowercase__ ( self : str ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase__ ( self : Optional[int] ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase__ ( self : Optional[int] ): pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def lowercase__ ( self : List[str] ): pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def lowercase__ ( self : Dict ): pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def lowercase__ ( self : Optional[int] ): pass @require_torch class a_ ( UpperCAmelCase__ ): @slow def lowercase__ ( self : Optional[int] ): __snake_case = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() __snake_case = torch.tensor([[0, 6, 4, 1_3, 5, 4, 1_6, 1_2, 1_1, 7, 2]] ) __snake_case = model(__lowerCAmelCase )['positions'] __snake_case = torch.tensor([2.5828, 0.7993, -10.9334] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , __lowerCAmelCase , atol=1E-4 ) )
427
1
"""simple docstring""" def lowerCAmelCase_( lowercase_ : int = 10 ) -> str: if not isinstance(lowercase_ , lowercase_ ) or n < 0: raise ValueError('''Invalid input''' ) _lowerCamelCase = 10**n _lowerCamelCase = 2_84_33 * (pow(2 , 7_83_04_57 , lowercase_ )) + 1 return str(number % modulus ) if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(1_0) = }""")
661
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : Optional[int] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : int = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
661
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase_ : Union[str, Any] = {"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
232
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
232
1
"""simple docstring""" from __future__ import annotations A__ : Any = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class lowercase__ : def __init__( self : int , snake_case__ : dict[str, list[str]] , snake_case__ : str ): lowerCamelCase_ : int =graph # mapping node to its parent in resulting breadth first tree lowerCamelCase_ : dict[str, str | None] ={} lowerCamelCase_ : int =source_vertex def UpperCAmelCase__ ( self : Optional[int] ): lowerCamelCase_ : int ={self.source_vertex} lowerCamelCase_ : Any =None lowerCamelCase_ : Dict =[self.source_vertex] # first in first out queue while queue: lowerCamelCase_ : int =queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case__ ) lowerCamelCase_ : Any =vertex queue.append(snake_case__ ) def UpperCAmelCase__ ( self : str , snake_case__ : str ): if target_vertex == self.source_vertex: return self.source_vertex lowerCamelCase_ : Optional[int] =self.parent.get(snake_case__ ) if target_vertex_parent is None: lowerCamelCase_ : Optional[Any] =( F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(snake_case__ ) return self.shortest_path(snake_case__ ) + F"""->{target_vertex}""" if __name__ == "__main__": A__ : Union[str, Any] = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
153
"""simple docstring""" import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase__ ( snake_case__, unittest.TestCase ): _UpperCAmelCase :Dict = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def UpperCAmelCase__ ( self : Union[str, Any] , snake_case__ : Any=0 ): lowerCamelCase_ : Tuple =np.random.RandomState(snake_case__ ) lowerCamelCase_ : Union[str, Any] ={ "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : str =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : List[str] =self.get_dummy_inputs() lowerCamelCase_ : List[str] =pipe(**snake_case__ ).images lowerCamelCase_ : Dict =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : Dict =np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : Optional[Any] =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase_ : int =PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : List[Any] =self.get_dummy_inputs() lowerCamelCase_ : Union[str, Any] =pipe(**snake_case__ ).images lowerCamelCase_ : Tuple =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : Union[str, Any] =np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : Optional[int] =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase_ : int =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : int =self.get_dummy_inputs() lowerCamelCase_ : Optional[Any] =pipe(**snake_case__ ).images lowerCamelCase_ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : Any =np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : List[Any] =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase_ : str =EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Dict =self.get_dummy_inputs() lowerCamelCase_ : Dict =pipe(**snake_case__ ).images lowerCamelCase_ : Tuple =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : Tuple =np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : int =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase_ : Optional[Any] =EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Dict =self.get_dummy_inputs() lowerCamelCase_ : str =pipe(**snake_case__ ).images lowerCamelCase_ : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : Optional[int] =np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : str ): lowerCamelCase_ : Any =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) lowerCamelCase_ : Union[str, Any] =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Optional[int] =self.get_dummy_inputs() lowerCamelCase_ : Tuple =pipe(**snake_case__ ).images lowerCamelCase_ : List[str] =image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase_ : List[Any] =np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Any ): lowerCamelCase_ : int =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Union[str, Any] =self.get_dummy_inputs() lowerCamelCase_ : Optional[Any] =3 * [inputs["prompt"]] # forward lowerCamelCase_ : Optional[int] =pipe(**snake_case__ ) lowerCamelCase_ : Dict =output.images[0, -3:, -3:, -1] lowerCamelCase_ : Any =self.get_dummy_inputs() lowerCamelCase_ : Dict =3 * [inputs.pop("prompt" )] lowerCamelCase_ : Union[str, Any] =pipe.tokenizer( snake_case__ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors="np" , ) lowerCamelCase_ : Any =text_inputs["input_ids"] lowerCamelCase_ : Dict =pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] lowerCamelCase_ : Union[str, Any] =prompt_embeds # forward lowerCamelCase_ : Tuple =pipe(**snake_case__ ) lowerCamelCase_ : List[str] =output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def UpperCAmelCase__ ( self : Dict ): lowerCamelCase_ : List[str] =OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : List[Any] =self.get_dummy_inputs() lowerCamelCase_ : Dict =3 * ["this is a negative prompt"] lowerCamelCase_ : Tuple =negative_prompt lowerCamelCase_ : List[str] =3 * [inputs["prompt"]] # forward lowerCamelCase_ : Optional[Any] =pipe(**snake_case__ ) lowerCamelCase_ : Any =output.images[0, -3:, -3:, -1] lowerCamelCase_ : str =self.get_dummy_inputs() lowerCamelCase_ : int =3 * [inputs.pop("prompt" )] lowerCamelCase_ : List[Any] =[] for p in [prompt, negative_prompt]: lowerCamelCase_ : Tuple =pipe.tokenizer( snake_case__ , padding="max_length" , max_length=pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors="np" , ) lowerCamelCase_ : Dict =text_inputs["input_ids"] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) lowerCamelCase_ , lowerCamelCase_ : int =embeds # forward lowerCamelCase_ : str =pipe(**snake_case__ ) lowerCamelCase_ : Any =output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class lowercase__ ( unittest.TestCase ): @property def UpperCAmelCase__ ( self : int ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : List[str] =ort.SessionOptions() lowerCamelCase_ : List[Any] =False return options def UpperCAmelCase__ ( self : Tuple ): # using the PNDM scheduler by default lowerCamelCase_ : Optional[Any] =OnnxStableDiffusionPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : List[Any] ="A painting of a squirrel eating a burger" np.random.seed(0 ) lowerCamelCase_ : Tuple =sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="np" ) lowerCamelCase_ : Union[str, Any] =output.images lowerCamelCase_ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ : List[str] =np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : Union[str, Any] ): lowerCamelCase_ : List[Any] =DDIMScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) lowerCamelCase_ : List[str] =OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : int ="open neural network exchange" lowerCamelCase_ : List[Any] =np.random.RandomState(0 ) lowerCamelCase_ : str =sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type="np" ) lowerCamelCase_ : Optional[int] =output.images lowerCamelCase_ : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ : Any =np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : List[str] ): lowerCamelCase_ : str =LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) lowerCamelCase_ : Any =OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=snake_case__ , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Union[str, Any] ="open neural network exchange" lowerCamelCase_ : str =np.random.RandomState(0 ) lowerCamelCase_ : Optional[int] =sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=snake_case__ , output_type="np" ) lowerCamelCase_ : Dict =output.images lowerCamelCase_ : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase_ : Dict =np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : Optional[Any] ): lowerCamelCase_ : Any =0 def test_callback_fn(snake_case__ : int , snake_case__ : int , snake_case__ : np.ndarray ) -> None: lowerCamelCase_ : Optional[int] =True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) lowerCamelCase_ : List[str] =latents[0, -3:, -3:, -1] lowerCamelCase_ : Union[str, Any] =np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) lowerCamelCase_ : Optional[Any] =latents[0, -3:, -3:, -1] lowerCamelCase_ : List[Any] =np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 lowerCamelCase_ : Any =False lowerCamelCase_ : int =OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=snake_case__ ) lowerCamelCase_ : Dict ="Andromeda galaxy in a bottle" lowerCamelCase_ : Union[str, Any] =np.random.RandomState(0 ) pipe( prompt=snake_case__ , num_inference_steps=5 , guidance_scale=7.5 , generator=snake_case__ , callback=snake_case__ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def UpperCAmelCase__ ( self : Tuple ): lowerCamelCase_ : List[str] =OnnxStableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , safety_checker=snake_case__ , feature_extractor=snake_case__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(snake_case__ , snake_case__ ) assert pipe.safety_checker is None lowerCamelCase_ : Tuple =pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(snake_case__ ) lowerCamelCase_ : str =OnnxStableDiffusionPipeline.from_pretrained(snake_case__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCamelCase_ : Any =pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None
153
1
snake_case__ : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' snake_case__ : Any = [{'type': 'code', 'content': INSTALL_CONTENT}] snake_case__ : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
592
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case__ : Union[str, Any] = logging.get_logger(__name__) snake_case__ : Union[str, Any] = {'vocab_file': 'sentencepiece.bpe.model'} snake_case__ : List[Any] = { 'vocab_file': { 'moussaKam/mbarthez': 'https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez': 'https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model', 'moussaKam/barthez-orangesum-title': ( 'https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model' ), }, } snake_case__ : str = { 'moussaKam/mbarthez': 1_0_2_4, 'moussaKam/barthez': 1_0_2_4, 'moussaKam/barthez-orangesum-title': 1_0_2_4, } snake_case__ : Tuple = '▁' class _a ( A__ ): """simple docstring""" snake_case =VOCAB_FILES_NAMES snake_case =PRETRAINED_VOCAB_FILES_MAP snake_case =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case =["""input_ids""", """attention_mask"""] def __init__( self , _snake_case , _snake_case="<s>" , _snake_case="</s>" , _snake_case="</s>" , _snake_case="<s>" , _snake_case="<unk>" , _snake_case="<pad>" , _snake_case="<mask>" , _snake_case = None , **_snake_case , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCAmelCase =AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token _UpperCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) _UpperCAmelCase =vocab_file _UpperCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) _UpperCAmelCase ={"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} _UpperCAmelCase =len(self.sp_model ) - 1 _UpperCAmelCase ={v: k for k, v in self.fairseq_tokens_to_ids.items()} def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _UpperCAmelCase =[self.cls_token_id] _UpperCAmelCase =[self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None , _snake_case = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None ): _UpperCAmelCase =[self.sep_token_id] _UpperCAmelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE ( self ): return len(self.sp_model ) def SCREAMING_SNAKE_CASE ( self ): _UpperCAmelCase ={self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE ( self , _snake_case ): return self.sp_model.encode(_snake_case , out_type=_snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCAmelCase =self.sp_model.PieceToId(_snake_case ) return spm_id if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE ( self , _snake_case ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(_snake_case ) def SCREAMING_SNAKE_CASE ( self , _snake_case ): _UpperCAmelCase =[] _UpperCAmelCase ="" _UpperCAmelCase =False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_snake_case ) + token _UpperCAmelCase =True _UpperCAmelCase =[] else: current_sub_tokens.append(_snake_case ) _UpperCAmelCase =False out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def __getstate__( self ): _UpperCAmelCase =self.__dict__.copy() _UpperCAmelCase =None return state def __setstate__( self , _snake_case ): _UpperCAmelCase =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCAmelCase ={} _UpperCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE ( self , _snake_case , _snake_case = None ): if not os.path.isdir(_snake_case ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return _UpperCAmelCase =os.path.join( _snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , "wb" ) as fi: _UpperCAmelCase =self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
592
1
'''simple docstring''' import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _lowercase ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : Tuple = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def a ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> str: __snake_case = AudioClassificationPipeline(model=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ ) # test with a raw waveform __snake_case = np.zeros((3_4000,) ) __snake_case = np.zeros((1_4000,) ) return audio_classifier, [audioa, audio] def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ) -> List[Any]: __snake_case , __snake_case = examples __snake_case = audio_classifier(SCREAMING_SNAKE_CASE_ ) # by default a model is initialized with num_labels=2 self.assertEqual( SCREAMING_SNAKE_CASE_ , [ {'score': ANY(SCREAMING_SNAKE_CASE_ ), 'label': ANY(SCREAMING_SNAKE_CASE_ )}, {'score': ANY(SCREAMING_SNAKE_CASE_ ), 'label': ANY(SCREAMING_SNAKE_CASE_ )}, ] , ) __snake_case = audio_classifier(SCREAMING_SNAKE_CASE_ , top_k=1 ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ {'score': ANY(SCREAMING_SNAKE_CASE_ ), 'label': ANY(SCREAMING_SNAKE_CASE_ )}, ] , ) self.run_torchaudio(SCREAMING_SNAKE_CASE_ ) @require_torchaudio def a ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Dict: import datasets # test with a local file __snake_case = datasets.load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) __snake_case = dataset[0]['audio']['array'] __snake_case = audio_classifier(SCREAMING_SNAKE_CASE_ ) self.assertEqual( SCREAMING_SNAKE_CASE_ , [ {'score': ANY(SCREAMING_SNAKE_CASE_ ), 'label': ANY(SCREAMING_SNAKE_CASE_ )}, {'score': ANY(SCREAMING_SNAKE_CASE_ ), 'label': ANY(SCREAMING_SNAKE_CASE_ )}, ] , ) @require_torch def a ( self : Union[str, Any] ) -> List[Any]: __snake_case = 'anton-l/wav2vec2-random-tiny-classifier' __snake_case = pipeline('audio-classification' , model=SCREAMING_SNAKE_CASE_ ) __snake_case = np.ones((8000,) ) __snake_case = audio_classifier(SCREAMING_SNAKE_CASE_ , top_k=4 ) __snake_case = [ {'score': 0.0_8_4_2, 'label': 'no'}, {'score': 0.0_8_3_8, 'label': 'up'}, {'score': 0.0_8_3_7, 'label': 'go'}, {'score': 0.0_8_3_4, 'label': 'right'}, ] __snake_case = [ {'score': 0.0_8_4_5, 'label': 'stop'}, {'score': 0.0_8_4_4, 'label': 'on'}, {'score': 0.0_8_4_1, 'label': 'right'}, {'score': 0.0_8_3_4, 'label': 'left'}, ] self.assertIn(nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) __snake_case = {'array': np.ones((8000,) ), 'sampling_rate': audio_classifier.feature_extractor.sampling_rate} __snake_case = audio_classifier(SCREAMING_SNAKE_CASE_ , top_k=4 ) self.assertIn(nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def a ( self : List[Any] ) -> Any: import datasets __snake_case = 'superb/wav2vec2-base-superb-ks' __snake_case = pipeline('audio-classification' , model=SCREAMING_SNAKE_CASE_ ) __snake_case = datasets.load_dataset('anton-l/superb_dummy' , 'ks' , split='test' ) __snake_case = np.array(dataset[3]['speech'] , dtype=np.floataa ) __snake_case = audio_classifier(SCREAMING_SNAKE_CASE_ , top_k=4 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=3 ) , [ {'score': 0.9_8_1, 'label': 'go'}, {'score': 0.0_0_7, 'label': 'up'}, {'score': 0.0_0_6, 'label': '_unknown_'}, {'score': 0.0_0_1, 'label': 'down'}, ] , ) @require_tf @unittest.skip('Audio classification is not implemented for TF' ) def a ( self : List[str] ) -> Tuple: pass
