code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import re import string import numpy as np import datasets UpperCAmelCase_ : List[str] = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n' UpperCAmelCase_ : List[str] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results[\"exact_match\"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"the cat\", \"theater\", \"YELLING\", \"agent007\"]\n >>> preds = [\"cat?\", \"theater\", \"yelling\", \"agent\"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=[\"the \", \"yell\", \"YELL\"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results[\"exact_match\"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric(\"exact_match\")\n >>> refs = [\"The cat sat on the mat.\", \"Theaters are great.\", \"It\'s like comparing oranges and apples.\"]\n >>> preds = [\"The cat sat on the mat?\", \"Theaters are great.\", \"It\'s like comparing apples and oranges.\"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results[\"exact_match\"], 1))\n 33.3\n\n' UpperCAmelCase_ : Any = '\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , reference_urls=[] , ) def UpperCAmelCase_ ( self , __snake_case , __snake_case , __snake_case=None , __snake_case=False , __snake_case=False , __snake_case=False , ): if regexes_to_ignore is not None: for s in regexes_to_ignore: _SCREAMING_SNAKE_CASE : Optional[int] = np.array([re.sub(_lowerCAmelCase , """""" , _lowerCAmelCase ) for x in predictions] ) _SCREAMING_SNAKE_CASE : List[str] = np.array([re.sub(_lowerCAmelCase , """""" , _lowerCAmelCase ) for x in references] ) else: _SCREAMING_SNAKE_CASE : List[Any] = np.asarray(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = np.asarray(_lowerCAmelCase ) if ignore_case: _SCREAMING_SNAKE_CASE : List[str] = np.char.lower(_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Dict = np.char.lower(_lowerCAmelCase ) if ignore_punctuation: _SCREAMING_SNAKE_CASE : List[Any] = string.punctuation.maketrans("""""" , """""" , string.punctuation ) _SCREAMING_SNAKE_CASE : Union[str, Any] = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : List[Any] = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) if ignore_numbers: _SCREAMING_SNAKE_CASE : int = string.digits.maketrans("""""" , """""" , string.digits ) _SCREAMING_SNAKE_CASE : str = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : List[Any] = np.char.translate(_lowerCAmelCase , table=_lowerCAmelCase ) _SCREAMING_SNAKE_CASE : Dict = predictions == references return {"exact_match": np.mean(_lowerCAmelCase ) * 100}
533
'''simple docstring''' from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : int = ["pixel_values"] def __init__( self , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = True , _lowerCAmelCase = None , _lowerCAmelCase = True , _lowerCAmelCase = 1 / 255 , _lowerCAmelCase = True , _lowerCAmelCase = IMAGENET_DEFAULT_MEAN , _lowerCAmelCase = IMAGENET_DEFAULT_STD , **_lowerCAmelCase , ) -> None: super().__init__(**_lowerCAmelCase ) _lowerCAmelCase = size if size is not None else {"shortest_edge": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else {"height": 224, "width": 224} _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = resample _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_rescale _lowerCAmelCase = rescale_factor _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN _lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = PILImageResampling.BICUBIC , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: _lowerCAmelCase = int((256 / 224) * size["shortest_edge"] ) _lowerCAmelCase = get_resize_output_image_size(_lowerCAmelCase , size=_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = {"height": output_size[0], "width": output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f'''Size dict must have keys \'height\' and \'width\' or \'shortest_edge\'. Got {size_dict.keys()}''' ) return resize( _lowerCAmelCase , size=(size_dict["height"], size_dict["width"]) , resample=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: _lowerCAmelCase = get_size_dict(_lowerCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size dict must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_lowerCAmelCase , size=(size["height"], size["width"]) , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return rescale(_lowerCAmelCase , scale=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ) -> np.ndarray: return normalize(_lowerCAmelCase , mean=_lowerCAmelCase , std=_lowerCAmelCase , data_format=_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = ChannelDimension.FIRST , **_lowerCAmelCase , ) -> BatchFeature: _lowerCAmelCase = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase = resample if resample is not None else self.resample _lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase = image_std if image_std is not None else self.image_std _lowerCAmelCase = size if size is not None else self.size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , default_to_square=_lowerCAmelCase ) _lowerCAmelCase = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase = get_size_dict(_lowerCAmelCase , param_name="crop_size" ) _lowerCAmelCase = make_list_of_images(_lowerCAmelCase ) if not valid_images(_lowerCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _lowerCAmelCase = [to_numpy_array(_lowerCAmelCase ) for image in images] if do_resize: _lowerCAmelCase = [self.resize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_center_crop: _lowerCAmelCase = [self.center_crop(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_rescale: _lowerCAmelCase = [self.rescale(_lowerCAmelCase , _lowerCAmelCase ) for image in images] if do_normalize: _lowerCAmelCase = [self.normalize(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = [to_channel_dimension_format(_lowerCAmelCase , _lowerCAmelCase ) for image in images] _lowerCAmelCase = {"pixel_values": images} return BatchFeature(data=_lowerCAmelCase , tensor_type=_lowerCAmelCase )
18
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> str: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if num == 0: return "0b0" lowerCAmelCase__ : List[Any] = False if num < 0: lowerCAmelCase__ : List[str] = True lowerCAmelCase__ : str = -num lowerCAmelCase__ : list[int] = [] while num > 0: binary.insert(0 , num % 2 ) num >>= 1 if negative: return "-0b" + "".join(str(SCREAMING_SNAKE_CASE_ ) for e in binary ) return "0b" + "".join(str(SCREAMING_SNAKE_CASE_ ) for e in binary ) if __name__ == "__main__": import doctest doctest.testmod()
706
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = ConsistencyModelPipeline lowercase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowercase = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet' , ) return unet @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet_class_cond' , ) return unet def _lowerCamelCase ( self : Optional[Any] , a : Union[str, Any]=False ): '''simple docstring''' if class_cond: lowerCAmelCase__ : Tuple = self.dummy_cond_unet else: lowerCAmelCase__ : Dict = self.dummy_uncond_unet # Default to CM multistep sampler lowerCAmelCase__ : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) lowerCAmelCase__ : List[Any] = { 'unet': unet, 'scheduler': scheduler, } return components def _lowerCamelCase ( self : int , a : Optional[int] , a : Any=0 ): '''simple docstring''' if str(a ).startswith('mps' ): lowerCAmelCase__ : List[str] = torch.manual_seed(a ) else: lowerCAmelCase__ : str = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : str = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : List[Any] = ConsistencyModelPipeline(**a ) lowerCAmelCase__ : Tuple = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : str = self.get_dummy_inputs(a ) lowerCAmelCase__ : str = pipe(**a ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : str = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Tuple = self.get_dummy_components(class_cond=a ) lowerCAmelCase__ : Union[str, Any] = ConsistencyModelPipeline(**a ) lowerCAmelCase__ : Tuple = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a ) lowerCAmelCase__ : int = 0 lowerCAmelCase__ : Union[str, Any] = pipe(**a ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : str = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Union[str, Any] = self.get_dummy_components() lowerCAmelCase__ : Tuple = ConsistencyModelPipeline(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Union[str, Any] = self.get_dummy_inputs(a ) lowerCAmelCase__ : Optional[Any] = 1 lowerCAmelCase__ : Dict = None lowerCAmelCase__ : List[Any] = pipe(**a ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : Optional[Any] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Optional[int] = self.get_dummy_components(class_cond=a ) lowerCAmelCase__ : List[Any] = ConsistencyModelPipeline(**a ) lowerCAmelCase__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a ) lowerCAmelCase__ : Dict = 1 lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : str = pipe(**a ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Dict = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[Any] , a : Tuple=0 , a : Optional[Any]=False , a : Optional[Any]="cpu" , a : Union[str, Any]=torch.floataa , a : Dict=(1, 3, 64, 64) ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(a ) lowerCAmelCase__ : List[Any] = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: lowerCAmelCase__ : Optional[int] = self.get_fixed_latents(seed=a , device=a , dtype=a , shape=a ) lowerCAmelCase__ : Tuple = latents return inputs def _lowerCamelCase ( self : str , a : Tuple=0 , a : Tuple="cpu" , a : Tuple=torch.floataa , a : str=(1, 3, 64, 64) ): '''simple docstring''' if type(a ) == str: lowerCAmelCase__ : str = torch.device(a ) lowerCAmelCase__ : List[str] = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Any = randn_tensor(a , generator=a , device=a , dtype=a ) return latents def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : int = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) lowerCAmelCase__ : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) lowerCAmelCase__ : List[Any] = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[Any] = self.get_inputs() lowerCAmelCase__ : Dict = pipe(**a ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : List[str] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Union[str, Any] = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) lowerCAmelCase__ : Any = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) lowerCAmelCase__ : Optional[int] = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[str] = self.get_inputs() lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : List[str] = pipe(**a ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Union[str, Any] = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) lowerCAmelCase__ : List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) lowerCAmelCase__ : Tuple = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : str = self.get_inputs(get_fixed_latents=a , device=a ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=a , enable_math=a , enable_mem_efficient=a ): lowerCAmelCase__ : Dict = pipe(**a ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = image[0, -3:, -3:, -1] lowerCAmelCase__ : str = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) lowerCAmelCase__ : List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) lowerCAmelCase__ : Dict = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Any = self.get_inputs(get_fixed_latents=a , device=a ) lowerCAmelCase__ : List[str] = 1 lowerCAmelCase__ : str = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=a , enable_math=a , enable_mem_efficient=a ): lowerCAmelCase__ : List[str] = pipe(**a ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : Dict = image[0, -3:, -3:, -1] lowerCAmelCase__ : Optional[int] = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
69
0
from __future__ import annotations from functools import lru_cache from math import ceil __a : Tuple = 1_0_0 __a : Union[str, Any] = set(range(3, NUM_PRIMES, 2)) primes.add(2) __a : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def __magic_name__ ( lowercase_ ) -> set[int]: '''simple docstring''' if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} UpperCamelCase = set() UpperCamelCase = 42 UpperCamelCase = 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def __magic_name__ ( lowercase_ = 5000 ) -> int | None: '''simple docstring''' for number_to_partition in range(1 , lowercase_ ): if len(partition(lowercase_ ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'{solution() = }')
606
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer __a : Optional[int] = logging.get_logger(__name__) __a : Optional[Any] = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __a : Any = { """vocab_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/vocab.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/vocab.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/vocab.json""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json""" ), }, """merges_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/merges.txt""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/merges.txt""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/merges.txt""", """roberta-base-openai-detector""": """https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt""", """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt""" ), }, """tokenizer_file""": { """roberta-base""": """https://huggingface.co/roberta-base/resolve/main/tokenizer.json""", """roberta-large""": """https://huggingface.co/roberta-large/resolve/main/tokenizer.json""", """roberta-large-mnli""": """https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json""", """distilroberta-base""": """https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json""", """roberta-base-openai-detector""": ( """https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json""" ), """roberta-large-openai-detector""": ( """https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json""" ), }, } __a : List[Any] = { """roberta-base""": 5_1_2, """roberta-large""": 5_1_2, """roberta-large-mnli""": 5_1_2, """distilroberta-base""": 5_1_2, """roberta-base-openai-detector""": 5_1_2, """roberta-large-openai-detector""": 5_1_2, } class __UpperCAmelCase ( snake_case__ ): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["""input_ids""", """attention_mask"""] lowercase = RobertaTokenizer def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="replace" , SCREAMING_SNAKE_CASE="<s>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="</s>" , SCREAMING_SNAKE_CASE="<s>" , SCREAMING_SNAKE_CASE="<unk>" , SCREAMING_SNAKE_CASE="<pad>" , SCREAMING_SNAKE_CASE="<mask>" , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True , **SCREAMING_SNAKE_CASE , ) -> List[Any]: """simple docstring""" super().__init__( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , errors=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCamelCase = getattr(SCREAMING_SNAKE_CASE , pre_tok_state.pop("type" ) ) UpperCamelCase = add_prefix_space UpperCamelCase = pre_tok_class(**SCREAMING_SNAKE_CASE ) UpperCamelCase = add_prefix_space UpperCamelCase = "post_processor" UpperCamelCase = getattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: UpperCamelCase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase = tuple(state["sep"] ) if "cls" in state: UpperCamelCase = tuple(state["cls"] ) UpperCamelCase = False if state.get("add_prefix_space" , SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCamelCase = add_prefix_space UpperCamelCase = True if state.get("trim_offsets" , SCREAMING_SNAKE_CASE ) != trim_offsets: UpperCamelCase = trim_offsets UpperCamelCase = True if changes_to_apply: UpperCamelCase = getattr(SCREAMING_SNAKE_CASE , state.pop("type" ) ) UpperCamelCase = component_class(**SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @property def __lowerCAmelCase ( self ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" UpperCamelCase = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else value UpperCamelCase = value def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> BatchEncoding: """simple docstring""" UpperCamelCase = kwargs.get("is_split_into_words" , SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> BatchEncoding: """simple docstring""" UpperCamelCase = kwargs.get("is_split_into_words" , SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: """simple docstring""" UpperCamelCase = self._tokenizer.model.save(SCREAMING_SNAKE_CASE , name=SCREAMING_SNAKE_CASE ) return tuple(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ) -> Any: """simple docstring""" UpperCamelCase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None ) -> List[int]: """simple docstring""" UpperCamelCase = [self.sep_token_id] UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
606
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) a_ = logging.getLogger(__name__) @dataclass class __lowerCAmelCase : lowerCAmelCase__ = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowerCAmelCase__ = field( default=lowerCAmelCase__ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowerCAmelCase__ = field( default=lowerCAmelCase__ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowerCAmelCase__ = field( default=lowerCAmelCase__ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) lowerCAmelCase__ = field(default=lowerCAmelCase__ , metadata={"""help""": """Whether tp freeze the encoder."""} ) lowerCAmelCase__ = field(default=lowerCAmelCase__ , metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class __lowerCAmelCase : lowerCAmelCase__ = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) lowerCAmelCase__ = field( default="""summarization""" , metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} , ) lowerCAmelCase__ = field( default=1_0_2_4 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowerCAmelCase__ = field( default=1_2_8 , metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowerCAmelCase__ = field( default=1_4_2 , metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } , ) lowerCAmelCase__ = field( default=1_4_2 , metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) lowerCAmelCase__ = field(default=-1 , metadata={"""help""": """# training examples. -1 means use all."""} ) lowerCAmelCase__ = field(default=-1 , metadata={"""help""": """# validation examples. -1 means use all."""} ) lowerCAmelCase__ = field(default=-1 , metadata={"""help""": """# test examples. -1 means use all."""} ) lowerCAmelCase__ = field(default=lowerCAmelCase__ , metadata={"""help""": """Source language id for translation."""} ) lowerCAmelCase__ = field(default=lowerCAmelCase__ , metadata={"""help""": """Target language id for translation."""} ) lowerCAmelCase__ = field(default=lowerCAmelCase__ , metadata={"""help""": """# num_beams to use for evaluation."""} ) lowerCAmelCase__ = field( default=lowerCAmelCase__ , metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} , ) def a__ ( _UpperCamelCase : Any ,_UpperCamelCase : Optional[Any] ,_UpperCamelCase : Optional[int] ): logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(_UpperCamelCase ,os.path.join(_UpperCamelCase ,F"""{split}_results.json""" ) ) def a__ ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase = parser.parse_args_into_dataclasses() check_output_dir(_UpperCamelCase ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' ,datefmt='''%m/%d/%Y %H:%M:%S''' ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) ,training_args.fpaa ,) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' ,_UpperCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) __lowerCamelCase = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(_UpperCamelCase ,_UpperCamelCase ,_UpperCamelCase ): assert hasattr(_UpperCamelCase ,_UpperCamelCase ), F"""({config.__class__.__name__}) doesn't have a `{p}` attribute""" setattr(_UpperCamelCase ,_UpperCamelCase ,getattr(_UpperCamelCase ,_UpperCamelCase ) ) __lowerCamelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path ,from_tf='''.ckpt''' in model_args.model_name_or_path ,config=_UpperCamelCase ,cache_dir=model_args.cache_dir ,) # use task specific params use_task_specific_params(_UpperCamelCase ,data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: __lowerCamelCase = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_UpperCamelCase ,(MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_UpperCamelCase ,_UpperCamelCase ): __lowerCamelCase = tokenizer.lang_code_to_id[data_args.tgt_lang] else: __lowerCamelCase = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_UpperCamelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) __lowerCamelCase = SeqaSeqDataset # Get datasets __lowerCamelCase = ( dataset_class( _UpperCamelCase ,type_path='''train''' ,data_dir=data_args.data_dir ,n_obs=data_args.n_train ,max_target_length=data_args.max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or '''''' ,) if training_args.do_train else None ) __lowerCamelCase = ( dataset_class( _UpperCamelCase ,type_path='''val''' ,data_dir=data_args.data_dir ,n_obs=data_args.n_val ,max_target_length=data_args.val_max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or '''''' ,) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) __lowerCamelCase = ( dataset_class( _UpperCamelCase ,type_path='''test''' ,data_dir=data_args.data_dir ,n_obs=data_args.n_test ,max_target_length=data_args.test_max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or '''''' ,) if training_args.do_predict else None ) # Initialize our Trainer __lowerCamelCase = ( build_compute_metrics_fn(data_args.task ,_UpperCamelCase ) if training_args.predict_with_generate else None ) __lowerCamelCase = SeqaSeqTrainer( model=_UpperCamelCase ,args=_UpperCamelCase ,data_args=_UpperCamelCase ,train_dataset=_UpperCamelCase ,eval_dataset=_UpperCamelCase ,data_collator=SeqaSeqDataCollator( _UpperCamelCase ,_UpperCamelCase ,model.config.decoder_start_token_id ,training_args.tpu_num_cores ) ,compute_metrics=_UpperCamelCase ,tokenizer=_UpperCamelCase ,) __lowerCamelCase = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) __lowerCamelCase = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) __lowerCamelCase = train_result.metrics __lowerCamelCase = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' ,_UpperCamelCase ,training_args.output_dir ) all_metrics.update(_UpperCamelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir ,'''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __lowerCamelCase = trainer.evaluate(metric_key_prefix='''val''' ) __lowerCamelCase = data_args.n_val __lowerCamelCase = round(metrics['''val_loss'''] ,4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' ,_UpperCamelCase ,training_args.output_dir ) all_metrics.update(_UpperCamelCase ) if training_args.do_predict: logger.info('''*** Predict ***''' ) __lowerCamelCase = trainer.predict(test_dataset=_UpperCamelCase ,metric_key_prefix='''test''' ) __lowerCamelCase = test_output.metrics __lowerCamelCase = data_args.n_test if trainer.is_world_process_zero(): __lowerCamelCase = round(metrics['''test_loss'''] ,4 ) handle_metrics('''test''' ,_UpperCamelCase ,training_args.output_dir ) all_metrics.update(_UpperCamelCase ) if training_args.predict_with_generate: __lowerCamelCase = tokenizer.batch_decode( test_output.predictions ,skip_special_tokens=_UpperCamelCase ,clean_up_tokenization_spaces=_UpperCamelCase ) __lowerCamelCase = lmap(str.strip ,_UpperCamelCase ) write_txt_file(_UpperCamelCase ,os.path.join(training_args.output_dir ,'''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(_UpperCamelCase ,os.path.join(training_args.output_dir ,'''all_results.json''' ) ) return all_metrics def a__ ( _UpperCamelCase : int ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
622
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ = StableDiffusionXLImgaImgPipeline lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} lowerCAmelCase__ = PipelineTesterMixin.required_optional_params - {"""latents"""} lowerCAmelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS lowerCAmelCase__ = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCamelCase ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=__UpperCAmelCase , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) __lowerCamelCase = EulerDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , ) torch.manual_seed(0 ) __lowerCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __lowerCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=32 , ) __lowerCamelCase = CLIPTextModel(__UpperCAmelCase ) __lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__UpperCAmelCase ) __lowerCamelCase = CLIPTextModelWithProjection(__UpperCAmelCase ) __lowerCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=__UpperCAmelCase ) __lowerCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' __lowerCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __lowerCamelCase = image / 2 + 0.5 if str(__UpperCAmelCase ).startswith('''mps''' ): __lowerCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __lowerCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __lowerCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.75, } return inputs def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = StableDiffusionXLImgaImgPipeline(**__UpperCAmelCase ) __lowerCamelCase = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __lowerCamelCase = self.get_dummy_inputs(__UpperCAmelCase ) __lowerCamelCase = sd_pipe(**__UpperCAmelCase ).images __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowerCamelCase = np.array([0.4_656, 0.4_840, 0.4_439, 0.6_698, 0.5_574, 0.4_524, 0.5_799, 0.5_943, 0.5_165] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase ( self ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowerCamelCase ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = StableDiffusionXLImgaImgPipeline(**__UpperCAmelCase ) __lowerCamelCase = sd_pipe.to(__UpperCAmelCase ) __lowerCamelCase = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) # forward without prompt embeds __lowerCamelCase = self.get_dummy_inputs(__UpperCAmelCase ) __lowerCamelCase = 3 * ['''this is a negative prompt'''] __lowerCamelCase = negative_prompt __lowerCamelCase = 3 * [inputs['''prompt''']] __lowerCamelCase = sd_pipe(**__UpperCAmelCase ) __lowerCamelCase = output.images[0, -3:, -3:, -1] # forward with prompt embeds __lowerCamelCase = self.get_dummy_inputs(__UpperCAmelCase ) __lowerCamelCase = 3 * ['''this is a negative prompt'''] __lowerCamelCase = 3 * [inputs.pop('''prompt''' )] ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) = sd_pipe.encode_prompt(__UpperCAmelCase , negative_prompt=__UpperCAmelCase ) __lowerCamelCase = sd_pipe( **__UpperCAmelCase , prompt_embeds=__UpperCAmelCase , negative_prompt_embeds=__UpperCAmelCase , pooled_prompt_embeds=__UpperCAmelCase , negative_pooled_prompt_embeds=__UpperCAmelCase , ) __lowerCamelCase = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase="cpu" , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=0 ): '''simple docstring''' __lowerCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __lowerCamelCase = np.random.RandomState(__UpperCAmelCase ).standard_normal((1, 4, 64, 64) ) __lowerCamelCase = torch.from_numpy(__UpperCAmelCase ).to(device=__UpperCAmelCase , dtype=__UpperCAmelCase ) __lowerCamelCase = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowerCamelCase ( self ): '''simple docstring''' __lowerCamelCase = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __lowerCamelCase = self.get_inputs(__UpperCAmelCase ) __lowerCamelCase = pipe(**__UpperCAmelCase ).images __lowerCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __lowerCamelCase = np.array([0.49_493, 0.47_896, 0.40_798, 0.54_214, 0.53_212, 0.48_202, 0.47_656, 0.46_329, 0.48_506] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
622
1
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", } lowerCamelCase__ = { """vocab_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"""}, """merges_file""": {"""ctrl""": """https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"""}, } lowerCamelCase__ = { """ctrl""": 256, } lowerCamelCase__ = { """Pregnancy""": 16_8629, """Christianity""": 7675, """Explain""": 10_6423, """Fitness""": 6_3440, """Saving""": 6_3163, """Ask""": 2_7171, """Ass""": 9_5985, """Joke""": 16_3509, """Questions""": 4_5622, """Thoughts""": 4_9605, """Retail""": 5_2342, """Feminism""": 16_4338, """Writing""": 1_1992, """Atheism""": 19_2263, """Netflix""": 4_8616, """Computing""": 3_9639, """Opinion""": 4_3213, """Alone""": 4_4967, """Funny""": 5_8917, """Gaming""": 4_0358, """Human""": 4088, """India""": 1331, """Joker""": 7_7138, """Diet""": 3_6206, """Legal""": 1_1859, """Norman""": 4939, """Tip""": 7_2689, """Weight""": 5_2343, """Movies""": 4_6273, """Running""": 2_3425, """Science""": 2090, """Horror""": 3_7793, """Confession""": 6_0572, """Finance""": 1_2250, """Politics""": 1_6360, """Scary""": 19_1985, """Support""": 1_2654, """Technologies""": 3_2516, """Teenage""": 6_6160, """Event""": 3_2769, """Learned""": 6_7460, """Notion""": 18_2770, """Wikipedia""": 3_7583, """Books""": 6665, """Extract""": 7_6050, """Confessions""": 10_2701, """Conspiracy""": 7_5932, """Links""": 6_3674, """Narcissus""": 15_0425, """Relationship""": 5_4766, """Relationships""": 13_4796, """Reviews""": 4_1671, """News""": 4256, """Translation""": 2_6820, """multilingual""": 12_8406, } def UpperCamelCase ( snake_case__ : Any ): '''simple docstring''' __snake_case :List[Any] = set() __snake_case :Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __snake_case :Tuple = char __snake_case :Optional[Any] = set(snake_case__ ) return pairs class snake_case__ ( lowercase_): '''simple docstring''' lowerCamelCase : int = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Union[str, Any] = CONTROL_CODES def __init__( self , a__ , a__ , a__="<unk>" , **a__ ) -> Optional[int]: '''simple docstring''' super().__init__(unk_token=a__ , **a__ ) with open(a__ , encoding="""utf-8""" ) as vocab_handle: __snake_case :Tuple = json.load(a__ ) __snake_case :Any = {v: k for k, v in self.encoder.items()} with open(a__ , encoding="""utf-8""" ) as merges_handle: __snake_case :List[str] = merges_handle.read().split("""\n""" )[1:-1] __snake_case :Union[str, Any] = [tuple(merge.split() ) for merge in merges] __snake_case :str = dict(zip(a__ , range(len(a__ ) ) ) ) __snake_case :Optional[int] = {} @property def __lowercase ( self ) -> int: '''simple docstring''' return len(self.encoder ) def __lowercase ( self ) -> Tuple: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __lowercase ( self , a__ ) -> Dict: '''simple docstring''' if token in self.cache: return self.cache[token] __snake_case :Tuple = tuple(a__ ) __snake_case :Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) __snake_case :Union[str, Any] = get_pairs(a__ ) if not pairs: return token while True: __snake_case :List[Any] = min(a__ , key=lambda a__ : self.bpe_ranks.get(a__ , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break __snake_case , __snake_case :Optional[Any] = bigram __snake_case :int = [] __snake_case :List[str] = 0 while i < len(a__ ): try: __snake_case :Tuple = word.index(a__ , a__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __snake_case :List[Any] = j if word[i] == first and i < len(a__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __snake_case :Optional[Any] = tuple(a__ ) __snake_case :Dict = new_word if len(a__ ) == 1: break else: __snake_case :int = get_pairs(a__ ) __snake_case :Optional[Any] = """@@ """.join(a__ ) __snake_case :List[str] = word[:-4] __snake_case :Any = word return word def __lowercase ( self , a__ ) -> Optional[Any]: '''simple docstring''' __snake_case :Dict = [] __snake_case :Optional[int] = re.findall(R"""\S+\n?""" , a__ ) for token in words: split_tokens.extend(list(self.bpe(a__ ).split(""" """ ) ) ) return split_tokens def __lowercase ( self , a__ ) -> Tuple: '''simple docstring''' return self.encoder.get(a__ , self.encoder.get(self.unk_token ) ) def __lowercase ( self , a__ ) -> List[Any]: '''simple docstring''' return self.decoder.get(a__ , self.unk_token ) def __lowercase ( self , a__ ) -> Any: '''simple docstring''' __snake_case :Optional[int] = """ """.join(a__ ).replace("""@@ """ , """""" ).strip() return out_string def __lowercase ( self , a__ , a__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(a__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case :Tuple = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __snake_case :Tuple = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(a__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a__ , ensure_ascii=a__ ) + """\n""" ) __snake_case :List[str] = 0 with open(a__ , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a__ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) __snake_case :Optional[Any] = token_index writer.write(""" """.join(a__ ) + """\n""" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
455
from collections.abc import Callable class snake_case__ : '''simple docstring''' def __init__( self , a__ = None ) -> None: '''simple docstring''' __snake_case :list = [] # Stores indexes of each item for supporting updates and deletion. __snake_case :dict = {} # Stores current size of heap. __snake_case :List[Any] = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __snake_case :Optional[Any] = key or (lambda a__ : x) def __lowercase ( self , a__ ) -> int | None: '''simple docstring''' return int((i - 1) / 2 ) if i > 0 else None def __lowercase ( self , a__ ) -> int | None: '''simple docstring''' __snake_case :int = int(2 * i + 1 ) return left if 0 < left < self.size else None def __lowercase ( self , a__ ) -> int | None: '''simple docstring''' __snake_case :Optional[int] = int(2 * i + 2 ) return right if 0 < right < self.size else None def __lowercase ( self , a__ , a__ ) -> None: '''simple docstring''' __snake_case , __snake_case :Dict = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __snake_case , __snake_case :Tuple = self.arr[j], self.arr[i] def __lowercase ( self , a__ , a__ ) -> bool: '''simple docstring''' return self.arr[i][1] < self.arr[j][1] def __lowercase ( self , a__ ) -> int: '''simple docstring''' __snake_case :int = self._left(a__ ) __snake_case :Optional[int] = self._right(a__ ) __snake_case :List[Any] = i if left is not None and not self._cmp(a__ , a__ ): __snake_case :int = left if right is not None and not self._cmp(a__ , a__ ): __snake_case :Tuple = right return valid_parent def __lowercase ( self , a__ ) -> None: '''simple docstring''' __snake_case :int = self._parent(a__ ) while parent is not None and not self._cmp(a__ , a__ ): self._swap(a__ , a__ ) __snake_case , __snake_case :str = parent, self._parent(a__ ) def __lowercase ( self , a__ ) -> None: '''simple docstring''' __snake_case :List[Any] = self._get_valid_parent(a__ ) while valid_parent != index: self._swap(a__ , a__ ) __snake_case , __snake_case :Optional[int] = valid_parent, self._get_valid_parent(a__ ) def __lowercase ( self , a__ , a__ ) -> None: '''simple docstring''' if item not in self.pos_map: return __snake_case :List[Any] = self.pos_map[item] __snake_case :Optional[Any] = [item, self.key(a__ )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(a__ ) self._heapify_down(a__ ) def __lowercase ( self , a__ ) -> None: '''simple docstring''' if item not in self.pos_map: return __snake_case :Dict = self.pos_map[item] del self.pos_map[item] __snake_case :Dict = self.arr[self.size - 1] __snake_case :List[str] = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(a__ ) self._heapify_down(a__ ) def __lowercase ( self , a__ , a__ ) -> None: '''simple docstring''' __snake_case :Optional[int] = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(a__ )] ) else: __snake_case :Optional[Any] = [item, self.key(a__ )] __snake_case :str = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __lowercase ( self ) -> tuple | None: '''simple docstring''' return self.arr[0] if self.size else None def __lowercase ( self ) -> tuple | None: '''simple docstring''' __snake_case :Optional[Any] = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def UpperCamelCase ( ): '''simple docstring''' if __name__ == "__main__": import doctest doctest.testmod()
455
1
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def lowerCAmelCase (__UpperCamelCase : Any ): """simple docstring""" __UpperCamelCase =model.config __UpperCamelCase =DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 1_6, 3_2] , window_size=original_config.window_size , embed_dim=1_2_8 , ) __UpperCamelCase =MBartConfig( is_decoder=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , add_cross_attention=__UpperCamelCase , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=__UpperCamelCase , add_final_layer_norm=__UpperCamelCase , ) return encoder_config, decoder_config def lowerCAmelCase (__UpperCamelCase : List[str] ): """simple docstring""" if "encoder.model" in name: __UpperCamelCase =name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: __UpperCamelCase =name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: __UpperCamelCase =name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __UpperCamelCase =name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: __UpperCamelCase ='''encoder.''' + name if "attn.proj" in name: __UpperCamelCase =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: __UpperCamelCase =name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __UpperCamelCase =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __UpperCamelCase =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __UpperCamelCase =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __UpperCamelCase =name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": __UpperCamelCase ='''encoder.layernorm.weight''' if name == "encoder.norm.bias": __UpperCamelCase ='''encoder.layernorm.bias''' return name def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : Tuple ): """simple docstring""" for key in orig_state_dict.copy().keys(): __UpperCamelCase =orig_state_dict.pop(__UpperCamelCase ) if "qkv" in key: __UpperCamelCase =key.split('''.''' ) __UpperCamelCase =int(key_split[3] ) __UpperCamelCase =int(key_split[5] ) __UpperCamelCase =model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __UpperCamelCase =val[:dim, :] __UpperCamelCase =val[dim : dim * 2, :] __UpperCamelCase =val[-dim:, :] else: __UpperCamelCase =val[:dim] __UpperCamelCase =val[dim : dim * 2] __UpperCamelCase =val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __UpperCamelCase =val return orig_state_dict def lowerCAmelCase (__UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any]=None , __UpperCamelCase : Tuple=False ): """simple docstring""" __UpperCamelCase =DonutModel.from_pretrained(__UpperCamelCase ).eval() # load HuggingFace model __UpperCamelCase , __UpperCamelCase =get_configs(__UpperCamelCase ) __UpperCamelCase =DonutSwinModel(__UpperCamelCase ) __UpperCamelCase =MBartForCausalLM(__UpperCamelCase ) __UpperCamelCase =VisionEncoderDecoderModel(encoder=__UpperCamelCase , decoder=__UpperCamelCase ) model.eval() __UpperCamelCase =original_model.state_dict() __UpperCamelCase =convert_state_dict(__UpperCamelCase , __UpperCamelCase ) model.load_state_dict(__UpperCamelCase ) # verify results on scanned document __UpperCamelCase =load_dataset('''hf-internal-testing/example-documents''' ) __UpperCamelCase =dataset['''test'''][0]['''image'''].convert('''RGB''' ) __UpperCamelCase =XLMRobertaTokenizerFast.from_pretrained(__UpperCamelCase , from_slow=__UpperCamelCase ) __UpperCamelCase =DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __UpperCamelCase =DonutProcessor(__UpperCamelCase , __UpperCamelCase ) __UpperCamelCase =processor(__UpperCamelCase , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __UpperCamelCase ='''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __UpperCamelCase ='''When is the coffee break?''' __UpperCamelCase =task_prompt.replace('''{user_input}''' , __UpperCamelCase ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __UpperCamelCase ='''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __UpperCamelCase ='''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __UpperCamelCase ='''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __UpperCamelCase ='''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __UpperCamelCase ='''hello world''' else: raise ValueError('''Model name not supported''' ) __UpperCamelCase =original_model.decoder.tokenizer(__UpperCamelCase , add_special_tokens=__UpperCamelCase , return_tensors='''pt''' )[ '''input_ids''' ] __UpperCamelCase =original_model.encoder.model.patch_embed(__UpperCamelCase ) __UpperCamelCase , __UpperCamelCase =model.encoder.embeddings(__UpperCamelCase ) assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) # verify encoder hidden states __UpperCamelCase =original_model.encoder(__UpperCamelCase ) __UpperCamelCase =model.encoder(__UpperCamelCase ).last_hidden_state assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-2 ) # verify decoder hidden states __UpperCamelCase =original_model(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ).logits __UpperCamelCase =model(__UpperCamelCase , decoder_input_ids=__UpperCamelCase ).logits assert torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCamelCase ) processor.save_pretrained(__UpperCamelCase ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''naver-clova-ix/donut-base-finetuned-docvqa''', required=False, type=str, help='''Name of the original model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, required=False, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model and processor to the 🤗 hub.''', ) __lowercase = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
715
"""simple docstring""" import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class _lowercase ( __a , unittest.TestCase ): """simple docstring""" lowercase__ = BlenderbotSmallTokenizer lowercase__ = False def UpperCAmelCase_ ( self : str ) -> str: '''simple docstring''' super().setUp() __UpperCamelCase =['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] __UpperCamelCase =dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) __UpperCamelCase =['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] __UpperCamelCase ={'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __UpperCamelCase =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase__ ) ) def UpperCAmelCase_ ( self : Optional[int] , **UpperCamelCase__ : List[Any] ) -> Optional[int]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCamelCase__ : Tuple ) -> int: '''simple docstring''' __UpperCamelCase ='''adapt act apte''' __UpperCamelCase ='''adapt act apte''' return input_text, output_text def UpperCAmelCase_ ( self : Union[str, Any] ) -> Dict: '''simple docstring''' __UpperCamelCase =BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __UpperCamelCase ='''adapt act apte''' __UpperCamelCase =['''adapt''', '''act''', '''ap@@''', '''te'''] __UpperCamelCase =tokenizer.tokenize(UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =[tokenizer.bos_token] + tokens + [tokenizer.eos_token] __UpperCamelCase =[0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , UpperCamelCase__ ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: '''simple docstring''' __UpperCamelCase =BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [1384] __UpperCamelCase ='''I am a small frog.''' __UpperCamelCase =tok([src_text] , padding=UpperCamelCase__ , truncation=UpperCamelCase__ )['''input_ids'''] __UpperCamelCase =tok.batch_decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def UpperCAmelCase_ ( self : List[str] ) -> List[str]: '''simple docstring''' __UpperCamelCase =BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) __UpperCamelCase ='''I am a small frog .''' __UpperCamelCase ='''.''' __UpperCamelCase =tok(UpperCamelCase__ )['''input_ids'''] __UpperCamelCase =tok(UpperCamelCase__ )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
296
0
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = False, False, False @dataclass class UpperCAmelCase__ : """simple docstring""" a = None a = True a = True a = None # Automatically constructed a = "dict" a = pa.struct({"bytes": pa.binary(), "path": pa.string()} ) a = field(default="Audio" , init=A__ , repr=A__ ) def __call__( self : Optional[int] ) -> List[str]: return self.pa_type def lowercase_ ( self : str , __lowerCamelCase : Union[str, bytes, dict] ) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''' ) from err if isinstance(__lowerCamelCase , __lowerCamelCase ): return {"bytes": None, "path": value} elif isinstance(__lowerCamelCase , __lowerCamelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes SCREAMING_SNAKE_CASE__ = BytesIO() sf.write(__lowerCamelCase , value['''array'''] , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''' ) is not None and os.path.isfile(value['''path'''] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm''' ): # "PCM" only has raw audio bytes if value.get('''sampling_rate''' ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''' ) if value.get('''bytes''' ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) SCREAMING_SNAKE_CASE__ = np.frombuffer(value['''bytes'''] , dtype=np.intaa ).astype(np.floataa ) / 3_2767 else: SCREAMING_SNAKE_CASE__ = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''' ).astype(np.floataa ) / 3_2767 SCREAMING_SNAKE_CASE__ = BytesIO(bytes() ) sf.write(__lowerCamelCase , __lowerCamelCase , value['''sampling_rate'''] , format='''wav''' ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''' )} elif value.get('''bytes''' ) is not None or value.get('''path''' ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes''' ), "path": value.get('''path''' )} else: raise ValueError( f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' ) def lowercase_ ( self : Dict , __lowerCamelCase : dict , __lowerCamelCase : Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict: if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''' ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = (value['''path'''], BytesIO(value['''bytes'''] )) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''' ) from err SCREAMING_SNAKE_CASE__ = xsplitext(__lowerCamelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''' ) if file is None: SCREAMING_SNAKE_CASE__ = token_per_repo_id or {} SCREAMING_SNAKE_CASE__ = path.split('''::''' )[-1] try: SCREAMING_SNAKE_CASE__ = string_to_dict(__lowerCamelCase , config.HUB_DATASETS_URL )['''repo_id'''] SCREAMING_SNAKE_CASE__ = token_per_repo_id[repo_id] except (ValueError, KeyError): SCREAMING_SNAKE_CASE__ = None with xopen(__lowerCamelCase , '''rb''' , use_auth_token=__lowerCamelCase ) as f: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = sf.read(__lowerCamelCase ) else: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = sf.read(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = array.T if self.mono: SCREAMING_SNAKE_CASE__ = librosa.to_mono(__lowerCamelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: SCREAMING_SNAKE_CASE__ = librosa.resample(__lowerCamelCase , orig_sr=__lowerCamelCase , target_sr=self.sampling_rate ) SCREAMING_SNAKE_CASE__ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def lowercase_ ( self : Optional[Any] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''' ) return { "bytes": Value('''binary''' ), "path": Value('''string''' ), } def lowercase_ ( self : str , __lowerCamelCase : Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray: if pa.types.is_string(storage.type ): SCREAMING_SNAKE_CASE__ = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) SCREAMING_SNAKE_CASE__ = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): SCREAMING_SNAKE_CASE__ = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) SCREAMING_SNAKE_CASE__ = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('''array''' ): SCREAMING_SNAKE_CASE__ = pa.array([Audio().encode_example(__lowerCamelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('''bytes''' ) >= 0: SCREAMING_SNAKE_CASE__ = storage.field('''bytes''' ) else: SCREAMING_SNAKE_CASE__ = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() ) if storage.type.get_field_index('''path''' ) >= 0: SCREAMING_SNAKE_CASE__ = storage.field('''path''' ) else: SCREAMING_SNAKE_CASE__ = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() ) SCREAMING_SNAKE_CASE__ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null() ) return array_cast(__lowerCamelCase , self.pa_type ) def lowercase_ ( self : Optional[Any] , __lowerCamelCase : pa.StructArray ) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(__lowerCamelCase : Dict ): with xopen(__lowerCamelCase , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = f.read() return bytes_ SCREAMING_SNAKE_CASE__ = pa.array( [ (path_to_bytes(x['''path'''] ) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) SCREAMING_SNAKE_CASE__ = pa.array( [os.path.basename(__lowerCamelCase ) if path is not None else None for path in storage.field('''path''' ).to_pylist()] , type=pa.string() , ) SCREAMING_SNAKE_CASE__ = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null() ) return array_cast(__lowerCamelCase , self.pa_type )
493
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) class UpperCAmelCase__ ( A__ ): """simple docstring""" def __init__( self : Any , *__lowerCamelCase : List[Any] , **__lowerCamelCase : Dict ) -> None: warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
493
1
"""simple docstring""" def __lowerCamelCase ( lowerCAmelCase__ ): A__ = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) A__ = hex_num[0] == '-' if is_negative: A__ = hex_num[1:] try: A__ = int(lowerCAmelCase__ ,16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) A__ = '' while int_num > 0: A__ = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
554
"""simple docstring""" from maths.prime_check import is_prime def __lowerCamelCase ( lowerCAmelCase__ ): if not isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): A__ = f'''Input value of [number={number}] must be an integer''' raise TypeError(lowerCAmelCase__ ) if is_prime(lowerCAmelCase__ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
554
1
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor snake_case__ : Dict = logging.get_logger(__name__) class _a ( UpperCamelCase__ ): """simple docstring""" def __init__( self , *_snake_case , **_snake_case ): warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead." , __lowerCamelCase , ) super().__init__(*__lowerCamelCase , **__lowerCamelCase )
408
import shutil import tempfile import unittest import numpy as np from transformers.testing_utils import ( is_pt_tf_cross_test, require_tf, require_torch, require_torchvision, require_vision, ) from transformers.utils import is_tf_available, is_torch_available, is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, SamImageProcessor, SamProcessor if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf @require_vision @require_torchvision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): A__ = tempfile.mkdtemp() A__ = SamImageProcessor() A__ = SamProcessor(__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self,**__lowerCamelCase ): return AutoProcessor.from_pretrained(self.tmpdirname,**__lowerCamelCase ).image_processor def UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self ): A__ = [np.random.randint(255,size=(3, 30, 400),dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(__lowerCamelCase,0,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase ( self ): A__ = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_image_processor(do_normalize=__lowerCamelCase,padding_value=1.0 ) A__ = SamProcessor.from_pretrained(self.tmpdirname,do_normalize=__lowerCamelCase,padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string(),image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor,__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.get_image_processor() A__ = SamProcessor(image_processor=__lowerCamelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(__lowerCamelCase,return_tensors='''np''' ) A__ = processor(images=__lowerCamelCase,return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop original_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(),input_processor[key].sum(),delta=1E-2 ) @require_torch def UpperCamelCase ( self ): A__ = self.get_image_processor() A__ = SamProcessor(image_processor=__lowerCamelCase ) A__ = [torch.ones((1, 3, 5, 5) )] A__ = [[1764, 2646]] A__ = [[683, 1024]] A__ = processor.post_process_masks(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase ) self.assertEqual(masks[0].shape,(1, 3, 1764, 2646) ) A__ = processor.post_process_masks( __lowerCamelCase,torch.tensor(__lowerCamelCase ),torch.tensor(__lowerCamelCase ) ) self.assertEqual(masks[0].shape,(1, 3, 1764, 2646) ) # should also work with np A__ = [np.ones((1, 3, 5, 5) )] A__ = processor.post_process_masks(__lowerCamelCase,np.array(__lowerCamelCase ),np.array(__lowerCamelCase ) ) self.assertEqual(masks[0].shape,(1, 3, 1764, 2646) ) A__ = [[1, 0], [0, 1]] with self.assertRaises(__lowerCamelCase ): A__ = processor.post_process_masks(__lowerCamelCase,np.array(__lowerCamelCase ),np.array(__lowerCamelCase ) ) @require_vision @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): A__ = tempfile.mkdtemp() A__ = SamImageProcessor() A__ = SamProcessor(__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self,**__lowerCamelCase ): return AutoProcessor.from_pretrained(self.tmpdirname,**__lowerCamelCase ).image_processor def UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self ): A__ = [np.random.randint(255,size=(3, 30, 400),dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(__lowerCamelCase,0,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase ( self ): A__ = SamProcessor(image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ = self.get_image_processor(do_normalize=__lowerCamelCase,padding_value=1.0 ) A__ = SamProcessor.from_pretrained(self.tmpdirname,do_normalize=__lowerCamelCase,padding_value=1.0 ) self.assertEqual(processor.image_processor.to_json_string(),image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor,__lowerCamelCase ) def UpperCamelCase ( self ): A__ = self.get_image_processor() A__ = SamProcessor(image_processor=__lowerCamelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(__lowerCamelCase,return_tensors='''np''' ) A__ = processor(images=__lowerCamelCase,return_tensors='''np''' ) input_feat_extract.pop('''original_sizes''' ) # pop original_sizes as it is popped in the processor input_feat_extract.pop('''reshaped_input_sizes''' ) # pop reshaped_input_sizes as it is popped in the processor for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum(),input_processor[key].sum(),delta=1E-2 ) @require_tf def UpperCamelCase ( self ): A__ = self.get_image_processor() A__ = SamProcessor(image_processor=__lowerCamelCase ) A__ = [tf.ones((1, 3, 5, 5) )] A__ = [[1764, 2646]] A__ = [[683, 1024]] A__ = processor.post_process_masks(__lowerCamelCase,__lowerCamelCase,__lowerCamelCase,return_tensors='''tf''' ) self.assertEqual(masks[0].shape,(1, 3, 1764, 2646) ) A__ = processor.post_process_masks( __lowerCamelCase,tf.convert_to_tensor(__lowerCamelCase ),tf.convert_to_tensor(__lowerCamelCase ),return_tensors='''tf''',) self.assertEqual(masks[0].shape,(1, 3, 1764, 2646) ) # should also work with np A__ = [np.ones((1, 3, 5, 5) )] A__ = processor.post_process_masks( __lowerCamelCase,np.array(__lowerCamelCase ),np.array(__lowerCamelCase ),return_tensors='''tf''' ) self.assertEqual(masks[0].shape,(1, 3, 1764, 2646) ) A__ = [[1, 0], [0, 1]] with self.assertRaises(tf.errors.InvalidArgumentError ): A__ = processor.post_process_masks( __lowerCamelCase,np.array(__lowerCamelCase ),np.array(__lowerCamelCase ),return_tensors='''tf''' ) @require_vision @require_torchvision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def UpperCamelCase ( self ): A__ = tempfile.mkdtemp() A__ = SamImageProcessor() A__ = SamProcessor(__lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self,**__lowerCamelCase ): return AutoProcessor.from_pretrained(self.tmpdirname,**__lowerCamelCase ).image_processor def UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase ( self ): A__ = [np.random.randint(255,size=(3, 30, 400),dtype=np.uinta )] A__ = [Image.fromarray(np.moveaxis(__lowerCamelCase,0,-1 ) ) for x in image_inputs] return image_inputs @is_pt_tf_cross_test def UpperCamelCase ( self ): A__ = self.get_image_processor() A__ = SamProcessor(image_processor=__lowerCamelCase ) A__ = np.random.randint(0,2,size=(1, 3, 5, 5) ).astype(np.floataa ) A__ = [tf.convert_to_tensor(__lowerCamelCase )] A__ = [torch.tensor(__lowerCamelCase )] A__ = [[1764, 2646]] A__ = [[683, 1024]] A__ = processor.post_process_masks( __lowerCamelCase,__lowerCamelCase,__lowerCamelCase,return_tensors='''tf''' ) A__ = processor.post_process_masks( __lowerCamelCase,__lowerCamelCase,__lowerCamelCase,return_tensors='''pt''' ) self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) ) @is_pt_tf_cross_test def UpperCamelCase ( self ): A__ = self.get_image_processor() A__ = SamProcessor(image_processor=__lowerCamelCase ) A__ = self.prepare_image_inputs() A__ = image_processor(__lowerCamelCase,return_tensors='''pt''' )['''pixel_values'''].numpy() A__ = processor(images=__lowerCamelCase,return_tensors='''pt''' )['''pixel_values'''].numpy() A__ = image_processor(__lowerCamelCase,return_tensors='''tf''' )['''pixel_values'''].numpy() A__ = processor(images=__lowerCamelCase,return_tensors='''tf''' )['''pixel_values'''].numpy() self.assertTrue(np.allclose(__lowerCamelCase,__lowerCamelCase ) ) self.assertTrue(np.allclose(__lowerCamelCase,__lowerCamelCase ) ) self.assertTrue(np.allclose(__lowerCamelCase,__lowerCamelCase ) )
190
0
import gc import unittest import torch from parameterized import parameterized from diffusers import AutoencoderKL from diffusers.utils import floats_tensor, load_hf_numpy, require_torch_gpu, slow, torch_all_close, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class _lowerCamelCase (lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = AutoencoderKL lowercase__ = """sample""" lowercase__ = 1E-2 @property def __lowerCamelCase ( self ): __snake_case = 4 __snake_case = 3 __snake_case = (32, 32) __snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def __lowerCamelCase ( self ): return (3, 32, 32) @property def __lowerCamelCase ( self ): return (3, 32, 32) def __lowerCamelCase ( self ): __snake_case = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } __snake_case = self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): pass @unittest.skipIf(torch_device == 'mps' , 'Gradient checkpointing skipped on MPS' ) def __lowerCamelCase ( self ): # enable deterministic behavior for gradient checkpointing __snake_case , __snake_case = self.prepare_init_args_and_inputs_for_common() __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) assert not model.is_gradient_checkpointing and model.training __snake_case = model(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model.zero_grad() __snake_case = torch.randn_like(SCREAMING_SNAKE_CASE_ ) __snake_case = (out - labels).mean() loss.backward() # re-instantiate the model now enabling gradient checkpointing __snake_case = self.model_class(**SCREAMING_SNAKE_CASE_ ) # clone model model_a.load_state_dict(model.state_dict() ) model_a.to(SCREAMING_SNAKE_CASE_ ) model_a.enable_gradient_checkpointing() assert model_a.is_gradient_checkpointing and model_a.training __snake_case = model_a(**SCREAMING_SNAKE_CASE_ ).sample # run the backwards pass on the model. For backwards pass, for simplicity purpose, # we won't calculate the loss and rather backprop on out.sum() model_a.zero_grad() __snake_case = (out_a - labels).mean() loss_a.backward() # compare the output and parameters gradients self.assertTrue((loss - loss_a).abs() < 1E-5 ) __snake_case = dict(model.named_parameters() ) __snake_case = dict(model_a.named_parameters() ) for name, param in named_params.items(): self.assertTrue(torch_all_close(param.grad.data , named_params_a[name].grad.data , atol=5E-5 ) ) def __lowerCamelCase ( self ): __snake_case , __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) __snake_case = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def __lowerCamelCase ( self ): __snake_case = AutoencoderKL.from_pretrained('fusing/autoencoder-kl-dummy' ) __snake_case = model.to(SCREAMING_SNAKE_CASE_ ) model.eval() if torch_device == "mps": __snake_case = torch.manual_seed(0 ) else: __snake_case = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(0 ) __snake_case = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) __snake_case = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).sample __snake_case = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": __snake_case = torch.tensor( [ -4.0_078E-01, -3.8_323E-04, -1.2_681E-01, -1.1_462E-01, 2.0_095E-01, 1.0_893E-01, -8.8_247E-02, -3.0_361E-01, -9.8_644E-03, ] ) elif torch_device == "cpu": __snake_case = torch.tensor( [-0.1_3_5_2, 0.0_8_7_8, 0.0_4_1_9, -0.0_8_1_8, -0.1_0_6_9, 0.0_6_8_8, -0.1_4_5_8, -0.4_4_4_6, -0.0_0_2_6] ) else: __snake_case = torch.tensor( [-0.2_4_2_1, 0.4_6_4_2, 0.2_5_0_7, -0.0_4_3_8, 0.0_6_8_2, 0.3_1_6_0, -0.2_0_1_8, -0.0_7_2_7, 0.2_4_8_5] ) self.assertTrue(torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , rtol=1E-2 ) ) @slow class _lowerCamelCase (unittest.TestCase ): def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return f'''gaussian_noise_s={seed}_shape={'_'.join([str(SCREAMING_SNAKE_CASE_ ) for s in shape] )}.npy''' def __lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_=0 , SCREAMING_SNAKE_CASE_=(4, 3, 512, 512) , SCREAMING_SNAKE_CASE_=False ): __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = torch.from_numpy(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) ).to(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) return image def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_="CompVis/stable-diffusion-v1-4" , SCREAMING_SNAKE_CASE_=False ): __snake_case = 'fp16' if fpaa else None __snake_case = torch.floataa if fpaa else torch.floataa __snake_case = AutoencoderKL.from_pretrained( SCREAMING_SNAKE_CASE_ , subfolder='vae' , torch_dtype=SCREAMING_SNAKE_CASE_ , revision=SCREAMING_SNAKE_CASE_ , ) model.to(SCREAMING_SNAKE_CASE_ ).eval() return model def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_=0 ): if torch_device == "mps": return torch.manual_seed(SCREAMING_SNAKE_CASE_ ) return torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_3, 0.9_8_7_8, -0.0_4_9_5, -0.0_7_9_0, -0.2_7_0_9, 0.8_3_7_5, -0.2_0_6_0, -0.0_8_2_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_6, 0.1_1_6_8, 0.1_3_3_2, -0.4_8_4_0, -0.2_5_0_8, -0.0_7_9_1, -0.0_4_9_3, -0.4_0_8_9], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [33, [-0.0_5_1_3, 0.0_2_8_9, 1.3_7_9_9, 0.2_1_6_6, -0.2_5_7_3, -0.0_8_7_1, 0.5_1_0_3, -0.0_9_9_9]], [47, [-0.4_1_2_8, -0.1_3_2_0, -0.3_7_0_4, 0.1_9_6_5, -0.4_1_1_6, -0.2_3_3_2, -0.3_3_4_0, 0.2_2_4_7]], # fmt: on ] ) @require_torch_gpu def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , sample_posterior=SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.1_6_0_9, 0.9_8_6_6, -0.0_4_8_7, -0.0_7_7_7, -0.2_7_1_6, 0.8_3_6_8, -0.2_0_5_5, -0.0_8_1_4], [-0.2_3_9_5, 0.0_0_9_8, 0.0_1_0_2, -0.0_7_0_9, -0.2_8_4_0, -0.0_2_7_4, -0.0_7_1_8, -0.1_8_2_4]], [47, [-0.2_3_7_7, 0.1_1_4_7, 0.1_3_3_3, -0.4_8_4_1, -0.2_5_0_6, -0.0_8_0_5, -0.0_4_9_1, -0.4_0_8_5], [0.0_3_5_0, 0.0_8_4_7, 0.0_4_6_7, 0.0_3_4_4, -0.0_8_4_2, -0.0_5_4_7, -0.0_6_3_3, -0.1_1_3_1]], # fmt: on ] ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).sample assert sample.shape == image.shape __snake_case = sample[-1, -2:, -2:, :2].flatten().float().cpu() __snake_case = torch.tensor(expected_slice_mps if torch_device == 'mps' else expected_slice ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=3E-3 ) @parameterized.expand( [ # fmt: off [13, [-0.2_0_5_1, -0.1_8_0_3, -0.2_3_1_1, -0.2_1_1_4, -0.3_2_9_2, -0.3_5_7_4, -0.2_9_5_3, -0.3_3_2_3]], [37, [-0.2_6_3_2, -0.2_6_2_5, -0.2_1_9_9, -0.2_7_4_1, -0.4_5_3_9, -0.4_9_9_0, -0.3_7_2_0, -0.4_9_2_5]], # fmt: on ] ) @require_torch_gpu def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) @parameterized.expand( [ # fmt: off [27, [-0.0_3_6_9, 0.0_2_0_7, -0.0_7_7_6, -0.0_6_8_2, -0.1_7_4_7, -0.1_9_3_0, -0.1_4_6_5, -0.2_0_3_9]], [16, [-0.1_6_2_8, -0.2_1_3_4, -0.2_7_4_7, -0.2_6_4_2, -0.3_7_7_4, -0.4_4_0_4, -0.3_6_8_7, -0.4_2_7_7]], # fmt: on ] ) @require_torch_gpu def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] __snake_case = sample[-1, -2:, :2, -2:].flatten().float().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=5E-3 ) @parameterized.expand([(13,), (16,), (27,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ ): __snake_case = self.get_sd_vae_model(fpaa=SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) , fpaa=SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-1 ) @parameterized.expand([(13,), (16,), (37,)] ) @require_torch_gpu @unittest.skipIf(not is_xformers_available() , reason='xformers is not required when using PyTorch 2.0.' ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ ): __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ , shape=(3, 4, 64, 64) ) with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample model.enable_xformers_memory_efficient_attention() with torch.no_grad(): __snake_case = model.decode(SCREAMING_SNAKE_CASE_ ).sample assert list(sample.shape ) == [3, 3, 512, 512] assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-2 ) @parameterized.expand( [ # fmt: off [33, [-0.3_0_0_1, 0.0_9_1_8, -2.6_9_8_4, -3.9_7_2_0, -3.2_0_9_9, -5.0_3_5_3, 1.7_3_3_8, -0.2_0_6_5, 3.4_2_6_7]], [47, [-1.5_0_3_0, -4.3_8_7_1, -6.0_3_5_5, -9.1_1_5_7, -1.6_6_6_1, -2.7_8_5_3, 2.1_6_0_7, -5.0_8_2_3, 2.5_6_3_3]], # fmt: on ] ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __snake_case = self.get_sd_vae_model() __snake_case = self.get_sd_image(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_generator(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): __snake_case = model.encode(SCREAMING_SNAKE_CASE_ ).latent_dist __snake_case = dist.sample(generator=SCREAMING_SNAKE_CASE_ ) assert list(sample.shape ) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] __snake_case = sample[0, -1, -3:, -3:].flatten().cpu() __snake_case = torch.tensor(SCREAMING_SNAKE_CASE_ ) __snake_case = 3E-3 if torch_device != 'mps' else 1E-2 assert torch_all_close(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=SCREAMING_SNAKE_CASE_ )
718
import json import os import unittest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowerCamelCase (lowerCamelCase , unittest.TestCase ): lowercase__ = MgpstrTokenizer lowercase__ = False lowercase__ = {} lowercase__ = False def __lowerCamelCase ( self ): super().setUp() # fmt: off __snake_case = ['[GO]', '[s]', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] # fmt: on __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) def __lowerCamelCase ( self , **SCREAMING_SNAKE_CASE_ ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE_ ): __snake_case = 'tester' __snake_case = 'tester' return input_text, output_text @unittest.skip('MGP-STR always lower cases letters.' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): __snake_case = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case = '[SPECIAL_TOKEN]' tokenizer.add_special_tokens({'cls_token': special_token} ) __snake_case = tokenizer.encode([special_token] , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1 ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertTrue(special_token not in decoded ) def __lowerCamelCase ( self ): __snake_case = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __snake_case , __snake_case = self.get_input_output_texts(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(len(SCREAMING_SNAKE_CASE_ ) , 0 ) __snake_case = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(text_a.replace(' ' , '' ) , SCREAMING_SNAKE_CASE_ ) @unittest.skip('MGP-STR tokenizer only handles one sequence.' ) def __lowerCamelCase ( self ): pass @unittest.skip('inputs cannot be pretokenized in MgpstrTokenizer' ) def __lowerCamelCase ( self ): pass
345
0
'''simple docstring''' from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging _UpperCAmelCase : int = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase_ ( _UpperCamelCase ): """simple docstring""" def __init__( self : List[Any], UpperCamelCase__ : CLIPSegForImageSegmentation, UpperCamelCase__ : CLIPSegProcessor, UpperCamelCase__ : AutoencoderKL, UpperCamelCase__ : CLIPTextModel, UpperCamelCase__ : CLIPTokenizer, UpperCamelCase__ : UNetaDConditionModel, UpperCamelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], UpperCamelCase__ : StableDiffusionSafetyChecker, UpperCamelCase__ : CLIPImageProcessor, ) -> int: super().__init__() if hasattr(scheduler.config, 'steps_offset' ) and scheduler.config.steps_offset != 1: _A = ( f'The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`' f' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ' 'to update the config accordingly as leaving `steps_offset` might led to incorrect results' ' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,' ' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`' ' file' ) deprecate('steps_offset!=1', '1.0.0', UpperCamelCase__, standard_warn=UpperCamelCase__ ) _A = dict(scheduler.config ) _A = 1 _A = FrozenDict(UpperCamelCase__ ) if hasattr(scheduler.config, 'skip_prk_steps' ) and scheduler.config.skip_prk_steps is False: _A = ( f'The configuration file of this scheduler: {scheduler} has not set the configuration' ' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make' ' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to' ' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face' ' Hub, it would be very nice if you could open a Pull request for the' ' `scheduler/scheduler_config.json` file' ) deprecate('skip_prk_steps not set', '1.0.0', UpperCamelCase__, standard_warn=UpperCamelCase__ ) _A = dict(scheduler.config ) _A = True _A = FrozenDict(UpperCamelCase__ ) if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( segmentation_model=UpperCamelCase__, segmentation_processor=UpperCamelCase__, vae=UpperCamelCase__, text_encoder=UpperCamelCase__, tokenizer=UpperCamelCase__, unet=UpperCamelCase__, scheduler=UpperCamelCase__, safety_checker=UpperCamelCase__, feature_extractor=UpperCamelCase__, ) def __UpperCAmelCase ( self : Optional[Any], UpperCamelCase__ : Optional[Union[str, int]] = "auto" ) -> List[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _A = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase__ ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: self.enable_attention_slicing(UpperCamelCase__ ) def __UpperCAmelCase ( self : List[str] ) -> List[str]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) _A = torch.device('cuda' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(UpperCamelCase__, UpperCamelCase__ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __UpperCAmelCase ( self : int ) -> Dict: if self.device != torch.device('meta' ) or not hasattr(self.unet, '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(UpperCamelCase__, '_hf_hook' ) and hasattr(module._hf_hook, 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Optional[int], UpperCamelCase__ : Union[str, List[str]], UpperCamelCase__ : Union[torch.FloatTensor, PIL.Image.Image], UpperCamelCase__ : str, UpperCamelCase__ : int = 5_12, UpperCamelCase__ : int = 5_12, UpperCamelCase__ : int = 50, UpperCamelCase__ : float = 7.5, UpperCamelCase__ : Optional[Union[str, List[str]]] = None, UpperCamelCase__ : Optional[int] = 1, UpperCamelCase__ : float = 0.0, UpperCamelCase__ : Optional[torch.Generator] = None, UpperCamelCase__ : Optional[torch.FloatTensor] = None, UpperCamelCase__ : Optional[str] = "pil", UpperCamelCase__ : bool = True, UpperCamelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None, UpperCamelCase__ : int = 1, **UpperCamelCase__ : Dict, ) -> Tuple: _A = self.segmentation_processor( text=[text], images=[image], padding='max_length', return_tensors='pt' ).to(self.device ) _A = self.segmentation_model(**UpperCamelCase__ ) _A = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() _A = self.numpy_to_pil(UpperCamelCase__ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask _A = StableDiffusionInpaintPipeline( vae=self.vae, text_encoder=self.text_encoder, tokenizer=self.tokenizer, unet=self.unet, scheduler=self.scheduler, safety_checker=self.safety_checker, feature_extractor=self.feature_extractor, ) return inpainting_pipeline( prompt=UpperCamelCase__, image=UpperCamelCase__, mask_image=UpperCamelCase__, height=UpperCamelCase__, width=UpperCamelCase__, num_inference_steps=UpperCamelCase__, guidance_scale=UpperCamelCase__, negative_prompt=UpperCamelCase__, num_images_per_prompt=UpperCamelCase__, eta=UpperCamelCase__, generator=UpperCamelCase__, latents=UpperCamelCase__, output_type=UpperCamelCase__, return_dict=UpperCamelCase__, callback=UpperCamelCase__, callback_steps=UpperCamelCase__, )
107
