code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
from __future__ import annotations def a ( snake_case__: Optional[int] , snake_case__: Optional[int] , snake_case__: Any , snake_case__: Optional[int] ): # noqa: E741 '''simple docstring''' while r - l > 1: lowercase_ = (l + r) // 2 if v[m] >= key: lowercase_ = m else: lowercase_ = m # noqa: E741 return r def a ( snake_case__: list[int] ): '''simple docstring''' if len(snake_case__ ) == 0: return 0 lowercase_ = [0] * len(snake_case__ ) lowercase_ = 1 lowercase_ = v[0] for i in range(1 , len(snake_case__ ) ): if v[i] < tail[0]: lowercase_ = v[i] elif v[i] > tail[length - 1]: lowercase_ = v[i] length += 1 else: lowercase_ = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
97
import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def a ( snake_case__: Any ): '''simple docstring''' lowercase_ = filter(lambda snake_case__ : p.requires_grad , model.parameters() ) lowercase_ = sum([np.prod(p.size() ) for p in model_parameters] ) return params __a = logging.getLogger(__name__) def a ( snake_case__: int , snake_case__: Any ): '''simple docstring''' if metric == "rouge2": lowercase_ = '''{val_avg_rouge2:.4f}-{step_count}''' elif metric == "bleu": lowercase_ = '''{val_avg_bleu:.4f}-{step_count}''' elif metric == "em": lowercase_ = '''{val_avg_em:.4f}-{step_count}''' elif metric == "loss": lowercase_ = '''{val_avg_loss:.4f}-{step_count}''' else: raise NotImplementedError( F'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ''' function.''' ) lowercase_ = ModelCheckpoint( dirpath=snake_case__ , filename=snake_case__ , monitor=F'''val_{metric}''' , mode='''max''' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def a ( snake_case__: str , snake_case__: List[str] ): '''simple docstring''' return EarlyStopping( monitor=F'''val_{metric}''' , mode='''min''' if '''loss''' in metric else '''max''' , patience=snake_case__ , verbose=snake_case__ , ) class lowercase__( pl.Callback ): """simple docstring""" def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: lowercase_ = {f'''lr_group_{i}''': param['''lr'''] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(SCREAMING_SNAKE_CASE_ ) @rank_zero_only def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : pl.Trainer , SCREAMING_SNAKE_CASE_ : pl.LightningModule , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple=True ) -> None: logger.info(f'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) lowercase_ = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['''log''', '''progress_bar''', '''preds''']} ) # Log results lowercase_ = Path(pl_module.hparams.output_dir ) if type_path == "test": lowercase_ = od / '''test_results.txt''' lowercase_ = od / '''test_generations.txt''' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. lowercase_ = od / f'''{type_path}_results/{trainer.global_step:05d}.txt''' lowercase_ = od / f'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) generations_file.parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , '''a+''' ) as writer: for key in sorted(SCREAMING_SNAKE_CASE_ ): if key in ["log", "progress_bar", "preds"]: continue lowercase_ = metrics[key] if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): lowercase_ = val.item() lowercase_ = f'''{key}: {val:.6f}\n''' writer.write(SCREAMING_SNAKE_CASE_ ) if not save_generations: return if "preds" in metrics: lowercase_ = '''\n'''.join(metrics['''preds'''] ) generations_file.open('''w+''' ).write(SCREAMING_SNAKE_CASE_ ) @rank_zero_only def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]: try: lowercase_ = pl_module.model.model.num_parameters() except AttributeError: lowercase_ = pl_module.model.num_parameters() lowercase_ = count_trainable_parameters(SCREAMING_SNAKE_CASE_ ) # mp stands for million parameters trainer.logger.log_metrics({'''n_params''': npars, '''mp''': npars / 1e6, '''grad_mp''': n_trainable_pars / 1e6} ) @rank_zero_only def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : pl.Trainer , SCREAMING_SNAKE_CASE_ : pl.LightningModule ) -> Any: save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , '''test''' ) @rank_zero_only def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : pl.Trainer , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
97
1
'''simple docstring''' def A__ ( __lowerCAmelCase : int ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
720
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = BlipImageProcessor() lowerCamelCase__ = BertTokenizer.from_pretrained("""hf-internal-testing/tiny-random-BertModel""" ) lowerCamelCase__ = BlipProcessor(_lowerCAmelCase ,_lowerCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).tokenizer def UpperCamelCase_ ( self ,**_lowerCAmelCase ): return AutoProcessor.from_pretrained(self.tmpdirname ,**_lowerCAmelCase ).image_processor def UpperCamelCase_ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase_ ( self ): lowerCamelCase__ = [np.random.randint(2_55 ,size=(3, 30, 4_00) ,dtype=np.uinta )] lowerCamelCase__ = [Image.fromarray(np.moveaxis(_lowerCAmelCase ,0 ,-1 ) ) for x in image_inputs] return image_inputs def UpperCamelCase_ ( self ): lowerCamelCase__ = BlipProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase__ = self.get_tokenizer(bos_token="""(BOS)""" ,eos_token="""(EOS)""" ) lowerCamelCase__ = self.get_image_processor(do_normalize=_lowerCAmelCase ,padding_value=1.0 ) lowerCamelCase__ = BlipProcessor.from_pretrained( self.tmpdirname ,bos_token="""(BOS)""" ,eos_token="""(EOS)""" ,do_normalize=_lowerCAmelCase ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,_lowerCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = image_processor(_lowerCAmelCase ,return_tensors="""np""" ) lowerCamelCase__ = processor(images=_lowerCAmelCase ,return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = processor(text=_lowerCAmelCase ) lowerCamelCase__ = tokenizer(_lowerCAmelCase ,return_token_type_ids=_lowerCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] ) # test if it raises when no input is passed with pytest.raises(_lowerCAmelCase ): processor() def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase__ = processor.batch_decode(_lowerCAmelCase ) lowerCamelCase__ = tokenizer.batch_decode(_lowerCAmelCase ) self.assertListEqual(_lowerCAmelCase ,_lowerCAmelCase ) def UpperCamelCase_ ( self ): lowerCamelCase__ = self.get_image_processor() lowerCamelCase__ = self.get_tokenizer() lowerCamelCase__ = BlipProcessor(tokenizer=_lowerCAmelCase ,image_processor=_lowerCAmelCase ) lowerCamelCase__ = """lower newer""" lowerCamelCase__ = self.prepare_image_inputs() lowerCamelCase__ = processor(text=_lowerCAmelCase ,images=_lowerCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,["""pixel_values""", """input_ids""", """attention_mask"""] )
9
0
import argparse import collections import numpy as np import torch from flax import traverse_util from tax import checkpoints from transformers import MTaConfig, UMTaEncoderModel, UMTaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _snake_case ( lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : int ): """simple docstring""" return params[f'{prefix}/{prefix}/relpos_bias/rel_embedding'][:, i, :] def _snake_case ( lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[int]="attention" ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/key/kernel'][:, i, :, :] ) SCREAMING_SNAKE_CASE_ : str = k_tmp.reshape(k_tmp.shape[0] , k_tmp.shape[1] * k_tmp.shape[2] ) SCREAMING_SNAKE_CASE_ : int = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/out/kernel'][:, i, :, :] ) SCREAMING_SNAKE_CASE_ : List[Any] = o_tmp.reshape(o_tmp.shape[0] * o_tmp.shape[1] , o_tmp.shape[2] ) SCREAMING_SNAKE_CASE_ : int = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/query/kernel'][:, i, :, :] ) SCREAMING_SNAKE_CASE_ : Tuple = q_tmp.reshape(q_tmp.shape[0] , q_tmp.shape[1] * q_tmp.shape[2] ) SCREAMING_SNAKE_CASE_ : int = np.ascontiguousarray(params[f'{prefix}/{prefix}/{layer_name}/value/kernel'][:, i, :, :] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = v_tmp.reshape(v_tmp.shape[0] , v_tmp.shape[1] * v_tmp.shape[2] ) return k, o, q, v def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : List[str] , lowerCAmelCase : Dict=False ): """simple docstring""" if split_mlp_wi: SCREAMING_SNAKE_CASE_ : Dict = params[f'{prefix}/{prefix}/mlp/wi_0/kernel'][:, i, :] SCREAMING_SNAKE_CASE_ : Optional[Any] = params[f'{prefix}/{prefix}/mlp/wi_1/kernel'][:, i, :] SCREAMING_SNAKE_CASE_ : str = (wi_a, wi_a) else: SCREAMING_SNAKE_CASE_ : Tuple = params[f'{prefix}/{prefix}/mlp/wi/kernel'][:, i, :] SCREAMING_SNAKE_CASE_ : str = params[f'{prefix}/{prefix}/mlp/wo/kernel'][:, i, :] return wi, wo def _snake_case ( lowerCAmelCase : Any , lowerCAmelCase : str , lowerCAmelCase : int , lowerCAmelCase : Any ): """simple docstring""" return params[f'{prefix}/{prefix}/{layer_name}/scale'][:, i] def _snake_case ( lowerCAmelCase : dict , *, lowerCAmelCase : int , lowerCAmelCase : bool , lowerCAmelCase : bool = False ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = traverse_util.flatten_dict(variables["target"] ) SCREAMING_SNAKE_CASE_ : Optional[Any] = {"/".join(lowerCAmelCase ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi SCREAMING_SNAKE_CASE_ : Dict = "encoder/encoder/mlp/wi_0/kernel" in old print("Split MLP:" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = collections.OrderedDict() # Shared embeddings. SCREAMING_SNAKE_CASE_ : List[Any] = old["token_embedder/embedding"] # Encoder. for i in range(lowerCAmelCase ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE_ : Optional[Any] = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , "encoder" , "pre_attention_layer_norm" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , "encoder" , "attention" ) SCREAMING_SNAKE_CASE_ : str = layer_norm SCREAMING_SNAKE_CASE_ : Union[str, Any] = k.T SCREAMING_SNAKE_CASE_ : Any = o.T SCREAMING_SNAKE_CASE_ : Optional[int] = q.T SCREAMING_SNAKE_CASE_ : Optional[int] = v.T # Block i, layer 1 (MLP). SCREAMING_SNAKE_CASE_ : List[Any] = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , "encoder" , "pre_mlp_layer_norm" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = tax_mlp_lookup(lowerCAmelCase , lowerCAmelCase , "encoder" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE_ : Union[str, Any] = wi[0].T SCREAMING_SNAKE_CASE_ : str = wi[1].T else: SCREAMING_SNAKE_CASE_ : Optional[Any] = wi.T SCREAMING_SNAKE_CASE_ : Any = wo.T if scalable_attention: # convert the rel_embedding of each layer SCREAMING_SNAKE_CASE_ : Optional[int] = tax_relpos_bias_lookup( lowerCAmelCase , lowerCAmelCase , "encoder" ).T SCREAMING_SNAKE_CASE_ : str = old["encoder/encoder_norm/scale"] if not scalable_attention: SCREAMING_SNAKE_CASE_ : List[Any] = tax_relpos_bias_lookup( lowerCAmelCase , 0 , "encoder" ).T SCREAMING_SNAKE_CASE_ : str = tax_relpos_bias_lookup( lowerCAmelCase , 0 , "decoder" ).T if not is_encoder_only: # Decoder. for i in range(lowerCAmelCase ): # Block i, layer 0 (Self Attention). SCREAMING_SNAKE_CASE_ : str = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , "decoder" , "pre_self_attention_layer_norm" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , "decoder" , "self_attention" ) SCREAMING_SNAKE_CASE_ : Any = layer_norm SCREAMING_SNAKE_CASE_ : str = k.T SCREAMING_SNAKE_CASE_ : List[str] = o.T SCREAMING_SNAKE_CASE_ : Union[str, Any] = q.T SCREAMING_SNAKE_CASE_ : Any = v.T # Block i, layer 1 (Cross Attention). SCREAMING_SNAKE_CASE_ : Tuple = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , "decoder" , "pre_cross_attention_layer_norm" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = tax_attention_lookup(lowerCAmelCase , lowerCAmelCase , "decoder" , "encoder_decoder_attention" ) SCREAMING_SNAKE_CASE_ : List[Any] = layer_norm SCREAMING_SNAKE_CASE_ : int = k.T SCREAMING_SNAKE_CASE_ : Optional[Any] = o.T SCREAMING_SNAKE_CASE_ : str = q.T SCREAMING_SNAKE_CASE_ : Optional[Any] = v.T # Block i, layer 2 (MLP). SCREAMING_SNAKE_CASE_ : str = tax_layer_norm_lookup(lowerCAmelCase , lowerCAmelCase , "decoder" , "pre_mlp_layer_norm" ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = tax_mlp_lookup(lowerCAmelCase , lowerCAmelCase , "decoder" , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = layer_norm if split_mlp_wi: SCREAMING_SNAKE_CASE_ : Union[str, Any] = wi[0].T SCREAMING_SNAKE_CASE_ : List[str] = wi[1].T else: SCREAMING_SNAKE_CASE_ : Any = wi.T SCREAMING_SNAKE_CASE_ : int = wo.T if scalable_attention: # convert the rel_embedding of each layer SCREAMING_SNAKE_CASE_ : Optional[Any] = tax_relpos_bias_lookup(lowerCAmelCase , lowerCAmelCase , "decoder" ).T SCREAMING_SNAKE_CASE_ : List[str] = old["decoder/decoder_norm/scale"] # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: SCREAMING_SNAKE_CASE_ : Union[str, Any] = old["decoder/logits_dense/kernel"].T return new def _snake_case ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : bool ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE_ : Optional[int] = state_dict["shared.weight"] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: SCREAMING_SNAKE_CASE_ : Union[str, Any] = state_dict["shared.weight"] if "lm_head.weight" not in state_dict: # For old 1.0 models. print("Using shared word embeddings as lm_head." ) SCREAMING_SNAKE_CASE_ : str = state_dict["shared.weight"] return state_dict def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = checkpoints.load_tax_checkpoint(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = convert_tax_to_pytorch( lowerCAmelCase , num_layers=config.num_layers , is_encoder_only=lowerCAmelCase , scalable_attention=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = make_state_dict(lowerCAmelCase , lowerCAmelCase ) model.load_state_dict(lowerCAmelCase , strict=lowerCAmelCase ) def _snake_case ( lowerCAmelCase : Any , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = MTaConfig.from_json_file(lowerCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: SCREAMING_SNAKE_CASE_ : int = UMTaEncoderModel(lowerCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = UMTaForConditionalGeneration(lowerCAmelCase ) # Load weights from tf checkpoint load_tax_weights_in_ta(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(lowerCAmelCase ) # Verify that we can load the checkpoint. model.from_pretrained(lowerCAmelCase ) print("Done" ) if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser(description='''Converts a native T5X checkpoint into a PyTorch checkpoint.''') # Required parameters parser.add_argument( '''--t5x_checkpoint_path''', default=None, type=str, required=True, help='''Path to the T5X checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_encoder_only''', action='''store_true''', help='''Check if the model is encoder-decoder model''', default=False ) parser.add_argument( '''--scalable_attention''', action='''store_true''', help='''Whether the model uses scaled attention (umt5 model)''', default=False, ) __lowerCamelCase : Tuple = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only, args.scalable_attention, )