56
"""simple docstring""" from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def lowercase_ ( _snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case ): SCREAMING_SNAKE_CASE__ : int = cva.getAffineTransform(_snake_case ,_snake_case ) return cva.warpAffine(_snake_case ,_snake_case ,(rows, cols) ) if __name__ == "__main__": # read original image UpperCAmelCase__ : str = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value UpperCAmelCase__ : List[str] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape UpperCAmelCase__ , UpperCAmelCase__ : str = gray_img.shape # set different points to rotate image UpperCAmelCase__ : List[Any] = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) UpperCAmelCase__ : Union[str, Any] = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) UpperCAmelCase__ : List[str] = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) UpperCAmelCase__ : str = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list UpperCAmelCase__ : List[Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations UpperCAmelCase__ : List[Any] = plt.figure(1) UpperCAmelCase__ : Optional[int] = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
223
0
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowerCAmelCase_( lowercase_ : Dataset , lowercase_ : Dict[str, str] ) -> Tuple: _lowerCamelCase = args.log_outputs _lowerCamelCase = '''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric _lowerCamelCase = load_metric('''wer''' ) _lowerCamelCase = load_metric('''cer''' ) # compute metrics _lowerCamelCase = wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) _lowerCamelCase = cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results _lowerCamelCase = F"""WER: {wer_result}\nCER: {cer_result}""" print(lowercase_ ) with open(F"""{dataset_id}_eval_results.txt""" , '''w''' ) as f: f.write(lowercase_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: _lowerCamelCase = F"""log_{dataset_id}_predictions.txt""" _lowerCamelCase = F"""log_{dataset_id}_targets.txt""" with open(lowercase_ , '''w''' ) as p, open(lowercase_ , '''w''' ) as t: # mapping function to write output def write_to_file(lowercase_ : Optional[int] , lowercase_ : List[Any] ): p.write(F"""{i}""" + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F"""{i}""" + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(lowercase_ , with_indices=lowercase_ ) def lowerCAmelCase_( lowercase_ : str ) -> str: _lowerCamelCase = '''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training _lowerCamelCase = re.sub(lowercase_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! _lowerCamelCase = ['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: _lowerCamelCase = ''' '''.join(text.split(lowercase_ ) ) return text def lowerCAmelCase_( lowercase_ : Any ) -> List[Any]: # load dataset _lowerCamelCase = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor _lowerCamelCase = AutoFeatureExtractor.from_pretrained(args.model_id ) _lowerCamelCase = feature_extractor.sampling_rate # resample audio _lowerCamelCase = dataset.cast_column('''audio''' , Audio(sampling_rate=lowercase_ ) ) # load eval pipeline if args.device is None: _lowerCamelCase = 0 if torch.cuda.is_available() else -1 _lowerCamelCase = pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowercase_ : Optional[Any] ): _lowerCamelCase = asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) _lowerCamelCase = prediction['''text'''] _lowerCamelCase = normalize_text(batch['''sentence'''] ) return batch # run inference on all examples _lowerCamelCase = dataset.map(lowercase_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowercase_ , lowercase_ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) __SCREAMING_SNAKE_CASE : Any = parser.parse_args() main(args)
623
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def lowerCAmelCase_( lowercase_ : float , lowercase_ : float , lowercase_ : float ) -> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(lowercase_ , 2 ) - pow(lowercase_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(lowercase_ , 2 ) - pow(lowercase_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(lowercase_ , 2 ) + pow(lowercase_ , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
623
1
def __a ( lowerCAmelCase_ : int ,lowerCAmelCase_ : int ) -> List[Any]: '''simple docstring''' while a != 0: UpperCAmelCase_, UpperCAmelCase_= b % a, a return b def __a ( lowerCAmelCase_ : int ,lowerCAmelCase_ : int ) -> int: '''simple docstring''' if gcd(lowerCAmelCase_ ,lowerCAmelCase_ ) != 1: UpperCAmelCase_= F"""mod inverse of {a!r} and {m!r} does not exist""" raise ValueError(lowerCAmelCase_ ) UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= 1, 0, a UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= 0, 1, m while va != 0: UpperCAmelCase_= ua // va UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_= (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
593
"""simple docstring""" class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , UpperCAmelCase_ : int ) -> None: """simple docstring""" _lowerCAmelCase = size _lowerCAmelCase = [0] * size _lowerCAmelCase = [0] * size @staticmethod def __lowerCamelCase ( UpperCAmelCase_ : int ) -> int: """simple docstring""" return index | (index + 1) @staticmethod def __lowerCamelCase ( UpperCAmelCase_ : int ) -> int: """simple docstring""" return (index & (index + 1)) - 1 def __lowerCamelCase ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> None: """simple docstring""" _lowerCAmelCase = value while index < self.size: _lowerCAmelCase = self.get_prev(UpperCAmelCase_ ) + 1 if current_left_border == index: _lowerCAmelCase = value else: _lowerCAmelCase = max(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _lowerCAmelCase = self.get_next(UpperCAmelCase_ ) def __lowerCamelCase ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: """simple docstring""" right -= 1 # Because of right is exclusive _lowerCAmelCase = 0 while left <= right: _lowerCAmelCase = self.get_prev(UpperCAmelCase_ ) if left <= current_left: _lowerCAmelCase = max(UpperCAmelCase_ , self.tree[right] ) _lowerCAmelCase = current_left else: _lowerCAmelCase = max(UpperCAmelCase_ , self.arr[right] ) right -= 1 return result if __name__ == "__main__": import doctest doctest.testmod()
580
0
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def a__ ( __lowercase ) -> Tuple: # A local function to see if a dot lands in the circle. def is_in_circle(__lowercase , __lowercase ) -> bool: _A = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _A = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__lowercase ) ) # The ratio of the area for circle to square is pi/4. _A = proportion * 4 print(f"""The estimated value of pi is {pi_estimate}""" ) print(f"""The numpy value of pi is {pi}""" ) print(f"""The total error is {abs(pi - pi_estimate )}""" ) def a__ ( __lowercase , __lowercase , __lowercase = 0.0 , __lowercase = 1.0 , ) -> float: return mean( function_to_integrate(uniform(__lowercase , __lowercase ) ) for _ in range(__lowercase ) ) * (max_value - min_value) def a__ ( __lowercase , __lowercase = 0.0 , __lowercase = 1.0 ) -> None: def identity_function(__lowercase ) -> float: return x _A = area_under_curve_estimator( __lowercase , __lowercase , __lowercase , __lowercase ) _A = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {expected_value}""" ) print(f"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def a__ ( __lowercase ) -> None: def function_to_integrate(__lowercase ) -> float: return sqrt(4.0 - x * x ) _A = area_under_curve_estimator( __lowercase , __lowercase , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"""Estimated value is {estimated_value}""" ) print(f"""Expected value is {pi}""" ) print(f"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
707
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging a_ = logging.get_logger(__name__) class snake_case ( _UpperCamelCase): __UpperCamelCase = ['input_features'] def __init__( self : int , a__ : Optional[Any]=80 , a__ : Optional[int]=1_60_00 , a__ : int=1_60 , a__ : Union[str, Any]=30 , a__ : Tuple=4_00 , a__ : List[Any]=0.0 , a__ : Optional[Any]=False , **a__ : List[Any] , ) -> str: '''simple docstring''' super().__init__( feature_size=a__ , sampling_rate=a__ , padding_value=a__ , return_attention_mask=a__ , **a__ , ) _A = n_fft _A = hop_length _A = chunk_length _A = chunk_length * sampling_rate _A = self.n_samples // hop_length _A = sampling_rate _A = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=a__ , min_frequency=0.0 , max_frequency=8_0_0_0.0 , sampling_rate=a__ , norm="slaney" , mel_scale="slaney" , ) def a_ ( self : int , a__ : np.array ) -> np.ndarray: '''simple docstring''' _A = spectrogram( a__ , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) _A = log_spec[:, :-1] _A = np.maximum(a__ , log_spec.max() - 8.0 ) _A = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def a_ ( a__ : List[np.ndarray] , a__ : List[np.ndarray] , a__ : float = 0.0 ) -> List[np.ndarray]: '''simple docstring''' if attention_mask is not None: _A = np.array(a__ , np.intaa ) _A = [] for vector, length in zip(a__ , attention_mask.sum(-1 ) ): _A = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _A = padding_value normed_input_values.append(a__ ) else: _A = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : Optional[int] , a__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , a__ : bool = True , a__ : Optional[int] = None , a__ : Optional[Union[str, TensorType]] = None , a__ : Optional[bool] = None , a__ : Optional[str] = "max_length" , a__ : Optional[int] = None , a__ : Optional[int] = None , a__ : Optional[bool] = None , **a__ : Dict , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a""" F""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input""" F""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) _A = isinstance(a__ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _A = is_batched_numpy or ( isinstance(a__ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _A = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(a__ , np.ndarray ): _A = np.asarray(a__ , dtype=np.floataa ) elif isinstance(a__ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _A = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _A = [np.asarray([raw_speech] ).T] _A = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding _A = self.pad( a__ , padding=a__ , max_length=max_length if max_length else self.n_samples , truncation=a__ , pad_to_multiple_of=a__ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: _A = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) _A = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format _A = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) _A = [self._np_extract_fbank_features(a__ ) for waveform in input_features[0]] if isinstance(input_features[0] , a__ ): _A = [np.asarray(a__ , dtype=np.floataa ) for feature in input_features] else: _A = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _A = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: _A = padded_inputs.convert_to_tensors(a__ ) return padded_inputs def a_ ( self : Dict ) -> Dict[str, Any]: '''simple docstring''' _A = copy.deepcopy(self.__dict__ ) _A = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
621
0
# Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class UpperCamelCase_ ( TensorFormatter[Mapping, '''torch.Tensor''', Mapping] ): '''simple docstring''' def __init__( self : List[str] , UpperCAmelCase__ : Dict=None , **UpperCAmelCase__ : List[Any]) ->Dict: '''simple docstring''' super().__init__(features=UpperCAmelCase__) A__ = torch_tensor_kwargs import torch # noqa import torch at initialization def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Optional[Any]) ->Tuple: '''simple docstring''' import torch if isinstance(UpperCAmelCase__ , UpperCAmelCase__) and column: if all( isinstance(UpperCAmelCase__ , torch.Tensor) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column): return torch.stack(UpperCAmelCase__) return column def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Optional[Any]) ->int: '''simple docstring''' import torch if isinstance(UpperCAmelCase__ , (str, bytes, type(UpperCAmelCase__))): return value elif isinstance(UpperCAmelCase__ , (np.character, np.ndarray)) and np.issubdtype(value.dtype , np.character): return value.tolist() A__ = {} if isinstance(UpperCAmelCase__ , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.integer): A__ = {'''dtype''': torch.intaa} elif isinstance(UpperCAmelCase__ , (np.number, np.ndarray)) and np.issubdtype(value.dtype , np.floating): A__ = {'''dtype''': torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCAmelCase__ , PIL.Image.Image): A__ = np.asarray(UpperCAmelCase__) return torch.tensor(UpperCAmelCase__ , **{**default_dtype, **self.torch_tensor_kwargs}) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Optional[int]) ->List[Any]: '''simple docstring''' import torch # support for torch, tf, jax etc. if hasattr(UpperCAmelCase__ , '''__array__''') and not isinstance(UpperCAmelCase__ , torch.Tensor): A__ = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCAmelCase__ , np.ndarray): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCAmelCase__) for substruct in data_struct]) elif isinstance(UpperCAmelCase__ , (list, tuple)): return self._consolidate([self.recursive_tensorize(UpperCAmelCase__) for substruct in data_struct]) return self._tensorize(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int] , UpperCAmelCase__ : dict) ->Union[str, Any]: '''simple docstring''' return map_nested(self._recursive_tensorize , UpperCAmelCase__ , map_list=UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : pa.Table) ->List[str]: '''simple docstring''' A__ = self.numpy_arrow_extractor().extract_row(UpperCAmelCase__) A__ = self.python_features_decoder.decode_row(UpperCAmelCase__) return self.recursive_tensorize(UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : pa.Table) ->Union[str, Any]: '''simple docstring''' A__ = self.numpy_arrow_extractor().extract_column(UpperCAmelCase__) A__ = self.python_features_decoder.decode_column(UpperCAmelCase__ , pa_table.column_names[0]) A__ = self.recursive_tensorize(UpperCAmelCase__) A__ = self._consolidate(UpperCAmelCase__) return column def SCREAMING_SNAKE_CASE ( self : Tuple , UpperCAmelCase__ : pa.Table) ->List[str]: '''simple docstring''' A__ = self.numpy_arrow_extractor().extract_batch(UpperCAmelCase__) A__ = self.python_features_decoder.decode_batch(UpperCAmelCase__) A__ = self.recursive_tensorize(UpperCAmelCase__) for column_name in batch: A__ = self._consolidate(batch[column_name]) return batch
87
from __future__ import annotations def _lowercase ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) == 0: return False UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , SCREAMING_SNAKE_CASE_ ) else: return binary_search(a_list[midpoint + 1 :] , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __snake_case = input("Enter numbers separated by comma:\n").strip() __snake_case = [int(item.strip()) for item in user_input.split(",")] __snake_case = int(input("Enter the number to be found in the list:\n").strip()) __snake_case = "" if binary_search(sequence, target) else "not " print(F'''{target} was {not_str}found in {sequence}''')
386
0
"""simple docstring""" class UpperCamelCase__: def __init__( self ,__UpperCAmelCase ) -> List[str]: # we need a list not a string, so do something to change the type A__ = arr.split(',' ) def snake_case__ ( self ) -> Optional[int]: A__ = [int(self.array[0] )] * len(self.array ) A__ = [int(self.array[0] )] * len(self.array ) for i in range(1 ,len(self.array ) ): A__ = max( int(self.array[i] ) + sum_value[i - 1] ,int(self.array[i] ) ) A__ = max(sum_value[i] ,rear[i - 1] ) return rear[len(self.array ) - 1] if __name__ == "__main__": __lowerCamelCase = input("please input some numbers:") __lowerCamelCase = SubArray(whole_array) __lowerCamelCase = array.solve_sub_array() print(("the results is:", re))
536
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" if len(UpperCamelCase__ ) <= 1: return [tuple(UpperCamelCase__ )] A__ = [] def generate(UpperCamelCase__ , UpperCamelCase__ ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , UpperCamelCase__ ) for i in range(k - 1 ): if k % 2 == 0: # k is even A__ , A__ = arr[k - 1], arr[i] else: # k is odd A__ , A__ = arr[k - 1], arr[0] generate(k - 1 , UpperCamelCase__ ) generate(len(UpperCamelCase__ ) , UpperCamelCase__ ) return res if __name__ == "__main__": __lowerCamelCase = input("Enter numbers separated by a comma:\n").strip() __lowerCamelCase = [int(item) for item in user_input.split(",")] print(heaps(arr))
536
1
'''simple docstring''' import math class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase=0 ) -> str: # a graph with Node 0,1,...,N-1 _lowerCAmelCase = n _lowerCAmelCase = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # adjacency matrix for weight _lowerCAmelCase = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # dp[i][j] stores minimum distance from i to j def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[str]: _lowerCAmelCase = w def _snake_case ( self ) -> Optional[Any]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): _lowerCAmelCase = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase ) -> Any: return self.dp[u][v] if __name__ == "__main__": _SCREAMING_SNAKE_CASE = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
18
'''simple docstring''' def snake_case__ ( _A: int ) -> list[int]: '''simple docstring''' if length <= 0 or not isinstance(_A , _A ): raise ValueError("""Length must be a positive integer.""" ) return [n * (2 * n - 1) for n in range(_A )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