'''simple docstring''' import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] ): return EnvironmentCommand() class lowercase_ ( _UpperCamelCase ): """simple docstring""" @staticmethod def __UpperCAmelCase ( UpperCamelCase__ : ArgumentParser ) -> List[str]: _A = parser.add_parser('env' ) download_parser.set_defaults(func=UpperCamelCase__ ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: _A = huggingface_hub.__version__ _A = 'not installed' _A = 'NA' if is_torch_available(): import torch _A = torch.__version__ _A = torch.cuda.is_available() _A = 'not installed' if is_transformers_available(): import transformers _A = transformers.__version__ _A = 'not installed' if is_accelerate_available(): import accelerate _A = accelerate.__version__ _A = 'not installed' if is_xformers_available(): import xformers _A = xformers.__version__ _A = { '`diffusers` version': version, 'Platform': platform.platform(), 'Python version': platform.python_version(), 'PyTorch version (GPU?)': f'{pt_version} ({pt_cuda_available})', 'Huggingface_hub version': hub_version, 'Transformers version': transformers_version, 'Accelerate version': accelerate_version, 'xFormers version': xformers_version, 'Using GPU in script?': '<fill in>', 'Using distributed or parallel set-up in script?': '<fill in>', } print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' ) print(self.format_dict(UpperCamelCase__ ) ) return info @staticmethod def __UpperCAmelCase ( UpperCamelCase__ : List[Any] ) -> Dict: return "\n".join([f'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
107
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : str = { '''SCUT-DLVCLab/lilt-roberta-en-base''': ( '''https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json''' ), } class UpperCamelCase_ ( a_ ): _A : Optional[Any] = 'lilt' def __init__( self , snake_case__=3_05_22 , snake_case__=7_68 , snake_case__=12 , snake_case__=12 , snake_case__=30_72 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=5_12 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=0 , snake_case__="absolute" , snake_case__=None , snake_case__=4 , snake_case__=10_24 , **snake_case__ , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_act UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = position_embedding_type UpperCAmelCase = classifier_dropout UpperCAmelCase = channel_shrink_ratio UpperCAmelCase = max_ad_position_embeddings
378
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase_ : List[Any] = logging.get_logger(__name__) lowerCAmelCase_ : Tuple = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } lowerCAmelCase_ : int = { '''b0''': { '''hidden_dim''': 1_2_8_0, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 2_2_4, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1_2_8_0, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 2_4_0, '''dropout_rate''': 0.2, '''dw_padding''': [1_6], }, '''b2''': { '''hidden_dim''': 1_4_0_8, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 2_6_0, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 1_6], }, '''b3''': { '''hidden_dim''': 1_5_3_6, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 3_0_0, '''dropout_rate''': 0.3, '''dw_padding''': [5, 1_8], }, '''b4''': { '''hidden_dim''': 1_7_9_2, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 3_8_0, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2_0_4_8, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 4_5_6, '''dropout_rate''': 0.4, '''dw_padding''': [1_3, 2_7], }, '''b6''': { '''hidden_dim''': 2_3_0_4, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 5_2_8, '''dropout_rate''': 0.5, '''dw_padding''': [3_1], }, '''b7''': { '''hidden_dim''': 2_5_6_0, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 6_0_0, '''dropout_rate''': 0.5, '''dw_padding''': [1_8], }, } def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = EfficientNetConfig() UpperCAmelCase = CONFIG_MAP[model_name]["""hidden_dim"""] UpperCAmelCase = CONFIG_MAP[model_name]["""width_coef"""] UpperCAmelCase = CONFIG_MAP[model_name]["""depth_coef"""] UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] UpperCAmelCase = CONFIG_MAP[model_name]["""dropout_rate"""] UpperCAmelCase = CONFIG_MAP[model_name]["""dw_padding"""] UpperCAmelCase = """huggingface/label-files""" UpperCAmelCase = """imagenet-1k-id2label.json""" UpperCAmelCase = 1000 UpperCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) UpperCAmelCase = {int(lowerCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase = idalabel UpperCAmelCase = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCAmelCase = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return im def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] UpperCAmelCase = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=lowerCAmelCase , ) return preprocessor def _lowerCAmelCase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] UpperCAmelCase = sorted(set(lowerCAmelCase ) ) UpperCAmelCase = len(lowerCAmelCase ) UpperCAmelCase = {b: str(lowerCAmelCase ) for b, i in zip(lowerCAmelCase , range(lowerCAmelCase ) )} UpperCAmelCase = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: UpperCAmelCase = block_name_mapping[b] rename_keys.append((F'''block{b}_expand_conv/kernel:0''', F'''encoder.blocks.{hf_b}.expansion.expand_conv.weight''') ) rename_keys.append((F'''block{b}_expand_bn/gamma:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.weight''') ) rename_keys.append((F'''block{b}_expand_bn/beta:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.bias''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_mean''') ) rename_keys.append( (F'''block{b}_expand_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.expansion.expand_bn.running_var''') ) rename_keys.append( (F'''block{b}_dwconv/depthwise_kernel:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight''') ) rename_keys.append((F'''block{b}_bn/gamma:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight''') ) rename_keys.append((F'''block{b}_bn/beta:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias''') ) rename_keys.append( (F'''block{b}_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean''') ) rename_keys.append( (F'''block{b}_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var''') ) rename_keys.append((F'''block{b}_se_reduce/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.weight''') ) rename_keys.append((F'''block{b}_se_reduce/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.reduce.bias''') ) rename_keys.append((F'''block{b}_se_expand/kernel:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.weight''') ) rename_keys.append((F'''block{b}_se_expand/bias:0''', F'''encoder.blocks.{hf_b}.squeeze_excite.expand.bias''') ) rename_keys.append( (F'''block{b}_project_conv/kernel:0''', F'''encoder.blocks.{hf_b}.projection.project_conv.weight''') ) rename_keys.append((F'''block{b}_project_bn/gamma:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.weight''') ) rename_keys.append((F'''block{b}_project_bn/beta:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.bias''') ) rename_keys.append( (F'''block{b}_project_bn/moving_mean:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_mean''') ) rename_keys.append( (F'''block{b}_project_bn/moving_variance:0''', F'''encoder.blocks.{hf_b}.projection.project_bn.running_var''') ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) UpperCAmelCase = {} for item in rename_keys: if item[0] in original_param_names: UpperCAmelCase = """efficientnet.""" + item[1] UpperCAmelCase = """classifier.weight""" UpperCAmelCase = """classifier.bias""" return key_mapping def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' for key, value in tf_params.items(): if "normalization" in key: continue UpperCAmelCase = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCAmelCase = torch.from_numpy(lowerCAmelCase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCAmelCase = torch.from_numpy(lowerCAmelCase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCAmelCase = torch.from_numpy(np.transpose(lowerCAmelCase ) ) else: UpperCAmelCase = torch.from_numpy(lowerCAmelCase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCAmelCase ) @torch.no_grad() def _lowerCAmelCase ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): '''simple docstring''' UpperCAmelCase = model_classes[model_name]( include_top=lowerCAmelCase , weights="""imagenet""" , input_tensor=lowerCAmelCase , input_shape=lowerCAmelCase , pooling=lowerCAmelCase , classes=1000 , classifier_activation="""softmax""" , ) UpperCAmelCase = original_model.trainable_variables UpperCAmelCase = original_model.non_trainable_variables UpperCAmelCase = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCAmelCase = param.numpy() UpperCAmelCase = list(tf_params.keys() ) # Load HuggingFace model UpperCAmelCase = get_efficientnet_config(lowerCAmelCase ) UpperCAmelCase = EfficientNetForImageClassification(lowerCAmelCase ).eval() UpperCAmelCase = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) UpperCAmelCase = rename_keys(lowerCAmelCase ) replace_params(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Initialize preprocessor and preprocess input image UpperCAmelCase = convert_image_processor(lowerCAmelCase ) UpperCAmelCase = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCAmelCase = hf_model(**lowerCAmelCase ) UpperCAmelCase = outputs.logits.detach().numpy() # Original model inference UpperCAmelCase = False UpperCAmelCase = CONFIG_MAP[model_name]["""image_size"""] UpperCAmelCase = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCAmelCase = image.img_to_array(lowerCAmelCase ) UpperCAmelCase = np.expand_dims(lowerCAmelCase , axis=0 ) UpperCAmelCase = original_model.predict(lowerCAmelCase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCAmelCase , lowerCAmelCase , atol=1e-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(lowerCAmelCase ): os.mkdir(lowerCAmelCase ) # Save converted model and image processor hf_model.save_pretrained(lowerCAmelCase ) preprocessor.save_pretrained(lowerCAmelCase ) if push_to_hub: # Push model and image processor to hub print(F'''Pushing converted {model_name} to the hub...''' ) UpperCAmelCase = F'''efficientnet-{model_name}''' preprocessor.push_to_hub(lowerCAmelCase ) hf_model.push_to_hub(lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') lowerCAmelCase_ : Optional[Any] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
378
1
"""simple docstring""" import re from filelock import FileLock try: import nltk _SCREAMING_SNAKE_CASE : Any = True except (ImportError, ModuleNotFoundError): _SCREAMING_SNAKE_CASE : Any = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def lowerCamelCase__ ( _lowerCamelCase : str ) -> str: re.sub('<n>' , '' , _lowerCamelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(_lowerCamelCase ) )
549
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class a ( __snake_case ): SCREAMING_SNAKE_CASE : torch.FloatTensor class a ( __snake_case , __snake_case ): @register_to_config def __init__( self : Any , __SCREAMING_SNAKE_CASE : int = 32 , __SCREAMING_SNAKE_CASE : int = 64 , __SCREAMING_SNAKE_CASE : int = 20 , __SCREAMING_SNAKE_CASE : int = 768 , __SCREAMING_SNAKE_CASE : int=77 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : float = 0.0 , __SCREAMING_SNAKE_CASE : str = "silu" , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[str] = None , __SCREAMING_SNAKE_CASE : Optional[str] = "linear" , __SCREAMING_SNAKE_CASE : Optional[str] = "prd" , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , __SCREAMING_SNAKE_CASE : Optional[int] = None , ) -> List[Any]: super().__init__() lowerCamelCase_ = num_attention_heads lowerCamelCase_ = attention_head_dim lowerCamelCase_ = num_attention_heads * attention_head_dim lowerCamelCase_ = additional_embeddings lowerCamelCase_ = time_embed_dim or inner_dim lowerCamelCase_ = embedding_proj_dim or embedding_dim lowerCamelCase_ = clip_embed_dim or embedding_dim lowerCamelCase_ = Timesteps(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 0 ) lowerCamelCase_ = TimestepEmbedding(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , out_dim=__SCREAMING_SNAKE_CASE , act_fn=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if embedding_proj_norm_type is None: lowerCamelCase_ = None elif embedding_proj_norm_type == "layer": lowerCamelCase_ = nn.LayerNorm(__SCREAMING_SNAKE_CASE ) else: raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) lowerCamelCase_ = nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if encoder_hid_proj_type is None: lowerCamelCase_ = None elif encoder_hid_proj_type == "linear": lowerCamelCase_ = nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) lowerCamelCase_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , __SCREAMING_SNAKE_CASE ) ) if added_emb_type == "prd": lowerCamelCase_ = nn.Parameter(torch.zeros(1 , 1 , __SCREAMING_SNAKE_CASE ) ) elif added_emb_type is None: lowerCamelCase_ = None else: raise ValueError( F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) lowerCamelCase_ = nn.ModuleList( [ BasicTransformerBlock( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , dropout=__SCREAMING_SNAKE_CASE , activation_fn='gelu' , attention_bias=__SCREAMING_SNAKE_CASE , ) for d in range(__SCREAMING_SNAKE_CASE ) ] ) if norm_in_type == "layer": lowerCamelCase_ = nn.LayerNorm(__SCREAMING_SNAKE_CASE ) elif norm_in_type is None: lowerCamelCase_ = None else: raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' ) lowerCamelCase_ = nn.LayerNorm(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowerCamelCase_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10_000.0 ) causal_attention_mask.triu_(1 ) lowerCamelCase_ = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , __SCREAMING_SNAKE_CASE , persistent=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = nn.Parameter(torch.zeros(1 , __SCREAMING_SNAKE_CASE ) ) lowerCamelCase_ = nn.Parameter(torch.zeros(1 , __SCREAMING_SNAKE_CASE ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCamelCase ( self : List[str] ) -> Dict[str, AttentionProcessor]: lowerCamelCase_ = {} def fn_recursive_add_processors(__SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : torch.nn.Module , __SCREAMING_SNAKE_CASE : Dict[str, AttentionProcessor] ): if hasattr(__SCREAMING_SNAKE_CASE , 'set_processor' ): lowerCamelCase_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return processors for name, module in self.named_children(): fn_recursive_add_processors(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return processors def UpperCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> Optional[int]: lowerCamelCase_ = len(self.attn_processors.keys() ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(__SCREAMING_SNAKE_CASE )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(__SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : torch.nn.Module , __SCREAMING_SNAKE_CASE : str ): if hasattr(__SCREAMING_SNAKE_CASE , 'set_processor' ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): module.set_processor(__SCREAMING_SNAKE_CASE ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for name, module in self.named_children(): fn_recursive_attn_processor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Any ) -> int: self.set_attn_processor(AttnProcessor() ) def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[torch.Tensor, float, int] , __SCREAMING_SNAKE_CASE : torch.FloatTensor , __SCREAMING_SNAKE_CASE : Optional[torch.FloatTensor] = None , __SCREAMING_SNAKE_CASE : Optional[torch.BoolTensor] = None , __SCREAMING_SNAKE_CASE : bool = True , ) -> List[Any]: lowerCamelCase_ = hidden_states.shape[0] lowerCamelCase_ = timestep if not torch.is_tensor(__SCREAMING_SNAKE_CASE ): lowerCamelCase_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(__SCREAMING_SNAKE_CASE ) and len(timesteps.shape ) == 0: lowerCamelCase_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowerCamelCase_ = timesteps * torch.ones(__SCREAMING_SNAKE_CASE , dtype=timesteps.dtype , device=timesteps.device ) lowerCamelCase_ = self.time_proj(__SCREAMING_SNAKE_CASE ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. lowerCamelCase_ = timesteps_projected.to(dtype=self.dtype ) lowerCamelCase_ = self.time_embedding(__SCREAMING_SNAKE_CASE ) if self.embedding_proj_norm is not None: lowerCamelCase_ = self.embedding_proj_norm(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.embedding_proj(__SCREAMING_SNAKE_CASE ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: lowerCamelCase_ = self.encoder_hidden_states_proj(__SCREAMING_SNAKE_CASE ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) lowerCamelCase_ = self.proj_in(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.positional_embedding.to(hidden_states.dtype ) lowerCamelCase_ = [] lowerCamelCase_ = 0 if encoder_hidden_states is not None: additional_embeds.append(__SCREAMING_SNAKE_CASE ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: lowerCamelCase_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: lowerCamelCase_ = hidden_states[:, None, :] lowerCamelCase_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: lowerCamelCase_ = self.prd_embedding.to(hidden_states.dtype ).expand(__SCREAMING_SNAKE_CASE , -1 , -1 ) additional_embeds.append(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = torch.cat( __SCREAMING_SNAKE_CASE , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens lowerCamelCase_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: lowerCamelCase_ = F.pad( __SCREAMING_SNAKE_CASE , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) lowerCamelCase_ = hidden_states + positional_embeddings if attention_mask is not None: lowerCamelCase_ = (1 - attention_mask.to(hidden_states.dtype )) * -10_000.0 lowerCamelCase_ = F.pad(__SCREAMING_SNAKE_CASE , (0, self.additional_embeddings) , value=0.0 ) lowerCamelCase_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) lowerCamelCase_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: lowerCamelCase_ = self.norm_in(__SCREAMING_SNAKE_CASE ) for block in self.transformer_blocks: lowerCamelCase_ = block(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = self.norm_out(__SCREAMING_SNAKE_CASE ) if self.prd_embedding is not None: lowerCamelCase_ = hidden_states[:, -1] else: lowerCamelCase_ = hidden_states[:, additional_embeddings_len:] lowerCamelCase_ = self.proj_to_clip_embeddings(__SCREAMING_SNAKE_CASE ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=__SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[int]: lowerCamelCase_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
549
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class UpperCAmelCase__ ( snake_case ): """simple docstring""" lowerCAmelCase__ : Dict = 'vit_mae' def __init__( self: List[Any] , __lowerCAmelCase: Any=768 , __lowerCAmelCase: List[str]=12 , __lowerCAmelCase: Optional[int]=12 , __lowerCAmelCase: Tuple=3_072 , __lowerCAmelCase: List[Any]="gelu" , __lowerCAmelCase: Dict=0.0 , __lowerCAmelCase: Tuple=0.0 , __lowerCAmelCase: Any=0.02 , __lowerCAmelCase: List[Any]=1E-12 , __lowerCAmelCase: List[str]=224 , __lowerCAmelCase: Optional[Any]=16 , __lowerCAmelCase: Union[str, Any]=3 , __lowerCAmelCase: Tuple=True , __lowerCAmelCase: Union[str, Any]=16 , __lowerCAmelCase: Optional[int]=512 , __lowerCAmelCase: int=8 , __lowerCAmelCase: int=2_048 , __lowerCAmelCase: str=0.75 , __lowerCAmelCase: Union[str, Any]=False , **__lowerCAmelCase: List[Any] , ) -> Optional[int]: '''simple docstring''' super().__init__(**__lowerCAmelCase ) __UpperCAmelCase = hidden_size __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = intermediate_size __UpperCAmelCase = hidden_act __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = qkv_bias __UpperCAmelCase = decoder_num_attention_heads __UpperCAmelCase = decoder_hidden_size __UpperCAmelCase = decoder_num_hidden_layers __UpperCAmelCase = decoder_intermediate_size __UpperCAmelCase = mask_ratio __UpperCAmelCase = norm_pix_loss
286
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __lowerCAmelCase ( A_ : int ) -> Optional[Any]: __UpperCAmelCase = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __UpperCAmelCase = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: __UpperCAmelCase = 4 __UpperCAmelCase = 48 __UpperCAmelCase = "pixelshuffle_aux" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __UpperCAmelCase = [6, 6, 6, 6] __UpperCAmelCase = 60 __UpperCAmelCase = [6, 6, 6, 6] __UpperCAmelCase = "pixelshuffledirect" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __UpperCAmelCase = 4 __UpperCAmelCase = "nearest+conv" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: __UpperCAmelCase = 1 __UpperCAmelCase = 1 __UpperCAmelCase = 1_26 __UpperCAmelCase = 7 __UpperCAmelCase = 2_55.0 __UpperCAmelCase = "" return config def __lowerCAmelCase ( A_ : Optional[int] , A_ : str ) -> Dict: if "patch_embed.proj" in name and "layers" not in name: __UpperCAmelCase = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __UpperCAmelCase = name.replace("patch_embed.norm" , "embeddings.patch_embeddings.layernorm" ) if "layers" in name: __UpperCAmelCase = name.replace("layers" , "encoder.stages" ) if "residual_group.blocks" in name: __UpperCAmelCase = name.replace("residual_group.blocks" , "layers" ) if "attn.proj" in name: __UpperCAmelCase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: __UpperCAmelCase = name.replace("attn" , "attention.self" ) if "norm1" in name: __UpperCAmelCase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __UpperCAmelCase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __UpperCAmelCase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __UpperCAmelCase = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: __UpperCAmelCase = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: __UpperCAmelCase = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: __UpperCAmelCase = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: __UpperCAmelCase = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if "patch_embed.proj" in name: __UpperCAmelCase = name.replace("patch_embed.proj" , "patch_embed.projection" ) if name == "norm.weight": __UpperCAmelCase = "layernorm.weight" if name == "norm.bias": __UpperCAmelCase = "layernorm.bias" if "conv_first" in name: __UpperCAmelCase = name.replace("conv_first" , "first_convolution" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: __UpperCAmelCase = name.replace("conv_last" , "final_convolution" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: __UpperCAmelCase = name.replace("conv_before_upsample.0" , "conv_before_upsample" ) if "upsample.0" in name: __UpperCAmelCase = name.replace("upsample.0" , "upsample.convolution_0" ) if "upsample.2" in name: __UpperCAmelCase = name.replace("upsample.2" , "upsample.convolution_1" ) __UpperCAmelCase = "upsample." + name elif config.upsampler == "pixelshuffledirect": __UpperCAmelCase = name.replace("upsample.0.weight" , "upsample.conv.weight" ) __UpperCAmelCase = name.replace("upsample.0.bias" , "upsample.conv.bias" ) else: pass else: __UpperCAmelCase = "swin2sr." + name return name def __lowerCAmelCase ( A_ : Dict , A_ : Tuple ) -> Optional[Any]: for key in orig_state_dict.copy().keys(): __UpperCAmelCase = orig_state_dict.pop(A_ ) if "qkv" in key: __UpperCAmelCase = key.split("." ) __UpperCAmelCase = int(key_split[1] ) __UpperCAmelCase = int(key_split[4] ) __UpperCAmelCase = config.embed_dim if "weight" in key: __UpperCAmelCase = val[:dim, :] __UpperCAmelCase = val[dim : dim * 2, :] __UpperCAmelCase = val[-dim:, :] else: __UpperCAmelCase = val[:dim] __UpperCAmelCase = val[dim : dim * 2] __UpperCAmelCase = val[-dim:] pass else: __UpperCAmelCase = val return orig_state_dict def __lowerCAmelCase ( A_ : Any , A_ : str , A_ : Optional[int] ) -> Optional[Any]: __UpperCAmelCase = get_config(A_ ) __UpperCAmelCase = SwinaSRForImageSuperResolution(A_ ) model.eval() __UpperCAmelCase = torch.hub.load_state_dict_from_url(A_ , map_location="cpu" ) __UpperCAmelCase = convert_state_dict(A_ , A_ ) __UpperCAmelCase , __UpperCAmelCase = model.load_state_dict(A_ , strict=A_ ) if len(A_ ) > 0: raise ValueError("Missing keys when converting: {}".format(A_ ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(F'''Unexpected key {key} in state_dict''' ) # verify values __UpperCAmelCase = "https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true" __UpperCAmelCase = Image.open(requests.get(A_ , stream=A_ ).raw ).convert("RGB" ) __UpperCAmelCase = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values __UpperCAmelCase = 1_26 if "Jpeg" in checkpoint_url else 2_56 __UpperCAmelCase = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) __UpperCAmelCase = transforms(A_ ).unsqueeze(0 ) if config.num_channels == 1: __UpperCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 ) __UpperCAmelCase = model(A_ ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: __UpperCAmelCase = torch.Size([1, 3, 5_12, 5_12] ) __UpperCAmelCase = torch.tensor( [[-0.70_87, -0.71_38, -0.67_21], [-0.83_40, -0.80_95, -0.72_98], [-0.91_49, -0.84_14, -0.79_40]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: __UpperCAmelCase = torch.Size([1, 3, 10_24, 10_24] ) __UpperCAmelCase = torch.tensor( [[-0.77_75, -0.81_05, -0.89_33], [-0.77_64, -0.83_56, -0.92_25], [-0.79_76, -0.86_86, -0.95_79]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here __UpperCAmelCase = torch.Size([1, 3, 10_24, 10_24] ) __UpperCAmelCase = torch.tensor( [[-0.80_35, -0.75_04, -0.74_91], [-0.85_38, -0.81_24, -0.77_82], [-0.88_04, -0.86_51, -0.84_93]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: __UpperCAmelCase = torch.Size([1, 3, 5_12, 5_12] ) __UpperCAmelCase = torch.tensor( [[-0.76_69, -0.86_62, -0.87_67], [-0.88_10, -0.99_62, -0.98_20], [-0.93_40, -1.03_22, -1.11_49]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: __UpperCAmelCase = torch.Size([1, 3, 10_24, 10_24] ) __UpperCAmelCase = torch.tensor( [[-0.52_38, -0.55_57, -0.63_21], [-0.60_16, -0.59_03, -0.63_91], [-0.62_44, -0.63_34, -0.68_89]] ) assert ( outputs.reconstruction.shape == expected_shape ), F'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , A_ , atol=1e-3 ) print("Looks ok!" ) __UpperCAmelCase = { "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth": ( "swin2SR-classical-sr-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth": ( "swin2SR-classical-sr-x4-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth": ( "swin2SR-compressed-sr-x4-48" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth": ( "swin2SR-lightweight-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth": ( "swin2SR-realworld-sr-x4-64-bsrgan-psnr" ), } __UpperCAmelCase = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(A_ ) if push_to_hub: model.push_to_hub(F'''caidas/{model_name}''' ) processor.push_to_hub(F'''caidas/{model_name}''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") a_ = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
286
1
from typing import Any def __lowerCAmelCase ( __magic_name__ ): if not input_list: return [] _lowercase: List[str] = [input_list.count(lowerCAmelCase_ ) for value in input_list] _lowercase: Any = max(lowerCAmelCase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowerCAmelCase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
226
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) snake_case = logging.get_logger(__name__) snake_case = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def snake_case ( lowerCAmelCase_ ) -> str: for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _snake_case = model_type_to_module_name(lowerCAmelCase_ ) _snake_case = importlib.import_module(f""".{module_name}""" , '''transformers.models''' ) try: return getattr(lowerCAmelCase_ , lowerCAmelCase_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowerCAmelCase_ , '''__name__''' , lowerCAmelCase_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _snake_case = importlib.import_module('''transformers''' ) if hasattr(lowerCAmelCase_ , lowerCAmelCase_ ): return getattr(lowerCAmelCase_ , lowerCAmelCase_ ) return None def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = False , lowerCAmelCase_ = False , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = None , lowerCAmelCase_ = False , **lowerCAmelCase_ , ) -> int: _snake_case = get_file_from_repo( lowerCAmelCase_ , lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , force_download=lowerCAmelCase_ , resume_download=lowerCAmelCase_ , proxies=lowerCAmelCase_ , use_auth_token=lowerCAmelCase_ , revision=lowerCAmelCase_ , local_files_only=lowerCAmelCase_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(lowerCAmelCase_ , encoding='''utf-8''' ) as reader: return json.load(lowerCAmelCase_ ) class UpperCAmelCase : def __init__( self : Any ): """simple docstring""" raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(__lowerCamelCase ) def __UpperCAmelCase ( cls : List[str] , __lowerCamelCase : List[str] , **__lowerCamelCase : Dict ): """simple docstring""" _snake_case = kwargs.pop('''config''' , __lowerCamelCase ) _snake_case = kwargs.pop('''trust_remote_code''' , __lowerCamelCase ) _snake_case = True _snake_case , _snake_case = ImageProcessingMixin.get_image_processor_dict(__lowerCamelCase , **__lowerCamelCase ) _snake_case = config_dict.get('''image_processor_type''' , __lowerCamelCase ) _snake_case = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): _snake_case = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _snake_case = config_dict.pop('''feature_extractor_type''' , __lowerCamelCase ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) _snake_case = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): _snake_case = config_dict['''auto_map''']['''AutoFeatureExtractor'''] _snake_case = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = AutoConfig.from_pretrained(__lowerCamelCase , **__lowerCamelCase ) # It could be in `config.image_processor_type`` _snake_case = getattr(__lowerCamelCase , '''image_processor_type''' , __lowerCamelCase ) if hasattr(__lowerCamelCase , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: _snake_case = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: _snake_case = image_processor_class_from_name(__lowerCamelCase ) _snake_case = image_processor_auto_map is not None _snake_case = image_processor_class is not None or type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING _snake_case = resolve_trust_remote_code( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if has_remote_code and trust_remote_code: _snake_case = get_class_from_dynamic_module( __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ) _snake_case = kwargs.pop('''code_revision''' , __lowerCamelCase ) if os.path.isdir(__lowerCamelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(__lowerCamelCase ) in IMAGE_PROCESSOR_MAPPING: _snake_case = IMAGE_PROCESSOR_MAPPING[type(__lowerCamelCase )] return image_processor_class.from_dict(__lowerCamelCase , **__lowerCamelCase ) raise ValueError( f"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ f"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ f"""`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __UpperCAmelCase ( __lowerCamelCase : int , __lowerCamelCase : int ): """simple docstring""" IMAGE_PROCESSOR_MAPPING.register(__lowerCamelCase , __lowerCamelCase )
103
0
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _A = False class _lowerCamelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class _lowerCamelCase ( unittest.TestCase ): def _lowerCAmelCase ( self : str ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowerCAmelCase__ : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) lowerCAmelCase__ : str = torch.manual_seed(0 ) lowerCAmelCase__ : Optional[Any] = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) lowerCAmelCase__ : int = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowerCAmelCase__ : Dict = generator.manual_seed(0 ) lowerCAmelCase__ : Tuple = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Dict = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowerCAmelCase__ : List[Any] = '''cyberpunk 2077''' lowerCAmelCase__ : Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(0 ) lowerCAmelCase__ : int = pipe.dual_guided( prompt=lowerCamelCase__ , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images lowerCAmelCase__ : int = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ : Tuple = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowerCAmelCase__ : str = '''A painting of a squirrel eating a burger ''' lowerCAmelCase__ : Tuple = torch.manual_seed(0 ) lowerCAmelCase__ : Dict = pipe.text_to_image( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images lowerCAmelCase__ : Union[str, Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ : List[str] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 lowerCAmelCase__ : Optional[int] = pipe.image_variation(lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""numpy""" ).images lowerCAmelCase__ : List[Any] = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) lowerCAmelCase__ : Union[str, Any] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
718
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib _A = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } _A = logging.WARNING def lowercase_ ( ) -> Optional[int]: lowerCAmelCase__ : List[str] = os.getenv("""DATASETS_VERBOSITY""" , __UpperCAmelCase ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def lowercase_ ( ) -> str: return __name__.split(""".""" )[0] def lowercase_ ( ) -> logging.Logger: return logging.getLogger(_get_library_name() ) def lowercase_ ( ) -> None: # Apply our default configuration to the library root logger. lowerCAmelCase__ : Tuple = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def lowercase_ ( ) -> None: lowerCAmelCase__ : int = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def lowercase_ ( __UpperCAmelCase = None ) -> logging.Logger: if name is None: lowerCAmelCase__ : Union[str, Any] = _get_library_name() return logging.getLogger(__UpperCAmelCase ) def lowercase_ ( ) -> int: return _get_library_root_logger().getEffectiveLevel() def lowercase_ ( __UpperCAmelCase ) -> None: _get_library_root_logger().setLevel(__UpperCAmelCase ) def lowercase_ ( ) -> int: return set_verbosity(__UpperCAmelCase ) def lowercase_ ( ) -> str: return set_verbosity(__UpperCAmelCase ) def lowercase_ ( ) -> List[str]: return set_verbosity(__UpperCAmelCase ) def lowercase_ ( ) -> int: return set_verbosity(__UpperCAmelCase ) def lowercase_ ( ) -> None: lowerCAmelCase__ : Optional[int] = False def lowercase_ ( ) -> None: lowerCAmelCase__ : str = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _lowerCamelCase : def __init__( self : Optional[int] , *UpperCamelCase : Optional[int] , **UpperCamelCase : List[str] ) -> Dict: # pylint: disable=unused-argument """simple docstring""" lowerCAmelCase__ : Dict = args[0] if args else None def __iter__( self : Dict ) -> Dict: """simple docstring""" return iter(self._iterator ) def __getattr__( self : str , UpperCamelCase : List[Any] ) -> Any: """simple docstring""" def empty_fn(*UpperCamelCase : Optional[int] , **UpperCamelCase : int ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Tuple ) -> Tuple: """simple docstring""" return self def __exit__( self : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] , UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" return _A = True class _lowerCamelCase : def __call__( self : Union[str, Any] , *UpperCamelCase : Union[str, Any] , UpperCamelCase : Any=False , **UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*UpperCamelCase , **UpperCamelCase ) else: return EmptyTqdm(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : Tuple , *UpperCamelCase : Union[str, Any] , **UpperCamelCase : Dict ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Tuple = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCamelCase , **UpperCamelCase ) def _lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() _A = _tqdm_cls() def lowercase_ ( ) -> bool: global _tqdm_active return bool(_tqdm_active ) def lowercase_ ( ) -> Any: global _tqdm_active lowerCAmelCase__ : List[str] = True def lowercase_ ( ) -> Tuple: global _tqdm_active lowerCAmelCase__ : List[str] = False
507
0
from __future__ import annotations from collections.abc import Iterator from typing import Any class A : def __init__(self : List[str] , __UpperCAmelCase : Any ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = data UpperCAmelCase__ = None class A : def __init__(self : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase__ = None UpperCAmelCase__ = None def __iter__(self : Optional[int] ) -> Iterator[Any]: """simple docstring""" UpperCAmelCase__ = self.head while self.head: yield node.data UpperCAmelCase__ = node.next if node == self.head: break def __len__(self : Tuple ) -> int: """simple docstring""" return sum(1 for _ in self ) def __repr__(self : str ) -> Any: """simple docstring""" return "->".join(str(__UpperCAmelCase ) for item in iter(self ) ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : Any ) -> None: """simple docstring""" self.insert_nth(len(self ) , __UpperCAmelCase ) def lowercase_ (self : Tuple , __UpperCAmelCase : Any ) -> None: """simple docstring""" self.insert_nth(0 , __UpperCAmelCase ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : int , __UpperCAmelCase : Any ) -> None: """simple docstring""" if index < 0 or index > len(self ): raise IndexError("list index out of range." ) UpperCAmelCase__ = Node(__UpperCAmelCase ) if self.head is None: UpperCAmelCase__ = new_node # first node points itself UpperCAmelCase__ = UpperCAmelCase__ = new_node elif index == 0: # insert at head UpperCAmelCase__ = self.head UpperCAmelCase__ = UpperCAmelCase__ = new_node else: UpperCAmelCase__ = self.head for _ in range(index - 1 ): UpperCAmelCase__ = temp.next UpperCAmelCase__ = temp.next UpperCAmelCase__ = new_node if index == len(self ) - 1: # insert at tail UpperCAmelCase__ = new_node def lowercase_ (self : Dict ) -> int: """simple docstring""" return self.delete_nth(0 ) def lowercase_ (self : Union[str, Any] ) -> Any: """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowercase_ (self : str , __UpperCAmelCase : int = 0 ) -> Any: """simple docstring""" if not 0 <= index < len(self ): raise IndexError("list index out of range." ) UpperCAmelCase__ = self.head if self.head == self.tail: # just one node UpperCAmelCase__ = UpperCAmelCase__ = None elif index == 0: # delete head node UpperCAmelCase__ = self.tail.next.next UpperCAmelCase__ = self.head.next else: UpperCAmelCase__ = self.head for _ in range(index - 1 ): UpperCAmelCase__ = temp.next UpperCAmelCase__ = temp.next UpperCAmelCase__ = temp.next.next if index == len(self ) - 1: # delete at tail UpperCAmelCase__ = temp return delete_node.data def lowercase_ (self : Union[str, Any] ) -> bool: """simple docstring""" return len(self ) == 0 def lowerCAmelCase_ ( ) -> None: '''simple docstring''' UpperCAmelCase__ = CircularLinkedList() assert len(__A ) == 0 assert circular_linked_list.is_empty() is True assert str(__A ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(__A ) == i circular_linked_list.insert_nth(__A, i + 1 ) assert str(__A ) == "->".join(str(__A ) for i in range(1, 6 ) ) circular_linked_list.insert_tail(6 ) assert str(__A ) == "->".join(str(__A ) for i in range(1, 7 ) ) circular_linked_list.insert_head(0 ) assert str(__A ) == "->".join(str(__A ) for i in range(0, 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(__A ) == "->".join(str(__A ) for i in range(1, 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2, 3 ) assert str(__A ) == "->".join(str(__A ) for i in range(1, 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
486
import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node UpperCamelCase__ = 4 UpperCamelCase__ = 3 class A ( UpperCAmelCase_ ): pass def lowerCAmelCase_ ( __A ) -> Optional[Any]: '''simple docstring''' for shard in shards: for i in range(__A ): yield {"i": i, "shard": shard} def lowerCAmelCase_ ( ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = int(os.environ["RANK"] ) UpperCAmelCase__ = int(os.environ["WORLD_SIZE"] ) UpperCAmelCase__ = ArgumentParser() parser.add_argument("--streaming", type=__A ) parser.add_argument("--local_rank", type=__A ) parser.add_argument("--num_workers", type=__A, default=0 ) UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = args.streaming UpperCAmelCase__ = args.num_workers UpperCAmelCase__ = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(__A )]} UpperCAmelCase__ = IterableDataset.from_generator(__A, gen_kwargs=__A ) if not streaming: UpperCAmelCase__ = Dataset.from_list(list(__A ) ) UpperCAmelCase__ = split_dataset_by_node(__A, rank=__A, world_size=__A ) UpperCAmelCase__ = torch.utils.data.DataLoader(__A, num_workers=__A ) UpperCAmelCase__ = NUM_SHARDS * NUM_ITEMS_PER_SHARD UpperCAmelCase__ = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) UpperCAmelCase__ = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
486
1
'''simple docstring''' import re def lowerCamelCase__ ( __lowerCamelCase : str ): '''simple docstring''' return [char.split() for char in re.split(R'[^ a-z A-Z 0-9 \s]' , str_ )] def lowerCamelCase__ ( __lowerCamelCase : str ): '''simple docstring''' _UpperCAmelCase : Optional[int] =split_input(str_ ) return "".join( [''.join([char.capitalize() for char in sub_str] ) for sub_str in string_split] ) def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : bool , __lowerCamelCase : str ): '''simple docstring''' try: _UpperCAmelCase : int =split_input(__lowerCamelCase ) if upper: _UpperCAmelCase : List[Any] =''.join( [ separator.join([char.upper() for char in sub_str] ) for sub_str in string_split ] ) else: _UpperCAmelCase : Tuple =''.join( [ separator.join([char.lower() for char in sub_str] ) for sub_str in string_split ] ) return res_str except IndexError: return "not valid string" def lowerCamelCase__ ( __lowerCamelCase : str ): '''simple docstring''' return to_simple_case(__lowerCamelCase ) def lowerCamelCase__ ( __lowerCamelCase : str ): '''simple docstring''' try: _UpperCAmelCase : Optional[Any] =to_simple_case(__lowerCamelCase ) return res_str[0].lower() + res_str[1:] except IndexError: return "not valid string" def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : bool ): '''simple docstring''' return to_complex_case(__lowerCamelCase , __lowerCamelCase , '_' ) def lowerCamelCase__ ( __lowerCamelCase : str , __lowerCamelCase : bool ): '''simple docstring''' return to_complex_case(__lowerCamelCase , __lowerCamelCase , '-' ) if __name__ == "__main__": __import__('doctest').testmod()
331
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowercase =logging.get_logger(__name__) lowercase ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all MVP models at https://huggingface.co/models?filter=mvp lowercase ={ 'vocab_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json', }, 'added_tokens.json': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json', }, 'merges_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt', }, 'tokenizer_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json', }, } lowercase ={ 'RUCAIBox/mvp': 1024, } class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase =VOCAB_FILES_NAMES UpperCAmelCase =PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase =["input_ids", "attention_mask"] UpperCAmelCase =MvpTokenizer def __init__( self , snake_case=None , snake_case=None , snake_case=None , snake_case="replace" , snake_case="<s>" , snake_case="</s>" , snake_case="</s>" , snake_case="<s>" , snake_case="<unk>" , snake_case="<pad>" , snake_case="<mask>" , snake_case=False , snake_case=True , **snake_case , ) -> str: '''simple docstring''' super().__init__( snake_case , snake_case , tokenizer_file=snake_case , errors=snake_case , bos_token=snake_case , eos_token=snake_case , sep_token=snake_case , cls_token=snake_case , unk_token=snake_case , pad_token=snake_case , mask_token=snake_case , add_prefix_space=snake_case , trim_offsets=snake_case , **snake_case , ) _UpperCAmelCase : Union[str, Any] =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , snake_case) != add_prefix_space: _UpperCAmelCase : List[str] =getattr(snake_case , pre_tok_state.pop('type')) _UpperCAmelCase : Union[str, Any] =add_prefix_space _UpperCAmelCase : Optional[Any] =pre_tok_class(**snake_case) _UpperCAmelCase : Union[str, Any] =add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _UpperCAmelCase : List[Any] ='post_processor' _UpperCAmelCase : Optional[int] =getattr(self.backend_tokenizer , snake_case , snake_case) if tokenizer_component_instance: _UpperCAmelCase : int =json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _UpperCAmelCase : Any =tuple(state['sep']) if "cls" in state: _UpperCAmelCase : List[str] =tuple(state['cls']) _UpperCAmelCase : str =False if state.get('add_prefix_space' , snake_case) != add_prefix_space: _UpperCAmelCase : List[str] =add_prefix_space _UpperCAmelCase : Optional[int] =True if state.get('trim_offsets' , snake_case) != trim_offsets: _UpperCAmelCase : Union[str, Any] =trim_offsets _UpperCAmelCase : Tuple =True if changes_to_apply: _UpperCAmelCase : str =getattr(snake_case , state.pop('type')) _UpperCAmelCase : List[Any] =component_class(**snake_case) setattr(self.backend_tokenizer , snake_case , snake_case) @property def lowerCAmelCase ( self) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def lowerCAmelCase ( self , snake_case) -> Dict: '''simple docstring''' _UpperCAmelCase : List[Any] =AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case) if isinstance(snake_case , snake_case) else value _UpperCAmelCase : Any =value def lowerCAmelCase ( self , *snake_case , **snake_case) -> BatchEncoding: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =kwargs.get('is_split_into_words' , snake_case) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*snake_case , **snake_case) def lowerCAmelCase ( self , *snake_case , **snake_case) -> BatchEncoding: '''simple docstring''' _UpperCAmelCase : Any =kwargs.get('is_split_into_words' , snake_case) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " 'to use it with pretokenized inputs.') return super()._encode_plus(*snake_case , **snake_case) def lowerCAmelCase ( self , snake_case , snake_case = None) -> Tuple[str]: '''simple docstring''' _UpperCAmelCase : str =self._tokenizer.model.save(snake_case , name=snake_case) return tuple(snake_case) def lowerCAmelCase ( self , snake_case , snake_case=None) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =[self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase ( self , snake_case , snake_case = None) -> List[int]: '''simple docstring''' _UpperCAmelCase : List[str] =[self.sep_token_id] _UpperCAmelCase : Dict =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
331
1
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: snake_case = None snake_case = logging.get_logger(__name__) snake_case = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} snake_case = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", }, """tokenizer_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""", }, } # TODO(PVP) - this should be removed in Transformers v5 snake_case = { """t5-small""": 5_12, """t5-base""": 5_12, """t5-large""": 5_12, """t5-3b""": 5_12, """t5-11b""": 5_12, } class lowerCAmelCase ( UpperCamelCase_ ): A_ : Optional[Any] = VOCAB_FILES_NAMES A_ : Dict = PRETRAINED_VOCAB_FILES_MAP A_ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : str = ["""input_ids""", """attention_mask"""] A_ : List[str] = TaTokenizer A_ : List[int] = [] def __init__( self : List[str] , a__ : Union[str, Any]=None , a__ : Any=None , a__ : Optional[int]="</s>" , a__ : List[Any]="<unk>" , a__ : Union[str, Any]="<pad>" , a__ : str=100 , a__ : List[str]=None , **a__ : Optional[Any] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowerCAmelCase__ : int = [F'''<extra_id_{i}>''' for i in range(a__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowerCAmelCase__ : str = len(set(filter(lambda a__ : bool("extra_id_" in str(a__ ) ) , a__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) super().__init__( a__ , tokenizer_file=a__ , eos_token=a__ , unk_token=a__ , pad_token=a__ , extra_ids=a__ , additional_special_tokens=a__ , **a__ , ) lowerCAmelCase__ : int = vocab_file lowerCAmelCase__ : Optional[int] = False if not self.vocab_file else True lowerCAmelCase__ : Any = extra_ids @staticmethod def _A ( a__ : Optional[int] , a__ : Optional[Any] , a__ : Tuple ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowerCAmelCase__ : str = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , a__ , ) return max_model_length def _A ( self : List[Any] , a__ : str , a__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(a__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCAmelCase__ : Optional[Any] = os.path.join( a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) logger.info(F'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def _A ( self : str , a__ : List[int] , a__ : Optional[List[int]] = None ): '''simple docstring''' lowerCAmelCase__ : int = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowerCAmelCase__ : Union[str, Any] = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def _A ( self : Dict , a__ : List[int] , a__ : Optional[List[int]] = None ): '''simple docstring''' lowerCAmelCase__ : List[str] = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _A ( self : int ): '''simple docstring''' return list( set(filter(lambda a__ : bool(re.search(r"<extra_id_\d+>" , a__ ) ) is not None , self.additional_special_tokens ) ) ) def _A ( self : Tuple ): '''simple docstring''' return [self.convert_tokens_to_ids(a__ ) for token in self.get_sentinel_tokens()]
378
'''simple docstring''' import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin snake_case = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class lowerCAmelCase ( UpperCamelCase_ , unittest.TestCase ): A_ : List[str] = AlbertTokenizer A_ : List[Any] = AlbertTokenizerFast A_ : List[str] = True A_ : Any = True A_ : List[Any] = True def _A ( self : Optional[int] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ : int = AlbertTokenizer(a__ ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self : Tuple , a__ : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = "this is a test" lowerCAmelCase__ : Optional[Any] = "this is a test" return input_text, output_text def _A ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = "<pad>" lowerCAmelCase__ : Dict = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a__ ) , a__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a__ ) , a__ ) def _A ( self : Tuple ): '''simple docstring''' lowerCAmelCase__ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "▁eloquent" ) self.assertEqual(len(a__ ) , 3_0000 ) def _A ( self : Optional[int] ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 3_0000 ) def _A ( self : int ): '''simple docstring''' if not self.test_rust_tokenizer: return lowerCAmelCase__ : List[Any] = self.get_tokenizer() lowerCAmelCase__ : Optional[int] = self.get_rust_tokenizer() lowerCAmelCase__ : List[str] = "I was born in 92000, and this is falsé." lowerCAmelCase__ : Dict = tokenizer.tokenize(a__ ) lowerCAmelCase__ : str = rust_tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) lowerCAmelCase__ : List[Any] = tokenizer.encode(a__ , add_special_tokens=a__ ) lowerCAmelCase__ : Tuple = rust_tokenizer.encode(a__ , add_special_tokens=a__ ) self.assertListEqual(a__ , a__ ) lowerCAmelCase__ : Optional[int] = self.get_rust_tokenizer() lowerCAmelCase__ : str = tokenizer.encode(a__ ) lowerCAmelCase__ : Optional[int] = rust_tokenizer.encode(a__ ) self.assertListEqual(a__ , a__ ) def _A ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : List[Any] = AlbertTokenizer(a__ , keep_accents=a__ ) lowerCAmelCase__ : Optional[Any] = tokenizer.tokenize("This is a test" ) self.assertListEqual(a__ , ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a__ ) , [48, 25, 21, 1289] ) lowerCAmelCase__ : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a__ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) lowerCAmelCase__ : Tuple = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual(a__ , [31, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] ) lowerCAmelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(a__ ) self.assertListEqual( a__ , ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."] , ) def _A ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Tuple = AlbertTokenizer(a__ ) lowerCAmelCase__ : List[str] = tokenizer.encode("sequence builders" ) lowerCAmelCase__ : Optional[int] = tokenizer.encode("multi-sequence build" ) lowerCAmelCase__ : Tuple = tokenizer.build_inputs_with_special_tokens(a__ ) lowerCAmelCase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(a__ , a__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def _A ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Any = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_1970, 13, 5, 6092, 167, 28, 7103, 2153, 673, 8, 7028, 1_2051, 18, 17, 7103, 2153, 673, 8, 3515, 1_8684, 8, 4461, 6, 1927, 297, 8, 1_2060, 2607, 18, 13, 5, 4461, 15, 1_0538, 38, 8, 135, 15, 822, 58, 15, 993, 1_0363, 15, 1460, 8005, 4461, 15, 993, 255, 2328, 9, 9, 9, 6, 26, 1112, 816, 3260, 13, 5, 103, 2377, 6, 17, 1112, 816, 2782, 13, 5, 103, 1_0641, 6, 29, 84, 2512, 2430, 782, 1_8684, 2761, 19, 808, 2430, 2556, 17, 855, 1480, 9477, 4091, 128, 1_1712, 15, 7103, 2153, 673, 17, 2_4883, 9990, 9, 3], [2, 1_1502, 25, 1006, 20, 782, 8, 1_1809, 855, 1732, 1_9393, 1_8667, 37, 367, 2_1018, 69, 1854, 34, 1_1860, 1_9124, 27, 156, 225, 17, 193, 4141, 19, 65, 9124, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 2231, 886, 2385, 1_7659, 84, 14, 1_6792, 1952, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=a__ , model_name="albert-base-v2" , revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e" , )
378
1
import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def a ( snake_case__: Union[str, Any] ): '''simple docstring''' lowercase_ = fname.split(os.path.sep )[-1] return re.search(r'''^(.*)_\d+\.jpg$''' , snake_case__ ).groups()[0] class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : str=None ) -> Any: lowercase_ = file_names lowercase_ = image_transform lowercase_ = label_to_id def __len__( self : Optional[int] ) -> Optional[Any]: return len(self.file_names ) def __getitem__( self : Tuple , SCREAMING_SNAKE_CASE_ : Tuple ) -> List[str]: lowercase_ = self.file_names[idx] lowercase_ = PIL.Image.open(SCREAMING_SNAKE_CASE_ ) lowercase_ = raw_image.convert('''RGB''' ) if self.image_transform is not None: lowercase_ = self.image_transform(SCREAMING_SNAKE_CASE_ ) lowercase_ = extract_label(SCREAMING_SNAKE_CASE_ ) if self.label_to_id is not None: lowercase_ = self.label_to_id[label] return {"image": image, "label": label} def a ( snake_case__: Any , snake_case__: Union[str, Any] ): '''simple docstring''' # Initialize accelerator if args.with_tracking: lowercase_ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir ) else: lowercase_ = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase_ = config['''lr'''] lowercase_ = int(config['''num_epochs'''] ) lowercase_ = int(config['''seed'''] ) lowercase_ = int(config['''batch_size'''] ) lowercase_ = config['''image_size'''] if not isinstance(snake_case__ , (list, tuple) ): lowercase_ = (image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , '''isdigit''' ): if args.checkpointing_steps == "epoch": lowercase_ = args.checkpointing_steps elif args.checkpointing_steps.isdigit(): lowercase_ = int(args.checkpointing_steps ) else: raise ValueError( F'''Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.''' ) else: lowercase_ = None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: lowercase_ = os.path.split(snake_case__ )[-1].split('''.''' )[0] accelerator.init_trackers(snake_case__ , snake_case__ ) # Grab all the image filenames lowercase_ = [os.path.join(args.data_dir , snake_case__ ) for fname in os.listdir(args.data_dir ) if fname.endswith('''.jpg''' )] # Build the label correspondences lowercase_ = [extract_label(snake_case__ ) for fname in file_names] lowercase_ = list(set(snake_case__ ) ) id_to_label.sort() lowercase_ = {lbl: i for i, lbl in enumerate(snake_case__ )} # Set the seed before splitting the data. np.random.seed(snake_case__ ) torch.manual_seed(snake_case__ ) torch.cuda.manual_seed_all(snake_case__ ) # Split our filenames between train and validation lowercase_ = np.random.permutation(len(snake_case__ ) ) lowercase_ = int(0.8 * len(snake_case__ ) ) lowercase_ = random_perm[:cut] lowercase_ = random_perm[cut:] # For training we use a simple RandomResizedCrop lowercase_ = Compose([RandomResizedCrop(snake_case__ , scale=(0.5, 1.0) ), ToTensor()] ) lowercase_ = PetsDataset( [file_names[i] for i in train_split] , image_transform=snake_case__ , label_to_id=snake_case__ ) # For evaluation, we use a deterministic Resize lowercase_ = Compose([Resize(snake_case__ ), ToTensor()] ) lowercase_ = PetsDataset([file_names[i] for i in eval_split] , image_transform=snake_case__ , label_to_id=snake_case__ ) # Instantiate dataloaders. lowercase_ = DataLoader(snake_case__ , shuffle=snake_case__ , batch_size=snake_case__ , num_workers=4 ) lowercase_ = DataLoader(snake_case__ , shuffle=snake_case__ , batch_size=snake_case__ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase_ = create_model('''resnet50d''' , pretrained=snake_case__ , num_classes=len(snake_case__ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowercase_ = model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): lowercase_ = False for param in model.get_classifier().parameters(): lowercase_ = True # We normalize the batches of images to be a bit faster. lowercase_ = torch.tensor(model.default_cfg['''mean'''] )[None, :, None, None].to(accelerator.device ) lowercase_ = torch.tensor(model.default_cfg['''std'''] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer lowercase_ = torch.optim.Adam(params=model.parameters() , lr=lr / 25 ) # Instantiate learning rate scheduler lowercase_ = OneCycleLR(optimizer=snake_case__ , max_lr=snake_case__ , epochs=snake_case__ , steps_per_epoch=len(snake_case__ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # We need to keep track of how many total steps we have iterated over lowercase_ = 0 # We also need to keep track of the starting epoch so files are named properly lowercase_ = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(F'''Resumed from checkpoint: {args.resume_from_checkpoint}''' ) accelerator.load_state(args.resume_from_checkpoint ) lowercase_ = os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint lowercase_ = [f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) lowercase_ = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` lowercase_ = os.path.splitext(snake_case__ )[0] if "epoch" in training_difference: lowercase_ = int(training_difference.replace('''epoch_''' , '''''' ) ) + 1 lowercase_ = None else: lowercase_ = int(training_difference.replace('''step_''' , '''''' ) ) lowercase_ = resume_step // len(snake_case__ ) resume_step -= starting_epoch * len(snake_case__ ) # Now we train the model for epoch in range(snake_case__ , snake_case__ ): model.train() if args.with_tracking: lowercase_ = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step lowercase_ = accelerator.skip_first_batches(snake_case__ , snake_case__ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader lowercase_ = train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. lowercase_ = {k: v.to(accelerator.device ) for k, v in batch.items()} lowercase_ = (batch['''image'''] - mean) / std lowercase_ = model(snake_case__ ) lowercase_ = torch.nn.functional.cross_entropy(snake_case__ , batch['''label'''] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(snake_case__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(snake_case__ , snake_case__ ): lowercase_ = F'''step_{overall_step}''' if overall_step % checkpointing_steps == 0: if args.output_dir is not None: lowercase_ = os.path.join(args.output_dir , snake_case__ ) accelerator.save_state(snake_case__ ) model.eval() lowercase_ = 0 lowercase_ = 0 for step, batch in enumerate(snake_case__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. lowercase_ = {k: v.to(accelerator.device ) for k, v in batch.items()} lowercase_ = (batch['''image'''] - mean) / std with torch.no_grad(): lowercase_ = model(snake_case__ ) lowercase_ = outputs.argmax(dim=-1 ) lowercase_ , lowercase_ = accelerator.gather_for_metrics((predictions, batch['''label''']) ) lowercase_ = predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() lowercase_ = accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}: {100 * eval_metric:.2f}''' ) if args.with_tracking: accelerator.log( { '''accuracy''': 100 * eval_metric, '''train_loss''': total_loss.item() / len(snake_case__ ), '''epoch''': epoch, } , step=snake_case__ , ) if checkpointing_steps == "epoch": lowercase_ = F'''epoch_{epoch}''' if args.output_dir is not None: lowercase_ = os.path.join(args.output_dir , snake_case__ ) accelerator.save_state(snake_case__ ) if args.with_tracking: accelerator.end_training() def a ( ): '''simple docstring''' lowercase_ = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument('''--data_dir''' , required=snake_case__ , help='''The data folder on disk.''' ) parser.add_argument('''--fp16''' , action='''store_true''' , help='''If passed, will use FP16 training.''' ) parser.add_argument( '''--mixed_precision''' , type=snake_case__ , default=snake_case__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) parser.add_argument( '''--checkpointing_steps''' , type=snake_case__ , default=snake_case__ , help='''Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.''' , ) parser.add_argument( '''--output_dir''' , type=snake_case__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--resume_from_checkpoint''' , type=snake_case__ , default=snake_case__ , help='''If the training should continue from a checkpoint folder.''' , ) parser.add_argument( '''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , ) parser.add_argument( '''--project_dir''' , type=snake_case__ , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , ) lowercase_ = parser.parse_args() lowercase_ = {'''lr''': 3e-2, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 64, '''image_size''': 224} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
701
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) # TODO Update this __a = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class lowercase__( UpperCAmelCase ): """simple docstring""" a :str = 'esm' def __init__( self : int , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : Any=None , SCREAMING_SNAKE_CASE_ : Any=7_6_8 , SCREAMING_SNAKE_CASE_ : List[str]=1_2 , SCREAMING_SNAKE_CASE_ : int=1_2 , SCREAMING_SNAKE_CASE_ : Dict=3_0_7_2 , SCREAMING_SNAKE_CASE_ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1_0_2_6 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1e-12 , SCREAMING_SNAKE_CASE_ : int="absolute" , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : int=None , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> Union[str, Any]: super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , mask_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = initializer_range lowercase_ = layer_norm_eps lowercase_ = position_embedding_type lowercase_ = use_cache lowercase_ = emb_layer_norm_before lowercase_ = token_dropout lowercase_ = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) lowercase_ = EsmFoldConfig() elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase_ = EsmFoldConfig(**SCREAMING_SNAKE_CASE_ ) lowercase_ = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) lowercase_ = get_default_vocab_list() else: lowercase_ = vocab_list else: lowercase_ = None lowercase_ = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , SCREAMING_SNAKE_CASE_ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def _lowercase ( self : Any ) -> str: lowercase_ = super().to_dict() if isinstance(self.esmfold_config , SCREAMING_SNAKE_CASE_ ): lowercase_ = self.esmfold_config.to_dict() return output @dataclass class lowercase__: """simple docstring""" a :str = None a :bool = True a :bool = False a :bool = False a :bool = False a :float = 0 a :bool = True a :bool = False a :int = 128 a :"TrunkConfig" = None def _lowercase ( self : Optional[Any] ) -> List[str]: if self.trunk is None: lowercase_ = TrunkConfig() elif isinstance(self.trunk , SCREAMING_SNAKE_CASE_ ): lowercase_ = TrunkConfig(**self.trunk ) def _lowercase ( self : Dict ) -> int: lowercase_ = asdict(self ) lowercase_ = self.trunk.to_dict() return output @dataclass class lowercase__: """simple docstring""" a :int = 48 a :int = 1_024 a :int = 128 a :int = 32 a :int = 32 a :int = 32 a :float = 0 a :float = 0 a :bool = False a :int = 4 a :Optional[int] = 128 a :"StructureModuleConfig" = None def _lowercase ( self : Tuple ) -> Dict: if self.structure_module is None: lowercase_ = StructureModuleConfig() elif isinstance(self.structure_module , SCREAMING_SNAKE_CASE_ ): lowercase_ = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(f'''`max_recycles` should be positive, got {self.max_recycles}.''' ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' f''' {self.sequence_state_dim} and {self.sequence_state_dim}.''' ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' f''' {self.pairwise_state_dim} and {self.pairwise_state_dim}.''' ) lowercase_ = self.sequence_state_dim // self.sequence_head_width lowercase_ = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' f''' {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.''' ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' f''' {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.''' ) if self.pairwise_state_dim % 2 != 0: raise ValueError(f'''`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.''' ) if self.dropout >= 0.4: raise ValueError(f'''`dropout` should not be greater than 0.4, got {self.dropout}.''' ) def _lowercase ( self : Any ) -> Dict: lowercase_ = asdict(self ) lowercase_ = self.structure_module.to_dict() return output @dataclass class lowercase__: """simple docstring""" a :int = 384 a :int = 128 a :int = 16 a :int = 128 a :int = 12 a :int = 4 a :int = 8 a :float = 0.1 a :int = 8 a :int = 1 a :int = 2 a :int = 7 a :int = 10 a :float = 1e-8 a :float = 1e5 def _lowercase ( self : Tuple ) -> Tuple: return asdict(self ) def a ( ): '''simple docstring''' return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
409
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ : List[str] = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Union[str, Any] = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCamelCase_ : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
331
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase__ : def __init__( self : Optional[int] ) -> Optional[int]: __lowerCamelCase = '''''' __lowerCamelCase = '''''' __lowerCamelCase = [] __lowerCamelCase = 0 __lowerCamelCase = 2_56 __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Dict ) -> Dict: __lowerCamelCase = cva.imread(SCREAMING_SNAKE_CASE__ , 0 ) __lowerCamelCase = copy.deepcopy(self.img ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='''x''' ) __lowerCamelCase = np.sum(SCREAMING_SNAKE_CASE__ ) for i in range(len(SCREAMING_SNAKE_CASE__ ) ): __lowerCamelCase = x[i] / self.k self.sk += prk __lowerCamelCase = (self.L - 1) * self.sk if self.rem != 0: __lowerCamelCase = int(last % last ) __lowerCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) __lowerCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): __lowerCamelCase = self.img[j][i] if num != self.last_list[num]: __lowerCamelCase = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def __A ( self : Optional[Any] ) -> Union[str, Any]: plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def __A ( self : str ) -> Union[str, Any]: cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(os.path.basename(__file__), "image_data/input.jpg") SCREAMING_SNAKE_CASE__ : List[str] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
298
0
import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class snake_case__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any], _snake_case : List[Any], _snake_case : Optional[Any]=1_3, _snake_case : Tuple=7, _snake_case : Any=True, _snake_case : Any=True, _snake_case : List[Any]=True, _snake_case : Union[str, Any]=True, _snake_case : List[str]=9_9, _snake_case : List[Any]=3_2, _snake_case : Union[str, Any]=5, _snake_case : Dict=4, _snake_case : Dict=3_7, _snake_case : Dict="gelu", _snake_case : Union[str, Any]=0.1, _snake_case : Dict=0.1, _snake_case : Tuple=5_1_2, _snake_case : List[str]=1_6, _snake_case : Union[str, Any]=2, _snake_case : Dict=0.0_2, _snake_case : Any=4, ) ->int: snake_case__ : List[Any] = parent snake_case__ : Optional[Any] = batch_size snake_case__ : List[str] = seq_length snake_case__ : str = is_training snake_case__ : Dict = use_attention_mask snake_case__ : Optional[Any] = use_token_type_ids snake_case__ : Any = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Tuple = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : int = num_attention_heads snake_case__ : Optional[Any] = intermediate_size snake_case__ : List[str] = hidden_act snake_case__ : List[Any] = hidden_dropout_prob snake_case__ : int = attention_probs_dropout_prob snake_case__ : Optional[int] = max_position_embeddings snake_case__ : Union[str, Any] = type_vocab_size snake_case__ : List[Any] = type_sequence_label_size snake_case__ : Optional[int] = initializer_range snake_case__ : Dict = num_choices def lowercase_ ( self : Optional[Any] ) ->str: snake_case__ : int = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) snake_case__ : Dict = None if self.use_attention_mask: snake_case__ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Union[str, Any] = None if self.use_token_type_ids: snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) snake_case__ : Tuple = RoFormerConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=_snake_case, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def lowercase_ ( self : Union[str, Any] ) ->Union[str, Any]: snake_case__ : str = self.prepare_config_and_inputs() snake_case__ , snake_case__ , snake_case__ , snake_case__ : Tuple = config_and_inputs snake_case__ : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class snake_case__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def lowercase_ ( self : str ) ->Union[str, Any]: snake_case__ : str = FlaxRoFormerModelTester(self ) @slow def lowercase_ ( self : List[str] ) ->Dict: for model_class_name in self.all_model_classes: snake_case__ : Tuple = model_class_name.from_pretrained('junnyu/roformer_chinese_small', from_pt=_snake_case ) snake_case__ : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(_snake_case ) @require_flax class snake_case__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self : Union[str, Any] ) ->Dict: snake_case__ : Optional[int] = FlaxRoFormerForMaskedLM.from_pretrained('junnyu/roformer_chinese_base' ) snake_case__ : Any = jnp.array([[0, 1, 2, 3, 4, 5]] ) snake_case__ : Tuple = model(_snake_case )[0] snake_case__ : Optional[int] = 5_0_0_0_0 snake_case__ : List[str] = (1, 6, vocab_size) self.assertEqual(output.shape, _snake_case ) snake_case__ : Union[str, Any] = jnp.array( [[[-0.1_2_0_5, -1.0_2_6_5, 0.2_9_2_2], [-1.5_1_3_4, 0.1_9_7_4, 0.1_5_1_9], [-5.0_1_3_5, -3.9_0_0_3, -0.8_4_0_4]]] ) self.assertTrue(jnp.allclose(output[:, :3, :3], _snake_case, atol=1e-4 ) )
243