216
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger __lowerCamelCase : str = get_logger(__name__) class a__ ( enum.Enum ): A = 'all_checks' A = 'basic_checks' A = 'no_checks' class a__ ( A__ ): pass class a__ ( A__ ): pass class a__ ( A__ ): pass class a__ ( A__ ): pass def _snake_case ( lowerCAmelCase : Optional[dict] , lowerCAmelCase : dict , lowerCAmelCase : List[Any]=None ): """simple docstring""" if expected_checksums is None: logger.info("Unable to verify checksums." ) return if len(set(lowerCAmelCase ) - set(lowerCAmelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(lowerCAmelCase ) - set(lowerCAmelCase ) ) ) if len(set(lowerCAmelCase ) - set(lowerCAmelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(lowerCAmelCase ) - set(lowerCAmelCase ) ) ) SCREAMING_SNAKE_CASE_ : int = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] SCREAMING_SNAKE_CASE_ : List[str] = " for " + verification_name if verification_name is not None else "" if len(lowerCAmelCase ) > 0: raise NonMatchingChecksumError( f'Checksums didn\'t match{for_verification_name}:\n' f'{bad_urls}\n' "Set `verification_mode='no_checks'` to skip checksums verification and ignore this error" ) logger.info("All the checksums matched successfully" + for_verification_name ) class a__ ( A__ ): pass class a__ ( A__ ): pass class a__ ( A__ ): pass class a__ ( A__ ): pass def _snake_case ( lowerCAmelCase : Optional[dict] , lowerCAmelCase : dict ): """simple docstring""" if expected_splits is None: logger.info("Unable to verify splits sizes." ) return if len(set(lowerCAmelCase ) - set(lowerCAmelCase ) ) > 0: raise ExpectedMoreSplits(str(set(lowerCAmelCase ) - set(lowerCAmelCase ) ) ) if len(set(lowerCAmelCase ) - set(lowerCAmelCase ) ) > 0: raise UnexpectedSplits(str(set(lowerCAmelCase ) - set(lowerCAmelCase ) ) ) SCREAMING_SNAKE_CASE_ : Tuple = [ {"expected": expected_splits[name], "recorded": recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(lowerCAmelCase ) > 0: raise NonMatchingSplitsSizesError(str(lowerCAmelCase ) ) logger.info("All the splits matched successfully." ) def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : bool = True ): """simple docstring""" if record_checksum: SCREAMING_SNAKE_CASE_ : int = shaaaa() with open(lowerCAmelCase , "rb" ) as f: for chunk in iter(lambda: f.read(1 << 2_0 ) , B"" ): m.update(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = m.hexdigest() else: SCREAMING_SNAKE_CASE_ : Optional[Any] = None return {"num_bytes": os.path.getsize(lowerCAmelCase ), "checksum": checksum} def _snake_case ( lowerCAmelCase : str ): """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
216
1
def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] ): '''simple docstring''' lowerCamelCase_ = int(lowercase ) if decimal in (0, 1): # Exit cases for the recursion return str(lowercase ) lowerCamelCase_ , lowerCamelCase_ = divmod(lowercase , 2 ) return binary_recursive(lowercase ) + str(lowercase ) def _SCREAMING_SNAKE_CASE ( lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = str(lowercase ).strip() if not number: raise ValueError('No input value was provided' ) lowerCamelCase_ = '-' if number.startswith('-' ) else '' lowerCamelCase_ = number.lstrip('-' ) if not number.isnumeric(): raise ValueError('Input value is not an integer' ) return f"""{negative}0b{binary_recursive(int(lowercase ) )}""" if __name__ == "__main__": from doctest import testmod testmod()
703
lowerCamelCase : Dict = "Alexander Joslin" import operator as op from .stack import Stack def _SCREAMING_SNAKE_CASE ( lowercase : str ): '''simple docstring''' lowerCamelCase_ = {'*': op.mul, '/': op.truediv, '+': op.add, '-': op.sub} lowerCamelCase_ = Stack() lowerCamelCase_ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 lowerCamelCase_ = operator_stack.peek() operator_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operand_stack.peek() operand_stack.pop() lowerCamelCase_ = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": lowerCamelCase : Any = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
651
0
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE__ : str = { "configuration_xmod": [ "XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP", "XmodConfig", "XmodOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ : Any = [ "XMOD_PRETRAINED_MODEL_ARCHIVE_LIST", "XmodForCausalLM", "XmodForMaskedLM", "XmodForMultipleChoice", "XmodForQuestionAnswering", "XmodForSequenceClassification", "XmodForTokenClassification", "XmodModel", "XmodPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
298
import argparse import copy def __magic_name__ ( __lowerCAmelCase : List[str] ) -> Optional[Any]: __lowerCamelCase = {} with open(__lowerCAmelCase ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __lowerCamelCase = [] _list.append([line.split()[1], line.split()[2]] ) __lowerCamelCase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __lowerCamelCase = [] _list.append([line.split()[0], line.split()[2]] ) __lowerCamelCase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def __magic_name__ ( __lowerCAmelCase : int , __lowerCAmelCase : int ) -> str: with open(__lowerCAmelCase ) as f: __lowerCamelCase = f.read(1 ) __lowerCamelCase = start_node __lowerCamelCase = [] __lowerCamelCase = start_node __lowerCamelCase = 0 while visiting not in first_solution: __lowerCamelCase = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(__lowerCAmelCase ) and k[0] not in first_solution: __lowerCamelCase = k[1] __lowerCamelCase = k[0] first_solution.append(__lowerCAmelCase ) __lowerCamelCase = distance_of_first_solution + int(__lowerCAmelCase ) __lowerCamelCase = best_node first_solution.append(__lowerCAmelCase ) __lowerCamelCase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __lowerCamelCase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple ) -> Dict: __lowerCamelCase = [] for n in solution[1:-1]: __lowerCamelCase = solution.index(__lowerCAmelCase ) for kn in solution[1:-1]: __lowerCamelCase = solution.index(__lowerCAmelCase ) if n == kn: continue __lowerCamelCase = copy.deepcopy(__lowerCAmelCase ) __lowerCamelCase = kn __lowerCamelCase = n __lowerCamelCase = 0 for k in _tmp[:-1]: __lowerCamelCase = _tmp[_tmp.index(__lowerCAmelCase ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __lowerCamelCase = distance + int(i[1] ) _tmp.append(__lowerCAmelCase ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __lowerCamelCase = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda __lowerCAmelCase : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def __magic_name__ ( __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] ) -> int: __lowerCamelCase = 1 __lowerCamelCase = first_solution __lowerCamelCase = [] __lowerCamelCase = distance_of_first_solution __lowerCamelCase = solution while count <= iters: __lowerCamelCase = find_neighborhood(__lowerCAmelCase , __lowerCAmelCase ) __lowerCamelCase = 0 __lowerCamelCase = neighborhood[index_of_best_solution] __lowerCamelCase = len(__lowerCAmelCase ) - 1 __lowerCamelCase = False while not found: __lowerCamelCase = 0 while i < len(__lowerCAmelCase ): if best_solution[i] != solution[i]: __lowerCamelCase = best_solution[i] __lowerCamelCase = solution[i] break __lowerCamelCase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __lowerCamelCase = True __lowerCamelCase = best_solution[:-1] __lowerCamelCase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __lowerCamelCase = cost __lowerCamelCase = solution else: __lowerCamelCase = index_of_best_solution + 1 __lowerCamelCase = neighborhood[index_of_best_solution] if len(__lowerCAmelCase ) >= size: tabu_list.pop(0 ) __lowerCamelCase = count + 1 return best_solution_ever, best_cost def __magic_name__ ( __lowerCAmelCase : Union[str, Any]=None ) -> Any: __lowerCamelCase = generate_neighbours(args.File ) __lowerCamelCase , __lowerCamelCase = generate_first_solution( args.File , __lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase = tabu_search( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , args.Iterations , args.Size , ) print(f'''Best solution: {best_sol}, with total distance: {best_cost}.''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Union[str, Any] = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
298
1
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @property def lowerCAmelCase__ ( self : Any ) ->Tuple: torch.manual_seed(0 ) UpperCAmelCase_ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def lowerCAmelCase__ ( self : List[Any] ) ->Optional[int]: UpperCAmelCase_ = self.dummy_uncond_unet UpperCAmelCase_ = ScoreSdeVeScheduler() UpperCAmelCase_ = ScoreSdeVePipeline(unet=A_ , scheduler=A_ ) sde_ve.to(A_ ) sde_ve.set_progress_bar_config(disable=A_ ) UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=A_ ).images UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=A_ , return_dict=A_ )[ 0 ] UpperCAmelCase_ = image[0, -3:, -3:, -1] UpperCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) UpperCAmelCase_ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase__ ( self : Union[str, Any] ) ->Dict: UpperCAmelCase_ = '''google/ncsnpp-church-256''' UpperCAmelCase_ = UNetaDModel.from_pretrained(A_ ) UpperCAmelCase_ = ScoreSdeVeScheduler.from_pretrained(A_ ) UpperCAmelCase_ = ScoreSdeVePipeline(unet=A_ , scheduler=A_ ) sde_ve.to(A_ ) sde_ve.set_progress_bar_config(disable=A_ ) UpperCAmelCase_ = torch.manual_seed(0 ) UpperCAmelCase_ = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=A_ ).images UpperCAmelCase_ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) UpperCAmelCase_ = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
704
'''simple docstring''' import comet # From: unbabel-comet import torch import datasets lowercase__ : str = datasets.logging.get_logger(__name__) lowercase__ : Dict = "\\n@inproceedings{rei-EtAl:2020:WMT,\n author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon},\n title = {Unbabel's Participation in the WMT20 Metrics Shared Task},\n booktitle = {Proceedings of the Fifth Conference on Machine Translation},\n month = {November},\n year = {2020},\n address = {Online},\n publisher = {Association for Computational Linguistics},\n pages = {909--918},\n}\n@inproceedings{rei-etal-2020-comet,\n title = \"{COMET}: A Neural Framework for {MT} Evaluation\",\n author = \"Rei, Ricardo and\n Stewart, Craig and\n Farinha, Ana C and\n Lavie, Alon\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n address = \"Online\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\",\n pages = \"2685--2702\",\n}\n" lowercase__ : str = "\\nCrosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM).\nWith the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition.\n\nSee the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information.\n" lowercase__ : str = "\nCOMET score.\n\nArgs:\n\n`sources` (list of str): Source sentences\n`predictions` (list of str): candidate translations\n`references` (list of str): reference translations\n`cuda` (bool): If set to True, runs COMET using GPU\n`show_progress` (bool): Shows progress\n`model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None.\n\nReturns:\n `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`.\n `scores`: List of scores.\n\nExamples:\n\n >>> comet_metric = datasets.load_metric('comet')\n >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use\n >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"]\n >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"]\n >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"]\n >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source)\n >>> print([round(v, 2) for v in results[\"scores\"]])\n [0.19, 0.92]\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase__ ( self : List[Any] ) ->Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://unbabel.github.io/COMET/html/index.html''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''sources''': datasets.Value('''string''' , id='''sequence''' ), '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/Unbabel/COMET'''] , reference_urls=[ '''https://github.com/Unbabel/COMET''', '''https://www.aclweb.org/anthology/2020.emnlp-main.213/''', '''http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6''', ] , ) def lowerCAmelCase__ ( self : int , UpperCAmelCase__ : Union[str, Any] ) ->Any: if self.config_name == "default": UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model('''wmt20-comet-da''' ) ) else: UpperCAmelCase_ = comet.load_from_checkpoint(comet.download_model(self.config_name ) ) def lowerCAmelCase__ ( self : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : int=False ) ->Optional[Any]: if gpus is None: UpperCAmelCase_ = 1 if torch.cuda.is_available() else 0 UpperCAmelCase_ = {'''src''': sources, '''mt''': predictions, '''ref''': references} UpperCAmelCase_ = [dict(zip(UpperCAmelCase__ , UpperCAmelCase__ ) ) for t in zip(*data.values() )] UpperCAmelCase_ , UpperCAmelCase_ = self.scorer.predict(UpperCAmelCase__ , gpus=UpperCAmelCase__ , progress_bar=UpperCAmelCase__ ) return {"mean_score": mean_score, "scores": scores}
43
0
_a : List[Any] = [ (1_000, 'M'), (900, 'CM'), (500, 'D'), (400, 'CD'), (100, 'C'), (90, 'XC'), (50, 'L'), (40, 'XL'), (10, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def a_ ( __magic_name__ ) -> int: """simple docstring""" snake_case : Tuple = {'''I''': 1, '''V''': 5, '''X''': 10, '''L''': 50, '''C''': 100, '''D''': 500, '''M''': 1_000} snake_case : str = 0 snake_case : Any = 0 while place < len(__magic_name__ ): if (place + 1 < len(__magic_name__ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def a_ ( __magic_name__ ) -> str: """simple docstring""" snake_case : List[Any] = [] for arabic, roman in ROMAN: ((snake_case) , (snake_case)) : Union[str, Any] = divmod(__magic_name__ , __magic_name__ ) result.append(roman * factor ) if number == 0: break return "".join(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