370
0
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCAmelCase__ :Tuple = logging.get_logger(__name__) @dataclass class SCREAMING_SNAKE_CASE : snake_case__ : str = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys() )} ) snake_case__ : str = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'} ) snake_case__ : int = field( default=1_2_8 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) snake_case__ : bool = field( default=lowerCAmelCase_ , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def a_ ( self : Dict ): """simple docstring""" __lowerCamelCase : Any = self.task_name.lower() class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): snake_case__ : List[str] = 'train' snake_case__ : str = 'dev' snake_case__ : str = 'test' class SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): snake_case__ : GlueDataTrainingArguments snake_case__ : str snake_case__ : List[InputFeatures] def __init__( self : List[str] , A__ : GlueDataTrainingArguments , A__ : PreTrainedTokenizerBase , A__ : Optional[int] = None , A__ : Union[str, Split] = Split.train , A__ : Optional[str] = None , ): """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , A__ , ) __lowerCamelCase : Optional[int] = args __lowerCamelCase : Union[str, Any] = glue_processors[args.task_name]() __lowerCamelCase : List[str] = glue_output_modes[args.task_name] if isinstance(A__ , A__ ): try: __lowerCamelCase : List[str] = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file __lowerCamelCase : str = os.path.join( cache_dir if cache_dir is not None else args.data_dir , f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}" , ) __lowerCamelCase : Tuple = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) __lowerCamelCase : Optional[Any] = label_list[2], label_list[1] __lowerCamelCase : Union[str, Any] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. __lowerCamelCase : List[str] = cached_features_file + """.lock""" with FileLock(A__ ): if os.path.exists(A__ ) and not args.overwrite_cache: __lowerCamelCase : Tuple = time.time() __lowerCamelCase : Optional[Any] = torch.load(A__ ) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) else: logger.info(f"Creating features from dataset file at {args.data_dir}" ) if mode == Split.dev: __lowerCamelCase : List[Any] = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: __lowerCamelCase : List[str] = self.processor.get_test_examples(args.data_dir ) else: __lowerCamelCase : Any = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: __lowerCamelCase : Tuple = examples[:limit_length] __lowerCamelCase : Optional[int] = glue_convert_examples_to_features( A__ , A__ , max_length=args.max_seq_length , label_list=A__ , output_mode=self.output_mode , ) __lowerCamelCase : List[Any] = time.time() torch.save(self.features , A__ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self : Tuple ): """simple docstring""" return len(self.features ) def __getitem__( self : Any , A__ : int ): """simple docstring""" return self.features[i] def a_ ( self : Union[str, Any] ): """simple docstring""" return self.label_list
705
'''simple docstring''' UpperCAmelCase__ :List[Any] = 256 # Modulus to hash a string UpperCAmelCase__ :str = 1_000_003 def __lowercase (_lowercase, _lowercase ) -> bool: """simple docstring""" __lowerCamelCase : str = len(_lowercase ) __lowerCamelCase : List[str] = len(_lowercase ) if p_len > t_len: return False __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : Tuple = 0 __lowerCamelCase : Dict = 1 # Calculating the hash of pattern and substring of text for i in range(_lowercase ): __lowerCamelCase : Optional[int] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __lowerCamelCase : Dict = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __lowerCamelCase : Dict = (modulus_power * alphabet_size) % modulus for i in range(0, t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __lowerCamelCase : Dict = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __lowercase () -> None: """simple docstring""" __lowerCamelCase : List[Any] = """abc1abc12""" __lowerCamelCase : Optional[Any] = """alskfjaldsabc1abc1abc12k23adsfabcabc""" __lowerCamelCase : List[Any] = """alskfjaldsk23adsfabcabc""" assert rabin_karp(_lowercase, _lowercase ) and not rabin_karp(_lowercase, _lowercase ) # Test 2) __lowerCamelCase : Optional[int] = """ABABX""" __lowerCamelCase : Dict = """ABABZABABYABABX""" assert rabin_karp(_lowercase, _lowercase ) # Test 3) __lowerCamelCase : Any = """AAAB""" __lowerCamelCase : int = """ABAAAAAB""" assert rabin_karp(_lowercase, _lowercase ) # Test 4) __lowerCamelCase : Any = """abcdabcy""" __lowerCamelCase : Dict = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(_lowercase, _lowercase ) # Test 5) __lowerCamelCase : str = """Lü""" __lowerCamelCase : str = """Lüsai""" assert rabin_karp(_lowercase, _lowercase ) __lowerCamelCase : Tuple = """Lue""" assert not rabin_karp(_lowercase, _lowercase ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
483
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __UpperCamelCase : @staticmethod def __A ( *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Union[str, Any] ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __UpperCamelCase ( unittest.TestCase ): SCREAMING_SNAKE_CASE__ = MODEL_FOR_OBJECT_DETECTION_MAPPING def __A ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : List[str] , lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase_ = ObjectDetectionPipeline(model=lowerCAmelCase , image_processor=lowerCAmelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __A ( self : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase_ = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(lowerCAmelCase ) , 0 ) for detected_object in outputs: self.assertEqual( lowerCAmelCase , { "score": ANY(lowerCAmelCase ), "label": ANY(lowerCAmelCase ), "box": {"xmin": ANY(lowerCAmelCase ), "ymin": ANY(lowerCAmelCase ), "xmax": ANY(lowerCAmelCase ), "ymax": ANY(lowerCAmelCase )}, } , ) import datasets UpperCAmelCase_ = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) UpperCAmelCase_ = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] UpperCAmelCase_ = object_detector(lowerCAmelCase , threshold=0.0 ) self.assertEqual(len(lowerCAmelCase ) , len(lowerCAmelCase ) ) for outputs in batch_outputs: self.assertGreater(len(lowerCAmelCase ) , 0 ) for detected_object in outputs: self.assertEqual( lowerCAmelCase , { "score": ANY(lowerCAmelCase ), "label": ANY(lowerCAmelCase ), "box": {"xmin": ANY(lowerCAmelCase ), "ymin": ANY(lowerCAmelCase ), "xmax": ANY(lowerCAmelCase ), "ymax": ANY(lowerCAmelCase )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __A ( self : Any ): '''simple docstring''' pass @require_torch def __A ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ = "hf-internal-testing/tiny-detr-mobilenetsv3" UpperCAmelCase_ = AutoModelForObjectDetection.from_pretrained(lowerCAmelCase ) UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(lowerCAmelCase ) UpperCAmelCase_ = ObjectDetectionPipeline(model=lowerCAmelCase , feature_extractor=lowerCAmelCase ) UpperCAmelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4 ) , [ {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) UpperCAmelCase_ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4 ) , [ [ {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3_376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __A ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ = "facebook/detr-resnet-50" UpperCAmelCase_ = AutoModelForObjectDetection.from_pretrained(lowerCAmelCase ) UpperCAmelCase_ = AutoFeatureExtractor.from_pretrained(lowerCAmelCase ) UpperCAmelCase_ = ObjectDetectionPipeline(model=lowerCAmelCase , feature_extractor=lowerCAmelCase ) UpperCAmelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4 ) , [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) UpperCAmelCase_ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4 ) , [ [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __A ( self : List[str] ): '''simple docstring''' UpperCAmelCase_ = "facebook/detr-resnet-50" UpperCAmelCase_ = pipeline("object-detection" , model=lowerCAmelCase ) UpperCAmelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4 ) , [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) UpperCAmelCase_ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4 ) , [ [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9_982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9_960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9_955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9_988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __A ( self : Tuple ): '''simple docstring''' UpperCAmelCase_ = 0.9_985 UpperCAmelCase_ = "facebook/detr-resnet-50" UpperCAmelCase_ = pipeline("object-detection" , model=lowerCAmelCase ) UpperCAmelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=lowerCAmelCase ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4 ) , [ {"score": 0.9_988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9_987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __A ( self : str ): '''simple docstring''' UpperCAmelCase_ = "Narsil/layoutlmv3-finetuned-funsd" UpperCAmelCase_ = 0.9_993 UpperCAmelCase_ = pipeline("object-detection" , model=lowerCAmelCase , threshold=lowerCAmelCase ) UpperCAmelCase_ = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4 ) , [ {"score": 0.9_993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9_993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
162
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _a: List[str] = logging.get_logger(__name__) @dataclass class __UpperCamelCase ( lowercase ): SCREAMING_SNAKE_CASE__ = [ 'no_inference', 'no_cuda', 'no_tpu', 'no_speed', 'no_memory', 'no_env_print', 'no_multi_process', ] def __init__( self : Optional[int] , **lowerCAmelCase : List[str] ): '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: UpperCAmelCase_ = deprecated_arg[3:] setattr(self , lowerCAmelCase , not kwargs.pop(lowerCAmelCase ) ) logger.warning( F"{deprecated_arg} is depreciated. Please use --no_{positive_arg} or" F" {positive_arg}={kwargs[positive_arg]}" ) UpperCAmelCase_ = kwargs.pop("torchscript" , self.torchscript ) UpperCAmelCase_ = kwargs.pop("torch_xla_tpu_print_metrics" , self.torch_xla_tpu_print_metrics ) UpperCAmelCase_ = kwargs.pop("fp16_opt_level" , self.fpaa_opt_level ) super().__init__(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__ = field(default=lowercase , metadata={'help': 'Trace the models using torchscript'} ) SCREAMING_SNAKE_CASE__ = field(default=lowercase , metadata={'help': 'Print Xla/PyTorch tpu metrics'} ) SCREAMING_SNAKE_CASE__ = field( default='O1' , metadata={ 'help': ( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ' 'See details at https://nvidia.github.io/apex/amp.html' ) } , ) @cached_property def __A ( self : Union[str, Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) logger.info("PyTorch: setting up devices" ) if not self.cuda: UpperCAmelCase_ = torch.device("cpu" ) UpperCAmelCase_ = 0 elif is_torch_tpu_available(): UpperCAmelCase_ = xm.xla_device() UpperCAmelCase_ = 0 else: UpperCAmelCase_ = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) UpperCAmelCase_ = torch.cuda.device_count() return device, n_gpu @property def __A ( self : int ): '''simple docstring''' return is_torch_tpu_available() and self.tpu @property def __A ( self : List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def __A ( self : Tuple ): '''simple docstring''' requires_backends(self , ["torch"] ) return self._setup_devices[0] @property def __A ( self : List[Any] ): '''simple docstring''' requires_backends(self , ["torch"] ) return self._setup_devices[1] @property def __A ( self : Union[str, Any] ): '''simple docstring''' return self.n_gpu > 0
162
1
def UpperCamelCase__( UpperCamelCase__ : int = 60_08_51_47_51_43 )->int: try: A__ = int(UpperCamelCase__ ) except (TypeError, ValueError): raise TypeError('''Parameter n must be int or castable to int.''' ) if n <= 0: raise ValueError('''Parameter n must be greater than or equal to one.''' ) A__ = 1 A__ = 2 while i * i <= n: while n % i == 0: A__ = i n //= i i += 1 if n > 1: A__ = n return int(UpperCamelCase__ ) if __name__ == "__main__": print(F"{solution() = }")
701
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class SCREAMING_SNAKE_CASE__ : @staticmethod def UpperCamelCase ( *__lowerCamelCase,**__lowerCamelCase ): pass def UpperCamelCase__( UpperCamelCase__ : Any )->List[str]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. a__: Optional[int] = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ): A__ = pipeline( '''document-question-answering''',model=__lowerCamelCase,tokenizer=__lowerCamelCase,image_processor=__lowerCamelCase ) A__ = INVOICE_URL A__ = list(zip(*apply_tesseract(load_image(__lowerCamelCase ),__lowerCamelCase,'''''' ) ) ) A__ = '''What is the placebo?''' A__ = [ { '''image''': load_image(__lowerCamelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = dqa_pipeline(__lowerCamelCase,top_k=2 ) self.assertEqual( __lowerCamelCase,[ [ {'''score''': ANY(__lowerCamelCase ), '''answer''': ANY(__lowerCamelCase ), '''start''': ANY(__lowerCamelCase ), '''end''': ANY(__lowerCamelCase )}, {'''score''': ANY(__lowerCamelCase ), '''answer''': ANY(__lowerCamelCase ), '''start''': ANY(__lowerCamelCase ), '''end''': ANY(__lowerCamelCase )}, ] ] * 3,) @require_torch @require_detectrona @require_pytesseract def UpperCamelCase ( self ): A__ = pipeline('''document-question-answering''',model='''hf-internal-testing/tiny-random-layoutlmv2''' ) A__ = INVOICE_URL A__ = '''How many cats are there?''' A__ = [ {'''score''': 0.0001, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.0001, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] A__ = dqa_pipeline(image=__lowerCamelCase,question=__lowerCamelCase,top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase,decimals=4 ),__lowerCamelCase ) A__ = dqa_pipeline({'''image''': image, '''question''': question},top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase,decimals=4 ),__lowerCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably A__ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' A__ = dqa_pipeline(image=__lowerCamelCase,question=__lowerCamelCase,top_k=2 ) self.assertEqual(__lowerCamelCase,[] ) # We can optionnally pass directly the words and bounding boxes A__ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' A__ = [] A__ = [] A__ = dqa_pipeline(image=__lowerCamelCase,question=__lowerCamelCase,words=__lowerCamelCase,boxes=__lowerCamelCase,top_k=2 ) self.assertEqual(__lowerCamelCase,[] ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCamelCase ( self ): A__ = pipeline( '''document-question-answering''',model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''',revision='''9977165''',) A__ = INVOICE_URL A__ = '''What is the invoice number?''' A__ = dqa_pipeline(image=__lowerCamelCase,question=__lowerCamelCase,top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase,decimals=4 ),[ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ],) A__ = dqa_pipeline({'''image''': image, '''question''': question},top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase,decimals=4 ),[ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ],) A__ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}],top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase,decimals=4 ),[ [ {'''score''': 0.9944, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0009, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2,) @slow @require_torch @require_detectrona @require_pytesseract def UpperCamelCase ( self ): A__ = pipeline( '''document-question-answering''',model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''',revision='''9977165''',max_seq_len=50,) A__ = INVOICE_URL A__ = '''What is the invoice number?''' A__ = dqa_pipeline(image=__lowerCamelCase,question=__lowerCamelCase,top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase,decimals=4 ),[ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ],) A__ = dqa_pipeline({'''image''': image, '''question''': question},top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase,decimals=4 ),[ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ],) A__ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}],top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase,decimals=4 ),[ [ {'''score''': 0.9974, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.9948, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2,) @slow @require_torch @require_pytesseract @require_vision def UpperCamelCase ( self ): A__ = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''',revision='''3dc6de3''',add_prefix_space=__lowerCamelCase ) A__ = pipeline( '''document-question-answering''',model='''impira/layoutlm-document-qa''',tokenizer=__lowerCamelCase,revision='''3dc6de3''',) A__ = INVOICE_URL A__ = '''What is the invoice number?''' A__ = dqa_pipeline(image=__lowerCamelCase,question=__lowerCamelCase,top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase,decimals=4 ),[ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ],) A__ = dqa_pipeline({'''image''': image, '''question''': question},top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase,decimals=4 ),[ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ],) A__ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}],top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase,decimals=4 ),[ [ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2,) A__ = list(zip(*apply_tesseract(load_image(__lowerCamelCase ),__lowerCamelCase,'''''' ) ) ) # This model should also work if `image` is set to None A__ = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question},top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase,decimals=4 ),[ {'''score''': 0.4251, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.0819, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ],) @slow @require_torch @require_pytesseract @require_vision def UpperCamelCase ( self ): A__ = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''',revision='''3dc6de3''',add_prefix_space=__lowerCamelCase ) A__ = pipeline( '''document-question-answering''',model='''impira/layoutlm-document-qa''',tokenizer=__lowerCamelCase,revision='''3dc6de3''',max_seq_len=50,) A__ = INVOICE_URL A__ = '''What is the invoice number?''' A__ = dqa_pipeline(image=__lowerCamelCase,question=__lowerCamelCase,top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase,decimals=4 ),[ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ],) A__ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}],top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase,decimals=4 ),[ [ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2,) A__ = list(zip(*apply_tesseract(load_image(__lowerCamelCase ),__lowerCamelCase,'''''' ) ) ) # This model should also work if `image` is set to None A__ = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question},top_k=2 ) self.assertEqual( nested_simplify(__lowerCamelCase,decimals=4 ),[ {'''score''': 0.9999, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.9998, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ],) @slow @require_torch def UpperCamelCase ( self ): A__ = pipeline( '''document-question-answering''',model='''naver-clova-ix/donut-base-finetuned-docvqa''',tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ),feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''',) A__ = INVOICE_URL A__ = '''What is the invoice number?''' A__ = dqa_pipeline(image=__lowerCamelCase,question=__lowerCamelCase,top_k=2 ) self.assertEqual(nested_simplify(__lowerCamelCase,decimals=4 ),[{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def UpperCamelCase ( self ): pass