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa a_ :Dict = logging.getLogger(__name__) class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """summarization""" _SCREAMING_SNAKE_CASE = ["""loss"""] _SCREAMING_SNAKE_CASE = ROUGE_KEYS _SCREAMING_SNAKE_CASE = """rouge2""" def __init__( self : Dict, _snake_case : Dict, **_snake_case : str ) ->List[Any]: if hparams.sortish_sampler and hparams.gpus > 1: snake_case__ : Union[str, Any] = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError('Dynamic Batch size does not work for multi-gpu training' ) if hparams.sortish_sampler: raise ValueError('--sortish_sampler and --max_tokens_per_batch may not be used simultaneously' ) super().__init__(_snake_case, num_labels=_snake_case, mode=self.mode, **_snake_case ) use_task_specific_params(self.model, 'summarization' ) save_git_info(self.hparams.output_dir ) snake_case__ : List[str] = Path(self.output_dir ) / 'metrics.json' snake_case__ : Tuple = Path(self.output_dir ) / 'hparams.pkl' pickle_save(self.hparams, self.hparams_save_path ) snake_case__ : List[str] = 0 snake_case__ : int = defaultdict(_snake_case ) snake_case__ : Optional[Any] = self.config.model_type snake_case__ : int = self.config.tgt_vocab_size if self.model_type == 'fsmt' else self.config.vocab_size snake_case__ : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } snake_case__ : Union[str, Any] = { 'train': self.hparams.n_train, 'val': self.hparams.n_val, 'test': self.hparams.n_test, } snake_case__ : int = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} snake_case__ : Union[str, Any] = { 'train': self.hparams.max_target_length, 'val': self.hparams.val_max_target_length, 'test': self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) snake_case__ : Optional[Any] = get_git_info()['repo_sha'] snake_case__ : Any = hparams.num_workers snake_case__ : str = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer, _snake_case ): snake_case__ : int = self.tokenizer.lang_code_to_id[hparams.tgt_lang] snake_case__ : Optional[Any] = self.decoder_start_token_id snake_case__ : int = ( SeqaSeqDataset if hasattr(self.tokenizer, 'prepare_seq2seq_batch' ) else LegacySeqaSeqDataset ) snake_case__ : Tuple = False snake_case__ : Tuple = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: snake_case__ : Any = self.hparams.eval_max_gen_length else: snake_case__ : List[Any] = self.model.config.max_length snake_case__ : List[Any] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def lowercase_ ( self : Tuple, _snake_case : Dict[str, torch.Tensor] ) ->Dict[str, List[str]]: snake_case__ : List[str] = { k: self.tokenizer.batch_decode(v.tolist() ) if 'mask' not in k else v.shape for k, v in batch.items() } save_json(_snake_case, Path(self.output_dir ) / 'text_batch.json' ) save_json({k: v.tolist() for k, v in batch.items()}, Path(self.output_dir ) / 'tok_batch.json' ) snake_case__ : Optional[int] = True return readable_batch def lowercase_ ( self : List[Any], _snake_case : Dict, **_snake_case : str ) ->int: return self.model(_snake_case, **_snake_case ) def lowercase_ ( self : str, _snake_case : List[int] ) ->List[str]: snake_case__ : int = self.tokenizer.batch_decode( _snake_case, skip_special_tokens=_snake_case, clean_up_tokenization_spaces=_snake_case ) return lmap(str.strip, _snake_case ) def lowercase_ ( self : List[str], _snake_case : dict ) ->Tuple: snake_case__ : List[str] = self.tokenizer.pad_token_id snake_case__ , snake_case__ : Any = batch['input_ids'], batch['attention_mask'] snake_case__ : Optional[int] = batch['labels'] if isinstance(self.model, _snake_case ): snake_case__ : Union[str, Any] = self.model._shift_right(_snake_case ) else: snake_case__ : List[Any] = shift_tokens_right(_snake_case, _snake_case ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero snake_case__ : Optional[int] = decoder_input_ids self.save_readable_batch(_snake_case ) snake_case__ : List[str] = self(_snake_case, attention_mask=_snake_case, decoder_input_ids=_snake_case, use_cache=_snake_case ) snake_case__ : Dict = outputs['logits'] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id snake_case__ : Any = nn.CrossEntropyLoss(ignore_index=_snake_case ) assert lm_logits.shape[-1] == self.vocab_size snake_case__ : Optional[Any] = ce_loss_fct(lm_logits.view(-1, lm_logits.shape[-1] ), tgt_ids.view(-1 ) ) else: snake_case__ : str = nn.functional.log_softmax(_snake_case, dim=-1 ) snake_case__ , snake_case__ : Union[str, Any] = label_smoothed_nll_loss( _snake_case, _snake_case, self.hparams.label_smoothing, ignore_index=_snake_case ) return (loss,) @property def lowercase_ ( self : Dict ) ->int: return self.tokenizer.pad_token_id def lowercase_ ( self : Union[str, Any], _snake_case : List[str], _snake_case : Any ) ->Dict: snake_case__ : Dict = self._step(_snake_case ) snake_case__ : Optional[int] = dict(zip(self.loss_names, _snake_case ) ) # tokens per batch snake_case__ : Optional[Any] = batch['input_ids'].ne(self.pad ).sum() + batch['labels'].ne(self.pad ).sum() snake_case__ : List[str] = batch['input_ids'].shape[0] snake_case__ : List[str] = batch['input_ids'].eq(self.pad ).sum() snake_case__ : Optional[Any] = batch['input_ids'].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def lowercase_ ( self : Union[str, Any], _snake_case : Union[str, Any], _snake_case : List[str] ) ->Dict: return self._generative_step(_snake_case ) def lowercase_ ( self : int, _snake_case : Dict, _snake_case : List[Any]="val" ) ->Dict: self.step_count += 1 snake_case__ : str = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} snake_case__ : Optional[int] = losses['loss'] snake_case__ : Optional[int] = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ['gen_time', 'gen_len'] } snake_case__ : Optional[int] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) snake_case__ : torch.FloatTensor = torch.tensor(_snake_case ).type_as(_snake_case ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(_snake_case ) snake_case__ : Optional[int] = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} snake_case__ : List[str] = self.step_count self.metrics[prefix].append(_snake_case ) # callback writes this to self.metrics_save_path snake_case__ : List[str] = flatten_list([x['preds'] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def lowercase_ ( self : Optional[int], _snake_case : Optional[Any], _snake_case : Optional[int] ) ->Dict: return calculate_rouge(_snake_case, _snake_case ) def lowercase_ ( self : Optional[int], _snake_case : dict ) ->dict: snake_case__ : Tuple = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') snake_case__ : List[str] = self.model.generate( batch['input_ids'], attention_mask=batch['attention_mask'], use_cache=_snake_case, decoder_start_token_id=self.decoder_start_token_id, num_beams=self.eval_beams, max_length=self.eval_max_length, ) snake_case__ : str = (time.time() - ta) / batch['input_ids'].shape[0] snake_case__ : List[str] = self.ids_to_clean_text(_snake_case ) snake_case__ : List[str] = self.ids_to_clean_text(batch['labels'] ) snake_case__ : List[Any] = self._step(_snake_case ) snake_case__ : Any = dict(zip(self.loss_names, _snake_case ) ) snake_case__ : Dict = self.calc_generative_metrics(_snake_case, _snake_case ) snake_case__ : int = np.mean(lmap(_snake_case, _snake_case ) ) base_metrics.update(gen_time=_snake_case, gen_len=_snake_case, preds=_snake_case, target=_snake_case, **_snake_case ) return base_metrics def lowercase_ ( self : Tuple, _snake_case : Dict, _snake_case : Union[str, Any] ) ->Tuple: return self._generative_step(_snake_case ) def lowercase_ ( self : Dict, _snake_case : Union[str, Any] ) ->str: return self.validation_epoch_end(_snake_case, prefix='test' ) def lowercase_ ( self : Union[str, Any], _snake_case : Any ) ->SeqaSeqDataset: snake_case__ : Optional[int] = self.n_obs[type_path] snake_case__ : str = self.target_lens[type_path] snake_case__ : Optional[int] = self.dataset_class( self.tokenizer, type_path=_snake_case, n_obs=_snake_case, max_target_length=_snake_case, **self.dataset_kwargs, ) return dataset def lowercase_ ( self : Any, _snake_case : str, _snake_case : int, _snake_case : bool = False ) ->DataLoader: snake_case__ : Union[str, Any] = self.get_dataset(_snake_case ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": snake_case__ : str = dataset.make_sortish_sampler(_snake_case, distributed=self.hparams.gpus > 1 ) return DataLoader( _snake_case, batch_size=_snake_case, collate_fn=dataset.collate_fn, shuffle=_snake_case, num_workers=self.num_workers, sampler=_snake_case, ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": snake_case__ : Dict = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch, distributed=self.hparams.gpus > 1 ) return DataLoader( _snake_case, batch_sampler=_snake_case, collate_fn=dataset.collate_fn, num_workers=self.num_workers, ) else: return DataLoader( _snake_case, batch_size=_snake_case, collate_fn=dataset.collate_fn, shuffle=_snake_case, num_workers=self.num_workers, sampler=_snake_case, ) def lowercase_ ( self : int ) ->DataLoader: snake_case__ : Union[str, Any] = self.get_dataloader('train', batch_size=self.hparams.train_batch_size, shuffle=_snake_case ) return dataloader def lowercase_ ( self : str ) ->DataLoader: return self.get_dataloader('val', batch_size=self.hparams.eval_batch_size ) def lowercase_ ( self : List[Any] ) ->DataLoader: return self.get_dataloader('test', batch_size=self.hparams.eval_batch_size ) @staticmethod def lowercase_ ( _snake_case : Dict, _snake_case : str ) ->str: BaseTransformer.add_model_specific_args(_snake_case, _snake_case ) add_generic_args(_snake_case, _snake_case ) parser.add_argument( '--max_source_length', default=1_0_2_4, type=_snake_case, help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ), ) parser.add_argument( '--max_target_length', default=5_6, type=_snake_case, help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ), ) parser.add_argument( '--val_max_target_length', default=1_4_2, type=_snake_case, help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ), ) parser.add_argument( '--test_max_target_length', default=1_4_2, type=_snake_case, help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ), ) parser.add_argument('--freeze_encoder', action='store_true' ) parser.add_argument('--freeze_embeds', action='store_true' ) parser.add_argument('--sortish_sampler', action='store_true', default=_snake_case ) parser.add_argument('--overwrite_output_dir', action='store_true', default=_snake_case ) parser.add_argument('--max_tokens_per_batch', type=_snake_case, default=_snake_case ) parser.add_argument('--logger_name', type=_snake_case, choices=['default', 'wandb', 'wandb_shared'], default='default' ) parser.add_argument('--n_train', type=_snake_case, default=-1, required=_snake_case, help='# examples. -1 means use all.' ) parser.add_argument('--n_val', type=_snake_case, default=5_0_0, required=_snake_case, help='# examples. -1 means use all.' ) parser.add_argument('--n_test', type=_snake_case, default=-1, required=_snake_case, help='# examples. -1 means use all.' ) parser.add_argument( '--task', type=_snake_case, default='summarization', required=_snake_case, help='# examples. -1 means use all.' ) parser.add_argument('--label_smoothing', type=_snake_case, default=0.0, required=_snake_case ) parser.add_argument('--src_lang', type=_snake_case, default='', required=_snake_case ) parser.add_argument('--tgt_lang', type=_snake_case, default='', required=_snake_case ) parser.add_argument('--eval_beams', type=_snake_case, default=_snake_case, required=_snake_case ) parser.add_argument( '--val_metric', type=_snake_case, default=_snake_case, required=_snake_case, choices=['bleu', 'rouge2', 'loss', None] ) parser.add_argument('--eval_max_gen_length', type=_snake_case, default=_snake_case, help='never generate more than n tokens' ) parser.add_argument('--save_top_k', type=_snake_case, default=1, required=_snake_case, help='How many checkpoints to save' ) parser.add_argument( '--early_stopping_patience', type=_snake_case, default=-1, required=_snake_case, help=( '-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So' ' val_check_interval will effect it.' ), ) return parser class snake_case__ ( lowerCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """translation""" _SCREAMING_SNAKE_CASE = ["""loss"""] _SCREAMING_SNAKE_CASE = ["""bleu"""] _SCREAMING_SNAKE_CASE = """bleu""" def __init__( self : List[Any], _snake_case : str, **_snake_case : Tuple ) ->List[str]: super().__init__(_snake_case, **_snake_case ) snake_case__ : Any = hparams.src_lang snake_case__ : int = hparams.tgt_lang def lowercase_ ( self : Union[str, Any], _snake_case : List[Any], _snake_case : List[Any] ) ->dict: return calculate_bleu(_snake_case, _snake_case ) def lowercase_ (A : str , A : List[Any]=None ): Path(args.output_dir ).mkdir(exist_ok=A ) check_output_dir(A , expected_items=3 ) if model is None: if "summarization" in args.task: snake_case__ : SummarizationModule = SummarizationModule(A ) else: snake_case__ : SummarizationModule = TranslationModule(A ) snake_case__ : Dict = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith('/tmp' ) or str(args.output_dir ).startswith('/var' ) ): snake_case__ : List[Any] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger snake_case__ : Dict = os.environ.get('WANDB_PROJECT' , A ) snake_case__ : Union[str, Any] = WandbLogger(name=model.output_dir.name , project=A ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger snake_case__ : List[Any] = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: snake_case__ : Union[str, Any] = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: snake_case__ : List[str] = False snake_case__ : List[Any] = args.val_metric == 'loss' snake_case__ : pl.Trainer = generic_train( A , A , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , A ) , early_stopping_callback=A , logger=A , ) pickle_save(model.hparams , model.output_dir / 'hparams.pkl' ) if not args.do_predict: return model snake_case__ : int = '' snake_case__ : Union[str, Any] = sorted(glob.glob(os.path.join(args.output_dir , '*.ckpt' ) , recursive=A ) ) if checkpoints: snake_case__ : Any = checkpoints[-1] snake_case__ : List[str] = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": a_ :Any = argparse.ArgumentParser() a_ :Dict = pl.Trainer.add_argparse_args(parser) a_ :Optional[Any] = SummarizationModule.add_model_specific_args(parser, os.getcwd()) a_ :Dict = parser.parse_args() main(args)
243
1
import sys from collections import defaultdict class UpperCAmelCase_ : def __init__( self ): """simple docstring""" A_ = [] def __UpperCAmelCase ( self ,__snake_case ): """simple docstring""" return self.node_position[vertex] def __UpperCAmelCase ( self ,__snake_case ,__snake_case ): """simple docstring""" A_ = pos def __UpperCAmelCase ( self ,__snake_case ,__snake_case ,__snake_case ,__snake_case ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: A_ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: A_ = 2 * start + 1 else: A_ = 2 * start + 2 if heap[smallest_child] < heap[start]: A_ , A_ = heap[smallest_child], positions[smallest_child] A_ , A_ = ( heap[start], positions[start], ) A_ , A_ = temp, tempa A_ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] ,self.get_position(positions[start] ) ) self.set_position(positions[start] ,lowerCAmelCase_ ) self.top_to_bottom(lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ,lowerCAmelCase_ ) def __UpperCAmelCase ( self ,__snake_case ,__snake_case ,__snake_case ,__snake_case ): """simple docstring""" A_ = position[index] while index != 0: A_ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: A_ = heap[parent] A_ = position[parent] self.set_position(position[parent] ,lowerCAmelCase_ ) else: A_ = val A_ = temp self.set_position(lowerCAmelCase_ ,lowerCAmelCase_ ) break A_ = parent else: A_ = val A_ = temp self.set_position(lowerCAmelCase_ ,0 ) def __UpperCAmelCase ( self ,__snake_case ,__snake_case ): """simple docstring""" A_ = len(lowerCAmelCase_ ) // 2 - 1 for i in range(lowerCAmelCase_ ,-1 ,-1 ): self.top_to_bottom(lowerCAmelCase_ ,lowerCAmelCase_ ,len(lowerCAmelCase_ ) ,lowerCAmelCase_ ) def __UpperCAmelCase ( self ,__snake_case ,__snake_case ): """simple docstring""" A_ = positions[0] A_ = sys.maxsize self.top_to_bottom(lowerCAmelCase_ ,0 ,len(lowerCAmelCase_ ) ,lowerCAmelCase_ ) return temp def UpperCAmelCase_ ( _UpperCAmelCase :List[str] ) -> Dict: '''simple docstring''' A_ = Heap() A_ = [0] * len(_UpperCAmelCase ) A_ = [-1] * len(_UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph A_ = [] # Heap of Distance of vertices from their neighboring vertex A_ = [] for vertex in range(len(_UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_UpperCAmelCase ) heap.node_position.append(_UpperCAmelCase ) A_ = [] A_ = 1 A_ = sys.maxsize for neighbor, distance in adjacency_list[0]: A_ = 0 A_ = distance heap.heapify(_UpperCAmelCase , _UpperCAmelCase ) for _ in range(1 , len(_UpperCAmelCase ) ): A_ = heap.delete_minimum(_UpperCAmelCase , _UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) A_ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_UpperCAmelCase )] ): A_ = distance heap.bottom_to_top( _UpperCAmelCase , heap.get_position(_UpperCAmelCase ) , _UpperCAmelCase , _UpperCAmelCase ) A_ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > a__ : List[str] = int(input('Enter number of edges: ').strip()) a__ : List[str] = defaultdict(list) for _ in range(edges_number): a__ : List[Any] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
188
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class snake_case__ : '''simple docstring''' __A = 42 __A = None __A = None _lowerCamelCase : str = namedtuple('CoinsDistribResult', 'moves excess') def _lowerCAmelCase ( __magic_name__ :TreeNode | None ): if root is None: return 0 # Validation def count_nodes(__magic_name__ :TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(__magic_name__ :TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(__magic_name__ ) != count_coins(__magic_name__ ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(__magic_name__ :TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCAmelCase_, UpperCAmelCase_ = get_distrib(node.left ) UpperCAmelCase_, UpperCAmelCase_ = get_distrib(node.right ) UpperCAmelCase_ = 1 - left_distrib_excess UpperCAmelCase_ = 1 - right_distrib_excess UpperCAmelCase_ = ( left_distrib_moves + right_distrib_moves + abs(__magic_name__ ) + abs(__magic_name__ ) ) UpperCAmelCase_ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(__magic_name__ , __magic_name__ ) return get_distrib(__magic_name__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
121
0
import argparse from collections import defaultdict import yaml SCREAMING_SNAKE_CASE : Any = """docs/source/en/_toctree.yml""" def __A ( _A ): """simple docstring""" __a = defaultdict(_A ) for doc in model_doc: counts[doc["local"]] += 1 __a = [key for key, value in counts.items() if value > 1] __a = [] for duplicate_key in duplicates: __a = list({doc["title"] for doc in model_doc if doc["local"] == duplicate_key} ) if len(_A ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["local"]] == 1] ) # Sort return sorted(_A , key=lambda _A : s["title"].lower() ) def __A ( _A=False ): """simple docstring""" with open(_A , encoding="utf-8" ) as f: __a = yaml.safe_load(f.read() ) # Get to the API doc __a = 0 while content[api_idx]["title"] != "API": api_idx += 1 __a = content[api_idx]["sections"] # Then to the model doc __a = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __a = api_doc[model_idx]["sections"] __a = [(idx, section) for idx, section in enumerate(_A ) if "sections" in section] __a = False for idx, modality_doc in modalities_docs: __a = modality_doc["sections"] __a = clean_model_doc_toc(_A ) if old_modality_doc != new_modality_doc: __a = True if overwrite: __a = new_modality_doc if diff: if overwrite: __a = model_doc __a = api_doc with open(_A , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(_A , allow_unicode=_A ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") SCREAMING_SNAKE_CASE : int = parser.parse_args() check_model_doc(args.fix_and_overwrite)
714
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html SCREAMING_SNAKE_CASE : List[Any] = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class A_ : _SCREAMING_SNAKE_CASE = PegasusConfig _SCREAMING_SNAKE_CASE = {} _SCREAMING_SNAKE_CASE = """gelu""" def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any=13 , __SCREAMING_SNAKE_CASE : Any=7 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Any=False , __SCREAMING_SNAKE_CASE : Optional[int]=99 , __SCREAMING_SNAKE_CASE : Optional[int]=32 , __SCREAMING_SNAKE_CASE : List[str]=5 , __SCREAMING_SNAKE_CASE : Tuple=4 , __SCREAMING_SNAKE_CASE : int=37 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Tuple=20 , __SCREAMING_SNAKE_CASE : List[str]=2 , __SCREAMING_SNAKE_CASE : Dict=1 , __SCREAMING_SNAKE_CASE : List[Any]=0 , ): __a = parent __a = batch_size __a = seq_length __a = is_training __a = use_labels __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = eos_token_id __a = pad_token_id __a = bos_token_id def _UpperCAmelCase ( self : Optional[int] ): __a = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) __a = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) __a = np.concatenate([input_ids, eos_tensor] , axis=1 ) __a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __a = prepare_pegasus_inputs_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return config, inputs_dict def _UpperCAmelCase ( self : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : str ): __a = 20 __a = model_class_name(__SCREAMING_SNAKE_CASE ) __a = model.encode(inputs_dict["input_ids"] ) __a , __a = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __a = model.init_cache(decoder_input_ids.shape[0] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) __a = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __a = model.decode( decoder_input_ids[:, :-1] , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , decoder_position_ids=__SCREAMING_SNAKE_CASE , ) __a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __a = model.decode( decoder_input_ids[:, -1:] , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , decoder_position_ids=__SCREAMING_SNAKE_CASE , ) __a = model.decode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def _UpperCAmelCase ( self : str , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[str] ): __a = 20 __a = model_class_name(__SCREAMING_SNAKE_CASE ) __a = model.encode(inputs_dict["input_ids"] ) __a , __a = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) __a = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __a = model.init_cache(decoder_input_ids.shape[0] , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __a = model.decode( decoder_input_ids[:, :-1] , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , decoder_position_ids=__SCREAMING_SNAKE_CASE , ) __a = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) __a = model.decode( decoder_input_ids[:, -1:] , __SCREAMING_SNAKE_CASE , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=__SCREAMING_SNAKE_CASE , decoder_position_ids=__SCREAMING_SNAKE_CASE , ) __a = model.decode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE ) __a = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f"""Max diff is {diff}""" ) def __A ( _A , _A , _A , _A=None , _A=None , ): """simple docstring""" if attention_mask is None: __a = np.not_equal(_A , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: __a = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class A_ ( a_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) _SCREAMING_SNAKE_CASE = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def _UpperCAmelCase ( self : int ): __a = FlaxPegasusModelTester(self ) __a = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Tuple ): self.config_tester.run_common_tests() def _UpperCAmelCase ( self : Optional[int] ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : str ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Dict ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __a = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = model_class(__SCREAMING_SNAKE_CASE ) @jax.jit def encode_jitted(__SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple=None , **__SCREAMING_SNAKE_CASE : Optional[Any] ): return model.encode(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) with self.subTest("JIT Enabled" ): __a = encode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __a = encode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) def _UpperCAmelCase ( self : List[str] ): __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __a = model_class(__SCREAMING_SNAKE_CASE ) __a = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) __a = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(__SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Tuple ): return model.decode( decoder_input_ids=__SCREAMING_SNAKE_CASE , decoder_attention_mask=__SCREAMING_SNAKE_CASE , encoder_outputs=__SCREAMING_SNAKE_CASE , ) with self.subTest("JIT Enabled" ): __a = decode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): __a = decode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , len(__SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _UpperCAmelCase ( self : Tuple ): for model_class_name in self.all_model_classes: __a = model_class_name.from_pretrained("google/pegasus-large" , from_pt=__SCREAMING_SNAKE_CASE ) __a = np.ones((1, 1) ) __a = model(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @slow def _UpperCAmelCase ( self : str ): __a = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) __a = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) __a = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] __a = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] __a = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors="np" , truncation=__SCREAMING_SNAKE_CASE , max_length=5_12 , padding=__SCREAMING_SNAKE_CASE ) __a = model.generate(**__SCREAMING_SNAKE_CASE , num_beams=2 ).sequences __a = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) assert tgt_text == decoded
525
0
import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase_ ( _UpperCAmelCase ): UpperCamelCase_ :List[Any] = (DDIMParallelScheduler,) UpperCamelCase_ :List[str] = (('eta', 0.0), ('num_inference_steps', 50)) def __snake_case ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Tuple ): lowerCAmelCase__ = { "num_train_timesteps": 1_000, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**lowercase__ ) return config def __snake_case ( self : Tuple , **SCREAMING_SNAKE_CASE_ : List[str] ): lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config(**lowercase__ ) lowerCAmelCase__ = scheduler_class(**lowercase__ ) lowerCAmelCase__ = 10, 0.0 lowerCAmelCase__ = self.dummy_model() lowerCAmelCase__ = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for t in scheduler.timesteps: lowerCAmelCase__ = model(lowercase__ , lowercase__ ) lowerCAmelCase__ = scheduler.step(lowercase__ , lowercase__ , lowercase__ , lowercase__ ).prev_sample return sample def __snake_case ( self : List[str] ): for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=lowercase__ ) def __snake_case ( self : Union[str, Any] ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase__ ) lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config(steps_offset=1 ) lowerCAmelCase__ = scheduler_class(**lowercase__ ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) ) def __snake_case ( self : str ): for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowercase__ , beta_end=lowercase__ ) def __snake_case ( self : Union[str, Any] ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase__ ) def __snake_case ( self : Optional[int] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase__ ) def __snake_case ( self : List[Any] ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowercase__ ) def __snake_case ( self : Optional[int] ): for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=lowercase__ ) def __snake_case ( self : Union[str, Any] ): for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=lowercase__ ) def __snake_case ( self : List[str] ): self.check_over_configs(thresholding=lowercase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=lowercase__ , prediction_type=lowercase__ , sample_max_value=lowercase__ , ) def __snake_case ( self : List[Any] ): for t in [1, 10, 49]: self.check_over_forward(time_step=lowercase__ ) def __snake_case ( self : Optional[int] ): for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ): self.check_over_forward(time_step=lowercase__ , num_inference_steps=lowercase__ ) def __snake_case ( self : Tuple ): for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ): self.check_over_forward(time_step=lowercase__ , eta=lowercase__ ) def __snake_case ( self : Dict ): lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**lowercase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.14_771 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.32_460 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1e-5 def __snake_case ( self : List[str] ): lowerCAmelCase__ = self.scheduler_classes[0] lowerCAmelCase__ = self.get_scheduler_config() lowerCAmelCase__ = scheduler_class(**lowercase__ ) lowerCAmelCase__ = 10, 0.0 scheduler.set_timesteps(lowercase__ ) lowerCAmelCase__ = self.dummy_model() lowerCAmelCase__ = self.dummy_sample_deter lowerCAmelCase__ = self.dummy_sample_deter + 0.1 lowerCAmelCase__ = self.dummy_sample_deter - 0.1 lowerCAmelCase__ = samplea.shape[0] lowerCAmelCase__ = torch.stack([samplea, samplea, samplea] , dim=0 ) lowerCAmelCase__ = torch.arange(lowercase__ )[0:3, None].repeat(1 , lowercase__ ) lowerCAmelCase__ = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) ) lowerCAmelCase__ = scheduler.batch_step_no_noise(lowercase__ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , lowercase__ ) lowerCAmelCase__ = torch.sum(torch.abs(lowercase__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 1_147.7_904 ) < 1e-2 assert abs(result_mean.item() - 0.4_982 ) < 1e-3 def __snake_case ( self : int ): lowerCAmelCase__ = self.full_loop() lowerCAmelCase__ = torch.sum(torch.abs(lowercase__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 172.0_067 ) < 1e-2 assert abs(result_mean.item() - 0.223_967 ) < 1e-3 def __snake_case ( self : Optional[int] ): lowerCAmelCase__ = self.full_loop(prediction_type='''v_prediction''' ) lowerCAmelCase__ = torch.sum(torch.abs(lowercase__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 52.5_302 ) < 1e-2 assert abs(result_mean.item() - 0.0_684 ) < 1e-3 def __snake_case ( self : str ): lowerCAmelCase__ = self.full_loop(set_alpha_to_one=lowercase__ , beta_start=0.01 ) lowerCAmelCase__ = torch.sum(torch.abs(lowercase__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 149.8_295 ) < 1e-2 assert abs(result_mean.item() - 0.1_951 ) < 1e-3 def __snake_case ( self : str ): lowerCAmelCase__ = self.full_loop(set_alpha_to_one=lowercase__ , beta_start=0.01 ) lowerCAmelCase__ = torch.sum(torch.abs(lowercase__ ) ) lowerCAmelCase__ = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 149.0_784 ) < 1e-2 assert abs(result_mean.item() - 0.1_941 ) < 1e-3
668
'''simple docstring''' def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int ) -> bool: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = (1 + 2_4 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : int = 5_0_0_0 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE_ )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE_ ): for j in range(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ): SCREAMING_SNAKE_CASE_ : Dict = pentagonal_nums[j] SCREAMING_SNAKE_CASE_ : Optional[int] = pentagonal_i + pentagonal_j SCREAMING_SNAKE_CASE_ : Tuple = pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE_ ) and is_pentagonal(SCREAMING_SNAKE_CASE_ ): return b return -1 if __name__ == "__main__": print(F'''{solution() = }''')
421
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : List[Any] = { """configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""], """tokenization_luke""": ["""LukeTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : Dict = [ """LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""", """LukeForEntityClassification""", """LukeForEntityPairClassification""", """LukeForEntitySpanClassification""", """LukeForMultipleChoice""", """LukeForQuestionAnswering""", """LukeForSequenceClassification""", """LukeForTokenClassification""", """LukeForMaskedLM""", """LukeModel""", """LukePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
229
"""simple docstring""" SCREAMING_SNAKE_CASE : int = { """Pillow""": """Pillow<10.0.0""", """accelerate""": """accelerate>=0.20.3""", """av""": """av==9.2.0""", """beautifulsoup4""": """beautifulsoup4""", """black""": """black~=23.1""", """codecarbon""": """codecarbon==1.2.0""", """cookiecutter""": """cookiecutter==1.7.3""", """dataclasses""": """dataclasses""", """datasets""": """datasets!=2.5.0""", """decord""": """decord==0.6.0""", """deepspeed""": """deepspeed>=0.9.3""", """diffusers""": """diffusers""", """dill""": """dill<0.3.5""", """evaluate""": """evaluate>=0.2.0""", """fairscale""": """fairscale>0.3""", """faiss-cpu""": """faiss-cpu""", """fastapi""": """fastapi""", """filelock""": """filelock""", """flax""": """flax>=0.4.1,<=0.7.0""", """ftfy""": """ftfy""", """fugashi""": """fugashi>=1.0""", """GitPython""": """GitPython<3.1.19""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.14.1,<1.0""", """importlib_metadata""": """importlib_metadata""", """ipadic""": """ipadic>=1.0.0,<2.0""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2,<=0.4.13""", """jaxlib""": """jaxlib>=0.1.65,<=0.4.13""", """jieba""": """jieba""", """kenlm""": """kenlm""", """keras-nlp""": """keras-nlp>=0.3.1""", """librosa""": """librosa""", """nltk""": """nltk""", """natten""": """natten>=0.14.6""", """numpy""": """numpy>=1.17""", """onnxconverter-common""": """onnxconverter-common""", """onnxruntime-tools""": """onnxruntime-tools>=1.4.2""", """onnxruntime""": """onnxruntime>=1.4.0""", """opencv-python""": """opencv-python""", """optuna""": """optuna""", """optax""": """optax>=0.0.8,<=0.1.4""", """packaging""": """packaging>=20.0""", """parameterized""": """parameterized""", """phonemizer""": """phonemizer""", """protobuf""": """protobuf""", """psutil""": """psutil""", """pyyaml""": """pyyaml>=5.1""", """pydantic""": """pydantic<2""", """pytest""": """pytest>=7.2.0""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """python""": """python>=3.8.0""", """ray[tune]""": """ray[tune]""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """rhoknp""": """rhoknp>=1.1.0,<1.3.1""", """rjieba""": """rjieba""", """rouge-score""": """rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1""", """ruff""": """ruff>=0.0.241,<=0.0.259""", """sacrebleu""": """sacrebleu>=1.4.12,<2.0.0""", """sacremoses""": """sacremoses""", """safetensors""": """safetensors>=0.3.1""", """sagemaker""": """sagemaker>=2.31.0""", """scikit-learn""": """scikit-learn""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """sigopt""": """sigopt""", """starlette""": """starlette""", """sudachipy""": """sudachipy>=0.6.6""", """sudachidict_core""": """sudachidict_core>=20220729""", """tensorflow-cpu""": """tensorflow-cpu>=2.6,<2.14""", """tensorflow""": """tensorflow>=2.6,<2.14""", """tensorflow-text""": """tensorflow-text<2.14""", """tf2onnx""": """tf2onnx""", """timeout-decorator""": """timeout-decorator""", """timm""": """timm""", """tokenizers""": """tokenizers>=0.11.1,!=0.11.3,<0.14""", """torch""": """torch>=1.9,!=1.12.0""", """torchaudio""": """torchaudio""", """torchvision""": """torchvision""", """pyctcdecode""": """pyctcdecode>=0.4.0""", """tqdm""": """tqdm>=4.27""", """unidic""": """unidic>=1.0.2""", """unidic_lite""": """unidic_lite>=1.0.7""", """urllib3""": """urllib3<2.0.0""", """uvicorn""": """uvicorn""", }
229
1
from math import isqrt def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(__lowerCAmelCase ) + 1 ) ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase = 10**6 ) -> int: snake_case__ = 0 snake_case__ = 1 snake_case__ = 7 while prime_candidate < max_prime: primes_count += is_prime(__lowerCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F"""{solution() = }""")
33
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue_model_parallelism.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1600, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'roberta-large', 'instance_type': 'ml.p3dn.24xlarge', 'results': {'train_runtime': 1600, 'eval_accuracy': 0.3, 'eval_loss': 1.2}, }, ] ) class UpperCamelCase__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : List[str] ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="""utf-8""" , check=UpperCamelCase__ , ) assert hasattr(self , """env""" ) def UpperCAmelCase__ ( self : Optional[Any] , UpperCamelCase__ : Dict ): '''simple docstring''' lowercase_ = { """enabled""": True, """processes_per_host""": 8, } lowercase_ = { """enabled""": True, """parameters""": { """microbatches""": 4, """placement_strategy""": """spread""", """pipeline""": """interleaved""", """optimize""": """speed""", """partitions""": 4, """ddp""": True, }, } lowercase_ = {"""smdistributed""": {"""modelparallel""": smp_options}, """mpi""": mpi_options} lowercase_ = """trainer""" if self.script == """run_glue.py""" else """smtrainer""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F'''{self.env.base_job_name}-{instance_count}-smp-{name_extension}''' , instance_count=UpperCamelCase__ , instance_type=self.instance_type , debugger_hook_config=UpperCamelCase__ , hyperparameters={ **self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path, """max_steps""": 500, } , metric_definitions=self.env.metric_definitions , distribution=UpperCamelCase__ , py_version="""py36""" , ) def UpperCAmelCase__ ( self : List[Any] , UpperCamelCase__ : Any ): '''simple docstring''' TrainingJobAnalytics(UpperCamelCase__ ).export_csv(F'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(1,)] ) def UpperCAmelCase__ ( self : List[str] , UpperCamelCase__ : Optional[int] ): '''simple docstring''' lowercase_ = self.create_estimator(UpperCamelCase__ ) # run training estimator.fit() # result dataframe lowercase_ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis lowercase_ = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) lowercase_ = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping lowercase_ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(F'''{estimator.latest_training_job.name}.json''' , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , UpperCamelCase__ )
412
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase :Any = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __lowerCamelCase :Tuple = 250_004 __lowerCamelCase :Dict = 250_020 @require_sentencepiece @require_tokenizers class A__ ( __lowercase , unittest.TestCase): """simple docstring""" snake_case__ : int =MBartTokenizer snake_case__ : Optional[int] =MBartTokenizerFast snake_case__ : Optional[int] =True snake_case__ : str =True def a__ ( self: Tuple )-> Optional[int]: super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase : Optional[int] = MBartTokenizer(__a , keep_accents=__a ) tokenizer.save_pretrained(self.tmpdirname ) def a__ ( self: List[str] )-> Optional[int]: lowerCamelCase : List[str] = MBartTokenizer(__a , keep_accents=__a ) lowerCamelCase : List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__a ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase : str = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCamelCase : int = tokenizer.convert_tokens_to_ids(__a ) self.assertListEqual( __a , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCamelCase : int = tokenizer.convert_ids_to_tokens(__a ) self.assertListEqual( __a , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def a__ ( self: Optional[Any] )-> Optional[int]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase : str = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowerCamelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(__a , **__a ) lowerCamelCase : str = self.tokenizer_class.from_pretrained(__a , **__a ) lowerCamelCase : Optional[int] = tempfile.mkdtemp() lowerCamelCase : Tuple = tokenizer_r.save_pretrained(__a ) lowerCamelCase : Optional[Any] = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) lowerCamelCase : Optional[int] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way lowerCamelCase : Optional[int] = tokenizer_r.from_pretrained(__a ) lowerCamelCase : Optional[int] = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=True lowerCamelCase : int = tempfile.mkdtemp() lowerCamelCase : Union[str, Any] = tokenizer_r.save_pretrained(__a , legacy_format=__a ) lowerCamelCase : Any = tokenizer_p.save_pretrained(__a ) # Checks it save with the same files self.assertSequenceEqual(__a , __a ) # Checks everything loads correctly in the same way lowerCamelCase : int = tokenizer_r.from_pretrained(__a ) lowerCamelCase : Optional[int] = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) # Save tokenizer rust, legacy_format=False lowerCamelCase : Dict = tempfile.mkdtemp() lowerCamelCase : Any = tokenizer_r.save_pretrained(__a , legacy_format=__a ) lowerCamelCase : List[str] = tokenizer_p.save_pretrained(__a ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase : Tuple = tokenizer_r.from_pretrained(__a ) lowerCamelCase : Dict = tokenizer_p.from_pretrained(__a ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__a , __a ) ) shutil.rmtree(__a ) @require_torch @require_sentencepiece @require_tokenizers class A__ ( unittest.TestCase): """simple docstring""" snake_case__ : Dict ='''facebook/mbart-large-en-ro''' snake_case__ : int =[ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] snake_case__ : Optional[int] =[ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] snake_case__ : Optional[int] =[82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def a__ ( cls: int )-> Union[str, Any]: lowerCamelCase : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) lowerCamelCase : List[Any] = 1 return cls def a__ ( self: Tuple )-> List[str]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250_020 ) def a__ ( self: Dict )-> Tuple: lowerCamelCase : Any = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __a ) def a__ ( self: Optional[int] )-> Optional[Any]: self.assertIn(__a , self.tokenizer.all_special_ids ) lowerCamelCase : Union[str, Any] = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] lowerCamelCase : Tuple = self.tokenizer.decode(__a , skip_special_tokens=__a ) lowerCamelCase : Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__a ) self.assertEqual(__a , __a ) self.assertNotIn(self.tokenizer.eos_token , __a ) def a__ ( self: List[Any] )-> Any: lowerCamelCase : str = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , __a ) lowerCamelCase : Dict = 10 lowerCamelCase : Union[str, Any] = self.tokenizer(__a , max_length=__a , truncation=__a ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , __a ) self.assertEqual(len(__a ) , __a ) def a__ ( self: str )-> Any: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250_026, 250_001] ) def a__ ( self: Tuple )-> List[str]: lowerCamelCase : str = tempfile.mkdtemp() lowerCamelCase : Tuple = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__a ) lowerCamelCase : Optional[int] = MBartTokenizer.from_pretrained(__a ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __a ) @require_torch def a__ ( self: Dict )-> int: lowerCamelCase : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__a , return_tensors="""pt""" ) lowerCamelCase : Any = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def a__ ( self: Dict )-> Dict: lowerCamelCase : List[Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__a , truncation=__a , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) lowerCamelCase : Optional[Any] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(__a , __a ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCamelCase : Any = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __a ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def a__ ( self: str )-> Dict: lowerCamelCase : Any = self.tokenizer(self.src_text , padding=__a , truncation=__a , max_length=3 , return_tensors="""pt""" ) lowerCamelCase : int = self.tokenizer( text_target=self.tgt_text , padding=__a , truncation=__a , max_length=10 , return_tensors="""pt""" ) lowerCamelCase : Optional[int] = targets["""input_ids"""] lowerCamelCase : Optional[int] = shift_tokens_right(__a , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def a__ ( self: Any )-> List[Any]: lowerCamelCase : List[str] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(__a ) , { # A, test, EOS, en_XX """input_ids""": [[62, 3_034, 2, 250_004]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 250_001, } , )
42
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __lowerCamelCase :Optional[Any] = { 'configuration_encodec': [ 'ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP', 'EncodecConfig', ], 'feature_extraction_encodec': ['EncodecFeatureExtractor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase :Union[str, Any] = [ 'ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST', 'EncodecModel', 'EncodecPreTrainedModel', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __lowerCamelCase :Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
42
1
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : List[Any] = LEDTokenizer a__ : Tuple = LEDTokenizerFast a__ : Optional[int] = True def UpperCamelCase__ ( self) -> Dict: super().setUp() __UpperCamelCase :List[str] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] __UpperCamelCase :Optional[int] = dict(zip(__lowercase , range(len(__lowercase)))) __UpperCamelCase :str = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] __UpperCamelCase :str = {'''unk_token''': '''<unk>'''} __UpperCamelCase :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file''']) __UpperCamelCase :List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file''']) with open(self.vocab_file , '''w''' , encoding='''utf-8''') as fp: fp.write(json.dumps(__lowercase) + '''\n''') with open(self.merges_file , '''w''' , encoding='''utf-8''') as fp: fp.write('''\n'''.join(__lowercase)) def UpperCamelCase__ ( self , **__lowercase) -> List[Any]: kwargs.update(self.special_tokens_map) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase) def UpperCamelCase__ ( self , **__lowercase) -> Tuple: kwargs.update(self.special_tokens_map) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **__lowercase) def UpperCamelCase__ ( self , __lowercase) -> Any: return "lower newer", "lower newer" @cached_property def UpperCamelCase__ ( self) -> int: return LEDTokenizer.from_pretrained('''allenai/led-base-16384''') @cached_property def UpperCamelCase__ ( self) -> List[Any]: return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''') @require_torch def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Optional[Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __UpperCamelCase :Optional[int] = [0, 250, 251, 17_818, 13, 39_186, 1_938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase :List[Any] = tokenizer(__lowercase , max_length=len(__lowercase) , padding=__lowercase , return_tensors='''pt''') self.assertIsInstance(__lowercase , __lowercase) self.assertEqual((2, 9) , batch.input_ids.shape) self.assertEqual((2, 9) , batch.attention_mask.shape) __UpperCamelCase :List[str] = batch.input_ids.tolist()[0] self.assertListEqual(__lowercase , __lowercase) @require_torch def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Tuple = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase :str = tokenizer(__lowercase , padding=__lowercase , return_tensors='''pt''') self.assertIn('''input_ids''' , __lowercase) self.assertIn('''attention_mask''' , __lowercase) self.assertNotIn('''labels''' , __lowercase) self.assertNotIn('''decoder_attention_mask''' , __lowercase) @require_torch def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Dict = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase :int = tokenizer(text_target=__lowercase , max_length=32 , padding='''max_length''' , return_tensors='''pt''') self.assertEqual(32 , targets['''input_ids'''].shape[1]) @require_torch def UpperCamelCase__ ( self) -> str: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase :str = tokenizer( ['''I am a small frog''' * 1_024, '''I am a small frog'''] , padding=__lowercase , truncation=__lowercase , return_tensors='''pt''') self.assertIsInstance(__lowercase , __lowercase) self.assertEqual(batch.input_ids.shape , (2, 5_122)) @require_torch def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Any = ['''A long paragraph for summarization.'''] __UpperCamelCase :str = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase :Tuple = tokenizer(__lowercase , return_tensors='''pt''') __UpperCamelCase :List[str] = tokenizer(text_target=__lowercase , return_tensors='''pt''') __UpperCamelCase :Any = inputs['''input_ids'''] __UpperCamelCase :Optional[Any] = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item()) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item()) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item()) @require_torch def UpperCamelCase__ ( self) -> str: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: __UpperCamelCase :Dict = ['''Summary of the text.''', '''Another summary.'''] __UpperCamelCase :List[str] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] __UpperCamelCase :Union[str, Any] = tokenizer(__lowercase , padding=__lowercase) __UpperCamelCase :Any = [[0] * len(__lowercase) for x in encoded_output['''input_ids''']] __UpperCamelCase :int = tokenizer.pad(__lowercase) self.assertSequenceEqual(outputs['''global_attention_mask'''] , __lowercase) def UpperCamelCase__ ( self) -> List[str]: pass def UpperCamelCase__ ( self) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})"""): __UpperCamelCase :Dict = self.rust_tokenizer_class.from_pretrained(__lowercase , **__lowercase) __UpperCamelCase :str = self.tokenizer_class.from_pretrained(__lowercase , **__lowercase) __UpperCamelCase :Optional[int] = '''A, <mask> AllenNLP sentence.''' __UpperCamelCase :List[Any] = tokenizer_r.encode_plus(__lowercase , add_special_tokens=__lowercase , return_token_type_ids=__lowercase) __UpperCamelCase :str = tokenizer_p.encode_plus(__lowercase , add_special_tokens=__lowercase , return_token_type_ids=__lowercase) self.assertEqual(sum(tokens_r['''token_type_ids''']) , sum(tokens_p['''token_type_ids'''])) self.assertEqual( sum(tokens_r['''attention_mask''']) / len(tokens_r['''attention_mask''']) , sum(tokens_p['''attention_mask''']) / len(tokens_p['''attention_mask''']) , ) __UpperCamelCase :Any = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids''']) __UpperCamelCase :List[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids''']) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2]) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2]) self.assertSequenceEqual( __lowercase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>''']) self.assertSequenceEqual( __lowercase , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''])
167
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = {'''vocab_file''': '''sentencepiece.bpe.model'''} __lowercase = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', } } __lowercase = { '''camembert-base''': 512, } __lowercase = '''▁''' class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Tuple = VOCAB_FILES_NAMES a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : str = ["""input_ids""", """attention_mask"""] def __init__( self , __lowercase , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase=["<s>NOTUSED", "</s>NOTUSED"] , __lowercase = None , **__lowercase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase :Tuple = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else mask_token __UpperCamelCase :List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , additional_special_tokens=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) __UpperCamelCase :List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(__lowercase)) __UpperCamelCase :Dict = vocab_file # HACK: These tokens were added by fairseq but don't seem to be actually used when duplicated in the actual # sentencepiece vocabulary (this is the case for <s> and </s> __UpperCamelCase :Tuple = {'''<s>NOTUSED''': 0, '''<pad>''': 1, '''</s>NOTUSED''': 2, '''<unk>''': 3} __UpperCamelCase :int = len(self.fairseq_tokens_to_ids) __UpperCamelCase :List[Any] = len(self.sp_model) + len(self.fairseq_tokens_to_ids) __UpperCamelCase :int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCamelCase :Tuple = [self.cls_token_id] __UpperCamelCase :Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self , __lowercase , __lowercase = None , __lowercase = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase) if token_ids_a is None: return [1] + ([0] * len(__lowercase)) + [1] return [1] + ([0] * len(__lowercase)) + [1, 1] + ([0] * len(__lowercase)) + [1] def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> List[int]: __UpperCamelCase :List[Any] = [self.sep_token_id] __UpperCamelCase :Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def UpperCamelCase__ ( self) -> int: return len(self.fairseq_tokens_to_ids) + len(self.sp_model) def UpperCamelCase__ ( self) -> str: __UpperCamelCase :Tuple = {self.convert_ids_to_tokens(__lowercase): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def UpperCamelCase__ ( self , __lowercase) -> List[str]: return self.sp_model.encode(__lowercase , out_type=__lowercase) def UpperCamelCase__ ( self , __lowercase) -> List[Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] elif self.sp_model.PieceToId(__lowercase) == 0: # Convert sentence piece unk token to fairseq unk token index return self.unk_token_id return self.fairseq_offset + self.sp_model.PieceToId(__lowercase) def UpperCamelCase__ ( self , __lowercase) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def UpperCamelCase__ ( self , __lowercase) -> Optional[Any]: __UpperCamelCase :Any = [] __UpperCamelCase :List[str] = '''''' __UpperCamelCase :Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowercase) + token __UpperCamelCase :Optional[Any] = True __UpperCamelCase :List[str] = [] else: current_sub_tokens.append(__lowercase) __UpperCamelCase :int = False out_string += self.sp_model.decode(__lowercase) return out_string.strip() def __getstate__( self) -> Dict: __UpperCamelCase :Dict = self.__dict__.copy() __UpperCamelCase :Any = None return state def __setstate__( self , __lowercase) -> Optional[Any]: __UpperCamelCase :List[str] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs'''): __UpperCamelCase :List[str] = {} __UpperCamelCase :Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> Tuple[str]: if not os.path.isdir(__lowercase): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return __UpperCamelCase :Any = os.path.join( __lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(__lowercase) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , __lowercase) elif not os.path.isfile(self.vocab_file): with open(__lowercase , '''wb''') as fi: __UpperCamelCase :int = self.sp_model.serialized_model_proto() fi.write(__lowercase) return (out_vocab_file,)
167
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available __lowercase = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
708
'''simple docstring''' import math from numpy import inf from scipy.integrate import quad def snake_case__ ( _A: float ) -> float: '''simple docstring''' if num <= 0: raise ValueError("""math domain error""" ) return quad(_A , 0 , _A , args=(_A) )[0] def snake_case__ ( _A: float , _A: float ) -> float: '''simple docstring''' return math.pow(_A , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
605
0
'''simple docstring''' import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class A ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): snake_case__ :List[Any] = CpmAntTokenizer snake_case__ :str = False def __SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" super().setUp() lowerCAmelCase__ = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" lowerCAmelCase__ = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) lowerCAmelCase__ = "今天天气真好!" lowerCAmelCase__ = ["今天", "天气", "真", "好", "!"] lowerCAmelCase__ = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = "今天天气真好!" lowerCAmelCase__ = [tokenizer.bos_token] + tokens lowerCAmelCase__ = [6, 9802, 14962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) lowerCAmelCase__ = tokenizer.decode(__magic_name__ ) self.assertEqual(__magic_name__ , __magic_name__ )
48
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process SCREAMING_SNAKE_CASE : Any = logging.getLogger(__name__) def __UpperCAmelCase ( snake_case_ : Union[str, Any] , snake_case_ : str ) -> Union[str, Any]: """simple docstring""" return (preds == labels).mean() @dataclass class __lowerCamelCase : __UpperCamelCase = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __lowerCamelCase : __UpperCamelCase = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(processors.keys() )} ) __UpperCamelCase = field(metadata={'help': 'Should contain the data files for the task.'} ) __UpperCamelCase = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) __UpperCamelCase = field( default=__lowercase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def __UpperCAmelCase ( ) -> List[str]: """simple docstring""" _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , snake_case_ ) # Set seed set_seed(training_args.seed ) try: _lowerCAmelCase = processors[data_args.task_name]() _lowerCAmelCase = processor.get_labels() _lowerCAmelCase = len(snake_case_ ) except KeyError: raise ValueError("""Task not found: %s""" % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=snake_case_ , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _lowerCAmelCase = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=snake_case_ , cache_dir=model_args.cache_dir , ) # Get datasets _lowerCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=snake_case_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) _lowerCAmelCase = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=snake_case_ , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(snake_case_ : EvalPrediction ) -> Dict: _lowerCAmelCase = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(snake_case_ , p.label_ids )} # Data collator _lowerCAmelCase = DataCollatorWithPadding(snake_case_ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer _lowerCAmelCase = Trainer( model=snake_case_ , args=snake_case_ , train_dataset=snake_case_ , eval_dataset=snake_case_ , compute_metrics=snake_case_ , data_collator=snake_case_ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _lowerCAmelCase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase = trainer.evaluate() _lowerCAmelCase = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_master(): with open(snake_case_ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , snake_case_ , snake_case_ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(snake_case_ ) return results def __UpperCAmelCase ( snake_case_ : Optional[Any] ) -> Dict: """simple docstring""" main() if __name__ == "__main__": main()
156
0
'''simple docstring''' import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class __UpperCAmelCase : '''simple docstring''' def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): return None class __UpperCAmelCase : '''simple docstring''' def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): return None class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = [ # (model_name, model_kwargs) ('''bert-base-cased''', {}), ('''gpt2''', {'''use_cache''': False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def lowerCamelCase ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(a_ , '''tf''' , 12 , **a_ ) @require_torch @slow def lowerCamelCase ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(a_ , '''pt''' , 12 , **a_ ) @require_torch @slow def lowerCamelCase ( self ): from transformers import BertModel UpperCAmelCase__ : Dict = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode='''w+t''' ) as vocab_file: vocab_file.write('''\n'''.join(a_ ) ) vocab_file.flush() UpperCAmelCase__ : Dict = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: UpperCAmelCase__ : Tuple = BertModel(BertConfig(vocab_size=len(a_ ) ) ) model.save_pretrained(a_ ) self._test_export(a_ , '''pt''' , 12 , a_ ) @require_tf @slow def lowerCamelCase ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCAmelCase__ : Dict = self._test_export(a_ , '''tf''' , 12 , **a_ ) UpperCAmelCase__ : List[Any] = quantize(Path(a_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(a_ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) @require_torch @slow def lowerCamelCase ( self ): for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: UpperCAmelCase__ : int = self._test_export(a_ , '''pt''' , 12 , **a_ ) UpperCAmelCase__ : Union[str, Any] = quantize(a_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(a_ ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ): try: # Compute path with TemporaryDirectory() as tempdir: UpperCAmelCase__ : Tuple = Path(a_ ).joinpath('''model.onnx''' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(a_ , a_ , a_ , a_ , a_ , **a_ ) return path except Exception as e: self.fail(a_ ) @require_torch @require_tokenizers @slow def lowerCamelCase ( self ): from transformers import BertModel UpperCAmelCase__ : str = BertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) UpperCAmelCase__ : int = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(a_ , a_ , '''pt''' ) @require_tf @require_tokenizers @slow def lowerCamelCase ( self ): from transformers import TFBertModel UpperCAmelCase__ : List[str] = TFBertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) UpperCAmelCase__ : List[str] = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(a_ , a_ , '''tf''' ) def lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): UpperCAmelCase__ : List[str] = FeatureExtractionPipeline(a_ , a_ ) UpperCAmelCase__ : Dict = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] UpperCAmelCase__ : Tuple = infer_shapes(a_ , a_ ) # Assert all variables are present self.assertEqual(len(a_ ) , len(a_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , a_ ) self.assertSequenceEqual(variable_names[3:] , a_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: '''batch''', 1: '''sequence'''} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['''output_0'''] , {0: '''batch''', 1: '''sequence'''} ) self.assertDictEqual(shapes['''output_1'''] , {0: '''batch'''} ) def lowerCamelCase ( self ): UpperCAmelCase__ : int = ["input_ids", "attention_mask", "token_type_ids"] UpperCAmelCase__ : Optional[int] = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} UpperCAmelCase__ : Tuple = ensure_valid_input(FuncContiguousArgs() , a_ , a_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(a_ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(a_ ) , set(a_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(a_ , (tokens['''input_ids'''], tokens['''token_type_ids'''], tokens['''attention_mask''']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) UpperCAmelCase__ : Any = ensure_valid_input(FuncNonContiguousArgs() , a_ , a_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(a_ ) , 1 ) self.assertEqual(len(a_ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['''input_ids'''] ) self.assertEqual(ordered_input_names[0] , '''input_ids''' ) def lowerCamelCase ( self ): UpperCAmelCase__ : List[str] = generate_identified_filename(Path('''/home/something/my_fake_model.onnx''' ) , '''-test''' ) self.assertEqual('''/home/something/my_fake_model-test.onnx''' , generated.as_posix() )
707
'''simple docstring''' import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger UpperCamelCase_ = "<<<<<<< This should probably be modified because it mentions: " UpperCamelCase_ = "=======\n>>>>>>>\n" UpperCamelCase_ = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] UpperCamelCase_ = [ # (pattern, replacement) # Order is important here for some replacements (R"tfds\.core", R"datasets"), (R"tf\.io\.gfile\.GFile", R"open"), (R"tf\.([\w\d]+)", R"datasets.Value('\1')"), (R"tfds\.features\.Text\(\)", R"datasets.Value('string')"), (R"tfds\.features\.Text\(", R"datasets.Value('string'),"), (R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("), (R"tfds\.features\.FeaturesDict\(", R"dict("), (R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (R"tfds\.", R"datasets."), (R"dl_manager\.manual_dir", R"self.config.data_dir"), (R"self\.builder_config", R"self.config"), ] def lowerCAmelCase__ ( a_ : Namespace ) -> str: return ConvertCommand(args.tfds_path , args.datasets_directory ) class __UpperCAmelCase ( UpperCamelCase__ ): '''simple docstring''' @staticmethod def lowerCamelCase ( _UpperCAmelCase ): UpperCAmelCase__ : Dict = parser.add_parser( '''convert''' , help='''Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.''' , ) train_parser.add_argument( '''--tfds_path''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.''' , ) train_parser.add_argument( '''--datasets_directory''' , type=_UpperCAmelCase , required=_UpperCAmelCase , help='''Path to the HuggingFace Datasets folder.''' ) train_parser.set_defaults(func=_UpperCAmelCase ) def __init__( self , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ): UpperCAmelCase__ : Tuple = get_logger('''datasets-cli/converting''' ) UpperCAmelCase__ : Tuple = tfds_path UpperCAmelCase__ : Any = datasets_directory def lowerCamelCase ( self ): if os.path.isdir(self._tfds_path ): UpperCAmelCase__ : Any = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): UpperCAmelCase__ : Optional[Any] = os.path.dirname(self._tfds_path ) else: raise ValueError('''--tfds_path is neither a directory nor a file. Please check path.''' ) UpperCAmelCase__ : Optional[int] = os.path.abspath(self._datasets_directory ) self._logger.info(F"""Converting datasets from {abs_tfds_path} to {abs_datasets_path}""" ) UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : int = [] UpperCAmelCase__ : str = {} if os.path.isdir(self._tfds_path ): UpperCAmelCase__ : List[str] = os.listdir(_UpperCAmelCase ) else: UpperCAmelCase__ : str = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F"""Looking at file {f_name}""" ) UpperCAmelCase__ : Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ : Tuple = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) if not os.path.isfile(_UpperCAmelCase ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('''Skipping file''' ) continue with open(_UpperCAmelCase , encoding='''utf-8''' ) as f: UpperCAmelCase__ : List[str] = f.readlines() UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : Dict = [] for line in lines: UpperCAmelCase__ : List[Any] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: UpperCAmelCase__ : str = '''import datasets\n''' elif "import tensorflow" in out_line: # order is important here UpperCAmelCase__ : Dict = '''''' continue elif "from absl import logging" in out_line: UpperCAmelCase__ : Dict = '''from datasets import logging\n''' elif "getLogger" in out_line: UpperCAmelCase__ : List[str] = out_line.replace('''getLogger''' , '''get_logger''' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): UpperCAmelCase__ : List[Any] = True UpperCAmelCase__ : int = list(filter(lambda _UpperCAmelCase : e in out_line , _UpperCAmelCase ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(_UpperCAmelCase ) + '''\n''' ) out_lines.append(_UpperCAmelCase ) out_lines.append(_UpperCAmelCase ) continue else: for pattern, replacement in TO_CONVERT: UpperCAmelCase__ : Tuple = re.sub(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: UpperCAmelCase__ : Optional[Any] = re.match(R'''from\stensorflow_datasets.*import\s([^\.\r\n]+)''' , _UpperCAmelCase ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(''',''' ) ) UpperCAmelCase__ : str = '''from . import ''' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F"""Error converting {out_line.strip()}""" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: UpperCAmelCase__ : Dict = True out_lines.append(_UpperCAmelCase ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset UpperCAmelCase__ : List[str] = f_name.replace('''.py''' , '''''' ) UpperCAmelCase__ : List[Any] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ : List[str] = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) self._logger.info(F"""Adding directory {output_dir}""" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(_UpperCAmelCase ) if needs_manual_update: with_manual_update.append(_UpperCAmelCase ) with open(_UpperCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.writelines(_UpperCAmelCase ) self._logger.info(F"""Converted in {output_file}""" ) for utils_file in utils_files: try: UpperCAmelCase__ : Optional[Any] = os.path.basename(_UpperCAmelCase ) UpperCAmelCase__ : List[str] = imports_to_builder_map[f_name.replace('''.py''' , '''''' )] self._logger.info(F"""Moving {dest_folder} to {utils_file}""" ) shutil.copy(_UpperCAmelCase , _UpperCAmelCase ) except KeyError: self._logger.error(F"""Cannot find destination folder for {utils_file}. Please copy manually.""" ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F"""You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'.""" )
599
0
def snake_case_ ( _SCREAMING_SNAKE_CASE = 1_0_0_0 ): return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
402
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor snake_case__ : Optional[Any] = logging.get_logger(__name__) class _A ( _lowercase ): '''simple docstring''' def __init__( self : Dict , *lowerCamelCase : List[Any] , **lowerCamelCase : int ): '''simple docstring''' warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead." , lowerCamelCase , ) super().__init__(*lowerCamelCase , **lowerCamelCase )
402
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict: _a = FunnelConfig.from_json_file(UpperCamelCase__ ) print(f"Building PyTorch model from configuration: {config}" ) _a = FunnelBaseModel(UpperCamelCase__ ) if base_model else FunnelModel(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": lowerCamelCase :Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) lowerCamelCase :Any = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
720
import csv import tweepy # Twitter API credentials lowerCamelCase :Optional[int] = '' lowerCamelCase :Tuple = '' lowerCamelCase :Tuple = '' lowerCamelCase :Optional[Any] = '' def __snake_case ( _UpperCamelCase ) -> None: # authorize twitter, initialize tweepy _a = tweepy.OAuthHandler(_UpperCamelCase , _UpperCamelCase ) auth.set_access_token(_UpperCamelCase , _UpperCamelCase ) _a = tweepy.API(_UpperCamelCase ) # initialize a list to hold all the tweepy Tweets _a = [] # make initial request for most recent tweets (200 is the maximum allowed count) _a = api.user_timeline(screen_name=_UpperCamelCase , count=2_00 ) # save most recent tweets alltweets.extend(_UpperCamelCase ) # save the id of the oldest tweet less one _a = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(_UpperCamelCase ) > 0: print(f"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates _a = api.user_timeline( screen_name=_UpperCamelCase , count=2_00 , max_id=_UpperCamelCase ) # save most recent tweets alltweets.extend(_UpperCamelCase ) # update the id of the oldest tweet less one _a = alltweets[-1].id - 1 print(f"...{len(_UpperCamelCase )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv _a = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f"new_{screen_name}_tweets.csv" , '''w''' ) as f: _a = csv.writer(_UpperCamelCase ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(_UpperCamelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
346
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase :int = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase :Optional[int] = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys lowerCAmelCase :str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
561
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): lowerCAmelCase :Any = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowerCAmelCase :str = 1_2_8_0_2_2 lowerCAmelCase :int = 1_2_8_0_2_8 @require_sentencepiece class _lowerCamelCase ( lowercase__ , unittest.TestCase ): '''simple docstring''' A_ : str = MaMaaaTokenizer A_ : Any = False A_ : List[str] = False A_ : Optional[Any] = True def __lowerCAmelCase ( self : List[Any] ) -> int: super().setUp() __magic_name__ : int = ['</s>', '<unk>', '▁This', '▁is', '▁a', '▁t', 'est', '\u0120', '<pad>'] __magic_name__ : Optional[int] = dict(zip(_A , range(len(_A ) ) ) ) __magic_name__ : int = Path(self.tmpdirname ) save_json(_A , save_dir / VOCAB_FILES_NAMES['vocab_file'] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_A , save_dir / VOCAB_FILES_NAMES['spm_file'] ) __magic_name__ : Optional[Any] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Optional[int] , **_A : int ) -> str: return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **_A ) def __lowerCAmelCase ( self : Any , _A : str ) -> Optional[int]: return ( "This is a test", "This is a test", ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: __magic_name__ : Union[str, Any] = '</s>' __magic_name__ : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def __lowerCAmelCase ( self : int ) -> Optional[int]: __magic_name__ : List[str] = self.get_tokenizer() __magic_name__ : Optional[Any] = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '</s>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '<s>' ) self.assertEqual(len(_A ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('Skip this test while all models are still to be uploaded.' ) def __lowerCAmelCase ( self : Dict ) -> List[str]: pass def __lowerCAmelCase ( self : Union[str, Any] ) -> str: __magic_name__ : Any = self.get_tokenizer() __magic_name__ : Optional[int] = tokenizer.tokenize('This is a test' ) self.assertListEqual(_A , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [2, 3, 4, 5, 6] , ) __magic_name__ : str = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(_A , ['▁This', '▁is', '▁a', '▁t', 'est'] ) __magic_name__ : Union[str, Any] = tokenizer.convert_tokens_to_string(_A ) self.assertEqual(_A , 'This is a test' ) @slow def __lowerCAmelCase ( self : Optional[int] ) -> int: # fmt: off __magic_name__ : int = {'input_ids': [[128022, 110108, 397, 11, 38272, 2247, 124811, 285, 18105, 1586, 207, 7, 39534, 4428, 397, 1019, 18105, 1586, 207, 7, 41337, 16786, 241, 7, 20214, 17, 125690, 10398, 7, 44378, 58069, 68342, 7798, 7343, 11, 299, 33310, 4, 158, 37350, 94077, 4569, 299, 33310, 90, 4, 52840, 290, 4, 31270, 112, 299, 682, 4, 52840, 39953, 14079, 193, 52519, 90894, 17894, 120697, 11, 40445, 551, 17, 1019, 52519, 90894, 17756, 963, 11, 40445, 480, 17, 9792, 1120, 5173, 1393, 6240, 16786, 241, 120996, 28, 1245, 1393, 118240, 11123, 1019, 93612, 2691, 10618, 98058, 120409, 1928, 279, 4, 40683, 367, 178, 207, 1019, 103, 103121, 506, 65296, 5, 2], [128022, 21217, 367, 117, 125450, 128, 719, 7, 7308, 40, 93612, 12669, 1116, 16704, 71, 17785, 3699, 15592, 35, 144, 9584, 241, 11943, 713, 950, 799, 2247, 88427, 150, 149, 118813, 120706, 1019, 106906, 81518, 28, 1224, 22799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [128022, 1658, 123311, 5155, 5578, 4722, 279, 14947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='facebook/m2m100_418M' , revision='c168bae485c864188cf9aa0e4108b0b6934dc91e' , ) @require_torch @require_sentencepiece @require_tokenizers class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' A_ : str = """facebook/m2m100_418M""" A_ : Tuple = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] A_ : Tuple = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off A_ : List[Any] = [EN_CODE, 5_93, 19_49, 11_57_81, 4, 7_15_86, 42_34, 6_06_33, 12_62_33, 4_32, 12_38_08, 1_55_92, 11_97, 11_71_32, 12_06_18, 5, 2] @classmethod def __lowerCAmelCase ( cls : int ) -> List[str]: __magic_name__ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en' , tgt_lang='fr' ) __magic_name__ : Optional[int] = 1 return cls def __lowerCAmelCase ( self : List[str] ) -> str: self.assertEqual(self.tokenizer.get_lang_id('ar' ) , 128006 ) self.assertEqual(self.tokenizer.get_lang_id('en' ) , 128022 ) self.assertEqual(self.tokenizer.get_lang_id('ro' ) , 128076 ) self.assertEqual(self.tokenizer.get_lang_id('mr' ) , 128063 ) def __lowerCAmelCase ( self : Any ) -> Union[str, Any]: __magic_name__ : Optional[int] = self.tokenizer.get_vocab() self.assertEqual(len(_A ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['<unk>'] , 3 ) self.assertIn(self.tokenizer.get_lang_token('en' ) , _A ) def __lowerCAmelCase ( self : Optional[int] ) -> Any: __magic_name__ : List[str] = 'en' __magic_name__ : str = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _A ) def __lowerCAmelCase ( self : int ) -> List[str]: self.assertIn(_A , self.tokenizer.all_special_ids ) # fmt: off __magic_name__ : List[str] = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 14028, 136, 3286, 9706, 6, 90797, 6, 144012, 162, 88128, 30061, 5, 2] # fmt: on __magic_name__ : List[Any] = self.tokenizer.decode(_A , skip_special_tokens=_A ) __magic_name__ : Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_A ) self.assertEqual(_A , _A ) self.assertNotIn(self.tokenizer.eos_token , _A ) def __lowerCAmelCase ( self : int ) -> Optional[Any]: __magic_name__ : Any = tempfile.mkdtemp() __magic_name__ : List[str] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(_A ) __magic_name__ : List[str] = MaMaaaTokenizer.from_pretrained(_A ) self.assertDictEqual(new_tok.lang_token_to_id , _A ) @require_torch def __lowerCAmelCase ( self : Dict ) -> List[str]: __magic_name__ : Tuple = 'en' __magic_name__ : Dict = 'fr' __magic_name__ : List[Any] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_A , return_tensors='pt' ) __magic_name__ : int = shift_tokens_right( batch['labels'] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: __magic_name__ : Union[str, Any] = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def __lowerCAmelCase ( self : int ) -> Any: __magic_name__ : int = 'mr' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) __magic_name__ : Optional[int] = 'zh' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def __lowerCAmelCase ( self : str ) -> List[Any]: __magic_name__ : Union[str, Any] = 'mr' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('mr' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) __magic_name__ : Union[str, Any] = 'zh' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('zh' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def __lowerCAmelCase ( self : str ) -> Union[str, Any]: __magic_name__ : Union[str, Any] = self.tokenizer._build_translation_inputs('A test' , return_tensors='pt' , src_lang='en' , tgt_lang='ar' ) self.assertEqual( nested_simplify(_A ) , { # en_XX, A, test, EOS 'input_ids': [[128022, 58, 4183, 2]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 128006, } , )