598
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('TEST_SAGEMAKER' , 'False' ) ) is not True , reason='Skipping test because should only be run when releasing minor transformers version' , ) @pytest.mark.usefixtures('sm_env' ) @parameterized_class( [ { 'framework': 'pytorch', 'script': 'run_glue.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 650, 'eval_accuracy': 0.6, 'eval_loss': 0.9}, }, { 'framework': 'tensorflow', 'script': 'run_tf.py', 'model_name_or_path': 'distilbert-base-cased', 'instance_type': 'ml.g4dn.xlarge', 'results': {'train_runtime': 600, 'eval_accuracy': 0.3, 'eval_loss': 0.9}, }, ] ) class a_ ( unittest.TestCase ): def lowerCAmelCase( self : str ): """simple docstring""" if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='''utf-8''' , check=UpperCAmelCase__ , ) assert hasattr(self , '''env''' ) def lowerCAmelCase( self : str , UpperCAmelCase__ : str=1 ): """simple docstring""" # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-single" , instance_count=UpperCAmelCase__ , instance_type=self.instance_type , debugger_hook_config=UpperCAmelCase__ , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def lowerCAmelCase( self : int , UpperCAmelCase__ : Optional[Any] ): """simple docstring""" TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) def lowerCAmelCase( self : Any ): """simple docstring""" # create estimator snake_case : List[Any] = self.create_estimator() # run training estimator.fit() # result dataframe snake_case : str = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis snake_case : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) snake_case : List[str] = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping snake_case : List[Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , UpperCAmelCase__ )
598
1
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : Union[str, Any] ): __lowercase : Optional[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase : Any = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_snake_case ) __lowercase : List[str] = -1 __lowercase : Optional[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_snake_case ) __lowercase : Tuple = model.generate(_snake_case , max_new_tokens=10 , do_sample=_snake_case ) __lowercase : Optional[int] = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: __lowercase : Optional[Any] = TextStreamer(_snake_case ) model.generate(_snake_case , max_new_tokens=10 , do_sample=_snake_case , streamer=_snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowercase : List[Any] = cs.out[:-1] self.assertEqual(_snake_case , _snake_case ) def snake_case_ ( self : Optional[int] ): __lowercase : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase : Optional[Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_snake_case ) __lowercase : List[str] = -1 __lowercase : Tuple = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_snake_case ) __lowercase : List[Any] = model.generate(_snake_case , max_new_tokens=10 , do_sample=_snake_case ) __lowercase : Optional[Any] = tokenizer.decode(greedy_ids[0] ) __lowercase : int = TextIteratorStreamer(_snake_case ) __lowercase : int = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __lowercase : Optional[Any] = Thread(target=model.generate , kwargs=_snake_case ) thread.start() __lowercase : Optional[int] = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(_snake_case , _snake_case ) def snake_case_ ( self : List[str] ): __lowercase : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase : int = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_snake_case ) __lowercase : List[Any] = -1 __lowercase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_snake_case ) __lowercase : str = model.generate(_snake_case , max_new_tokens=10 , do_sample=_snake_case ) __lowercase : List[Any] = greedy_ids[:, input_ids.shape[1] :] __lowercase : Optional[Any] = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: __lowercase : int = TextStreamer(_snake_case , skip_prompt=_snake_case ) model.generate(_snake_case , max_new_tokens=10 , do_sample=_snake_case , streamer=_snake_case ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer __lowercase : int = cs.out[:-1] self.assertEqual(_snake_case , _snake_case ) def snake_case_ ( self : Any ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them __lowercase : Dict = AutoTokenizer.from_pretrained('''distilgpt2''' ) __lowercase : List[str] = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(_snake_case ) __lowercase : str = -1 __lowercase : Dict = torch.ones((1, 5) , device=_snake_case ).long() * model.config.bos_token_id with CaptureStdout() as cs: __lowercase : Optional[Any] = TextStreamer(_snake_case , skip_special_tokens=_snake_case ) model.generate(_snake_case , max_new_tokens=1 , do_sample=_snake_case , streamer=_snake_case ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token __lowercase : Dict = cs.out[:-1] # Remove the final "\n" __lowercase : Any = tokenizer(_snake_case , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def snake_case_ ( self : Any ): __lowercase : List[str] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) __lowercase : Union[str, Any] = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(_snake_case ) __lowercase : Dict = -1 __lowercase : List[Any] = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(_snake_case ) __lowercase : Tuple = TextIteratorStreamer(_snake_case , timeout=0.0_01 ) __lowercase : Tuple = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} __lowercase : Optional[int] = Thread(target=model.generate , kwargs=_snake_case ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(_snake_case ): __lowercase : List[Any] = '''''' for new_text in streamer: streamer_text += new_text
284
import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase : """simple docstring""" def __init__( self : Dict , _snake_case : Optional[int] , _snake_case : List[Any]=13 , _snake_case : int=32 , _snake_case : int=3 , _snake_case : Any=4 , _snake_case : Optional[int]=[10, 20, 30, 40] , _snake_case : Optional[Any]=[2, 2, 3, 2] , _snake_case : Dict=True , _snake_case : List[Any]=True , _snake_case : int=37 , _snake_case : Union[str, Any]="gelu" , _snake_case : Tuple=10 , _snake_case : Tuple=0.02 , _snake_case : List[str]=["stage2", "stage3", "stage4"] , _snake_case : Tuple=3 , _snake_case : int=None , ): __lowercase : List[Any] = parent __lowercase : Union[str, Any] = batch_size __lowercase : Optional[Any] = image_size __lowercase : Optional[Any] = num_channels __lowercase : List[str] = num_stages __lowercase : Union[str, Any] = hidden_sizes __lowercase : Optional[Any] = depths __lowercase : List[Any] = is_training __lowercase : List[str] = use_labels __lowercase : Tuple = intermediate_size __lowercase : Union[str, Any] = hidden_act __lowercase : Dict = type_sequence_label_size __lowercase : Dict = initializer_range __lowercase : str = out_features __lowercase : Tuple = num_labels __lowercase : Tuple = scope __lowercase : Optional[Any] = num_stages def snake_case_ ( self : Optional[int] ): __lowercase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : Dict = None if self.use_labels: __lowercase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase : Union[str, Any] = self.get_config() return config, pixel_values, labels def snake_case_ ( self : List[str] ): return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def snake_case_ ( self : int ): return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=_snake_case , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=_snake_case , loss_ignore_index=255 , num_labels=self.num_labels , ) def snake_case_ ( self : Tuple , _snake_case : Optional[Any] , _snake_case : List[Any] , _snake_case : List[str] ): __lowercase : Optional[int] = UperNetForSemanticSegmentation(config=_snake_case ) model.to(_snake_case ) model.eval() __lowercase : Optional[Any] = model(_snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def snake_case_ ( self : Optional[int] ): __lowercase : Optional[int] = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) : Optional[int] = config_and_inputs __lowercase : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : List[str] = (UperNetForSemanticSegmentation,) if is_torch_available() else () A__ : Union[str, Any] = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} A__ : Union[str, Any] = False A__ : Optional[Any] = False A__ : int = False A__ : Optional[int] = False A__ : Optional[Any] = False A__ : List[str] = False def snake_case_ ( self : Optional[Any] ): __lowercase : str = UperNetModelTester(self ) __lowercase : List[Any] = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def snake_case_ ( self : str ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case_ ( self : str ): return def snake_case_ ( self : str ): __lowercase , __lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[Any] = model_class(_snake_case ) __lowercase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Dict = [*signature.parameters.keys()] __lowercase : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _snake_case ) def snake_case_ ( self : List[str] ): __lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_snake_case ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def snake_case_ ( self : List[Any] ): pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def snake_case_ ( self : List[Any] ): pass @unittest.skip(reason='''UperNet does not have a base model''' ) def snake_case_ ( self : str ): pass @unittest.skip(reason='''UperNet does not have a base model''' ) def snake_case_ ( self : int ): pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def snake_case_ ( self : int ): pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case_ ( self : List[str] ): pass def snake_case_ ( self : List[Any] ): def check_hidden_states_output(_snake_case : int , _snake_case : Optional[int] , _snake_case : Dict ): __lowercase : Dict = model_class(_snake_case ) model.to(_snake_case ) model.eval() with torch.no_grad(): __lowercase : Optional[int] = model(**self._prepare_for_class(_snake_case , _snake_case ) ) __lowercase : Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase : Tuple = self.model_tester.num_stages self.assertEqual(len(_snake_case ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowercase , __lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : int = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Any = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def snake_case_ ( self : Tuple ): __lowercase , __lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() __lowercase : Dict = _config_zero_init(_snake_case ) __lowercase : Dict = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: __lowercase : Union[str, Any] = model_class(config=_snake_case ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def snake_case_ ( self : str ): pass @slow def snake_case_ ( self : Dict ): for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[Any] = UperNetForSemanticSegmentation.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def UpperCAmelCase_ ( ) -> Optional[int]: __lowercase : Optional[int] = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) __lowercase : int = Image.open(__lowerCAmelCase ).convert('''RGB''' ) return image @require_torch @require_vision @slow class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self : Optional[Any] ): __lowercase : List[Any] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) __lowercase : Optional[Any] = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(_snake_case ) __lowercase : Tuple = prepare_img() __lowercase : Optional[int] = processor(images=_snake_case , return_tensors='''pt''' ).to(_snake_case ) with torch.no_grad(): __lowercase : Dict = model(**_snake_case ) __lowercase : Optional[Any] = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _snake_case ) __lowercase : List[Any] = torch.tensor( [[-7.59_58, -7.59_58, -7.43_02], [-7.59_58, -7.59_58, -7.43_02], [-7.47_97, -7.47_97, -7.30_68]] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _snake_case , atol=1E-4 ) ) def snake_case_ ( self : Optional[int] ): __lowercase : List[str] = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) __lowercase : Dict = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(_snake_case ) __lowercase : Any = prepare_img() __lowercase : Union[str, Any] = processor(images=_snake_case , return_tensors='''pt''' ).to(_snake_case ) with torch.no_grad(): __lowercase : Tuple = model(**_snake_case ) __lowercase : Tuple = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , _snake_case ) __lowercase : List[Any] = torch.tensor( [[-8.81_10, -8.81_10, -8.65_21], [-8.81_10, -8.81_10, -8.65_21], [-8.77_46, -8.77_46, -8.61_30]] ).to(_snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , _snake_case , atol=1E-4 ) )
284
1