212
0
from __future__ import annotations def lowerCamelCase__ ( a : str , a : str ) -> bool: """simple docstring""" a__ :Dict = get_failure_array(a ) # 2) Step through text searching for pattern a__ , a__ :Tuple = 0, 0 # index into text, pattern while i < len(a ): if pattern[j] == text[i]: if j == (len(a ) - 1): return True j += 1 # if this is a prefix in our pattern # just go back far enough to continue elif j > 0: a__ :List[Any] = failure[j - 1] continue i += 1 return False def lowerCamelCase__ ( a : str ) -> list[int]: """simple docstring""" a__ :Union[str, Any] = [0] a__ :Union[str, Any] = 0 a__ :Optional[int] = 1 while j < len(a ): if pattern[i] == pattern[j]: i += 1 elif i > 0: a__ :Optional[int] = failure[i - 1] continue j += 1 failure.append(a ) return failure if __name__ == "__main__": # Test 1) snake_case__ = '''abc1abc12''' snake_case__ = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' snake_case__ = '''alskfjaldsk23adsfabcabc''' assert kmp(pattern, texta) and not kmp(pattern, texta) # Test 2) snake_case__ = '''ABABX''' snake_case__ = '''ABABZABABYABABX''' assert kmp(pattern, text) # Test 3) snake_case__ = '''AAAB''' snake_case__ = '''ABAAAAAB''' assert kmp(pattern, text) # Test 4) snake_case__ = '''abcdabcy''' snake_case__ = '''abcxabcdabxabcdabcdabcy''' assert kmp(pattern, text) # Test 5) snake_case__ = '''aabaabaaa''' assert get_failure_array(pattern) == [0, 1, 0, 1, 2, 3, 4, 5, 2]
395
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer snake_case__ = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast snake_case__ = TaTokenizerFast snake_case__ = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys snake_case__ = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
395
1
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __snake_case ( ctypes.Structure ): '''simple docstring''' lowerCAmelCase__ = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def A__ ( ) -> List[Any]: if os.name == "nt": __snake_case: str = CursorInfo() __snake_case: List[str] = ctypes.windll.kernelaa.GetStdHandle(-11) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__)) __snake_case: Optional[int] = False ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__)) elif os.name == "posix": sys.stdout.write("""\033[?25l""") sys.stdout.flush() def A__ ( ) -> List[Any]: if os.name == "nt": __snake_case: Dict = CursorInfo() __snake_case: List[str] = ctypes.windll.kernelaa.GetStdHandle(-11) ctypes.windll.kernelaa.GetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__)) __snake_case: List[str] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(SCREAMING_SNAKE_CASE__ , ctypes.byref(SCREAMING_SNAKE_CASE__)) elif os.name == "posix": sys.stdout.write("""\033[?25h""") sys.stdout.flush() @contextmanager def A__ ( ) -> int: try: hide_cursor() yield finally: show_cursor()
155
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def A__ ( ) -> Tuple: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join __snake_case: List[str] = """__test_patch_submodule_mock__""" with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj) assert isinstance(_test_patching.os.path , _PatchedModuleObj) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def A__ ( ) -> Tuple: assert _test_patching.open is open __snake_case: Tuple = """__test_patch_submodule_builtin_mock__""" # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def A__ ( ) -> Dict: # pandas.read_csv is not present in _test_patching __snake_case: Tuple = """__test_patch_submodule_missing_mock__""" with patch_submodule(_test_patching , """pandas.read_csv""" , SCREAMING_SNAKE_CASE__): pass def A__ ( ) -> int: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point __snake_case: Tuple = """__test_patch_submodule_missing_builtin_mock__""" # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , """len""" , SCREAMING_SNAKE_CASE__) is None with patch_submodule(_test_patching , """len""" , SCREAMING_SNAKE_CASE__): assert _test_patching.len is mock assert _test_patching.len is len def A__ ( ) -> List[Any]: __snake_case: Optional[int] = """__test_patch_submodule_start_and_stop_mock__""" __snake_case: Union[str, Any] = patch_submodule(_test_patching , """open""" , SCREAMING_SNAKE_CASE__) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def A__ ( ) -> List[Any]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join __snake_case: int = """__test_patch_submodule_successive_join__""" __snake_case: Union[str, Any] = """__test_patch_submodule_successive_dirname__""" __snake_case: Tuple = """__test_patch_submodule_successive_rename__""" assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__): with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , """os.rename""" , SCREAMING_SNAKE_CASE__): with patch_submodule(_test_patching , """os.path.join""" , SCREAMING_SNAKE_CASE__): with patch_submodule(_test_patching , """os.path.dirname""" , SCREAMING_SNAKE_CASE__): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def A__ ( ) -> Optional[Any]: __snake_case: Tuple = """__test_patch_submodule_doesnt_exist_mock__""" with patch_submodule(_test_patching , """__module_that_doesn_exist__.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__): pass with patch_submodule(_test_patching , """os.__attribute_that_doesn_exist__""" , SCREAMING_SNAKE_CASE__): pass
155
1
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase_ : List[Any] = IFInpaintingSuperResolutionPipeline lowercase_ : str = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'width', 'height'} lowercase_ : List[str] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({'original_image'} ) lowercase_ : Any = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCAmelCase__ ( self : str ): """simple docstring""" return self._get_superresolution_dummy_components() def UpperCAmelCase__ ( self : Dict , snake_case__ : int , snake_case__ : int=0 ): """simple docstring""" if str(snake_case__ ).startswith("mps" ): __lowerCAmelCase = torch.manual_seed(snake_case__ ) else: __lowerCAmelCase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) __lowerCAmelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) __lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) __lowerCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) __lowerCAmelCase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase__ ( self : int ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCAmelCase__ ( self : Dict ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase__ ( self : int ): """simple docstring""" self._test_save_load_local() def UpperCAmelCase__ ( self : str ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
611
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class a ( __UpperCAmelCase , unittest.TestCase ): lowercase_ : Optional[Any] = BlenderbotSmallTokenizer lowercase_ : List[str] = False def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" super().setUp() __lowerCAmelCase = ["__start__", "adapt", "act", "ap@@", "te", "__end__", "__unk__"] __lowerCAmelCase = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) __lowerCAmelCase = ["#version: 0.2", "a p", "t e</w>", "ap t</w>", "a d", "ad apt</w>", "a c", "ac t</w>", ""] __lowerCAmelCase = {"unk_token": "__unk__", "bos_token": "__start__", "eos_token": "__end__"} __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case__ ) ) def UpperCAmelCase__ ( self : Any , **snake_case__ : Union[str, Any] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **snake_case__ ) def UpperCAmelCase__ ( self : List[str] , snake_case__ : str ): """simple docstring""" __lowerCAmelCase = "adapt act apte" __lowerCAmelCase = "adapt act apte" return input_text, output_text def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __lowerCAmelCase = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __lowerCAmelCase = "adapt act apte" __lowerCAmelCase = ["adapt", "act", "ap@@", "te"] __lowerCAmelCase = tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) __lowerCAmelCase = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] __lowerCAmelCase = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __lowerCAmelCase = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) assert tok("sam" ).input_ids == [1_384] __lowerCAmelCase = "I am a small frog." __lowerCAmelCase = tok([src_text] , padding=snake_case__ , truncation=snake_case__ )["input_ids"] __lowerCAmelCase = tok.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def UpperCAmelCase__ ( self : int ): """simple docstring""" __lowerCAmelCase = BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) __lowerCAmelCase = "I am a small frog ." __lowerCAmelCase = "." __lowerCAmelCase = tok(snake_case__ )["input_ids"] __lowerCAmelCase = tok(snake_case__ )["input_ids"] assert encoded[-1] == encoded_dot[0]
611
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_ = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['MaskFormerFeatureExtractor'] SCREAMING_SNAKE_CASE_ = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] SCREAMING_SNAKE_CASE_ = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
717
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput SCREAMING_SNAKE_CASE_ = 'scheduler_config.json' class a ( UpperCAmelCase ): _lowercase = 1 _lowercase = 2 _lowercase = 3 _lowercase = 4 _lowercase = 5 @dataclass class a ( UpperCAmelCase ): _lowercase = 42 class a : _lowercase = SCHEDULER_CONFIG_NAME _lowercase = ["dtype"] _lowercase = [] _lowercase = True @classmethod def _UpperCAmelCase ( cls , A_ = None , A_ = None , A_=False , **A_ , ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : str = cls.load_config( pretrained_model_name_or_path=A_ , subfolder=A_ , return_unused_kwargs=A_ , **A_ , ) _UpperCAmelCase , _UpperCAmelCase : Optional[int] = cls.from_config(A_ , return_unused_kwargs=A_ , **A_ ) if hasattr(A_ , "create_state" ) and getattr(A_ , "has_state" , A_ ): _UpperCAmelCase : Union[str, Any] = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def _UpperCAmelCase ( self , A_ , A_ = False , **A_ ): '''simple docstring''' self.save_config(save_directory=A_ , push_to_hub=A_ , **A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return self._get_compatibles() @classmethod def _UpperCAmelCase ( cls ): '''simple docstring''' _UpperCAmelCase : Union[str, Any] = list(set([cls.__name__] + cls._compatibles ) ) _UpperCAmelCase : Optional[Any] = importlib.import_module(__name__.split("." )[0] ) _UpperCAmelCase : Dict = [ getattr(A_ , A_ ) for c in compatible_classes_str if hasattr(A_ , A_ ) ] return compatible_classes def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: jnp.ndarray , lowerCAmelCase: Tuple[int] ) -> jnp.ndarray: assert len(lowerCAmelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(lowerCAmelCase ) - x.ndim) ) , lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: Tuple=0.999 , lowerCAmelCase: int=jnp.floataa ) -> jnp.ndarray: def alpha_bar(lowerCAmelCase: Union[str, Any] ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 _UpperCAmelCase : str = [] for i in range(lowerCAmelCase ): _UpperCAmelCase : Optional[int] = i / num_diffusion_timesteps _UpperCAmelCase : str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(lowerCAmelCase ) / alpha_bar(lowerCAmelCase ) , lowerCAmelCase ) ) return jnp.array(lowerCAmelCase , dtype=lowerCAmelCase ) @flax.struct.dataclass class a : _lowercase = 42 _lowercase = 42 _lowercase = 42 @classmethod def _UpperCAmelCase ( cls , A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = scheduler.config if config.trained_betas is not None: _UpperCAmelCase : List[Any] = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": _UpperCAmelCase : List[Any] = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _UpperCAmelCase : List[str] = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _UpperCAmelCase : str = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) _UpperCAmelCase : Optional[int] = 1.0 - betas _UpperCAmelCase : int = jnp.cumprod(A_ , axis=0 ) return cls( alphas=A_ , betas=A_ , alphas_cumprod=A_ , ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: CommonSchedulerState , lowerCAmelCase: jnp.ndarray , lowerCAmelCase: jnp.ndarray , lowerCAmelCase: jnp.ndarray ) -> Union[str, Any]: _UpperCAmelCase : Optional[int] = state.alphas_cumprod _UpperCAmelCase : Optional[Any] = alphas_cumprod[timesteps] ** 0.5 _UpperCAmelCase : str = sqrt_alpha_prod.flatten() _UpperCAmelCase : List[Any] = broadcast_to_shape_from_left(lowerCAmelCase , original_samples.shape ) _UpperCAmelCase : Optional[int] = (1 - alphas_cumprod[timesteps]) ** 0.5 _UpperCAmelCase : List[Any] = sqrt_one_minus_alpha_prod.flatten() _UpperCAmelCase : int = broadcast_to_shape_from_left(lowerCAmelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: CommonSchedulerState , lowerCAmelCase: jnp.ndarray , lowerCAmelCase: jnp.ndarray , lowerCAmelCase: jnp.ndarray ) -> List[Any]: _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = get_sqrt_alpha_prod(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) _UpperCAmelCase : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: CommonSchedulerState , lowerCAmelCase: jnp.ndarray , lowerCAmelCase: jnp.ndarray , lowerCAmelCase: jnp.ndarray ) -> Dict: _UpperCAmelCase , _UpperCAmelCase : int = get_sqrt_alpha_prod(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) _UpperCAmelCase : Tuple = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
467
0
'''simple docstring''' __UpperCAmelCase = { '''meter''': '''m''', '''kilometer''': '''km''', '''megametre''': '''Mm''', '''gigametre''': '''Gm''', '''terametre''': '''Tm''', '''petametre''': '''Pm''', '''exametre''': '''Em''', '''zettametre''': '''Zm''', '''yottametre''': '''Ym''', } # Exponent of the factor(meter) __UpperCAmelCase = { '''m''': 0, '''km''': 3, '''Mm''': 6, '''Gm''': 9, '''Tm''': 12, '''Pm''': 15, '''Em''': 18, '''Zm''': 21, '''Ym''': 24, } def _snake_case ( A , A , A ) -> float: lowerCAmelCase__ = from_type.lower().strip('''s''' ) lowerCAmelCase__ = to_type.lower().strip('''s''' ) lowerCAmelCase__ = UNIT_SYMBOL.get(A , A ) lowerCAmelCase__ = UNIT_SYMBOL.get(A , A ) if from_sanitized not in METRIC_CONVERSION: lowerCAmelCase__ = ( F"""Invalid 'from_type' value: {from_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(A )}""" ) raise ValueError(A ) if to_sanitized not in METRIC_CONVERSION: lowerCAmelCase__ = ( F"""Invalid 'to_type' value: {to_type!r}.\n""" F"""Conversion abbreviations are: {", ".join(A )}""" ) raise ValueError(A ) lowerCAmelCase__ = METRIC_CONVERSION[from_sanitized] lowerCAmelCase__ = METRIC_CONVERSION[to_sanitized] lowerCAmelCase__ = 1 if from_exponent > to_exponent: lowerCAmelCase__ = from_exponent - to_exponent else: lowerCAmelCase__ = -(to_exponent - from_exponent) return value * pow(10 , A ) if __name__ == "__main__": from doctest import testmod testmod()
90