561
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _SCREAMING_SNAKE_CASE (UpperCamelCase , unittest.TestCase ): lowerCAmelCase = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def __snake_case ( self : str , UpperCamelCase : int=0 )->Dict: __SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, 3, 1_2_8, 1_2_8) , rng=random.Random(UpperCamelCase ) ) __SCREAMING_SNAKE_CASE : Dict = np.random.RandomState(UpperCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.7_5, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __snake_case ( self : Optional[Any] )->Dict: __SCREAMING_SNAKE_CASE : Dict = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=UpperCamelCase ) __SCREAMING_SNAKE_CASE : int = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE : str = pipe(**UpperCamelCase ).images __SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_2_8, 1_2_8, 3) __SCREAMING_SNAKE_CASE : Dict = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def __snake_case ( self : str )->List[Any]: __SCREAMING_SNAKE_CASE : Any = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __SCREAMING_SNAKE_CASE : Any = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCamelCase ) pipe.set_progress_bar_config(disable=UpperCamelCase ) __SCREAMING_SNAKE_CASE : int = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE : Union[str, Any] = pipe(**UpperCamelCase ).images __SCREAMING_SNAKE_CASE : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __SCREAMING_SNAKE_CASE : Tuple = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __snake_case ( self : List[str] )->Union[str, Any]: __SCREAMING_SNAKE_CASE : Union[str, Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase ) # warmup pass to apply optimizations __SCREAMING_SNAKE_CASE : str = pipe(**self.get_dummy_inputs() ) __SCREAMING_SNAKE_CASE : Dict = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE : Optional[int] = pipe(**UpperCamelCase ).images __SCREAMING_SNAKE_CASE : int = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __SCREAMING_SNAKE_CASE : Tuple = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __snake_case ( self : Union[str, Any] )->Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __SCREAMING_SNAKE_CASE : Any = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase ) __SCREAMING_SNAKE_CASE : str = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE : Tuple = pipe(**UpperCamelCase ).images __SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __SCREAMING_SNAKE_CASE : Dict = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __snake_case ( self : Dict )->Tuple: __SCREAMING_SNAKE_CASE : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __SCREAMING_SNAKE_CASE : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE : Dict = pipe(**UpperCamelCase ).images __SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def __snake_case ( self : Optional[int] )->Union[str, Any]: __SCREAMING_SNAKE_CASE : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_inputs() __SCREAMING_SNAKE_CASE : Any = pipe(**UpperCamelCase ).images __SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 1_2_8, 1_2_8, 3) __SCREAMING_SNAKE_CASE : Optional[Any] = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class _SCREAMING_SNAKE_CASE (unittest.TestCase ): @property def __snake_case ( self : Optional[int] )->Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __snake_case ( self : List[Any] )->Union[str, Any]: __SCREAMING_SNAKE_CASE : List[str] = ort.SessionOptions() __SCREAMING_SNAKE_CASE : List[str] = False return options def __snake_case ( self : Optional[int] )->str: __SCREAMING_SNAKE_CASE : Tuple = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __SCREAMING_SNAKE_CASE : List[str] = init_image.resize((7_6_8, 5_1_2) ) # using the PNDM scheduler by default __SCREAMING_SNAKE_CASE : Optional[Any] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=UpperCamelCase , feature_extractor=UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = "A fantasy landscape, trending on artstation" __SCREAMING_SNAKE_CASE : Union[str, Any] = np.random.RandomState(0 ) __SCREAMING_SNAKE_CASE : Dict = pipe( prompt=UpperCamelCase , image=UpperCamelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=1_0 , generator=UpperCamelCase , output_type="np" , ) __SCREAMING_SNAKE_CASE : List[str] = output.images __SCREAMING_SNAKE_CASE : Tuple = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def __snake_case ( self : Union[str, Any] )->Dict: __SCREAMING_SNAKE_CASE : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) __SCREAMING_SNAKE_CASE : List[Any] = init_image.resize((7_6_8, 5_1_2) ) __SCREAMING_SNAKE_CASE : Optional[int] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) __SCREAMING_SNAKE_CASE : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=UpperCamelCase , safety_checker=UpperCamelCase , feature_extractor=UpperCamelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase ) __SCREAMING_SNAKE_CASE : str = "A fantasy landscape, trending on artstation" __SCREAMING_SNAKE_CASE : Tuple = np.random.RandomState(0 ) __SCREAMING_SNAKE_CASE : str = pipe( prompt=UpperCamelCase , image=UpperCamelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=2_0 , generator=UpperCamelCase , output_type="np" , ) __SCREAMING_SNAKE_CASE : Tuple = output.images __SCREAMING_SNAKE_CASE : int = images[0, 2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert images.shape == (1, 5_1_2, 7_6_8, 3) __SCREAMING_SNAKE_CASE : List[Any] = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
447
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class _SCREAMING_SNAKE_CASE : pass
447
1
import logging import os import quant_trainer import torch from torch.utils.data import DataLoader from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput lowerCAmelCase = logging.getLogger(__name__) if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _a ( UpperCamelCase__ ): def __init__( self: Any , *UpperCamelCase_: Tuple , UpperCamelCase_: Any=None , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: int=None , **UpperCamelCase_: Union[str, Any] ) -> Optional[Any]: """simple docstring""" super().__init__(*UpperCamelCase_ , **UpperCamelCase_ ) lowercase__ = eval_examples lowercase__ = post_process_function lowercase__ = quant_trainer_args lowercase__ = 128 # default number of calibration samples def lowerCamelCase_ ( self: Any , UpperCamelCase_: int=None ) -> Optional[Any]: """simple docstring""" if calib_dataset is None and self.calib_dataset is None: raise ValueError('''Trainer: calibration requires an calib_dataset.''' ) lowercase__ = calib_dataset if calib_dataset is not None else self.calib_dataset lowercase__ = self._remove_unused_columns(UpperCamelCase_ , description='''Calibration''' ) return DataLoader( UpperCamelCase_ , batch_size=self.args.eval_batch_size , collate_fn=self.data_collator , drop_last=self.args.dataloader_drop_last , num_workers=self.args.dataloader_num_workers , pin_memory=self.args.dataloader_pin_memory , shuffle=UpperCamelCase_ , ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: List[Any]=None ) -> Optional[Any]: """simple docstring""" lowercase__ = self.train_dataset if calib_dataset is None else calib_dataset lowercase__ = self.get_calib_dataloader(UpperCamelCase_ ) lowercase__ = self.model quant_trainer.configure_model(UpperCamelCase_ , self.quant_trainer_args , calib=UpperCamelCase_ ) model.eval() quant_trainer.enable_calibration(UpperCamelCase_ ) logger.info('''***** Running calibration *****''' ) logger.info(f' Num examples = {self.calib_num}' ) logger.info(f' Batch size = {calib_dataloader.batch_size}' ) for step, inputs in enumerate(UpperCamelCase_ ): # Prediction step lowercase__ , lowercase__ , lowercase__ = self.prediction_step(UpperCamelCase_ , UpperCamelCase_ , prediction_loss_only=UpperCamelCase_ ) if (step + 1) * calib_dataloader.batch_size >= self.calib_num: break quant_trainer.finish_calibration(UpperCamelCase_ , self.quant_trainer_args ) lowercase__ = model def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Optional[Any]=None , UpperCamelCase_: str=None , UpperCamelCase_: str=None , UpperCamelCase_: str = "eval" ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.eval_dataset if eval_dataset is None else eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics if self.post_process_function is not None and self.compute_metrics is not None: lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , output.predictions ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) self.log(UpperCamelCase_ ) else: lowercase__ = {} if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) lowercase__ = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase_ ) return metrics def lowerCamelCase_ ( self: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: str = "test" ) -> Tuple: """simple docstring""" lowercase__ = self.get_test_dataloader(UpperCamelCase_ ) # Temporarily disable metric computation, we will do it in the loop here. lowercase__ = self.compute_metrics lowercase__ = None lowercase__ = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: lowercase__ = eval_loop( UpperCamelCase_ , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase_ , ) finally: lowercase__ = compute_metrics if self.post_process_function is None or self.compute_metrics is None: return output lowercase__ = self.post_process_function(UpperCamelCase_ , UpperCamelCase_ , output.predictions , '''predict''' ) lowercase__ = self.compute_metrics(UpperCamelCase_ ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'{metric_key_prefix}_' ): lowercase__ = metrics.pop(UpperCamelCase_ ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: Union[str, Any]="./" ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.eval_dataset lowercase__ = self.get_eval_dataloader(UpperCamelCase_ ) lowercase__ = next(iter(UpperCamelCase_ ) ) # saving device - to make it consistent lowercase__ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) # convert to tuple lowercase__ = tuple(v.to(UpperCamelCase_ ) for k, v in batch.items() ) logger.info('''Converting model to be onnx compatible''' ) from pytorch_quantization.nn import TensorQuantizer lowercase__ = True lowercase__ = self.model.to(UpperCamelCase_ ) model.eval() model.float() lowercase__ = model.module if hasattr(UpperCamelCase_ , '''module''' ) else model quant_trainer.configure_model(UpperCamelCase_ , self.quant_trainer_args ) lowercase__ = os.path.join(UpperCamelCase_ , '''model.onnx''' ) logger.info(f'exporting model to {output_model_file}' ) lowercase__ = {0: '''batch_size''', 1: '''seq_len'''} torch.onnx.export( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , export_params=UpperCamelCase_ , opset_version=13 , do_constant_folding=UpperCamelCase_ , input_names=['''input_ids''', '''attention_mask''', '''token_type_ids'''] , output_names=['''output_start_logits''', '''output_end_logits'''] , dynamic_axes={ '''input_ids''': axes, '''attention_mask''': axes, '''token_type_ids''': axes, '''output_start_logits''': axes, '''output_end_logits''': axes, } , verbose=UpperCamelCase_ , ) logger.info('''onnx export finished''' )
43
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[Any] = DownBlockaD # noqa F405 _lowercase : Dict = '''down''' def lowerCamelCase_ ( self: List[str] ) -> Tuple: """simple docstring""" lowercase__ = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = ResnetDownsampleBlockaD # noqa F405 _lowercase : Tuple = '''down''' def lowerCamelCase_ ( self: List[Any] ) -> str: """simple docstring""" lowercase__ = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = AttnDownBlockaD # noqa F405 _lowercase : List[Any] = '''down''' def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = CrossAttnDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' def lowerCamelCase_ ( self: Optional[Any] ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Tuple: """simple docstring""" lowercase__ = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = SimpleCrossAttnDownBlockaD # noqa F405 _lowercase : str = '''down''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = SkipDownBlockaD # noqa F405 _lowercase : Tuple = '''down''' @property def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[Any]: """simple docstring""" lowercase__ = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnSkipDownBlockaD # noqa F405 _lowercase : Optional[int] = '''down''' @property def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" return super().get_dummy_input(include_skip_sample=UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : int = DownEncoderBlockaD # noqa F405 _lowercase : List[Any] = '''down''' @property def lowerCamelCase_ ( self: List[str] ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> List[Any]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: str ) -> Dict: """simple docstring""" lowercase__ = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnDownEncoderBlockaD # noqa F405 _lowercase : int = '''down''' @property def lowerCamelCase_ ( self: Dict ) -> Optional[Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> List[str]: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''out_channels''': 32, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UNetMidBlockaD # noqa F405 _lowercase : Union[str, Any] = '''mid''' def lowerCamelCase_ ( self: Any ) -> int: """simple docstring""" lowercase__ = { '''in_channels''': 32, '''temb_channels''': 128, } lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = UNetMidBlockaDCrossAttn # noqa F405 _lowercase : str = '''mid''' def lowerCamelCase_ ( self: Union[str, Any] ) -> List[str]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = UNetMidBlockaDSimpleCrossAttn # noqa F405 _lowercase : str = '''mid''' @property def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" return super().get_dummy_input(include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = UpBlockaD # noqa F405 _lowercase : Any = '''up''' @property def lowerCamelCase_ ( self: str ) -> str: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: int ) -> List[Any]: """simple docstring""" lowercase__ = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Tuple = ResnetUpsampleBlockaD # noqa F405 _lowercase : List[Any] = '''up''' @property def lowerCamelCase_ ( self: List[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]: """simple docstring""" lowercase__ = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Any = CrossAttnUpBlockaD # noqa F405 _lowercase : List[str] = '''up''' @property def lowerCamelCase_ ( self: int ) -> Any: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Any ) -> Any: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Dict ) -> Optional[int]: """simple docstring""" lowercase__ = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Union[str, Any] = SimpleCrossAttnUpBlockaD # noqa F405 _lowercase : Dict = '''up''' @property def lowerCamelCase_ ( self: List[str] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ , include_encoder_hidden_states=UpperCamelCase_ ) def lowerCamelCase_ ( self: str ) -> int: """simple docstring""" lowercase__ , lowercase__ = super().prepare_init_args_and_inputs_for_common() lowercase__ = 32 return init_dict, inputs_dict def lowerCamelCase_ ( self: Union[str, Any] ) -> int: """simple docstring""" lowercase__ = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnUpBlockaD # noqa F405 _lowercase : Optional[Any] = '''up''' @property def lowerCamelCase_ ( self: Tuple ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def lowerCamelCase_ ( self: List[str] ) -> List[str]: """simple docstring""" lowercase__ = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = SkipUpBlockaD # noqa F405 _lowercase : Optional[int] = '''up''' @property def lowerCamelCase_ ( self: Dict ) -> int: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" lowercase__ = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : List[str] = AttnSkipUpBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Dict: """simple docstring""" return super().get_dummy_input(include_res_hidden_states_tuple=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Dict = UpDecoderBlockaD # noqa F405 _lowercase : Tuple = '''up''' @property def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: Tuple ) -> Any: """simple docstring""" lowercase__ = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(UpperCamelCase_ ) class _a ( UpperCamelCase__ , unittest.TestCase ): _lowercase : Optional[int] = AttnUpDecoderBlockaD # noqa F405 _lowercase : str = '''up''' @property def lowerCamelCase_ ( self: Optional[Any] ) -> Union[str, Any]: """simple docstring""" return super().get_dummy_input(include_temb=UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict ) -> List[str]: """simple docstring""" lowercase__ = {'''in_channels''': 32, '''out_channels''': 32} lowercase__ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self: int ) -> Optional[Any]: """simple docstring""" lowercase__ = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(UpperCamelCase_ )
43
1
'''simple docstring''' import argparse import os import re __lowercase = '''src/transformers/models/auto''' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict __lowercase = re.compile(R'''[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict''') # re pattern that matches identifiers in mappings __lowercase = re.compile(R'''\s*\(\s*"(\S[^"]+)"''') def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ): with open(_SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' ) as f: lowerCAmelCase_ : str =f.read() lowerCAmelCase_ : Optional[Any] =content.split('''\n''' ) lowerCAmelCase_ : Optional[Any] =[] lowerCAmelCase_ : List[Any] =0 while line_idx < len(_SCREAMING_SNAKE_CASE ): if _re_intro_mapping.search(lines[line_idx] ) is not None: lowerCAmelCase_ : List[str] =len(re.search(R'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 lowerCAmelCase_ : List[Any] =[] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": lowerCAmelCase_ : Optional[int] =line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers lowerCAmelCase_ : Optional[Any] =sorted(_SCREAMING_SNAKE_CASE , key=lambda _SCREAMING_SNAKE_CASE : _re_identifier.search(_SCREAMING_SNAKE_CASE ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(_SCREAMING_SNAKE_CASE ) ) elif "\n".join(_SCREAMING_SNAKE_CASE ) != content: return True def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE = False ): lowerCAmelCase_ : Dict =[os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for f in os.listdir(_SCREAMING_SNAKE_CASE ) if f.endswith('''.py''' )] lowerCAmelCase_ : Dict =[sort_auto_mapping(_SCREAMING_SNAKE_CASE , overwrite=_SCREAMING_SNAKE_CASE ) for fname in fnames] if not overwrite and any(_SCREAMING_SNAKE_CASE ): lowerCAmelCase_ : List[Any] =[f for f, d in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if d] raise ValueError( f'The following files have auto mappings that need sorting: {", ".join(_SCREAMING_SNAKE_CASE )}. Run `make style` to fix' ''' this.''' ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') __lowercase = parser.parse_args() sort_all_auto_mappings(not args.check_only)
305
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(_SCREAMING_SNAKE_CASE , '''_dynamo''' ): return False return isinstance(_SCREAMING_SNAKE_CASE , torch._dynamo.eval_frame.OptimizedModule ) def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True ): lowerCAmelCase_ : str =(torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowerCAmelCase_ : Union[str, Any] =is_compiled_module(_SCREAMING_SNAKE_CASE ) if is_compiled: lowerCAmelCase_ : Dict =model lowerCAmelCase_ : Tuple =model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase_ : Optional[Any] =model.module if not keep_fpaa_wrapper: lowerCAmelCase_ : List[str] =getattr(_SCREAMING_SNAKE_CASE , '''forward''' ) lowerCAmelCase_ : Any =model.__dict__.pop('''_original_forward''' , _SCREAMING_SNAKE_CASE ) if original_forward is not None: while hasattr(_SCREAMING_SNAKE_CASE , '''__wrapped__''' ): lowerCAmelCase_ : List[str] =forward.__wrapped__ if forward == original_forward: break lowerCAmelCase_ : List[str] =forward if getattr(_SCREAMING_SNAKE_CASE , '''_converted_to_transformer_engine''' , _SCREAMING_SNAKE_CASE ): convert_model(_SCREAMING_SNAKE_CASE , to_transformer_engine=_SCREAMING_SNAKE_CASE ) if is_compiled: lowerCAmelCase_ : Tuple =model lowerCAmelCase_ : Any =compiled_model return model def SCREAMING_SNAKE_CASE__ ( ): PartialState().wait_for_everyone() def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if PartialState().distributed_type == DistributedType.TPU: xm.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif PartialState().local_process_index == 0: torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @contextmanager def SCREAMING_SNAKE_CASE__ ( **_SCREAMING_SNAKE_CASE ): for key, value in kwargs.items(): lowerCAmelCase_ : int =str(_SCREAMING_SNAKE_CASE ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE ): if not hasattr(_SCREAMING_SNAKE_CASE , '''__qualname__''' ) and not hasattr(_SCREAMING_SNAKE_CASE , '''__name__''' ): lowerCAmelCase_ : List[Any] =getattr(_SCREAMING_SNAKE_CASE , '''__class__''' , _SCREAMING_SNAKE_CASE ) if hasattr(_SCREAMING_SNAKE_CASE , '''__qualname__''' ): return obj.__qualname__ if hasattr(_SCREAMING_SNAKE_CASE , '''__name__''' ): return obj.__name__ return str(_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key, value in source.items(): if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase_ : Union[str, Any] =destination.setdefault(_SCREAMING_SNAKE_CASE , {} ) merge_dicts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: lowerCAmelCase_ : Optional[Any] =value return destination def SCREAMING_SNAKE_CASE__ ( _SCREAMING_SNAKE_CASE = None ): if port is None: lowerCAmelCase_ : str =2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
305
1
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCamelCase = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCamelCase = concatenate_datasets lowerCamelCase = DownloadConfig lowerCamelCase = DownloadManager lowerCamelCase = DownloadMode lowerCamelCase = DownloadConfig lowerCamelCase = DownloadMode lowerCamelCase = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
82
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
82
1
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( lowercase_ ): snake_case__ : int = (DEISMultistepScheduler,) snake_case__ : List[str] = (('''num_inference_steps''', 25),) def SCREAMING_SNAKE_CASE ( self : List[str] , **SCREAMING_SNAKE_CASE__ : Any ) -> Union[str, Any]: a_ : Dict = { """num_train_timesteps""": 1_0_0_0, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, } config.update(**lowerCamelCase_ ) return config def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Any=0 , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: a_ : Any = dict(self.forward_default_kwargs ) a_ : List[str] = kwargs.pop('num_inference_steps' , lowerCamelCase_ ) a_ : Dict = self.dummy_sample a_ : Any = 0.1 * sample a_ : str = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: a_ : int = self.get_scheduler_config(**lowerCamelCase_ ) a_ : Optional[int] = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals a_ : Optional[Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) a_ : Optional[int] = scheduler_class.from_pretrained(lowerCamelCase_ ) new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals a_ : List[str] = dummy_past_residuals[: new_scheduler.config.solver_order] a_ : str = sample, sample for t in range(lowerCamelCase_ , time_step + scheduler.config.solver_order + 1 ): a_ : Tuple = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample a_ : Optional[int] = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: pass def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , **SCREAMING_SNAKE_CASE__ : Any ) -> Any: a_ : Tuple = dict(self.forward_default_kwargs ) a_ : Optional[Any] = kwargs.pop('num_inference_steps' , lowerCamelCase_ ) a_ : Optional[int] = self.dummy_sample a_ : Optional[Any] = 0.1 * sample a_ : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: a_ : str = self.get_scheduler_config() a_ : Any = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) a_ : List[str] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) a_ : List[str] = scheduler_class.from_pretrained(lowerCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) a_ : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] a_ : List[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample a_ : Tuple = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , **SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Any: if scheduler is None: a_ : Optional[int] = self.scheduler_classes[0] a_ : Optional[Any] = self.get_scheduler_config(**lowerCamelCase_ ) a_ : int = scheduler_class(**lowerCamelCase_ ) a_ : List[Any] = self.scheduler_classes[0] a_ : str = self.get_scheduler_config(**lowerCamelCase_ ) a_ : str = scheduler_class(**lowerCamelCase_ ) a_ : Tuple = 1_0 a_ : Any = self.dummy_model() a_ : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): a_ : Dict = model(lowerCamelCase_ , lowerCamelCase_ ) a_ : Optional[int] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample return sample def SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]: a_ : Tuple = dict(self.forward_default_kwargs ) a_ : int = kwargs.pop('num_inference_steps' , lowerCamelCase_ ) for scheduler_class in self.scheduler_classes: a_ : str = self.get_scheduler_config() a_ : Optional[Any] = scheduler_class(**lowerCamelCase_ ) a_ : Optional[int] = self.dummy_sample a_ : Any = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase_ , 'set_timesteps' ): scheduler.set_timesteps(lowerCamelCase_ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase_ , 'set_timesteps' ): a_ : str = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) a_ : Optional[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] a_ : int = dummy_past_residuals[: scheduler.config.solver_order] a_ : int = scheduler.timesteps[5] a_ : int = scheduler.timesteps[6] a_ : List[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample a_ : Tuple = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: a_ : str = DEISMultistepScheduler(**self.get_scheduler_config() ) a_ : Union[str, Any] = self.full_loop(scheduler=lowerCamelCase_ ) a_ : List[Any] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 a_ : List[str] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) a_ : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) a_ : Dict = UniPCMultistepScheduler.from_config(scheduler.config ) a_ : int = DEISMultistepScheduler.from_config(scheduler.config ) a_ : Optional[Any] = self.full_loop(scheduler=lowerCamelCase_ ) a_ : List[str] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( self : int ) -> Any: self.check_over_configs(thresholding=lowerCamelCase_ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase_ , prediction_type=lowerCamelCase_ , sample_max_value=lowerCamelCase_ , algorithm_type='deis' , solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , ) def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( self : str ) -> Dict: for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , algorithm_type=lowerCamelCase_ , ) a_ : Dict = self.full_loop( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , algorithm_type=lowerCamelCase_ , ) assert not torch.isnan(lowerCamelCase_ ).any(), "Samples have nan numbers" def SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: self.check_over_configs(lower_order_final=lowerCamelCase_ ) self.check_over_configs(lower_order_final=lowerCamelCase_ ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[int]: for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=lowerCamelCase_ , time_step=0 ) def SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: a_ : List[Any] = self.full_loop() a_ : List[Any] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.23916 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: a_ : List[str] = self.full_loop(prediction_type='v_prediction' ) a_ : Any = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.091 ) < 1E-3 def SCREAMING_SNAKE_CASE ( self : int ) -> str: a_ : Optional[int] = self.scheduler_classes[0] a_ : List[str] = self.get_scheduler_config(thresholding=lowerCamelCase_ , dynamic_thresholding_ratio=0 ) a_ : Dict = scheduler_class(**lowerCamelCase_ ) a_ : List[str] = 1_0 a_ : Optional[int] = self.dummy_model() a_ : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): a_ : List[Any] = model(lowerCamelCase_ , lowerCamelCase_ ) a_ : List[Any] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample assert sample.dtype == torch.floataa
713
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase_ : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : str = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def SCREAMING_SNAKE_CASE_ ( __A : Optional[Any] , __A : Tuple , __A : Tuple=8 ) -> Dict: """simple docstring""" a_ : Optional[int] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 a_ : int = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : str , SCREAMING_SNAKE_CASE__ : UNetaDConditionModel , SCREAMING_SNAKE_CASE__ : DDPMScheduler , SCREAMING_SNAKE_CASE__ : VQModel , ) -> Any: super().__init__() self.register_modules( unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ , movq=SCREAMING_SNAKE_CASE__ , ) a_ : List[str] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> str: if latents is None: a_ : List[str] = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ , dtype=SCREAMING_SNAKE_CASE__ ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) a_ : Any = latents.to(SCREAMING_SNAKE_CASE__ ) a_ : Union[str, Any] = latents * scheduler.init_noise_sigma return latents def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 ) -> Dict: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) a_ : Union[str, Any] = torch.device(F"""cuda:{gpu_id}""" ) a_ : Optional[Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int]=0 ) -> Dict: if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) a_ : Tuple = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=SCREAMING_SNAKE_CASE__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) a_ : Dict = None for cpu_offloaded_model in [self.unet, self.movq]: a_ , a_ : Optional[Any] = cpu_offload_with_hook(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , prev_module_hook=SCREAMING_SNAKE_CASE__ ) # We'll offload the last model manually. a_ : str = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(SCREAMING_SNAKE_CASE__ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(SCREAMING_SNAKE_CASE__ ) def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , SCREAMING_SNAKE_CASE__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , SCREAMING_SNAKE_CASE__ : torch.FloatTensor , SCREAMING_SNAKE_CASE__ : int = 5_1_2 , SCREAMING_SNAKE_CASE__ : int = 5_1_2 , SCREAMING_SNAKE_CASE__ : int = 1_0_0 , SCREAMING_SNAKE_CASE__ : float = 4.0 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE__ : Optional[torch.FloatTensor] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , ) -> int: a_ : Dict = self._execution_device a_ : int = guidance_scale > 1.0 if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : Union[str, Any] = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : Optional[Any] = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): a_ : Optional[int] = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) a_ : Dict = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: a_ : Optional[Any] = image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) a_ : Optional[Any] = negative_image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) a_ : int = hint.repeat_interleave(SCREAMING_SNAKE_CASE__ , dim=0 ) a_ : int = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=SCREAMING_SNAKE_CASE__ ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ , device=SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = self.scheduler.timesteps a_ : Optional[int] = self.movq.config.latent_channels a_ , a_ : Dict = downscale_height_and_width(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.movq_scale_factor ) # create initial latent a_ : int = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE__ ) ): # expand the latents if we are doing classifier free guidance a_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents a_ : int = {'image_embeds': image_embeds, 'hint': hint} a_ : str = self.unet( sample=SCREAMING_SNAKE_CASE__ , timestep=SCREAMING_SNAKE_CASE__ , encoder_hidden_states=SCREAMING_SNAKE_CASE__ , added_cond_kwargs=SCREAMING_SNAKE_CASE__ , return_dict=SCREAMING_SNAKE_CASE__ , )[0] if do_classifier_free_guidance: a_ , a_ : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) a_ , a_ : str = noise_pred.chunk(2 ) a_ , a_ : Union[str, Any] = variance_pred.chunk(2 ) a_ : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) a_ : str = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): a_ , a_ : Optional[int] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 a_ : str = self.scheduler.step( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , )[0] # post-processing a_ : str = self.movq.decode(SCREAMING_SNAKE_CASE__ , force_not_quantize=SCREAMING_SNAKE_CASE__ )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: a_ : str = image * 0.5 + 0.5 a_ : Union[str, Any] = image.clamp(0 , 1 ) a_ : Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": a_ : List[str] = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ )
443
0
"""simple docstring""" from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
95
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a : def __init__( self : str , snake_case__ : Dict , snake_case__ : Optional[int]=13 , snake_case__ : Any=30 , snake_case__ : int=2 , snake_case__ : List[Any]=3 , snake_case__ : List[str]=True , snake_case__ : Dict=True , snake_case__ : Dict=32 , snake_case__ : Union[str, Any]=5 , snake_case__ : Tuple=4 , snake_case__ : Tuple=37 , snake_case__ : Tuple="gelu" , snake_case__ : Any=0.1 , snake_case__ : str=0.1 , snake_case__ : Dict=10 , snake_case__ : List[str]=0.0_2 , snake_case__ : int=3 , snake_case__ : Tuple=None , snake_case__ : Any=2 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = num_patches + 2 def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase__ ( self : Dict ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase__ ( self : Tuple , snake_case__ : str , snake_case__ : Optional[Any] , snake_case__ : List[str] ): """simple docstring""" __lowerCAmelCase = DeiTModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() __lowerCAmelCase = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Any ): """simple docstring""" __lowerCAmelCase = DeiTForMaskedImageModeling(config=snake_case__ ) model.to(snake_case__ ) model.eval() __lowerCAmelCase = model(snake_case__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = DeiTForMaskedImageModeling(snake_case__ ) model.to(snake_case__ ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(snake_case__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase__ ( self : str , snake_case__ : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Optional[int] ): """simple docstring""" __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = DeiTForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() __lowerCAmelCase = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = DeiTForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase_ : str = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) lowercase_ : int = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) lowercase_ : List[str] = False lowercase_ : Dict = False lowercase_ : str = False def UpperCAmelCase__ ( self : str ): """simple docstring""" __lowerCAmelCase = DeiTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" pass def UpperCAmelCase__ ( self : int ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(snake_case__ ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*snake_case__ ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def UpperCAmelCase__ ( self : Tuple , snake_case__ : Dict , snake_case__ : Union[str, Any] , snake_case__ : Tuple=False ): """simple docstring""" __lowerCAmelCase = super()._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" if not self.model_tester.is_training: return __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(snake_case__ ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue __lowerCAmelCase = model_class(snake_case__ ) model.to(snake_case__ ) model.train() __lowerCAmelCase = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) __lowerCAmelCase = model(**snake_case__ ).loss loss.backward() def UpperCAmelCase__ ( self : Dict ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowerCAmelCase = False __lowerCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(snake_case__ ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue __lowerCAmelCase = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() __lowerCAmelCase = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) __lowerCAmelCase = model(**snake_case__ ).loss loss.backward() def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(snake_case__ ), *get_values(snake_case__ ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"Testing {model_class} with {problem_type['title']}" ): __lowerCAmelCase = problem_type["title"] __lowerCAmelCase = problem_type["num_labels"] __lowerCAmelCase = model_class(snake_case__ ) model.to(snake_case__ ) model.train() __lowerCAmelCase = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) if problem_type["num_labels"] > 1: __lowerCAmelCase = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) __lowerCAmelCase = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=snake_case__ ) as warning_list: __lowerCAmelCase = model(**snake_case__ ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( F"Something is going wrong in the regression problem: intercepted {w.message}" ) loss.backward() @slow def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = DeiTModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def _UpperCAmelCase ( ): """simple docstring""" __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def UpperCAmelCase__ ( self : str ): """simple docstring""" __lowerCAmelCase = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( snake_case__ ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**snake_case__ ) # verify the logits __lowerCAmelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case__ ) __lowerCAmelCase = torch.tensor([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __lowerCAmelCase = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=snake_case__ , return_tensors="pt" ) __lowerCAmelCase = inputs.pixel_values.to(snake_case__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __lowerCAmelCase = model(snake_case__ )
611
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class _lowercase ( SCREAMING_SNAKE_CASE_ ): a = """microsoft/speecht5_tts""" a = ( """This is a tool that reads an English text out loud. It takes an input named `text` which should contain the """ """text to read (in English) and returns a waveform object containing the sound.""" ) a = """text_reader""" a = SpeechTaProcessor a = SpeechTaForTextToSpeech a = SpeechTaHifiGan a = ["""text"""] a = ["""audio"""] def lowerCamelCase_ ( self: int ): if self.post_processor is None: lowerCamelCase__ : int = '''microsoft/speecht5_hifigan''' super().setup() def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: str , UpperCamelCase__: str=None ): lowerCamelCase__ : List[Any] = self.pre_processor(text=UpperCamelCase__ , return_tensors="""pt""" , truncation=UpperCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) lowerCamelCase__ : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) lowerCamelCase__ : Dict = torch.tensor(embeddings_dataset[7_305]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def lowerCamelCase_ ( self: str , UpperCamelCase__: List[Any] ): with torch.no_grad(): return self.model.generate_speech(**UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: Optional[int] ): with torch.no_grad(): return self.post_processor(UpperCamelCase__ ).cpu().detach()
711
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _A : Optional[Any] =logging.get_logger(__name__) _A : Dict ={'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} _A : Tuple ={ '''tokenizer_file''': { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json''', }, } _A : List[Any] ={ '''gpt-neox-20b''': 2_048, } class _lowercase ( _lowercase ): a = VOCAB_FILES_NAMES a = PRETRAINED_VOCAB_FILES_MAP a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a = ["""input_ids""", """attention_mask"""] def __init__( self: Optional[int] , UpperCamelCase__: Union[str, Any]=None , UpperCamelCase__: int=None , UpperCamelCase__: Tuple=None , UpperCamelCase__: Any="<|endoftext|>" , UpperCamelCase__: Any="<|endoftext|>" , UpperCamelCase__: Union[str, Any]="<|endoftext|>" , UpperCamelCase__: Tuple=False , **UpperCamelCase__: str , ): super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , unk_token=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) lowerCamelCase__ : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , UpperCamelCase__ ) != add_prefix_space: lowerCamelCase__ : Any = getattr(UpperCamelCase__ , pre_tok_state.pop("""type""" ) ) lowerCamelCase__ : Dict = add_prefix_space lowerCamelCase__ : Optional[int] = pre_tok_class(**UpperCamelCase__ ) lowerCamelCase__ : Dict = add_prefix_space def lowerCamelCase_ ( self: int , UpperCamelCase__: str , UpperCamelCase__: Optional[str] = None ): lowerCamelCase__ : Optional[Any] = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: "Conversation" ): lowerCamelCase__ : str = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) + [self.eos_token_id] ) if len(UpperCamelCase__ ) > self.model_max_length: lowerCamelCase__ : int = input_ids[-self.model_max_length :] return input_ids
631
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=7 , UpperCamelCase_=3 , UpperCamelCase_=18 , UpperCamelCase_=30 , UpperCamelCase_=400 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=[0.48145466, 0.4578275, 0.40821073] , UpperCamelCase_=[0.26862954, 0.26130258, 0.27577711] , UpperCamelCase_=True , ): '''simple docstring''' UpperCamelCase__ :int = size if size is not None else {'''height''': 224, '''width''': 224} UpperCamelCase__ :Union[str, Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} UpperCamelCase__ :Any = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Tuple = num_channels UpperCamelCase__ :List[Any] = image_size UpperCamelCase__ :Optional[int] = min_resolution UpperCamelCase__ :int = max_resolution UpperCamelCase__ :str = do_resize UpperCamelCase__ :Any = size UpperCamelCase__ :Optional[Any] = do_center_crop UpperCamelCase__ :Optional[int] = crop_size UpperCamelCase__ :Optional[Any] = do_normalize UpperCamelCase__ :List[Any] = image_mean UpperCamelCase__ :Tuple = image_std UpperCamelCase__ :str = do_convert_rgb def lowerCAmelCase__ ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def lowerCAmelCase__ ( self , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=False ): '''simple docstring''' assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: UpperCamelCase__ :Union[str, Any] = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: UpperCamelCase__ :List[str] = [] for i in range(self.batch_size ): UpperCamelCase__ , UpperCamelCase__ :int = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension UpperCamelCase__ :Dict = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] if torchify: UpperCamelCase__ :Optional[int] = [torch.from_numpy(__SCREAMING_SNAKE_CASE ) for x in image_inputs] return image_inputs @require_torch @require_vision class lowercase ( A__ , unittest.TestCase ): """simple docstring""" _a = ChineseCLIPImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = ChineseCLIPImageProcessingTester(self , do_center_crop=__SCREAMING_SNAKE_CASE ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_center_crop''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''center_crop''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_mean''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_std''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_convert_rgb''' ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 224, '''width''': 224} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) UpperCamelCase__ :Dict = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :str = self.image_processor_tester.prepare_inputs(equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input UpperCamelCase__ :List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase__ :Optional[int] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :str = self.image_processor_tester.prepare_inputs(equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input UpperCamelCase__ :Optional[int] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase__ :Tuple = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :List[str] = self.image_processor_tester.prepare_inputs(equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input UpperCamelCase__ :List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase__ :str = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) @require_torch @require_vision class lowercase ( A__ , unittest.TestCase ): """simple docstring""" _a = ChineseCLIPImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :int = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ :str = 3 @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_resize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''size''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_center_crop''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''center_crop''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_mean''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''image_std''' ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , '''do_convert_rgb''' ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :Union[str, Any] = self.image_processor_tester.prepare_inputs(equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input UpperCamelCase__ :List[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched UpperCamelCase__ :str = image_processing(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
189
"""simple docstring""" import torch def _a ( ) -> List[Any]: if torch.cuda.is_available(): __SCREAMING_SNAKE_CASE = torch.cuda.device_count() else: __SCREAMING_SNAKE_CASE = 0 print(f"""Successfully ran on {num_gpus} GPUs""" ) if __name__ == "__main__": main()
482
0
import math def a_ ( __snake_case ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def a_ ( __snake_case = 1_0_0_0_1 ) -> int: '''simple docstring''' try: UpperCamelCase_ = int(__snake_case ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) UpperCamelCase_ = [] UpperCamelCase_ = 2 while len(__snake_case ) < nth: if is_prime(__snake_case ): primes.append(__snake_case ) num += 1 else: num += 1 return primes[len(__snake_case ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
559
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) __a : Optional[Any] = { """configuration_layoutlmv2""": ["""LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LayoutLMv2Config"""], """processing_layoutlmv2""": ["""LayoutLMv2Processor"""], """tokenization_layoutlmv2""": ["""LayoutLMv2Tokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Union[str, Any] = ["""LayoutLMv2TokenizerFast"""] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : List[str] = ["""LayoutLMv2FeatureExtractor"""] __a : str = ["""LayoutLMv2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Tuple = [ """LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """LayoutLMv2ForQuestionAnswering""", """LayoutLMv2ForSequenceClassification""", """LayoutLMv2ForTokenClassification""", """LayoutLMv2Layer""", """LayoutLMv2Model""", """LayoutLMv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys __a : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
559
1
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
59
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging lowerCamelCase__ : Any = logging.get_logger(__name__) class _UpperCAmelCase ( __a): __a : Dict = ["""input_features""", """attention_mask"""] def __init__( self , _A=80 , _A=1_60_00 , _A=0.0 , _A=10 , _A=25 , _A="hamming_window" , _A=32768.0 , _A=0.97 , _A=1.0 , _A=True , _A=True , _A=False , **_A , ) -> List[Any]: '''simple docstring''' super().__init__(feature_size=_A , sampling_rate=_A , padding_value=_A , **_A ) _UpperCAmelCase : List[str] = feature_size _UpperCAmelCase : Optional[int] = sampling_rate _UpperCAmelCase : List[str] = padding_value _UpperCAmelCase : Dict = hop_length _UpperCAmelCase : List[str] = win_length _UpperCAmelCase : Tuple = frame_signal_scale _UpperCAmelCase : Optional[Any] = preemphasis_coeff _UpperCAmelCase : int = mel_floor _UpperCAmelCase : Tuple = normalize_means _UpperCAmelCase : str = normalize_vars _UpperCAmelCase : List[Any] = win_function _UpperCAmelCase : List[Any] = return_attention_mask _UpperCAmelCase : str = win_length * sampling_rate // 10_00 _UpperCAmelCase : List[str] = hop_length * sampling_rate // 10_00 _UpperCAmelCase : List[str] = optimal_fft_length(self.sample_size ) _UpperCAmelCase : Dict = (self.n_fft // 2) + 1 def __snake_case ( self , _A ) -> np.ndarray: '''simple docstring''' if self.win_function == "hamming_window": _UpperCAmelCase : Dict = window_function(window_length=self.sample_size , name=self.win_function , periodic=_A ) else: _UpperCAmelCase : int = window_function(window_length=self.sample_size , name=self.win_function ) _UpperCAmelCase : int = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) _UpperCAmelCase : Tuple = spectrogram( one_waveform * self.frame_signal_scale , window=_A , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=_A , preemphasis=self.preemphasis_coeff , mel_filters=_A , mel_floor=self.mel_floor , log_mel="""log""" , ) return msfc_features.T def __snake_case ( self , _A , _A , _A ) -> Any: '''simple docstring''' if self.normalize_means: _UpperCAmelCase : List[Any] = x[:input_length].mean(axis=0 ) _UpperCAmelCase : List[str] = np.subtract(_A , _A ) if self.normalize_vars: _UpperCAmelCase : Dict = x[:input_length].std(axis=0 ) _UpperCAmelCase : Tuple = np.divide(_A , _A ) if input_length < x.shape[0]: _UpperCAmelCase : Optional[Any] = padding_value # make sure array is in float32 _UpperCAmelCase : Any = x.astype(np.floataa ) return x def __snake_case ( self , _A , _A = None ) -> List[np.ndarray]: '''simple docstring''' _UpperCAmelCase : Optional[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(_A , _A , self.padding_value ) for x, n in zip(_A , _A )] def __call__( self , _A , _A = False , _A = None , _A = False , _A = None , _A = None , _A = None , _A = None , **_A , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) _UpperCAmelCase : Any = isinstance(_A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) _UpperCAmelCase : Optional[Any] = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _UpperCAmelCase : Tuple = [np.asarray(_A , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_A , np.ndarray ): _UpperCAmelCase : str = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _UpperCAmelCase : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _UpperCAmelCase : Optional[int] = [raw_speech] # extract fbank features _UpperCAmelCase : int = [self._extract_mfsc_features(_A ) for one_waveform in raw_speech] # convert into correct format for padding _UpperCAmelCase : Any = BatchFeature({"""input_features""": features} ) _UpperCAmelCase : Dict = self.pad( _A , padding=_A , max_length=_A , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=_A , **_A , ) # make sure list is in array format _UpperCAmelCase : List[Any] = padded_inputs.get("""input_features""" ) if isinstance(input_features[0] , _A ): _UpperCAmelCase : int = [np.asarray(_A , dtype=np.floataa ) for feature in input_features] _UpperCAmelCase : Optional[int] = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: _UpperCAmelCase : Any = [np.asarray(_A , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: _UpperCAmelCase : Union[str, Any] = ( np.array(_A , dtype=np.intaa ) if self._get_padding_strategies(_A , max_length=_A ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) _UpperCAmelCase : List[str] = self.normalize( padded_inputs["""input_features"""] , attention_mask=_A ) if return_tensors is not None: _UpperCAmelCase : Dict = padded_inputs.convert_to_tensors(_A ) return padded_inputs
238
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a : Optional[Any] = logging.get_logger(__name__) a : Optional[int] = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class lowerCamelCase_ ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase = "fnet" def __init__( self , snake_case_=3_2_0_0_0 , snake_case_=7_6_8 , snake_case_=1_2 , snake_case_=3_0_7_2 , snake_case_="gelu_new" , snake_case_=0.1 , snake_case_=5_1_2 , snake_case_=4 , snake_case_=0.0_2 , snake_case_=1e-1_2 , snake_case_=False , snake_case_=5_1_2 , snake_case_=3 , snake_case_=1 , snake_case_=2 , **snake_case_ , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ ) __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = initializer_range __lowercase = type_vocab_size __lowercase = layer_norm_eps __lowercase = use_tpu_fourier_optimizations __lowercase = tpu_short_seq_length
712
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def lowercase_ ( *_UpperCamelCase ): '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): __lowercase = list(_UpperCamelCase ) for i in range(len(_UpperCamelCase ) ): __lowercase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def lowercase_ ( _UpperCamelCase ): '''simple docstring''' __lowercase = [ '''CUDA out of memory.''', # CUDA OOM '''cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.''', # CUDNN SNAFU '''DefaultCPUAllocator: can\'t allocate memory''', # CPU OOM ] if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def lowercase_ ( _UpperCamelCase = None , _UpperCamelCase = 1_28 ): '''simple docstring''' if function is None: return functools.partial(_UpperCamelCase , starting_batch_size=_UpperCamelCase ) __lowercase = starting_batch_size def decorator(*_UpperCamelCase , **_UpperCamelCase ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __lowercase = list(inspect.signature(_UpperCamelCase ).parameters.keys() ) # Guard against user error if len(_UpperCamelCase ) < (len(_UpperCamelCase ) + 1): __lowercase = ''', '''.join([F'{arg}={value}' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'Batch size was passed into `{function.__name__}` as the first argument when called.' F'Remove this as the decorator already does so: `{function.__name__}({arg_str})`' ) while True: if batch_size == 0: raise RuntimeError('''No executable batch size found, reached zero.''' ) try: return function(_UpperCamelCase , *_UpperCamelCase , **_UpperCamelCase ) except Exception as e: if should_reduce_batch_size(_UpperCamelCase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
527
0
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , __a : List[Any] , __a : List[Any]=7 , __a : Dict=3 , __a : Dict=18 , __a : Tuple=30 , __a : Tuple=400 , __a : Dict=True , __a : Optional[int]=None , __a : Union[str, Any]=True , __a : Optional[Any]=[0.5, 0.5, 0.5] , __a : Union[str, Any]=[0.5, 0.5, 0.5] , ) -> Dict: _UpperCamelCase : Optional[Any] = size if size is not None else {"height": 18, "width": 18} _UpperCamelCase : Tuple = parent _UpperCamelCase : List[str] = batch_size _UpperCamelCase : Optional[int] = num_channels _UpperCamelCase : Optional[int] = image_size _UpperCamelCase : Optional[Any] = min_resolution _UpperCamelCase : int = max_resolution _UpperCamelCase : Any = do_resize _UpperCamelCase : Any = size _UpperCamelCase : Any = do_normalize _UpperCamelCase : Optional[int] = image_mean _UpperCamelCase : List[Any] = image_std def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :Tuple = DPTImageProcessor if is_vision_available() else None def __SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: _UpperCamelCase : Optional[Any] = DPTImageProcessingTester(self ) @property def __SCREAMING_SNAKE_CASE ( self : str ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: _UpperCamelCase : Dict = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__a , "image_mean" ) ) self.assertTrue(hasattr(__a , "image_std" ) ) self.assertTrue(hasattr(__a , "do_normalize" ) ) self.assertTrue(hasattr(__a , "do_resize" ) ) self.assertTrue(hasattr(__a , "size" ) ) def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: _UpperCamelCase : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) _UpperCamelCase : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> List[Any]: # Initialize image_processing _UpperCamelCase : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a ) for image in image_inputs: self.assertIsInstance(__a , Image.Image ) # Test not batched input _UpperCamelCase : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched _UpperCamelCase : Optional[Any] = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: # Initialize image_processing _UpperCamelCase : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , numpify=__a ) for image in image_inputs: self.assertIsInstance(__a , np.ndarray ) # Test not batched input _UpperCamelCase : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched _UpperCamelCase : Dict = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: # Initialize image_processing _UpperCamelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__a , torchify=__a ) for image in image_inputs: self.assertIsInstance(__a , torch.Tensor ) # Test not batched input _UpperCamelCase : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched _UpperCamelCase : Any = image_processing(__a , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
624
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger(__name__) def lowercase__ ( lowercase_ ) -> int: """simple docstring""" _UpperCamelCase : Optional[Any] = DPTConfig(embedding_type="hybrid" ) if "large" in checkpoint_url: _UpperCamelCase : Optional[Any] = 1_024 _UpperCamelCase : Optional[int] = 4_096 _UpperCamelCase : List[Any] = 24 _UpperCamelCase : List[Any] = 16 _UpperCamelCase : Optional[Any] = [5, 11, 17, 23] _UpperCamelCase : Tuple = [256, 512, 1_024, 1_024] _UpperCamelCase : str = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: _UpperCamelCase : str = 768 _UpperCamelCase : Any = [1, 1, 1, 0.5] _UpperCamelCase : List[Any] = [256, 512, 768, 768] _UpperCamelCase : Tuple = 150 _UpperCamelCase : int = 16 _UpperCamelCase : Any = (1, 384, 384) _UpperCamelCase : Any = False _UpperCamelCase : Any = "project" if "ade" in checkpoint_url: _UpperCamelCase : Any = True _UpperCamelCase : Optional[Any] = 768 _UpperCamelCase : Optional[int] = [1, 1, 1, 0.5] _UpperCamelCase : Dict = 150 _UpperCamelCase : Any = 16 _UpperCamelCase : Any = "huggingface/label-files" _UpperCamelCase : List[str] = "ade20k-id2label.json" _UpperCamelCase : Any = json.load(open(cached_download(hf_hub_url(lowercase_ ,lowercase_ ,repo_type="dataset" ) ) ,"r" ) ) _UpperCamelCase : Any = {int(lowercase_ ): v for k, v in idalabel.items()} _UpperCamelCase : int = idalabel _UpperCamelCase : int = {v: k for k, v in idalabel.items()} _UpperCamelCase : Any = [1, 150, 480, 480] return config, expected_shape def lowercase__ ( lowercase_ ) -> List[str]: """simple docstring""" _UpperCamelCase : Any = ["pretrained.model.head.weight", "pretrained.model.head.bias"] for k in ignore_keys: state_dict.pop(lowercase_ ,lowercase_ ) def lowercase__ ( lowercase_ ) -> int: """simple docstring""" if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): _UpperCamelCase : List[Any] = name.replace("pretrained.model" ,"dpt.encoder" ) if "pretrained.model" in name: _UpperCamelCase : Dict = name.replace("pretrained.model" ,"dpt.embeddings" ) if "patch_embed" in name: _UpperCamelCase : Tuple = name.replace("patch_embed" ,"" ) if "pos_embed" in name: _UpperCamelCase : Optional[Any] = name.replace("pos_embed" ,"position_embeddings" ) if "attn.proj" in name: _UpperCamelCase : Optional[Any] = name.replace("attn.proj" ,"attention.output.dense" ) if "proj" in name and "project" not in name: _UpperCamelCase : str = name.replace("proj" ,"projection" ) if "blocks" in name: _UpperCamelCase : Dict = name.replace("blocks" ,"layer" ) if "mlp.fc1" in name: _UpperCamelCase : int = name.replace("mlp.fc1" ,"intermediate.dense" ) if "mlp.fc2" in name: _UpperCamelCase : Tuple = name.replace("mlp.fc2" ,"output.dense" ) if "norm1" in name and "backbone" not in name: _UpperCamelCase : str = name.replace("norm1" ,"layernorm_before" ) if "norm2" in name and "backbone" not in name: _UpperCamelCase : Optional[int] = name.replace("norm2" ,"layernorm_after" ) if "scratch.output_conv" in name: _UpperCamelCase : Tuple = name.replace("scratch.output_conv" ,"head" ) if "scratch" in name: _UpperCamelCase : Union[str, Any] = name.replace("scratch" ,"neck" ) if "layer1_rn" in name: _UpperCamelCase : Optional[int] = name.replace("layer1_rn" ,"convs.0" ) if "layer2_rn" in name: _UpperCamelCase : List[Any] = name.replace("layer2_rn" ,"convs.1" ) if "layer3_rn" in name: _UpperCamelCase : Any = name.replace("layer3_rn" ,"convs.2" ) if "layer4_rn" in name: _UpperCamelCase : Optional[int] = name.replace("layer4_rn" ,"convs.3" ) if "refinenet" in name: _UpperCamelCase : str = int(name[len("neck.refinenet" ) : len("neck.refinenet" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 _UpperCamelCase : int = name.replace(F'''refinenet{layer_idx}''' ,F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: _UpperCamelCase : List[str] = name.replace("out_conv" ,"projection" ) if "resConfUnit1" in name: _UpperCamelCase : Any = name.replace("resConfUnit1" ,"residual_layer1" ) if "resConfUnit2" in name: _UpperCamelCase : Any = name.replace("resConfUnit2" ,"residual_layer2" ) if "conv1" in name: _UpperCamelCase : Optional[Any] = name.replace("conv1" ,"convolution1" ) if "conv2" in name: _UpperCamelCase : Optional[Any] = name.replace("conv2" ,"convolution2" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: _UpperCamelCase : Union[str, Any] = name.replace("pretrained.act_postprocess1.0.project.0" ,"neck.reassemble_stage.readout_projects.0.0" ) if "pretrained.act_postprocess2.0.project.0" in name: _UpperCamelCase : Union[str, Any] = name.replace("pretrained.act_postprocess2.0.project.0" ,"neck.reassemble_stage.readout_projects.1.0" ) if "pretrained.act_postprocess3.0.project.0" in name: _UpperCamelCase : str = name.replace("pretrained.act_postprocess3.0.project.0" ,"neck.reassemble_stage.readout_projects.2.0" ) if "pretrained.act_postprocess4.0.project.0" in name: _UpperCamelCase : Dict = name.replace("pretrained.act_postprocess4.0.project.0" ,"neck.reassemble_stage.readout_projects.3.0" ) # resize blocks if "pretrained.act_postprocess1.3" in name: _UpperCamelCase : Tuple = name.replace("pretrained.act_postprocess1.3" ,"neck.reassemble_stage.layers.0.projection" ) if "pretrained.act_postprocess1.4" in name: _UpperCamelCase : str = name.replace("pretrained.act_postprocess1.4" ,"neck.reassemble_stage.layers.0.resize" ) if "pretrained.act_postprocess2.3" in name: _UpperCamelCase : int = name.replace("pretrained.act_postprocess2.3" ,"neck.reassemble_stage.layers.1.projection" ) if "pretrained.act_postprocess2.4" in name: _UpperCamelCase : Optional[Any] = name.replace("pretrained.act_postprocess2.4" ,"neck.reassemble_stage.layers.1.resize" ) if "pretrained.act_postprocess3.3" in name: _UpperCamelCase : Any = name.replace("pretrained.act_postprocess3.3" ,"neck.reassemble_stage.layers.2.projection" ) if "pretrained.act_postprocess4.3" in name: _UpperCamelCase : Tuple = name.replace("pretrained.act_postprocess4.3" ,"neck.reassemble_stage.layers.3.projection" ) if "pretrained.act_postprocess4.4" in name: _UpperCamelCase : List[str] = name.replace("pretrained.act_postprocess4.4" ,"neck.reassemble_stage.layers.3.resize" ) if "pretrained" in name: _UpperCamelCase : Dict = name.replace("pretrained" ,"dpt" ) if "bn" in name: _UpperCamelCase : int = name.replace("bn" ,"batch_norm" ) if "head" in name: _UpperCamelCase : Optional[int] = name.replace("head" ,"head.head" ) if "encoder.norm" in name: _UpperCamelCase : Optional[Any] = name.replace("encoder.norm" ,"layernorm" ) if "auxlayer" in name: _UpperCamelCase : str = name.replace("auxlayer" ,"auxiliary_head.head" ) if "backbone" in name: _UpperCamelCase : Optional[int] = name.replace("backbone" ,"backbone.bit.encoder" ) if ".." in name: _UpperCamelCase : List[str] = name.replace(".." ,"." ) if "stem.conv" in name: _UpperCamelCase : Optional[int] = name.replace("stem.conv" ,"bit.embedder.convolution" ) if "blocks" in name: _UpperCamelCase : Optional[int] = name.replace("blocks" ,"layers" ) if "convolution" in name and "backbone" in name: _UpperCamelCase : Any = name.replace("convolution" ,"conv" ) if "layer" in name and "backbone" in name: _UpperCamelCase : Optional[Any] = name.replace("layer" ,"layers" ) if "backbone.bit.encoder.bit" in name: _UpperCamelCase : Dict = name.replace("backbone.bit.encoder.bit" ,"backbone.bit" ) if "embedder.conv" in name: _UpperCamelCase : Union[str, Any] = name.replace("embedder.conv" ,"embedder.convolution" ) if "backbone.bit.encoder.stem.norm" in name: _UpperCamelCase : Dict = name.replace("backbone.bit.encoder.stem.norm" ,"backbone.bit.embedder.norm" ) return name def lowercase__ ( lowercase_ ,lowercase_ ) -> Dict: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCamelCase : Any = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) _UpperCamelCase : Tuple = state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCamelCase : Tuple = in_proj_weight[: config.hidden_size, :] _UpperCamelCase : Dict = in_proj_bias[: config.hidden_size] _UpperCamelCase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCamelCase : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCamelCase : Dict = in_proj_weight[ -config.hidden_size :, : ] _UpperCamelCase : List[Any] = in_proj_bias[-config.hidden_size :] def lowercase__ ( ) -> List[str]: """simple docstring""" _UpperCamelCase : Any = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCamelCase : Dict = Image.open(requests.get(lowercase_ ,stream=lowercase_ ).raw ) return im @torch.no_grad() def lowercase__ ( lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ,lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase, _UpperCamelCase : str = get_dpt_config(lowercase_ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") _UpperCamelCase : Optional[int] = torch.load(lowercase_ ,map_location="cpu" ) # remove certain keys remove_ignore_keys_(lowercase_ ) # rename keys for key in state_dict.copy().keys(): _UpperCamelCase : Union[str, Any] = state_dict.pop(lowercase_ ) _UpperCamelCase : Tuple = val # read in qkv matrices read_in_q_k_v(lowercase_ ,lowercase_ ) # load HuggingFace model _UpperCamelCase : Dict = DPTForSemanticSegmentation(lowercase_ ) if "ade" in checkpoint_url else DPTForDepthEstimation(lowercase_ ) model.load_state_dict(lowercase_ ) model.eval() # Check outputs on an image _UpperCamelCase : List[Any] = 480 if "ade" in checkpoint_url else 384 _UpperCamelCase : List[str] = DPTImageProcessor(size=lowercase_ ) _UpperCamelCase : int = prepare_img() _UpperCamelCase : List[str] = image_processor(lowercase_ ,return_tensors="pt" ) # forward pass _UpperCamelCase : Any = model(**lowercase_ ).logits if "ade" in checkpoint_url else model(**lowercase_ ).predicted_depth if show_prediction: _UpperCamelCase : Optional[int] = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) ,size=(image.size[1], image.size[0]) ,mode="bicubic" ,align_corners=lowercase_ ,) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowercase_ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub("ybelkada/dpt-hybrid-midas" ) image_processor.push_to_hub("ybelkada/dpt-hybrid-midas" ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) lowerCamelCase__ = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
624
1
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __a ( ctypes.Structure ): # _fields is a specific attr expected by ctypes SCREAMING_SNAKE_CASE__ : Dict = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def SCREAMING_SNAKE_CASE_ ( )-> Optional[int]: if os.name == "nt": _lowerCamelCase = CursorInfo() _lowerCamelCase = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(snake_case , ctypes.byref(snake_case ) ) _lowerCamelCase = False ctypes.windll.kernelaa.SetConsoleCursorInfo(snake_case , ctypes.byref(snake_case ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def SCREAMING_SNAKE_CASE_ ( )-> List[Any]: if os.name == "nt": _lowerCamelCase = CursorInfo() _lowerCamelCase = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(snake_case , ctypes.byref(snake_case ) ) _lowerCamelCase = True ctypes.windll.kernelaa.SetConsoleCursorInfo(snake_case , ctypes.byref(snake_case ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def SCREAMING_SNAKE_CASE_ ( )-> int: try: hide_cursor() yield finally: show_cursor()
222
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def SCREAMING_SNAKE_CASE_ ( snake_case : str , snake_case : str = "cpu" , snake_case : Union[str, None] = None )-> None: _lowerCamelCase = torch.load(snake_case , map_location=snake_case ) for k, v in tqdm(state_dict.items() ): if not isinstance(snake_case , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) _lowerCamelCase = v.half() if save_path is None: # overwrite src_path _lowerCamelCase = src_path torch.save(snake_case , snake_case ) if __name__ == "__main__": fire.Fire(convert)
222
1
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging __lowerCAmelCase : str = logging.get_logger(__name__) class _lowerCAmelCase ( UpperCamelCase__ ): """simple docstring""" _lowerCamelCase = CLIPConfig _lowerCamelCase = ['''CLIPEncoderLayer'''] def __init__( self , _lowercase ) -> List[str]: '''simple docstring''' super().__init__(__lowerCamelCase ) snake_case_ : Union[str, Any] = CLIPVisionModelWithProjection(config.vision_config ) snake_case_ : Dict = nn.Linear(config.vision_config.projection_dim , 1 ) snake_case_ : Union[str, Any] = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase=0.5 , _lowercase=0.5 ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[int] = self.vision_model(__lowerCamelCase )[0] snake_case_ : List[str] = self.p_head(__lowerCamelCase ) snake_case_ : Optional[Any] = nsfw_detected.flatten() snake_case_ : int = nsfw_detected > p_threshold snake_case_ : str = nsfw_detected.tolist() if any(__lowerCamelCase ): logger.warning( """Potential NSFW content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, nsfw_detected_ in enumerate(__lowerCamelCase ): if nsfw_detected_: snake_case_ : Tuple = np.zeros(images[idx].shape ) snake_case_ : List[str] = self.w_head(__lowerCamelCase ) snake_case_ : Tuple = watermark_detected.flatten() snake_case_ : Any = watermark_detected > w_threshold snake_case_ : str = watermark_detected.tolist() if any(__lowerCamelCase ): logger.warning( """Potential watermarked content was detected in one or more images. A black image will be returned instead.""" """ Try again with a different prompt and/or seed.""" ) for idx, watermark_detected_ in enumerate(__lowerCamelCase ): if watermark_detected_: snake_case_ : Optional[int] = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