import copy from ...configuration_utils import PretrainedConfig from ...utils import add_start_docstrings a : List[str] = r"\n [`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and\n can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.\n\n Args:\n title_sep (`str`, *optional*, defaults to `\" / \"`):\n Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].\n doc_sep (`str`, *optional*, defaults to `\" // \"`):\n Separator inserted between the text of the retrieved document and the original input when calling\n [`RagRetriever`].\n n_docs (`int`, *optional*, defaults to 5):\n Number of documents to retrieve.\n max_combined_length (`int`, *optional*, defaults to 300):\n Max length of contextualized input returned by [`~RagRetriever.__call__`].\n retrieval_vector_size (`int`, *optional*, defaults to 768):\n Dimensionality of the document embeddings indexed by [`RagRetriever`].\n retrieval_batch_size (`int`, *optional*, defaults to 8):\n Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated\n [`RagRetriever`].\n dataset (`str`, *optional*, defaults to `\"wiki_dpr\"`):\n A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids\n using `datasets.list_datasets()`).\n dataset_split (`str`, *optional*, defaults to `\"train\"`)\n Which split of the `dataset` to load.\n index_name (`str`, *optional*, defaults to `\"compressed\"`)\n The index name of the index associated with the `dataset`. One can choose between `\"legacy\"`, `\"exact\"` and\n `\"compressed\"`.\n index_path (`str`, *optional*)\n The path to the serialized faiss index on disk.\n passages_path (`str`, *optional*):\n A path to text passages compatible with the faiss index. Required if using\n [`~models.rag.retrieval_rag.LegacyIndex`]\n use_dummy_dataset (`bool`, *optional*, defaults to `False`)\n Whether to load a \"dummy\" variant of the dataset specified by `dataset`.\n label_smoothing (`float`, *optional*, defaults to 0.0):\n Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing\n in the loss calculation. If set to 0, no label smoothing is performed.\n do_marginalize (`bool`, *optional*, defaults to `False`):\n If `True`, the logits are marginalized over all documents by making use of\n `torch.nn.functional.log_softmax`.\n reduce_loss (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.\n do_deduplication (`bool`, *optional*, defaults to `True`):\n Whether or not to deduplicate the generations from different context documents for a given input. Has to be\n set to `False` if used while training with distributed backend.\n exclude_bos_score (`bool`, *optional*, defaults to `False`):\n Whether or not to disregard the BOS token when computing the loss.\n output_retrieved(`bool`, *optional*, defaults to `False`):\n If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and\n `context_attention_mask` are returned. See returned tensors for more detail.\n use_cache (`bool`, *optional*, defaults to `True`):\n Whether or not the model should return the last key/values attentions (not used by all models).\n forced_eos_token_id (`int`, *optional*):\n The id of the token to force as the last generated token when `max_length` is reached. Usually set to\n `eos_token_id`.\n" @add_start_docstrings(lowercase__ ) class a ( lowercase__ ): """simple docstring""" a : Tuple = 'rag' a : Dict = True def __init__( self : List[str] , __lowercase : Union[str, Any]=None , __lowercase : Any=True , __lowercase : str=None , __lowercase : List[Any]=None , __lowercase : Optional[Any]=None , __lowercase : Optional[int]=None , __lowercase : str=None , __lowercase : Optional[Any]=" / " , __lowercase : Union[str, Any]=" // " , __lowercase : Any=5 , __lowercase : str=300 , __lowercase : Any=768 , __lowercase : List[str]=8 , __lowercase : Union[str, Any]="wiki_dpr" , __lowercase : Any="train" , __lowercase : int="compressed" , __lowercase : List[str]=None , __lowercase : Optional[int]=None , __lowercase : Any=False , __lowercase : List[Any]=False , __lowercase : str=0.0 , __lowercase : Optional[Any]=True , __lowercase : int=False , __lowercase : List[Any]=False , __lowercase : Union[str, Any]=False , __lowercase : str=True , __lowercase : List[str]=None , **__lowercase : Optional[Any] , ) -> Dict: super().__init__( bos_token_id=__lowercase , pad_token_id=__lowercase , eos_token_id=__lowercase , decoder_start_token_id=__lowercase , forced_eos_token_id=__lowercase , is_encoder_decoder=__lowercase , prefix=__lowercase , vocab_size=__lowercase , **__lowercase , ) assert ( "question_encoder" in kwargs and "generator" in kwargs ), "Config has to be initialized with question_encoder and generator config" __UpperCAmelCase : Dict = kwargs.pop("""question_encoder""" ) __UpperCAmelCase : List[Any] = question_encoder_config.pop("""model_type""" ) __UpperCAmelCase : int = kwargs.pop("""generator""" ) __UpperCAmelCase : Union[str, Any] = decoder_config.pop("""model_type""" ) from ..auto.configuration_auto import AutoConfig __UpperCAmelCase : Optional[Any] = AutoConfig.for_model(__lowercase , **__lowercase ) __UpperCAmelCase : Tuple = AutoConfig.for_model(__lowercase , **__lowercase ) __UpperCAmelCase : Tuple = reduce_loss __UpperCAmelCase : Union[str, Any] = label_smoothing __UpperCAmelCase : str = exclude_bos_score __UpperCAmelCase : Tuple = do_marginalize __UpperCAmelCase : List[str] = title_sep __UpperCAmelCase : Any = doc_sep __UpperCAmelCase : List[Any] = n_docs __UpperCAmelCase : int = max_combined_length __UpperCAmelCase : Optional[int] = dataset __UpperCAmelCase : List[Any] = dataset_split __UpperCAmelCase : List[str] = index_name __UpperCAmelCase : Optional[int] = retrieval_vector_size __UpperCAmelCase : str = retrieval_batch_size __UpperCAmelCase : Optional[int] = passages_path __UpperCAmelCase : Optional[int] = index_path __UpperCAmelCase : Optional[Any] = use_dummy_dataset __UpperCAmelCase : Optional[Any] = output_retrieved __UpperCAmelCase : Optional[Any] = do_deduplication __UpperCAmelCase : int = use_cache if self.forced_eos_token_id is None: __UpperCAmelCase : Any = getattr(self.generator , """forced_eos_token_id""" , __lowercase ) @classmethod def UpperCAmelCase ( cls : Tuple , __lowercase : PretrainedConfig , __lowercase : PretrainedConfig , **__lowercase : Optional[Any] ) -> PretrainedConfig: return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **__lowercase ) def UpperCAmelCase ( self : int ) -> int: __UpperCAmelCase : Union[str, Any] = copy.deepcopy(self.__dict__ ) __UpperCAmelCase : Optional[Any] = self.question_encoder.to_dict() __UpperCAmelCase : Dict = self.generator.to_dict() __UpperCAmelCase : Optional[int] = self.__class__.model_type return output
63
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename lowercase : Optional[Any] = """http://www.mocksite.com/file1.txt""" lowercase : str = """\"text\": [\"foo\", \"foo\"]""" lowercase : Tuple = """6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8""" class __snake_case : _a : Tuple= 200 _a : int= {"Content-Length": "100"} _a : Tuple= {} def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return [bytes(snake_case ,"""utf-8""" )] def _snake_case( *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: return MockResponse() @pytest.mark.parametrize("""urls_type""" , [str, list, dict] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: import requests monkeypatch.setattr(SCREAMING_SNAKE_CASE__ , """request""" , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = URL if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Union[str, Any] = url elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : str = [url] elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : int = {"""train""": url} lowercase : Union[str, Any] = """dummy""" lowercase : List[Any] = """downloads""" lowercase : Optional[Any] = tmp_path lowercase : Dict = DownloadConfig( cache_dir=os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , use_etag=SCREAMING_SNAKE_CASE__ , ) lowercase : Union[str, Any] = DownloadManager(dataset_name=SCREAMING_SNAKE_CASE__ , download_config=SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = dl_manager.download(SCREAMING_SNAKE_CASE__ ) lowercase : str = urls for downloaded_paths in [downloaded_paths]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : int = [downloaded_paths] lowercase : Any = [urls] elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert "train" in downloaded_paths.keys() lowercase : Tuple = downloaded_paths.values() lowercase : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert downloaded_path == dl_manager.downloaded_paths[input_url] lowercase : Optional[Any] = Path(SCREAMING_SNAKE_CASE__ ) lowercase : str = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() lowercase : Optional[Any] = downloaded_path.read_text() assert content == CONTENT lowercase : Tuple = downloaded_path.with_suffix(""".json""" ) assert metadata_downloaded_path.exists() lowercase : Dict = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("""paths_type""" , [str, list, dict] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Union[str, Any] = str(SCREAMING_SNAKE_CASE__ ) if issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[Any] = filename elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = [filename] elif issubclass(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : List[str] = {"""train""": filename} lowercase : int = """dummy""" lowercase : List[Any] = xz_file.parent lowercase : Union[str, Any] = """extracted""" lowercase : List[str] = DownloadConfig( cache_dir=SCREAMING_SNAKE_CASE__ , use_etag=SCREAMING_SNAKE_CASE__ , ) lowercase : List[Any] = DownloadManager(dataset_name=SCREAMING_SNAKE_CASE__ , download_config=SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = dl_manager.extract(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = paths for extracted_paths in [extracted_paths]: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : int = [extracted_paths] lowercase : Optional[Any] = [paths] elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert "train" in extracted_paths.keys() lowercase : Optional[Any] = extracted_paths.values() lowercase : Optional[int] = paths.values() assert extracted_paths for extracted_path, input_path in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert extracted_path == dl_manager.extracted_paths[input_path] lowercase : List[Any] = Path(SCREAMING_SNAKE_CASE__ ) lowercase : str = extracted_path.parts assert parts[-1] == hash_url_to_filename(SCREAMING_SNAKE_CASE__ , etag=SCREAMING_SNAKE_CASE__ ) assert parts[-2] == extracted_subdir assert extracted_path.exists() lowercase : Optional[int] = extracted_path.read_text() lowercase : str = text_file.read_text() assert extracted_file_content == expected_file_content def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: assert path.endswith(""".jsonl""" ) for num_items, line in enumerate(SCREAMING_SNAKE_CASE__ , start=1 ): lowercase : Optional[Any] = json.loads(line.decode("""utf-8""" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("""archive_jsonl""" , ["""tar_jsonl_path""", """zip_jsonl_path"""] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : str = request.getfixturevalue(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE__ ) , start=1 ): _test_jsonl(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert num_jsonl == 2 @pytest.mark.parametrize("""archive_nested_jsonl""" , ["""tar_nested_jsonl_path""", """zip_nested_jsonl_path"""] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: lowercase : Optional[Any] = request.getfixturevalue(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE__ ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(SCREAMING_SNAKE_CASE__ ) , start=1 ): _test_jsonl(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert num_tar == 1 assert num_jsonl == 2 def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : Dict = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(SCREAMING_SNAKE_CASE__ ) , start=1 ): assert os.path.basename(SCREAMING_SNAKE_CASE__ ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
336
0
'''simple docstring''' import argparse import math import traceback import dateutil.parser as date_parser import requests def __UpperCAmelCase ( A : Optional[Any] ) -> List[str]: UpperCAmelCase_ : Dict = {} UpperCAmelCase_ : List[Any] = job['''started_at'''] UpperCAmelCase_ : List[Any] = job['''completed_at'''] UpperCAmelCase_ : Optional[Any] = date_parser.parse(A ) UpperCAmelCase_ : List[Any] = date_parser.parse(A ) UpperCAmelCase_ : Any = round((end_datetime - start_datetime).total_seconds() / 60.0 ) UpperCAmelCase_ : Any = start UpperCAmelCase_ : Dict = end UpperCAmelCase_ : Tuple = duration_in_min return job_info def __UpperCAmelCase ( A : int , A : int=None ) -> List[str]: UpperCAmelCase_ : Tuple = None if token is not None: UpperCAmelCase_ : Any = {'''Accept''': '''application/vnd.github+json''', '''Authorization''': F"Bearer {token}"} UpperCAmelCase_ : Union[str, Any] = F"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100" UpperCAmelCase_ : Any = requests.get(A , headers=A ).json() UpperCAmelCase_ : Any = {} try: job_time.update({job['''name''']: extract_time_from_single_job(A ) for job in result['''jobs''']} ) UpperCAmelCase_ : Union[str, Any] = math.ceil((result['''total_count'''] - 1_0_0) / 1_0_0 ) for i in range(A ): UpperCAmelCase_ : List[str] = requests.get(url + F"&page={i + 2}" , headers=A ).json() job_time.update({job['''name''']: extract_time_from_single_job(A ) for job in result['''jobs''']} ) return job_time except Exception: print(F"Unknown error, could not fetch links:\n{traceback.format_exc()}" ) return {} if __name__ == "__main__": _UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') _UpperCamelCase : str = parser.parse_args() _UpperCamelCase : str = get_job_time(args.workflow_run_id) _UpperCamelCase : Optional[int] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f'''{k}: {v["duration"]}''')
708
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def __UpperCAmelCase ( A : np.ndarray ) -> np.ndarray: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2989 * r + 0.5870 * g + 0.1140 * b def __UpperCAmelCase ( A : np.ndarray ) -> np.ndarray: return (gray > 1_2_7) & (gray <= 2_5_5) def __UpperCAmelCase ( A : np.ndarray , A : np.ndarray ) -> np.ndarray: UpperCAmelCase_ : List[Any] = np.zeros_like(A ) UpperCAmelCase_ : Dict = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image UpperCAmelCase_ : Optional[Any] = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): UpperCAmelCase_ : List[Any] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() UpperCAmelCase_ : List[Any] = int(summation > 0 ) return output if __name__ == "__main__": # read original image _UpperCamelCase : str = Path(__file__).resolve().parent / 'image_data' / 'lena.jpg' _UpperCamelCase : List[Any] = np.array(Image.open(lena_path)) # kernel to be applied _UpperCamelCase : int = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) _UpperCamelCase : Optional[Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image _UpperCamelCase : int = Image.fromarray(output).convert('RGB') pil_img.save('result_dilation.png')
216
0
'''simple docstring''' import re def _UpperCAmelCase ( __A : str ): if len(re.findall('''[ATCG]''' , __lowerCamelCase ) ) != len(__lowerCamelCase ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
466
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = 42 UpperCamelCase = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
314
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": __UpperCAmelCase = input("""Enter image url: """).strip() print(F'Downloading image from {url} ...') __UpperCAmelCase = BeautifulSoup(requests.get(url).content, """html.parser""") # The image URL is in the content field of the first meta tag with property og:image __UpperCAmelCase = soup.find("""meta""", {"""property""": """og:image"""})["""content"""] __UpperCAmelCase = requests.get(image_url).content __UpperCAmelCase = F'{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg' with open(file_name, """wb""") as fp: fp.write(image_data) print(F'Done. Image saved to disk as {file_name}.')