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE : Optional[int] = logging.get_logger(__name__) def UpperCAmelCase__ ( __magic_name__ : Optional[int] ): '''simple docstring''' if isinstance(__magic_name__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__magic_name__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__magic_name__ ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class __magic_name__ ( snake_case ): _lowerCAmelCase = ["pixel_values"] def __init__( self : str , lowerCamelCase__ : bool = True , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase__ : bool = True , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : bool = True , lowerCamelCase__ : Union[int, float] = 1 / 2_5_5 , lowerCamelCase__ : bool = True , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , **lowerCamelCase__ : Optional[Any] , ): super().__init__(**lowerCamelCase__ ) lowerCAmelCase : List[str] = size if size is not None else {'''shortest_edge''': 2_5_6} lowerCAmelCase : Dict = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) lowerCAmelCase : List[str] = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} lowerCAmelCase : int = get_size_dict(lowerCamelCase__ , param_name='''crop_size''' ) lowerCAmelCase : Optional[Any] = do_resize lowerCAmelCase : Union[str, Any] = size lowerCAmelCase : Optional[Any] = do_center_crop lowerCAmelCase : List[str] = crop_size lowerCAmelCase : List[str] = resample lowerCAmelCase : int = do_rescale lowerCAmelCase : Union[str, Any] = rescale_factor lowerCAmelCase : Optional[Any] = offset lowerCAmelCase : Dict = do_normalize lowerCAmelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def _A ( self : int , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Dict[str, int] , lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : List[str] , ): lowerCAmelCase : Union[str, Any] = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) if "shortest_edge" in size: lowerCAmelCase : Union[str, Any] = get_resize_output_image_size(lowerCamelCase__ , size['''shortest_edge'''] , default_to_square=lowerCamelCase__ ) elif "height" in size and "width" in size: lowerCAmelCase : int = (size['''height'''], size['''width''']) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def _A ( self : int , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Dict[str, int] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Optional[Any] , ): lowerCAmelCase : Optional[int] = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowerCamelCase__ , size=(size['''height'''], size['''width''']) , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def _A ( self : Dict , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Union[int, float] , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Optional[int] , ): lowerCAmelCase : Union[str, Any] = image.astype(np.floataa ) if offset: lowerCAmelCase : Any = image - (scale / 2) return rescale(lowerCamelCase__ , scale=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def _A ( self : Dict , lowerCamelCase__ : np.ndarray , lowerCamelCase__ : Union[float, List[float]] , lowerCamelCase__ : Union[float, List[float]] , lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None , **lowerCamelCase__ : Optional[Any] , ): return normalize(lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ , data_format=lowerCamelCase__ , **lowerCamelCase__ ) def _A ( self : List[str] , lowerCamelCase__ : ImageInput , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : PILImageResampling = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : float = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. lowerCAmelCase : Tuple = to_numpy_array(lowerCamelCase__ ) if do_resize: lowerCAmelCase : Any = self.resize(image=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ ) if do_center_crop: lowerCAmelCase : Dict = self.center_crop(lowerCamelCase__ , size=lowerCamelCase__ ) if do_rescale: lowerCAmelCase : Union[str, Any] = self.rescale(image=lowerCamelCase__ , scale=lowerCamelCase__ , offset=lowerCamelCase__ ) if do_normalize: lowerCAmelCase : Union[str, Any] = self.normalize(image=lowerCamelCase__ , mean=lowerCamelCase__ , std=lowerCamelCase__ ) lowerCAmelCase : Optional[int] = to_channel_dimension_format(lowerCamelCase__ , lowerCamelCase__ ) return image def _A ( self : Tuple , lowerCamelCase__ : ImageInput , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : PILImageResampling = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Dict[str, int] = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : float = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : bool = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[Union[float, List[float]]] = None , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , lowerCamelCase__ : ChannelDimension = ChannelDimension.FIRST , **lowerCamelCase__ : int , ): lowerCAmelCase : Any = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : Optional[Any] = resample if resample is not None else self.resample lowerCAmelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : Optional[Any] = offset if offset is not None else self.offset lowerCAmelCase : int = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : Dict = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : Optional[int] = image_std if image_std is not None else self.image_std lowerCAmelCase : Any = size if size is not None else self.size lowerCAmelCase : Optional[Any] = get_size_dict(lowerCamelCase__ , default_to_square=lowerCamelCase__ ) lowerCAmelCase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase : List[Any] = get_size_dict(lowerCamelCase__ , param_name='''crop_size''' ) if not valid_images(lowerCamelCase__ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) lowerCAmelCase : Any = make_batched(lowerCamelCase__ ) lowerCAmelCase : Any = [ [ self._preprocess_image( image=lowerCamelCase__ , do_resize=lowerCamelCase__ , size=lowerCamelCase__ , resample=lowerCamelCase__ , do_center_crop=lowerCamelCase__ , crop_size=lowerCamelCase__ , do_rescale=lowerCamelCase__ , rescale_factor=lowerCamelCase__ , offset=lowerCamelCase__ , do_normalize=lowerCamelCase__ , image_mean=lowerCamelCase__ , image_std=lowerCamelCase__ , data_format=lowerCamelCase__ , ) for img in video ] for video in videos ] lowerCAmelCase : Union[str, Any] = {'''pixel_values''': videos} return BatchFeature(data=lowerCamelCase__ , tensor_type=lowerCamelCase__ )
348
0
import argparse import logging from collections import namedtuple import torch from model_bertabs import BertAbsSummarizer from models.model_builder import AbsSummarizer # The authors' implementation from transformers import BertTokenizer logging.basicConfig(level=logging.INFO) __snake_case = logging.getLogger(__name__) __snake_case = """Hello world! cécé herlolip""" __snake_case = namedtuple( """BertAbsConfig""", [ """temp_dir""", """large""", """use_bert_emb""", """finetune_bert""", """encoder""", """share_emb""", """max_pos""", """enc_layers""", """enc_hidden_size""", """enc_heads""", """enc_ff_size""", """enc_dropout""", """dec_layers""", """dec_hidden_size""", """dec_heads""", """dec_ff_size""", """dec_dropout""", ], ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ = BertAbsConfig( temp_dir='.' , finetune_bert=UpperCamelCase_ , large=UpperCamelCase_ , share_emb=UpperCamelCase_ , use_bert_emb=UpperCamelCase_ , encoder='bert' , max_pos=512 , enc_layers=6 , enc_hidden_size=512 , enc_heads=8 , enc_ff_size=512 , enc_dropout=0.2 , dec_layers=6 , dec_hidden_size=768 , dec_heads=8 , dec_ff_size=2048 , dec_dropout=0.2 , ) SCREAMING_SNAKE_CASE__ = torch.load(UpperCamelCase_ , lambda UpperCamelCase_ , UpperCamelCase_ : storage ) SCREAMING_SNAKE_CASE__ = AbsSummarizer(UpperCamelCase_ , torch.device('cpu' ) , UpperCamelCase_ ) original.eval() SCREAMING_SNAKE_CASE__ = BertAbsSummarizer(UpperCamelCase_ , torch.device('cpu' ) ) new_model.eval() # ------------------- # Convert the weights # ------------------- logging.info('convert the model' ) new_model.bert.load_state_dict(original.bert.state_dict() ) new_model.decoder.load_state_dict(original.decoder.state_dict() ) new_model.generator.load_state_dict(original.generator.state_dict() ) # ---------------------------------- # Make sure the outpus are identical # ---------------------------------- logging.info('Make sure that the models\' outputs are identical' ) SCREAMING_SNAKE_CASE__ = BertTokenizer.from_pretrained('bert-base-uncased' ) # prepare the model inputs SCREAMING_SNAKE_CASE__ = tokenizer.encode('This is sample éàalj\'-.' ) encoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(UpperCamelCase_ )) ) SCREAMING_SNAKE_CASE__ = torch.tensor(UpperCamelCase_ ).unsqueeze(0 ) SCREAMING_SNAKE_CASE__ = tokenizer.encode('This is sample 3 éàalj\'-.' ) decoder_input_ids.extend([tokenizer.pad_token_id] * (512 - len(UpperCamelCase_ )) ) SCREAMING_SNAKE_CASE__ = torch.tensor(UpperCamelCase_ ).unsqueeze(0 ) # failsafe to make sure the weights reset does not affect the # loaded weights. assert torch.max(torch.abs(original.generator[0].weight - new_model.generator[0].weight ) ) == 0 # forward pass SCREAMING_SNAKE_CASE__ = encoder_input_ids SCREAMING_SNAKE_CASE__ = decoder_input_ids SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None # The original model does not apply the geneator layer immediatly but rather in # the beam search (where it combines softmax + linear layer). Since we already # apply the softmax in our generation process we only apply the linear layer here. # We make sure that the outputs of the full stack are identical SCREAMING_SNAKE_CASE__ = original(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )[0] SCREAMING_SNAKE_CASE__ = original.generator(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = new_model( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ )[0] SCREAMING_SNAKE_CASE__ = new_model.generator(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ = torch.max(torch.abs(output_converted_model - output_original_model ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = torch.max(torch.abs(output_converted_generator - output_original_generator ) ).item() print('Maximum absolute difference beween weights: {:.2f}'.format(UpperCamelCase_ ) ) SCREAMING_SNAKE_CASE__ = torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-3 ) if are_identical: logging.info('all weights are equal up to 1e-3' ) else: raise ValueError('the weights are different. The new model is likely different from the original one.' ) # The model has been saved with torch.save(model) and this is bound to the exact # directory structure. We save the state_dict instead. logging.info('saving the model\'s state dictionary' ) torch.save( new_model.state_dict() , './bertabs-finetuned-cnndm-extractive-abstractive-summarization/pytorch_model.bin' ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( """--bertabs_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""", ) __snake_case = parser.parse_args() convert_bertabs_checkpoints( args.bertabs_checkpoint_path, args.pytorch_dump_folder_path, )
400
from typing import TYPE_CHECKING from ...utils import _LazyModule __snake_case = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
400
1
'''simple docstring''' def UpperCamelCase__ ( __magic_name__ : int , __magic_name__ : int ) -> int: '''simple docstring''' return int(input_a == input_a == 0 ) def UpperCamelCase__ ( ) -> None: '''simple docstring''' print("""Truth Table of NOR Gate:""" ) print("""| Input 1 | Input 2 | Output |""" ) print(f"| 0 | 0 | {nor_gate(0 , 0 )} |" ) print(f"| 0 | 1 | {nor_gate(0 , 1 )} |" ) print(f"| 1 | 0 | {nor_gate(1 , 0 )} |" ) print(f"| 1 | 1 | {nor_gate(1 , 1 )} |" ) if __name__ == "__main__": import doctest doctest.testmod() main()
38
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __magic_name__ ( unittest.TestCase , UpperCAmelCase__ ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = load_tool("""text-classification""" ) self.tool.setup() lowerCamelCase = load_tool("""text-classification""" , remote=_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(_a , """positive""" ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.remote_tool("""That's quite cool""" , ["""positive""", """negative"""] ) self.assertEqual(_a , """positive""" ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(_a , """positive""" ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.remote_tool(text="""That's quite cool""" , labels=["""positive""", """negative"""] ) self.assertEqual(_a , """positive""" )
543
0
from itertools import product def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[int]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = sides_number SCREAMING_SNAKE_CASE_ : str = max_face_number * dice_number SCREAMING_SNAKE_CASE_ : Tuple = [0] * (max_total + 1) SCREAMING_SNAKE_CASE_ : str = 1 SCREAMING_SNAKE_CASE_ : Optional[int] = range(SCREAMING_SNAKE_CASE , max_face_number + 1 ) for dice_numbers in product(SCREAMING_SNAKE_CASE , repeat=SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : int = sum(SCREAMING_SNAKE_CASE ) totals_frequencies[total] += 1 return totals_frequencies def __SCREAMING_SNAKE_CASE ( ) -> float: SCREAMING_SNAKE_CASE_ : List[str] = total_frequency_distribution( sides_number=4 , dice_number=9 ) SCREAMING_SNAKE_CASE_ : Optional[int] = total_frequency_distribution( sides_number=6 , dice_number=6 ) SCREAMING_SNAKE_CASE_ : Optional[int] = 0 SCREAMING_SNAKE_CASE_ : Any = 9 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 4 * 9 SCREAMING_SNAKE_CASE_ : List[str] = 6 for peter_total in range(SCREAMING_SNAKE_CASE , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) SCREAMING_SNAKE_CASE_ : int = (4**9) * (6**6) SCREAMING_SNAKE_CASE_ : Any = peter_wins_count / total_games_number SCREAMING_SNAKE_CASE_ : List[str] = round(SCREAMING_SNAKE_CASE , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'''{solution() = }''')
311
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> bool: SCREAMING_SNAKE_CASE_ : int = int(number**0.5 ) return number == sq * sq def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> tuple[int, int]: SCREAMING_SNAKE_CASE_ : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den SCREAMING_SNAKE_CASE_ : int = x_den * y_den * z_den SCREAMING_SNAKE_CASE_ : int = gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = 35 ) -> int: SCREAMING_SNAKE_CASE_ : set = set() SCREAMING_SNAKE_CASE_ : int SCREAMING_SNAKE_CASE_ : Fraction = Fraction(0 ) SCREAMING_SNAKE_CASE_ : tuple[int, int] for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 SCREAMING_SNAKE_CASE_ : Tuple = x_num * y_den + x_den * y_num SCREAMING_SNAKE_CASE_ : Optional[int] = x_den * y_den SCREAMING_SNAKE_CASE_ : Tuple = gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ : int = add_three( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) unique_s.add(SCREAMING_SNAKE_CASE ) # n=2 SCREAMING_SNAKE_CASE_ : Dict = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = x_den * x_den * y_den * y_den if is_sq(SCREAMING_SNAKE_CASE ) and is_sq(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Any = int(sqrt(SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(sqrt(SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ : str = gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ : List[Any] = add_three( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) unique_s.add(SCREAMING_SNAKE_CASE ) # n=-1 SCREAMING_SNAKE_CASE_ : Optional[int] = x_num * y_num SCREAMING_SNAKE_CASE_ : List[str] = x_den * y_num + x_num * y_den SCREAMING_SNAKE_CASE_ : Dict = gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ : int = add_three( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) unique_s.add(SCREAMING_SNAKE_CASE ) # n=2 SCREAMING_SNAKE_CASE_ : Dict = x_num * x_num * y_num * y_num SCREAMING_SNAKE_CASE_ : str = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(SCREAMING_SNAKE_CASE ) and is_sq(SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Dict = int(sqrt(SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ : List[Any] = int(sqrt(SCREAMING_SNAKE_CASE ) ) SCREAMING_SNAKE_CASE_ : Any = gcd(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: SCREAMING_SNAKE_CASE_ : Tuple = add_three( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) unique_s.add(SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
311
1
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any=None ) -> Tuple: if subparsers is not None: _lowerCAmelCase : Optional[Any] = subparsers.add_parser("""env""" ) else: _lowerCAmelCase : Dict = argparse.ArgumentParser("""Accelerate env command""" ) parser.add_argument( """--config_file""" ,default=_lowerCamelCase ,help="""The config file to use for the default values in the launching script.""" ) if subparsers is not None: parser.set_defaults(func=_lowerCamelCase ) return parser def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ) -> Optional[int]: _lowerCAmelCase : List[Any] = torch.__version__ _lowerCAmelCase : Union[str, Any] = torch.cuda.is_available() _lowerCAmelCase : Dict = is_xpu_available() _lowerCAmelCase : Optional[int] = is_npu_available() _lowerCAmelCase : Any = """Not found""" # Get the default from the config file. if args.config_file is not None or os.path.isfile(_lowerCamelCase ): _lowerCAmelCase : Optional[int] = load_config_from_file(args.config_file ).to_dict() _lowerCAmelCase : Union[str, Any] = { """`Accelerate` version""": version, """Platform""": platform.platform(), """Python version""": platform.python_version(), """Numpy version""": np.__version__, """PyTorch version (GPU?)""": f"{pt_version} ({pt_cuda_available})", """PyTorch XPU available""": str(_lowerCamelCase ), """PyTorch NPU available""": str(_lowerCamelCase ), """System RAM""": f"{psutil.virtual_memory().total / 1024 ** 3:.2f} GB", } if pt_cuda_available: _lowerCAmelCase : Dict = torch.cuda.get_device_name() print("""\nCopy-and-paste the text below in your GitHub issue\n""" ) print("""\n""".join([f"- {prop}: {val}" for prop, val in info.items()] ) ) print("""- `Accelerate` default config:""" if args.config_file is None else """- `Accelerate` config passed:""" ) _lowerCAmelCase : Optional[int] = ( """\n""".join([f"\t- {prop}: {val}" for prop, val in accelerate_config.items()] ) if isinstance(_lowerCamelCase ,_lowerCamelCase ) else f"\t{accelerate_config}" ) print(_lowerCamelCase ) _lowerCAmelCase : Tuple = accelerate_config return info def SCREAMING_SNAKE_CASE ( ) -> int: _lowerCAmelCase : Optional[int] = env_command_parser() _lowerCAmelCase : List[str] = parser.parse_args() env_command(_lowerCamelCase ) return 0 if __name__ == "__main__": raise SystemExit(main())
213