58
a__: str = '0.21.0' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
190
0
'''simple docstring''' from PIL import Image def UpperCamelCase_ ( A__ , A__ ): def brightness(A__ ) -> float: return 1_28 + level + (c - 1_28) if not -255.0 <= level <= 255.0: raise ValueError("""level must be between -255.0 (black) and 255.0 (white)""" ) return img.point(A__ ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 lowercase__ =change_brightness(img, 1_00) brigt_img.save('image_data/lena_brightness.png', format='png')
511
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowercase__ =logging.get_logger(__name__) def UpperCamelCase_ ( A__ ): if isinstance(A__ , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(A__ , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(A__ ): return [[videos]] raise ValueError(F'''Could not make batched video from {videos}''' ) class a_ ( UpperCamelCase__ ): lowerCamelCase__ : List[Any] = ['pixel_values'] def __init__( self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = 1 / 2_55 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ): super().__init__(**UpperCAmelCase ) a_ = size if size is not None else {"""shortest_edge""": 2_24} a_ = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) a_ = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} a_ = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) a_ = do_resize a_ = size a_ = do_center_crop a_ = crop_size a_ = resample a_ = do_rescale a_ = rescale_factor a_ = do_normalize a_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN a_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = None , **UpperCAmelCase , ): a_ = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) if "shortest_edge" in size: a_ = get_resize_output_image_size(UpperCAmelCase , size["""shortest_edge"""] , default_to_square=UpperCAmelCase ) elif "height" in size and "width" in size: a_ = (size["""height"""], size["""width"""]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ): a_ = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(UpperCAmelCase , size=(size["""height"""], size["""width"""]) , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ): return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ): return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , ): if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. a_ = to_numpy_array(UpperCAmelCase ) if do_resize: a_ = self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) if do_center_crop: a_ = self.center_crop(UpperCAmelCase , size=UpperCAmelCase ) if do_rescale: a_ = self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) if do_normalize: a_ = self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) a_ = to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) return image def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ): a_ = do_resize if do_resize is not None else self.do_resize a_ = resample if resample is not None else self.resample a_ = do_center_crop if do_center_crop is not None else self.do_center_crop a_ = do_rescale if do_rescale is not None else self.do_rescale a_ = rescale_factor if rescale_factor is not None else self.rescale_factor a_ = do_normalize if do_normalize is not None else self.do_normalize a_ = image_mean if image_mean is not None else self.image_mean a_ = image_std if image_std is not None else self.image_std a_ = size if size is not None else self.size a_ = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) a_ = crop_size if crop_size is not None else self.crop_size a_ = get_size_dict(UpperCAmelCase , param_name="""crop_size""" ) if not valid_images(UpperCAmelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) a_ = make_batched(UpperCAmelCase ) a_ = [ [ self._preprocess_image( image=UpperCAmelCase , do_resize=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , do_center_crop=UpperCAmelCase , crop_size=UpperCAmelCase , do_rescale=UpperCAmelCase , rescale_factor=UpperCAmelCase , do_normalize=UpperCAmelCase , image_mean=UpperCAmelCase , image_std=UpperCAmelCase , data_format=UpperCAmelCase , ) for img in video ] for video in videos ] a_ = {"""pixel_values""": videos} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
511
1
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(snake_case ) class a__ ( snake_case ): """simple docstring""" def __init__( self , **lowercase ) -> Union[str, Any]: '''simple docstring''' super().__init__(**lowercase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self , lowercase , **lowercase ) -> Optional[int]: '''simple docstring''' return super().__call__(lowercase , **lowercase ) def UpperCamelCase ( self , **lowercase ) -> int: '''simple docstring''' A__ = {} if "candidate_labels" in kwargs: A__ = kwargs["candidate_labels"] if "hypothesis_template" in kwargs: A__ = kwargs["hypothesis_template"] return preprocess_params, {}, {} def UpperCamelCase ( self , lowercase , lowercase=None , lowercase="This is a sound of {}." ) -> Tuple: '''simple docstring''' if isinstance(lowercase , lowercase ): if audio.startswith("http://" ) or audio.startswith("https://" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png A__ = requests.get(lowercase ).content else: with open(lowercase , "rb" ) as f: A__ = f.read() if isinstance(lowercase , lowercase ): A__ = ffmpeg_read(lowercase , self.feature_extractor.sampling_rate ) if not isinstance(lowercase , np.ndarray ): raise ValueError("We expect a numpy ndarray as input" ) if len(audio.shape ) != 1: raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline" ) A__ = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="pt" ) A__ = candidate_labels A__ = [hypothesis_template.format(lowercase ) for x in candidate_labels] A__ = self.tokenizer(lowercase , return_tensors=self.framework , padding=lowercase ) A__ = [text_inputs] return inputs def UpperCamelCase ( self , lowercase ) -> str: '''simple docstring''' A__ = model_inputs.pop("candidate_labels" ) A__ = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , lowercase ): A__ = text_inputs[0] else: # Batching case. A__ = text_inputs[0][0] A__ = self.model(**lowercase , **lowercase ) A__ = { "candidate_labels": candidate_labels, "logits": outputs.logits_per_audio, } return model_outputs def UpperCamelCase ( self , lowercase ) -> List[str]: '''simple docstring''' A__ = model_outputs.pop("candidate_labels" ) A__ = model_outputs["logits"][0] if self.framework == "pt": A__ = logits.softmax(dim=0 ) A__ = probs.tolist() else: raise ValueError("`tf` framework not supported." ) A__ = [ {"score": score, "label": candidate_label} for score, candidate_label in sorted(zip(lowercase , lowercase ) , key=lambda lowercase : -x[0] ) ] return result
514
from statistics import mean, stdev def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: list , SCREAMING_SNAKE_CASE_: int = 3 ) -> list: '''simple docstring''' A__ = min(SCREAMING_SNAKE_CASE_ ) A__ = max(SCREAMING_SNAKE_CASE_ ) # normalize data return [round((x - x_min) / (x_max - x_min) , SCREAMING_SNAKE_CASE_ ) for x in data] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: list , SCREAMING_SNAKE_CASE_: int = 3 ) -> list: '''simple docstring''' A__ = mean(SCREAMING_SNAKE_CASE_ ) A__ = stdev(SCREAMING_SNAKE_CASE_ ) # standardize data return [round((x - mu) / (sigma) , SCREAMING_SNAKE_CASE_ ) for x in data]
514
1
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = IFPipeline __UpperCamelCase = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} __UpperCamelCase = TEXT_TO_IMAGE_BATCH_PARAMS __UpperCamelCase = PipelineTesterMixin.required_optional_params - {"latents"} def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' return self._get_dummy_components() def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Dict , lowercase_ : int=0): '''simple docstring''' if str(UpperCamelCase__).startswith('''mps'''): SCREAMING_SNAKE_CASE_ : Tuple = torch.manual_seed(UpperCamelCase__) else: SCREAMING_SNAKE_CASE_ : Dict = torch.Generator(device=UpperCamelCase__).manual_seed(UpperCamelCase__) SCREAMING_SNAKE_CASE_ : int = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''') def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' self._test_save_load_local() def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = IFPipeline.from_pretrained('''DeepFloyd/IF-I-XL-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa) SCREAMING_SNAKE_CASE_ : str = IFSuperResolutionPipeline.from_pretrained( '''DeepFloyd/IF-II-L-v1.0''' , variant='''fp16''' , torch_dtype=torch.floataa , text_encoder=UpperCamelCase__ , tokenizer=UpperCamelCase__) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('''cuda''') SCREAMING_SNAKE_CASE_ : Dict = pipe_a.encode_prompt('''anime turtle''' , device='''cuda''') del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : str = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img SCREAMING_SNAKE_CASE_ : Optional[int] = IFImgaImgPipeline(**pipe_a.components) SCREAMING_SNAKE_CASE_ : Optional[int] = IFImgaImgSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_imgaimg(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting SCREAMING_SNAKE_CASE_ : Tuple = IFInpaintingPipeline(**pipe_a.components) SCREAMING_SNAKE_CASE_ : Optional[int] = IFInpaintingSuperResolutionPipeline(**pipe_a.components) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor()) self._test_if_inpainting(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : Dict): '''simple docstring''' _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_ : List[str] = torch.Generator(device='''cpu''').manual_seed(0) SCREAMING_SNAKE_CASE_ : Optional[Any] = pipe_a( prompt_embeds=UpperCamelCase__ , negative_prompt_embeds=UpperCamelCase__ , num_inference_steps=2 , generator=UpperCamelCase__ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE_ : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 SCREAMING_SNAKE_CASE_ : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy''') assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_ : Tuple = torch.Generator(device='''cpu''').manual_seed(0) SCREAMING_SNAKE_CASE_ : int = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(UpperCamelCase__) SCREAMING_SNAKE_CASE_ : Any = pipe_a( prompt_embeds=UpperCamelCase__ , negative_prompt_embeds=UpperCamelCase__ , image=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Tuple = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE_ : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy''') assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : str , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : str): '''simple docstring''' _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_ : Tuple = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(UpperCamelCase__) SCREAMING_SNAKE_CASE_ : Any = torch.Generator(device='''cpu''').manual_seed(0) SCREAMING_SNAKE_CASE_ : List[Any] = pipe_a( prompt_embeds=UpperCamelCase__ , negative_prompt_embeds=UpperCamelCase__ , image=UpperCamelCase__ , num_inference_steps=2 , generator=UpperCamelCase__ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : int = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE_ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy''') assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.Generator(device='''cpu''').manual_seed(0) SCREAMING_SNAKE_CASE_ : Optional[Any] = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(UpperCamelCase__) SCREAMING_SNAKE_CASE_ : List[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(UpperCamelCase__) SCREAMING_SNAKE_CASE_ : str = pipe_a( prompt_embeds=UpperCamelCase__ , negative_prompt_embeds=UpperCamelCase__ , image=UpperCamelCase__ , original_image=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[int] = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE_ : List[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE_ : Optional[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy''') assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]): '''simple docstring''' _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_ : str = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(UpperCamelCase__) SCREAMING_SNAKE_CASE_ : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(1)).to(UpperCamelCase__) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.Generator(device='''cpu''').manual_seed(0) SCREAMING_SNAKE_CASE_ : int = pipe_a( prompt_embeds=UpperCamelCase__ , negative_prompt_embeds=UpperCamelCase__ , image=UpperCamelCase__ , mask_image=UpperCamelCase__ , num_inference_steps=2 , generator=UpperCamelCase__ , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Any = output.images[0] assert image.shape == (64, 64, 3) SCREAMING_SNAKE_CASE_ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 SCREAMING_SNAKE_CASE_ : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy''') assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__) # pipeline 2 _start_torch_memory_measurement() SCREAMING_SNAKE_CASE_ : str = torch.Generator(device='''cpu''').manual_seed(0) SCREAMING_SNAKE_CASE_ : List[str] = floats_tensor((1, 3, 64, 64) , rng=random.Random(0)).to(UpperCamelCase__) SCREAMING_SNAKE_CASE_ : int = floats_tensor((1, 3, 256, 256) , rng=random.Random(0)).to(UpperCamelCase__) SCREAMING_SNAKE_CASE_ : Optional[int] = floats_tensor((1, 3, 256, 256) , rng=random.Random(1)).to(UpperCamelCase__) SCREAMING_SNAKE_CASE_ : Dict = pipe_a( prompt_embeds=UpperCamelCase__ , negative_prompt_embeds=UpperCamelCase__ , image=UpperCamelCase__ , mask_image=UpperCamelCase__ , original_image=UpperCamelCase__ , generator=UpperCamelCase__ , num_inference_steps=2 , output_type='''np''' , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = output.images[0] assert image.shape == (256, 256, 3) SCREAMING_SNAKE_CASE_ : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 SCREAMING_SNAKE_CASE_ : Tuple = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy''') assert_mean_pixel_difference(UpperCamelCase__ , UpperCamelCase__) def _A () -> Optional[int]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
712
"""simple docstring""" import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Any , lowercase_ : Dict , lowercase_ : str=3 , lowercase_ : Dict=7 , lowercase_ : Any=True , lowercase_ : List[Any]=True , lowercase_ : Union[str, Any]=False , lowercase_ : Optional[int]=True , lowercase_ : Union[str, Any]=99 , lowercase_ : Dict=32 , lowercase_ : Union[str, Any]=5 , lowercase_ : Optional[Any]=4 , lowercase_ : List[str]=37 , lowercase_ : int="gelu" , lowercase_ : int=0.1 , lowercase_ : List[str]=0.1 , lowercase_ : Any=512 , lowercase_ : List[Any]=16 , lowercase_ : Union[str, Any]=2 , lowercase_ : Dict=0.02 , lowercase_ : Optional[int]=3 , lowercase_ : Dict=4 , lowercase_ : Optional[int]=None , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = parent SCREAMING_SNAKE_CASE_ : Optional[int] = batch_size SCREAMING_SNAKE_CASE_ : List[str] = seq_length SCREAMING_SNAKE_CASE_ : Optional[Any] = is_training SCREAMING_SNAKE_CASE_ : Dict = use_input_mask SCREAMING_SNAKE_CASE_ : Union[str, Any] = use_token_type_ids SCREAMING_SNAKE_CASE_ : str = use_labels SCREAMING_SNAKE_CASE_ : Optional[Any] = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = hidden_size SCREAMING_SNAKE_CASE_ : str = num_hidden_layers SCREAMING_SNAKE_CASE_ : List[Any] = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : int = hidden_act SCREAMING_SNAKE_CASE_ : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : str = max_position_embeddings SCREAMING_SNAKE_CASE_ : Dict = type_vocab_size SCREAMING_SNAKE_CASE_ : str = type_sequence_label_size SCREAMING_SNAKE_CASE_ : List[Any] = initializer_range SCREAMING_SNAKE_CASE_ : int = num_labels SCREAMING_SNAKE_CASE_ : Dict = num_choices SCREAMING_SNAKE_CASE_ : Tuple = scope def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) SCREAMING_SNAKE_CASE_ : Tuple = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length]) SCREAMING_SNAKE_CASE_ : Optional[Any] = None SCREAMING_SNAKE_CASE_ : Union[str, Any] = None SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) SCREAMING_SNAKE_CASE_ : str = ids_tensor([self.batch_size] , self.num_choices) SCREAMING_SNAKE_CASE_ : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase_ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=lowercase_ , ) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : List[Any] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = FalconModel(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : int , lowercase_ : Dict , lowercase_ : int , lowercase_ : str , lowercase_ : str , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : int , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = True SCREAMING_SNAKE_CASE_ : Optional[int] = FalconModel(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , attention_mask=lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : Union[str, Any] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : List[str] , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = FalconForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Any = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Any , lowercase_ : int , lowercase_ : str , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Optional[int] , lowercase_ : str , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : List[Any] = True SCREAMING_SNAKE_CASE_ : Optional[int] = FalconForCausalLM(config=lowercase_) model.to(lowercase_) model.eval() # first forward pass SCREAMING_SNAKE_CASE_ : Optional[Any] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , use_cache=lowercase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size) SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and SCREAMING_SNAKE_CASE_ : Dict = torch.cat([input_ids, next_tokens] , dim=-1) SCREAMING_SNAKE_CASE_ : List[Any] = torch.cat([input_mask, next_mask] , dim=-1) SCREAMING_SNAKE_CASE_ : List[str] = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , output_hidden_states=lowercase_ , )['''hidden_states'''][0] SCREAMING_SNAKE_CASE_ : Any = model( lowercase_ , attention_mask=lowercase_ , encoder_hidden_states=lowercase_ , encoder_attention_mask=lowercase_ , past_key_values=lowercase_ , output_hidden_states=lowercase_ , )['''hidden_states'''][0] # select random slice SCREAMING_SNAKE_CASE_ : int = ids_tensor((1,) , output_from_past.shape[-1]).item() SCREAMING_SNAKE_CASE_ : List[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() SCREAMING_SNAKE_CASE_ : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase_ , lowercase_ , atol=1e-3)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE_ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) __UpperCamelCase = (FalconForCausalLM,) if is_torch_available() else () __UpperCamelCase = ( { "feature-extraction": FalconModel, "text-classification": FalconForSequenceClassification, "text-generation": FalconForCausalLM, "question-answering": FalconForQuestionAnswering, "token-classification": FalconForTokenClassification, "zero-shot": FalconForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = FalconModelTester(self) SCREAMING_SNAKE_CASE_ : List[Any] = ConfigTester(self , config_class=lowercase_ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: SCREAMING_SNAKE_CASE_ : Optional[int] = alibi self.model_tester.create_and_check_model(lowercase_ , *lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Tuple = 3 SCREAMING_SNAKE_CASE_ : Tuple = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE_ : Optional[int] = input_ids.ne(1).to(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : Tuple = FalconForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : Optional[int] = 3 SCREAMING_SNAKE_CASE_ : int = '''single_label_classification''' SCREAMING_SNAKE_CASE_ : Optional[int] = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = input_ids.ne(1).to(lowercase_) SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : Union[str, Any] = FalconForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : List[str] = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : List[Any] = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE_ : Optional[Any] = FalconForCausalLM(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : str = model(lowercase_ , use_cache=lowercase_) SCREAMING_SNAKE_CASE_ : Any = input_ids.shape[0] SCREAMING_SNAKE_CASE_ : Dict = model._convert_to_rw_cache(result.past_key_values) SCREAMING_SNAKE_CASE_ : int = model._convert_cache_to_standard_format(lowercase_ , lowercase_) for layer in range(len(lowercase_)): for tensor_idx in range(2): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx])) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE_ : int = 3 SCREAMING_SNAKE_CASE_ : Tuple = '''multi_label_classification''' SCREAMING_SNAKE_CASE_ : Tuple = input_dict['''input_ids'''] SCREAMING_SNAKE_CASE_ : List[str] = input_ids.ne(1).to(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) SCREAMING_SNAKE_CASE_ : int = FalconForSequenceClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Tuple = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(lowercase_ , '''use_cache'''): return SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_class(lowercase_).to(lowercase_) if "use_cache" not in inputs: SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : str = model(**lowercase_) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return SCREAMING_SNAKE_CASE_ : Tuple = ( getattr(lowercase_ , '''decoder_layers''' , lowercase_) or getattr(lowercase_ , '''num_decoder_layers''' , lowercase_) or config.num_hidden_layers ) SCREAMING_SNAKE_CASE_ : str = getattr(lowercase_ , '''num_kv_heads''' , config.num_attention_heads) SCREAMING_SNAKE_CASE_ : Tuple = getattr(lowercase_ , '''d_model''' , config.hidden_size) SCREAMING_SNAKE_CASE_ : Dict = embed_dim // num_attention_heads SCREAMING_SNAKE_CASE_ : int = outputs['''past_key_values'''] self.assertEqual(len(lowercase_) , lowercase_) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = inputs['''input_ids'''].shape for i in range(lowercase_): if config.new_decoder_architecture: SCREAMING_SNAKE_CASE_ : Dict = config.num_attention_heads elif config.multi_query: SCREAMING_SNAKE_CASE_ : Optional[Any] = 1 self.assertEqual(len(past_kv[0]) , 2) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim)) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim)) @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''') SCREAMING_SNAKE_CASE_ : Optional[int] = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''') model.eval() model.to(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer('''My favorite food is''' , return_tensors='''pt''').to(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=19) SCREAMING_SNAKE_CASE_ : List[Any] = tokenizer.batch_decode(lowercase_)[0] self.assertEqual(lowercase_ , lowercase_) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: SCREAMING_SNAKE_CASE_ : Optional[Any] = AutoTokenizer.from_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : str = FalconForCausalLM.from_pretrained(lowercase_) model.eval() model.to(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenizer('''My favorite food is''' , return_tensors='''pt''').to(lowercase_) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=4) model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=4) model.generate(**lowercase_ , num_beams=2 , max_new_tokens=4) @slow def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: SCREAMING_SNAKE_CASE_ : List[str] = AutoTokenizer.from_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = FalconForCausalLM.from_pretrained(lowercase_) model.eval() model.to(device=lowercase_) SCREAMING_SNAKE_CASE_ : int = tokenizer('''My favorite food is''' , return_tensors='''pt''').to(lowercase_) # Test results are the same with and without cache SCREAMING_SNAKE_CASE_ : Any = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=20 , use_cache=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = model.generate(**lowercase_ , do_sample=lowercase_ , max_new_tokens=20 , use_cache=lowercase_) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0)
176
0
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME UpperCAmelCase_ = ['small', 'medium', 'large'] UpperCAmelCase_ = 'lm_head.decoder.weight' UpperCAmelCase_ = 'lm_head.weight' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' UpperCAmelCase__ = torch.load(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase__ = d.pop(SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) torch.save(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) UpperCAmelCase_ = parser.parse_args() for MODEL in DIALOGPT_MODELS: UpperCAmelCase_ = os.path.join(args.dialogpt_path, f"{MODEL}_ft.pkl") UpperCAmelCase_ = f"./DialoGPT-{MODEL}" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
603
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class lowerCAmelCase_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Dict=7 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : int=True , _UpperCAmelCase : Tuple=99 , _UpperCAmelCase : List[Any]=64 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : str=64 , _UpperCAmelCase : str="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=5_12 , _UpperCAmelCase : Tuple=16 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : Optional[Any]=None , ): """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_input_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_labels UpperCAmelCase__ = num_choices UpperCAmelCase__ = scope def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" return MPNetConfig.from_pretrained("""microsoft/mpnet-base""" ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int ): """simple docstring""" UpperCAmelCase__ = MPNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] ): """simple docstring""" UpperCAmelCase__ = MPNetForQuestionAnswering(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = MPNetForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any ): """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = MPNetForMultipleChoice(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase__ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] ): """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = MPNetForTokenClassification(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = config_and_inputs UpperCAmelCase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase_ ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : Tuple = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) lowerCAmelCase_ : List[str] = ( { """feature-extraction""": MPNetModel, """fill-mask""": MPNetForMaskedLM, """question-answering""": MPNetForQuestionAnswering, """text-classification""": MPNetForSequenceClassification, """token-classification""": MPNetForTokenClassification, """zero-shot""": MPNetForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ : List[str] = False lowerCAmelCase_ : Optional[Any] = True def SCREAMING_SNAKE_CASE__ ( self : Any ): """simple docstring""" UpperCAmelCase__ = MPNetModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ): """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*_UpperCAmelCase ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE__ ( self : int ): """simple docstring""" UpperCAmelCase__ = MPNetModel.from_pretrained("""microsoft/mpnet-base""" ) UpperCAmelCase__ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) UpperCAmelCase__ = model(_UpperCAmelCase )[0] UpperCAmelCase__ = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , _UpperCAmelCase ) UpperCAmelCase__ = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) )
603
1
"""simple docstring""" import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL _lowercase = logging.get_logger(__name__) def _snake_case ( snake_case__ : np.ndarray , snake_case__ : Union[int, Iterable[int]] , snake_case__ : bool , snake_case__ : int ): def constraint_to_multiple_of(snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any]=0 , snake_case__ : List[Any]=None ): A = round(val / multiple ) * multiple if max_val is not None and x > max_val: A = math.floor(val / multiple ) * multiple if x < min_val: A = math.ceil(val / multiple ) * multiple return x A = (output_size, output_size) if isinstance(snake_case__ , snake_case__ ) else output_size A , A = get_image_size(snake_case__ ) A , A = output_size # determine new height and width A = output_height / input_height A = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width A = scale_width else: # fit height A = scale_height A = constraint_to_multiple_of(scale_height * input_height , multiple=snake_case__ ) A = constraint_to_multiple_of(scale_width * input_width , multiple=snake_case__ ) return (new_height, new_width) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: str = ['''pixel_values'''] def __init__( self : Optional[Any] ,A_ : bool = True ,A_ : Dict[str, int] = None ,A_ : PILImageResampling = PILImageResampling.BILINEAR ,A_ : bool = False ,A_ : int = 1 ,A_ : bool = True ,A_ : Union[int, float] = 1 / 255 ,A_ : bool = True ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,**A_ : Any ,) -> None: super().__init__(**A_ ) A = size if size is not None else {'height': 384, 'width': 384} A = get_size_dict(A_ ) A = do_resize A = size A = keep_aspect_ratio A = ensure_multiple_of A = resample A = do_rescale A = rescale_factor A = do_normalize A = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN A = image_std if image_std is not None else IMAGENET_STANDARD_STD def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : np.ndarray ,A_ : Dict[str, int] ,A_ : bool = False ,A_ : int = 1 ,A_ : PILImageResampling = PILImageResampling.BICUBIC ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : int ,) -> np.ndarray: A = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) A = get_resize_output_image_size( A_ ,output_size=(size['height'], size['width']) ,keep_aspect_ratio=A_ ,multiple=A_ ,) return resize(A_ ,size=A_ ,resample=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : np.ndarray ,A_ : Union[int, float] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : List[str] ,) -> Tuple: return rescale(A_ ,scale=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : np.ndarray ,A_ : Union[float, List[float]] ,A_ : Union[float, List[float]] ,A_ : Optional[Union[str, ChannelDimension]] = None ,**A_ : Tuple ,) -> np.ndarray: return normalize(A_ ,mean=A_ ,std=A_ ,data_format=A_ ,**A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : ImageInput ,A_ : bool = None ,A_ : int = None ,A_ : bool = None ,A_ : int = None ,A_ : PILImageResampling = None ,A_ : bool = None ,A_ : float = None ,A_ : bool = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[float, List[float]]] = None ,A_ : Optional[Union[str, TensorType]] = None ,A_ : ChannelDimension = ChannelDimension.FIRST ,**A_ : Optional[Any] ,) -> PIL.Image.Image: A = do_resize if do_resize is not None else self.do_resize A = size if size is not None else self.size A = get_size_dict(A_ ) A = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio A = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of A = resample if resample is not None else self.resample A = do_rescale if do_rescale is not None else self.do_rescale A = rescale_factor if rescale_factor is not None else self.rescale_factor A = do_normalize if do_normalize is not None else self.do_normalize A = image_mean if image_mean is not None else self.image_mean A = image_std if image_std is not None else self.image_std A = make_list_of_images(A_ ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. A = [to_numpy_array(A_ ) for image in images] if do_resize: A = [self.resize(image=A_ ,size=A_ ,resample=A_ ) for image in images] if do_rescale: A = [self.rescale(image=A_ ,scale=A_ ) for image in images] if do_normalize: A = [self.normalize(image=A_ ,mean=A_ ,std=A_ ) for image in images] A = [to_channel_dimension_format(A_ ,A_ ) for image in images] A = {'pixel_values': images} return BatchFeature(data=A_ ,tensor_type=A_ ) def _SCREAMING_SNAKE_CASE ( self : Dict ,A_ : Dict ,A_ : List[Tuple] = None ) -> Tuple: A = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(A_ ) != len(A_ ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(A_ ): A = target_sizes.numpy() A = [] for idx in range(len(A_ ) ): A = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) ,size=target_sizes[idx] ,mode='bilinear' ,align_corners=A_ ) A = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(A_ ) else: A = logits.argmax(dim=1 ) A = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
717
"""simple docstring""" import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter _lowercase = True except ImportError: _lowercase = False _lowercase = logging.get_logger(__name__) # pylint: disable=invalid-name def _snake_case ( snake_case__ : Namespace ): return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' @staticmethod def _SCREAMING_SNAKE_CASE ( A_ : ArgumentParser ) -> Any: A = parser.add_parser('add-new-model' ) add_new_model_parser.add_argument('--testing' ,action='store_true' ,help='If in testing mode.' ) add_new_model_parser.add_argument('--testing_file' ,type=A_ ,help='Configuration file on which to run.' ) add_new_model_parser.add_argument( '--path' ,type=A_ ,help='Path to cookiecutter. Should only be used for testing purposes.' ) add_new_model_parser.set_defaults(func=A_ ) def __init__( self : Tuple ,A_ : bool ,A_ : str ,A_ : Tuple=None ,*A_ : List[str] ) -> Union[str, Any]: A = testing A = testing_file A = path def _SCREAMING_SNAKE_CASE ( self : int ) -> int: warnings.warn( 'The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ' 'It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ' 'checks, you should use `transformers-cli add-new-model-like` instead.' ) if not _has_cookiecutter: raise ImportError( 'Model creation dependencies are required to use the `add_new_model` command. Install them by running ' 'the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory A = [directory for directory in os.listdir() if 'cookiecutter-template-' == directory[:22]] if len(A_ ) > 0: raise ValueError( 'Several directories starting with `cookiecutter-template-` in current working directory. ' 'Please clean your directory by removing all folders starting with `cookiecutter-template-` or ' 'change your working directory.' ) A = ( Path(A_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) A = path_to_transformer_root / 'templates' / 'adding_a_new_model' # Execute cookiecutter if not self._testing: cookiecutter(str(A_ ) ) else: with open(self._testing_file ,'r' ) as configuration_file: A = json.load(A_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) ,no_input=A_ ,extra_context=A_ ,) A = [directory for directory in os.listdir() if 'cookiecutter-template-' in directory[:22]][0] # Retrieve configuration with open(directory + '/configuration.json' ,'r' ) as configuration_file: A = json.load(A_ ) A = configuration['lowercase_modelname'] A = configuration['generate_tensorflow_pytorch_and_flax'] os.remove(F'{directory}/configuration.json' ) A = 'PyTorch' in generate_tensorflow_pytorch_and_flax A = 'TensorFlow' in generate_tensorflow_pytorch_and_flax A = 'Flax' in generate_tensorflow_pytorch_and_flax A = F'{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}' os.makedirs(A_ ,exist_ok=A_ ) os.makedirs(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}' ,exist_ok=A_ ) # Tests require submodules as they have parent imports with open(F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py' ,'w' ): pass shutil.move( F'{directory}/__init__.py' ,F'{model_dir}/__init__.py' ,) shutil.move( F'{directory}/configuration_{lowercase_model_name}.py' ,F'{model_dir}/configuration_{lowercase_model_name}.py' ,) def remove_copy_lines(A_ : int ): with open(A_ ,'r' ) as f: A = f.readlines() with open(A_ ,'w' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(A_ ) if output_pytorch: if not self._testing: remove_copy_lines(F'{directory}/modeling_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_{lowercase_model_name}.py' ,F'{model_dir}/modeling_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_{lowercase_model_name}.py' ) if output_tensorflow: if not self._testing: remove_copy_lines(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_tf_{lowercase_model_name}.py' ,F'{model_dir}/modeling_tf_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_tf_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_tf_{lowercase_model_name}.py' ) if output_flax: if not self._testing: remove_copy_lines(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/modeling_flax_{lowercase_model_name}.py' ,F'{model_dir}/modeling_flax_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ,F'{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py' ,) else: os.remove(F'{directory}/modeling_flax_{lowercase_model_name}.py' ) os.remove(F'{directory}/test_modeling_flax_{lowercase_model_name}.py' ) shutil.move( F'{directory}/{lowercase_model_name}.md' ,F'{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md' ,) shutil.move( F'{directory}/tokenization_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}.py' ,) shutil.move( F'{directory}/tokenization_fast_{lowercase_model_name}.py' ,F'{model_dir}/tokenization_{lowercase_model_name}_fast.py' ,) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(A_ : str ,A_ : str ,A_ : List[str] ): # Create temp file A , A = mkstemp() A = False with fdopen(A_ ,'w' ) as new_file: with open(A_ ) as old_file: for line in old_file: new_file.write(A_ ) if line_to_copy_below in line: A = True for line_to_copy in lines_to_copy: new_file.write(A_ ) if not line_found: raise ValueError(F'Line {line_to_copy_below} was not found in file.' ) # Copy the file permissions from the old file to the new file copymode(A_ ,A_ ) # Remove original file remove(A_ ) # Move new file move(A_ ,A_ ) def skip_units(A_ : Dict ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(A_ : Tuple ): with open(A_ ) as datafile: A = [] A = False A = False for line in datafile: if "# To replace in: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# Below: " in line and "##" not in line: A = line.split('"' )[1] A = skip_units(A_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(A_ ,A_ ,A_ ) A = [] elif "# Replace with" in line and "##" not in line: A = [] elif "##" not in line: lines_to_copy.append(A_ ) remove(A_ ) replace_in_files(F'{directory}/to_replace_{lowercase_model_name}.py' ) os.rmdir(A_ )
22
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase_ ( snake_case_ : float , snake_case_ : float , snake_case_ : float ) -> Tuple: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if resistance < 0: raise ValueError("""Resistance cannot be negative""" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
427
import math from numpy import inf from scipy.integrate import quad def _A ( SCREAMING_SNAKE_CASE : float ): """simple docstring""" if num <= 0: raise ValueError("math domain error" ) return quad(SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE , args=(SCREAMING_SNAKE_CASE) )[0] def _A ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" return math.pow(SCREAMING_SNAKE_CASE , z - 1 ) * math.exp(-x ) if __name__ == "__main__": from doctest import testmod testmod()
563
0
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCamelCase_ ( UpperCAmelCase_ : str ) -> Tuple: '''simple docstring''' _UpperCamelCase : Dict = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCamelCase_ ( UpperCAmelCase_ : int ) -> int: '''simple docstring''' _UpperCamelCase : Optional[int] = emb.weight.shape _UpperCamelCase : str = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ , bias=UpperCAmelCase_ ) _UpperCamelCase : int = emb.weight.data return lin_layer def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Dict=None ) -> List[str]: '''simple docstring''' _UpperCamelCase : Optional[Any] = {} for old_key in state_dict.keys(): _UpperCamelCase : Optional[int] = old_key if "moe_layer.experts." in key: if expert_idx is not None: _UpperCamelCase : Any = key.replace('moe_layer.experts.0' , F'''ffn.experts.expert_{expert_idx}''' ) else: _UpperCamelCase : Union[str, Any] = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: _UpperCamelCase : List[Any] = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: _UpperCamelCase : List[Any] = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: _UpperCamelCase : Dict = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: _UpperCamelCase : Union[str, Any] = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: _UpperCamelCase : Tuple = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: _UpperCamelCase : Tuple = key.replace('final_layer_norm' , 'ff_layer_norm' ) _UpperCamelCase : Tuple = state_dict[old_key] return new_dict def lowerCamelCase_ ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : str = WEIGHTS_NAME ) -> Dict: '''simple docstring''' _UpperCamelCase : Any = [] _UpperCamelCase : Optional[int] = 0 os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) for expert in range(UpperCAmelCase_ ): _UpperCamelCase : int = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(UpperCAmelCase_ ): _UpperCamelCase : List[str] = torch.load(UpperCAmelCase_ )['model'] remove_ignore_keys_(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = rename_fairseq_keys(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Union[str, Any] = os.path.join( UpperCAmelCase_ , weights_name.replace('.bin' , F'''-{len(UpperCAmelCase_ )+1:05d}-of-???.bin''' ) ) torch.save(UpperCAmelCase_ , UpperCAmelCase_ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(UpperCAmelCase_ )[0]].dtype ) # Add the last block _UpperCamelCase : Dict = os.path.join(UpperCAmelCase_ , weights_name.replace('.bin' , F'''-{len(UpperCAmelCase_ )+1:05d}-of-???.bin''' ) ) _UpperCamelCase : List[str] = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = rename_fairseq_keys(UpperCAmelCase_ , UpperCAmelCase_ ) _UpperCamelCase : Optional[int] = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(UpperCAmelCase_ ) == 1: _UpperCamelCase : List[str] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) torch.save(UpperCAmelCase_ , UpperCAmelCase_ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(UpperCAmelCase_ , UpperCAmelCase_ ) # Otherwise, let's build the index _UpperCamelCase : Union[str, Any] = {} for idx, shard in enumerate(UpperCAmelCase_ ): _UpperCamelCase : Tuple = weights_name.replace('.bin' , F'''-{idx+1:05d}-of-{len(UpperCAmelCase_ ):05d}.bin''' ) _UpperCamelCase : Dict = os.path.join(UpperCAmelCase_ , weights_name.replace('.bin' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(UpperCAmelCase_ , os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) ) for key in shard: _UpperCamelCase : Optional[Any] = shard_file # Add the metadata _UpperCamelCase : Tuple = {'total_size': total_size} _UpperCamelCase : Dict = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) , 'w' , encoding='utf-8' ) as f: _UpperCamelCase : int = json.dumps(UpperCAmelCase_ , indent=2 , sort_keys=UpperCAmelCase_ ) + '\n' f.write(UpperCAmelCase_ ) return metadata, index if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ , lowerCAmelCase__ = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_2_8, args.dtype, ) lowerCAmelCase__ = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_2_8 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCAmelCase__ = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
717
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """RWKV/rwkv-4-169m-pile""": """https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json""", """RWKV/rwkv-4-430m-pile""": """https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json""", """RWKV/rwkv-4-1b5-pile""": """https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json""", """RWKV/rwkv-4-3b-pile""": """https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json""", """RWKV/rwkv-4-7b-pile""": """https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json""", """RWKV/rwkv-4-14b-pile""": """https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json""", """RWKV/rwkv-raven-1b5""": """https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json""", """RWKV/rwkv-raven-3b""": """https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json""", """RWKV/rwkv-raven-7b""": """https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json""", """RWKV/rwkv-raven-14b""": """https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json""", } class lowercase ( _lowercase ): """simple docstring""" a__ = "rwkv" a__ = {"max_position_embeddings": "context_length"} def __init__( self , __snake_case=5_02_77 , __snake_case=10_24 , __snake_case=40_96 , __snake_case=32 , __snake_case=None , __snake_case=None , __snake_case=1e-5 , __snake_case=0 , __snake_case=0 , __snake_case=6 , __snake_case=False , __snake_case=True , **__snake_case , ): _UpperCamelCase : str = vocab_size _UpperCamelCase : int = context_length _UpperCamelCase : Tuple = hidden_size _UpperCamelCase : Tuple = num_hidden_layers _UpperCamelCase : Dict = attention_hidden_size if attention_hidden_size is not None else hidden_size _UpperCamelCase : Tuple = intermediate_size if intermediate_size is not None else 4 * hidden_size _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : Dict = rescale_every _UpperCamelCase : Optional[Any] = use_cache _UpperCamelCase : str = bos_token_id _UpperCamelCase : Optional[Any] = eos_token_id super().__init__( tie_word_embeddings=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case)
648
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class lowerCAmelCase_ : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 * 4 , _SCREAMING_SNAKE_CASE=32 * 6 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=32 , ) -> List[Any]: __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = is_training __UpperCamelCase = use_auxiliary_loss __UpperCamelCase = num_queries __UpperCamelCase = num_channels __UpperCamelCase = min_size __UpperCamelCase = max_size __UpperCamelCase = num_labels __UpperCamelCase = mask_feature_size def __lowercase( self ) -> Optional[int]: __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _SCREAMING_SNAKE_CASE ) __UpperCamelCase = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_SCREAMING_SNAKE_CASE ) > 0.5 ).float() __UpperCamelCase = (torch.rand((self.batch_size, self.num_labels) , device=_SCREAMING_SNAKE_CASE ) > 0.5).long() __UpperCamelCase = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __lowercase( self ) -> Dict: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def __lowercase( self ) -> str: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: __UpperCamelCase = output.encoder_hidden_states __UpperCamelCase = output.pixel_decoder_hidden_states __UpperCamelCase = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_SCREAMING_SNAKE_CASE ) , config.decoder_config.decoder_layers ) def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]: with torch.no_grad(): __UpperCamelCase = MaskFormerModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __UpperCamelCase = model(pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = model(_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowercase( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: __UpperCamelCase = MaskFormerForInstanceSegmentation(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() def comm_check_on_output(_SCREAMING_SNAKE_CASE ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): __UpperCamelCase = model(pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) comm_check_on_output(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = model( pixel_values=_SCREAMING_SNAKE_CASE , pixel_mask=_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ) comm_check_on_output(_SCREAMING_SNAKE_CASE ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () UpperCAmelCase__ = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def __lowercase( self ) -> Any: __UpperCamelCase = MaskFormerModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> str: self.config_tester.run_common_tests() def __lowercase( self ) -> Tuple: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> Any: __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*_SCREAMING_SNAKE_CASE ) @unittest.skip(reason='MaskFormer does not use inputs_embeds' ) def __lowercase( self ) -> str: pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' ) def __lowercase( self ) -> List[Any]: pass @unittest.skip(reason='MaskFormer is not a generative model' ) def __lowercase( self ) -> str: pass @unittest.skip(reason='MaskFormer does not use token embeddings' ) def __lowercase( self ) -> List[Any]: pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def __lowercase( self ) -> Any: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowercase( self ) -> List[str]: pass def __lowercase( self ) -> Optional[int]: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) @slow def __lowercase( self ) -> int: for model_name in ["facebook/maskformer-swin-small-coco"]: __UpperCamelCase = MaskFormerModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> List[str]: __UpperCamelCase = (self.model_tester.min_size,) * 2 __UpperCamelCase = { 'pixel_values': torch.randn((2, 3, *size) , device=_SCREAMING_SNAKE_CASE ), 'mask_labels': torch.randn((2, 10, *size) , device=_SCREAMING_SNAKE_CASE ), 'class_labels': torch.zeros(2 , 10 , device=_SCREAMING_SNAKE_CASE ).long(), } __UpperCamelCase = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = model(**_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None ) def __lowercase( self ) -> Dict: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , output_hidden_states=_SCREAMING_SNAKE_CASE ) def __lowercase( self ) -> Tuple: __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = model(**_SCREAMING_SNAKE_CASE , output_attentions=_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.attentions is not None ) def __lowercase( self ) -> Optional[int]: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss __UpperCamelCase = self.all_model_classes[1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() __UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() __UpperCamelCase = model(_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ).loss loss.backward() def __lowercase( self ) -> Optional[int]: # only MaskFormerForInstanceSegmentation has the loss __UpperCamelCase = self.all_model_classes[1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() __UpperCamelCase = model(_SCREAMING_SNAKE_CASE , mask_labels=_SCREAMING_SNAKE_CASE , class_labels=_SCREAMING_SNAKE_CASE ) __UpperCamelCase = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() __UpperCamelCase = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't __UpperCamelCase = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() __UpperCamelCase = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _snake_case = 1E-4 def _a ( ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase( self ) -> int: return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' ) if is_vision_available() else None ) def __lowercase( self ) -> Tuple: __UpperCamelCase = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 800, 1_088) ) with torch.no_grad(): __UpperCamelCase = model(**_SCREAMING_SNAKE_CASE ) __UpperCamelCase = torch.tensor( [[-0.0_4_8_2, 0.9_2_2_8, 0.4_9_5_1], [-0.2_5_4_7, 0.8_0_1_7, 0.8_5_2_7], [-0.0_0_6_9, 0.3_3_8_5, -0.0_0_8_9]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) __UpperCamelCase = torch.tensor( [[-0.8_4_2_2, -0.8_4_3_4, -0.9_7_1_8], [-1.0_1_4_4, -0.5_5_6_5, -0.4_1_9_5], [-1.0_0_3_8, -0.4_4_8_4, -0.1_9_6_1]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) __UpperCamelCase = torch.tensor( [[0.2_8_5_2, -0.0_1_5_9, 0.9_7_3_5], [0.6_2_5_4, 0.1_8_5_8, 0.8_5_2_9], [-0.0_6_8_0, -0.4_1_1_6, 1.8_4_1_3]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def __lowercase( self ) -> Dict: __UpperCamelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(_SCREAMING_SNAKE_CASE ) .eval() ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 800, 1_088) ) with torch.no_grad(): __UpperCamelCase = model(**_SCREAMING_SNAKE_CASE ) # masks_queries_logits __UpperCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) __UpperCamelCase = [ [-1.3_7_3_7_1_2_4, -1.7_7_2_4_9_3_7, -1.9_3_6_4_2_3_3], [-1.5_9_7_7_2_8_1, -1.9_8_6_7_9_3_9, -2.1_5_2_3_6_9_5], [-1.5_7_9_5_3_9_8, -1.9_2_6_9_8_3_2, -2.0_9_3_9_4_2], ] __UpperCamelCase = torch.tensor(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) # class_queries_logits __UpperCamelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) __UpperCamelCase = torch.tensor( [ [1.6_5_1_2e0_0, -5.2_5_7_2e0_0, -3.3_5_1_9e0_0], [3.6_1_6_9e-0_2, -5.9_0_2_5e0_0, -2.9_3_1_3e0_0], [1.0_7_6_6e-0_4, -7.7_6_3_0e0_0, -5.1_2_6_3e0_0], ] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def __lowercase( self ) -> Union[str, Any]: __UpperCamelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' ) .to(_SCREAMING_SNAKE_CASE ) .eval() ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_SCREAMING_SNAKE_CASE , (1, 3, 800, 1_088) ) with torch.no_grad(): __UpperCamelCase = model(**_SCREAMING_SNAKE_CASE ) # masks_queries_logits __UpperCamelCase = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) __UpperCamelCase = [[-0.9_0_4_6, -2.6_3_6_6, -4.6_0_6_2], [-3.4_1_7_9, -5.7_8_9_0, -8.8_0_5_7], [-4.9_1_7_9, -7.6_5_6_0, -1_0.7_7_1_1]] __UpperCamelCase = torch.tensor(_SCREAMING_SNAKE_CASE ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) # class_queries_logits __UpperCamelCase = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) __UpperCamelCase = torch.tensor( [[4.7_1_8_8, -3.2_5_8_5, -2.8_8_5_7], [6.6_8_7_1, -2.9_1_8_1, -1.2_4_8_7], [7.2_4_4_9, -2.2_7_6_4, -2.1_8_7_4]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=_SCREAMING_SNAKE_CASE ) ) def __lowercase( self ) -> str: __UpperCamelCase = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(_SCREAMING_SNAKE_CASE ) .eval() ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) __UpperCamelCase = inputs['pixel_values'].to(_SCREAMING_SNAKE_CASE ) __UpperCamelCase = [el.to(_SCREAMING_SNAKE_CASE ) for el in inputs['mask_labels']] __UpperCamelCase = [el.to(_SCREAMING_SNAKE_CASE ) for el in inputs['class_labels']] with torch.no_grad(): __UpperCamelCase = model(**_SCREAMING_SNAKE_CASE ) self.assertTrue(outputs.loss is not None )
383
import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder _snake_case = 'base_with_context' def _a ( __lowercase , __lowercase ) -> str: """simple docstring""" __UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['token_embedder']['embedding'] ) ) __UpperCamelCase = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__lowercase ) for lyr_num, lyr in enumerate(model.encoders ): __UpperCamelCase = weights[F"""layers_{lyr_num}"""] __UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) __UpperCamelCase = ly_weight['attention'] __UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def _a ( __lowercase , __lowercase ) -> Tuple: """simple docstring""" __UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['input_proj']['kernel'].T ) ) __UpperCamelCase = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__lowercase ) for lyr_num, lyr in enumerate(model.encoders ): __UpperCamelCase = weights[F"""layers_{lyr_num}"""] __UpperCamelCase = ly_weight['attention'] __UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) __UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['pre_attention_layer_norm']['scale'] ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['encoder_norm']['scale'] ) ) return model def _a ( __lowercase , __lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['time_emb_dense0']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['time_emb_dense1']['kernel'].T ) ) __UpperCamelCase = nn.Parameter( torch.FloatTensor(weights['Embed_0']['embedding'] ) , requires_grad=__lowercase ) __UpperCamelCase = nn.Parameter( torch.FloatTensor(weights['continuous_inputs_projection']['kernel'].T ) ) for lyr_num, lyr in enumerate(model.decoders ): __UpperCamelCase = weights[F"""layers_{lyr_num}"""] __UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['pre_self_attention_layer_norm']['scale'] ) ) __UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_0']['DenseGeneral_0']['kernel'].T ) ) __UpperCamelCase = ly_weight['self_attention'] __UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) __UpperCamelCase = ly_weight['MultiHeadDotProductAttention_0'] __UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['query']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['key']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['value']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(attention_weights['out']['kernel'].T ) ) __UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['pre_cross_attention_layer_norm']['scale'] ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['pre_mlp_layer_norm']['scale'] ) ) __UpperCamelCase = nn.Parameter( torch.FloatTensor(ly_weight['FiLMLayer_1']['DenseGeneral_0']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_0']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wi_1']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(ly_weight['mlp']['wo']['kernel'].T ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['decoder_norm']['scale'] ) ) __UpperCamelCase = nn.Parameter(torch.FloatTensor(weights['spec_out_dense']['kernel'].T ) ) return model def _a ( __lowercase ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = checkpoints.load_tax_checkpoint(args.checkpoint_path ) __UpperCamelCase = jnp.tree_util.tree_map(onp.array , __lowercase ) __UpperCamelCase = [ 'from __gin__ import dynamic_registration', 'from music_spectrogram_diffusion.models.diffusion import diffusion_utils', 'diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0', 'diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()', ] __UpperCamelCase = os.path.join(args.checkpoint_path , '..' , 'config.gin' ) __UpperCamelCase = inference.parse_training_gin_file(__lowercase , __lowercase ) __UpperCamelCase = inference.InferenceModel(args.checkpoint_path , __lowercase ) __UpperCamelCase = DDPMScheduler(beta_schedule='squaredcos_cap_v2' , variance_type='fixed_large' ) __UpperCamelCase = SpectrogramNotesEncoder( max_length=synth_model.sequence_length['inputs'] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) __UpperCamelCase = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length['targets_context'] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj='gated-gelu' , ) __UpperCamelCase = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length['targets_context'] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) __UpperCamelCase = load_notes_encoder(ta_checkpoint['target']['token_encoder'] , __lowercase ) __UpperCamelCase = load_continuous_encoder(ta_checkpoint['target']['continuous_encoder'] , __lowercase ) __UpperCamelCase = load_decoder(ta_checkpoint['target']['decoder'] , __lowercase ) __UpperCamelCase = OnnxRuntimeModel.from_pretrained('kashif/soundstream_mel_decoder' ) __UpperCamelCase = SpectrogramDiffusionPipeline( notes_encoder=__lowercase , continuous_encoder=__lowercase , decoder=__lowercase , scheduler=__lowercase , melgan=__lowercase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--output_path', default=None, type=str, required=True, help='Path to the converted model.') parser.add_argument( '--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.' ) parser.add_argument( '--checkpoint_path', default=F'''{MODEL}/checkpoint_500000''', type=str, required=False, help='Path to the original jax model checkpoint.', ) _snake_case = parser.parse_args() main(args)
383
1
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.17.0.dev0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") _a : List[str] = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : """simple docstring""" A = field( default='''tab_fact''' , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) A = field( default='''tab_fact''' , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} , ) A = field( default=10_24 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) A = field( default=lowerCAmelCase__ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) A = field( default=lowerCAmelCase__ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) A = field( default=lowerCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) A = field( default=lowerCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) A = field( default=lowerCAmelCase__ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) A = field( default=lowerCAmelCase__ , metadata={'''help''': '''A csv or a json file containing the training data.'''} ) A = field( default=lowerCAmelCase__ , metadata={'''help''': '''A csv or a json file containing the validation data.'''} ) A = field(default=lowerCAmelCase__ , metadata={'''help''': '''A csv or a json file containing the test data.'''} ) def snake_case_ ( self ): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task, a training/validation file or a dataset name." ) else: lowerCAmelCase__ :List[Any] = self.train_file.split("." )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." lowerCAmelCase__ :Optional[int] = self.validation_file.split("." )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class _UpperCAmelCase : """simple docstring""" A = field( default=lowerCAmelCase__ , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) A = field( default=lowerCAmelCase__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) A = field( default=lowerCAmelCase__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) A = field( default=lowerCAmelCase__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) A = field( default=lowerCAmelCase__ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) A = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) A = field( default=lowerCAmelCase__ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def snake_case__ ( ): lowerCAmelCase__ :str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ :Any = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ :int = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) lowerCAmelCase__ :Optional[Any] = training_args.get_process_log_level() logger.setLevel(_A ) datasets.utils.logging.set_verbosity(_A ) transformers.utils.logging.set_verbosity(_A ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowerCAmelCase__ :Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase__ :Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. lowerCAmelCase__ :Union[str, Any] = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. lowerCAmelCase__ :Dict = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: lowerCAmelCase__ :List[str] = data_args.train_file.split("." )[-1] lowerCAmelCase__ :Dict = data_args.test_file.split("." )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." lowerCAmelCase__ :List[Any] = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`." ) for key in data_files.keys(): logger.info(F'''load a local file for {key}: {data_files[key]}''' ) if data_args.train_file.endswith(".csv" ): # Loading a dataset from local csv files lowerCAmelCase__ :Optional[int] = load_dataset("csv" , data_files=_A , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files lowerCAmelCase__ :int = load_dataset("json" , data_files=_A , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels lowerCAmelCase__ :List[str] = raw_datasets["train"].features["label"].names lowerCAmelCase__ :Optional[int] = len(_A ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase__ :int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer lowerCAmelCase__ :Dict = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_A , ) lowerCAmelCase__ :Any = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_A , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: lowerCAmelCase__ :str = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCAmelCase__ :int = False # Some models have set the order of the labels to use, so let's make sure we do use it. lowerCAmelCase__ :Optional[Any] = {"Refused": 0, "Entailed": 1} lowerCAmelCase__ :Tuple = {0: "Refused", 1: "Entailed"} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F'''The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the''' F'''model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.''' ) lowerCAmelCase__ :str = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(UpperCAmelCase : Optional[Any] ): # Tokenize the texts def _convert_table_text_to_pandas(UpperCAmelCase : Any ): lowerCAmelCase__ :Dict = [_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )] lowerCAmelCase__ :Optional[Any] = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd lowerCAmelCase__ :Optional[Any] = examples["statement"] lowerCAmelCase__ :Tuple = list(map(_convert_table_text_to_pandas , examples["table_text"] ) ) lowerCAmelCase__ :int = tokenizer(_A , _A , padding=_A , max_length=_A , truncation=_A ) lowerCAmelCase__ :Any = examples["label"] return result with training_args.main_process_first(desc="dataset map pre-processing" ): lowerCAmelCase__ :Tuple = raw_datasets.map( _A , batched=_A , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) lowerCAmelCase__ :str = raw_datasets["train"] if data_args.max_train_samples is not None: lowerCAmelCase__ :List[Any] = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) lowerCAmelCase__ :str = raw_datasets["validation"] if data_args.max_eval_samples is not None: lowerCAmelCase__ :int = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_predict requires a test dataset" ) lowerCAmelCase__ :int = raw_datasets["test"] if data_args.max_predict_samples is not None: lowerCAmelCase__ :Tuple = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_A ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(UpperCAmelCase : EvalPrediction ): lowerCAmelCase__ :str = p.predictions[0] if isinstance(p.predictions , _A ) else p.predictions lowerCAmelCase__ :Union[str, Any] = np.argmax(_A , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCAmelCase__ :int = default_data_collator elif training_args.fpaa: lowerCAmelCase__ :Optional[int] = DataCollatorWithPadding(_A , pad_to_multiple_of=8 ) else: lowerCAmelCase__ :str = None # Initialize our Trainer lowerCAmelCase__ :Any = Trainer( model=_A , args=_A , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_A , tokenizer=_A , data_collator=_A , ) # Training if training_args.do_train: lowerCAmelCase__ :List[str] = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase__ :Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase__ :Optional[Any] = last_checkpoint lowerCAmelCase__ :Optional[int] = trainer.train(resume_from_checkpoint=_A ) lowerCAmelCase__ :Optional[Any] = train_result.metrics lowerCAmelCase__ :Union[str, Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_A ) ) lowerCAmelCase__ :Tuple = min(_A , len(_A ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , _A ) trainer.save_metrics("train" , _A ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCAmelCase__ :Optional[Any] = trainer.evaluate(eval_dataset=_A ) lowerCAmelCase__ :str = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_A ) lowerCAmelCase__ :str = min(_A , len(_A ) ) trainer.log_metrics("eval" , _A ) trainer.save_metrics("eval" , _A ) if training_args.do_predict: logger.info("*** Predict ***" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. lowerCAmelCase__ :List[str] = predict_dataset.remove_columns("label" ) lowerCAmelCase__ :int = trainer.predict(_A , metric_key_prefix="predict" ).predictions lowerCAmelCase__ :Optional[Any] = np.argmax(_A , axis=1 ) lowerCAmelCase__ :List[Any] = os.path.join(training_args.output_dir , "predict_results_tabfact.txt" ) if trainer.is_world_process_zero(): with open(_A , "w" ) as writer: logger.info("***** Predict Results *****" ) writer.write("index\tprediction\n" ) for index, item in enumerate(_A ): lowerCAmelCase__ :Dict = label_list[item] writer.write(F'''{index}\t{item}\n''' ) lowerCAmelCase__ :Union[str, Any] = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: trainer.push_to_hub(**_A ) else: trainer.create_model_card(**_A ) def snake_case__ ( UpperCAmelCase : List[str] ): main() if __name__ == "__main__": main()
709
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _a : List[Any] = 16 _a : Tuple = 32 def snake_case__ ( UpperCAmelCase : Accelerator , UpperCAmelCase : int = 1_6 ): lowerCAmelCase__ :Tuple = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCAmelCase__ :Any = load_dataset("glue" , "mrpc" ) def tokenize_function(UpperCAmelCase : Dict ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ :Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=UpperCAmelCase , max_length=UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ :Any = datasets.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ :List[str] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(UpperCAmelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ :Optional[int] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ :int = 1_6 elif accelerator.mixed_precision != "no": lowerCAmelCase__ :Optional[int] = 8 else: lowerCAmelCase__ :List[Any] = None return tokenizer.pad( UpperCAmelCase , padding="longest" , max_length=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. lowerCAmelCase__ :Dict = DataLoader( tokenized_datasets["train"] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = DataLoader( tokenized_datasets["validation"] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _a : List[Any] = mocked_dataloaders # noqa: F811 def snake_case__ ( UpperCAmelCase : Tuple , UpperCAmelCase : str ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , UpperCAmelCase ) == "1": lowerCAmelCase__ :Tuple = 2 # New Code # lowerCAmelCase__ :Tuple = int(args.gradient_accumulation_steps ) lowerCAmelCase__ :str = int(args.local_sgd_steps ) # Initialize accelerator lowerCAmelCase__ :Optional[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=UpperCAmelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ :Union[str, Any] = config["lr"] lowerCAmelCase__ :int = int(config["num_epochs"] ) lowerCAmelCase__ :List[Any] = int(config["seed"] ) lowerCAmelCase__ :int = int(config["batch_size"] ) lowerCAmelCase__ :Tuple = evaluate.load("glue" , "mrpc" ) set_seed(UpperCAmelCase ) lowerCAmelCase__ ,lowerCAmelCase__ :Any = get_dataloaders(UpperCAmelCase , UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ :Dict = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ :Any = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ :Optional[int] = AdamW(params=model.parameters() , lr=UpperCAmelCase ) # Instantiate scheduler lowerCAmelCase__ :List[Any] = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ :Tuple = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Now we train the model for epoch in range(UpperCAmelCase ): model.train() with LocalSGD( accelerator=UpperCAmelCase , model=UpperCAmelCase , local_sgd_steps=UpperCAmelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(UpperCAmelCase ): lowerCAmelCase__ :List[str] = model(**UpperCAmelCase ) lowerCAmelCase__ :List[Any] = output.loss accelerator.backward(UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ :Dict = model(**UpperCAmelCase ) lowerCAmelCase__ :List[Any] = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ ,lowerCAmelCase__ :List[Any] = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=UpperCAmelCase , references=UpperCAmelCase , ) lowerCAmelCase__ :Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , UpperCAmelCase ) def snake_case__ ( ): lowerCAmelCase__ :Union[str, Any] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=UpperCAmelCase , default=UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=UpperCAmelCase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument( "--local_sgd_steps" , type=UpperCAmelCase , default=8 , help="Number of local SGD steps or None to disable local SGD" ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) lowerCAmelCase__ :Tuple = parser.parse_args() lowerCAmelCase__ :Any = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": main()
111
0
import argparse import importlib from pathlib import Path # Test all the extensions added in the setup snake_case = [ """kernels/rwkv/wkv_cuda.cu""", """kernels/rwkv/wkv_op.cpp""", """kernels/deformable_detr/ms_deform_attn.h""", """kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh""", """models/graphormer/algos_graphormer.pyx""", ] def SCREAMING_SNAKE_CASE__ ( snake_case__ :Any ) -> Dict: # Test all the extensions added in the setup for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument("""--check_lib""", action="""store_true""", help="""Whether to check the build or the actual package.""") snake_case = parser.parse_args() if args.check_lib: snake_case = importlib.import_module("""transformers""") snake_case = Path(transformers_module.__file__).parent else: snake_case = Path.cwd() / """build/lib/transformers""" if not test_custom_files_are_present(transformers_path): raise ValueError("""The built release does not contain the custom files. Fix this before going further!""")