218
import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def snake_case_ (__A : str , __A : str , __A : str , __A : PreTrainedTokenizer , __A : int , __A : Optional[int] = None , ) -> Tuple: __lowerCAmelCase : int = {} if train_file is not None: __lowerCAmelCase : Optional[Any] = [train_file] if eval_file is not None: __lowerCAmelCase : Dict = [eval_file] if test_file is not None: __lowerCAmelCase : Tuple = [test_file] __lowerCAmelCase : Dict = datasets.load_dataset("""csv""" , data_files=__A ) __lowerCAmelCase : Optional[Any] = list(ds[list(files.keys() )[0]].features.keys() ) __lowerCAmelCase : Optional[Any] = features_name.pop(__A ) __lowerCAmelCase : int = list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowerCAmelCase : Optional[Any] = {label: i for i, label in enumerate(__A )} __lowerCAmelCase : Union[str, Any] = tokenizer.model_input_names __lowerCAmelCase : List[Any] = {} if len(__A ) == 1: for k in files.keys(): __lowerCAmelCase : Tuple = ds[k].map( lambda __A : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__A , max_length=__A , padding="""max_length""" ) , batched=__A , ) elif len(__A ) == 2: for k in files.keys(): __lowerCAmelCase : Optional[int] = ds[k].map( lambda __A : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__A , max_length=__A , padding="""max_length""" , ) , batched=__A , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowerCAmelCase : Union[str, Any] = {k: v for k, v in ex.items() if k in input_names} __lowerCAmelCase : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowerCAmelCase : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} __lowerCAmelCase : List[str] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowerCAmelCase : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} __lowerCAmelCase : str = labelaid[ex[label_name]] yield (d, label) __lowerCAmelCase : Dict = ( tf.data.Dataset.from_generator( __A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowerCAmelCase : str = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowerCAmelCase : Dict = ( tf.data.Dataset.from_generator( __A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowerCAmelCase : List[str] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowerCAmelCase : Optional[Any] = ( tf.data.Dataset.from_generator( __A , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowerCAmelCase : Any = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __UpperCAmelCase = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : int =field(metadata={"help": "Which column contains the label"} ) lowerCamelCase : str =field(default=a_ , metadata={"help": "The path of the training file"} ) lowerCamelCase : Optional[str] =field(default=a_ , metadata={"help": "The path of the development file"} ) lowerCamelCase : Optional[str] =field(default=a_ , metadata={"help": "The path of the test file"} ) lowerCamelCase : int =field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) lowerCamelCase : bool =field( default=a_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : str =field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) lowerCamelCase : Optional[str] =field( default=a_ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowerCamelCase : Optional[str] =field( default=a_ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) lowerCamelCase : bool =field(default=a_ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. lowerCamelCase : Optional[str] =field( default=a_ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def snake_case_ () -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __lowerCAmelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : str = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' """ --overwrite_output_dir to overcome.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO , ) logger.info( f'''n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, ''' f'''16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCAmelCase : List[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : int = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__A , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowerCAmelCase : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__A ) , labelaid=__A , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="""text-classification""" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowerCAmelCase : Tuple = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(""".bin""" in model_args.model_name_or_path ) , config=__A , cache_dir=model_args.cache_dir , ) def compute_metrics(__A : EvalPrediction ) -> Dict: __lowerCAmelCase : str = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowerCAmelCase : Tuple = TFTrainer( model=__A , args=__A , train_dataset=__A , eval_dataset=__A , compute_metrics=__A , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowerCAmelCase : Dict = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) __lowerCAmelCase : List[str] = trainer.evaluate() __lowerCAmelCase : Any = os.path.join(training_args.output_dir , """eval_results.txt""" ) with open(__A , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(f''' {key} = {value}''' ) writer.write(f'''{key} = {value}\n''' ) results.update(__A ) return results if __name__ == "__main__": main()
218
1
from typing import Any class snake_case__ : def __init__( self : Optional[int] , _lowerCamelCase : Any ): snake_case__ : int = data snake_case__ : Dict = None def __repr__( self : Tuple ): return F'''Node({self.data})''' class snake_case__ : def __init__( self : int ): snake_case__ : Optional[Any] = None def __iter__( self : str ): snake_case__ : Tuple = self.head while node: yield node.data snake_case__ : Any = node.next def __len__( self : Dict ): return sum(1 for _ in self ) def __repr__( self : Optional[int] ): return "->".join([str(_lowerCamelCase ) for item in self] ) def __getitem__( self : int , _lowerCamelCase : int ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : Any ): if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) snake_case__ : Any = self.head for _ in range(_lowerCamelCase ): snake_case__ : int = current.next snake_case__ : Optional[Any] = data def UpperCAmelCase__ ( self : Tuple , _lowerCamelCase : Any ): self.insert_nth(len(self ) , _lowerCamelCase ) def UpperCAmelCase__ ( self : str , _lowerCamelCase : Any ): self.insert_nth(0 , _lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : Any ): if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) snake_case__ : Union[str, Any] = Node(_lowerCamelCase ) if self.head is None: snake_case__ : List[str] = new_node elif index == 0: snake_case__ : Optional[int] = self.head # link new_node to head snake_case__ : List[str] = new_node else: snake_case__ : List[str] = self.head for _ in range(index - 1 ): snake_case__ : Dict = temp.next snake_case__ : Tuple = temp.next snake_case__ : Optional[Any] = new_node def UpperCAmelCase__ ( self : Union[str, Any] ): # print every node data print(self ) def UpperCAmelCase__ ( self : Optional[Any] ): return self.delete_nth(0 ) def UpperCAmelCase__ ( self : Optional[int] ): # delete from tail return self.delete_nth(len(self ) - 1 ) def UpperCAmelCase__ ( self : Tuple , _lowerCamelCase : int = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) snake_case__ : Dict = self.head # default first node if index == 0: snake_case__ : Any = self.head.next else: snake_case__ : Union[str, Any] = self.head for _ in range(index - 1 ): snake_case__ : Optional[int] = temp.next snake_case__ : Dict = temp.next snake_case__ : int = temp.next.next return delete_node.data def UpperCAmelCase__ ( self : Tuple ): return self.head is None def UpperCAmelCase__ ( self : Union[str, Any] ): snake_case__ : List[Any] = None snake_case__ : Tuple = self.head while current: # Store the current node's next node. snake_case__ : Dict = current.next # Make the current node's next point backwards snake_case__ : Any = prev # Make the previous node be the current node snake_case__ : List[str] = current # Make the current node the next node (to progress iteration) snake_case__ : Tuple = next_node # Return prev in order to put the head at the end snake_case__ : Optional[Any] = prev def lowercase__( ): snake_case__ : Union[str, Any] = LinkedList() assert linked_list.is_empty() is True assert str(A ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(1_0 ): assert len(A ) == i linked_list.insert_nth(A , i + 1 ) assert str(A ) == "->".join(str(A ) for i in range(1 , 1_1 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(1_1 ) assert str(A ) == "->".join(str(A ) for i in range(0 , 1_2 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 1_0 assert linked_list.delete_tail() == 1_1 assert len(A ) == 9 assert str(A ) == "->".join(str(A ) for i in range(1 , 1_0 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): snake_case__ : str = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(A ) == "->".join(str(A ) for i in range(-8 , 1 ) ) def lowercase__( ): snake_case__ : List[Any] = [ -9, 1_0_0, Node(7_7_3_4_5_1_1_2 ), 'dlrow olleH', 7, 5_5_5_5, 0, -192.55_555, 'Hello, world!', 77.9, Node(1_0 ), None, None, 12.20, ] snake_case__ : Tuple = LinkedList() for i in test_input: linked_list.insert_tail(A ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(A ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head snake_case__ : str = linked_list.delete_head() assert result == -9 assert ( str(A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail snake_case__ : Dict = linked_list.delete_tail() assert result == 12.2 assert ( str(A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list snake_case__ : str = linked_list.delete_nth(1_0 ) assert result is None assert ( str(A ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(A ) assert ( str(A ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(A ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowercase__( ): from doctest import testmod testmod() snake_case__ : Optional[Any] = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(A ) print('\nReading/changing Node data using indexing:' ) print(f'''Element at Position 1: {linked_list[1]}''' ) snake_case__ : List[Any] = input('Enter New Value: ' ).strip() print('New list:' ) print(A ) print(f'''length of linked_list is : {len(A )}''' ) if __name__ == "__main__": main()
170
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : int = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
170
1
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC __A : Union[str, Any] = parse(importlib.metadata.version("""torch""")) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) SCREAMING_SNAKE_CASE = STR_OPERATION_TO_FUNC[operation] if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE = parse(importlib.metadata.version(SCREAMING_SNAKE_CASE ) ) return operation(SCREAMING_SNAKE_CASE , parse(SCREAMING_SNAKE_CASE ) ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return compare_versions(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
450
import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __A : Tuple = importlib.util.find_spec("""s3fs""") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __A : List[compression.BaseCompressedFileFileSystem] = [ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(f'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''') fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if "://" in dataset_path: SCREAMING_SNAKE_CASE = dataset_path.split("""://""" )[1] return dataset_path def lowerCamelCase_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if fs is not None and fs.protocol != "file": return True else: return False def lowerCamelCase_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = not is_remote_filesystem(SCREAMING_SNAKE_CASE ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(SCREAMING_SNAKE_CASE ) , fs._strip_protocol(SCREAMING_SNAKE_CASE ) ) else: fs.mv(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , recursive=SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( ): '''simple docstring''' if hasattr(fsspec.asyn , """reset_lock""" ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = threading.Lock()
450
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __a ( _snake_case ): __UpperCamelCase : int = 'decision_transformer' __UpperCamelCase : Optional[Any] = ['past_key_values'] __UpperCamelCase : Tuple = { 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Any ,lowerCamelCase : Optional[int]=17 ,lowerCamelCase : Union[str, Any]=4 ,lowerCamelCase : str=128 ,lowerCamelCase : Optional[int]=4096 ,lowerCamelCase : str=True ,lowerCamelCase : Optional[Any]=1 ,lowerCamelCase : Dict=1024 ,lowerCamelCase : int=3 ,lowerCamelCase : Dict=1 ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : Dict="relu" ,lowerCamelCase : Optional[Any]=0.1 ,lowerCamelCase : str=0.1 ,lowerCamelCase : List[str]=0.1 ,lowerCamelCase : str=1E-5 ,lowerCamelCase : List[Any]=0.02 ,lowerCamelCase : List[str]=True ,lowerCamelCase : Tuple=True ,lowerCamelCase : int=5_0256 ,lowerCamelCase : str=5_0256 ,lowerCamelCase : Any=False ,lowerCamelCase : Dict=False ,**lowerCamelCase : str ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = state_dim __SCREAMING_SNAKE_CASE = act_dim __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = max_ep_len __SCREAMING_SNAKE_CASE = action_tanh __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = n_positions __SCREAMING_SNAKE_CASE = n_layer __SCREAMING_SNAKE_CASE = n_head __SCREAMING_SNAKE_CASE = n_inner __SCREAMING_SNAKE_CASE = activation_function __SCREAMING_SNAKE_CASE = resid_pdrop __SCREAMING_SNAKE_CASE = embd_pdrop __SCREAMING_SNAKE_CASE = attn_pdrop __SCREAMING_SNAKE_CASE = layer_norm_epsilon __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = scale_attn_weights __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = scale_attn_by_inverse_layer_idx __SCREAMING_SNAKE_CASE = reorder_and_upcast_attn __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = eos_token_id super().__init__(bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase )
109
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging a = logging.get_logger(__name__) a = { "bigscience/bloom": "https://huggingface.co/bigscience/bloom/resolve/main/config.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/config.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/config.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json", } class __a ( _snake_case ): __UpperCamelCase : List[str] = 'bloom' __UpperCamelCase : Optional[Any] = ['past_key_values'] __UpperCamelCase : Optional[int] = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self : Union[str, Any] ,lowerCamelCase : str=25_0880 ,lowerCamelCase : List[Any]=64 ,lowerCamelCase : Optional[Any]=2 ,lowerCamelCase : Tuple=8 ,lowerCamelCase : Union[str, Any]=1E-5 ,lowerCamelCase : Optional[Any]=0.02 ,lowerCamelCase : str=True ,lowerCamelCase : List[Any]=1 ,lowerCamelCase : Union[str, Any]=2 ,lowerCamelCase : Optional[int]=False ,lowerCamelCase : Optional[int]=0.0 ,lowerCamelCase : List[Any]=0.0 ,lowerCamelCase : Optional[Any]=1 ,lowerCamelCase : Tuple=False ,**lowerCamelCase : str ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = vocab_size # Backward compatibility with n_embed kwarg __SCREAMING_SNAKE_CASE = kwargs.pop("""n_embed""" ,lowerCamelCase ) __SCREAMING_SNAKE_CASE = hidden_size if n_embed is None else n_embed __SCREAMING_SNAKE_CASE = n_layer __SCREAMING_SNAKE_CASE = n_head __SCREAMING_SNAKE_CASE = layer_norm_epsilon __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = pretraining_tp __SCREAMING_SNAKE_CASE = apply_residual_connection_post_layernorm __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = bos_token_id __SCREAMING_SNAKE_CASE = eos_token_id __SCREAMING_SNAKE_CASE = slow_but_exact super().__init__(bos_token_id=lowerCamelCase ,eos_token_id=lowerCamelCase ,**lowerCamelCase ) class __a ( _snake_case ): __UpperCamelCase : int = version.parse('1.12' ) def __init__( self : Optional[int] ,lowerCamelCase : PretrainedConfig ,lowerCamelCase : str = "default" ,lowerCamelCase : List[PatchingSpec] = None ,lowerCamelCase : bool = False ,): '''simple docstring''' super().__init__(lowerCamelCase ,task=lowerCamelCase ,patching_specs=lowerCamelCase ,use_past=lowerCamelCase ) if not getattr(self._config ,"""pad_token_id""" ,lowerCamelCase ): # TODO: how to do that better? __SCREAMING_SNAKE_CASE = 0 @property def UpperCAmelCase__ ( self : int ): '''simple docstring''' __SCREAMING_SNAKE_CASE = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(lowerCamelCase ,direction="""inputs""" ,inverted_values_shape=lowerCamelCase ) __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """past_sequence + sequence"""} else: __SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCAmelCase__ ( self : Tuple ): '''simple docstring''' return self._config.n_layer @property def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return self._config.n_head @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return 1E-3 def UpperCAmelCase__ ( self : str ,lowerCamelCase : "PreTrainedTokenizer" ,lowerCamelCase : int = -1 ,lowerCamelCase : int = -1 ,lowerCamelCase : bool = False ,lowerCamelCase : Optional["TensorType"] = None ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = super(lowerCamelCase ,self ).generate_dummy_inputs( lowerCamelCase ,batch_size=lowerCamelCase ,seq_length=lowerCamelCase ,is_pair=lowerCamelCase ,framework=lowerCamelCase ) # We need to order the input in the way they appears in the forward() __SCREAMING_SNAKE_CASE = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values __SCREAMING_SNAKE_CASE = seqlen + 2 __SCREAMING_SNAKE_CASE = self._config.hidden_size // self.num_attention_heads __SCREAMING_SNAKE_CASE = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __SCREAMING_SNAKE_CASE = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __SCREAMING_SNAKE_CASE = [ (torch.zeros(lowerCamelCase ), torch.zeros(lowerCamelCase )) for _ in range(self.num_layers ) ] __SCREAMING_SNAKE_CASE = common_inputs["""attention_mask"""] if self.use_past: __SCREAMING_SNAKE_CASE = ordered_inputs["""attention_mask"""].dtype __SCREAMING_SNAKE_CASE = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowerCamelCase ,lowerCamelCase ,dtype=lowerCamelCase )] ,dim=1 ) return ordered_inputs @property def UpperCAmelCase__ ( self : str ): '''simple docstring''' return 13