"""simple docstring""" # Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : int=0 ) -> List[str]: # Format the message. if name is None: _lowerCAmelCase : Optional[Any] = None else: _lowerCAmelCase : int = """.""" * max(0 ,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" _lowerCAmelCase : int = fmt.format(_lowerCamelCase ) # Print and recurse (if needed). if isinstance(_lowerCamelCase ,_lowerCamelCase ): if msg is not None: print(_lowerCamelCase ) for k in val.keys(): recursive_print(_lowerCamelCase ,val[k] ,spaces + 2 ) elif isinstance(_lowerCamelCase ,torch.Tensor ): print(_lowerCamelCase ,""":""" ,val.size() ) else: print(_lowerCamelCase ,""":""" ,_lowerCamelCase ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any ,_lowerCamelCase : Optional[int] ,_lowerCamelCase : Any ,_lowerCamelCase : Tuple ,_lowerCamelCase : Optional[Any] ) -> int: # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _lowerCAmelCase : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _lowerCAmelCase : int = (num_heads, hidden_size, num_splits) + input_shape[1:] _lowerCAmelCase : Tuple = param.view(*_lowerCamelCase ) _lowerCAmelCase : str = param.transpose(0 ,2 ) _lowerCAmelCase : str = param.transpose(1 ,2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _lowerCAmelCase : List[str] = (num_heads, num_splits, hidden_size) + input_shape[1:] _lowerCAmelCase : str = param.view(*_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = param.transpose(0 ,1 ).contiguous() _lowerCAmelCase : Optional[Any] = param.view(*_lowerCamelCase ) return param def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Tuple ,_lowerCamelCase : Union[str, Any] ,_lowerCamelCase : str ) -> Any: # The converted output model. _lowerCAmelCase : Optional[int] = {} # old versions did not store training args _lowerCAmelCase : Dict = input_state_dict.get("""args""" ,_lowerCamelCase ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _lowerCAmelCase : Optional[Any] = ds_args.padded_vocab_size _lowerCAmelCase : Tuple = ds_args.max_position_embeddings _lowerCAmelCase : Optional[Any] = ds_args.hidden_size _lowerCAmelCase : Union[str, Any] = ds_args.num_layers _lowerCAmelCase : Dict = ds_args.num_attention_heads _lowerCAmelCase : Optional[Any] = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _lowerCAmelCase : List[str] = config.n_head # The hidden_size per head. _lowerCAmelCase : Any = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _lowerCAmelCase : Tuple = input_state_dict["""checkpoint_version"""] else: _lowerCAmelCase : Union[str, Any] = 0.0 # The model. _lowerCAmelCase : Any = input_state_dict["""model"""] # The language model. _lowerCAmelCase : Any = model["""language_model"""] # The embeddings. _lowerCAmelCase : Union[str, Any] = lm["""embedding"""] # The word embeddings. _lowerCAmelCase : int = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. _lowerCAmelCase : Dict = word_embeddings[: config.vocab_size, :] _lowerCAmelCase : Optional[int] = word_embeddings # The position embeddings. _lowerCAmelCase : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _lowerCAmelCase : Union[str, Any] = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f"pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match" ) # Store the position embeddings. _lowerCAmelCase : Optional[Any] = pos_embeddings # The transformer. _lowerCAmelCase : Optional[Any] = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. _lowerCAmelCase : Any = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. _lowerCAmelCase : Optional[Any] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. _lowerCAmelCase : Tuple = layer_re.match(_lowerCamelCase ) # Stop if that's not a layer if m is None: break # The index of the layer. _lowerCAmelCase : Optional[int] = int(m.group(1 ) ) # The name of the operation. _lowerCAmelCase : Tuple = m.group(2 ) # Is it a weight or a bias? _lowerCAmelCase : List[Any] = m.group(3 ) # The name of the layer. _lowerCAmelCase : str = f"transformer.h.{layer_idx}" # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): _lowerCAmelCase : Optional[Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" _lowerCAmelCase : List[Any] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _lowerCAmelCase : Optional[int] = torch.tril(torch.ones((n_positions, n_positions) ,dtype=torch.floataa ) ).view( 1 ,1 ,_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = causal_mask # Insert a "dummy" tensor for masked_bias. _lowerCAmelCase : Dict = torch.tensor(-1e4 ,dtype=torch.floataa ) _lowerCAmelCase : Dict = masked_bias _lowerCAmelCase : List[Any] = fix_query_key_value_ordering(_lowerCamelCase ,_lowerCamelCase ,3 ,_lowerCamelCase ,_lowerCamelCase ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _lowerCAmelCase : int = out_val.transpose(0 ,1 ).contiguous() # Store. _lowerCAmelCase : List[str] = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _lowerCAmelCase : Union[str, Any] = fix_query_key_value_ordering(_lowerCamelCase ,_lowerCamelCase ,3 ,_lowerCamelCase ,_lowerCamelCase ) # Store. No change of shape. _lowerCAmelCase : str = out_val # Transpose the weights. elif weight_or_bias == "weight": _lowerCAmelCase : Any = megatron_to_transformers[op_name] _lowerCAmelCase : Optional[Any] = val.transpose(0 ,1 ) # Copy the bias. elif weight_or_bias == "bias": _lowerCAmelCase : str = megatron_to_transformers[op_name] _lowerCAmelCase : Union[str, Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _lowerCAmelCase : int = transformer["""final_layernorm.weight"""] _lowerCAmelCase : Union[str, Any] = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. _lowerCAmelCase : int = word_embeddings # It should be done! return output_state_dict def SCREAMING_SNAKE_CASE ( ) -> List[str]: # Create the argument parser. _lowerCAmelCase : int = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" ,action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" ,type=_lowerCamelCase ,help="""Path to the checkpoint file (.zip archive or direct .pt file)""" ,) parser.add_argument( """--config_file""" ,default="""""" ,type=_lowerCamelCase ,help="""An optional config json file describing the pre-trained model.""" ,) _lowerCAmelCase : List[Any] = parser.parse_args() # Extract the basename. _lowerCAmelCase : Optional[int] = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f"Extracting PyTorch state dictionary from {args.path_to_checkpoint}" ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint ,"""r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: _lowerCAmelCase : Any = torch.load(_lowerCamelCase ,map_location="""cpu""" ) else: _lowerCAmelCase : Optional[int] = torch.load(args.path_to_checkpoint ,map_location="""cpu""" ) _lowerCAmelCase : Optional[int] = input_state_dict.get("""args""" ,_lowerCamelCase ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _lowerCAmelCase : Optional[Any] = """gelu_fast""" elif ds_args.openai_gelu: _lowerCAmelCase : Any = """gelu_new""" else: _lowerCAmelCase : str = """gelu""" else: # in the very early days this used to be "gelu_new" _lowerCAmelCase : Any = """gelu_new""" # Spell out all parameters in case the defaults change. _lowerCAmelCase : Tuple = GPTaConfig( vocab_size=50257 ,n_positions=1024 ,n_embd=1024 ,n_layer=24 ,n_head=16 ,n_inner=4096 ,activation_function=_lowerCamelCase ,resid_pdrop=0.1 ,embd_pdrop=0.1 ,attn_pdrop=0.1 ,layer_norm_epsilon=1e-5 ,initializer_range=0.02 ,summary_type="""cls_index""" ,summary_use_proj=_lowerCamelCase ,summary_activation=_lowerCamelCase ,summary_proj_to_labels=_lowerCamelCase ,summary_first_dropout=0.1 ,scale_attn_weights=_lowerCamelCase ,use_cache=_lowerCamelCase ,bos_token_id=50256 ,eos_token_id=50256 ,) else: _lowerCAmelCase : Optional[Any] = GPTaConfig.from_json_file(args.config_file ) _lowerCAmelCase : Tuple = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) _lowerCAmelCase : Tuple = convert_megatron_checkpoint(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(_lowerCamelCase ,_lowerCamelCase ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _lowerCAmelCase : Optional[Any] = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _lowerCAmelCase : Dict = """gpt2""" elif tokenizer_type == "PretrainedFromHF": _lowerCAmelCase : List[str] = ds_args.tokenizer_name_or_path else: raise ValueError(f"Unrecognized tokenizer_type {tokenizer_type}" ) else: _lowerCAmelCase : Optional[Any] = """gpt2""" _lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = type(_lowerCamelCase ).__name__ _lowerCAmelCase : Dict = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(_lowerCamelCase ) # Save tokenizer based on args print(f"Adding {tokenizer_class} tokenizer files" ) tokenizer.save_pretrained(_lowerCamelCase ) # Store the state_dict to file. _lowerCAmelCase : List[str] = os.path.join(_lowerCamelCase ,"""pytorch_model.bin""" ) print(f"Saving checkpoint to \"{output_checkpoint_file}\"" ) torch.save(_lowerCamelCase ,_lowerCamelCase ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
213
1
"""simple docstring""" from __future__ import annotations from collections import deque class snake_case__ : def __init__( self : Dict , lowercase : list[str] ): '''simple docstring''' UpperCAmelCase : list[dict] = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(lowercase ) self.set_fail_transitions() def __lowerCAmelCase ( self : Union[str, Any] , lowercase : int , lowercase : str ): '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def __lowerCAmelCase ( self : Optional[int] , lowercase : str ): '''simple docstring''' UpperCAmelCase : Dict = 0 for character in keyword: UpperCAmelCase : Dict = self.find_next_state(lowercase , lowercase ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCAmelCase : List[str] = len(self.adlist ) - 1 else: UpperCAmelCase : List[Any] = next_state self.adlist[current_state]["output"].append(lowercase ) def __lowerCAmelCase ( self : Any ): '''simple docstring''' UpperCAmelCase : deque = deque() for node in self.adlist[0]["next_states"]: q.append(lowercase ) UpperCAmelCase : int = 0 while q: UpperCAmelCase : Dict = q.popleft() for child in self.adlist[r]["next_states"]: q.append(lowercase ) UpperCAmelCase : Any = self.adlist[r]["fail_state"] while ( self.find_next_state(lowercase , self.adlist[child]["value"] ) is None and state != 0 ): UpperCAmelCase : Optional[int] = self.adlist[state]["fail_state"] UpperCAmelCase : Optional[Any] = self.find_next_state( lowercase , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: UpperCAmelCase : List[str] = 0 UpperCAmelCase : List[str] = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def __lowerCAmelCase ( self : List[str] , lowercase : str ): '''simple docstring''' UpperCAmelCase : dict = {} # returns a dict with keywords and list of its occurrences UpperCAmelCase : str = 0 for i in range(len(lowercase ) ): while ( self.find_next_state(lowercase , string[i] ) is None and current_state != 0 ): UpperCAmelCase : str = self.adlist[current_state]["fail_state"] UpperCAmelCase : str = self.find_next_state(lowercase , string[i] ) if next_state is None: UpperCAmelCase : str = 0 else: UpperCAmelCase : List[str] = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCAmelCase : int = [] result[key].append(i - len(lowercase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
292
"""simple docstring""" def lowercase_ ( _lowercase : list , _lowercase : int , _lowercase : int = 0 , _lowercase : int = 0 ): '''simple docstring''' UpperCAmelCase : Tuple = right or len(_lowercase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(_lowercase , _lowercase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
292
1
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : int = RobertaTokenizer UpperCAmelCase : List[Any] = RobertaTokenizerFast UpperCAmelCase : List[str] = True UpperCAmelCase : int = {'''cls_token''': '''<s>'''} def lowerCAmelCase_ ( self : Union[str, Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _A = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _A = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) ) _A = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _A = {'unk_token': '<unk>'} _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(_UpperCAmelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Union[str, Any] , **_UpperCAmelCase : str ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , **_UpperCAmelCase : Optional[Any] ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : List[Any] ): _A = 'lower newer' _A = 'lower newer' return input_text, output_text def lowerCAmelCase_ ( self : Any ): _A = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) _A = 'lower newer' _A = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _A = tokenizer.tokenize(_UpperCAmelCase ) # , add_prefix_space=True) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = tokens + [tokenizer.unk_token] _A = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): _A = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=_UpperCAmelCase ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=_UpperCAmelCase ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): _A = self.tokenizer_class.from_pretrained('roberta-base' ) _A = tokenizer.encode('sequence builders' , add_special_tokens=_UpperCAmelCase ) _A = tokenizer.encode('multi-sequence build' , add_special_tokens=_UpperCAmelCase ) _A = tokenizer.encode( 'sequence builders' , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) _A = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) _A = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase ) _A = tokenizer.build_inputs_with_special_tokens(_UpperCAmelCase , _UpperCAmelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowerCAmelCase_ ( self : List[str] ): _A = self.get_tokenizer() _A = 'Encode this sequence.' _A = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments _A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) _A = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase ) _A = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _A = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) _A = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) # Testing spaces after special tokens _A = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase )} ) # mask token has a left space _A = tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) _A = 'Encode <mask> sequence' _A = 'Encode <mask>sequence' _A = tokenizer.encode(_UpperCAmelCase ) _A = encoded.index(_UpperCAmelCase ) _A = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) _A = tokenizer.encode(_UpperCAmelCase ) _A = encoded.index(_UpperCAmelCase ) _A = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : int ): pass def lowerCAmelCase_ ( self : List[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) _A = self.tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) _A = 'A, <mask> AllenNLP sentence.' _A = tokenizer_r.encode_plus(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) _A = tokenizer_p.encode_plus(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) _A = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _A = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( _UpperCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( _UpperCAmelCase , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def lowerCAmelCase_ ( self : Tuple ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): _A = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _A = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _A = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , _UpperCAmelCase ) self.assertEqual(post_processor_state['add_prefix_space'] , _UpperCAmelCase ) self.assertEqual(post_processor_state['trim_offsets'] , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _A = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _A = F'''{text_of_1_token} {text_of_1_token}''' _A = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _A = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ) + 1, len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) _A = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _A = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ) + 1, len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) _A = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _A = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ), len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) _A = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _A = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_UpperCAmelCase ), len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) _A = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _A = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _A = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ) + 1, 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) _A = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _A = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ), 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , ) _A = self.rust_tokenizer_class.from_pretrained( _UpperCAmelCase , use_fast=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , trim_offsets=_UpperCAmelCase ) _A = tokenizer_r(_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_UpperCAmelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_UpperCAmelCase ), 1 + len(_UpperCAmelCase ) + 1 + len(_UpperCAmelCase )) , )
7
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : UNetaDModel UpperCAmelCase : KarrasVeScheduler def __init__( self : Any , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : KarrasVeScheduler ): super().__init__() self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Optional[Any] , ): _A = self.unet.config.sample_size _A = (batch_size, 3, img_size, img_size) _A = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _A = self.scheduler.schedule[t] _A = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _A , _A = self.scheduler.add_noise_to_input(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _A = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _A = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample _A = self.scheduler.step_correct( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , ) _A = step_output.prev_sample _A = (sample / 2 + 0.5).clamp(0 , 1 ) _A = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