67
from typing import Any import numpy as np def SCREAMING_SNAKE_CASE__ ( snake_case__ :np.ndarray ) -> bool: return np.array_equal(snake_case__ , matrix.conjugate().T ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :np.ndarray , snake_case__ :np.ndarray ) -> Any: _lowercase = v.conjugate().T _lowercase = v_star.dot(snake_case__ ) assert isinstance(snake_case__ , np.ndarray ) return (v_star_dot.dot(snake_case__ )) / (v_star.dot(snake_case__ )) def SCREAMING_SNAKE_CASE__ ( ) -> None: _lowercase = np.array([[2, 2 + 1J, 4], [2 - 1J, 3, 1J], [4, -1J, 1]] ) _lowercase = np.array([[1], [2], [3]] ) assert is_hermitian(snake_case__ ), F"""{a} is not hermitian.""" print(rayleigh_quotient(snake_case__ , snake_case__ ) ) _lowercase = np.array([[1, 2, 4], [2, 3, -1], [4, -1, 1]] ) assert is_hermitian(snake_case__ ), F"""{a} is not hermitian.""" assert rayleigh_quotient(snake_case__ , snake_case__ ) == float(3 ) if __name__ == "__main__": import doctest doctest.testmod() tests()
67
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() a_ : Union[str, Any] = logging.get_logger(__name__) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=False): SCREAMING_SNAKE_CASE = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''')) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''')) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''')) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''')) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''')) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''')) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''')) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''')) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''')) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''')) # projection layer + position embeddings rename_keys.extend( [ ('cls_token', 'deit.embeddings.cls_token'), ('dist_token', 'deit.embeddings.distillation_token'), ('patch_embed.proj.weight', 'deit.embeddings.patch_embeddings.projection.weight'), ('patch_embed.proj.bias', 'deit.embeddings.patch_embeddings.projection.bias'), ('pos_embed', 'deit.embeddings.position_embeddings'), ]) if base_model: # layernorm + pooler rename_keys.extend( [ ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ('pre_logits.fc.weight', 'pooler.dense.weight'), ('pre_logits.fc.bias', 'pooler.dense.bias'), ]) # if just the base model, we should remove "deit" from all keys that start with "deit" SCREAMING_SNAKE_CASE = [(pair[0], pair[1][4:]) if pair[1].startswith('deit') else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('norm.weight', 'deit.layernorm.weight'), ('norm.bias', 'deit.layernorm.bias'), ('head.weight', 'cls_classifier.weight'), ('head.bias', 'cls_classifier.bias'), ('head_dist.weight', 'distillation_classifier.weight'), ('head_dist.bias', 'distillation_classifier.bias'), ]) return rename_keys def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=False): for i in range(config.num_hidden_layers): if base_model: SCREAMING_SNAKE_CASE = '' else: SCREAMING_SNAKE_CASE = 'deit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''') SCREAMING_SNAKE_CASE = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''') # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = dct.pop(_UpperCAmelCase) SCREAMING_SNAKE_CASE = val def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE = Image.open(requests.get(_UpperCAmelCase , stream=_UpperCAmelCase).raw) return im @torch.no_grad() def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): SCREAMING_SNAKE_CASE = DeiTConfig() # all deit models have fine-tuned heads SCREAMING_SNAKE_CASE = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size SCREAMING_SNAKE_CASE = 1000 SCREAMING_SNAKE_CASE = 'huggingface/label-files' SCREAMING_SNAKE_CASE = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset') , 'r')) SCREAMING_SNAKE_CASE = {int(_UpperCAmelCase): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = int(deit_name[-6:-4]) SCREAMING_SNAKE_CASE = int(deit_name[-3:]) # size of the architecture if deit_name[9:].startswith('tiny'): SCREAMING_SNAKE_CASE = 192 SCREAMING_SNAKE_CASE = 768 SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = 3 elif deit_name[9:].startswith('small'): SCREAMING_SNAKE_CASE = 384 SCREAMING_SNAKE_CASE = 1536 SCREAMING_SNAKE_CASE = 12 SCREAMING_SNAKE_CASE = 6 if deit_name[9:].startswith('base'): pass elif deit_name[4:].startswith('large'): SCREAMING_SNAKE_CASE = 1024 SCREAMING_SNAKE_CASE = 4096 SCREAMING_SNAKE_CASE = 24 SCREAMING_SNAKE_CASE = 16 # load original model from timm SCREAMING_SNAKE_CASE = timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase) timm_model.eval() # load state_dict of original model, remove and rename some keys SCREAMING_SNAKE_CASE = timm_model.state_dict() SCREAMING_SNAKE_CASE = create_rename_keys(_UpperCAmelCase , _UpperCAmelCase) for src, dest in rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) read_in_q_k_v(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) # load HuggingFace model SCREAMING_SNAKE_CASE = DeiTForImageClassificationWithTeacher(_UpperCAmelCase).eval() model.load_state_dict(_UpperCAmelCase) # Check outputs on an image, prepared by DeiTImageProcessor SCREAMING_SNAKE_CASE = int( (256 / 224) * config.image_size) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 SCREAMING_SNAKE_CASE = DeiTImageProcessor(size=_UpperCAmelCase , crop_size=config.image_size) SCREAMING_SNAKE_CASE = image_processor(images=prepare_img() , return_tensors='pt') SCREAMING_SNAKE_CASE = encoding['pixel_values'] SCREAMING_SNAKE_CASE = model(_UpperCAmelCase) SCREAMING_SNAKE_CASE = timm_model(_UpperCAmelCase) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_UpperCAmelCase , outputs.logits , atol=1e-3) Path(_UpperCAmelCase).mkdir(exist_ok=_UpperCAmelCase) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''') model.save_pretrained(_UpperCAmelCase) print(F'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(_UpperCAmelCase) if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) a_ : int = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
709
from __future__ import annotations import time a_ : Tuple = list[tuple[int, int]] a_ : Optional[int] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a_ : Dict = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right class _snake_case : def __init__( self , a , a , a , a , a) -> int: SCREAMING_SNAKE_CASE = pos_x SCREAMING_SNAKE_CASE = pos_y SCREAMING_SNAKE_CASE = (pos_y, pos_x) SCREAMING_SNAKE_CASE = goal_x SCREAMING_SNAKE_CASE = goal_y SCREAMING_SNAKE_CASE = parent class _snake_case : def __init__( self , a , a) -> Dict: SCREAMING_SNAKE_CASE = Node(start[1] , start[0] , goal[1] , goal[0] , a) SCREAMING_SNAKE_CASE = Node(goal[1] , goal[0] , goal[1] , goal[0] , a) SCREAMING_SNAKE_CASE = [self.start] SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self) -> Path | None: while self.node_queue: SCREAMING_SNAKE_CASE = self.node_queue.pop(0) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE = True return self.retrace_path(a) SCREAMING_SNAKE_CASE = self.get_successors(a) for node in successors: self.node_queue.append(a) if not self.reached: return [self.start.pos] return None def SCREAMING_SNAKE_CASE__ ( self , a) -> list[Node]: SCREAMING_SNAKE_CASE = [] for action in delta: SCREAMING_SNAKE_CASE = parent.pos_x + action[1] SCREAMING_SNAKE_CASE = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(a) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node(a , a , self.target.pos_y , self.target.pos_x , a)) return successors def SCREAMING_SNAKE_CASE__ ( self , a) -> Path: SCREAMING_SNAKE_CASE = node SCREAMING_SNAKE_CASE = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) SCREAMING_SNAKE_CASE = current_node.parent path.reverse() return path class _snake_case : def __init__( self , a , a) -> Tuple: SCREAMING_SNAKE_CASE = BreadthFirstSearch(a , a) SCREAMING_SNAKE_CASE = BreadthFirstSearch(a , a) SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self) -> Path | None: while self.fwd_bfs.node_queue or self.bwd_bfs.node_queue: SCREAMING_SNAKE_CASE = self.fwd_bfs.node_queue.pop(0) SCREAMING_SNAKE_CASE = self.bwd_bfs.node_queue.pop(0) if current_bwd_node.pos == current_fwd_node.pos: SCREAMING_SNAKE_CASE = True return self.retrace_bidirectional_path( a , a) SCREAMING_SNAKE_CASE = current_bwd_node SCREAMING_SNAKE_CASE = current_fwd_node SCREAMING_SNAKE_CASE = { self.fwd_bfs: self.fwd_bfs.get_successors(a), self.bwd_bfs: self.bwd_bfs.get_successors(a), } for bfs in [self.fwd_bfs, self.bwd_bfs]: for node in successors[bfs]: bfs.node_queue.append(a) if not self.reached: return [self.fwd_bfs.start.pos] return None def SCREAMING_SNAKE_CASE__ ( self , a , a) -> Path: SCREAMING_SNAKE_CASE = self.fwd_bfs.retrace_path(a) SCREAMING_SNAKE_CASE = self.bwd_bfs.retrace_path(a) bwd_path.pop() bwd_path.reverse() SCREAMING_SNAKE_CASE = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] import doctest doctest.testmod() a_ : Union[str, Any] = (0, 0) a_ : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a_ : Optional[Any] = time.time() a_ : Union[str, Any] = BreadthFirstSearch(init, goal) a_ : Optional[Any] = bfs.search() a_ : List[str] = time.time() - start_bfs_time print('Unidirectional BFS computation time : ', bfs_time) a_ : Optional[int] = time.time() a_ : Union[str, Any] = BidirectionalBreadthFirstSearch(init, goal) a_ : List[Any] = bd_bfs.search() a_ : List[str] = time.time() - start_bd_bfs_time print('Bidirectional BFS computation time : ', bd_bfs_time)
444
0
from __future__ import annotations import numpy as np def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' return np.maximum(0 ,_lowerCAmelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
569
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _UpperCAmelCase : def _lowerCamelCase ( self ): torch.manual_seed(0 ) A_ : Optional[Any] = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A_ : Tuple = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A_ : Any = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) A_ : str = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=a__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) A_ : Tuple = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowerCamelCase ( self ): torch.manual_seed(0 ) A_ : Tuple = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A_ : Dict = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) A_ : int = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.414 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) A_ : Union[str, Any] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , thresholding=a__ , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) A_ : Union[str, Any] = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) A_ : List[Any] = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _lowerCamelCase ( self ): A_ : str = self.get_dummy_components() A_ : List[Any] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) A_ : Optional[Any] = self.get_dummy_inputs(a__ ) A_ : List[str] = inputs["""prompt"""] A_ : str = inputs["""generator"""] A_ : Tuple = inputs["""num_inference_steps"""] A_ : Optional[int] = inputs["""output_type"""] if "image" in inputs: A_ : List[str] = inputs["""image"""] else: A_ : Optional[int] = None if "mask_image" in inputs: A_ : int = inputs["""mask_image"""] else: A_ : str = None if "original_image" in inputs: A_ : List[Any] = inputs["""original_image"""] else: A_ : int = None A_ , A_ : Optional[int] = pipe.encode_prompt(a__ ) # inputs with prompt converted to embeddings A_ : Optional[int] = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: A_ : str = image if mask_image is not None: A_ : Dict = mask_image if original_image is not None: A_ : Optional[int] = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(a__ , a__ , a__ ) A_ : List[Any] = pipe(**a__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a__ ) A_ : Union[str, Any] = self.pipeline_class.from_pretrained(a__ ) pipe_loaded.to(a__ ) pipe_loaded.set_progress_bar_config(disable=a__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(a__ , a__ ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , ) A_ : Optional[int] = self.get_dummy_inputs(a__ ) A_ : int = inputs["""generator"""] A_ : List[Any] = inputs["""num_inference_steps"""] A_ : Dict = inputs["""output_type"""] # inputs with prompt converted to embeddings A_ : Dict = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: A_ : Any = image if mask_image is not None: A_ : Optional[int] = mask_image if original_image is not None: A_ : int = original_image A_ : Optional[Any] = pipe_loaded(**a__ )[0] A_ : Optional[int] = np.abs(to_np(a__ ) - to_np(a__ ) ).max() self.assertLess(a__ , 1E-4 ) def _lowerCamelCase ( self ): A_ : Dict = self.get_dummy_components() A_ : Optional[Any] = self.pipeline_class(**a__ ) pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) A_ : Any = self.get_dummy_inputs(a__ ) A_ : List[Any] = pipe(**a__ )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(a__ ) A_ : List[Any] = self.pipeline_class.from_pretrained(a__ ) pipe_loaded.to(a__ ) pipe_loaded.set_progress_bar_config(disable=a__ ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests A_ : Optional[Any] = self.get_dummy_inputs(a__ ) A_ : Optional[Any] = pipe_loaded(**a__ )[0] A_ : Union[str, Any] = np.abs(to_np(a__ ) - to_np(a__ ) ).max() self.assertLess(a__ , 1E-4 )
569
1
"""simple docstring""" from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging __snake_case = logging.get_logger(__name__) def __lowerCAmelCase ( lowercase : List[Any] , lowercase : Any ) -> List[Any]: """simple docstring""" try: with open(lowercase , "rb" ) as flax_state_f: snake_case : List[str] = from_bytes(lowercase , flax_state_f.read() ) except UnpicklingError as e: try: with open(lowercase ) as f: if f.read().startswith("version" ): raise OSError( "You seem to have cloned a repository without having git-lfs installed. Please" " install git-lfs and run `git lfs install` followed by `git lfs pull` in the" " folder you cloned." ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(F'Unable to convert {model_file} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(lowercase , lowercase ) def __lowerCAmelCase ( lowercase : List[Any] , lowercase : int ) -> Union[str, Any]: """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( "Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see" " https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation" " instructions." ) raise # check if we have bf16 weights snake_case : str = flatten_dict(jax.tree_util.tree_map(lambda lowercase : x.dtype == jnp.bfloataa , lowercase ) ).values() if any(lowercase ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( "Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` " "before loading those in PyTorch model." ) snake_case : str = jax.tree_util.tree_map( lambda lowercase : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , lowercase ) snake_case : Optional[Any] = "" snake_case : List[str] = flatten_dict(lowercase , sep="." ) snake_case : Optional[Any] = pt_model.state_dict() # keep track of unexpected & missing keys snake_case : Union[str, Any] = [] snake_case : Optional[Any] = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): snake_case : Tuple = flax_key_tuple.split("." ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: snake_case : str = flax_key_tuple_array[:-1] + ["weight"] snake_case : Optional[Any] = jnp.transpose(lowercase , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": snake_case : str = flax_key_tuple_array[:-1] + ["weight"] snake_case : Dict = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": snake_case : Dict = flax_key_tuple_array[:-1] + ["weight"] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(lowercase ): snake_case : Optional[int] = ( flax_key_tuple_string.replace("_0" , ".0" ) .replace("_1" , ".1" ) .replace("_2" , ".2" ) .replace("_3" , ".3" ) .replace("_4" , ".4" ) .replace("_5" , ".5" ) .replace("_6" , ".6" ) .replace("_7" , ".7" ) .replace("_8" , ".8" ) .replace("_9" , ".9" ) ) snake_case : Tuple = ".".join(lowercase ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict snake_case : Any = np.asarray(lowercase ) if not isinstance(lowercase , np.ndarray ) else flax_tensor snake_case : Optional[int] = torch.from_numpy(lowercase ) # remove from missing keys missing_keys.remove(lowercase ) else: # weight is not expected by PyTorch model unexpected_keys.append(lowercase ) pt_model.load_state_dict(lowercase ) # re-transform missing_keys to list snake_case : Optional[Any] = list(lowercase ) if len(lowercase ) > 0: logger.warning( "Some weights of the Flax model were not used when initializing the PyTorch model" F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' " (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This" F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " FlaxBertForSequenceClassification model)." ) if len(lowercase ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' " use it for predictions and inference." ) return pt_model
721
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case = { """configuration_distilbert""": [ """DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DistilBertConfig""", """DistilBertOnnxConfig""", ], """tokenization_distilbert""": ["""DistilBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ["""DistilBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """DistilBertForMaskedLM""", """DistilBertForMultipleChoice""", """DistilBertForQuestionAnswering""", """DistilBertForSequenceClassification""", """DistilBertForTokenClassification""", """DistilBertModel""", """DistilBertPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDistilBertForMaskedLM""", """TFDistilBertForMultipleChoice""", """TFDistilBertForQuestionAnswering""", """TFDistilBertForSequenceClassification""", """TFDistilBertForTokenClassification""", """TFDistilBertMainLayer""", """TFDistilBertModel""", """TFDistilBertPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ """FlaxDistilBertForMaskedLM""", """FlaxDistilBertForMultipleChoice""", """FlaxDistilBertForQuestionAnswering""", """FlaxDistilBertForSequenceClassification""", """FlaxDistilBertForTokenClassification""", """FlaxDistilBertModel""", """FlaxDistilBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_distilbert import ( DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DistilBertConfig, DistilBertOnnxConfig, ) from .tokenization_distilbert import DistilBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_distilbert_fast import DistilBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_distilbert import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, DistilBertPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertMainLayer, TFDistilBertModel, TFDistilBertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, FlaxDistilBertPreTrainedModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
117
0
"""simple docstring""" def _lowerCamelCase( a ): __a = [0] * len(a ) for i in range(1 , len(a ) ): # use last results for better performance - dynamic programming __a = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: __a = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 __a = j return prefix_result def _lowerCamelCase( a ): return max(prefix_function(a ) ) if __name__ == "__main__": import doctest doctest.testmod()
528
"""simple docstring""" import argparse import logging import os import datasets import tensorflow as tf from transformers import AutoTokenizer SCREAMING_SNAKE_CASE__:List[str] = logging.getLogger(__name__) def _lowerCamelCase( ): __a = argparse.ArgumentParser( description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." ) parser.add_argument( "--dataset_name" , type=a , default="wikitext" , help="Name of the training. Explore datasets at: hf.co/datasets." , ) parser.add_argument( "--dataset_config" , type=a , default="wikitext-103-raw-v1" , help="Configuration name of the dataset." ) parser.add_argument( "--tokenizer_name_or_path" , type=a , default="sayakpaul/unigram-tokenizer-wikitext" , help="Tokenizer identifier. Can be a local filepath or a Hub identifier." , ) parser.add_argument( "--shard_size" , type=a , default=1_0_0_0 , help="Number of entries to go in a single shard." , ) parser.add_argument("--split" , type=a , default="train" , choices=["train", "test", "validation"] ) parser.add_argument( "--limit" , default=a , type=a , help="Limit the number of shards (used for debugging)." , ) parser.add_argument( "--max_length" , type=a , default=5_1_2 , help="Maximum sequence length. For training on TPUs, it helps to have a maximum" " sequence length that is a multiple of 8." , ) parser.add_argument( "--output_dir" , default="tf-tpu" , type=a , help="Output directory where the TFRecord shards will be saved. If the" " path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord" " shards will be directly saved to a Google Cloud Storage bucket." , ) __a = parser.parse_args() return args def _lowerCamelCase( a ): def fn(a ): return tokenizer(examples["text"] ) return fn def _lowerCamelCase( a ): __a = [] for i in range(len(tokenized_data["input_ids"] ) ): __a = { "input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ), "attention_mask": tf.train.Feature( intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ), } __a = tf.train.Features(feature=a ) __a = tf.train.Example(features=a ) __a = example.SerializeToString() records.append(a ) return records def _lowerCamelCase( a ): __a = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split ) if args.limit is not None: __a = min(len(a ) , args.limit ) __a = dataset.select(range(a ) ) print(F"Limiting the dataset to {args.limit} entries." ) __a = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path ) # Handle output directory creation. # For serializing into a Google Cloud Storage Bucket, one needs to first # create a bucket. if "gs" not in args.output_dir: if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) __a = os.path.join(args.output_dir , args.split ) if not os.path.exists(a ): os.makedirs(a ) else: __a = os.path.join(args.output_dir , args.split ) # Tokenize the whole dataset at once. __a = tokenize_function(a ) __a = dataset.map(a , batched=a , num_proc=4 , remove_columns=["text"] ) # We need to concatenate all our texts together, and then split the result # into chunks of a fixed size, which we will call block_size. To do this, we # will use the map method again, with the option batched=True. When we use batched=True, # the function we pass to map() will be passed multiple inputs at once, allowing us # to group them into more or fewer examples than we had in the input. # This allows us to create our new fixed-length samples. The advantage of this # method is that we don't lose a whole lot of content from the dataset compared to the # case where we simply tokenize with a pre-defined max_length. def group_texts(a ): # Concatenate all texts. __a = {k: sum(examples[k] , [] ) for k in examples.keys()} __a = len(concatenated_examples[list(examples.keys() )[0]] ) # We drop the small remainder, though you could add padding instead if the model supports it # In this, as in all things, we advise you to follow your heart 🫀 __a = (total_length // args.max_length) * args.max_length # Split by chunks of max_len. __a = { k: [t[i : i + args.max_length] for i in range(0 , a , args.max_length )] for k, t in concatenated_examples.items() } return result __a = dataset_tokenized.map(a , batched=a , batch_size=1_0_0_0 , num_proc=4 ) __a = 0 __a = 0 for shard in range(0 , len(a ) , args.shard_size ): __a = grouped_dataset[shard : shard + args.shard_size] __a = len(dataset_snapshot["input_ids"] ) __a = os.path.join(a , F"dataset-{shard_count}-{records_containing}.tfrecord" ) __a = get_serialized_examples(a ) with tf.io.TFRecordWriter(a ) as out_file: for i in range(len(a ) ): __a = serialized_examples[i] out_file.write(a ) print("Wrote file {} containing {} records".format(a , a ) ) shard_count += 1 total_records += records_containing with open(F"split-{args.split}-records-count.txt" , "w" ) as f: print(F"Total {args.split} records: {total_records}" , file=a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:List[Any] = parse_args() main(args)
528
1
'''simple docstring''' import argparse from collections import defaultdict import yaml a= '''docs/source/en/_toctree.yml''' def _UpperCamelCase ( _a : Optional[int] ): """simple docstring""" __UpperCamelCase : Optional[Any] = defaultdict(lowerCAmelCase__ ) __UpperCamelCase : List[Any] = [] __UpperCamelCase : Optional[int] = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(lowerCAmelCase__ ) __UpperCamelCase : Any = new_doc_list __UpperCamelCase : Optional[Any] = [key for key, value in counts.items() if value > 1] __UpperCamelCase : List[str] = [] for duplicate_key in duplicates: __UpperCamelCase : Union[str, Any] = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(lowerCAmelCase__ ) > 1: raise ValueError( f"""{duplicate_key} is present several times in the documentation table of content at """ '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) __UpperCamelCase : int = sorted(lowerCAmelCase__ , key=lambda _a : s["title"].lower() ) # "overview" gets special treatment and is always first if len(lowerCAmelCase__ ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(lowerCAmelCase__ ) # Sort return overview_doc def _UpperCamelCase ( _a : Dict=False ): """simple docstring""" with open(lowerCAmelCase__ , encoding='utf-8' ) as f: __UpperCamelCase : int = yaml.safe_load(f.read() ) # Get to the API doc __UpperCamelCase : List[str] = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCamelCase : int = content[api_idx]['sections'] # Then to the model doc __UpperCamelCase : Tuple = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 __UpperCamelCase : List[Any] = api_doc[scheduler_idx]['sections'] __UpperCamelCase : Union[str, Any] = clean_doc_toc(lowerCAmelCase__ ) __UpperCamelCase : Any = False if new_scheduler_doc != scheduler_doc: __UpperCamelCase : Optional[int] = True if overwrite: __UpperCamelCase : Optional[int] = new_scheduler_doc if diff: if overwrite: __UpperCamelCase : Optional[Any] = api_doc with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def _UpperCamelCase ( _a : Tuple=False ): """simple docstring""" with open(lowerCAmelCase__ , encoding='utf-8' ) as f: __UpperCamelCase : Union[str, Any] = yaml.safe_load(f.read() ) # Get to the API doc __UpperCamelCase : Tuple = 0 while content[api_idx]["title"] != "API": api_idx += 1 __UpperCamelCase : Union[str, Any] = content[api_idx]['sections'] # Then to the model doc __UpperCamelCase : Tuple = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 __UpperCamelCase : Optional[Any] = False __UpperCamelCase : List[Any] = api_doc[pipeline_idx]['sections'] __UpperCamelCase : Dict = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: __UpperCamelCase : str = pipeline_doc['section'] __UpperCamelCase : str = clean_doc_toc(lowerCAmelCase__ ) if overwrite: __UpperCamelCase : Union[str, Any] = new_sub_pipeline_doc new_pipeline_docs.append(lowerCAmelCase__ ) # sort overall pipeline doc __UpperCamelCase : List[str] = clean_doc_toc(lowerCAmelCase__ ) if new_pipeline_docs != pipeline_docs: __UpperCamelCase : Optional[Any] = True if overwrite: __UpperCamelCase : int = new_pipeline_docs if diff: if overwrite: __UpperCamelCase : Tuple = api_doc with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": a= argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a= parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
721
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = OpenAIGPTTokenizer SCREAMING_SNAKE_CASE__ = OpenAIGPTTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = False def lowerCAmelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __UpperCamelCase : List[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __UpperCamelCase : List[str] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) __UpperCamelCase : Union[str, Any] = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] __UpperCamelCase : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' ) as fp: fp.write(json.dumps(_lowerCamelCase ) ) with open(self.merges_file , 'w' ) as fp: fp.write('\n'.join(_lowerCamelCase ) ) def lowerCAmelCase ( self , _lowerCamelCase ): return "lower newer", "lower newer" def lowerCAmelCase ( self ): __UpperCamelCase : Dict = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __UpperCamelCase : List[Any] = 'lower' __UpperCamelCase : Union[str, Any] = ['low', 'er</w>'] __UpperCamelCase : Tuple = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __UpperCamelCase : List[str] = tokens + ['<unk>'] __UpperCamelCase : Optional[Any] = [1_4, 1_5, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def lowerCAmelCase ( self , _lowerCamelCase=1_5 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __UpperCamelCase : Dict = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) # Simple input __UpperCamelCase : int = 'This is a simple input' __UpperCamelCase : Any = ['This is a simple input 1', 'This is a simple input 2'] __UpperCamelCase : Union[str, Any] = ('This is a simple input', 'This is a pair') __UpperCamelCase : Any = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Simple input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Simple input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' , ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' ) # Pair input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding='max_length' , ) def lowerCAmelCase ( self ): pass @require_ftfy @require_spacy @require_tokenizers class __lowercase ( _lowerCamelCase ): """simple docstring""" pass
287
0
"""simple docstring""" import torch from diffusers import DDIMParallelScheduler from .test_schedulers import SchedulerCommonTest class A_ ( _a ): lowerCAmelCase__ = (DDIMParallelScheduler,) lowerCAmelCase__ = (('eta', 0.0), ('num_inference_steps', 5_0)) def _lowercase ( self: List[str] ,**__lowerCAmelCase: Tuple ): '''simple docstring''' _lowerCamelCase : Optional[int] = { "num_train_timesteps": 1_000, "beta_start": 0.00_01, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**__lowerCAmelCase ) return config def _lowercase ( self: int ,**__lowerCAmelCase: Optional[Any] ): '''simple docstring''' _lowerCamelCase : List[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config(**__lowerCAmelCase ) _lowerCamelCase : Any = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[Any] = 10, 0.0 _lowerCamelCase : List[Any] = self.dummy_model() _lowerCamelCase : Optional[Any] = self.dummy_sample_deter scheduler.set_timesteps(__lowerCAmelCase ) for t in scheduler.timesteps: _lowerCamelCase : Optional[Any] = model(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : int = scheduler.step(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ).prev_sample return sample def _lowercase ( self: List[str] ): '''simple docstring''' for timesteps in [100, 500, 1_000]: self.check_over_configs(num_train_timesteps=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Dict = self.get_scheduler_config(steps_offset=1 ) _lowerCamelCase : Union[str, Any] = scheduler_class(**__lowerCAmelCase ) scheduler.set_timesteps(5 ) assert torch.equal(scheduler.timesteps ,torch.LongTensor([801, 601, 401, 201, 1] ) ) def _lowercase ( self: Any ): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] ,[0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__lowerCAmelCase ,beta_end=__lowerCAmelCase ) def _lowercase ( self: List[str] ): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__lowerCAmelCase ) def _lowercase ( self: List[Any] ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for clip_sample in [True, False]: self.check_over_configs(clip_sample=__lowerCAmelCase ) def _lowercase ( self: Optional[int] ): '''simple docstring''' for timestep_spacing in ["trailing", "leading"]: self.check_over_configs(timestep_spacing=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for rescale_betas_zero_snr in [True, False]: self.check_over_configs(rescale_betas_zero_snr=__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' self.check_over_configs(thresholding=__lowerCAmelCase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs( thresholding=__lowerCAmelCase ,prediction_type=__lowerCAmelCase ,sample_max_value=__lowerCAmelCase ,) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' for t in [1, 10, 49]: self.check_over_forward(time_step=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' for t, num_inference_steps in zip([1, 10, 50] ,[10, 50, 500] ): self.check_over_forward(time_step=__lowerCAmelCase ,num_inference_steps=__lowerCAmelCase ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' for t, eta in zip([1, 10, 49] ,[0.0, 0.5, 1.0] ): self.check_over_forward(time_step=__lowerCAmelCase ,eta=__lowerCAmelCase ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Optional[Any] = self.scheduler_classes[0] _lowerCamelCase : str = self.get_scheduler_config() _lowerCamelCase : List[str] = scheduler_class(**__lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420 ,400 ) - 0.1_47_71 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980 ,960 ) - 0.3_24_60 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0 ,0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ,486 ) - 0.0_09_79 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ,998 ) - 0.02 ) ) < 1e-5 def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = self.scheduler_classes[0] _lowerCamelCase : Union[str, Any] = self.get_scheduler_config() _lowerCamelCase : str = scheduler_class(**__lowerCAmelCase ) _lowerCamelCase, _lowerCamelCase : Optional[int] = 10, 0.0 scheduler.set_timesteps(__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = self.dummy_model() _lowerCamelCase : Optional[int] = self.dummy_sample_deter _lowerCamelCase : List[str] = self.dummy_sample_deter + 0.1 _lowerCamelCase : Dict = self.dummy_sample_deter - 0.1 _lowerCamelCase : Union[str, Any] = samplea.shape[0] _lowerCamelCase : List[Any] = torch.stack([samplea, samplea, samplea] ,dim=0 ) _lowerCamelCase : Dict = torch.arange(__lowerCAmelCase )[0:3, None].repeat(1 ,__lowerCAmelCase ) _lowerCamelCase : str = model(samples.flatten(0 ,1 ) ,timesteps.flatten(0 ,1 ) ) _lowerCamelCase : List[str] = scheduler.batch_step_no_noise(__lowerCAmelCase ,timesteps.flatten(0 ,1 ) ,samples.flatten(0 ,1 ) ,__lowerCAmelCase ) _lowerCamelCase : str = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 11_47.79_04 ) < 1e-2 assert abs(result_mean.item() - 0.49_82 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : Any = self.full_loop() _lowerCamelCase : Optional[Any] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : int = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_72.00_67 ) < 1e-2 assert abs(result_mean.item() - 0.22_39_67 ) < 1e-3 def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(prediction_type="v_prediction" ) _lowerCamelCase : Optional[int] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : List[str] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 52.53_02 ) < 1e-2 assert abs(result_mean.item() - 0.06_84 ) < 1e-3 def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase : str = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : List[str] = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Dict = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.82_95 ) < 1e-2 assert abs(result_mean.item() - 0.19_51 ) < 1e-3 def _lowercase ( self: str ): '''simple docstring''' _lowerCamelCase : List[str] = self.full_loop(set_alpha_to_one=__lowerCAmelCase ,beta_start=0.01 ) _lowerCamelCase : int = torch.sum(torch.abs(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = torch.mean(torch.abs(__lowerCAmelCase ) ) assert abs(result_sum.item() - 1_49.07_84 ) < 1e-2 assert abs(result_mean.item() - 0.19_41 ) < 1e-3
46
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = TypeVar("""DatasetType""", Dataset, IterableDataset) def UpperCAmelCase_ (__a : List[DatasetType] , __a : Optional[List[float]] = None , __a : Optional[int] = None , __a : Optional[DatasetInfo] = None , __a : Optional[NamedSplit] = None , __a : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ): """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(__a ): if not isinstance(__a , (Dataset, IterableDataset) ): if isinstance(__a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(__a )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__a ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__a ).__name__}.""" ) if i == 0: _a, _a : Tuple = ( (Dataset, IterableDataset) if isinstance(__a , __a ) else (IterableDataset, Dataset) ) elif not isinstance(__a , __a ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( __a , __a , __a , info=__a , split=__a , stopping_strategy=__a ) else: return _interleave_iterable_datasets( __a , __a , __a , info=__a , split=__a , stopping_strategy=__a ) def UpperCAmelCase_ (__a : List[DatasetType] , __a : Optional[DatasetInfo] = None , __a : Optional[NamedSplit] = None , __a : int = 0 , ): """simple docstring""" if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(__a ): if not isinstance(__a , (Dataset, IterableDataset) ): if isinstance(__a , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ 'is an empty dataset dictionary.' ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(__a )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(__a ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(__a ).__name__}.""" ) if i == 0: _a, _a : Dict = ( (Dataset, IterableDataset) if isinstance(__a , __a ) else (IterableDataset, Dataset) ) elif not isinstance(__a , __a ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(__a , info=__a , split=__a , axis=__a ) else: return _concatenate_iterable_datasets(__a , info=__a , split=__a , axis=__a )
229
0
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase__ ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =CLIPTokenizer _lowerCamelCase =CLIPTokenizerFast _lowerCamelCase =True _lowerCamelCase ={} _lowerCamelCase =False def __snake_case ( self : Any ): super().setUp() # fmt: off UpperCAmelCase = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on UpperCAmelCase = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) UpperCAmelCase = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] UpperCAmelCase = {'''unk_token''': '''<unk>'''} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) def __snake_case ( self : int , **a__ : Tuple ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Union[str, Any] , **a__ : List[str] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : List[str] , a__ : List[str] ): UpperCAmelCase = '''lower newer''' UpperCAmelCase = '''lower newer''' return input_text, output_text def __snake_case ( self : List[Any] ): UpperCAmelCase = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase = '''lower newer''' UpperCAmelCase = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] UpperCAmelCase = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = tokens + [tokenizer.unk_token] UpperCAmelCase = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) @require_ftfy def __snake_case ( self : Optional[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' UpperCAmelCase = tokenizer_s.tokenize(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = tokenizer_r.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways UpperCAmelCase = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' UpperCAmelCase = tokenizer_s.tokenize(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = tokenizer_r.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Test that the tokenization is identical on unicode of space type UpperCAmelCase = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: UpperCAmelCase = tokenizer_s.tokenize(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = tokenizer_r.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Test that the tokenization is identical on unicode of line break type UpperCAmelCase = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: UpperCAmelCase = tokenizer_s.tokenize(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase = tokenizer_r.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __snake_case ( self : Dict ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCAmelCase = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` UpperCAmelCase = f"{text_of_1_token} {text_of_1_token}" UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , ) UpperCAmelCase = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_ ) + 1, len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) UpperCAmelCase = f" {text}" UpperCAmelCase = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , ) UpperCAmelCase = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE_ ) + 1, 1 + len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) def __snake_case ( self : List[str] ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def __snake_case ( self : str ): super().test_tokenization_python_rust_equals() def __snake_case ( self : Dict ): # CLIP always lower cases letters pass
720
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version a__ : int = get_logger(__name__) class lowerCAmelCase__ : '''simple docstring''' _lowerCamelCase ="dummy_data" _lowerCamelCase ="datasets" _lowerCamelCase =False def __init__( self : str , a__ : str , a__ : str , a__ : Union[Version, str] , a__ : Optional[str] = None , a__ : bool = False , a__ : bool = True , a__ : Optional[List[Callable]] = None , ): UpperCAmelCase = 0 UpperCAmelCase = dataset_name UpperCAmelCase = cache_dir UpperCAmelCase = use_local_dummy_data UpperCAmelCase = config # download_callbacks take a single url as input UpperCAmelCase = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root UpperCAmelCase = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general UpperCAmelCase = str(a__ ) # to be downloaded UpperCAmelCase = None UpperCAmelCase = None @property def __snake_case ( self : int ): if self._dummy_file is None: UpperCAmelCase = self.download_dummy_data() return self._dummy_file @property def __snake_case ( self : int ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def __snake_case ( self : List[str] ): return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def __snake_case ( self : List[str] ): UpperCAmelCase = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) UpperCAmelCase = cached_path( a__ , cache_dir=self.cache_dir , extract_compressed_file=a__ , force_extract=a__ ) return os.path.join(a__ , self.dummy_file_name ) @property def __snake_case ( self : Any ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __snake_case ( self : int ): if self._bucket_url is None: UpperCAmelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def __snake_case ( self : Optional[Any] ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def __snake_case ( self : int , a__ : List[str] , *a__ : List[Any] ): if self.load_existing_dummy_data: # dummy data is downloaded and tested UpperCAmelCase = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned UpperCAmelCase = self.dummy_file_name # special case when data_url is a dict if isinstance(a__ , a__ ): return self.create_dummy_data_dict(a__ , a__ ) elif isinstance(a__ , (list, tuple) ): return self.create_dummy_data_list(a__ , a__ ) else: return self.create_dummy_data_single(a__ , a__ ) def __snake_case ( self : Optional[int] , a__ : Union[str, Any] , *a__ : List[Any] ): return self.download_and_extract(a__ ) def __snake_case ( self : str , a__ : List[Any] , a__ : Union[str, Any] ): return self.download_and_extract(a__ ) def __snake_case ( self : Optional[Any] , a__ : Dict , *a__ : str , **a__ : List[Any] ): return path def __snake_case ( self : List[str] ): return {} def __snake_case ( self : Tuple , a__ : int , a__ : Dict ): UpperCAmelCase = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(a__ , a__ ): for single_url in single_urls: download_callback(a__ ) else: UpperCAmelCase = single_urls download_callback(a__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(a__ , a__ ): UpperCAmelCase = [os.path.join(a__ , urllib.parse.quote_plus(Path(a__ ).name ) ) for x in single_urls] else: UpperCAmelCase = single_urls UpperCAmelCase = os.path.join(a__ , urllib.parse.quote_plus(Path(a__ ).name ) ) UpperCAmelCase = value # make sure that values are unique if all(isinstance(a__ , a__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique UpperCAmelCase = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __snake_case ( self : Union[str, Any] , a__ : int , a__ : str ): UpperCAmelCase = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one UpperCAmelCase = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , a__ ) ) for url in data_url ) UpperCAmelCase = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): UpperCAmelCase = [data_url[0]] * len(a__ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(a__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus UpperCAmelCase = os.path.join(a__ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(a__ ) return dummy_data_list def __snake_case ( self : List[str] , a__ : Union[str, Any] , a__ : str ): for download_callback in self.download_callbacks: download_callback(a__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus UpperCAmelCase = os.path.join(a__ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(a__ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __snake_case ( self : Any ): pass def __snake_case ( self : Optional[Any] ): pass def __snake_case ( self : List[Any] , a__ : Optional[Any] ): def _iter_archive_members(a__ : int ): # this preserves the order of the members inside the ZIP archive UpperCAmelCase = Path(self.dummy_file ).parent UpperCAmelCase = path.relative_to(a__ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: UpperCAmelCase = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(a__ ) UpperCAmelCase = Path(a__ ) UpperCAmelCase = _iter_archive_members(a__ ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(a__ ).as_posix(), file_path.open('''rb''' ) def __snake_case ( self : Optional[int] , a__ : Union[str, Any] ): if not isinstance(a__ , a__ ): UpperCAmelCase = [paths] for path in paths: if os.path.isfile(a__ ): if os.path.basename(a__ ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(a__ ): if os.path.basename(a__ ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(a__ ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(a__ , a__ )
570
0
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class SCREAMING_SNAKE_CASE ( yaml.SafeLoader ): def lowercase_ ( self : str , lowercase__ : Dict ): '''simple docstring''' a_ : List[str] = [self.constructed_objects[key_node] for key_node, _ in node.value] a_ : int = [tuple(lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else key for key in keys] a_ : Dict = Counter(lowercase__ ) a_ : List[Any] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F"Got duplicate yaml keys: {duplicate_keys}" ) def lowercase_ ( self : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : Dict=False ): '''simple docstring''' a_ : List[Any] = super().construct_mapping(lowercase__ , deep=lowercase__ ) self._check_no_duplicates_on_constructed_node(lowercase__ ) return mapping def _SCREAMING_SNAKE_CASE ( UpperCamelCase__ : str ): """simple docstring""" a_ : Any = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: a_ : str = full_content[1:].index("""---""" ) + 1 a_ : Optional[int] = """\n""".join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(UpperCamelCase__ ) class SCREAMING_SNAKE_CASE ( snake_case_ ): # class attributes __magic_name__ : Any = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def lowercase_ ( cls : Optional[int] , lowercase__ : Path ): '''simple docstring''' with open(lowercase__ , encoding="""utf-8""" ) as readme_file: a_ , a_ : Tuple = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(lowercase__ ) else: return cls() def lowercase_ ( self : List[Any] , lowercase__ : Path ): '''simple docstring''' if path.exists(): with open(lowercase__ , encoding="""utf-8""" ) as readme_file: a_ : int = readme_file.read() else: a_ : Any = None a_ : Optional[int] = self._to_readme(lowercase__ ) with open(lowercase__ , """w""" , encoding="""utf-8""" ) as readme_file: readme_file.write(lowercase__ ) def lowercase_ ( self : Optional[Any] , lowercase__ : Optional[str] = None ): '''simple docstring''' if readme_content is not None: a_ , a_ : Dict = _split_yaml_from_readme(lowercase__ ) a_ : Optional[Any] = """---\n""" + self.to_yaml_string() + """---\n""" + content else: a_ : Any = """---\n""" + self.to_yaml_string() + """---\n""" return full_content @classmethod def lowercase_ ( cls : List[str] , lowercase__ : str ): '''simple docstring''' a_ : int = yaml.load(lowercase__ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields a_ : Union[str, Any] = { (key.replace("""-""" , """_""" ) if key.replace("""-""" , """_""" ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowercase__ ) def lowercase_ ( self : List[str] ): '''simple docstring''' return yaml.safe_dump( { (key.replace("""_""" , """-""" ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowercase__ , allow_unicode=lowercase__ , encoding="""utf-8""" , ).decode("""utf-8""" ) lowerCAmelCase_ : str = { 'image-classification': [], 'translation': [], 'image-segmentation': [], 'fill-mask': [], 'automatic-speech-recognition': [], 'token-classification': [], 'sentence-similarity': [], 'audio-classification': [], 'question-answering': [], 'summarization': [], 'zero-shot-classification': [], 'table-to-text': [], 'feature-extraction': [], 'other': [], 'multiple-choice': [], 'text-classification': [], 'text-to-image': [], 'text2text-generation': [], 'zero-shot-image-classification': [], 'tabular-classification': [], 'tabular-regression': [], 'image-to-image': [], 'tabular-to-text': [], 'unconditional-image-generation': [], 'text-retrieval': [], 'text-to-speech': [], 'object-detection': [], 'audio-to-audio': [], 'text-generation': [], 'conversational': [], 'table-question-answering': [], 'visual-question-answering': [], 'image-to-text': [], 'reinforcement-learning': [], 'voice-activity-detection': [], 'time-series-forecasting': [], 'document-question-answering': [], } if __name__ == "__main__": from argparse import ArgumentParser lowerCAmelCase_ : Tuple = ArgumentParser(usage='Validate the yaml metadata block of a README.md file.') ap.add_argument('readme_filepath') lowerCAmelCase_ : List[str] = ap.parse_args() lowerCAmelCase_ : str = Path(args.readme_filepath) lowerCAmelCase_ : Optional[Any] = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
442
'''simple docstring''' import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): __magic_name__ : Optional[Any] = BertJapaneseTokenizer __magic_name__ : int = False __magic_name__ : Tuple = True def lowercase_ ( self : str ): '''simple docstring''' super().setUp() a_ : List[Any] = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] a_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowercase_ ( self : List[Any] , lowercase__ : Optional[Any] ): '''simple docstring''' a_ : Dict = """こんにちは、世界。 \nこんばんは、世界。""" a_ : Tuple = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def lowercase_ ( self : Optional[int] , lowercase__ : str ): '''simple docstring''' a_ , a_ : int = self.get_input_output_texts(lowercase__ ) a_ : Tuple = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ ) a_ : Union[str, Any] = tokenizer.decode(lowercase__ , clean_up_tokenization_spaces=lowercase__ ) return text, ids def lowercase_ ( self : int ): '''simple docstring''' pass # TODO add if relevant def lowercase_ ( self : Optional[int] ): '''simple docstring''' pass # TODO add if relevant def lowercase_ ( self : List[str] ): '''simple docstring''' pass # TODO add if relevant def lowercase_ ( self : int ): '''simple docstring''' a_ : Tuple = self.tokenizer_class(self.vocab_file ) a_ : Union[str, Any] = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""" ) self.assertListEqual(lowercase__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' a_ : Tuple = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""" ) self.assertIsNotNone(lowercase__ ) a_ : Optional[Any] = """こんにちは、世界。\nこんばんは、世界。""" a_ : Any = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a_ : Dict = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(lowercase__ , """wb""" ) as handle: pickle.dump(lowercase__ , lowercase__ ) with open(lowercase__ , """rb""" ) as handle: a_ : Optional[int] = pickle.load(lowercase__ ) a_ : Tuple = tokenizer_new.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) def lowercase_ ( self : List[Any] ): '''simple docstring''' a_ : List[str] = MecabTokenizer(mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def lowercase_ ( self : Dict ): '''simple docstring''' try: a_ : Tuple = MecabTokenizer(mecab_dic="""unidic_lite""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def lowercase_ ( self : str ): '''simple docstring''' try: a_ : Union[str, Any] = MecabTokenizer(mecab_dic="""unidic""" ) except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' a_ : Union[str, Any] = MecabTokenizer(do_lower_case=lowercase__ , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' try: a_ : Any = MecabTokenizer( do_lower_case=lowercase__ , normalize_text=lowercase__ , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""" ) except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def lowercase_ ( self : List[Any] ): '''simple docstring''' a_ : str = MecabTokenizer(normalize_text=lowercase__ , mecab_dic="""ipadic""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def lowercase_ ( self : List[Any] ): '''simple docstring''' a_ : int = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""" ) self.assertIsNotNone(lowercase__ ) a_ : Union[str, Any] = """こんにちは、世界。\nこんばんは、世界。""" a_ : Optional[int] = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a_ : str = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(lowercase__ , """wb""" ) as handle: pickle.dump(lowercase__ , lowercase__ ) with open(lowercase__ , """rb""" ) as handle: a_ : List[Any] = pickle.load(lowercase__ ) a_ : Optional[int] = tokenizer_new.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) @require_sudachi def lowercase_ ( self : int ): '''simple docstring''' a_ : Optional[Any] = SudachiTokenizer(sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def lowercase_ ( self : List[str] ): '''simple docstring''' a_ : Optional[int] = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国""", """人""", """参政""", """権"""] ) @require_sudachi def lowercase_ ( self : int ): '''simple docstring''' a_ : Dict = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人""", """参政権"""] ) @require_sudachi def lowercase_ ( self : Any ): '''simple docstring''' a_ : Tuple = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""" ) self.assertListEqual(tokenizer.tokenize("""外国人参政権""" ) , ["""外国人参政権"""] ) @require_sudachi def lowercase_ ( self : Optional[Any] ): '''simple docstring''' a_ : List[Any] = SudachiTokenizer(do_lower_case=lowercase__ , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def lowercase_ ( self : Any ): '''simple docstring''' a_ : Tuple = SudachiTokenizer(normalize_text=lowercase__ , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def lowercase_ ( self : Optional[int] ): '''simple docstring''' a_ : Union[str, Any] = SudachiTokenizer(trim_whitespace=lowercase__ , sudachi_dict_type="""core""" ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def lowercase_ ( self : Optional[Any] ): '''simple docstring''' a_ : Union[str, Any] = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""" ) self.assertIsNotNone(lowercase__ ) a_ : Union[str, Any] = """こんにちは、世界。\nこんばんは、世界。""" a_ : Union[str, Any] = tokenizer.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__ ) , [3, 12, 10, 14, 4, 9, 12, 10, 14] ) a_ : Optional[Any] = os.path.join(self.tmpdirname , """tokenizer.bin""" ) with open(lowercase__ , """wb""" ) as handle: pickle.dump(lowercase__ , lowercase__ ) with open(lowercase__ , """rb""" ) as handle: a_ : Any = pickle.load(lowercase__ ) a_ : List[Any] = tokenizer_new.tokenize(lowercase__ ) self.assertListEqual(lowercase__ , lowercase__ ) @require_jumanpp def lowercase_ ( self : List[str] ): '''simple docstring''' a_ : int = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def lowercase_ ( self : Any ): '''simple docstring''' a_ : str = JumanppTokenizer(do_lower_case=lowercase__ ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def lowercase_ ( self : Tuple ): '''simple docstring''' a_ : List[Any] = JumanppTokenizer(normalize_text=lowercase__ ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def lowercase_ ( self : Optional[Any] ): '''simple docstring''' a_ : Optional[int] = JumanppTokenizer(trim_whitespace=lowercase__ ) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """ ) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def lowercase_ ( self : Any ): '''simple docstring''' a_ : Union[str, Any] = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""" ) , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def lowercase_ ( self : int ): '''simple docstring''' a_ : int = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] a_ : int = {} for i, token in enumerate(lowercase__ ): a_ : str = i a_ : int = WordpieceTokenizer(vocab=lowercase__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こんにちは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは""" ) , ["""こん""", """##ばんは"""] ) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""" ) , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""] ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' a_ : Optional[int] = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""" ) a_ : List[str] = tokenizer.subword_tokenizer a_ : Any = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""" ) self.assertListEqual(lowercase__ , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""] ) a_ : Optional[Any] = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""" ) self.assertListEqual(lowercase__ , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""] ) def lowercase_ ( self : str ): '''simple docstring''' a_ : Union[str, Any] = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""" ) a_ : Union[str, Any] = tokenizer.encode("""ありがとう。""" , add_special_tokens=lowercase__ ) a_ : Any = tokenizer.encode("""どういたしまして。""" , add_special_tokens=lowercase__ ) a_ : str = tokenizer.build_inputs_with_special_tokens(lowercase__ ) a_ : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): __magic_name__ : Optional[Any] = BertJapaneseTokenizer __magic_name__ : int = False def lowercase_ ( self : List[Any] ): '''simple docstring''' super().setUp() a_ : int = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] a_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowercase_ ( self : str , **lowercase__ : Tuple ): '''simple docstring''' return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **lowercase__ ) def lowercase_ ( self : str , lowercase__ : Union[str, Any] ): '''simple docstring''' a_ : Optional[Any] = """こんにちは、世界。 \nこんばんは、世界。""" a_ : List[Any] = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def lowercase_ ( self : Dict ): '''simple docstring''' pass # TODO add if relevant def lowercase_ ( self : Any ): '''simple docstring''' pass # TODO add if relevant def lowercase_ ( self : Dict ): '''simple docstring''' pass # TODO add if relevant def lowercase_ ( self : str ): '''simple docstring''' a_ : Optional[int] = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""" ) a_ : Tuple = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""" ) self.assertListEqual( lowercase__ , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [3, 4, 5, 6, 7, 11, 9, 10, 12, 3, 4, 8, 4, 7, 11, 9, 10, 12] ) def lowercase_ ( self : List[str] ): '''simple docstring''' a_ : str = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] a_ : Dict = {} for i, token in enumerate(lowercase__ ): a_ : List[Any] = i a_ : Dict = CharacterTokenizer(vocab=lowercase__ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""こんにちは""" ) , ["""こ""", """ん""", """に""", """ち""", """は"""] ) self.assertListEqual(tokenizer.tokenize("""こんにちほ""" ) , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""] ) def lowercase_ ( self : Dict ): '''simple docstring''' a_ : Dict = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""" ) a_ : List[Any] = tokenizer.encode("""ありがとう。""" , add_special_tokens=lowercase__ ) a_ : List[Any] = tokenizer.encode("""どういたしまして。""" , add_special_tokens=lowercase__ ) a_ : str = tokenizer.build_inputs_with_special_tokens(lowercase__ ) a_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(lowercase__ , lowercase__ ) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowercase_ ( self : List[str] ): '''simple docstring''' a_ : Optional[Any] = """cl-tohoku/bert-base-japanese""" a_ : Union[str, Any] = AutoTokenizer.from_pretrained(lowercase__ ) self.assertIsInstance(lowercase__ , lowercase__ ) class SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowercase_ ( self : int ): '''simple docstring''' a_ : Any = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertTokenizer.from_pretrained(lowercase__ ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) ) a_ : Optional[Any] = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""" ) as cm: BertJapaneseTokenizer.from_pretrained(lowercase__ ) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""" ) )
442
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=_lowercase).to(_lowercase) __UpperCAmelCase : Any = AutoTokenizer.from_pretrained('''google/mt5-small''') __UpperCAmelCase : Dict = tokenizer('''Hello there''' , return_tensors='''pt''').input_ids __UpperCAmelCase : str = tokenizer('''Hi I am''' , return_tensors='''pt''').input_ids __UpperCAmelCase : int = model(input_ids.to(_lowercase) , labels=labels.to(_lowercase)).loss __UpperCAmelCase : Union[str, Any] = -(labels.shape[-1] * loss.item()) __UpperCAmelCase : List[Any] = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 1e-4)
721
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
0
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = VideoMAEConfig() set_architecture_configs(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if "finetuned" not in model_name: __lowercase = False if "finetuned" in model_name: __lowercase = "huggingface/label-files" if "kinetics" in model_name: __lowercase = 4_0_0 __lowercase = "kinetics400-id2label.json" elif "ssv2" in model_name: __lowercase = 1_7_4 __lowercase = "something-something-v2-id2label.json" else: raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned." ) __lowercase = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type="dataset" ) , "r" ) ) __lowercase = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} __lowercase = idalabel __lowercase = {v: k for k, v in idalabel.items()} return config def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if "small" in model_name: __lowercase = 3_8_4 __lowercase = 1_5_3_6 __lowercase = 1_2 __lowercase = 1_6 __lowercase = 1_2 __lowercase = 3 __lowercase = 1_9_2 __lowercase = 7_6_8 elif "large" in model_name: __lowercase = 1_0_2_4 __lowercase = 4_0_9_6 __lowercase = 2_4 __lowercase = 1_6 __lowercase = 1_2 __lowercase = 8 __lowercase = 5_1_2 __lowercase = 2_0_4_8 elif "huge" in model_name: __lowercase = 1_2_8_0 __lowercase = 5_1_2_0 __lowercase = 3_2 __lowercase = 1_6 __lowercase = 1_2 __lowercase = 8 __lowercase = 6_4_0 __lowercase = 2_5_6_0 elif "base" not in model_name: raise ValueError("Model name should include either \"small\", \"base\", \"large\", or \"huge\"" ) def snake_case_ ( _SCREAMING_SNAKE_CASE ): if "encoder." in name: __lowercase = name.replace("encoder." , "" ) if "cls_token" in name: __lowercase = name.replace("cls_token" , "videomae.embeddings.cls_token" ) if "decoder_pos_embed" in name: __lowercase = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: __lowercase = name.replace("pos_embed" , "videomae.embeddings.position_embeddings" ) if "patch_embed.proj" in name: __lowercase = name.replace("patch_embed.proj" , "videomae.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: __lowercase = name.replace("patch_embed.norm" , "videomae.embeddings.norm" ) if "decoder.blocks" in name: __lowercase = name.replace("decoder.blocks" , "decoder.decoder_layers" ) if "blocks" in name: __lowercase = name.replace("blocks" , "videomae.encoder.layer" ) if "attn.proj" in name: __lowercase = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "bias" not in name: __lowercase = name.replace("attn" , "attention.self" ) if "attn" in name: __lowercase = name.replace("attn" , "attention.attention" ) if "norm1" in name: __lowercase = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: __lowercase = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: __lowercase = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: __lowercase = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: __lowercase = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: __lowercase = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: __lowercase = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __lowercase = name.replace("norm.weight" , "videomae.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __lowercase = name.replace("norm.bias" , "videomae.layernorm.bias" ) if "head" in name and "decoder" not in name: __lowercase = name.replace("head" , "classifier" ) return name def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): for key in orig_state_dict.copy().keys(): __lowercase = orig_state_dict.pop(_SCREAMING_SNAKE_CASE ) if key.startswith("encoder." ): __lowercase = key.replace("encoder." , "" ) if "qkv" in key: __lowercase = key.split("." ) if key.startswith("decoder.blocks" ): __lowercase = config.decoder_hidden_size __lowercase = int(key_split[2] ) __lowercase = "decoder.decoder_layers." if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = config.hidden_size __lowercase = int(key_split[1] ) __lowercase = "videomae.encoder.layer." if "weight" in key: __lowercase = val[:dim, :] __lowercase = val[dim : dim * 2, :] __lowercase = val[-dim:, :] else: __lowercase = val return orig_state_dict def snake_case_ ( ): __lowercase = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) __lowercase = np.load(_SCREAMING_SNAKE_CASE ) return list(_SCREAMING_SNAKE_CASE ) def snake_case_ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowercase = get_videomae_config(_SCREAMING_SNAKE_CASE ) if "finetuned" in model_name: __lowercase = VideoMAEForVideoClassification(_SCREAMING_SNAKE_CASE ) else: __lowercase = VideoMAEForPreTraining(_SCREAMING_SNAKE_CASE ) # download original checkpoint, hosted on Google Drive __lowercase = "pytorch_model.bin" gdown.cached_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , quiet=_SCREAMING_SNAKE_CASE ) __lowercase = torch.load(_SCREAMING_SNAKE_CASE , map_location="cpu" ) if "model" in files: __lowercase = files["model"] else: __lowercase = files["module"] __lowercase = convert_state_dict(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) model.eval() # verify model on basic input __lowercase = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __lowercase = prepare_video() __lowercase = image_processor(_SCREAMING_SNAKE_CASE , return_tensors="pt" ) if "finetuned" not in model_name: __lowercase = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) __lowercase = torch.load(_SCREAMING_SNAKE_CASE ) __lowercase = model(**_SCREAMING_SNAKE_CASE ) __lowercase = outputs.logits __lowercase = [ "videomae-small-finetuned-kinetics", "videomae-small-finetuned-ssv2", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) "videomae-base-short", "videomae-base-short-finetuned-kinetics", "videomae-base", "videomae-base-finetuned-kinetics", "videomae-large", "videomae-large-finetuned-kinetics", "videomae-huge-finetuned-kinetics", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) "videomae-base-short-ssv2", "videomae-base-short-finetuned-ssv2", "videomae-base-ssv2", "videomae-base-finetuned-ssv2", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __lowercase = torch.Size([1, 4_0_0] ) __lowercase = torch.tensor([-0.9_2_9_1, -0.4_0_6_1, -0.9_3_0_7] ) elif model_name == "videomae-small-finetuned-ssv2": __lowercase = torch.Size([1, 1_7_4] ) __lowercase = torch.tensor([0.2_6_7_1, -0.4_6_8_9, -0.8_2_3_5] ) elif model_name == "videomae-base": __lowercase = torch.Size([1, 1_4_0_8, 1_5_3_6] ) __lowercase = torch.tensor([[0.7_7_3_9, 0.7_9_6_8, 0.7_0_8_9], [0.6_7_0_1, 0.7_4_8_7, 0.6_2_0_9], [0.4_2_8_7, 0.5_1_5_8, 0.4_7_7_3]] ) elif model_name == "videomae-base-short": __lowercase = torch.Size([1, 1_4_0_8, 1_5_3_6] ) __lowercase = torch.tensor([[0.7_9_9_4, 0.9_6_1_2, 0.8_5_0_8], [0.7_4_0_1, 0.8_9_5_8, 0.8_3_0_2], [0.5_8_6_2, 0.7_4_6_8, 0.7_3_2_5]] ) # we verified the loss both for normalized and unnormalized targets for this one __lowercase = torch.tensor([0.5_1_4_2] ) if config.norm_pix_loss else torch.tensor([0.6_4_6_9] ) elif model_name == "videomae-large": __lowercase = torch.Size([1, 1_4_0_8, 1_5_3_6] ) __lowercase = torch.tensor([[0.7_1_4_9, 0.7_9_9_7, 0.6_9_6_6], [0.6_7_6_8, 0.7_8_6_9, 0.6_9_4_8], [0.5_1_3_9, 0.6_2_2_1, 0.5_6_0_5]] ) elif model_name == "videomae-large-finetuned-kinetics": __lowercase = torch.Size([1, 4_0_0] ) __lowercase = torch.tensor([0.0_7_7_1, 0.0_0_1_1, -0.3_6_2_5] ) elif model_name == "videomae-huge-finetuned-kinetics": __lowercase = torch.Size([1, 4_0_0] ) __lowercase = torch.tensor([0.2_4_3_3, 0.1_6_3_2, -0.4_8_9_4] ) elif model_name == "videomae-base-short-finetuned-kinetics": __lowercase = torch.Size([1, 4_0_0] ) __lowercase = torch.tensor([0.6_5_8_8, 0.0_9_9_0, -0.2_4_9_3] ) elif model_name == "videomae-base-finetuned-kinetics": __lowercase = torch.Size([1, 4_0_0] ) __lowercase = torch.tensor([0.3_6_6_9, -0.0_6_8_8, -0.2_4_2_1] ) elif model_name == "videomae-base-short-ssv2": __lowercase = torch.Size([1, 1_4_0_8, 1_5_3_6] ) __lowercase = torch.tensor([[0.4_7_1_2, 0.5_2_9_6, 0.5_7_8_6], [0.2_2_7_8, 0.2_7_2_9, 0.4_0_2_6], [0.0_3_5_2, 0.0_7_3_0, 0.2_5_0_6]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __lowercase = torch.Size([1, 1_7_4] ) __lowercase = torch.tensor([-0.0_5_3_7, -0.1_5_3_9, -0.3_2_6_6] ) elif model_name == "videomae-base-ssv2": __lowercase = torch.Size([1, 1_4_0_8, 1_5_3_6] ) __lowercase = torch.tensor([[0.8_1_3_1, 0.8_7_2_7, 0.8_5_4_6], [0.7_3_6_6, 0.9_3_7_7, 0.8_8_7_0], [0.5_9_3_5, 0.8_8_7_4, 0.8_5_6_4]] ) elif model_name == "videomae-base-finetuned-ssv2": __lowercase = torch.Size([1, 1_7_4] ) __lowercase = torch.tensor([0.1_9_6_1, -0.8_3_3_7, -0.6_3_8_9] ) else: raise ValueError(F"""Model name not supported. Should be one of {model_names}""" ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) else: print("Logits:" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) print("Logits ok!" ) # verify loss, if applicable if model_name == "videomae-base-short": __lowercase = outputs.loss assert torch.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1E-4 ) print("Loss ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print("Pushing to the hub..." ) model.push_to_hub(_SCREAMING_SNAKE_CASE , organization="nielsr" ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ : Optional[int] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
402
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __UpperCamelCase : Optional[Any] = { """configuration_data2vec_audio""": ["""DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecAudioConfig"""], """configuration_data2vec_text""": [ """DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecTextConfig""", """Data2VecTextOnnxConfig""", ], """configuration_data2vec_vision""": [ """DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Data2VecVisionConfig""", """Data2VecVisionOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ """DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecAudioForAudioFrameClassification""", """Data2VecAudioForCTC""", """Data2VecAudioForSequenceClassification""", """Data2VecAudioForXVector""", """Data2VecAudioModel""", """Data2VecAudioPreTrainedModel""", ] __UpperCamelCase : Dict = [ """DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecTextForCausalLM""", """Data2VecTextForMaskedLM""", """Data2VecTextForMultipleChoice""", """Data2VecTextForQuestionAnswering""", """Data2VecTextForSequenceClassification""", """Data2VecTextForTokenClassification""", """Data2VecTextModel""", """Data2VecTextPreTrainedModel""", ] __UpperCamelCase : int = [ """DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST""", """Data2VecVisionForImageClassification""", """Data2VecVisionForMaskedImageModeling""", """Data2VecVisionForSemanticSegmentation""", """Data2VecVisionModel""", """Data2VecVisionPreTrainedModel""", ] if is_tf_available(): __UpperCamelCase : List[str] = [ """TFData2VecVisionForImageClassification""", """TFData2VecVisionForSemanticSegmentation""", """TFData2VecVisionModel""", """TFData2VecVisionPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys __UpperCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
80
0
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : str = LEDTokenizer lowerCamelCase : Optional[Any] = LEDTokenizerFast lowerCamelCase : Any = True def UpperCAmelCase__ (self ): super().setUp() lowerCamelCase_ : List[str] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] lowerCamelCase_ : List[str] = dict(zip(A , range(len(A ) ) ) ) lowerCamelCase_ : int = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] lowerCamelCase_ : Optional[Any] = {'''unk_token''': '''<unk>'''} lowerCamelCase_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCamelCase_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def UpperCAmelCase__ (self , **A ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , **A ): kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): return "lower newer", "lower newer" @cached_property def UpperCAmelCase__ (self ): return LEDTokenizer.from_pretrained('''allenai/led-base-16384''' ) @cached_property def UpperCAmelCase__ (self ): return LEDTokenizerFast.from_pretrained('''allenai/led-base-16384''' ) @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : str = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase_ : List[Any] = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ : int = tokenizer(A , max_length=len(A ) , padding=A , return_tensors='''pt''' ) self.assertIsInstance(A , A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) lowerCamelCase_ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(A , A ) @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : Tuple = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ : int = tokenizer(A , padding=A , return_tensors='''pt''' ) self.assertIn('''input_ids''' , A ) self.assertIn('''attention_mask''' , A ) self.assertNotIn('''labels''' , A ) self.assertNotIn('''decoder_attention_mask''' , A ) @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = [ '''Summary of the text.''', '''Another summary.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ : Dict = tokenizer(text_target=A , max_length=3_2 , padding='''max_length''' , return_tensors='''pt''' ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) @require_torch def UpperCAmelCase__ (self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ : Optional[Any] = tokenizer( ['''I am a small frog''' * 1_0_2_4, '''I am a small frog'''] , padding=A , truncation=A , return_tensors='''pt''' ) self.assertIsInstance(A , A ) self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) ) @require_torch def UpperCAmelCase__ (self ): lowerCamelCase_ : int = ['''A long paragraph for summarization.'''] lowerCamelCase_ : Optional[int] = [ '''Summary of the text.''', ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ : str = tokenizer(A , return_tensors='''pt''' ) lowerCamelCase_ : List[Any] = tokenizer(text_target=A , return_tensors='''pt''' ) lowerCamelCase_ : List[Any] = inputs['''input_ids'''] lowerCamelCase_ : Tuple = targets['''input_ids'''] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def UpperCAmelCase__ (self ): for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: lowerCamelCase_ : Tuple = ['''Summary of the text.''', '''Another summary.'''] lowerCamelCase_ : Union[str, Any] = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] lowerCamelCase_ : int = tokenizer(A , padding=A ) lowerCamelCase_ : int = [[0] * len(A ) for x in encoded_output['''input_ids''']] lowerCamelCase_ : int = tokenizer.pad(A ) self.assertSequenceEqual(outputs['''global_attention_mask'''] , A ) def UpperCAmelCase__ (self ): pass def UpperCAmelCase__ (self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ : List[str] = self.rust_tokenizer_class.from_pretrained(A , **A ) lowerCamelCase_ : Any = self.tokenizer_class.from_pretrained(A , **A ) lowerCamelCase_ : Any = '''A, <mask> AllenNLP sentence.''' lowerCamelCase_ : Union[str, Any] = tokenizer_r.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) lowerCamelCase_ : Union[str, Any] = tokenizer_p.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) ) self.assertEqual( sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , ) lowerCamelCase_ : Dict = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] ) lowerCamelCase_ : Optional[int] = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] ) self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] ) self.assertSequenceEqual( A , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
705
'''simple docstring''' from collections import namedtuple __lowercase : List[Any] = namedtuple('''from_to''', '''from_ to''') __lowercase : Optional[Any] = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.0_01, 1000), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.0_04_54, 2_64.1_72), '''cubicyard''': from_to(0.7_64_55, 1.3_07_95), '''cubicfoot''': from_to(0.0_28, 35.31_47), '''cup''': from_to(0.0_00_23_65_88, 42_26.75), } def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> float: '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + ''', '''.join(_lowercase ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + ''', '''.join(_lowercase ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
357
0
def UpperCAmelCase__ ( __magic_name__ : str , __magic_name__ : bool = False ): '''simple docstring''' if not isinstance(__magic_name__ , __magic_name__ ): lowerCAmelCase : str = f'''Expected string as input, found {type(__magic_name__ )}''' raise ValueError(__magic_name__ ) if not isinstance(__magic_name__ , __magic_name__ ): lowerCAmelCase : Optional[int] = f'''Expected boolean as use_pascal parameter, found {type(__magic_name__ )}''' raise ValueError(__magic_name__ ) lowerCAmelCase : str = input_str.split('''_''' ) lowerCAmelCase : Optional[int] = 0 if use_pascal else 1 lowerCAmelCase : Optional[Any] = words[start_index:] lowerCAmelCase : Optional[int] = [word[0].upper() + word[1:] for word in words_to_capitalize] lowerCAmelCase : Optional[Any] = '''''' if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
348
import tempfile import unittest from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from transformers.testing_utils import ( is_torch_available, require_optimum, require_torch, slow, ) if is_torch_available(): import torch @require_torch @require_optimum @slow class __magic_name__ ( unittest.TestCase ): def _A ( self : Dict ): lowerCAmelCase : Optional[int] = '''hf-internal-testing/tiny-random-t5''' lowerCAmelCase : List[str] = AutoTokenizer.from_pretrained(lowerCamelCase__ ) lowerCAmelCase : List[str] = AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ) lowerCAmelCase : List[str] = tokenizer('''This is me''' , return_tensors='''pt''' ) lowerCAmelCase : Tuple = model.to_bettertransformer() self.assertTrue(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) lowerCAmelCase : Any = model.generate(**lowerCamelCase__ ) lowerCAmelCase : List[Any] = model.reverse_bettertransformer() self.assertFalse(any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model.named_modules() ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase__ ) lowerCAmelCase : Tuple = AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ) self.assertFalse( any('''BetterTransformer''' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) ) lowerCAmelCase : Any = model_reloaded.generate(**lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ , lowerCamelCase__ ) ) def _A ( self : Optional[Any] ): lowerCAmelCase : Union[str, Any] = '''hf-internal-testing/tiny-random-t5''' lowerCAmelCase : int = AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ ) lowerCAmelCase : Union[str, Any] = model.to_bettertransformer() with tempfile.TemporaryDirectory() as tmpdirname: with self.assertRaises(lowerCamelCase__ ): model.save_pretrained(lowerCamelCase__ ) lowerCAmelCase : int = model.reverse_bettertransformer() model.save_pretrained(lowerCamelCase__ )
348
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) snake_case__ : List[Any] = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[str] = ['''MobileViTFeatureExtractor'''] snake_case__ : Union[str, Any] = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[int] = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Optional[int] = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys snake_case__ : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
713
'''simple docstring''' import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : str = logging.get_logger() # the current default level is logging.WARNING UpperCAmelCase_ : Union[str, Any] = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() , logging.get_verbosity() ) # restore to the original level logging.set_verbosity(snake_case_ ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = logging.get_verbosity() UpperCAmelCase_ : List[str] = logging.get_logger('transformers.models.bart.tokenization_bart' ) UpperCAmelCase_ : int = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + '\n' ) # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , '' ) # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(snake_case_ ) as cl: logger.warning(snake_case_ ) self.assertEqual(cl.out , msg + '\n' ) # restore to the original level logging.set_verbosity(snake_case_ ) @mockenv(TRANSFORMERS_VERBOSITY='error' ) def _UpperCamelCase ( self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() # this action activates the env var UpperCAmelCase_ : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) UpperCAmelCase_ : Optional[Any] = os.getenv('TRANSFORMERS_VERBOSITY' , snake_case_ ) UpperCAmelCase_ : List[Any] = logging.log_levels[env_level_str] UpperCAmelCase_ : Dict = logging.get_verbosity() self.assertEqual( snake_case_ , snake_case_ , F'''TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}''' , ) # restore to the original level UpperCAmelCase_ : Tuple = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error' ) def _UpperCamelCase ( self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() UpperCAmelCase_ : Tuple = logging.logging.getLogger() with CaptureLogger(snake_case_ ) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart' ) self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' , cl.out ) # no need to restore as nothing was changed def _UpperCamelCase ( self ): '''simple docstring''' transformers.utils.logging._reset_library_root_logger() UpperCAmelCase_ : int = logging.get_logger('transformers.models.bart.tokenization_bart' ) UpperCAmelCase_ : List[Any] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1' ): # nothing should be logged as env var disables this method with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , '' ) with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='' ): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(snake_case_ ) as cl: logger.warning_advice(snake_case_ ) self.assertEqual(cl.out , msg + '\n' ) def _lowerCamelCase ( ): """simple docstring""" disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