109
1
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version _A = { """<""": operator.lt, """<=""": operator.le, """==""": operator.eq, """!=""": operator.ne, """>=""": operator.ge, """>""": operator.gt, } def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: if got_ver is None or want_ver is None: raise ValueError( f"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" f""" reinstalling {pkg}.""" ) if not ops[op](version.parse(__UpperCAmelCase ) , version.parse(__UpperCAmelCase ) ): raise ImportError( f"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase = None ) -> None: lowerCAmelCase__ : List[Any] = f"""\n{hint}""" if hint is not None else """""" # non-versioned check if re.match(R"""^[\w_\-\d]+$""" , __UpperCAmelCase ): lowerCAmelCase__ : List[str] = requirement, None, None else: lowerCAmelCase__ : Optional[Any] = re.findall(R"""^([^!=<>\s]+)([\s!=<>]{1,2}.+)""" , __UpperCAmelCase ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but""" f""" got {requirement}""" ) lowerCAmelCase__ : Any = match[0] lowerCAmelCase__ : Tuple = want_full.split(""",""" ) # there could be multiple requirements lowerCAmelCase__ : Optional[int] = {} for w in want_range: lowerCAmelCase__ : Optional[Any] = re.findall(R"""^([\s!=<>]{1,2})(.+)""" , __UpperCAmelCase ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,""" f""" but got {requirement}""" ) lowerCAmelCase__ : Dict = match[0] lowerCAmelCase__ : Any = want_ver if op not in ops: raise ValueError(f"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": lowerCAmelCase__ : Tuple = """.""".join([str(__UpperCAmelCase ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return # check if any version is installed try: lowerCAmelCase__ : List[str] = importlib.metadata.version(__UpperCAmelCase ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def lowercase_ ( __UpperCAmelCase ) -> List[Any]: lowerCAmelCase__ : str = """Try: pip install transformers -U or pip install -e '.[dev]' if you're working with git main""" return require_version(__UpperCAmelCase , __UpperCAmelCase )
710
"""simple docstring""" from math import isqrt def lowercase_ ( __UpperCAmelCase ) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(__UpperCAmelCase ) + 1 ) ) def lowercase_ ( __UpperCAmelCase = 10**6 ) -> int: lowerCAmelCase__ : Tuple = 0 lowerCAmelCase__ : Tuple = 1 lowerCAmelCase__ : str = 7 while prime_candidate < max_prime: primes_count += is_prime(__UpperCAmelCase ) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f"""{solution() = }""")
507
0
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase__ = logging.get_logger(__name__) # TODO: upload to AWS lowerCAmelCase__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Union[str, Any] ="retribert" def __init__( self , snake_case__=30_522 , snake_case__=768 , snake_case__=8 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=True , snake_case__=128 , snake_case__=0 , **snake_case__ , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , **snake_case__ ) lowerCAmelCase : Optional[int] = vocab_size lowerCAmelCase : int = hidden_size lowerCAmelCase : Union[str, Any] = num_hidden_layers lowerCAmelCase : Tuple = num_attention_heads lowerCAmelCase : List[Any] = hidden_act lowerCAmelCase : Optional[Any] = intermediate_size lowerCAmelCase : List[str] = hidden_dropout_prob lowerCAmelCase : Dict = attention_probs_dropout_prob lowerCAmelCase : int = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : Optional[Any] = initializer_range lowerCAmelCase : Optional[int] = layer_norm_eps lowerCAmelCase : Optional[Any] = share_encoders lowerCAmelCase : str = projection_dim
645
"""simple docstring""" from string import ascii_uppercase lowerCAmelCase__ = {str(ord(c) - 55): c for c in ascii_uppercase} def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError("int() can't convert non-string with explicit base" ) if num < 0: raise ValueError("parameter must be positive int" ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError("'str' object cannot be interpreted as an integer" ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise TypeError("'float' object cannot be interpreted as an integer" ) if base in (0, 1): raise ValueError("base must be >= 2" ) if base > 3_6: raise ValueError("base must be <= 36" ) lowerCAmelCase : Any = "" lowerCAmelCase : Dict = 0 lowerCAmelCase : Tuple = 0 while div != 1: lowerCAmelCase , lowerCAmelCase : List[Any] = divmod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if base >= 1_1 and 9 < mod < 3_6: lowerCAmelCase : Any = ALPHABET_VALUES[str(SCREAMING_SNAKE_CASE )] else: lowerCAmelCase : Dict = str(SCREAMING_SNAKE_CASE ) new_value += actual_value lowerCAmelCase : Dict = num // base lowerCAmelCase : str = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(SCREAMING_SNAKE_CASE ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
645
1
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata lowerCAmelCase : Optional[int] = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class __magic_name__ ( tr.AbstractTransform ): '''simple docstring''' def __init__( self , _a = " " ): """simple docstring""" lowerCamelCase = sentence_delimiter def _lowerCAmelCase ( self , _a ): """simple docstring""" return list(_a ) def _lowerCAmelCase ( self , _a ): """simple docstring""" lowerCamelCase = [] for sent_idx, sentence in enumerate(_a ): chars.extend(self.process_string(_a ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(_a ) - 1: chars.append(self.sentence_delimiter ) return chars lowerCAmelCase : Optional[Any] = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowerCAmelCase : Dict = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowerCAmelCase : Any = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ lowerCAmelCase : Optional[Any] = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ lowerCAmelCase : int = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): '''simple docstring''' def _lowerCAmelCase ( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", """https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates""", ] , ) def _lowerCAmelCase ( self , _a , _a , _a=False ): """simple docstring""" if concatenate_texts: return jiwer.compute_measures( _a , _a , truth_transform=_a , hypothesis_transform=_a , )["wer"] lowerCamelCase = 0 lowerCamelCase = 0 for prediction, reference in zip(_a , _a ): lowerCamelCase = jiwer.compute_measures( _a , _a , truth_transform=_a , hypothesis_transform=_a , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
708
"""simple docstring""" from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : List[str] = { """configuration_autoformer""": [ """AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AutoformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = [ """AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """AutoformerForPrediction""", """AutoformerModel""", """AutoformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_autoformer import ( AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_autoformer import ( AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, AutoformerForPrediction, AutoformerModel, AutoformerPreTrainedModel, ) else: import sys lowerCAmelCase : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
533
0
'''simple docstring''' import json import os import pickle import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers import is_faiss_available from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bart.tokenization_bart import BartTokenizer from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.dpr.tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.retrieval_rag import CustomHFIndex, RagRetriever from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_sentencepiece, require_tokenizers, require_torch if is_faiss_available(): import faiss @require_faiss class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def UpperCamelCase( self ): _snake_case = tempfile.mkdtemp() _snake_case = 8 # DPR tok _snake_case = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _snake_case = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(_snake_case , exist_ok=_snake_case ) _snake_case = os.path.join(_snake_case , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok _snake_case = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', ] _snake_case = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) _snake_case = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _snake_case = {'''unk_token''': '''<unk>'''} _snake_case = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(_snake_case , exist_ok=_snake_case ) _snake_case = os.path.join(_snake_case , BART_VOCAB_FILES_NAMES["vocab_file"] ) _snake_case = os.path.join(_snake_case , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_snake_case ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_snake_case ) ) def UpperCamelCase( self ): return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def UpperCamelCase( self ): return DPRContextEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def UpperCamelCase( self ): return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def UpperCamelCase( self ): shutil.rmtree(self.tmpdirname ) def UpperCamelCase( self ): _snake_case = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size ), 2 * np.ones(self.retrieval_vector_size )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) return dataset def UpperCamelCase( self ): _snake_case = self.get_dummy_dataset() _snake_case = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , ) with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: _snake_case = dataset _snake_case = RagRetriever( _snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) return retriever def UpperCamelCase( self , lowerCamelCase ): _snake_case = self.get_dummy_dataset() _snake_case = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="custom" , ) if from_disk: _snake_case = os.path.join(self.tmpdirname , "dataset" ) _snake_case = os.path.join(self.tmpdirname , "index.faiss" ) dataset.get_index("embeddings" ).save(os.path.join(self.tmpdirname , "index.faiss" ) ) dataset.drop_index("embeddings" ) dataset.save_to_disk(os.path.join(self.tmpdirname , "dataset" ) ) del dataset _snake_case = RagRetriever( _snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , ) else: _snake_case = RagRetriever( _snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() , index=CustomHFIndex(config.retrieval_vector_size , _snake_case ) , ) return retriever def UpperCamelCase( self ): _snake_case = Dataset.from_dict( { "id": ["0", "1"], "text": ["foo", "bar"], "title": ["Foo", "Bar"], "embeddings": [np.ones(self.retrieval_vector_size + 1 ), 2 * np.ones(self.retrieval_vector_size + 1 )], } ) dataset.add_faiss_index("embeddings" , string_factory="Flat" , metric_type=faiss.METRIC_INNER_PRODUCT ) _snake_case = os.path.join(self.tmpdirname , "hf_bert_base.hnswSQ8_correct_phi_128.c_index" ) dataset.save_faiss_index("embeddings" , index_file_name + ".index.dpr" ) pickle.dump(dataset["id"] , open(index_file_name + ".index_meta.dpr" , "wb" ) ) _snake_case = os.path.join(self.tmpdirname , "psgs_w100.tsv.pkl" ) _snake_case = {sample['''id''']: [sample['''text'''], sample['''title''']] for sample in dataset} pickle.dump(_snake_case , open(_snake_case , "wb" ) ) _snake_case = RagConfig( retrieval_vector_size=self.retrieval_vector_size , question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() , index_name="legacy" , index_path=self.tmpdirname , ) _snake_case = RagRetriever( _snake_case , question_encoder_tokenizer=self.get_dpr_tokenizer() , generator_tokenizer=self.get_bart_tokenizer() ) return retriever def UpperCamelCase( self ): _snake_case = 1 _snake_case = self.get_dummy_canonical_hf_index_retriever() _snake_case = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _snake_case = retriever.retrieve(_snake_case , n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , _snake_case ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCamelCase( self ): _snake_case = self.get_dummy_canonical_hf_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: with patch("transformers.models.rag.retrieval_rag.load_dataset" ) as mock_load_dataset: _snake_case = self.get_dummy_dataset() retriever.save_pretrained(_snake_case ) _snake_case = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) _snake_case = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _snake_case = retriever.retrieve(_snake_case , n_docs=1 ) self.assertTrue(out is not None ) def UpperCamelCase( self ): _snake_case = 1 _snake_case = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) _snake_case = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _snake_case = retriever.retrieve(_snake_case , n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , _snake_case ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCamelCase( self ): _snake_case = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_snake_case ) _snake_case = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) _snake_case = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _snake_case = retriever.retrieve(_snake_case , n_docs=1 ) self.assertTrue(out is not None ) def UpperCamelCase( self ): _snake_case = 1 _snake_case = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) _snake_case = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _snake_case = retriever.retrieve(_snake_case , n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["embeddings", "id", "text", "title"] ) self.assertEqual(len(doc_dicts[0]["id"] ) , _snake_case ) self.assertEqual(doc_dicts[0]["id"][0] , "1" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["id"][0] , "0" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCamelCase( self ): _snake_case = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_snake_case ) _snake_case = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) _snake_case = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _snake_case = retriever.retrieve(_snake_case , n_docs=1 ) self.assertTrue(out is not None ) def UpperCamelCase( self ): _snake_case = 1 _snake_case = self.get_dummy_legacy_index_retriever() _snake_case = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _snake_case = retriever.retrieve(_snake_case , n_docs=_snake_case ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertEqual(len(_snake_case ) , 2 ) self.assertEqual(sorted(doc_dicts[0] ) , ["text", "title"] ) self.assertEqual(len(doc_dicts[0]["text"] ) , _snake_case ) self.assertEqual(doc_dicts[0]["text"][0] , "bar" ) # max inner product is reached with second doc self.assertEqual(doc_dicts[1]["text"][0] , "foo" ) # max inner product is reached with first doc self.assertListEqual(doc_ids.tolist() , [[1], [0]] ) def UpperCamelCase( self ): _snake_case = self.get_dummy_legacy_index_retriever() with tempfile.TemporaryDirectory() as tmp_dirname: retriever.save_pretrained(_snake_case ) _snake_case = RagRetriever.from_pretrained(_snake_case ) self.assertIsInstance(_snake_case , _snake_case ) _snake_case = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _snake_case = retriever.retrieve(_snake_case , n_docs=1 ) self.assertTrue(out is not None ) @require_torch @require_tokenizers @require_sentencepiece def UpperCamelCase( self ): import torch _snake_case = 1 _snake_case = self.get_dummy_canonical_hf_index_retriever() _snake_case = [[5, 7], [10, 11]] _snake_case = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _snake_case = retriever(_snake_case , _snake_case , prefix=retriever.config.generator.prefix , n_docs=_snake_case ) _snake_case = ( out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_snake_case , _snake_case ) self.assertIsInstance(_snake_case , _snake_case ) self.assertIsInstance(_snake_case , np.ndarray ) _snake_case = retriever( _snake_case , _snake_case , prefix=retriever.config.generator.prefix , n_docs=_snake_case , return_tensors="pt" , ) _snake_case = ( # noqa: F841 out['''context_input_ids'''], out['''context_attention_mask'''], out['''retrieved_doc_embeds'''], out['''doc_ids'''], ) self.assertEqual(retrieved_doc_embeds.shape , (2, n_docs, self.retrieval_vector_size) ) self.assertIsInstance(_snake_case , torch.Tensor ) self.assertIsInstance(_snake_case , torch.Tensor ) self.assertIsInstance(_snake_case , torch.Tensor ) @require_torch @require_tokenizers @require_sentencepiece def UpperCamelCase( self ): _snake_case = self.get_dpr_ctx_encoder_tokenizer() _snake_case = 1 _snake_case = self.get_dummy_custom_hf_index_retriever(from_disk=_snake_case ) retriever.set_ctx_encoder_tokenizer(_snake_case ) _snake_case = [[5, 7], [10, 11]] _snake_case = np.array( [np.ones(self.retrieval_vector_size ), -np.ones(self.retrieval_vector_size )] , dtype=np.floataa ) _snake_case = retriever(_snake_case , _snake_case , prefix=retriever.config.generator.prefix , n_docs=_snake_case ) self.assertEqual( len(_snake_case ) , 6 ) # check whether the retriever output consist of 6 attributes including tokenized docs self.assertEqual( all(k in out for k in ("tokenized_doc_ids", "tokenized_doc_attention_mask") ) , _snake_case ) # check for doc token related keys in dictionary.