7
1
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( ImageTextPipelineOutput, UniDiffuserPipeline, ) else: from .modeling_text_decoder import UniDiffuserTextDecoder from .modeling_uvit import UniDiffuserModel, UTransformeraDModel from .pipeline_unidiffuser import ImageTextPipelineOutput, UniDiffuserPipeline
248
"""simple docstring""" import math from collections.abc import Iterator from itertools import takewhile def _lowerCAmelCase ( UpperCamelCase_ ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = 2 while True: if is_prime(UpperCamelCase_ ): yield num num += 1 def _lowerCAmelCase ( UpperCamelCase_ = 200_0000 ): return sum(takewhile(lambda UpperCamelCase_ : x < n , prime_generator() ) ) if __name__ == "__main__": print(F"""{solution() = }""")
248
1
from collections.abc import Sequence from queue import Queue class __a: """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=None ,_SCREAMING_SNAKE_CASE=None ) -> Tuple: UpperCAmelCase_ : Optional[int] = start UpperCAmelCase_ : Optional[int] = end UpperCAmelCase_ : Any = val UpperCAmelCase_ : Tuple = (start + end) // 2 UpperCAmelCase_ : int = left UpperCAmelCase_ : Dict = right def __repr__( self ) -> Union[str, Any]: return f'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class __a: """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: UpperCAmelCase_ : int = collection UpperCAmelCase_ : int = function if self.collection: UpperCAmelCase_ : Optional[Any] = self._build_tree(0 ,len(_SCREAMING_SNAKE_CASE ) - 1 ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: self._update_tree(self.root ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: return self._query_range(self.root ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> List[Any]: if start == end: return SegmentTreeNode(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,self.collection[start] ) UpperCAmelCase_ : Optional[int] = (start + end) // 2 UpperCAmelCase_ : str = self._build_tree(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Optional[int] = self._build_tree(mid + 1 ,_SCREAMING_SNAKE_CASE ) return SegmentTreeNode(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,self.fn(left.val ,right.val ) ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Dict: if node.start == i and node.end == i: UpperCAmelCase_ : Optional[Any] = val return if i <= node.mid: self._update_tree(node.left ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else: self._update_tree(node.right ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = self.fn(node.left.val ,node.right.val ) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left ,_SCREAMING_SNAKE_CASE ,node.mid ) ,self._query_range(node.right ,node.mid + 1 ,_SCREAMING_SNAKE_CASE ) ,) else: # range in right child tree return self._query_range(node.right ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) def a__ ( self ) -> int: if self.root is not None: UpperCAmelCase_ : int = Queue() queue.put(self.root ) while not queue.empty(): UpperCAmelCase_ : Tuple = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('*' * 50) __a = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
30
import numpy as np import datasets __a = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' __a = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' __a = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a( datasets.Metric ): """simple docstring""" def a__ ( self ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''' ,id='''sequence''' ) ,id='''X''' ), } ) ,) def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Any: # convert to numpy arrays UpperCAmelCase_ : str = np.array(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.array(_SCREAMING_SNAKE_CASE ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('''Expected `X` to be a 2D vector''' ) if len(reference_distribution.shape ) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''' ) if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' ) # Get mahalanobis distance for each prediction UpperCAmelCase_ : List[str] = X - np.mean(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Dict = np.cov(reference_distribution.T ) try: UpperCAmelCase_ : Any = np.linalg.inv(_SCREAMING_SNAKE_CASE ) except np.linalg.LinAlgError: UpperCAmelCase_ : List[str] = np.linalg.pinv(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = np.dot(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = np.dot(_SCREAMING_SNAKE_CASE ,X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
30
1
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( snake_case ) -> str: if len(lowerCAmelCase__ ) < 2: raise ValueError("""Monogons and Digons are not polygons in the Euclidean space""" ) if any(i <= 0 for i in nums ): raise ValueError("""All values must be greater than 0""" ) _UpperCAmelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
706
import argparse import fairseq import torch from transformers import UniSpeechSatConfig, UniSpeechSatForCTC, UniSpeechSatForPreTraining, logging logging.set_verbosity_info() a = logging.get_logger(__name__) a = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "encoder.layer_norm_for_extract": "layer_norm_for_extract", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "label_embs_concat": "label_embeddings_concat", "mask_emb": "masked_spec_embed", "spk_proj": "speaker_proj", } a = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "label_embeddings_concat", "speaker_proj", "layer_norm_for_extract", ] def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case , snake_case , snake_case ) -> List[str]: for attribute in key.split(""".""" ): _UpperCAmelCase = getattr(snake_case , snake_case ) if weight_type is not None: _UpperCAmelCase = getattr(snake_case , snake_case ).shape else: _UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": _UpperCAmelCase = value elif weight_type == "weight_g": _UpperCAmelCase = value elif weight_type == "weight_v": _UpperCAmelCase = value elif weight_type == "bias": _UpperCAmelCase = value else: _UpperCAmelCase = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> Optional[int]: _UpperCAmelCase = [] _UpperCAmelCase = fairseq_model.state_dict() _UpperCAmelCase = hf_model.unispeech_sat.feature_extractor for name, value in fairseq_dict.items(): _UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( snake_case , snake_case , snake_case , snake_case , hf_model.config.feat_extract_norm == """group""" , ) _UpperCAmelCase = True else: for key, mapped_key in MAPPING.items(): _UpperCAmelCase = """unispeech_sat.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: if "layer_norm_for_extract" in name and (".".join(name.split(""".""" )[:-1] ) != key): # special case since naming is very similar continue _UpperCAmelCase = True if "*" in mapped_key: _UpperCAmelCase = name.split(snake_case )[0].split(""".""" )[-2] _UpperCAmelCase = mapped_key.replace("""*""" , snake_case ) if "weight_g" in name: _UpperCAmelCase = """weight_g""" elif "weight_v" in name: _UpperCAmelCase = """weight_v""" elif "bias" in name: _UpperCAmelCase = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj _UpperCAmelCase = """weight""" else: _UpperCAmelCase = None set_recursively(snake_case , snake_case , snake_case , snake_case , snake_case ) continue if not is_used: unused_weights.append(snake_case ) logger.warning(f"Unused weights: {unused_weights}" ) def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case , snake_case , snake_case ) -> str: _UpperCAmelCase = full_name.split("""conv_layers.""" )[-1] _UpperCAmelCase = name.split(""".""" ) _UpperCAmelCase = int(items[0] ) _UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) _UpperCAmelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) _UpperCAmelCase = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.bias.data.shape} was found." ) _UpperCAmelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) _UpperCAmelCase = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(snake_case ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case=None , snake_case=None , snake_case=True ) -> List[Any]: if config_path is not None: _UpperCAmelCase = UniSpeechSatConfig.from_pretrained(snake_case ) else: _UpperCAmelCase = UniSpeechSatConfig() _UpperCAmelCase = """""" if is_finetuned: _UpperCAmelCase = UniSpeechSatForCTC(snake_case ) else: _UpperCAmelCase = UniSpeechSatForPreTraining(snake_case ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) _UpperCAmelCase = model[0].eval() recursively_load_weights(snake_case , snake_case ) hf_wavavec.save_pretrained(snake_case ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) a = parser.parse_args() convert_unispeech_sat_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
175
0
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors __lowerCamelCase = logging.getLogger(__name__) class A__ ( _snake_case ): lowercase = "sequence-classification" def __init__( self , UpperCamelCase__ ) -> int: '''simple docstring''' if type(UpperCamelCase__ ) == dict: A_ = Namespace(**UpperCamelCase__ ) A_ = glue_output_modes[hparams.task] A_ = glue_tasks_num_labels[hparams.task] super().__init__(UpperCamelCase__ , UpperCamelCase__ , self.mode ) def snake_case_ ( self , **UpperCamelCase__ ) -> Dict: '''simple docstring''' return self.model(**UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> str: '''simple docstring''' A_ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: A_ = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None A_ = self(**UpperCamelCase__ ) A_ = outputs[0] A_ = self.trainer.lr_schedulers[0]["""scheduler"""] A_ = {"""loss""": loss, """rate""": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def snake_case_ ( self ) -> Optional[int]: '''simple docstring''' A_ = self.hparams A_ = processors[args.task]() A_ = processor.get_labels() for mode in ["train", "dev"]: A_ = self._feature_file(UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , UpperCamelCase__ ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) A_ = ( processor.get_dev_examples(args.data_dir ) if mode == """dev""" else processor.get_train_examples(args.data_dir ) ) A_ = convert_examples_to_features( UpperCamelCase__ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("""Saving features into cached file %s""" , UpperCamelCase__ ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ) -> DataLoader: '''simple docstring''' A_ = """dev""" if mode == """test""" else mode A_ = self._feature_file(UpperCamelCase__ ) logger.info("""Loading features from cached file %s""" , UpperCamelCase__ ) A_ = torch.load(UpperCamelCase__ ) A_ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) A_ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) A_ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": A_ = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": A_ = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) , batch_size=UpperCamelCase__ , shuffle=UpperCamelCase__ , ) def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ ) -> Any: '''simple docstring''' A_ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: A_ = batch[2] if self.config.model_type in ["""bert""", """xlnet""", """albert"""] else None A_ = self(**UpperCamelCase__ ) A_ , A_ = outputs[:2] A_ = logits.detach().cpu().numpy() A_ = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def snake_case_ ( self , UpperCamelCase__ ) -> tuple: '''simple docstring''' A_ = torch.stack([x["""val_loss"""] for x in outputs] ).mean().detach().cpu().item() A_ = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": A_ = np.argmax(UpperCamelCase__ , axis=1 ) elif self.hparams.glue_output_mode == "regression": A_ = np.squeeze(UpperCamelCase__ ) A_ = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) A_ = [[] for _ in range(out_label_ids.shape[0] )] A_ = [[] for _ in range(out_label_ids.shape[0] )] A_ = {**{"""val_loss""": val_loss_mean}, **compute_metrics(self.hparams.task , UpperCamelCase__ , UpperCamelCase__ )} A_ = dict(results.items() ) A_ = results return ret, preds_list, out_label_list def snake_case_ ( self , UpperCamelCase__ ) -> dict: '''simple docstring''' A_ , A_ , A_ = self._eval_end(UpperCamelCase__ ) A_ = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def snake_case_ ( self , UpperCamelCase__ ) -> dict: '''simple docstring''' A_ , A_ , A_ = self._eval_end(UpperCamelCase__ ) A_ = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def snake_case_ ( UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' BaseTransformer.add_model_specific_args(UpperCamelCase__ , UpperCamelCase__ ) parser.add_argument( """--max_seq_length""" , default=128 , type=UpperCamelCase__ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--task""" , default="""""" , type=UpperCamelCase__ , required=UpperCamelCase__ , help="""The GLUE task to run""" , ) parser.add_argument( """--gpus""" , default=0 , type=UpperCamelCase__ , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser def UpperCAmelCase__ ( ) -> List[str]: A_ = argparse.ArgumentParser() add_generic_args(UpperCAmelCase__, os.getcwd() ) A_ = GLUETransformer.add_model_specific_args(UpperCAmelCase__, os.getcwd() ) A_ = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: A_ = os.path.join( """./results""", F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''', ) os.makedirs(args.output_dir ) A_ = GLUETransformer(UpperCAmelCase__ ) A_ = generic_train(UpperCAmelCase__, UpperCAmelCase__ ) # Optionally, predict on dev set and write to output_dir if args.do_predict: A_ = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt""" ), recursive=UpperCAmelCase__ ) ) A_ = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(UpperCAmelCase__ ) if __name__ == "__main__": main()
288
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class A__ ( _snake_case ): lowercase = "codegen" lowercase = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , UpperCamelCase__=50400 , UpperCamelCase__=2048 , UpperCamelCase__=2048 , UpperCamelCase__=4096 , UpperCamelCase__=28 , UpperCamelCase__=16 , UpperCamelCase__=64 , UpperCamelCase__=None , UpperCamelCase__="gelu_new" , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=1e-5 , UpperCamelCase__=0.02 , UpperCamelCase__=True , UpperCamelCase__=50256 , UpperCamelCase__=50256 , UpperCamelCase__=False , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' A_ = vocab_size A_ = n_ctx A_ = n_positions A_ = n_embd A_ = n_layer A_ = n_head A_ = n_inner A_ = rotary_dim A_ = activation_function A_ = resid_pdrop A_ = embd_pdrop A_ = attn_pdrop A_ = layer_norm_epsilon A_ = initializer_range A_ = use_cache A_ = bos_token_id A_ = eos_token_id super().__init__( bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ ) class A__ ( _snake_case ): def __init__( self , UpperCamelCase__ , UpperCamelCase__ = "default" , UpperCamelCase__ = None , UpperCamelCase__ = False , ) -> Tuple: '''simple docstring''' super().__init__(UpperCamelCase__ , task=UpperCamelCase__ , patching_specs=UpperCamelCase__ , use_past=UpperCamelCase__ ) if not getattr(self._config , """pad_token_id""" , UpperCamelCase__ ): # TODO: how to do that better? A_ = 0 @property def snake_case_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' A_ = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction="""inputs""" ) A_ = {0: """batch""", 1: """past_sequence + sequence"""} else: A_ = {0: """batch""", 1: """sequence"""} return common_inputs @property def snake_case_ ( self ) -> int: '''simple docstring''' return self._config.n_layer @property def snake_case_ ( self ) -> int: '''simple docstring''' return self._config.n_head def snake_case_ ( self , UpperCamelCase__ , UpperCamelCase__ = -1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , ) -> Mapping[str, Any]: '''simple docstring''' A_ = super(UpperCamelCase__ , self ).generate_dummy_inputs( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) # We need to order the input in the way they appears in the forward() A_ = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch A_ , A_ = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values A_ = seqlen + 2 A_ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) A_ = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(self.num_layers ) ] A_ = common_inputs["""attention_mask"""] if self.use_past: A_ = ordered_inputs["""attention_mask"""].dtype A_ = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) return ordered_inputs @property def snake_case_ ( self ) -> int: '''simple docstring''' return 13
288
1
'''simple docstring''' def a__ ( __UpperCamelCase , __UpperCamelCase ): if mass < 0: raise ValueError("The mass of a body cannot be negative" ) return 0.5 * mass * abs(lowerCAmelCase_ ) * abs(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
703