389
0
from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class A : '''simple docstring''' def __init__(self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str]=13 , _UpperCAmelCase : Tuple=7 , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Optional[int]=99 , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : Optional[Any]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[str]=0.1 , _UpperCAmelCase : List[Any]=512 , _UpperCAmelCase : List[str]=16 , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]="None" , _UpperCAmelCase : Dict=3 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : Any=None , ) -> Optional[int]: """simple docstring""" lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_input_mask lowercase__ = use_token_type_ids lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = relative_attention lowercase__ = position_biased_input lowercase__ = pos_att_type lowercase__ = scope def lowerCamelCase__ (self : Optional[Any] ) -> int: """simple docstring""" lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase__ = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ = TFDebertaVaModel(config=_UpperCAmelCase ) lowercase__ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase__ = [input_ids, input_mask] lowercase__ = model(_UpperCAmelCase ) lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ (self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple ) -> List[str]: """simple docstring""" lowercase__ = TFDebertaVaForMaskedLM(config=_UpperCAmelCase ) lowercase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFDebertaVaForSequenceClassification(config=_UpperCAmelCase ) lowercase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any ) -> str: """simple docstring""" lowercase__ = self.num_labels lowercase__ = TFDebertaVaForTokenClassification(config=_UpperCAmelCase ) lowercase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ (self : int , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any] ) -> Optional[int]: """simple docstring""" lowercase__ = TFDebertaVaForQuestionAnswering(config=_UpperCAmelCase ) lowercase__ = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowercase__ = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' A__ = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) A__ = ( { '''feature-extraction''': TFDebertaVaModel, '''fill-mask''': TFDebertaVaForMaskedLM, '''question-answering''': TFDebertaVaForQuestionAnswering, '''text-classification''': TFDebertaVaForSequenceClassification, '''token-classification''': TFDebertaVaForTokenClassification, '''zero-shot''': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) A__ = False A__ = False def lowerCamelCase__ (self : Tuple ) -> Optional[Any]: """simple docstring""" lowercase__ = TFDebertaVaModelTester(self ) lowercase__ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowerCamelCase__ (self : List[str] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ (self : List[Any] ) -> List[Any]: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCamelCase__ (self : Any ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> str: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def lowerCamelCase__ (self : Optional[int] ) -> int: """simple docstring""" lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def lowerCamelCase__ (self : Any ) -> int: """simple docstring""" lowercase__ = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) self.assertIsNotNone(_UpperCAmelCase ) @require_tf class A ( unittest.TestCase ): '''simple docstring''' @unittest.skip(reason="""Model not available yet""" ) def lowerCamelCase__ (self : Optional[int] ) -> Optional[int]: """simple docstring""" pass @slow def lowerCamelCase__ (self : Dict ) -> str: """simple docstring""" lowercase__ = TFDebertaVaModel.from_pretrained("""kamalkraj/deberta-v2-xlarge""" ) lowercase__ = tf.constant([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] ) lowercase__ = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase__ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] lowercase__ = tf.constant( [[[0.2_356, 0.1_948, 0.0_369], [-0.1_063, 0.3_586, -0.5_152], [-0.6_399, -0.0_259, -0.2_525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 )
15
import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def a_ ( __magic_name__ ) -> Any: """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def a_ ( ) -> List[str]: """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def a_ ( ) -> Union[str, Any]: """simple docstring""" snake_case : Optional[Any] = '''mock-s3-bucket''' snake_case : Optional[Any] = F"s3://{mock_bucket}" snake_case : Tuple = extract_path_from_uri(__magic_name__ ) assert dataset_path.startswith('''s3://''' ) is False snake_case : List[Any] = '''./local/path''' snake_case : Any = extract_path_from_uri(__magic_name__ ) assert dataset_path == new_dataset_path def a_ ( __magic_name__ ) -> List[str]: """simple docstring""" snake_case : Any = is_remote_filesystem(__magic_name__ ) assert is_remote is True snake_case : Dict = fsspec.filesystem('''file''' ) snake_case : List[Any] = is_remote_filesystem(__magic_name__ ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __magic_name__ ) def a_ ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: """simple docstring""" snake_case : Tuple = {'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} snake_case : Optional[int] = input_paths[compression_fs_class.protocol] if input_path is None: snake_case : Any = F"for '{compression_fs_class.protocol}' compression protocol, " if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__magic_name__ ) snake_case : Optional[Any] = fsspec.filesystem(compression_fs_class.protocol , fo=__magic_name__ ) assert isinstance(__magic_name__ , __magic_name__ ) snake_case : List[Any] = os.path.basename(__magic_name__ ) snake_case : Optional[int] = expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__magic_name__ , '''r''' , encoding='''utf-8''' ) as f, open(__magic_name__ , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def a_ ( __magic_name__ , __magic_name__ , __magic_name__ ) -> Optional[int]: """simple docstring""" snake_case : Tuple = {'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} snake_case : Optional[int] = compressed_file_paths[protocol] snake_case : str = '''dataset.jsonl''' snake_case : List[Any] = F"{protocol}://{member_file_path}::{compressed_file_path}" snake_case , *snake_case : str = fsspec.get_fs_token_paths(__magic_name__ ) assert fs.isfile(__magic_name__ ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def a_ ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> List[Any]: """simple docstring""" snake_case : List[Any] = hf_api.dataset_info(__magic_name__ , token=__magic_name__ ) snake_case : List[str] = HfFileSystem(repo_info=__magic_name__ , token=__magic_name__ ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__magic_name__ ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def a_ ( ) -> List[Any]: """simple docstring""" snake_case : List[str] = '''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__magic_name__ , __magic_name__ , clobber=__magic_name__ ) with pytest.warns(__magic_name__ ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__magic_name__ ) == 1 assert ( str(warning_info[0].message ) == F"A filesystem protocol was already set for {protocol} and will be overwritten." )
598
0
import os def lowerCAmelCase_ ( __a ) -> Dict: """simple docstring""" lowerCamelCase__: int =len(grid[0] ) lowerCamelCase__: Optional[Any] =len(__a ) lowerCamelCase__: Tuple =0 lowerCamelCase__: List[str] =0 lowerCamelCase__: Tuple =0 # Check vertically, horizontally, diagonally at the same time (only works # for nxn grid) for i in range(__a ): for j in range(n_rows - 3 ): lowerCamelCase__: Optional[int] =grid[j][i] * grid[j + 1][i] * grid[j + 2][i] * grid[j + 3][i] lowerCamelCase__: Dict =grid[i][j] * grid[i][j + 1] * grid[i][j + 2] * grid[i][j + 3] # Left-to-right diagonal (\) product if i < n_columns - 3: lowerCamelCase__: str =( grid[i][j] * grid[i + 1][j + 1] * grid[i + 2][j + 2] * grid[i + 3][j + 3] ) # Right-to-left diagonal(/) product if i > 2: lowerCamelCase__: Optional[Any] =( grid[i][j] * grid[i - 1][j + 1] * grid[i - 2][j + 2] * grid[i - 3][j + 3] ) lowerCamelCase__: List[Any] =max( __a , __a , __a , __a ) if max_product > largest: lowerCamelCase__: Any =max_product return largest def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" lowerCamelCase__: Optional[int] =[] with open(os.path.dirname(__a ) + "/grid.txt" ) as file: for line in file: grid.append(line.strip("\n" ).split(" " ) ) lowerCamelCase__: int =[[int(__a ) for i in grid[j]] for j in range(len(__a ) )] return largest_product(__a ) if __name__ == "__main__": print(solution())
437
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "blip_2_vision_model" def __init__(self : Union[str, Any] , UpperCAmelCase_ : int=1_408 , UpperCAmelCase_ : List[str]=6_144 , UpperCAmelCase_ : List[Any]=39 , UpperCAmelCase_ : Tuple=16 , UpperCAmelCase_ : List[str]=224 , UpperCAmelCase_ : Any=14 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : str=0.0_0001 , UpperCAmelCase_ : List[str]=0.0 , UpperCAmelCase_ : str=1E-1_0 , UpperCAmelCase_ : Any=True , **UpperCAmelCase_ : Optional[Any] , ) ->Optional[int]: '''simple docstring''' super().__init__(**UpperCAmelCase_) lowerCamelCase__: Any =hidden_size lowerCamelCase__: Any =intermediate_size lowerCamelCase__: Union[str, Any] =num_hidden_layers lowerCamelCase__: Optional[Any] =num_attention_heads lowerCamelCase__: Dict =patch_size lowerCamelCase__: List[Any] =image_size lowerCamelCase__: Union[str, Any] =initializer_range lowerCamelCase__: Optional[Any] =attention_dropout lowerCamelCase__: Union[str, Any] =layer_norm_eps lowerCamelCase__: Dict =hidden_act lowerCamelCase__: Union[str, Any] =qkv_bias @classmethod def SCREAMING_SNAKE_CASE_ (cls : Optional[int] , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : List[Any]) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: str =cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_) # get the vision config dict if we are loading from Blip2Config if config_dict.get("model_type") == "blip-2": lowerCamelCase__: Any =config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "blip_2_qformer" def __init__(self : str , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : Union[str, Any]=768 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : Optional[int]=3_072 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : List[Any]=0.02 , UpperCAmelCase_ : Optional[Any]=1E-1_2 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : Optional[int]="absolute" , UpperCAmelCase_ : List[Any]=2 , UpperCAmelCase_ : int=1_408 , **UpperCAmelCase_ : Optional[int] , ) ->List[str]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Tuple =num_hidden_layers lowerCamelCase__: List[Any] =num_attention_heads lowerCamelCase__: Optional[Any] =hidden_act lowerCamelCase__: Optional[Any] =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: Any =attention_probs_dropout_prob lowerCamelCase__: Union[str, Any] =max_position_embeddings lowerCamelCase__: Optional[Any] =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: Tuple =position_embedding_type lowerCamelCase__: List[Any] =cross_attention_frequency lowerCamelCase__: Tuple =encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE_ (cls : Union[str, Any] , UpperCAmelCase_ : Union[str, os.PathLike] , **UpperCAmelCase_ : List[Any]) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase_) lowerCamelCase__ , lowerCamelCase__: Tuple =cls.get_config_dict(UpperCAmelCase_ , **UpperCAmelCase_) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("model_type") == "blip-2": lowerCamelCase__: Any =config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase_ , **UpperCAmelCase_) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "blip-2" lowercase_ = True def __init__(self : Any , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : int=32 , **UpperCAmelCase_ : str) ->List[str]: '''simple docstring''' super().__init__(**UpperCAmelCase_) if vision_config is None: lowerCamelCase__: Optional[int] ={} logger.info("vision_config is None. initializing the Blip2VisionConfig with default values.") if qformer_config is None: lowerCamelCase__: str ={} logger.info("qformer_config is None. Initializing the Blip2QFormerConfig with default values.") if text_config is None: lowerCamelCase__: Union[str, Any] ={} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`).") lowerCamelCase__: Optional[Any] =BlipaVisionConfig(**UpperCAmelCase_) lowerCamelCase__: Optional[int] =BlipaQFormerConfig(**UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =text_config["model_type"] if "model_type" in text_config else "opt" lowerCamelCase__: Dict =CONFIG_MAPPING[text_model_type](**UpperCAmelCase_) lowerCamelCase__: Optional[int] =self.text_config.tie_word_embeddings lowerCamelCase__: List[str] =self.text_config.is_encoder_decoder lowerCamelCase__: Dict =num_query_tokens lowerCamelCase__: Optional[Any] =self.vision_config.hidden_size lowerCamelCase__: Tuple =self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES lowerCamelCase__: List[Any] =1.0 lowerCamelCase__: Union[str, Any] =0.02 @classmethod def SCREAMING_SNAKE_CASE_ (cls : Any , UpperCAmelCase_ : BlipaVisionConfig , UpperCAmelCase_ : BlipaQFormerConfig , UpperCAmelCase_ : PretrainedConfig , **UpperCAmelCase_ : int , ) ->Optional[int]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : List[str]) ->int: '''simple docstring''' lowerCamelCase__: List[Any] =copy.deepcopy(self.__dict__) lowerCamelCase__: Any =self.vision_config.to_dict() lowerCamelCase__: Any =self.qformer_config.to_dict() lowerCamelCase__: Any =self.text_config.to_dict() lowerCamelCase__: int =self.__class__.model_type return output
437
1
import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Tuple ): # Load checkpoint __lowerCAmelCase = torch.load(lowerCAmelCase_, map_location='cpu' ) __lowerCAmelCase = chkpt['model'] # We have the base model one level deeper than the original XLM repository __lowerCAmelCase = {} for k, v in state_dict.items(): if "pred_layer" in k: __lowerCAmelCase = v else: __lowerCAmelCase = v __lowerCAmelCase = chkpt['params'] __lowerCAmelCase = {n: v for n, v in config.items() if not isinstance(lowerCAmelCase_, (torch.FloatTensor, numpy.ndarray) )} __lowerCAmelCase = chkpt['dico_word2id'] __lowerCAmelCase = {s + '</w>' if s.find('@@' ) == -1 and i > 13 else s.replace('@@', '' ): i for s, i in vocab.items()} # Save pytorch-model __lowerCAmelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __lowerCAmelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME __lowerCAmelCase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(F"""Save PyTorch model to {pytorch_weights_dump_path}""" ) torch.save(lowerCAmelCase_, lowerCAmelCase_ ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, indent=2 ) + '\n' ) print(F"""Save vocab file to {pytorch_config_dump_path}""" ) with open(lowerCAmelCase_, 'w', encoding='utf-8' ) as f: f.write(json.dumps(lowerCAmelCase_, indent=2 ) + '\n' ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xlm_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _snake_case : Any = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
53
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _snake_case : List[Any] = logging.get_logger(__name__) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = ["""pixel_values"""] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Dict[str, int] = None , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD , **lowerCAmelCase_ : Any , ) -> None: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = size if size is not None else {'shortest_edge': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else {'height': 2_2_4, 'width': 2_2_4} __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = do_resize __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = do_rescale __lowerCAmelCase = rescale_factor __lowerCAmelCase = do_normalize __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Optional[int] , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: __lowerCAmelCase = int((2_5_6 / 2_2_4) * size['shortest_edge'] ) __lowerCAmelCase = get_resize_output_image_size(lowerCAmelCase_ , size=lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = {'height': output_size[0], 'width': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( f"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( lowerCAmelCase_ , size=(size_dict['height'], size_dict['width']) , resample=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : str , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Dict[str, int] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : str , ) -> np.ndarray: __lowerCAmelCase = get_size_dict(lowerCAmelCase_ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(lowerCAmelCase_ , size=(size['height'], size['width']) , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Dict , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[int, float] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : int , ) -> np.ndarray: return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Union[float, List[float]] , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : List[str] , ) -> np.ndarray: return normalize(lowerCAmelCase_ , mean=lowerCAmelCase_ , std=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def lowercase ( self : Optional[Any] , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : PILImageResampling = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Dict[str, int]] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[Union[float, Iterable[float]]] = None , lowerCAmelCase_ : Optional[TensorType] = None , lowerCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **lowerCAmelCase_ : str , ) -> BatchFeature: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , default_to_square=lowerCAmelCase_ ) __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(lowerCAmelCase_ , param_name='crop_size' ) __lowerCAmelCase = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] __lowerCAmelCase = {'pixel_values': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
53
1
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase = random.Random() if is_torch_available(): import torch def A__ ( _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=1.0 , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : List[str]=None ) -> Tuple: '''simple docstring''' if rng is None: snake_case__ : Any = global_rng snake_case__ : Optional[int] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class SCREAMING_SNAKE_CASE_ ( unittest.TestCase): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=400 , lowerCamelCase__=2_000 , lowerCamelCase__=1 , lowerCamelCase__=0.0 , lowerCamelCase__=16_000 , lowerCamelCase__=True , lowerCamelCase__=True , ) -> List[str]: '''simple docstring''' snake_case__ : List[str] = parent snake_case__ : Tuple = batch_size snake_case__ : Tuple = min_seq_length snake_case__ : Tuple = max_seq_length snake_case__ : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case__ : int = feature_size snake_case__ : Dict = padding_value snake_case__ : str = sampling_rate snake_case__ : Tuple = return_attention_mask snake_case__ : int = do_normalize def UpperCAmelCase ( self) -> int: '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCAmelCase ( self , lowerCamelCase__=False , lowerCamelCase__=False) -> List[str]: '''simple docstring''' def _flatten(lowerCamelCase__): return list(itertools.chain(*__lowercase)) if equal_length: snake_case__ : int = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size snake_case__ : Dict = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: snake_case__ : Optional[int] = [np.asarray(__lowercase) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE_ ( lowercase__ , unittest.TestCase): '''simple docstring''' __magic_name__ : Tuple = ASTFeatureExtractor def UpperCAmelCase ( self) -> Dict: '''simple docstring''' snake_case__ : List[Any] = ASTFeatureExtractionTester(self) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' snake_case__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 snake_case__ : str = [floats_list((1, x))[0] for x in range(800 , 1_400 , 200)] snake_case__ : Optional[int] = [np.asarray(__lowercase) for speech_input in speech_inputs] # Test not batched input snake_case__ : Dict = feat_extract(speech_inputs[0] , return_tensors="np").input_values snake_case__ : int = feat_extract(np_speech_inputs[0] , return_tensors="np").input_values self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1E-3)) # Test batched snake_case__ : Tuple = feat_extract(__lowercase , padding=__lowercase , return_tensors="np").input_values snake_case__ : str = feat_extract(__lowercase , padding=__lowercase , return_tensors="np").input_values for enc_seq_a, enc_seq_a in zip(__lowercase , __lowercase): self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1E-3)) # Test 2-D numpy arrays are batched. snake_case__ : Optional[int] = [floats_list((1, x))[0] for x in (800, 800, 800)] snake_case__ : Optional[Any] = np.asarray(__lowercase) snake_case__ : int = feat_extract(__lowercase , return_tensors="np").input_values snake_case__ : Any = feat_extract(__lowercase , return_tensors="np").input_values for enc_seq_a, enc_seq_a in zip(__lowercase , __lowercase): self.assertTrue(np.allclose(__lowercase , __lowercase , atol=1E-3)) @require_torch def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' import torch snake_case__ : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) snake_case__ : Tuple = np.random.rand(100).astype(np.floataa) snake_case__ : List[str] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case__ : Optional[Any] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np") self.assertTrue(np_processed.input_values.dtype == np.floataa) snake_case__ : List[Any] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt") self.assertTrue(pt_processed.input_values.dtype == torch.floataa) def UpperCAmelCase ( self , lowerCamelCase__) -> Tuple: '''simple docstring''' from datasets import load_dataset snake_case__ : int = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation") # automatic decoding with librispeech snake_case__ : Any = ds.sort("id").select(range(__lowercase))[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def UpperCAmelCase ( self) -> Any: '''simple docstring''' snake_case__ : Optional[int] = torch.tensor( [-0.98_94, -1.27_76, -0.90_66, -1.27_76, -0.93_49, -1.26_09, -1.03_86, -1.27_76, -1.15_61, -1.27_76, -1.20_52, -1.27_23, -1.21_90, -1.21_32, -1.27_76, -1.11_33, -1.19_53, -1.13_43, -1.15_84, -1.22_03, -1.17_70, -1.24_74, -1.23_81, -1.19_36, -0.92_70, -0.83_17, -0.80_49, -0.77_06, -0.75_65, -0.78_69]) # fmt: on snake_case__ : Any = self._load_datasamples(1) snake_case__ : Tuple = ASTFeatureExtractor() snake_case__ : int = feature_extractor(__lowercase , return_tensors="pt").input_values self.assertEquals(input_values.shape , (1, 1_024, 128)) self.assertTrue(torch.allclose(input_values[0, 0, :30] , __lowercase , atol=1E-4))
715
"""simple docstring""" import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowercase = { """vocab_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json""" }, """merges_file""": { """facebook/blenderbot_small-90M""": """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt""" }, """tokenizer_config_file""": { """facebook/blenderbot_small-90M""": ( """https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json""" ) }, } lowercase = {"""facebook/blenderbot_small-90M""": 512} def A__ ( _UpperCAmelCase : Dict ) -> Tuple: '''simple docstring''' snake_case__ : List[str] = set() snake_case__ : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ : Any = char snake_case__ : List[str] = set(_UpperCAmelCase ) return pairs class SCREAMING_SNAKE_CASE_ ( _lowercase): '''simple docstring''' __magic_name__ : Dict = VOCAB_FILES_NAMES __magic_name__ : Tuple = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Tuple = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="__start__" , lowerCamelCase__="__end__" , lowerCamelCase__="__unk__" , lowerCamelCase__="__null__" , **lowerCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(unk_token=lowerCamelCase__ , bos_token=lowerCamelCase__ , eos_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , **lowerCamelCase__) with open(lowerCamelCase__ , encoding="utf-8") as vocab_handle: snake_case__ : int = json.load(lowerCamelCase__) snake_case__ : List[str] = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase__ , encoding="utf-8") as merges_handle: snake_case__ : Any = merges_handle.read().split("\n")[1:-1] snake_case__ : Optional[int] = [tuple(merge.split()) for merge in merges] snake_case__ : Optional[Any] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__)))) snake_case__ : List[str] = {} @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return len(self.encoder) def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder) def UpperCAmelCase ( self , lowerCamelCase__) -> str: '''simple docstring''' if token in self.cache: return self.cache[token] snake_case__ : Tuple = re.sub("([.,!?()])" , R" \1" , lowerCamelCase__) snake_case__ : List[Any] = re.sub("(')" , R" \1 " , lowerCamelCase__) snake_case__ : Dict = re.sub(R"\s{2,}" , " " , lowerCamelCase__) if "\n" in token: snake_case__ : Tuple = token.replace("\n" , " __newln__") snake_case__ : Optional[int] = token.split(" ") snake_case__ : int = [] for token in tokens: if not len(lowerCamelCase__): continue snake_case__ : str = token.lower() snake_case__ : List[str] = tuple(lowerCamelCase__) snake_case__ : str = tuple(list(word[:-1]) + [word[-1] + "</w>"]) snake_case__ : Optional[int] = get_pairs(lowerCamelCase__) if not pairs: words.append(lowerCamelCase__) continue while True: snake_case__ : int = min(lowerCamelCase__ , key=lambda lowerCamelCase__: self.bpe_ranks.get(lowerCamelCase__ , float("inf"))) if bigram not in self.bpe_ranks: break snake_case__, snake_case__ : Any = bigram snake_case__ : Optional[int] = [] snake_case__ : str = 0 while i < len(lowerCamelCase__): try: snake_case__ : Any = word.index(lowerCamelCase__ , lowerCamelCase__) new_word.extend(word[i:j]) snake_case__ : Tuple = j except ValueError: new_word.extend(word[i:]) break if word[i] == first and i < len(lowerCamelCase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 snake_case__ : Optional[int] = tuple(lowerCamelCase__) snake_case__ : str = new_word if len(lowerCamelCase__) == 1: break else: snake_case__ : Optional[int] = get_pairs(lowerCamelCase__) snake_case__ : Tuple = "@@ ".join(lowerCamelCase__) snake_case__ : Union[str, Any] = word[:-4] snake_case__ : Any = word words.append(lowerCamelCase__) return " ".join(lowerCamelCase__) def UpperCAmelCase ( self , lowerCamelCase__) -> List[str]: '''simple docstring''' snake_case__ : Any = [] snake_case__ : Union[str, Any] = re.findall(R"\S+\n?" , lowerCamelCase__) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase__).split(" "))) return split_tokens def UpperCAmelCase ( self , lowerCamelCase__) -> int: '''simple docstring''' snake_case__ : str = token.lower() return self.encoder.get(lowerCamelCase__ , self.encoder.get(self.unk_token)) def UpperCAmelCase ( self , lowerCamelCase__) -> str: '''simple docstring''' return self.decoder.get(lowerCamelCase__ , self.unk_token) def UpperCAmelCase ( self , lowerCamelCase__) -> str: '''simple docstring''' snake_case__ : Optional[int] = " ".join(lowerCamelCase__).replace("@@ " , "").strip() return out_string def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ = None) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase__): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""") return snake_case__ : int = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) snake_case__ : Tuple = os.path.join( lowerCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(lowerCamelCase__ , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase__ , ensure_ascii=lowerCamelCase__) + "\n") snake_case__ : str = 0 with open(lowerCamelCase__ , "w" , encoding="utf-8") as writer: writer.write("#version: 0.2\n") for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase__: kv[1]): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!") snake_case__ : Tuple = token_index writer.write(" ".join(lowerCamelCase__) + "\n") index += 1 return vocab_file, merge_file
150
0
"""simple docstring""" from typing import Dict from .base import GenericTensor, Pipeline class UpperCAmelCase_ ( _UpperCamelCase): def _UpperCAmelCase ( self , a=None , a=None , a=None , **a ) -> Union[str, Any]: if tokenize_kwargs is None: lowercase__ : int = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( 'truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)' ) lowercase__ : List[str] = truncation lowercase__ : Optional[Any] = tokenize_kwargs lowercase__ : Optional[int] = {} if return_tensors is not None: lowercase__ : Tuple = return_tensors return preprocess_params, {}, postprocess_params def _UpperCAmelCase ( self , a , **a ) -> List[str]: lowercase__ : Dict = self.framework lowercase__ : List[str] = self.tokenizer(a_ , return_tensors=a_ , **a_ ) return model_inputs def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : Dict = self.model(**a_ ) return model_outputs def _UpperCAmelCase ( self , a , a=False ) -> Optional[Any]: if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *a , **a ) -> Optional[int]: return super().__call__(*a_ , **a_ )
599
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 a : Tuple = get_tests_dir('''fixtures''') a : Dict = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') a : int = get_tests_dir('''fixtures/dummy-config.json''') class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Tuple ): """simple docstring""" __snake_case = 0 def A ( self : str ): """simple docstring""" __snake_case = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(a_ , a_ ) def A ( self : str ): """simple docstring""" __snake_case = AutoFeatureExtractor.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) def A ( self : str ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __snake_case = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __snake_case = AutoFeatureExtractor.from_pretrained(a_ ).to_dict() config_dict.pop("feature_extractor_type" ) __snake_case = WavaVecaFeatureExtractor(**a_ ) # save in new folder model_config.save_pretrained(a_ ) config.save_pretrained(a_ ) __snake_case = AutoFeatureExtractor.from_pretrained(a_ ) # make sure private variable is not incorrectly saved __snake_case = json.loads(config.to_json_string() ) self.assertTrue("_processor_class" not in dict_as_saved ) self.assertIsInstance(a_ , a_ ) def A ( self : List[Any] ): """simple docstring""" __snake_case = AutoFeatureExtractor.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) def A ( self : Optional[Any] ): """simple docstring""" with self.assertRaisesRegex( a_ , "bert-base is not a local folder and is not a valid model identifier" ): __snake_case = AutoFeatureExtractor.from_pretrained("bert-base" ) def A ( self : Dict ): """simple docstring""" with self.assertRaisesRegex( a_ , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): __snake_case = AutoFeatureExtractor.from_pretrained(a_ , revision="aaaaaa" ) def A ( self : Tuple ): """simple docstring""" with self.assertRaisesRegex( a_ , "hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json." , ): __snake_case = AutoFeatureExtractor.from_pretrained("hf-internal-testing/config-no-model" ) def A ( self : Tuple ): """simple docstring""" with self.assertRaises(a_ ): __snake_case = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(a_ ): __snake_case = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=a_ ) __snake_case = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=a_ ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(a_ ) __snake_case = AutoFeatureExtractor.from_pretrained(a_ , trust_remote_code=a_ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) def A ( self : int ): """simple docstring""" try: AutoConfig.register("custom" , a_ ) AutoFeatureExtractor.register(a_ , a_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a_ ): AutoFeatureExtractor.register(a_ , a_ ) # Now that the config is registered, it can be used as any other config with the auto-API __snake_case = CustomFeatureExtractor.from_pretrained(a_ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(a_ ) __snake_case = AutoFeatureExtractor.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def A ( self : Dict ): """simple docstring""" class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = True try: AutoConfig.register("custom" , a_ ) AutoFeatureExtractor.register(a_ , a_ ) # If remote code is not set, the default is to use local __snake_case = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. __snake_case = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=a_ ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub __snake_case = AutoFeatureExtractor.from_pretrained( "hf-internal-testing/test_dynamic_feature_extractor" , trust_remote_code=a_ ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) self.assertTrue(not hasattr(a_ , "is_local" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
69
0
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError("To use the rich extension, install rich with `pip install rich`")
390
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING lowercase_ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Any = "upernet" def __init__( self : Dict , _lowerCAmelCase : str=None , _lowerCAmelCase : Dict=5_12 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : List[str]=[1, 2, 3, 6] , _lowerCAmelCase : Dict=True , _lowerCAmelCase : List[str]=0.4 , _lowerCAmelCase : Any=3_84 , _lowerCAmelCase : str=2_56 , _lowerCAmelCase : int=1 , _lowerCAmelCase : List[str]=False , _lowerCAmelCase : Optional[int]=2_55 , **_lowerCAmelCase : int , ): super().__init__(**_lowerCAmelCase ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) __snake_case : Dict = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : List[Any] = backbone_config.get("""model_type""" ) __snake_case : Union[str, Any] = CONFIG_MAPPING[backbone_model_type] __snake_case : Union[str, Any] = config_class.from_dict(_lowerCAmelCase ) __snake_case : Dict = backbone_config __snake_case : Optional[Any] = hidden_size __snake_case : List[Any] = initializer_range __snake_case : Union[str, Any] = pool_scales __snake_case : Tuple = use_auxiliary_head __snake_case : List[Any] = auxiliary_loss_weight __snake_case : Union[str, Any] = auxiliary_in_channels __snake_case : str = auxiliary_channels __snake_case : Optional[int] = auxiliary_num_convs __snake_case : Optional[int] = auxiliary_concat_input __snake_case : Tuple = loss_ignore_index def snake_case__ ( self : Any ): __snake_case : int = copy.deepcopy(self.__dict__ ) __snake_case : Optional[int] = self.backbone_config.to_dict() __snake_case : int = self.__class__.model_type return output
390
1
import os from typing import Dict, List, Tuple, TypeVar, Union UpperCAmelCase_ = TypeVar("T") UpperCAmelCase_ = Union[List[T], Tuple[T, ...]] UpperCAmelCase_ = Union[T, List[T], Dict[str, T]] UpperCAmelCase_ = Union[str, bytes, os.PathLike]
32
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def __lowerCAmelCase ( *_UpperCamelCase ) -> Tuple: '''simple docstring''' with open(_UpperCamelCase , """r""" ) as fh: fcntl.flock(_UpperCamelCase , fcntl.LOCK_EX ) try: print(*_UpperCamelCase ) finally: fcntl.flock(_UpperCamelCase , fcntl.LOCK_UN ) _lowercase = int(os.environ['LOCAL_RANK']) torch.cuda.set_device(local_rank) _lowercase = torch.device('cuda', local_rank) _lowercase = socket.gethostname() _lowercase = F"""[{hostname}-{local_rank}]""" try: # test distributed dist.init_process_group('nccl') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank _lowercase = dist.get_rank() _lowercase = dist.get_world_size() printflock(F"""{gpu} is OK (global rank: {rank}/{world_size})""") dist.barrier() if rank == 0: printflock(F"""pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}""") except Exception: printflock(F"""{gpu} is broken""") raise
306
0
"""simple docstring""" import numpy as np def lowerCamelCase ( _snake_case ): return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
708
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class a : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=64 , UpperCamelCase_=2 , UpperCamelCase_=3 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=32 , UpperCamelCase_=5 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_="gelu" , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=10 , UpperCamelCase_=0.02 , UpperCamelCase_=[1, 16, 4, 4] , UpperCamelCase_=None , ): UpperCAmelCase__ : Any = parent UpperCAmelCase__ : Dict = batch_size UpperCAmelCase__ : str = image_size UpperCAmelCase__ : int = patch_size UpperCAmelCase__ : Optional[int] = num_channels UpperCAmelCase__ : Optional[Any] = is_training UpperCAmelCase__ : List[Any] = use_labels UpperCAmelCase__ : Optional[int] = hidden_size UpperCAmelCase__ : str = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : Union[str, Any] = hidden_act UpperCAmelCase__ : Dict = hidden_dropout_prob UpperCAmelCase__ : Dict = attention_probs_dropout_prob UpperCAmelCase__ : List[Any] = type_sequence_label_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : str = scope UpperCAmelCase__ : int = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size UpperCAmelCase__ : Union[str, Any] = (self.image_size // 32) ** 2 UpperCAmelCase__ : Union[str, Any] = num_patches + 1 def __snake_case ( self ): UpperCAmelCase__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : str = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : List[Any] = self.get_config() return config, pixel_values, labels def __snake_case ( self ): UpperCAmelCase__ : Any = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase_ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=UpperCamelCase_ , ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : str = ViTHybridModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCAmelCase__ : Tuple = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : str = self.type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = ViTHybridForImageClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() UpperCAmelCase__ : Dict = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case ( self ): UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = config_and_inputs UpperCAmelCase__ : int = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a ( lowercase , lowercase , unittest.TestCase ): UpperCamelCase : Dict = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () UpperCamelCase : Dict = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) UpperCamelCase : Union[str, Any] = False UpperCamelCase : Optional[Any] = False UpperCamelCase : Any = False def __snake_case ( self ): UpperCAmelCase__ : Optional[Any] = ViTHybridModelTester(self ) UpperCAmelCase__ : Union[str, Any] = ConfigTester(self , config_class=UpperCamelCase_ , has_text_modality=UpperCamelCase_ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def __snake_case ( self ): pass def __snake_case ( self ): UpperCAmelCase__ , UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Any = model_class(UpperCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase_ , nn.Linear ) ) def __snake_case ( self ): UpperCAmelCase__ , UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class(UpperCamelCase_ ) UpperCAmelCase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Any = [*signature.parameters.keys()] UpperCAmelCase__ : List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase_ ) def __snake_case ( self ): UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase_ ) def __snake_case ( self ): UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase_ ) def __snake_case ( self ): UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : str = _config_zero_init(UpperCamelCase_ ) for model_class in self.all_model_classes: UpperCAmelCase__ : Any = model_class(config=UpperCamelCase_ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": UpperCAmelCase__ : List[Any] = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def __snake_case ( self ): for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Dict = ViTHybridModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) def lowerCamelCase ( ): UpperCAmelCase__ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a ( unittest.TestCase ): @cached_property def __snake_case ( self ): return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __snake_case ( self ): UpperCAmelCase__ : Dict = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( UpperCamelCase_ ) UpperCAmelCase__ : Any = self.default_image_processor UpperCAmelCase__ : Optional[Any] = prepare_img() UpperCAmelCase__ : Optional[int] = image_processor(images=UpperCamelCase_ , return_tensors='pt' ).to(UpperCamelCase_ ) # forward pass with torch.no_grad(): UpperCAmelCase__ : Any = model(**UpperCamelCase_ ) # verify the logits UpperCAmelCase__ : Any = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase_ ) UpperCAmelCase__ : str = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(UpperCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase_ , atol=1E-4 ) ) @slow @require_accelerate def __snake_case ( self ): UpperCAmelCase__ : str = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) UpperCAmelCase__ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) UpperCAmelCase__ : List[Any] = prepare_img() UpperCAmelCase__ : Union[str, Any] = image_processor(images=UpperCamelCase_ , return_tensors='pt' ) UpperCAmelCase__ : List[Any] = model(**UpperCamelCase_ ) UpperCAmelCase__ : Optional[Any] = outputs.logits # model predicts one of the 1000 ImageNet classes UpperCAmelCase__ : List[str] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
254
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": a__ = input('''Enter image url: ''').strip() print(f'''Downloading image from {url} ...''') a__ = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image a__ = soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] a__ = requests.get(image_url).content a__ = f'''{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg''' with open(file_name, '''wb''') as fp: fp.write(image_data) print(f'''Done. Image saved to disk as {file_name}.''')
14
from ..utils import DummyObject, requires_backends class a__ ( metaclass=UpperCamelCase__ ): a : int = ["""torch""", """scipy"""] def __init__( self , *A , **A ) -> str: '''simple docstring''' requires_backends(self , ["torch", "scipy"] ) @classmethod def lowerCAmelCase_ ( cls , *A , **A ) -> Any: '''simple docstring''' requires_backends(cls , ["torch", "scipy"] ) @classmethod def lowerCAmelCase_ ( cls , *A , **A ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["torch", "scipy"] )
515
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __a : Union[str, Any] = logging.get_logger(__name__) __a : Tuple = { """BridgeTower/bridgetower-base""": """https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json""", """BridgeTower/bridgetower-base-itm-mlm""": ( """https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json""" ), } class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Any = '''bridgetower_vision_model''' def __init__( self , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=3 , lowerCAmelCase__=16 , lowerCAmelCase__=2_88 , lowerCAmelCase__=1 , lowerCAmelCase__=1E-05 , lowerCAmelCase__=False , lowerCAmelCase__=True , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> int: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_channels __lowercase = patch_size __lowercase = image_size __lowercase = initializer_factor __lowercase = layer_norm_eps __lowercase = stop_gradient __lowercase = share_layernorm __lowercase = remove_last_layer @classmethod def _SCREAMING_SNAKE_CASE ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ) -> "PretrainedConfig": '''simple docstring''' __lowercase , __lowercase = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) if config_dict.get('''model_type''' ) == "bridgetower": __lowercase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Tuple = '''bridgetower_text_model''' def __init__( self , lowerCAmelCase__=5_02_65 , lowerCAmelCase__=7_68 , lowerCAmelCase__=12 , lowerCAmelCase__=12 , lowerCAmelCase__=1 , lowerCAmelCase__=30_72 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=5_14 , lowerCAmelCase__=1 , lowerCAmelCase__=1E-05 , lowerCAmelCase__=1 , lowerCAmelCase__=0 , lowerCAmelCase__=2 , lowerCAmelCase__="absolute" , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = initializer_factor __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = use_cache __lowercase = pad_token_id __lowercase = bos_token_id __lowercase = eos_token_id @classmethod def _SCREAMING_SNAKE_CASE ( cls , lowerCAmelCase__ , **lowerCAmelCase__ ) -> "PretrainedConfig": '''simple docstring''' __lowercase , __lowercase = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) if config_dict.get('''model_type''' ) == "bridgetower": __lowercase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Tuple = '''bridgetower''' def __init__( self , lowerCAmelCase__=True , lowerCAmelCase__="gelu" , lowerCAmelCase__=7_68 , lowerCAmelCase__=1 , lowerCAmelCase__=1E-05 , lowerCAmelCase__=False , lowerCAmelCase__="add" , lowerCAmelCase__=12 , lowerCAmelCase__=6 , lowerCAmelCase__=False , lowerCAmelCase__=False , lowerCAmelCase__=None , lowerCAmelCase__=None , **lowerCAmelCase__ , ) -> List[str]: '''simple docstring''' __lowercase = kwargs.pop('''text_config_dict''' , lowerCAmelCase__ ) __lowercase = kwargs.pop('''vision_config_dict''' , lowerCAmelCase__ ) super().__init__(**lowerCAmelCase__ ) __lowercase = share_cross_modal_transformer_layers __lowercase = hidden_act __lowercase = hidden_size __lowercase = initializer_factor __lowercase = layer_norm_eps __lowercase = share_link_tower_layers __lowercase = link_tower_type __lowercase = num_attention_heads __lowercase = num_hidden_layers __lowercase = tie_word_embeddings __lowercase = init_layernorm_from_vision_encoder if text_config is None: __lowercase = {} logger.info('''`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.''' ) if vision_config is None: __lowercase = {} logger.info('''`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.''' ) __lowercase = BridgeTowerTextConfig(**lowerCAmelCase__ ) __lowercase = BridgeTowerVisionConfig(**lowerCAmelCase__ ) @classmethod def _SCREAMING_SNAKE_CASE ( cls , lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.text_config.to_dict() __lowercase = self.vision_config.to_dict() __lowercase = self.__class__.model_type return output
522
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __a : str = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def UpperCAmelCase ( lowercase ): """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" if args.student_type == "roberta": __lowercase = False elif args.student_type == "gpt2": __lowercase = False def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" if args.student_type == "roberta": __lowercase = False def UpperCAmelCase ( ): """simple docstring""" __lowercase = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=lowercase , required=lowercase , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=lowercase , required=lowercase , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=lowercase , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=lowercase , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=lowercase , required=lowercase , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=lowercase , type=lowercase , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=lowercase , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=lowercase , required=lowercase , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=lowercase , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=lowercase , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=lowercase , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=lowercase , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=lowercase , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=lowercase , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=lowercase , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=lowercase , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=lowercase , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=lowercase , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=lowercase , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=lowercase , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=lowercase , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=lowercase , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=lowercase , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=lowercase , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=lowercase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=lowercase , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=lowercase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=lowercase , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=lowercase , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=lowercase , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=lowercase , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=lowercase , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=lowercase , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=lowercase , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=lowercase , default=4000 , help='''Checkpoint interval.''' ) __lowercase = parser.parse_args() sanity_checks(lowercase ) # ARGS # init_gpu_params(lowercase ) set_seed(lowercase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"Experiment will be dumped and logged in {args.dump_path}" ) # SAVE PARAMS # logger.info(F"Param: {args}" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(lowercase ) , lowercase , indent=4 ) git_log(args.dump_path ) __lowercase , __lowercase , __lowercase = MODEL_CLASSES[args.student_type] __lowercase , __lowercase , __lowercase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __lowercase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __lowercase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __lowercase = tokenizer.all_special_tokens.index(lowercase ) __lowercase = tokenizer.all_special_ids[idx] logger.info(F"Special tokens {special_tok_ids}" ) __lowercase = special_tok_ids __lowercase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"Loading data from {args.data_file}" ) with open(args.data_file , '''rb''' ) as fp: __lowercase = pickle.load(lowercase ) if args.mlm: logger.info(F"Loading token counts from {args.token_counts} (already pre-computed)" ) with open(args.token_counts , '''rb''' ) as fp: __lowercase = pickle.load(lowercase ) __lowercase = np.maximum(lowercase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __lowercase = 0.0 # do not predict special tokens __lowercase = torch.from_numpy(lowercase ) else: __lowercase = None __lowercase = LmSeqsDataset(params=lowercase , data=lowercase ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F"Loading student config from {args.student_config}" ) __lowercase = student_config_class.from_pretrained(args.student_config ) __lowercase = True if args.student_pretrained_weights is not None: logger.info(F"Loading pretrained weights from {args.student_pretrained_weights}" ) __lowercase = student_model_class.from_pretrained(args.student_pretrained_weights , config=lowercase ) else: __lowercase = student_model_class(lowercase ) if args.n_gpu > 0: student.to(F"cuda:{args.local_rank}" ) logger.info('''Student loaded.''' ) # TEACHER # __lowercase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=lowercase ) if args.n_gpu > 0: teacher.to(F"cuda:{args.local_rank}" ) logger.info(F"Teacher loaded from {args.teacher_name}." ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowercase , lowercase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowercase , lowercase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __lowercase = Distiller( params=lowercase , dataset=lowercase , token_probs=lowercase , student=lowercase , teacher=lowercase ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
522
1
import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A__ ( A__ , unittest.TestCase ): """simple docstring""" _lowercase = CLIPTokenizer _lowercase = CLIPTokenizerFast _lowercase = True _lowercase = {} _lowercase = False def _UpperCamelCase( self : List[Any] ): super().setUp() # fmt: off a__ : Any = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on a__ : Optional[Any] = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) a__ : Optional[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>"] a__ : Optional[Any] = {"unk_token": "<unk>"} a__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a__ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCamelCase__ ) ) def _UpperCamelCase( self : Dict , **lowerCamelCase__ : int ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] , **lowerCamelCase__ : Optional[int] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _UpperCamelCase( self : Dict , lowerCamelCase__ : Optional[Any] ): a__ : int = "lower newer" a__ : Optional[int] = "lower newer" return input_text, output_text def _UpperCamelCase( self : List[str] ): a__ : Union[str, Any] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) a__ : int = "lower newer" a__ : List[str] = ["lo", "w", "er</w>", "n", "e", "w", "er</w>"] a__ : Union[str, Any] = tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) a__ : int = tokens + [tokenizer.unk_token] a__ : Union[str, Any] = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) @require_ftfy def _UpperCamelCase( self : Optional[Any] ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ : List[str] = self.tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) a__ : Any = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) a__ : int = "A\n'll 11p223RF☆ho!!to?'d'd''d of a cat to-$''d." a__ : Optional[Any] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : Dict = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways a__ : Optional[Any] = "xa\u0303y" + " " + "x\xe3y" a__ : Optional[int] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on unicode of space type a__ : str = [ "\u0009", # (horizontal tab, '\t') "\u000B", # (vertical tab) "\u000C", # (form feed) "\u0020", # (space, ' ') "\u200E", # (left-to-right mark):w "\u200F", # (right-to-left mark) ] for unicode_seq in spaces_unicodes: a__ : Any = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Test that the tokenization is identical on unicode of line break type a__ : Union[str, Any] = [ "\u000A", # (line feed, '\n') "\r\n", # (carriage return and line feed, '\r\n') "\u000D", # (carriage return, '\r') "\r", # (carriage return, '\r') "\u000D", # (carriage return, '\r') "\u2028", # (line separator) "\u2029", # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: a__ : List[Any] = tokenizer_s.tokenize(lowerCamelCase__ ) a__ : int = tokenizer_r.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : Optional[Any] ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): a__ : str = "hello" # `hello` is a token in the vocabulary of `pretrained_name` a__ : Tuple = f'''{text_of_1_token} {text_of_1_token}''' a__ : Optional[int] = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , ) a__ : Union[str, Any] = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase__ ) + 1, len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) a__ : Optional[Any] = f''' {text}''' a__ : str = self.rust_tokenizer_class.from_pretrained( lowerCamelCase__ , use_fast=lowerCamelCase__ , ) a__ : Dict = tokenizer_r(lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase__ ) + 1, 1 + len(lowerCamelCase__ ) + 1 + len(lowerCamelCase__ )) , ) def _UpperCamelCase( self : int ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCamelCase__ ) as context: self.rust_tokenizer_class.from_pretrained("robot-test/old-clip-tokenizer" ) self.assertTrue( context.exception.args[0].startswith( "The `backend_tokenizer` provided does not match the expected format." ) ) @require_ftfy def _UpperCamelCase( self : int ): super().test_tokenization_python_rust_equals() def _UpperCamelCase( self : str ): # CLIP always lower cases letters pass
37
'''simple docstring''' from typing import List from .keymap import KEYMAP, get_character def lowerCamelCase__ ( A_ ): def decorator(A_ ): UpperCAmelCase_ = getattr(A_ , "handle_key" , [] ) handle += [key] setattr(A_ , "handle_key" , A_ ) return func return decorator def lowerCamelCase__ ( *A_ ): def decorator(A_ ): UpperCAmelCase_ = getattr(A_ , "handle_key" , [] ) handle += keys setattr(A_ , "handle_key" , A_ ) return func return decorator class lowercase_ ( _A ): def __new__( cls , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Dict: """simple docstring""" UpperCAmelCase_ = super().__new__(cls , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) if not hasattr(UpperCamelCase__ , "key_handler" ): setattr(UpperCamelCase__ , "key_handler" , {} ) setattr(UpperCamelCase__ , "handle_input" , KeyHandler.handle_input ) for value in attrs.values(): UpperCAmelCase_ = getattr(UpperCamelCase__ , "handle_key" , [] ) for key in handled_keys: UpperCAmelCase_ = value return new_cls @staticmethod def lowerCamelCase_ ( cls ) -> str: """simple docstring""" UpperCAmelCase_ = get_character() if char != KEYMAP["undefined"]: UpperCAmelCase_ = ord(UpperCamelCase__ ) UpperCAmelCase_ = cls.key_handler.get(UpperCamelCase__ ) if handler: UpperCAmelCase_ = char return handler(cls ) else: return None def lowerCamelCase__ ( cls ): return KeyHandler(cls.__name__ , cls.__bases__ , cls.__dict__.copy() )
660
0
import math def _lowerCamelCase ( __A : int , __A : Tuple ) -> Optional[int]: '''simple docstring''' if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(__A ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
717
import argparse import os import re SCREAMING_SNAKE_CASE = 'src/transformers/models/auto' # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict SCREAMING_SNAKE_CASE = re.compile(R'[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict') # re pattern that matches identifiers in mappings SCREAMING_SNAKE_CASE = re.compile(R'\s*\(\s*"(\S[^"]+)"') def _lowerCamelCase ( __A : Optional[int] , __A : bool = False ) -> int: with open(__A , '''r''' , encoding='''utf-8''' ) as f: _UpperCAmelCase : Union[str, Any] = f.read() _UpperCAmelCase : Any = content.split('''\n''' ) _UpperCAmelCase : Any = [] _UpperCAmelCase : Tuple = 0 while line_idx < len(__A ): if _re_intro_mapping.search(lines[line_idx] ) is not None: _UpperCAmelCase : Union[str, Any] = len(re.search(r'''^(\s*)\S''' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(''' ''' * indent + '''(''' ): new_lines.append(lines[line_idx] ) line_idx += 1 _UpperCAmelCase : str = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": _UpperCAmelCase : List[str] = line_idx while not lines[line_idx].startswith(''' ''' * indent + ''')''' ): line_idx += 1 blocks.append('''\n'''.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers _UpperCAmelCase : Tuple = sorted(__A , key=lambda __A : _re_identifier.search(__A ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(__A , '''w''' , encoding='''utf-8''' ) as f: f.write('''\n'''.join(__A ) ) elif "\n".join(__A ) != content: return True def _lowerCamelCase ( __A : bool = False ) -> List[str]: _UpperCAmelCase : List[str] = [os.path.join(__A , __A ) for f in os.listdir(__A ) if f.endswith('''.py''' )] _UpperCAmelCase : List[Any] = [sort_auto_mapping(__A , overwrite=__A ) for fname in fnames] if not overwrite and any(__A ): _UpperCAmelCase : Optional[int] = [f for f, d in zip(__A , __A ) if d] raise ValueError( f'''The following files have auto mappings that need sorting: {', '.join(__A )}. Run `make style` to fix''' ''' this.''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') SCREAMING_SNAKE_CASE = parser.parse_args() sort_all_auto_mappings(not args.check_only)
186
0
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : Tuple = { '''configuration_lilt''': ['''LILT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LiltConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ '''LILT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LiltForQuestionAnswering''', '''LiltForSequenceClassification''', '''LiltForTokenClassification''', '''LiltModel''', '''LiltPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys lowerCAmelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
214
0
"""simple docstring""" import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def UpperCAmelCase ( snake_case : Any , snake_case : Tuple , snake_case : Tuple , snake_case : List[Any]=None , snake_case : Dict=None , snake_case : Optional[int]=None , snake_case : str=None , snake_case : Optional[int]=None , ): if attention_mask is None: _lowerCAmelCase:List[str] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: _lowerCAmelCase:Optional[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: _lowerCAmelCase:Tuple = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case ) if decoder_head_mask is None: _lowerCAmelCase:Dict = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case ) if cross_attn_head_mask is None: _lowerCAmelCase:List[Any] = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class a__ : def __init__( self : Dict ,a__ : Optional[int] ,a__ : Union[str, Any]=13 ,a__ : Optional[Any]=7 ,a__ : Tuple=True ,a__ : Tuple=False ,a__ : Optional[int]=99 ,a__ : List[str]=16 ,a__ : Optional[int]=2 ,a__ : Any=4 ,a__ : Union[str, Any]=4 ,a__ : int="relu" ,a__ : Union[str, Any]=0.1 ,a__ : Optional[Any]=0.1 ,a__ : Tuple=0.0 ,a__ : Optional[int]=0.0 ,a__ : List[str]=20 ,a__ : Optional[Any]=2 ,a__ : Optional[int]=1 ,a__ : Tuple=0 ,) -> Optional[Any]: """simple docstring""" _lowerCAmelCase:Optional[Any] = parent _lowerCAmelCase:str = batch_size _lowerCAmelCase:Union[str, Any] = seq_length _lowerCAmelCase:Optional[Any] = is_training _lowerCAmelCase:int = use_labels _lowerCAmelCase:Union[str, Any] = vocab_size _lowerCAmelCase:Optional[Any] = hidden_size _lowerCAmelCase:Tuple = num_hidden_layers _lowerCAmelCase:Optional[Any] = num_attention_heads _lowerCAmelCase:str = intermediate_size _lowerCAmelCase:str = hidden_act _lowerCAmelCase:Optional[Any] = hidden_dropout_prob _lowerCAmelCase:Any = attention_probs_dropout_prob _lowerCAmelCase:List[str] = encoder_layerdrop _lowerCAmelCase:Any = decoder_layerdrop _lowerCAmelCase:Union[str, Any] = max_position_embeddings _lowerCAmelCase:Dict = eos_token_id _lowerCAmelCase:Optional[int] = pad_token_id _lowerCAmelCase:Optional[int] = bos_token_id def __UpperCamelCase ( self : str) -> Tuple: """simple docstring""" _lowerCAmelCase:int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size) _lowerCAmelCase:str = self.eos_token_id # Eos Token _lowerCAmelCase:str = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input _lowerCAmelCase:Any = input_ids.clamp(self.pad_token_id + 1) _lowerCAmelCase:Any = decoder_input_ids.clamp(self.pad_token_id + 1) _lowerCAmelCase:List[Any] = self.get_config() _lowerCAmelCase:str = prepare_mam_aaa_inputs_dict(a__ ,a__ ,a__) return config, inputs_dict def __UpperCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,encoder_layerdrop=self.encoder_layerdrop ,decoder_layerdrop=self.decoder_layerdrop ,max_position_embeddings=self.max_position_embeddings ,eos_token_id=self.eos_token_id ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,) def __UpperCamelCase ( self : List[str]) -> Tuple: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase:Any = self.prepare_config_and_inputs() return config, inputs_dict def __UpperCamelCase ( self : Optional[Any] ,a__ : List[str] ,a__ : Tuple) -> Any: """simple docstring""" _lowerCAmelCase:Dict = MaMaaaModel(config=a__).get_decoder().to(a__).eval() _lowerCAmelCase:Optional[int] = inputs_dict['''input_ids'''] _lowerCAmelCase:Any = inputs_dict['''attention_mask'''] _lowerCAmelCase:Any = inputs_dict['''head_mask'''] # first forward pass _lowerCAmelCase:int = model(a__ ,attention_mask=a__ ,head_mask=a__ ,use_cache=a__) _lowerCAmelCase , _lowerCAmelCase:int = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids _lowerCAmelCase:Optional[int] = ids_tensor((self.batch_size, 3) ,config.vocab_size) _lowerCAmelCase:Union[str, Any] = ids_tensor((self.batch_size, 3) ,2) # append to next input_ids and _lowerCAmelCase:Tuple = torch.cat([input_ids, next_tokens] ,dim=-1) _lowerCAmelCase:str = torch.cat([attention_mask, next_attn_mask] ,dim=-1) _lowerCAmelCase:List[str] = model(a__ ,attention_mask=a__)['''last_hidden_state'''] _lowerCAmelCase:List[str] = model(a__ ,attention_mask=a__ ,past_key_values=a__)[ '''last_hidden_state''' ] # select random slice _lowerCAmelCase:Dict = ids_tensor((1,) ,output_from_past.shape[-1]).item() _lowerCAmelCase:Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() _lowerCAmelCase:int = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a__ ,a__ ,atol=1E-2)) def __UpperCamelCase ( self : Dict ,a__ : Optional[Any] ,a__ : List[str]) -> Tuple: """simple docstring""" _lowerCAmelCase:Optional[Any] = MaMaaaModel(config=a__).to(a__).eval() _lowerCAmelCase:Any = model(**a__) _lowerCAmelCase:Tuple = outputs.encoder_last_hidden_state _lowerCAmelCase:List[str] = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase:Any = model.get_encoder() encoder.save_pretrained(a__) _lowerCAmelCase:Optional[Any] = MaMaaaEncoder.from_pretrained(a__).to(a__) _lowerCAmelCase:Optional[int] = encoder(inputs_dict['''input_ids'''] ,attention_mask=inputs_dict['''attention_mask'''])[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3) with tempfile.TemporaryDirectory() as tmpdirname: _lowerCAmelCase:Optional[Any] = model.get_decoder() decoder.save_pretrained(a__) _lowerCAmelCase:List[str] = MaMaaaDecoder.from_pretrained(a__).to(a__) _lowerCAmelCase:Optional[int] = decoder( input_ids=inputs_dict['''decoder_input_ids'''] ,attention_mask=inputs_dict['''decoder_attention_mask'''] ,encoder_hidden_states=a__ ,encoder_attention_mask=inputs_dict['''attention_mask'''] ,)[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3) @require_torch class a__ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): snake_case__ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) snake_case__ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () snake_case__ = ( { '''conversational''': MaMaaaForConditionalGeneration, '''feature-extraction''': MaMaaaModel, '''summarization''': MaMaaaForConditionalGeneration, '''text2text-generation''': MaMaaaForConditionalGeneration, '''translation''': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) snake_case__ = True snake_case__ = True snake_case__ = False snake_case__ = False def __UpperCamelCase ( self : Tuple ,a__ : Dict ,a__ : List[Any] ,a__ : Optional[Any] ,a__ : Tuple ,a__ : List[Any]) -> Optional[Any]: """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def __UpperCamelCase ( self : Tuple) -> Dict: """simple docstring""" _lowerCAmelCase:str = MaMaaaModelTester(self) _lowerCAmelCase:Optional[Any] = ConfigTester(self ,config_class=a__) def __UpperCamelCase ( self : Dict) -> str: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : str) -> Dict: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase:Dict = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _lowerCAmelCase:List[Any] = model_class(a__) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a__) _lowerCAmelCase , _lowerCAmelCase:int = model_class.from_pretrained(a__ ,output_loading_info=a__) self.assertEqual(info['''missing_keys'''] ,[]) def __UpperCamelCase ( self : int) -> List[str]: """simple docstring""" _lowerCAmelCase:Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*a__) def __UpperCamelCase ( self : Any) -> Dict: """simple docstring""" _lowerCAmelCase:Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*a__) def __UpperCamelCase ( self : List[str]) -> Any: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase:Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): _lowerCAmelCase:Optional[int] = model_class(a__) model.to(a__) model.eval() _lowerCAmelCase:Optional[int] = copy.deepcopy(self._prepare_for_class(a__ ,a__)) if not self.is_encoder_decoder: _lowerCAmelCase:List[Any] = inputs['''input_ids'''] del inputs["input_ids"] else: _lowerCAmelCase:int = inputs['''input_ids'''] _lowerCAmelCase:Union[str, Any] = inputs.get('''decoder_input_ids''' ,a__) del inputs["input_ids"] inputs.pop('''decoder_input_ids''' ,a__) _lowerCAmelCase:Tuple = model.get_input_embeddings() if not self.is_encoder_decoder: _lowerCAmelCase:Tuple = wte(a__) else: _lowerCAmelCase:int = wte(a__) _lowerCAmelCase:Tuple = wte(a__) with torch.no_grad(): model(**a__)[0] def __UpperCamelCase ( self : Dict) -> Optional[int]: """simple docstring""" _lowerCAmelCase , _lowerCAmelCase:Any = self.model_tester.prepare_config_and_inputs() _lowerCAmelCase:Dict = input_dict['''input_ids'''] _lowerCAmelCase:Tuple = input_ids.ne(1).to(a__) _lowerCAmelCase:Dict = MaMaaaForConditionalGeneration(a__).eval().to(a__) if torch_device == "cuda": model.half() model.generate(a__ ,attention_mask=a__) model.generate(num_beams=4 ,do_sample=a__ ,early_stopping=a__ ,num_return_sequences=3) def UpperCAmelCase ( snake_case : Tuple ): return torch.tensor(snake_case , dtype=torch.long , device=snake_case ) UpperCamelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class a__ ( unittest.TestCase ): @cached_property def __UpperCamelCase ( self : List[Any]) -> Optional[Any]: """simple docstring""" return MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''') def __UpperCamelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase:List[Any] = MaMaaaModel.from_pretrained('''facebook/m2m100_418M''').to(a__) _lowerCAmelCase:Union[str, Any] = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]]) _lowerCAmelCase:List[Any] = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]]) _lowerCAmelCase:Optional[Any] = prepare_mam_aaa_inputs_dict(model.config ,a__ ,a__) with torch.no_grad(): _lowerCAmelCase:Optional[Any] = model(**a__)[0] _lowerCAmelCase:Union[str, Any] = torch.Size((1, 11, 1024)) self.assertEqual(output.shape ,a__) # change to expected output here _lowerCAmelCase:List[Any] = torch.tensor( [[-0.7780, -0.1676, 0.1038], [-6.7556, -1.3992, 0.0567], [-7.5383, -0.5920, -0.2779]] ,device=a__) self.assertTrue(torch.allclose(output[:, :3, :3] ,a__ ,atol=a__)) def __UpperCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" _lowerCAmelCase:Optional[int] = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''').to(a__) # change to intended input _lowerCAmelCase:Union[str, Any] = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]]) _lowerCAmelCase:List[str] = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]]) _lowerCAmelCase:List[str] = prepare_mam_aaa_inputs_dict(model.config ,a__ ,a__) with torch.no_grad(): _lowerCAmelCase:int = model(**a__)[0] _lowerCAmelCase:str = torch.Size((1, 11, model.config.vocab_size)) self.assertEqual(output.shape ,a__) # change to expected output here _lowerCAmelCase:Optional[int] = torch.tensor( [[-1.0448, -1.0411, 3.7992], [-3.2191, -3.2386, -1.3451], [-3.6210, -3.5993, 0.4925]] ,device=a__) self.assertTrue(torch.allclose(output[:, :3, :3] ,a__ ,atol=a__)) def __UpperCamelCase ( self : Dict) -> Optional[Any]: """simple docstring""" _lowerCAmelCase:Optional[Any] = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''').to(a__) _lowerCAmelCase:Union[str, Any] = MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' ,src_lang='''fr''' ,tgt_lang='''en''') _lowerCAmelCase:Optional[Any] = [ '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent''' ''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de''' ''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''', ] # The below article tests that we don't add any hypotheses outside of the top n_beams _lowerCAmelCase:List[Any] = tokenizer(a__ ,padding=a__ ,return_tensors='''pt''') _lowerCAmelCase:Any = model.generate( input_ids=dct['''input_ids'''].to(a__) ,attention_mask=dct['''attention_mask'''].to(a__) ,num_beams=5 ,forced_bos_token_id=tokenizer.get_lang_id('''en''') ,) _lowerCAmelCase:Union[str, Any] = [ '''The NSA case highlights the total absence of intelligence debate''', '''I think there are two levels of response from the French government.''', '''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.''' ''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all''' ''' communications in France.''', ] _lowerCAmelCase:Union[str, Any] = tokenizer.batch_decode( hypotheses_batch.tolist() ,clean_up_tokenization_spaces=a__ ,skip_special_tokens=a__) assert generated == expected_en
439
"""simple docstring""" import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class a__ ( unittest.TestCase ): def __init__( self : Dict ,a__ : List[Any] ,a__ : Optional[int]=13 ,a__ : Dict=7 ,a__ : Any=True ,a__ : Tuple=True ,a__ : Union[str, Any]=True ,a__ : Dict=True ,a__ : Dict=99 ,a__ : Optional[Any]=32 ,a__ : Dict=5 ,a__ : List[Any]=4 ,a__ : Union[str, Any]=37 ,a__ : str="gelu" ,a__ : Any=0.1 ,a__ : Optional[int]=0.1 ,a__ : Tuple=512 ,a__ : Any=16 ,a__ : Any=2 ,a__ : Dict=0.02 ,a__ : int=4 ,) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase:Optional[int] = parent _lowerCAmelCase:List[str] = batch_size _lowerCAmelCase:Tuple = seq_length _lowerCAmelCase:List[Any] = is_training _lowerCAmelCase:Dict = use_attention_mask _lowerCAmelCase:Dict = use_token_type_ids _lowerCAmelCase:Any = use_labels _lowerCAmelCase:str = vocab_size _lowerCAmelCase:int = hidden_size _lowerCAmelCase:Union[str, Any] = num_hidden_layers _lowerCAmelCase:List[str] = num_attention_heads _lowerCAmelCase:Optional[int] = intermediate_size _lowerCAmelCase:str = hidden_act _lowerCAmelCase:Optional[int] = hidden_dropout_prob _lowerCAmelCase:Optional[int] = attention_probs_dropout_prob _lowerCAmelCase:Any = max_position_embeddings _lowerCAmelCase:Optional[int] = type_vocab_size _lowerCAmelCase:Optional[int] = type_sequence_label_size _lowerCAmelCase:Tuple = initializer_range _lowerCAmelCase:Dict = num_choices def __UpperCamelCase ( self : List[str]) -> int: """simple docstring""" _lowerCAmelCase:int = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size) _lowerCAmelCase:List[Any] = None if self.use_attention_mask: _lowerCAmelCase:str = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase:Dict = DistilBertConfig( vocab_size=self.vocab_size ,dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,hidden_dim=self.intermediate_size ,hidden_act=self.hidden_act ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,tie_weights_=a__ ,) return config, input_ids, attention_mask def __UpperCamelCase ( self : Any) -> Any: """simple docstring""" _lowerCAmelCase:Optional[Any] = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase:Optional[Any] = config_and_inputs _lowerCAmelCase:Any = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class a__ ( UpperCamelCase_ , unittest.TestCase ): snake_case__ = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __UpperCamelCase ( self : str) -> Dict: """simple docstring""" _lowerCAmelCase:str = FlaxDistilBertModelTester(self) @slow def __UpperCamelCase ( self : List[str]) -> int: """simple docstring""" for model_class_name in self.all_model_classes: _lowerCAmelCase:List[str] = model_class_name.from_pretrained('''distilbert-base-uncased''') _lowerCAmelCase:Tuple = model(np.ones((1, 1))) self.assertIsNotNone(a__) @require_flax class a__ ( unittest.TestCase ): @slow def __UpperCamelCase ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" _lowerCAmelCase:Any = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''') _lowerCAmelCase:Optional[int] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]]) _lowerCAmelCase:Tuple = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) _lowerCAmelCase:List[str] = model(a__ ,attention_mask=a__)[0] _lowerCAmelCase:List[str] = (1, 11, 768) self.assertEqual(output.shape ,a__) _lowerCAmelCase:int = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]]) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] ,a__ ,atol=1E-4))
439
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { "BridgeTower/bridgetower-base": "https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json", "BridgeTower/bridgetower-base-itm-mlm": ( "https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json" ), } class SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): """simple docstring""" __A = """bridgetower_vision_model""" def __init__( self , __UpperCamelCase=7_68 , __UpperCamelCase=12 , __UpperCamelCase=3 , __UpperCamelCase=16 , __UpperCamelCase=2_88 , __UpperCamelCase=1 , __UpperCamelCase=1E-05 , __UpperCamelCase=False , __UpperCamelCase=True , __UpperCamelCase=False , **__UpperCamelCase , ): """simple docstring""" super().__init__(**UpperCAmelCase__ ) snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_channels snake_case_ = patch_size snake_case_ = image_size snake_case_ = initializer_factor snake_case_ = layer_norm_eps snake_case_ = stop_gradient snake_case_ = share_layernorm snake_case_ = remove_last_layer @classmethod def __lowerCAmelCase ( cls , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" snake_case_ , snake_case_ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) if config_dict.get('model_type' ) == "bridgetower": snake_case_ = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) class SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): """simple docstring""" __A = """bridgetower_text_model""" def __init__( self , __UpperCamelCase=5_02_65 , __UpperCamelCase=7_68 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=1 , __UpperCamelCase=30_72 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_14 , __UpperCamelCase=1 , __UpperCamelCase=1E-05 , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=2 , __UpperCamelCase="absolute" , __UpperCamelCase=True , **__UpperCamelCase , ): """simple docstring""" super().__init__(**UpperCAmelCase__ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = initializer_factor snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = layer_norm_eps snake_case_ = position_embedding_type snake_case_ = use_cache snake_case_ = pad_token_id snake_case_ = bos_token_id snake_case_ = eos_token_id @classmethod def __lowerCAmelCase ( cls , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" snake_case_ , snake_case_ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) if config_dict.get('model_type' ) == "bridgetower": snake_case_ = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) class SCREAMING_SNAKE_CASE ( _UpperCAmelCase ): """simple docstring""" __A = """bridgetower""" def __init__( self , __UpperCamelCase=True , __UpperCamelCase="gelu" , __UpperCamelCase=7_68 , __UpperCamelCase=1 , __UpperCamelCase=1E-05 , __UpperCamelCase=False , __UpperCamelCase="add" , __UpperCamelCase=12 , __UpperCamelCase=6 , __UpperCamelCase=False , __UpperCamelCase=False , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase , ): """simple docstring""" snake_case_ = kwargs.pop('text_config_dict' , UpperCAmelCase__ ) snake_case_ = kwargs.pop('vision_config_dict' , UpperCAmelCase__ ) super().__init__(**UpperCAmelCase__ ) snake_case_ = share_cross_modal_transformer_layers snake_case_ = hidden_act snake_case_ = hidden_size snake_case_ = initializer_factor snake_case_ = layer_norm_eps snake_case_ = share_link_tower_layers snake_case_ = link_tower_type snake_case_ = num_attention_heads snake_case_ = num_hidden_layers snake_case_ = tie_word_embeddings snake_case_ = init_layernorm_from_vision_encoder if text_config is None: snake_case_ = {} logger.info('`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values.' ) if vision_config is None: snake_case_ = {} logger.info('`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values.' ) snake_case_ = BridgeTowerTextConfig(**UpperCAmelCase__ ) snake_case_ = BridgeTowerVisionConfig(**UpperCAmelCase__ ) @classmethod def __lowerCAmelCase ( cls , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase__ ) def __lowerCAmelCase ( self ): """simple docstring""" snake_case_ = copy.deepcopy(self.__dict__ ) snake_case_ = self.text_config.to_dict() snake_case_ = self.vision_config.to_dict() snake_case_ = self.__class__.model_type return output
187
from math import log from scipy.constants import Boltzmann, physical_constants UpperCAmelCase_ : Optional[int] = 300 # TEMPERATURE (unit = K) def UpperCamelCase ( _A : float , _A : float , _A : float , )-> float: """simple docstring""" if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
491
0
from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class lowerCamelCase : _lowerCAmelCase : str = field( metadata={'''help''': '''The output directory where the model will be written.'''} , ) _lowerCAmelCase : str = field( metadata={ '''help''': ( '''The encoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train an encoder model from scratch.''' ) } , ) _lowerCAmelCase : str = field( metadata={ '''help''': ( '''The decoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train a decoder model from scratch.''' ) } , ) _lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'''help''': '''Pretrained encoder config name or path if not the same as encoder_model_name'''} ) _lowerCAmelCase : Optional[str] = field( default=_UpperCamelCase , metadata={'''help''': '''Pretrained decoder config name or path if not the same as decoder_model_name'''} ) def __SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments,) ) ((__UpperCAmelCase) , ) : Optional[Any] = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: __UpperCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: __UpperCAmelCase : Tuple = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: __UpperCAmelCase : List[str] = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: __UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed __UpperCAmelCase : str = True __UpperCAmelCase : Optional[Any] = True __UpperCAmelCase : str = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path , decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path , encoder_config=lowercase_ , decoder_config=lowercase_ , ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens __UpperCAmelCase : Tuple = decoder_config.decoder_start_token_id __UpperCAmelCase : str = decoder_config.pad_token_id if decoder_start_token_id is None: __UpperCAmelCase : Optional[Any] = decoder_config.bos_token_id if pad_token_id is None: __UpperCAmelCase : Any = decoder_config.eos_token_id # This is necessary to make Flax's generate() work __UpperCAmelCase : Any = decoder_config.eos_token_id __UpperCAmelCase : Dict = decoder_start_token_id __UpperCAmelCase : Optional[int] = pad_token_id __UpperCAmelCase : Any = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) __UpperCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) __UpperCAmelCase : Optional[int] = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
675