672
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Tuple , _snake_case : int = 101 ): __lowercase : Tuple = length def __len__( self : str ): return self.length def __getitem__( self : List[Any] , _snake_case : List[str] ): return i class __lowerCAmelCase : """simple docstring""" def __call__( self : Union[str, Any] , _snake_case : List[str] ): return {"input_ids": torch.tensor(_snake_case ), "labels": torch.tensor(_snake_case )} class __lowerCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Any ): super().__init__() # Add some (unused) params otherwise DDP will complain. __lowercase : str = nn.Linear(120 , 80 ) def snake_case_ ( self : Tuple , _snake_case : List[str] , _snake_case : Optional[int]=None ): if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" @require_torch_neuroncore def snake_case_ ( self : Tuple ): __lowercase : List[str] = F'--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() __lowercase : Any = self.get_auto_remove_tmp_dir() __lowercase : List[str] = F'--output_dir {output_dir}'.split() __lowercase : Optional[Any] = ['''torchrun'''] + distributed_args + args execute_subprocess_async(_snake_case , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" @require_torch_multi_gpu def snake_case_ ( self : str ): __lowercase : Tuple = F'--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n '.split() __lowercase : Dict = self.get_auto_remove_tmp_dir() __lowercase : str = F'--output_dir {output_dir}'.split() __lowercase : Dict = ['''torchrun'''] + distributed_args + args execute_subprocess_async(_snake_case , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __lowerCAmelCase : int = HfArgumentParser((TrainingArguments,)) __lowerCAmelCase : int = parser.parse_args_into_dataclasses()[0] logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ' F'distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __lowerCAmelCase : str = DummyDataset(dataset_length) def UpperCAmelCase_ ( __lowerCAmelCase ) -> Dict: __lowercase : Dict = list(range(len(__lowerCAmelCase ) ) ) __lowercase : Optional[Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( '''Predictions and/or labels do not match expected results:\n - predictions: ''' F'{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}' ) return {"success": success} __lowerCAmelCase : Tuple = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __lowerCAmelCase : Optional[int] = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCAmelCase : Optional[Any] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCAmelCase : Optional[int] = 2 __lowerCAmelCase : str = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCAmelCase : Any = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCAmelCase : List[str] = None
509
0
from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Any = logging.get_logger(__name__) lowercase_ : List[Any] = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): A__ = """efficientformer""" def __init__( self , snake_case__ = [3, 2, 6, 4] , snake_case__ = [48, 96, 224, 448] , snake_case__ = [True, True, True, True] , snake_case__ = 448 , snake_case__ = 32 , snake_case__ = 4 , snake_case__ = 7 , snake_case__ = 5 , snake_case__ = 8 , snake_case__ = 4 , snake_case__ = 0.0 , snake_case__ = 16 , snake_case__ = 3 , snake_case__ = 3 , snake_case__ = 3 , snake_case__ = 2 , snake_case__ = 1 , snake_case__ = 0.0 , snake_case__ = 1 , snake_case__ = True , snake_case__ = True , snake_case__ = 1E-5 , snake_case__ = "gelu" , snake_case__ = 0.02 , snake_case__ = 1E-12 , snake_case__ = 224 , snake_case__ = 1E-05 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act _SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : int = hidden_sizes _SCREAMING_SNAKE_CASE : str = num_hidden_layers _SCREAMING_SNAKE_CASE : Tuple = num_attention_heads _SCREAMING_SNAKE_CASE : Any = initializer_range _SCREAMING_SNAKE_CASE : Optional[Any] = layer_norm_eps _SCREAMING_SNAKE_CASE : Union[str, Any] = patch_size _SCREAMING_SNAKE_CASE : List[Any] = num_channels _SCREAMING_SNAKE_CASE : int = depths _SCREAMING_SNAKE_CASE : List[Any] = mlp_expansion_ratio _SCREAMING_SNAKE_CASE : List[Any] = downsamples _SCREAMING_SNAKE_CASE : Any = dim _SCREAMING_SNAKE_CASE : Any = key_dim _SCREAMING_SNAKE_CASE : Tuple = attention_ratio _SCREAMING_SNAKE_CASE : int = resolution _SCREAMING_SNAKE_CASE : Dict = pool_size _SCREAMING_SNAKE_CASE : Optional[int] = downsample_patch_size _SCREAMING_SNAKE_CASE : Union[str, Any] = downsample_stride _SCREAMING_SNAKE_CASE : Dict = downsample_pad _SCREAMING_SNAKE_CASE : List[str] = drop_path_rate _SCREAMING_SNAKE_CASE : List[str] = num_metaad_blocks _SCREAMING_SNAKE_CASE : List[Any] = distillation _SCREAMING_SNAKE_CASE : Union[str, Any] = use_layer_scale _SCREAMING_SNAKE_CASE : Any = layer_scale_init_value _SCREAMING_SNAKE_CASE : int = image_size _SCREAMING_SNAKE_CASE : int = batch_norm_eps
721
"""simple docstring""" from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def _lowerCAmelCase ( lowerCamelCase__ : Sequence[float], lowerCamelCase__ : int, lowerCamelCase__ : int ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] _SCREAMING_SNAKE_CASE : Any = (low + high) // 2 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = max_subarray(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = max_subarray(lowerCamelCase__, mid + 1, lowerCamelCase__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = max_cross_sum(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def _lowerCAmelCase ( lowerCamelCase__ : Sequence[float], lowerCamelCase__ : int, lowerCamelCase__ : int, lowerCamelCase__ : int ) -> tuple[int, int, float]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = float("-inf" ), -1 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = float("-inf" ), -1 _SCREAMING_SNAKE_CASE : int | float = 0 for i in range(lowerCamelCase__, low - 1, -1 ): summ += arr[i] if summ > left_sum: _SCREAMING_SNAKE_CASE : int = summ _SCREAMING_SNAKE_CASE : Tuple = i _SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for i in range(mid + 1, high + 1 ): summ += arr[i] if summ > right_sum: _SCREAMING_SNAKE_CASE : int = summ _SCREAMING_SNAKE_CASE : Any = i return max_left, max_right, (left_sum + right_sum) def _lowerCAmelCase ( lowerCamelCase__ : int ) -> float: _SCREAMING_SNAKE_CASE : Any = [randint(1, lowerCamelCase__ ) for _ in range(lowerCamelCase__ )] _SCREAMING_SNAKE_CASE : int = time.time() max_subarray(lowerCamelCase__, 0, input_size - 1 ) _SCREAMING_SNAKE_CASE : List[str] = time.time() return end - start def _lowerCAmelCase ( ) -> None: _SCREAMING_SNAKE_CASE : Union[str, Any] = [1_0, 1_0_0, 1_0_0_0, 1_0_0_0_0, 5_0_0_0_0, 1_0_0_0_0_0, 2_0_0_0_0_0, 3_0_0_0_0_0, 4_0_0_0_0_0, 5_0_0_0_0_0] _SCREAMING_SNAKE_CASE : int = [time_max_subarray(lowerCamelCase__ ) for input_size in input_sizes] print("No of Inputs\t\tTime Taken" ) for input_size, runtime in zip(lowerCamelCase__, lowerCamelCase__ ): print(lowerCamelCase__, "\t\t", lowerCamelCase__ ) plt.plot(lowerCamelCase__, lowerCamelCase__ ) plt.xlabel("Number of Inputs" ) plt.ylabel("Time taken in seconds" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
295
0
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class _UpperCAmelCase : def __init__( self : List[Any] , a : str , ): '''simple docstring''' lowercase_ : Any = parent lowercase_ : str = 1_3 lowercase_ : Union[str, Any] = 7 lowercase_ : List[str] = True lowercase_ : Dict = True lowercase_ : List[Any] = True lowercase_ : Optional[Any] = True lowercase_ : Optional[int] = True lowercase_ : str = False lowercase_ : Tuple = False lowercase_ : Any = False lowercase_ : Union[str, Any] = 2 lowercase_ : Dict = 9_9 lowercase_ : Optional[Any] = 0 lowercase_ : Tuple = 3_2 lowercase_ : str = 2 lowercase_ : Any = 4 lowercase_ : Union[str, Any] = 0.1 lowercase_ : int = 0.1 lowercase_ : Any = 5_1_2 lowercase_ : Union[str, Any] = 1_6 lowercase_ : int = 2 lowercase_ : Dict = 0.02 lowercase_ : List[str] = 3 lowercase_ : Tuple = 4 lowercase_ : Optional[int] = "last" lowercase_ : Union[str, Any] = True lowercase_ : Optional[Any] = None lowercase_ : Union[str, Any] = 0 def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) lowercase_ : Optional[int] = None if self.use_input_lengths: lowercase_ : Optional[int] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase_ : Optional[Any] = None if self.use_token_type_ids: lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) lowercase_ : str = None lowercase_ : Optional[Any] = None lowercase_ : str = None if self.use_labels: lowercase_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : Any = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) lowercase_ : Any = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : List[str] = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCAmelCase__ ( self : Dict , a : Optional[Any] , a : List[Any] , a : Optional[Any] , a : Union[str, Any] , a : Any , a : Optional[int] , a : Any , a : Optional[Any] , a : str , ): '''simple docstring''' lowercase_ : Optional[Any] = TFFlaubertModel(config=__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} lowercase_ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = [input_ids, input_mask] lowercase_ : List[str] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : int , a : Dict , a : Any , a : List[Any] , a : Dict , a : Optional[Any] , a : str , a : List[str] , a : int , a : Tuple , ): '''simple docstring''' lowercase_ : Optional[Any] = TFFlaubertWithLMHeadModel(__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} lowercase_ : List[str] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self : Optional[int] , a : int , a : Tuple , a : Any , a : int , a : str , a : List[str] , a : Optional[Any] , a : List[str] , a : Dict , ): '''simple docstring''' lowercase_ : str = TFFlaubertForQuestionAnsweringSimple(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = {"input_ids": input_ids, "lengths": input_lengths} lowercase_ : Optional[Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase__ ( self : List[Any] , a : Union[str, Any] , a : Optional[Any] , a : Union[str, Any] , a : int , a : Tuple , a : Any , a : Optional[int] , a : Optional[Any] , a : Any , ): '''simple docstring''' lowercase_ : List[str] = TFFlaubertForSequenceClassification(__SCREAMING_SNAKE_CASE ) lowercase_ : Dict = {"input_ids": input_ids, "lengths": input_lengths} lowercase_ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase__ ( self : Any , a : Union[str, Any] , a : Dict , a : List[str] , a : int , a : Optional[int] , a : Tuple , a : Optional[Any] , a : str , a : Optional[int] , ): '''simple docstring''' lowercase_ : Any = self.num_labels lowercase_ : int = TFFlaubertForTokenClassification(config=__SCREAMING_SNAKE_CASE ) lowercase_ : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} lowercase_ : int = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self : Optional[Any] , a : Optional[Any] , a : str , a : List[Any] , a : Any , a : Union[str, Any] , a : Union[str, Any] , a : str , a : Tuple , a : Optional[int] , ): '''simple docstring''' lowercase_ : List[Any] = self.num_choices lowercase_ : Tuple = TFFlaubertForMultipleChoice(config=__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) lowercase_ : List[str] = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) lowercase_ : int = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) lowercase_ : str = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } lowercase_ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : Tuple = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : List[str] = config_and_inputs lowercase_ : List[str] = { "input_ids": input_ids, "token_type_ids": token_type_ids, "langs": token_type_ids, "lengths": input_lengths, } return config, inputs_dict @require_tf class _UpperCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): __lowerCamelCase: List[Any] = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) __lowerCamelCase: Union[str, Any] = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __lowerCamelCase: Optional[int] = ( { """feature-extraction""": TFFlaubertModel, """fill-mask""": TFFlaubertWithLMHeadModel, """question-answering""": TFFlaubertForQuestionAnsweringSimple, """text-classification""": TFFlaubertForSequenceClassification, """token-classification""": TFFlaubertForTokenClassification, """zero-shot""": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) __lowerCamelCase: Dict = False __lowerCamelCase: str = False def lowerCAmelCase__ ( self : Union[str, Any] , a : Dict , a : List[str] , a : Tuple , a : Dict , a : Dict ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ : List[str] = TFFlaubertModelTester(self ) lowercase_ : Union[str, Any] = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , emb_dim=3_7 ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( self : str ): '''simple docstring''' lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__SCREAMING_SNAKE_CASE ) @slow def lowerCAmelCase__ ( self : Any ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ : Union[str, Any] = TFFlaubertModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_tf @require_sentencepiece @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): @slow def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' lowercase_ : Tuple = TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased" ) lowercase_ : str = tf.convert_to_tensor( [[0, 1_5_8, 7_3_5, 2_5_9_2, 1_4_2_4, 6_7_2_7, 8_2, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" lowercase_ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE )[0] lowercase_ : List[str] = tf.TensorShape((1, 8, 5_1_2) ) self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. lowercase_ : int = tf.convert_to_tensor( [ [ [-1.876_8773, -1.56_6555, 0.2707_2418], [-1.692_0038, -0.587_3505, 1.932_9599], [-2.956_3985, -1.699_3835, 1.797_2052], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