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants A : int = Mapping[str, np.ndarray] A : Any = Mapping[str, Any] # Is a nested dict. A : Dict = 0.01 @dataclasses.dataclass(frozen=SCREAMING_SNAKE_CASE__ ) class lowerCamelCase : """simple docstring""" lowerCamelCase__ = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowerCamelCase__ = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowerCamelCase__ = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowerCamelCase__ = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowerCamelCase__ = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowerCamelCase__ = None # Optional remark about the protein. Included as a comment in output PDB # files lowerCamelCase__ = None # Templates used to generate this protein (prediction-only) lowerCamelCase__ = None # Chain corresponding to each parent lowerCamelCase__ = None def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = r"(\[[A-Z]+\]\n)" SCREAMING_SNAKE_CASE_ = [tag.strip() for tag in re.split(__UpperCamelCase , __UpperCamelCase ) if len(__UpperCamelCase ) > 0] SCREAMING_SNAKE_CASE_ = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) SCREAMING_SNAKE_CASE_ = ["N", "CA", "C"] SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None for g in groups: if "[PRIMARY]" == g[0]: SCREAMING_SNAKE_CASE_ = g[1][0].strip() for i in range(len(__UpperCamelCase ) ): if seq[i] not in residue_constants.restypes: SCREAMING_SNAKE_CASE_ = "X" # FIXME: strings are immutable SCREAMING_SNAKE_CASE_ = np.array( [residue_constants.restype_order.get(__UpperCamelCase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: SCREAMING_SNAKE_CASE_ = [] for axis in range(3 ): tertiary.append(list(map(__UpperCamelCase , g[1][axis].split() ) ) ) SCREAMING_SNAKE_CASE_ = np.array(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: SCREAMING_SNAKE_CASE_ = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) SCREAMING_SNAKE_CASE_ = np.zeros( ( len(__UpperCamelCase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__UpperCamelCase , atom_mask=__UpperCamelCase , aatype=__UpperCamelCase , residue_index=np.arange(len(__UpperCamelCase ) ) , b_factors=__UpperCamelCase , ) def a__ ( __UpperCamelCase , __UpperCamelCase = 0 ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = prot.remark if remark is not None: pdb_headers.append(F'''REMARK {remark}''' ) SCREAMING_SNAKE_CASE_ = prot.parents SCREAMING_SNAKE_CASE_ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: SCREAMING_SNAKE_CASE_ = [p for i, p in zip(__UpperCamelCase , __UpperCamelCase ) if i == chain_id] if parents is None or len(__UpperCamelCase ) == 0: SCREAMING_SNAKE_CASE_ = ["N/A"] pdb_headers.append(F'''PARENT {" ".join(__UpperCamelCase )}''' ) return pdb_headers def a__ ( __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = pdb_str.split("\n" ) SCREAMING_SNAKE_CASE_ = prot.remark if remark is not None: out_pdb_lines.append(F'''REMARK {remark}''' ) SCREAMING_SNAKE_CASE_ = 42 if prot.parents is not None and len(prot.parents ) > 0: SCREAMING_SNAKE_CASE_ = [] if prot.parents_chain_index is not None: SCREAMING_SNAKE_CASE_ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__UpperCamelCase ) , [] ) parent_dict[str(__UpperCamelCase )].append(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = max([int(__UpperCamelCase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): SCREAMING_SNAKE_CASE_ = parent_dict.get(str(__UpperCamelCase ) , ["N/A"] ) parents_per_chain.append(__UpperCamelCase ) else: parents_per_chain.append(list(prot.parents ) ) else: SCREAMING_SNAKE_CASE_ = [["N/A"]] def make_parent_line(__UpperCamelCase ) -> str: return F'''PARENT {" ".join(__UpperCamelCase )}''' out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) SCREAMING_SNAKE_CASE_ = 0 for i, l in enumerate(__UpperCamelCase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__UpperCamelCase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = parents_per_chain[chain_counter] else: SCREAMING_SNAKE_CASE_ = ["N/A"] out_pdb_lines.append(make_parent_line(__UpperCamelCase ) ) return "\n".join(__UpperCamelCase ) def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = residue_constants.restypes + ["X"] def res_atoa(__UpperCamelCase ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) SCREAMING_SNAKE_CASE_ = residue_constants.atom_types SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = prot.atom_mask SCREAMING_SNAKE_CASE_ = prot.aatype SCREAMING_SNAKE_CASE_ = prot.atom_positions SCREAMING_SNAKE_CASE_ = prot.residue_index.astype(np.intaa ) SCREAMING_SNAKE_CASE_ = prot.b_factors SCREAMING_SNAKE_CASE_ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) SCREAMING_SNAKE_CASE_ = get_pdb_headers(__UpperCamelCase ) if len(__UpperCamelCase ) > 0: pdb_lines.extend(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = aatype.shape[0] SCREAMING_SNAKE_CASE_ = 1 SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = string.ascii_uppercase SCREAMING_SNAKE_CASE_ = None # Add all atom sites. for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__UpperCamelCase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue SCREAMING_SNAKE_CASE_ = "ATOM" SCREAMING_SNAKE_CASE_ = atom_name if len(__UpperCamelCase ) == 4 else F''' {atom_name}''' SCREAMING_SNAKE_CASE_ = "" SCREAMING_SNAKE_CASE_ = "" SCREAMING_SNAKE_CASE_ = 1.00 SCREAMING_SNAKE_CASE_ = atom_name[0] # Protein supports only C, N, O, S, this works. SCREAMING_SNAKE_CASE_ = "" SCREAMING_SNAKE_CASE_ = "A" if chain_index is not None: SCREAMING_SNAKE_CASE_ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! SCREAMING_SNAKE_CASE_ = ( F'''{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}''' F'''{res_name_a:>3} {chain_tag:>1}''' F'''{residue_index[i]:>4}{insertion_code:>1} ''' F'''{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}''' F'''{occupancy:>6.2f}{b_factor:>6.2f} ''' F'''{element:>2}{charge:>2}''' ) pdb_lines.append(__UpperCamelCase ) atom_index += 1 SCREAMING_SNAKE_CASE_ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = chain_index[i + 1] if should_terminate: # Close the chain. SCREAMING_SNAKE_CASE_ = "TER" SCREAMING_SNAKE_CASE_ = ( F'''{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}''' ) pdb_lines.append(__UpperCamelCase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__UpperCamelCase , __UpperCamelCase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__UpperCamelCase ) def a__ ( __UpperCamelCase ): return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , ): return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__UpperCamelCase , remark=__UpperCamelCase , parents=__UpperCamelCase , parents_chain_index=__UpperCamelCase , )
356
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : List[str] ="Wav2Vec2FeatureExtractor" lowerCamelCase : Optional[int] ="AutoTokenizer" def __init__( self : Optional[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] ) -> int: """simple docstring""" super().__init__(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : Dict = self.feature_extractor __lowerCAmelCase : Optional[int] = False @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[int] , lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any] ) -> str: """simple docstring""" try: return super().from_pretrained(lowerCAmelCase , **lowerCAmelCase ) except OSError: warnings.warn( f'''Loading a tokenizer inside {cls.__name__} from a config that does not''' """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """ , lowerCAmelCase , ) __lowerCAmelCase : Tuple = WavaVecaFeatureExtractor.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) __lowerCAmelCase : List[str] = WavaVecaCTCTokenizer.from_pretrained(lowerCAmelCase , **lowerCAmelCase ) return cls(feature_extractor=lowerCAmelCase , tokenizer=lowerCAmelCase ) def __call__( self : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int] ) -> Tuple: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*lowerCAmelCase , **lowerCAmelCase ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) __lowerCAmelCase : List[Any] = kwargs.pop("""raw_speech""" ) else: __lowerCAmelCase : List[str] = kwargs.pop("""audio""" , lowerCAmelCase ) __lowerCAmelCase : Any = kwargs.pop("""sampling_rate""" , lowerCAmelCase ) __lowerCAmelCase : Dict = kwargs.pop("""text""" , lowerCAmelCase ) if len(lowerCAmelCase ) > 0: __lowerCAmelCase : Union[str, Any] = args[0] __lowerCAmelCase : List[str] = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: __lowerCAmelCase : Any = self.feature_extractor(lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , **lowerCAmelCase ) if text is not None: __lowerCAmelCase : Dict = self.tokenizer(lowerCAmelCase , **lowerCAmelCase ) if text is None: return inputs elif audio is None: return encodings else: __lowerCAmelCase : Dict = encodings["""input_ids"""] return inputs def SCREAMING_SNAKE_CASE ( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int] ) -> Union[str, Any]: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*lowerCAmelCase , **lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = kwargs.pop("""input_features""" , lowerCAmelCase ) __lowerCAmelCase : List[Any] = kwargs.pop("""labels""" , lowerCAmelCase ) if len(lowerCAmelCase ) > 0: __lowerCAmelCase : Dict = args[0] __lowerCAmelCase : List[str] = args[1:] if input_features is not None: __lowerCAmelCase : str = self.feature_extractor.pad(lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase ) if labels is not None: __lowerCAmelCase : Optional[Any] = self.tokenizer.pad(lowerCAmelCase , **lowerCAmelCase ) if labels is None: return input_features elif input_features is None: return labels else: __lowerCAmelCase : Tuple = labels["""input_ids"""] return input_features def SCREAMING_SNAKE_CASE ( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any] ) -> Dict: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str] ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase ) @contextmanager def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str: """simple docstring""" warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) __lowerCAmelCase : Optional[Any] = True __lowerCAmelCase : Optional[Any] = self.tokenizer yield __lowerCAmelCase : str = self.feature_extractor __lowerCAmelCase : Any = False
651
from __future__ import annotations def snake_case_ (__A : list[int] , __A : list[int] , __A : list[int] , __A : list[list[str]] , __A : int , ) -> None: __lowerCAmelCase : Any = len(__A ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__A ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __A , __A , ) def snake_case_ (__A : int ) -> None: __lowerCAmelCase : list[list[str]] = [] depth_first_search([] , [] , [] , __A , __A ) # Print all the boards for board in boards: for column in board: print(__A ) print("""""" ) print(len(__A ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
651
1
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging UpperCAmelCase = logging.get_logger(__name__) class __snake_case ( UpperCamelCase__): '''simple docstring''' UpperCamelCase__ : List[str] = ["""input_features""", """is_longer"""] def __init__( self , a_=64 , a_=48_000 , a_=480 , a_=10 , a_=1_024 , a_=0.0 , a_=False , a_ = 0 , a_ = 14_000 , a_ = None , a_ = "fusion" , a_ = "repeatpad" , **a_ , ): super().__init__( feature_size=__A , sampling_rate=__A , padding_value=__A , return_attention_mask=__A , **__A , ) a__ = top_db a__ = truncation a__ = padding a__ = fft_window_size a__ = (fft_window_size >> 1) + 1 a__ = hop_length a__ = max_length_s a__ = max_length_s * sampling_rate a__ = sampling_rate a__ = frequency_min a__ = frequency_max a__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__A , min_frequency=__A , max_frequency=__A , sampling_rate=__A , norm=__A , mel_scale="""htk""" , ) a__ = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=__A , min_frequency=__A , max_frequency=__A , sampling_rate=__A , norm="""slaney""" , mel_scale="""slaney""" , ) def _a ( self ): a__ = copy.deepcopy(self.__dict__ ) a__ = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _a ( self , a_ , a_ = None ): a__ = spectrogram( __A , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=__A , log_mel="""dB""" , ) return log_mel_spectrogram.T def _a ( self , a_ , a_ , a_ ): a__ = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk a__ = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk a__ = [0] # randomly choose index for each part a__ = np.random.choice(ranges[0] ) a__ = np.random.choice(ranges[1] ) a__ = np.random.choice(ranges[2] ) a__ = mel[idx_front : idx_front + chunk_frames, :] a__ = mel[idx_middle : idx_middle + chunk_frames, :] a__ = mel[idx_back : idx_back + chunk_frames, :] a__ = torch.tensor(mel[None, None, :] ) a__ = torch.nn.functional.interpolate( __A , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=__A ) a__ = mel_shrink[0][0].numpy() a__ = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _a ( self , a_ , a_ , a_ , a_ ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": a__ = True # random crop to max_length (for compatibility) -> this should be handled by self.pad a__ = len(__A ) - max_length a__ = np.random.randint(0 , overflow + 1 ) a__ = waveform[idx : idx + max_length] a__ = self._np_extract_fbank_features(__A , self.mel_filters_slaney )[None, :] elif truncation == "fusion": a__ = self._np_extract_fbank_features(__A , self.mel_filters ) a__ = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed a__ = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. a__ = np.stack([mel, mel, mel, mel] , axis=0 ) a__ = False else: a__ = self._random_mel_fusion(__A , __A , __A ) a__ = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: a__ = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": a__ = int(max_length / len(__A ) ) a__ = np.stack(np.tile(__A , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": a__ = int(max_length / len(__A ) ) a__ = np.stack(np.tile(__A , __A ) ) a__ = np.pad(__A , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": a__ = self._np_extract_fbank_features(__A , self.mel_filters ) a__ = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: a__ = self._np_extract_fbank_features(__A , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , a_ , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , **a_ , ): a__ = truncation if truncation is not None else self.truncation a__ = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) a__ = isinstance(__A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) a__ = is_batched_numpy or ( isinstance(__A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: a__ = [np.asarray(__A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__A , np.ndarray ): a__ = np.asarray(__A , dtype=np.floataa ) elif isinstance(__A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): a__ = raw_speech.astype(np.floataa ) # always return batch if not is_batched: a__ = [np.asarray(__A )] # convert to mel spectrogram, truncate and pad if needed. a__ = [ self._get_input_mel(__A , max_length if max_length else self.nb_max_samples , __A , __A ) for waveform in raw_speech ] a__ = [] a__ = [] for mel, longer in padded_inputs: input_mel.append(__A ) is_longer.append(__A ) if truncation == "fusion" and sum(__A ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer a__ = np.random.randint(0 , len(__A ) ) a__ = True if isinstance(input_mel[0] , __A ): a__ = [np.asarray(__A , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool a__ = [[longer] for longer in is_longer] a__ = {"""input_features""": input_mel, """is_longer""": is_longer} a__ = BatchFeature(__A ) if return_tensors is not None: a__ = input_features.convert_to_tensors(__A ) return input_features
715
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## UpperCAmelCase = 16 UpperCAmelCase = 32 def A_ ( __a : Accelerator , __a : int = 16 ): """simple docstring""" a__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) a__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__a : int ): # max_length=None => use the model max length (it's actually the default) a__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a__ = datasets.map( __a , batched=__a , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__a : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. a__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a__ = 16 elif accelerator.mixed_precision != "no": a__ = 8 else: a__ = None return tokenizer.pad( __a , padding="""longest""" , max_length=__a , pad_to_multiple_of=__a , return_tensors="""pt""" , ) # Instantiate dataloaders. a__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__a , collate_fn=__a , batch_size=__a ) a__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders UpperCAmelCase = mocked_dataloaders # noqa: F811 def A_ ( __a : List[Any] , __a : Tuple ): """simple docstring""" # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __a ) == "1": a__ = 2 # New Code # a__ = int(args.gradient_accumulation_steps ) a__ = int(args.local_sgd_steps ) # Initialize accelerator a__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__a ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ = config["""lr"""] a__ = int(config["""num_epochs"""] ) a__ = int(config["""seed"""] ) a__ = int(config["""batch_size"""] ) a__ = evaluate.load("""glue""" , """mrpc""" ) set_seed(__a ) a__ , a__ = get_dataloaders(__a , __a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a__ = model.to(accelerator.device ) # Instantiate optimizer a__ = AdamW(params=model.parameters() , lr=__a ) # Instantiate scheduler a__ = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=100 , num_training_steps=(len(__a ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ , a__ , a__ , a__ , a__ = accelerator.prepare( __a , __a , __a , __a , __a ) # Now we train the model for epoch in range(__a ): model.train() with LocalSGD( accelerator=__a , model=__a , local_sgd_steps=__a , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__a ): a__ = model(**__a ) a__ = output.loss accelerator.backward(__a ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a__ = model(**__a ) a__ = outputs.logits.argmax(dim=-1 ) a__ , a__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__a , references=__a , ) a__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __a ) def A_ ( ): """simple docstring""" a__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__a , default=__a , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__a , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=__a , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) a__ = parser.parse_args() a__ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__a , __a ) if __name__ == "__main__": main()
351
0