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> list: '''simple docstring''' __UpperCAmelCase : Optional[Any] = int(lowercase_ ) if n_element < 1: __UpperCAmelCase : str = ValueError('''a should be a positive number''' ) raise my_error __UpperCAmelCase : Any = [1] __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : Any = (0, 0, 0) __UpperCAmelCase : int = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": lowerCAmelCase = input("""Enter the last number (nth term) of the Hamming Number Series: """) print("""Formula of Hamming Number Series => 2^i * 3^j * 5^k""") lowerCAmelCase = hamming(int(n)) print("""-----------------------------------------------------""") print(F'The list with nth numbers is: {hamming_numbers}') print("""-----------------------------------------------------""")
675
1
import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def a_ ( ): '''simple docstring''' print('Making key files...' ) make_key_files('rsa' , 1_024 ) print('Key files generation successful.' ) def a_ ( SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' print('Generating prime p...' ) _lowerCamelCase : Tuple =rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE__ ) print('Generating prime q...' ) _lowerCamelCase : int =rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE__ ) _lowerCamelCase : List[Any] =p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: _lowerCamelCase : Tuple =random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(SCREAMING_SNAKE_CASE__ , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) _lowerCamelCase : Tuple =cryptoMath.find_mod_inverse(SCREAMING_SNAKE_CASE__ , (p - 1) * (q - 1) ) _lowerCamelCase : Union[str, Any] =(n, e) _lowerCamelCase : Optional[int] =(n, d) return (public_key, private_key) def a_ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ): '''simple docstring''' if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ): print('\nWARNING:' ) print( F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' 'Use a different name or delete these files and re-run this program.' ) sys.exit() _lowerCamelCase , _lowerCamelCase : Union[str, Any] =generate_key(SCREAMING_SNAKE_CASE__ ) print(F'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(F'''{name}_pubkey.txt''' , 'w' ) as out_file: out_file.write(F'''{key_size},{public_key[0]},{public_key[1]}''' ) print(F'''Writing private key to file {name}_privkey.txt...''' ) with open(F'''{name}_privkey.txt''' , 'w' ) as out_file: out_file.write(F'''{key_size},{private_key[0]},{private_key[1]}''' ) if __name__ == "__main__": main()
464
import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowerCamelCase = get_tests_dir('fixtures/dummy_feature_extractor_config.json') lowerCamelCase = get_tests_dir('fixtures/vocab.json') lowerCamelCase = get_tests_dir('fixtures') class A ( unittest.TestCase ): UpperCamelCase__ : Dict =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] def lowerCamelCase ( self : str ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Dict =0 def lowerCamelCase ( self : str ) -> List[str]: """simple docstring""" _lowerCamelCase : List[Any] =AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(lowercase_ , lowercase_ ) def lowerCamelCase ( self : int ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : int =WavaVecaConfig() _lowerCamelCase : Dict =AutoProcessor.from_pretrained('facebook/wav2vec2-base-960h' ) # save in new folder model_config.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) _lowerCamelCase : Any =AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def lowerCamelCase ( self : str ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(lowercase_ , os.path.join(lowercase_ , lowercase_ ) ) copyfile(lowercase_ , os.path.join(lowercase_ , 'vocab.json' ) ) _lowerCamelCase : Union[str, Any] =AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def lowerCamelCase ( self : Any ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : List[Any] =WavaVecaFeatureExtractor() _lowerCamelCase : List[str] =AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) _lowerCamelCase : str =WavaVecaProcessor(lowercase_ , lowercase_ ) # save in new folder processor.save_pretrained(lowercase_ ) # drop `processor_class` in tokenizer with open(os.path.join(lowercase_ , lowercase_ ) , 'r' ) as f: _lowerCamelCase : Optional[int] =json.load(lowercase_ ) config_dict.pop('processor_class' ) with open(os.path.join(lowercase_ , lowercase_ ) , 'w' ) as f: f.write(json.dumps(lowercase_ ) ) _lowerCamelCase : Optional[int] =AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def lowerCamelCase ( self : Dict ) -> Optional[int]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Optional[Any] =WavaVecaFeatureExtractor() _lowerCamelCase : Tuple =AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h' ) _lowerCamelCase : Dict =WavaVecaProcessor(lowercase_ , lowercase_ ) # save in new folder processor.save_pretrained(lowercase_ ) # drop `processor_class` in feature extractor with open(os.path.join(lowercase_ , lowercase_ ) , 'r' ) as f: _lowerCamelCase : Union[str, Any] =json.load(lowercase_ ) config_dict.pop('processor_class' ) with open(os.path.join(lowercase_ , lowercase_ ) , 'w' ) as f: f.write(json.dumps(lowercase_ ) ) _lowerCamelCase : Optional[int] =AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def lowerCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowerCamelCase : Optional[Any] =WavaVecaConfig(processor_class='Wav2Vec2Processor' ) model_config.save_pretrained(lowercase_ ) # copy relevant files copyfile(lowercase_ , os.path.join(lowercase_ , 'vocab.json' ) ) # create emtpy sample processor with open(os.path.join(lowercase_ , lowercase_ ) , 'w' ) as f: f.write('{}' ) _lowerCamelCase : int =AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def lowerCamelCase ( self : str ) -> Optional[int]: """simple docstring""" with self.assertRaises(lowercase_ ): _lowerCamelCase : int =AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowercase_ ): _lowerCamelCase : Union[str, Any] =AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase_ ) _lowerCamelCase : List[str] =AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase_ ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) _lowerCamelCase : int =processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) _lowerCamelCase : Optional[int] =processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizerFast' ) # Test we can also load the slow version _lowerCamelCase : int =AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase_ , use_fast=lowercase_ ) _lowerCamelCase : Optional[int] =new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , 'NewTokenizer' ) else: self.assertEqual(tokenizer.__class__.__name__ , 'NewTokenizer' ) def lowerCamelCase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_ ) AutoProcessor.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): AutoProcessor.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API _lowerCamelCase : str =CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : str =os.path.join(lowercase_ , 'vocab.txt' ) with open(lowercase_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _lowerCamelCase : List[Any] =CustomTokenizer(lowercase_ ) _lowerCamelCase : Optional[int] =CustomProcessor(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(lowercase_ ) _lowerCamelCase : List[Any] =AutoProcessor.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" class A ( UpperCamelCase_ ): UpperCamelCase__ : Optional[Any] =False class A ( UpperCamelCase_ ): UpperCamelCase__ : int =False class A ( UpperCamelCase_ ): UpperCamelCase__ : Union[str, Any] ='AutoFeatureExtractor' UpperCamelCase__ : str ='AutoTokenizer' UpperCamelCase__ : List[Any] =False try: AutoConfig.register('custom' , lowercase_ ) AutoFeatureExtractor.register(lowercase_ , lowercase_ ) AutoTokenizer.register(lowercase_ , slow_tokenizer_class=lowercase_ ) AutoProcessor.register(lowercase_ , lowercase_ ) # If remote code is not set, the default is to use local classes. _lowerCamelCase : int =AutoProcessor.from_pretrained('hf-internal-testing/test_dynamic_processor' ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. _lowerCamelCase : int =AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase_ ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. _lowerCamelCase : str =AutoProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_processor' , trust_remote_code=lowercase_ ) self.assertEqual(processor.__class__.__name__ , 'NewProcessor' ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" _lowerCamelCase : List[Any] =AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(processor.__class__.__name__ , 'BertTokenizerFast' ) def lowerCamelCase ( self : Any ) -> Dict: """simple docstring""" _lowerCamelCase : Any =AutoProcessor.from_pretrained('hf-internal-testing/tiny-random-convnext' ) self.assertEqual(processor.__class__.__name__ , 'ConvNextImageProcessor' ) @is_staging_test class A ( unittest.TestCase ): UpperCamelCase__ : List[Any] =['[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'bla', 'blou'] @classmethod def lowerCamelCase ( cls : int ) -> Optional[Any]: """simple docstring""" _lowerCamelCase : Union[str, Any] =TOKEN HfFolder.save_token(lowercase_ ) @classmethod def lowerCamelCase ( cls : Optional[int] ) -> Union[str, Any]: """simple docstring""" try: delete_repo(token=cls._token , repo_id='test-processor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-processor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-processor' ) except HTTPError: pass def lowerCamelCase ( self : str ) -> int: """simple docstring""" _lowerCamelCase : Tuple =WavaVecaProcessor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowercase_ , 'test-processor' ) , push_to_hub=lowercase_ , use_auth_token=self._token ) _lowerCamelCase : Union[str, Any] =WavaVecaProcessor.from_pretrained(F'''{USER}/test-processor''' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(new_processor.feature_extractor , lowercase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCamelCase ( self : str ) -> Tuple: """simple docstring""" _lowerCamelCase : int =WavaVecaProcessor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(lowercase_ , 'test-processor-org' ) , push_to_hub=lowercase_ , use_auth_token=self._token , organization='valid_org' , ) _lowerCamelCase : str =WavaVecaProcessor.from_pretrained('valid_org/test-processor-org' ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(lowercase_ , getattr(new_processor.feature_extractor , lowercase_ ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCamelCase ( self : List[Any] ) -> str: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() _lowerCamelCase : Optional[Any] =CustomFeatureExtractor.from_pretrained(lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Dict =os.path.join(lowercase_ , 'vocab.txt' ) with open(lowercase_ , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _lowerCamelCase : Any =CustomTokenizer(lowercase_ ) _lowerCamelCase : List[Any] =CustomProcessor(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(F'''{USER}/test-dynamic-processor''' , token=self._token ) _lowerCamelCase : List[str] =Repository(lowercase_ , clone_from=F'''{USER}/test-dynamic-processor''' , token=self._token ) processor.save_pretrained(lowercase_ ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { 'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor', 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(lowercase_ , 'tokenizer_config.json' ) ) as f: _lowerCamelCase : Union[str, Any] =json.load(lowercase_ ) self.assertDictEqual( tokenizer_config['auto_map'] , { 'AutoTokenizer': ['custom_tokenization.CustomTokenizer', None], 'AutoProcessor': 'custom_processing.CustomProcessor', } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(lowercase_ , 'custom_feature_extraction.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowercase_ , 'custom_tokenization.py' ) ) ) self.assertTrue(os.path.isfile(os.path.join(lowercase_ , 'custom_processing.py' ) ) ) repo.push_to_hub() _lowerCamelCase : Tuple =AutoProcessor.from_pretrained(F'''{USER}/test-dynamic-processor''' , trust_remote_code=lowercase_ ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , 'CustomProcessor' )
464
1
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowercase ( ) -> Any: '''simple docstring''' snake_case : Dict = { """repo_name""": ["""test_repo1""", """test_repo2""", """test_repo3"""], """path""": ["""test_1.py""", """test_2.py""", """unit_test.py"""], """content""": ["""a """ * 20, """a """ * 30, """b """ * 7], } snake_case : int = Dataset.from_dict(__A ) return dataset class _A ( snake_case ): '''simple docstring''' def snake_case_ ( self ): '''simple docstring''' snake_case : int = get_dataset() snake_case : Union[str, Any] = make_duplicate_clusters(SCREAMING_SNAKE_CASE_ ,0.85 ) self.assertEqual(len(duplicate_clusters[0] ) ,2 ) def snake_case_ ( self ): '''simple docstring''' snake_case : int = get_dataset() snake_case , snake_case : List[Any] = deduplicate_dataset(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) ,2 ) print(SCREAMING_SNAKE_CASE_ ) self.assertEqual(duplicate_clusters[0][0]["""copies"""] ,2 ) self.assertEqual(duplicate_clusters[0][0]["""is_extreme"""] ,SCREAMING_SNAKE_CASE_ )
315
from __future__ import annotations from typing import Generic, TypeVar __lowercase : Any = TypeVar('''T''') class _A ( Generic[T] ): '''simple docstring''' def __init__( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case : Optional[int] = data snake_case : Dict = self snake_case : str = 0 class _A ( Generic[T] ): '''simple docstring''' def __init__( self ): '''simple docstring''' # map from node name to the node object snake_case : dict[T, DisjointSetTreeNode[T]] = {} def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' # create a new set with x as its member snake_case : Optional[Any] = DisjointSetTreeNode(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' # find the set x belongs to (with path-compression) snake_case : Union[str, Any] = self.map[data] if elem_ref != elem_ref.parent: snake_case : Union[str, Any] = self.find_set(elem_ref.parent.data ) return elem_ref.parent def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' # helper function for union operation if nodea.rank > nodea.rank: snake_case : Any = nodea else: snake_case : int = nodea if nodea.rank == nodea.rank: nodea.rank += 1 def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' # merge 2 disjoint sets self.link(self.find_set(SCREAMING_SNAKE_CASE_ ) ,self.find_set(SCREAMING_SNAKE_CASE_ ) ) class _A ( Generic[T] ): '''simple docstring''' def __init__( self ): '''simple docstring''' # connections: map from the node to the neighbouring nodes (with weights) snake_case : dict[T, dict[T, int]] = {} def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' # add a node ONLY if its not present in the graph if node not in self.connections: snake_case : List[str] = {} def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' # add an edge with the given weight self.add_node(SCREAMING_SNAKE_CASE_ ) self.add_node(SCREAMING_SNAKE_CASE_ ) snake_case : str = weight snake_case : Optional[int] = weight def snake_case_ ( self ): '''simple docstring''' snake_case : int = [] snake_case : int = set() for start in self.connections: for end in self.connections[start]: if (start, end) not in seen: seen.add((end, start) ) edges.append((start, end, self.connections[start][end]) ) edges.sort(key=lambda SCREAMING_SNAKE_CASE_ : x[2] ) # creating the disjoint set snake_case : Tuple = DisjointSetTree[T]() for node in self.connections: disjoint_set.make_set(SCREAMING_SNAKE_CASE_ ) # MST generation snake_case : str = 0 snake_case : Any = 0 snake_case : Union[str, Any] = GraphUndirectedWeighted[T]() while num_edges < len(self.connections ) - 1: snake_case , snake_case , snake_case : Union[str, Any] = edges[index] index += 1 snake_case : Union[str, Any] = disjoint_set.find_set(SCREAMING_SNAKE_CASE_ ) snake_case : Dict = disjoint_set.find_set(SCREAMING_SNAKE_CASE_ ) if parent_u != parent_v: num_edges += 1 graph.add_edge(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) disjoint_set.union(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) return graph
315
1
def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: Optional[Any] , lowerCAmelCase_: Optional[Any] ): print("\nThe shortest path matrix using Floyd Warshall algorithm\n" ) for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): if dist[i][j] != float("inf" ): print(int(dist[i][j] ) , end="\t" ) else: print("INF" , end="\t" ) print() def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: Tuple , lowerCAmelCase_: List[str] ): snake_case_ : Optional[int] = [[float("inf" ) for _ in range(lowerCAmelCase_ )] for _ in range(lowerCAmelCase_ )] for i in range(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ ): snake_case_ : Tuple = graph[i][j] # check vertex k against all other vertices (i, j) for k in range(lowerCAmelCase_ ): # looping through rows of graph array for i in range(lowerCAmelCase_ ): # looping through columns of graph array for j in range(lowerCAmelCase_ ): if ( dist[i][k] != float("inf" ) and dist[k][j] != float("inf" ) and dist[i][k] + dist[k][j] < dist[i][j] ): snake_case_ : List[str] = dist[i][k] + dist[k][j] _print_dist(lowerCAmelCase_ , lowerCAmelCase_ ) return dist, v if __name__ == "__main__": UpperCAmelCase = int(input("Enter number of vertices: ")) UpperCAmelCase = int(input("Enter number of edges: ")) UpperCAmelCase = [[float("inf") for i in range(v)] for j in range(v)] for i in range(v): UpperCAmelCase = 0.0 # src and dst are indices that must be within the array size graph[e][v] # failure to follow this will result in an error for i in range(e): print("\nEdge ", i + 1) UpperCAmelCase = int(input("Enter source:")) UpperCAmelCase = int(input("Enter destination:")) UpperCAmelCase = float(input("Enter weight:")) UpperCAmelCase = weight floyd_warshall(graph, v) # Example Input # Enter number of vertices: 3 # Enter number of edges: 2 # # generated graph from vertex and edge inputs # [[inf, inf, inf], [inf, inf, inf], [inf, inf, inf]] # [[0.0, inf, inf], [inf, 0.0, inf], [inf, inf, 0.0]] # specify source, destination and weight for edge #1 # Edge 1 # Enter source:1 # Enter destination:2 # Enter weight:2 # specify source, destination and weight for edge #2 # Edge 2 # Enter source:2 # Enter destination:1 # Enter weight:1 # # Expected Output from the vertice, edge and src, dst, weight inputs!! # 0 INF INF # INF 0 2 # INF 1 0
666
from decimal import Decimal, getcontext from math import ceil, factorial def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: int ): if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): raise TypeError("Undefined for non-integers" ) elif precision < 1: raise ValueError("Undefined for non-natural numbers" ) snake_case_ : List[str] = precision snake_case_ : Union[str, Any] = ceil(precision / 1_4 ) snake_case_ : List[str] = 4_2_6_8_8_0 * Decimal(1_0_0_0_5 ).sqrt() snake_case_ : str = 1 snake_case_ : List[str] = 1_3_5_9_1_4_0_9 snake_case_ : str = Decimal(lowerCAmelCase_ ) for k in range(1 , lowerCAmelCase_ ): snake_case_ : Tuple = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowerCAmelCase_ ) ** 3) linear_term += 5_4_5_1_4_0_1_3_4 exponential_term *= -2_6_2_5_3_7_4_1_2_6_4_0_7_6_8_0_0_0 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": UpperCAmelCase = 5_0 print(F"The first {n} digits of pi is: {pi(n)}")
666
1
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __UpperCamelCase : Tuple = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) __UpperCamelCase : Dict = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) __UpperCamelCase : Optional[int] = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) __UpperCamelCase : int = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) __UpperCamelCase : str = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 14]), ("""2H 5D 3C AS 5S""", False, [14, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [14, 13, 12, 11, 10]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) __UpperCamelCase : Any = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) __UpperCamelCase : Tuple = ( ("""JH AH TH KH QH""", 23), ("""JH 9H TH KH QH""", 22), ("""JC KH JS JD JH""", 21), ("""KH KC 3S 3H 3D""", 20), ("""8C 9C 5C 3C TC""", 19), ("""JS QS 9H TS KH""", 18), ("""7C 7S KH 2H 7H""", 17), ("""3C KH 5D 5S KH""", 16), ("""QH 8H KD JH 8S""", 15), ("""2D 6D 9D TH 7D""", 14), ) def snake_case ( ): '''simple docstring''' __lowercase , __lowercase = randrange(len(lowerCamelCase ) ), randrange(len(lowerCamelCase ) ) __lowercase = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] __lowercase , __lowercase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def snake_case ( lowerCamelCase = 100 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowerCamelCase )) @pytest.mark.parametrize("""hand, expected""" , lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' assert PokerHand(lowerCamelCase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' assert PokerHand(lowerCamelCase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = PokerHand(lowerCamelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' assert PokerHand(lowerCamelCase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' assert PokerHand(lowerCamelCase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' assert PokerHand(lowerCamelCase ).compare_with(PokerHand(lowerCamelCase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' assert PokerHand(lowerCamelCase ).compare_with(PokerHand(lowerCamelCase ) ) == expected def snake_case ( ): '''simple docstring''' __lowercase = [PokerHand(lowerCamelCase ) for hand in SORTED_HANDS] __lowercase = poker_hands.copy() shuffle(lowerCamelCase ) __lowercase = chain(sorted(lowerCamelCase ) ) for index, hand in enumerate(lowerCamelCase ): assert hand == poker_hands[index] def snake_case ( ): '''simple docstring''' __lowercase = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=lowerCamelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def snake_case ( ): '''simple docstring''' __lowercase = PokerHand("""2C 4S AS 3D 5C""" ) __lowercase = True __lowercase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def snake_case ( ): '''simple docstring''' __lowercase = 0 __lowercase = os.path.abspath(os.path.dirname(lowerCamelCase ) ) __lowercase = os.path.join(lowerCamelCase , """poker_hands.txt""" ) with open(lowerCamelCase ) as file_hand: for line in file_hand: __lowercase = line[:14].strip() __lowercase = line[15:].strip() __lowercase , __lowercase = PokerHand(lowerCamelCase ), PokerHand(lowerCamelCase ) __lowercase = player.compare_with(lowerCamelCase ) if output == "Win": answer += 1 assert answer == 376
53
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __UpperCamelCase : List[Any] = logging.getLogger(__name__) __UpperCamelCase : Optional[Any] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) __UpperCamelCase : List[str] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The model checkpoint for weights initialization. Leave None if you want to train a model from' ' scratch.' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(_lowerCAmelCase )} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class __UpperCamelCase : __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'The input training data file (a text file).'} ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={ 'help': ( 'The input training data files (multiple files in glob format). ' 'Very often splitting large files to smaller files can prevent tokenizer going out of memory' ) } , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input evaluation data file to evaluate the perplexity on (a text file).'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input train ref data file for whole word mask in Chinese.'} , ) __snake_case :Optional[str] = field( default=_lowerCAmelCase , metadata={'help': 'An optional input eval ref data file for whole word mask in Chinese.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Whether distinct lines of text in the dataset are to be handled as distinct sequences.'} , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Train with masked-language modeling loss instead of language modeling.'} ) __snake_case :bool = field(default=_lowerCAmelCase , metadata={'help': 'Whether ot not to use whole word mask.'} ) __snake_case :float = field( default=0.15 , metadata={'help': 'Ratio of tokens to mask for masked language modeling loss'} ) __snake_case :float = field( default=1 / 6 , metadata={ 'help': ( 'Ratio of length of a span of masked tokens to surrounding context length for permutation language' ' modeling.' ) } , ) __snake_case :int = field( default=5 , metadata={'help': 'Maximum length of a span of masked tokens for permutation language modeling.'} ) __snake_case :int = field( default=-1 , metadata={ 'help': ( 'Optional input sequence length after tokenization.' 'The training dataset will be truncated in block of this size for training.' 'Default to the model max input length for single sentence inputs (take into account special tokens).' ) } , ) __snake_case :bool = field( default=_lowerCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase = False , lowerCamelCase = None , ): '''simple docstring''' def _dataset(lowerCamelCase , lowerCamelCase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("""You need to set world whole masking and mlm to True for Chinese Whole Word Mask""" ) return LineByLineWithRefDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , ref_path=lowerCamelCase , ) return LineByLineTextDataset(tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size ) else: return TextDataset( tokenizer=lowerCamelCase , file_path=lowerCamelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=lowerCamelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(lowerCamelCase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def snake_case ( ): '''simple docstring''' __lowercase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) __lowercase , __lowercase , __lowercase = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( """Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file """ """or remove the --do_eval argument.""" ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. Use' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , lowerCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: __lowercase = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: __lowercase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.tokenizer_name: __lowercase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: __lowercase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another""" """ script, save it,and load it from here, using --tokenizer_name""" ) if model_args.model_name_or_path: __lowercase = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCamelCase , cache_dir=model_args.cache_dir , ) else: logger.info("""Training new model from scratch""" ) __lowercase = AutoModelWithLMHead.from_config(lowerCamelCase ) model.resize_token_embeddings(len(lowerCamelCase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( """BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the""" """--mlm flag (masked language modeling).""" ) if data_args.block_size <= 0: __lowercase = tokenizer.max_len # Our input block size will be the max possible for the model else: __lowercase = min(data_args.block_size , tokenizer.max_len ) # Get datasets __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) __lowercase = ( get_dataset(lowerCamelCase , tokenizer=lowerCamelCase , evaluate=lowerCamelCase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": __lowercase = DataCollatorForPermutationLanguageModeling( tokenizer=lowerCamelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: __lowercase = DataCollatorForWholeWordMask( tokenizer=lowerCamelCase , mlm_probability=data_args.mlm_probability ) else: __lowercase = DataCollatorForLanguageModeling( tokenizer=lowerCamelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer __lowercase = Trainer( model=lowerCamelCase , args=lowerCamelCase , data_collator=lowerCamelCase , train_dataset=lowerCamelCase , eval_dataset=lowerCamelCase , prediction_loss_only=lowerCamelCase , ) # Training if training_args.do_train: __lowercase = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=lowerCamelCase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowercase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowercase = trainer.evaluate() __lowercase = math.exp(eval_output["""eval_loss"""] ) __lowercase = {"""perplexity""": perplexity} __lowercase = os.path.join(training_args.output_dir , """eval_results_lm.txt""" ) if trainer.is_world_master(): with open(lowerCamelCase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , lowerCamelCase , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) results.update(lowerCamelCase ) return results def snake_case ( lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
53
1
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowerCAmelCase = """bert-base-cased""" lowerCAmelCase = """google/pegasus-xsum""" lowerCAmelCase = [""" Sam ate lunch today.""", """Sams lunch ingredients."""] lowerCAmelCase = ["""A very interesting story about what I ate for lunch.""", """Avocado, celery, turkey, coffee"""] lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" lowerCAmelCase = """sshleifer/bart-tiny-random""" lowerCAmelCase = """sshleifer/tiny-mbart""" lowerCAmelCase = """sshleifer/tiny-marian-en-de""" def lowerCAmelCase_ ( snake_case_ : Path , snake_case_ : list ) ->Any: lowerCamelCase__ : Any ='\n'.join(snake_case_ ) Path(snake_case_ ).open('w' ).writelines(snake_case_ ) def lowerCAmelCase_ ( snake_case_ : Dict ) ->int: for split in ["train", "val", "test"]: _dump_articles(os.path.join(snake_case_ , f"""{split}.source""" ) , snake_case_ ) _dump_articles(os.path.join(snake_case_ , f"""{split}.target""" ) , snake_case_ ) return tmp_dir class A_ ( A__ ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def UpperCAmelCase__ ( self :str , lowerCamelCase_ :List[Any] ): """simple docstring""" lowerCamelCase__ : Dict =AutoTokenizer.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : int =make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCamelCase__ : Optional[Any] =max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) lowerCamelCase__ : Tuple =max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) lowerCamelCase__ : Tuple =4 lowerCamelCase__ : str =8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowerCamelCase__ , lowerCamelCase__ : int ='ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. lowerCamelCase__ : Optional[int] =SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , ) lowerCamelCase__ : Optional[Any] =DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowerCamelCase__ : Union[str, Any] =shift_tokens_right(batch['labels'] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def UpperCAmelCase__ ( self :Optional[Any] , lowerCamelCase_ :Tuple ): """simple docstring""" lowerCamelCase__ : Optional[Any] =AutoTokenizer.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : List[Any] =make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowerCamelCase__ : List[Any] =max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in ARTICLES ) lowerCamelCase__ : str =max(len(tokenizer.encode(lowerCamelCase_ ) ) for a in SUMMARIES ) lowerCamelCase__ : Dict =4 lowerCamelCase__ : Optional[int] =LegacySeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=20 , max_target_length=lowerCamelCase_ , ) lowerCamelCase__ : List[Any] =DataLoader(lowerCamelCase_ , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" lowerCamelCase__ : Tuple =AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' ) lowerCamelCase__ : Union[str, Any] =Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowerCamelCase__ : List[str] =tmp_dir.joinpath('train.source' ).open().readlines() lowerCamelCase__ : str =Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowerCamelCase_ , lowerCamelCase_ , 128 , lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] ={x.name for x in tmp_dir.iterdir()} lowerCamelCase__ : Optional[int] ={x.name for x in save_dir.iterdir()} lowerCamelCase__ : List[Any] =save_dir.joinpath('train.source' ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowerCamelCase_ ) < len(lowerCamelCase_ ) assert len(lowerCamelCase_ ) == 1 assert len(packed_examples[0] ) == sum(len(lowerCamelCase_ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' ) def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" if not FAIRSEQ_AVAILABLE: return lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =self._get_dataset(max_len=64 ) lowerCamelCase__ : Dict =64 lowerCamelCase__ : List[str] =ds.make_dynamic_sampler(lowerCamelCase_ , required_batch_size_multiple=lowerCamelCase_ ) lowerCamelCase__ : Dict =[len(lowerCamelCase_ ) for x in batch_sampler] assert len(set(lowerCamelCase_ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowerCamelCase_ ) == len(lowerCamelCase_ ) # no dropped or added examples lowerCamelCase__ : Optional[int] =DataLoader(lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) lowerCamelCase__ : Optional[int] =[] lowerCamelCase__ : str =[] for batch in data_loader: lowerCamelCase__ : Any =batch['input_ids'].shape lowerCamelCase__ : List[Any] =src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowerCamelCase__ : Union[str, Any] =np.product(batch['input_ids'].shape ) num_src_per_batch.append(lowerCamelCase_ ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowerCamelCase_ ) assert num_src_per_batch[0] == max(lowerCamelCase_ ) if failures: raise AssertionError(f"""too many tokens in {len(lowerCamelCase_ )} batches""" ) def UpperCAmelCase__ ( self :int ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =self._get_dataset(max_len=512 ) lowerCamelCase__ : Dict =2 lowerCamelCase__ : Optional[Any] =ds.make_sortish_sampler(lowerCamelCase_ , shuffle=lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 ) lowerCamelCase__ : List[Any] =DataLoader(lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCamelCase_ ) lowerCamelCase__ : Tuple =tokenizer.pad_token_id def count_pad_tokens(lowerCamelCase_ :Optional[int] , lowerCamelCase_ :int="input_ids" ): return [batch[k].eq(lowerCamelCase_ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) < sum(count_pad_tokens(lowerCamelCase_ , k='labels' ) ) assert sum(count_pad_tokens(lowerCamelCase_ ) ) < sum(count_pad_tokens(lowerCamelCase_ ) ) assert len(lowerCamelCase_ ) == len(lowerCamelCase_ ) def UpperCAmelCase__ ( self :List[str] , lowerCamelCase_ :Optional[int]=1_000 , lowerCamelCase_ :Optional[Any]=128 ): """simple docstring""" if os.getenv('USE_REAL_DATA' , lowerCamelCase_ ): lowerCamelCase__ : Optional[Any] ='examples/seq2seq/wmt_en_ro' lowerCamelCase__ : Optional[int] =max_len * 2 * 64 if not Path(lowerCamelCase_ ).joinpath('train.len' ).exists(): save_len_file(lowerCamelCase_ , lowerCamelCase_ ) else: lowerCamelCase__ : Tuple ='examples/seq2seq/test_data/wmt_en_ro' lowerCamelCase__ : Union[str, Any] =max_len * 4 save_len_file(lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : Any =AutoTokenizer.from_pretrained(lowerCamelCase_ ) lowerCamelCase__ : List[str] =SeqaSeqDataset( lowerCamelCase_ , data_dir=lowerCamelCase_ , type_path='train' , max_source_length=lowerCamelCase_ , max_target_length=lowerCamelCase_ , n_obs=lowerCamelCase_ , ) return ds, max_tokens, tokenizer def UpperCAmelCase__ ( self :str ): """simple docstring""" lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict =self._get_dataset() lowerCamelCase__ : str =set(DistributedSortishSampler(lowerCamelCase_ , 256 , num_replicas=2 , rank=0 , add_extra_examples=lowerCamelCase_ ) ) lowerCamelCase__ : List[str] =set(DistributedSortishSampler(lowerCamelCase_ , 256 , num_replicas=2 , rank=1 , add_extra_examples=lowerCamelCase_ ) ) assert idsa.intersection(lowerCamelCase_ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def UpperCAmelCase__ ( self :Optional[int] , lowerCamelCase_ :Optional[Any] ): """simple docstring""" lowerCamelCase__ : Optional[int] =AutoTokenizer.from_pretrained(lowerCamelCase_ , use_fast=lowerCamelCase_ ) if tok_name == MBART_TINY: lowerCamelCase__ : Any =SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) lowerCamelCase__ : str =train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowerCamelCase__ : str =SeqaSeqDataset( lowerCamelCase_ , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , ) lowerCamelCase__ : Optional[Any] =train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowerCamelCase_ ) == 1 if tok_name == BART_TINY else len(lowerCamelCase_ ) == 0
174
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowerCAmelCase = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } lowerCAmelCase = {"""facebook/blenderbot-3B""": 1_28} class A_ ( A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ = BlenderbotTokenizer def __init__( self :Tuple , lowerCamelCase_ :List[str]=None , lowerCamelCase_ :Optional[int]=None , lowerCamelCase_ :Optional[int]=None , lowerCamelCase_ :str="replace" , lowerCamelCase_ :Dict="<s>" , lowerCamelCase_ :List[str]="</s>" , lowerCamelCase_ :Dict="</s>" , lowerCamelCase_ :List[str]="<s>" , lowerCamelCase_ :int="<unk>" , lowerCamelCase_ :List[Any]="<pad>" , lowerCamelCase_ :Optional[Any]="<mask>" , lowerCamelCase_ :Optional[Any]=False , lowerCamelCase_ :Union[str, Any]=True , **lowerCamelCase_ :Dict , ): """simple docstring""" super().__init__( lowerCamelCase_ , lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , errors=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , trim_offsets=lowerCamelCase_ , **lowerCamelCase_ , ) lowerCamelCase__ : int =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowerCamelCase_ ) != add_prefix_space: lowerCamelCase__ : Tuple =getattr(lowerCamelCase_ , pre_tok_state.pop('type' ) ) lowerCamelCase__ : Tuple =add_prefix_space lowerCamelCase__ : Tuple =pre_tok_class(**lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =add_prefix_space lowerCamelCase__ : int ='post_processor' lowerCamelCase__ : int =getattr(self.backend_tokenizer , lowerCamelCase_ , lowerCamelCase_ ) if tokenizer_component_instance: lowerCamelCase__ : List[str] =json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowerCamelCase__ : Dict =tuple(state['sep'] ) if "cls" in state: lowerCamelCase__ : int =tuple(state['cls'] ) lowerCamelCase__ : Tuple =False if state.get('add_prefix_space' , lowerCamelCase_ ) != add_prefix_space: lowerCamelCase__ : str =add_prefix_space lowerCamelCase__ : List[Any] =True if state.get('trim_offsets' , lowerCamelCase_ ) != trim_offsets: lowerCamelCase__ : Tuple =trim_offsets lowerCamelCase__ : List[Any] =True if changes_to_apply: lowerCamelCase__ : Dict =getattr(lowerCamelCase_ , state.pop('type' ) ) lowerCamelCase__ : List[str] =component_class(**lowerCamelCase_ ) setattr(self.backend_tokenizer , lowerCamelCase_ , lowerCamelCase_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def UpperCAmelCase__ ( self :Tuple , lowerCamelCase_ :Dict ): """simple docstring""" lowerCamelCase__ : Optional[int] =AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else value lowerCamelCase__ : Dict =value def UpperCAmelCase__ ( self :str , *lowerCamelCase_ :Any , **lowerCamelCase_ :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : List[str] =kwargs.get('is_split_into_words' , lowerCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :Optional[int] , *lowerCamelCase_ :Optional[Any] , **lowerCamelCase_ :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : List[Any] =kwargs.get('is_split_into_words' , lowerCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase__ ( self :int , lowerCamelCase_ :str , lowerCamelCase_ :Optional[str] = None ): """simple docstring""" lowerCamelCase__ : Optional[int] =self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_ ) return tuple(lowerCamelCase_ ) def UpperCAmelCase__ ( self :Union[str, Any] , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None ): """simple docstring""" lowerCamelCase__ : List[Any] =[self.sep_token_id] lowerCamelCase__ : str =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self :Optional[Any] , lowerCamelCase_ :List[int] , lowerCamelCase_ :Optional[List[int]] = None ): """simple docstring""" return token_ids_a + [self.eos_token_id] def UpperCAmelCase__ ( self :str , lowerCamelCase_ :"Conversation" ): """simple docstring""" lowerCamelCase__ : Tuple =[] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] =' '.join(lowerCamelCase_ ) lowerCamelCase__ : int =self.encode(lowerCamelCase_ ) if len(lowerCamelCase_ ) > self.model_max_length: lowerCamelCase__ : Dict =input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
174
1
import torch from diffusers import StableDiffusionPipeline SCREAMING_SNAKE_CASE__ : int = "path-to-your-trained-model" SCREAMING_SNAKE_CASE__ : Any = StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to("cuda") SCREAMING_SNAKE_CASE__ : Any = "A photo of sks dog in a bucket" SCREAMING_SNAKE_CASE__ : str = pipe(prompt, num_inference_steps=50, guidance_scale=7.5).images[0] image.save("dog-bucket.png")
708
import itertools import random import unittest import numpy as np from transformers import BatchFeature, SpeechTaFeatureExtractor from transformers.testing_utils import require_torch from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch SCREAMING_SNAKE_CASE__ : Optional[Any] = random.Random() def _a ( lowercase__ : List[str] , lowercase__ : List[Any]=1.0 , lowercase__ : Optional[int]=None , lowercase__ : List[str]=None ): '''simple docstring''' if rng is None: SCREAMING_SNAKE_CASE__ : Optional[int] = global_rng SCREAMING_SNAKE_CASE__ : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch class snake_case ( unittest.TestCase ): def __init__( self : List[Any] , a_ : Optional[Any] , a_ : Union[str, Any]=7 , a_ : Any=400 , a_ : List[Any]=2000 , a_ : Tuple=1 , a_ : Optional[int]=0.0 , a_ : Optional[Any]=1_6000 , a_ : str=True , a_ : Union[str, Any]=80 , a_ : Dict=16 , a_ : Tuple=64 , a_ : Any="hann_window" , a_ : Union[str, Any]=80 , a_ : List[Any]=7600 , a_ : Optional[Any]=1e-1_0 , a_ : Dict=True , )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = parent SCREAMING_SNAKE_CASE__ : List[Any] = batch_size SCREAMING_SNAKE_CASE__ : str = min_seq_length SCREAMING_SNAKE_CASE__ : Optional[int] = max_seq_length SCREAMING_SNAKE_CASE__ : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE__ : int = feature_size SCREAMING_SNAKE_CASE__ : str = padding_value SCREAMING_SNAKE_CASE__ : Any = sampling_rate SCREAMING_SNAKE_CASE__ : Optional[int] = do_normalize SCREAMING_SNAKE_CASE__ : int = num_mel_bins SCREAMING_SNAKE_CASE__ : int = hop_length SCREAMING_SNAKE_CASE__ : str = win_length SCREAMING_SNAKE_CASE__ : Optional[Any] = win_function SCREAMING_SNAKE_CASE__ : List[str] = fmin SCREAMING_SNAKE_CASE__ : Dict = fmax SCREAMING_SNAKE_CASE__ : int = mel_floor SCREAMING_SNAKE_CASE__ : Tuple = return_attention_mask def __lowercase( self : Dict )-> Dict: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "do_normalize": self.do_normalize, "num_mel_bins": self.num_mel_bins, "hop_length": self.hop_length, "win_length": self.win_length, "win_function": self.win_function, "fmin": self.fmin, "fmax": self.fmax, "mel_floor": self.mel_floor, "return_attention_mask": self.return_attention_mask, } def __lowercase( self : List[Any] , a_ : str=False , a_ : List[Any]=False )-> Optional[Any]: """simple docstring""" def _flatten(a_ : int ): return list(itertools.chain(*a_ ) ) if equal_length: SCREAMING_SNAKE_CASE__ : Tuple = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE__ : Optional[int] = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE__ : int = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs def __lowercase( self : Any , a_ : int=False , a_ : Any=False )-> Union[str, Any]: """simple docstring""" if equal_length: SCREAMING_SNAKE_CASE__ : str = [floats_list((self.max_seq_length, self.num_mel_bins) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE__ : Tuple = [ floats_list((x, self.num_mel_bins) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE__ : List[str] = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs @require_torch class snake_case ( UpperCamelCase_ , unittest.TestCase ): lowercase_ = SpeechTaFeatureExtractor def __lowercase( self : List[Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = SpeechTaFeatureExtractionTester(self ) def __lowercase( self : Any , a_ : Optional[int] )-> List[str]: """simple docstring""" self.assertTrue(np.all(np.mean(a_ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_ , axis=0 ) - 1 ) < 1e-3 ) ) def __lowercase( self : Tuple )-> Dict: """simple docstring""" # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE__ : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE__ : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE__ : Optional[int] = [np.asarray(a_ ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test batched SCREAMING_SNAKE_CASE__ : List[Any] = feat_extract(a_ , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE__ : List[str] = feat_extract(a_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) def __lowercase( self : List[Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE__ : int = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE__ : Tuple = [None, 1600, None] for max_length, padding in zip(a_ , a_ ): SCREAMING_SNAKE_CASE__ : str = feat_extract(a_ , padding=a_ , max_length=a_ , return_tensors='np' ) SCREAMING_SNAKE_CASE__ : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __lowercase( self : List[Any] )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ : List[Any] = range(800 , 1400 , 200 ) SCREAMING_SNAKE_CASE__ : int = [floats_list((1, x) )[0] for x in lengths] SCREAMING_SNAKE_CASE__ : int = ['longest', 'max_length', 'do_not_pad'] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [None, 1600, None] for max_length, padding in zip(a_ , a_ ): SCREAMING_SNAKE_CASE__ : List[str] = feat_extract(a_ , max_length=a_ , padding=a_ ) SCREAMING_SNAKE_CASE__ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def __lowercase( self : int )-> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE__ : Optional[int] = feat_extract( a_ , truncation=a_ , max_length=1000 , padding='max_length' , return_tensors='np' ) SCREAMING_SNAKE_CASE__ : Optional[int] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def __lowercase( self : Optional[Any] )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE__ : List[str] = feat_extract( a_ , truncation=a_ , max_length=1000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE__ : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) SCREAMING_SNAKE_CASE__ : Optional[int] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE__ : str = feat_extract( a_ , truncation=a_ , max_length=2000 , padding='longest' , return_tensors='np' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) def __lowercase( self : Any )-> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) SCREAMING_SNAKE_CASE__ : Optional[int] = np.random.rand(100 ).astype(np.floataa ) SCREAMING_SNAKE_CASE__ : int = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: SCREAMING_SNAKE_CASE__ : Any = feature_extractor.pad([{'input_values': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) SCREAMING_SNAKE_CASE__ : Tuple = feature_extractor.pad([{'input_values': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __lowercase( self : Any )-> Optional[int]: """simple docstring""" # Tests that all call wrap to encode_plus and batch_encode_plus SCREAMING_SNAKE_CASE__ : List[str] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE__ : List[Any] = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] SCREAMING_SNAKE_CASE__ : Dict = [np.asarray(a_ ) for speech_input in speech_inputs] # Test feature size SCREAMING_SNAKE_CASE__ : Optional[int] = feature_extractor(audio_target=a_ , padding=a_ , return_tensors='np' ).input_values self.assertTrue(input_values.ndim == 3 ) self.assertTrue(input_values.shape[-1] == feature_extractor.num_mel_bins ) # Test not batched input SCREAMING_SNAKE_CASE__ : Tuple = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE__ : int = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_values self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test batched SCREAMING_SNAKE_CASE__ : Optional[Any] = feature_extractor(a_ , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE__ : Optional[Any] = feature_extractor(a_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE__ : List[str] = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE__ : List[str] = np.asarray(a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = feature_extractor(a_ , return_tensors='np' ).input_values SCREAMING_SNAKE_CASE__ : str = feature_extractor(a_ , return_tensors='np' ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) def __lowercase( self : Dict )-> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE__ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : Any = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(a_ ) == len(a_ ) for x, y in zip(a_ , processed_features[input_name] ) ) ) SCREAMING_SNAKE_CASE__ : str = self.feat_extract_tester.prepare_inputs_for_target(equal_length=a_ ) SCREAMING_SNAKE_CASE__ : Dict = BatchFeature({input_name: speech_inputs} , tensor_type='np' ) SCREAMING_SNAKE_CASE__ : List[Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE__ : int = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __lowercase( self : List[Any] )-> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target(equal_length=a_ ) SCREAMING_SNAKE_CASE__ : Dict = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ : Optional[int] = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : Any = BatchFeature({input_name: speech_inputs} , tensor_type='pt' ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = processed_features[input_name] if len(batch_features_input.shape ) < 3: SCREAMING_SNAKE_CASE__ : Optional[Any] = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.num_mel_bins) ) @require_torch def __lowercase( self : Tuple )-> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.feature_extraction_class(**self.feat_extract_dict ) SCREAMING_SNAKE_CASE__ : Dict = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE__ : str = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : List[Any] = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ : Optional[int] = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE__ : Optional[int] = feat_extract.pad(a_ , padding='longest' , return_tensors='np' )[input_name] SCREAMING_SNAKE_CASE__ : Any = feat_extract.pad(a_ , padding='longest' , return_tensors='pt' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def __lowercase( self : Any )-> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = self.feat_extract_dict SCREAMING_SNAKE_CASE__ : Optional[Any] = True SCREAMING_SNAKE_CASE__ : Optional[Any] = self.feature_extraction_class(**a_ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE__ : Any = [len(a_ ) for x in speech_inputs] SCREAMING_SNAKE_CASE__ : Optional[int] = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE__ : Any = feat_extract.pad(a_ , padding='longest' , return_tensors='np' ) self.assertIn('attention_mask' , a_ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , a_ ) def __lowercase( self : str )-> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Any = self.feat_extract_dict SCREAMING_SNAKE_CASE__ : Union[str, Any] = True SCREAMING_SNAKE_CASE__ : Optional[Any] = self.feature_extraction_class(**a_ ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.feat_extract_tester.prepare_inputs_for_target() SCREAMING_SNAKE_CASE__ : Tuple = [len(a_ ) for x in speech_inputs] SCREAMING_SNAKE_CASE__ : Union[str, Any] = feat_extract.model_input_names[0] SCREAMING_SNAKE_CASE__ : Dict = BatchFeature({input_name: speech_inputs} ) SCREAMING_SNAKE_CASE__ : str = min(a_ ) SCREAMING_SNAKE_CASE__ : Any = feat_extract.num_mel_bins # hack! SCREAMING_SNAKE_CASE__ : int = feat_extract.pad( a_ , padding='max_length' , max_length=a_ , truncation=a_ , return_tensors='np' ) self.assertIn('attention_mask' , a_ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] ) def __lowercase( self : Optional[int] , a_ : List[str] )-> Any: """simple docstring""" from datasets import load_dataset SCREAMING_SNAKE_CASE__ : int = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE__ : List[Any] = ds.sort('id' ).select(range(a_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def __lowercase( self : List[str] )-> List[Any]: """simple docstring""" # fmt: off SCREAMING_SNAKE_CASE__ : List[Any] = torch.tensor( [2.3_8_0_4e-0_3, 2.0_7_5_2e-0_3, 1.9_8_3_6e-0_3, 2.1_0_5_7e-0_3, 1.6_1_7_4e-0_3, 3.0_5_1_8e-0_4, 9.1_5_5_3e-0_5, 3.3_5_6_9e-0_4, 9.7_6_5_6e-0_4, 1.8_3_1_1e-0_3, 2.0_1_4_2e-0_3, 2.1_0_5_7e-0_3, 1.7_3_9_5e-0_3, 4.5_7_7_6e-0_4, -3.9_6_7_3e-0_4, 4.5_7_7_6e-0_4, 1.0_0_7_1e-0_3, 9.1_5_5_3e-0_5, 4.8_8_2_8e-0_4, 1.1_5_9_7e-0_3, 7.3_2_4_2e-0_4, 9.4_6_0_4e-0_4, 1.8_0_0_5e-0_3, 1.8_3_1_1e-0_3, 8.8_5_0_1e-0_4, 4.2_7_2_5e-0_4, 4.8_8_2_8e-0_4, 7.3_2_4_2e-0_4, 1.0_9_8_6e-0_3, 2.1_0_5_7e-0_3] ) # fmt: on SCREAMING_SNAKE_CASE__ : List[str] = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE__ : List[str] = feature_extractor(a_ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 9_3680) ) self.assertTrue(torch.allclose(input_values[0, :30] , a_ , atol=1e-6 ) ) def __lowercase( self : Tuple )-> List[Any]: """simple docstring""" # fmt: off SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.tensor( [-2.6870, -3.0104, -3.1356, -3.5352, -3.0044, -3.0353, -3.4719, -3.6777, -3.1520, -2.9435, -2.6553, -2.8795, -2.9944, -2.5921, -3.0279, -3.0386, -3.0864, -3.1291, -3.2353, -2.7444, -2.6831, -2.7287, -3.1761, -3.1571, -3.2726, -3.0582, -3.1007, -3.4533, -3.4695, -3.0998] ) # fmt: on SCREAMING_SNAKE_CASE__ : Optional[Any] = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE__ : int = SpeechTaFeatureExtractor() SCREAMING_SNAKE_CASE__ : str = feature_extractor(audio_target=a_ , return_tensors='pt' ).input_values self.assertEquals(input_values.shape , (1, 366, 80) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , a_ , atol=1e-4 ) )
636
0
'''simple docstring''' from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING a = logging.get_logger(__name__) @add_end_docstrings(a__ ) class __a ( a__ ): def __init__( self : List[str] ,*lowerCamelCase : Optional[Any] ,**lowerCamelCase : Any ): '''simple docstring''' super().__init__(*_snake_case ,**_snake_case ) requires_backends(self ,"""vision""" ) self.check_model_type(_snake_case ) def __call__( self : str ,lowerCamelCase : int ,**lowerCamelCase : int ): '''simple docstring''' return super().__call__(_snake_case ,**_snake_case ) def UpperCAmelCase__ ( self : List[Any] ,**lowerCamelCase : List[str] ): '''simple docstring''' return {}, {}, {} def UpperCAmelCase__ ( self : int ,lowerCamelCase : Optional[Any] ): '''simple docstring''' __SCREAMING_SNAKE_CASE = load_image(_snake_case ) __SCREAMING_SNAKE_CASE = image.size __SCREAMING_SNAKE_CASE = self.image_processor(images=_snake_case ,return_tensors=self.framework ) return model_inputs def UpperCAmelCase__ ( self : Dict ,lowerCamelCase : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = self.model(**_snake_case ) return model_outputs def UpperCAmelCase__ ( self : Optional[int] ,lowerCamelCase : Any ): '''simple docstring''' __SCREAMING_SNAKE_CASE = model_outputs.predicted_depth __SCREAMING_SNAKE_CASE = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) ,size=self.image_size[::-1] ,mode="""bicubic""" ,align_corners=_snake_case ) __SCREAMING_SNAKE_CASE = prediction.squeeze().cpu().numpy() __SCREAMING_SNAKE_CASE = (output * 255 / np.max(_snake_case )).astype("""uint8""" ) __SCREAMING_SNAKE_CASE = Image.fromarray(_snake_case ) __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = predicted_depth __SCREAMING_SNAKE_CASE = depth return output_dict
109
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: if resistor <= 0: lowerCAmelCase = F'Resistor at index {index} has a negative or zero value!' raise ValueError(_UpperCAmelCase ) first_sum += 1 / float(_UpperCAmelCase ) index += 1 return 1 / first_sum def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : list[float] ): lowerCAmelCase = 0.00 lowerCAmelCase = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCAmelCase = F'Resistor at index {index} has a negative value!' raise ValueError(_UpperCAmelCase ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
4
0
"""simple docstring""" import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoImageProcessor, ViTImageProcessor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_image_processing import CustomImageProcessor # noqa E402 _lowerCAmelCase = get_tests_dir('fixtures') class UpperCamelCase (unittest.TestCase ): def __snake_case ( self :str ) ->Optional[int]: # A mock response for an HTTP head request to emulate server down lowercase : Any = mock.Mock() lowercase : Optional[int] = 500 lowercase : Dict = {} lowercase : List[Any] = HTTPError lowercase : int = {} # Download this model to make sure it's in the cache. lowercase : Dict = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch("""requests.Session.request""" , return_value=__magic_name__ ) as mock_head: lowercase : List[Any] = ViTImageProcessor.from_pretrained("""hf-internal-testing/tiny-random-vit""" ) # This check we did call the fake head request mock_head.assert_called() def __snake_case ( self :Dict ) ->Union[str, Any]: # This test is for deprecated behavior and can be removed in v5 lowercase : Union[str, Any] = ViTImageProcessor.from_pretrained( """https://huggingface.co/hf-internal-testing/tiny-random-vit/resolve/main/preprocessor_config.json""" ) def __snake_case ( self :int ) ->Dict: with self.assertRaises(__magic_name__ ): # config is in subfolder, the following should not work without specifying the subfolder lowercase : List[str] = AutoImageProcessor.from_pretrained("""hf-internal-testing/stable-diffusion-all-variants""" ) lowercase : int = AutoImageProcessor.from_pretrained( """hf-internal-testing/stable-diffusion-all-variants""" , subfolder="""feature_extractor""" ) self.assertIsNotNone(__magic_name__ ) @is_staging_test class UpperCamelCase (unittest.TestCase ): @classmethod def __snake_case ( cls :Optional[Any] ) ->int: lowercase : List[str] = TOKEN HfFolder.save_token(__magic_name__ ) @classmethod def __snake_case ( cls :Dict ) ->Any: try: delete_repo(token=cls._token , repo_id="""test-image-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-image-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-image-processor""" ) except HTTPError: pass def __snake_case ( self :str ) ->Any: lowercase : Optional[int] = ViTImageProcessor.from_pretrained(__magic_name__ ) image_processor.push_to_hub("""test-image-processor""" , use_auth_token=self._token ) lowercase : int = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __magic_name__ , repo_id="""test-image-processor""" , push_to_hub=__magic_name__ , use_auth_token=self._token ) lowercase : List[Any] = ViTImageProcessor.from_pretrained(f"""{USER}/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) def __snake_case ( self :Union[str, Any] ) ->str: lowercase : Any = ViTImageProcessor.from_pretrained(__magic_name__ ) image_processor.push_to_hub("""valid_org/test-image-processor""" , use_auth_token=self._token ) lowercase : Union[str, Any] = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) # Reset repo delete_repo(token=self._token , repo_id="""valid_org/test-image-processor""" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained( __magic_name__ , repo_id="""valid_org/test-image-processor-org""" , push_to_hub=__magic_name__ , use_auth_token=self._token ) lowercase : Tuple = ViTImageProcessor.from_pretrained("""valid_org/test-image-processor-org""" ) for k, v in image_processor.__dict__.items(): self.assertEqual(__magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) def __snake_case ( self :str ) ->List[Any]: CustomImageProcessor.register_for_auto_class() lowercase : Optional[Any] = CustomImageProcessor.from_pretrained(__magic_name__ ) image_processor.push_to_hub("""test-dynamic-image-processor""" , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( image_processor.auto_map , {"""AutoImageProcessor""": """custom_image_processing.CustomImageProcessor"""} , ) lowercase : Any = AutoImageProcessor.from_pretrained( f"""{USER}/test-dynamic-image-processor""" , trust_remote_code=__magic_name__ ) # Can't make an isinstance check because the new_image_processor is from the CustomImageProcessor class of a dynamic module self.assertEqual(new_image_processor.__class__.__name__ , """CustomImageProcessor""" )
348
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase ( _A , _A ) -> Any: lowercase : Optional[int] = old_name if "patch_embed" in old_name: lowercase , lowercase , lowercase : Union[str, Any] = old_name.split(""".""" ) if layer == "0": lowercase : str = old_name.replace("""0""" , """convolution1""" ) elif layer == "1": lowercase : str = old_name.replace("""1""" , """batchnorm_before""" ) elif layer == "3": lowercase : str = old_name.replace("""3""" , """convolution2""" ) else: lowercase : List[Any] = old_name.replace("""4""" , """batchnorm_after""" ) if "network" in old_name and re.search(r"""\d\.\d""" , _A ): lowercase : List[str] = r"""\b\d{2}\b""" if bool(re.search(_A , _A ) ): lowercase : Union[str, Any] = re.search(r"""\d\.\d\d.""" , _A ).group() else: lowercase : int = re.search(r"""\d\.\d.""" , _A ).group() if int(match[0] ) < 6: lowercase : List[Any] = old_name.replace(_A , """""" ) lowercase : List[str] = trimmed_name.replace("""network""" , match[0] + """.meta4D_layers.blocks.""" + match[2:-1] ) lowercase : Any = """intermediate_stages.""" + trimmed_name else: lowercase : int = old_name.replace(_A , """""" ) if int(match[2] ) < num_meta4D_last_stage: lowercase : Union[str, Any] = trimmed_name.replace("""network""" , """meta4D_layers.blocks.""" + match[2] ) else: lowercase : List[Any] = str(int(match[2] ) - num_meta4D_last_stage ) lowercase : List[str] = trimmed_name.replace("""network""" , """meta3D_layers.blocks.""" + layer_index ) if "norm1" in old_name: lowercase : str = trimmed_name.replace("""norm1""" , """layernorm1""" ) elif "norm2" in old_name: lowercase : Dict = trimmed_name.replace("""norm2""" , """layernorm2""" ) elif "fc1" in old_name: lowercase : Optional[Any] = trimmed_name.replace("""fc1""" , """linear_in""" ) elif "fc2" in old_name: lowercase : Any = trimmed_name.replace("""fc2""" , """linear_out""" ) lowercase : Optional[Any] = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(r""".\d.""" , _A ): lowercase : int = old_name.replace("""network""" , """intermediate_stages""" ) if "fc" in new_name: lowercase : Any = new_name.replace("""fc""" , """convolution""" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): lowercase : List[Any] = new_name.replace("""norm1""" , """batchnorm_before""" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): lowercase : str = new_name.replace("""norm2""" , """batchnorm_after""" ) if "proj" in new_name: lowercase : Optional[Any] = new_name.replace("""proj""" , """projection""" ) if "dist_head" in new_name: lowercase : Union[str, Any] = new_name.replace("""dist_head""" , """distillation_classifier""" ) elif "head" in new_name: lowercase : Dict = new_name.replace("""head""" , """classifier""" ) elif "patch_embed" in new_name: lowercase : List[str] = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": lowercase : Tuple = new_name.replace("""norm""" , """layernorm""" ) lowercase : Union[str, Any] = """efficientformer.""" + new_name else: lowercase : Dict = """efficientformer.encoder.""" + new_name return new_name def UpperCamelCase ( _A , _A ) -> Any: for key in checkpoint.copy().keys(): lowercase : int = checkpoint.pop(_A ) lowercase : List[Any] = val return checkpoint def UpperCamelCase ( ) -> Optional[int]: lowercase : List[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase : int = Image.open(requests.get(_A , stream=_A ).raw ) return image def UpperCamelCase ( _A , _A , _A , _A ) -> Optional[Any]: lowercase : Tuple = torch.load(_A , map_location="""cpu""" )["""model"""] lowercase : List[Any] = EfficientFormerConfig.from_json_file(_A ) lowercase : str = EfficientFormerForImageClassificationWithTeacher(_A ) lowercase : List[Any] = """_""".join(checkpoint_path.split("""/""" )[-1].split(""".""" )[0].split("""_""" )[:-1] ) lowercase : List[str] = config.depths[-1] - config.num_metaad_blocks + 1 lowercase : List[str] = convert_torch_checkpoint(_A , _A ) model.load_state_dict(_A ) model.eval() lowercase : Tuple = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image lowercase : Tuple = prepare_img() lowercase : Dict = 256 lowercase : List[Any] = 224 lowercase : Optional[Any] = EfficientFormerImageProcessor( size={"""shortest_edge""": image_size} , crop_size={"""height""": crop_size, """width""": crop_size} , resample=pillow_resamplings["""bicubic"""] , ) lowercase : List[Any] = processor(images=_A , return_tensors="""pt""" ).pixel_values # original processing pipeline lowercase : Tuple = Compose( [ Resize(_A , interpolation=pillow_resamplings["""bicubic"""] ), CenterCrop(_A ), ToTensor(), Normalize(_A , _A ), ] ) lowercase : List[str] = image_transforms(_A ).unsqueeze(0 ) assert torch.allclose(_A , _A ) lowercase : Any = model(_A ) lowercase : Any = outputs.logits lowercase : Dict = (1, 1_000) if "l1" in model_name: lowercase : Optional[int] = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , _A , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: lowercase : List[str] = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , _A , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: lowercase : str = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( F"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(_A ).mkdir(exist_ok=_A ) model.save_pretrained(_A ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(_A ) print(F"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print("""Pushing model to the hub...""" ) model.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" , commit_message="""Add model""" , use_temp_dir=_A , ) processor.push_to_hub( repo_id=F"""Bearnardd/{pytorch_dump_path}""" , commit_message="""Add image processor""" , use_temp_dir=_A , ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to EfficientFormer pytorch checkpoint.', ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for EfficientFormer model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) parser.set_defaults(push_to_hub=True) _lowerCAmelCase = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
348
1
from __future__ import annotations from random import choice def __SCREAMING_SNAKE_CASE ( a__ : str ) -> Optional[Any]: return choice(a__ ) def __SCREAMING_SNAKE_CASE ( a__ : list[int] ,a__ : int ) -> int: __A : List[str] = random_pivot(a__ ) # partition based on pivot # linear time __A : Optional[int] = [e for e in lst if e < pivot] __A : Tuple = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(a__ ) == k - 1: return pivot # pivot is in elements bigger than k elif len(a__ ) < k - 1: return kth_number(a__ ,k - len(a__ ) - 1 ) # pivot is in elements smaller than k else: return kth_number(a__ ,a__ ) if __name__ == "__main__": import doctest doctest.testmod()
17
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def lowerCAmelCase_ ( snake_case_=None ): _A : Union[str, Any] = argparse.ArgumentParser(add_help=snake_case_,allow_abbrev=snake_case_ ) # The main config parser _A : Union[str, Any] = config_command_parser(snake_case_ ) # The subparser to add commands to _A : Union[str, Any] = config_parser.add_subparsers(title="""subcommands""",dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(snake_case_,parents=[parent_parser] ) update_command_parser(snake_case_,parents=[parent_parser] ) return config_parser def lowerCAmelCase_ ( ): _A : Optional[Any] = get_config_parser() _A : List[Any] = config_parser.parse_args() if not hasattr(snake_case_,"""func""" ): config_parser.print_help() exit(1 ) # Run args.func(snake_case_ ) if __name__ == "__main__": main()
307
0
"""simple docstring""" import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( __UpperCAmelCase , unittest.TestCase ): lowerCamelCase__ = CLIPTokenizer lowerCamelCase__ = CLIPTokenizerFast lowerCamelCase__ = True lowerCamelCase__ = {} lowerCamelCase__ = False def SCREAMING_SNAKE_CASE_ ( self :List[str] ): super().setUp() # fmt: off __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on __SCREAMING_SNAKE_CASE : Optional[Any] = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) __SCREAMING_SNAKE_CASE : int = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] __SCREAMING_SNAKE_CASE : Optional[Any] = {'''unk_token''': '''<unk>'''} __SCREAMING_SNAKE_CASE : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowerCamelCase ) ) def SCREAMING_SNAKE_CASE_ ( self :Dict , **_lowerCamelCase :int ): kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , **_lowerCamelCase :List[str] ): kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , _lowerCamelCase :Any ): __SCREAMING_SNAKE_CASE : int = '''lower newer''' __SCREAMING_SNAKE_CASE : Optional[int] = '''lower newer''' return input_text, output_text def SCREAMING_SNAKE_CASE_ ( self :List[str] ): __SCREAMING_SNAKE_CASE : List[str] = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) __SCREAMING_SNAKE_CASE : Tuple = '''lower newer''' __SCREAMING_SNAKE_CASE : Union[str, Any] = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = tokens + [tokenizer.unk_token] __SCREAMING_SNAKE_CASE : List[str] = [1_0, 2, 1_6, 9, 3, 2, 1_6, 2_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) @require_ftfy def SCREAMING_SNAKE_CASE_ ( self :Any ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __SCREAMING_SNAKE_CASE : List[str] = self.tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer_s.tokenize(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer_r.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways __SCREAMING_SNAKE_CASE : Union[str, Any] = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' __SCREAMING_SNAKE_CASE : List[Any] = tokenizer_s.tokenize(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = tokenizer_r.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Test that the tokenization is identical on unicode of space type __SCREAMING_SNAKE_CASE : Any = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: __SCREAMING_SNAKE_CASE : Dict = tokenizer_s.tokenize(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = tokenizer_r.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Test that the tokenization is identical on unicode of line break type __SCREAMING_SNAKE_CASE : Dict = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: __SCREAMING_SNAKE_CASE : str = tokenizer_s.tokenize(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = tokenizer_r.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :int ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __SCREAMING_SNAKE_CASE : List[Any] = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` __SCREAMING_SNAKE_CASE : str = f'''{text_of_1_token} {text_of_1_token}''' __SCREAMING_SNAKE_CASE : Dict = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase , use_fast=_lowerCamelCase , ) __SCREAMING_SNAKE_CASE : Any = tokenizer_r(_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowerCamelCase ) + 1, len(_lowerCamelCase ) + 1 + len(_lowerCamelCase )) , ) __SCREAMING_SNAKE_CASE : int = f''' {text}''' __SCREAMING_SNAKE_CASE : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _lowerCamelCase , use_fast=_lowerCamelCase , ) __SCREAMING_SNAKE_CASE : str = tokenizer_r(_lowerCamelCase , return_offsets_mapping=_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowerCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowerCamelCase ) + 1, 1 + len(_lowerCamelCase ) + 1 + len(_lowerCamelCase )) , ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(_lowerCamelCase ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def SCREAMING_SNAKE_CASE_ ( self :List[str] ): super().test_tokenization_python_rust_equals() def SCREAMING_SNAKE_CASE_ ( self :Dict ): # CLIP always lower cases letters pass
401
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE_ ( self :Dict ): __SCREAMING_SNAKE_CASE : Union[str, Any] = 1 __SCREAMING_SNAKE_CASE : str = 3 __SCREAMING_SNAKE_CASE : Optional[int] = (3_2, 3_2) __SCREAMING_SNAKE_CASE : Any = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowerCamelCase ) return image @property def SCREAMING_SNAKE_CASE_ ( self :List[str] ): torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=3_2 , ) return model @property def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) return model @property def SCREAMING_SNAKE_CASE_ ( self :str ): torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Tuple = RobertaSeriesConfig( hidden_size=3_2 , project_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_0_0_6 , ) return RobertaSeriesModelWithTransformation(_lowerCamelCase ) @property def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): def extract(*_lowerCamelCase :List[Any] , **_lowerCamelCase :Optional[Any] ): class snake_case : def __init__( self :Any ): __SCREAMING_SNAKE_CASE : List[str] = torch.ones([0] ) def SCREAMING_SNAKE_CASE_ ( self :str , _lowerCamelCase :Any ): self.pixel_values.to(_lowerCamelCase ) return self return Out() return extract def SCREAMING_SNAKE_CASE_ ( self :List[str] ): __SCREAMING_SNAKE_CASE : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __SCREAMING_SNAKE_CASE : str = self.dummy_cond_unet __SCREAMING_SNAKE_CASE : List[str] = PNDMScheduler(skip_prk_steps=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = self.dummy_vae __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_text_encoder __SCREAMING_SNAKE_CASE : Dict = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) __SCREAMING_SNAKE_CASE : Tuple = 7_7 __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_image.to(_lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk __SCREAMING_SNAKE_CASE : Any = AltDiffusionImgaImgPipeline( unet=_lowerCamelCase , scheduler=_lowerCamelCase , vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=self.dummy_extractor , ) __SCREAMING_SNAKE_CASE : Optional[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = alt_pipe.to(_lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[Any] = '''A painting of a squirrel eating a burger''' __SCREAMING_SNAKE_CASE : Optional[int] = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = alt_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=_lowerCamelCase , ) __SCREAMING_SNAKE_CASE : Optional[int] = output.images __SCREAMING_SNAKE_CASE : Optional[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) __SCREAMING_SNAKE_CASE : Any = alt_pipe( [prompt] , generator=_lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type='''np''' , image=_lowerCamelCase , return_dict=_lowerCamelCase , )[0] __SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] __SCREAMING_SNAKE_CASE : str = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) __SCREAMING_SNAKE_CASE : Optional[Any] = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): __SCREAMING_SNAKE_CASE : str = self.dummy_cond_unet __SCREAMING_SNAKE_CASE : Optional[Any] = PNDMScheduler(skip_prk_steps=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_vae __SCREAMING_SNAKE_CASE : str = self.dummy_text_encoder __SCREAMING_SNAKE_CASE : Dict = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) __SCREAMING_SNAKE_CASE : str = 7_7 __SCREAMING_SNAKE_CASE : Dict = self.dummy_image.to(_lowerCamelCase ) # put models in fp16 __SCREAMING_SNAKE_CASE : str = unet.half() __SCREAMING_SNAKE_CASE : List[str] = vae.half() __SCREAMING_SNAKE_CASE : Optional[int] = bert.half() # make sure here that pndm scheduler skips prk __SCREAMING_SNAKE_CASE : Optional[int] = AltDiffusionImgaImgPipeline( unet=_lowerCamelCase , scheduler=_lowerCamelCase , vae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , safety_checker=_lowerCamelCase , feature_extractor=self.dummy_extractor , ) __SCREAMING_SNAKE_CASE : Tuple = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = alt_pipe.to(_lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = '''A painting of a squirrel eating a burger''' __SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = alt_pipe( [prompt] , generator=_lowerCamelCase , num_inference_steps=2 , output_type='''np''' , image=_lowerCamelCase , ).images assert image.shape == (1, 3_2, 3_2, 3) @unittest.skipIf(torch_device != '''cuda''' , '''This test requires a GPU''' ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): __SCREAMING_SNAKE_CASE : int = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) # resize to resolution that is divisible by 8 but not 16 or 32 __SCREAMING_SNAKE_CASE : Union[str, Any] = init_image.resize((7_6_0, 5_0_4) ) __SCREAMING_SNAKE_CASE : int = '''BAAI/AltDiffusion''' __SCREAMING_SNAKE_CASE : Union[str, Any] = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCamelCase , safety_checker=_lowerCamelCase , ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Dict = '''A fantasy landscape, trending on artstation''' __SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , strength=0.7_5 , guidance_scale=7.5 , generator=_lowerCamelCase , output_type='''np''' , ) __SCREAMING_SNAKE_CASE : Optional[int] = output.images[0] __SCREAMING_SNAKE_CASE : Optional[Any] = image[2_5_5:2_5_8, 3_8_3:3_8_6, -1] assert image.shape == (5_0_4, 7_6_0, 3) __SCREAMING_SNAKE_CASE : Dict = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self :int ): __SCREAMING_SNAKE_CASE : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __SCREAMING_SNAKE_CASE : str = init_image.resize((7_6_8, 5_1_2) ) __SCREAMING_SNAKE_CASE : int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy''' ) __SCREAMING_SNAKE_CASE : int = '''BAAI/AltDiffusion''' __SCREAMING_SNAKE_CASE : Optional[Any] = AltDiffusionImgaImgPipeline.from_pretrained( _lowerCamelCase , safety_checker=_lowerCamelCase , ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) pipe.enable_attention_slicing() __SCREAMING_SNAKE_CASE : Optional[int] = '''A fantasy landscape, trending on artstation''' __SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) __SCREAMING_SNAKE_CASE : int = pipe( prompt=_lowerCamelCase , image=_lowerCamelCase , strength=0.7_5 , guidance_scale=7.5 , generator=_lowerCamelCase , output_type='''np''' , ) __SCREAMING_SNAKE_CASE : Union[str, Any] = output.images[0] assert image.shape == (5_1_2, 7_6_8, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
401
1
"""simple docstring""" from importlib import import_module from .logging import get_logger __A = get_logger(__name__) class lowerCamelCase__ : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ): """simple docstring""" snake_case : Dict = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("__" ): setattr(self , SCREAMING_SNAKE_CASE , getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) snake_case : int = module._original_module if isinstance(SCREAMING_SNAKE_CASE , _PatchedModuleObj ) else module class lowerCamelCase__ : a__ : Dict = [] def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None ): """simple docstring""" snake_case : Optional[int] = obj snake_case : str = target snake_case : Optional[Any] = new snake_case : Tuple = target.split("." )[0] snake_case : Tuple = {} snake_case : Optional[int] = attrs or [] def __enter__( self ): """simple docstring""" *snake_case , snake_case : Dict = self.target.split("." ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(SCREAMING_SNAKE_CASE ) ): try: snake_case : List[Any] = import_module(".".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): snake_case : Optional[int] = getattr(self.obj , SCREAMING_SNAKE_CASE ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(SCREAMING_SNAKE_CASE , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): snake_case : int = obj_attr # patch at top level setattr(self.obj , SCREAMING_SNAKE_CASE , _PatchedModuleObj(SCREAMING_SNAKE_CASE , attrs=self.attrs ) ) snake_case : Optional[Any] = getattr(self.obj , SCREAMING_SNAKE_CASE ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , _PatchedModuleObj(getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , attrs=self.attrs ) ) snake_case : Any = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # finally set the target attribute setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: snake_case : Any = getattr(import_module(".".join(SCREAMING_SNAKE_CASE ) ) , SCREAMING_SNAKE_CASE ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , SCREAMING_SNAKE_CASE ) is attr_value: snake_case : List[Any] = getattr(self.obj , SCREAMING_SNAKE_CASE ) setattr(self.obj , SCREAMING_SNAKE_CASE , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" snake_case : Dict = globals()["__builtins__"][target_attr] setattr(self.obj , SCREAMING_SNAKE_CASE , self.new ) else: raise RuntimeError(F'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self , *SCREAMING_SNAKE_CASE ): """simple docstring""" for attr in list(self.original ): setattr(self.obj , SCREAMING_SNAKE_CASE , self.original.pop(SCREAMING_SNAKE_CASE ) ) def lowerCamelCase_ ( self ): """simple docstring""" self.__enter__() self._active_patches.append(self ) def lowerCamelCase_ ( self ): """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
134
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "MIT/ast-finetuned-audioset-10-10-0.4593": ( "https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json" ), } class lowerCamelCase__ ( lowerCamelCase_ ): a__ : int = """audio-spectrogram-transformer""" def __init__( self , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3_072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1E-12 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=10 , SCREAMING_SNAKE_CASE=1_024 , SCREAMING_SNAKE_CASE=128 , **SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) snake_case : Tuple = hidden_size snake_case : List[str] = num_hidden_layers snake_case : Optional[int] = num_attention_heads snake_case : Optional[Any] = intermediate_size snake_case : Any = hidden_act snake_case : Tuple = hidden_dropout_prob snake_case : Optional[Any] = attention_probs_dropout_prob snake_case : Any = initializer_range snake_case : Optional[Any] = layer_norm_eps snake_case : str = patch_size snake_case : Any = qkv_bias snake_case : str = frequency_stride snake_case : Dict = time_stride snake_case : int = max_length snake_case : List[str] = num_mel_bins
134
1
'''simple docstring''' import warnings from .generation import TFGenerationMixin class __SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): # warning at import time warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , _lowerCAmelCase , )
270
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : Optional[int] = { """configuration_deberta""": ["""DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """DebertaConfig""", """DebertaOnnxConfig"""], """tokenization_deberta""": ["""DebertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = ["""DebertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Tuple = [ """DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """DebertaForMaskedLM""", """DebertaForQuestionAnswering""", """DebertaForSequenceClassification""", """DebertaForTokenClassification""", """DebertaModel""", """DebertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFDebertaForMaskedLM""", """TFDebertaForQuestionAnswering""", """TFDebertaForSequenceClassification""", """TFDebertaForTokenClassification""", """TFDebertaModel""", """TFDebertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
270
1