620
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( lowerCAmelCase_ ): a : Union[str, Any] =["""image_processor"""] a : Dict ="""SamImageProcessor""" def __init__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.image_processor __lowerCAmelCase = -10 __lowerCAmelCase = self.image_processor.size["""longest_edge"""] def __call__( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = self.image_processor( __SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) # pop arguments that are not used in the foward but used nevertheless __lowerCAmelCase = encoding_image_processor["""original_sizes"""] if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks if Torch or TF tensor __lowerCAmelCase = original_sizes.numpy() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points( input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = self._normalize_and_convert( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,input_points=__SCREAMING_SNAKE_CASE,input_labels=__SCREAMING_SNAKE_CASE,input_boxes=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE="pt",): '''simple docstring''' if input_points is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0] ) for point in input_points ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) for point, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: __lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_labels is not None: __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,original_sizes[0],is_bounding_box=__SCREAMING_SNAKE_CASE ) for box in input_boxes ] else: __lowerCAmelCase = [ self._normalize_coordinates(self.target_size,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,is_bounding_box=__SCREAMING_SNAKE_CASE ) for box, original_size in zip(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) ] __lowerCAmelCase = np.array(__SCREAMING_SNAKE_CASE ) if input_boxes is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # boxes batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": __lowerCAmelCase = torch.from_numpy(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": __lowerCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE ) # point batch size of 1 by default __lowerCAmelCase = tf.expand_dims(__SCREAMING_SNAKE_CASE,1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = max([point.shape[0] for point in input_points] ) __lowerCAmelCase = [] for i, point in enumerate(__SCREAMING_SNAKE_CASE ): if point.shape[0] != expected_nb_points: __lowerCAmelCase = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value],axis=0 ) __lowerCAmelCase = np.append(input_labels[i],[self.point_pad_value] ) processed_input_points.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = processed_input_points return input_points, input_labels def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase = original_size __lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(__SCREAMING_SNAKE_CASE,longest_edge=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = deepcopy(__SCREAMING_SNAKE_CASE ).astype(__SCREAMING_SNAKE_CASE ) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,2,2 ) __lowerCAmelCase = coords[..., 0] * (new_w / old_w) __lowerCAmelCase = coords[..., 1] * (new_h / old_h) if is_bounding_box: __lowerCAmelCase = coords.reshape(-1,4 ) return coords def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,): '''simple docstring''' if input_points is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): # Checks for TF or Torch tensor __lowerCAmelCase = input_points.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_points[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input points must be a list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for input_point in input_points] else: __lowerCAmelCase = None if input_labels is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_labels.numpy().tolist() if not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_labels[0],__SCREAMING_SNAKE_CASE ): raise ValueError("""Input labels must be a list of list integers.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ) for label in input_labels] else: __lowerCAmelCase = None if input_boxes is not None: if hasattr(__SCREAMING_SNAKE_CASE,"""numpy""" ): __lowerCAmelCase = input_boxes.numpy().tolist() if ( not isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0],__SCREAMING_SNAKE_CASE ) or not isinstance(input_boxes[0][0],__SCREAMING_SNAKE_CASE ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) __lowerCAmelCase = [np.array(__SCREAMING_SNAKE_CASE ).astype(np.floataa ) for box in input_boxes] else: __lowerCAmelCase = None return input_points, input_labels, input_boxes @property def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(__SCREAMING_SNAKE_CASE ) ) def lowerCamelCase__ ( self,*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.image_processor.post_process_masks(*__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE )
689
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = { 'configuration_mctct': ['MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MCTCTConfig'], 'feature_extraction_mctct': ['MCTCTFeatureExtractor'], 'processing_mctct': ['MCTCTProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MCTCTForCTC', 'MCTCTModel', 'MCTCTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
704
'''simple docstring''' from decimal import Decimal, getcontext from math import ceil, factorial def _UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError('Undefined for non-integers' ) elif precision < 1: raise ValueError('Undefined for non-natural numbers' ) lowercase_ : str = precision lowercase_ : List[str] = ceil(precision / 14 ) lowercase_ : Union[str, Any] = 426_880 * Decimal(10_005 ).sqrt() lowercase_ : List[Any] = 1 lowercase_ : Optional[int] = 13_591_409 lowercase_ : Dict = Decimal(SCREAMING_SNAKE_CASE_ ) for k in range(1 , SCREAMING_SNAKE_CASE_ ): lowercase_ : List[str] = factorial(6 * k ) // (factorial(3 * k ) * factorial(SCREAMING_SNAKE_CASE_ ) ** 3) linear_term += 545_140_134 exponential_term *= -262_537_412_640_768_000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": _A = 5_0 print(F"""The first {n} digits of pi is: {pi(n)}""")
438
0
'''simple docstring''' from __future__ import annotations _a : Dict = list[tuple[int, int]] _a : str = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a : int = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _lowercase : def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Node | None , ) -> Optional[int]: __snake_case = pos_x __snake_case = pos_y __snake_case = (pos_y, pos_x) __snake_case = goal_x __snake_case = goal_y __snake_case = g_cost __snake_case = parent __snake_case = self.calculate_heuristic() def a ( self : Tuple ) -> float: __snake_case = abs(self.pos_x - self.goal_x ) __snake_case = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : Any , SCREAMING_SNAKE_CASE_ : List[Any] ) -> bool: return self.f_cost < other.f_cost class _lowercase : def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : tuple[int, int] , SCREAMING_SNAKE_CASE_ : tuple[int, int] ) -> str: __snake_case = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE_ ) __snake_case = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , SCREAMING_SNAKE_CASE_ ) __snake_case = [self.start] __snake_case = [] __snake_case = False def a ( self : Optional[int] ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __snake_case = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __snake_case = True return self.retrace_path(SCREAMING_SNAKE_CASE_ ) self.closed_nodes.append(SCREAMING_SNAKE_CASE_ ) __snake_case = self.get_successors(SCREAMING_SNAKE_CASE_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: # retrieve the best current path __snake_case = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) else: self.open_nodes.append(SCREAMING_SNAKE_CASE_ ) if not self.reached: return [self.start.pos] return None def a ( self : Tuple , SCREAMING_SNAKE_CASE_ : Node ) -> list[Node]: __snake_case = [] for action in delta: __snake_case = parent.pos_x + action[1] __snake_case = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE_ , ) ) return successors def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Node | None ) -> Path: __snake_case = node __snake_case = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __snake_case = current_node.parent path.reverse() return path if __name__ == "__main__": _a : List[str] = (0, 0) _a : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("------") _a : int = GreedyBestFirst(init, goal) _a : Optional[Any] = greedy_bf.search() if path: for pos_x, pos_y in path: _a : Union[str, Any] = 2 for elem in grid: print(elem)
56
"""simple docstring""" from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar __SCREAMING_SNAKE_CASE = TypeVar("""T""") class __snake_case ( Generic[T] ): """simple docstring""" def __init__( self :Tuple , UpperCamelCase__ :list[T] , UpperCamelCase__ :Callable[[T, T], T] ): _a = None _a = len(UpperCamelCase__ ) _a = [any_type for _ in range(self.N )] + arr _a = fnc self.build() def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): for p in range(self.N - 1 , 0 , -1 ): _a = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] , UpperCamelCase__ :int , UpperCamelCase__ :T ): p += self.N _a = v while p > 1: _a = p // 2 _a = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] , UpperCamelCase__ :int , UpperCamelCase__ :int ): # noqa: E741 _a , _a = l + self.N, r + self.N _a = None while l <= r: if l % 2 == 1: _a = self.st[l] if res is None else self.fn(UpperCamelCase__ , self.st[l] ) if r % 2 == 0: _a = self.st[r] if res is None else self.fn(UpperCamelCase__ , self.st[r] ) _a , _a = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce __SCREAMING_SNAKE_CASE = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] __SCREAMING_SNAKE_CASE = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } __SCREAMING_SNAKE_CASE = SegmentTree(test_array, min) __SCREAMING_SNAKE_CASE = SegmentTree(test_array, max) __SCREAMING_SNAKE_CASE = SegmentTree(test_array, lambda a, b: a + b) def __a ( ): """simple docstring""" for i in range(len(a ) ): for j in range(a, len(a ) ): _a = reduce(a, test_array[i : j + 1] ) _a = reduce(a, test_array[i : j + 1] ) _a = reduce(lambda a, a : a + b, test_array[i : j + 1] ) assert min_range == min_segment_tree.query(a, a ) assert max_range == max_segment_tree.query(a, a ) assert sum_range == sum_segment_tree.query(a, a ) test_all_segments() for index, value in test_updates.items(): __SCREAMING_SNAKE_CASE = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
388
0
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class UpperCAmelCase ( snake_case_): """simple docstring""" def UpperCamelCase__ ( self : Union[str, Any] ) -> Optional[Any]: return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def UpperCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: _UpperCamelCase ={'''col_1''': [3, 2, 1, 0], '''col_2''': ['''a''', '''b''', '''c''', '''d''']} return Dataset.from_dict(UpperCamelCase__ ) def UpperCamelCase__ ( self : Dict ) -> Optional[Any]: _UpperCamelCase =self._create_example_records() _UpperCamelCase =Dataset.from_list(UpperCamelCase__ ) self.assertListEqual(dset.column_names , ['''col_1''', '''col_2'''] ) for i, r in enumerate(UpperCamelCase__ ): self.assertDictEqual(UpperCamelCase__ , example_records[i] ) def UpperCamelCase__ ( self : List[str] ) -> Optional[Any]: _UpperCamelCase =self._create_example_records() _UpperCamelCase =Dataset.from_list(UpperCamelCase__ ) _UpperCamelCase =Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def UpperCamelCase__ ( self : str ) -> List[Any]: # checks what happens with missing columns _UpperCamelCase =[{'''col_1''': 1}, {'''col_2''': '''x'''}] _UpperCamelCase =Dataset.from_list(UpperCamelCase__ ) self.assertDictEqual(dset[0] , {'''col_1''': 1} ) self.assertDictEqual(dset[1] , {'''col_1''': None} ) # NB: first record is used for columns def UpperCamelCase__ ( self : Optional[Any] ) -> Tuple: # checks if the type can be inferred from the second record _UpperCamelCase =[{'''col_1''': []}, {'''col_1''': [1, 2]}] _UpperCamelCase =Dataset.from_list(UpperCamelCase__ ) self.assertEqual(dset.info.features['''col_1'''] , Sequence(Value('''int64''' ) ) ) def UpperCamelCase__ ( self : Dict ) -> Any: _UpperCamelCase =Dataset.from_list([] ) self.assertEqual(len(UpperCamelCase__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
701
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class UpperCAmelCase ( unittest.TestCase): """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any=7 , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : Dict=30 , UpperCamelCase__ : Union[str, Any]=400 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : List[str]=0.9 , UpperCamelCase__ : Any=None , UpperCamelCase__ : Any=True , UpperCamelCase__ : Optional[Any]=[0.5, 0.5, 0.5] , UpperCamelCase__ : List[str]=[0.5, 0.5, 0.5] , ) -> Dict: _UpperCamelCase =size if size is not None else {'''shortest_edge''': 30} _UpperCamelCase =crop_size if crop_size is not None else {'''height''': 30, '''width''': 30} _UpperCamelCase =parent _UpperCamelCase =batch_size _UpperCamelCase =num_channels _UpperCamelCase =min_resolution _UpperCamelCase =max_resolution _UpperCamelCase =do_resize_and_center_crop _UpperCamelCase =size _UpperCamelCase =crop_pct _UpperCamelCase =crop_size _UpperCamelCase =do_normalize _UpperCamelCase =image_mean _UpperCamelCase =image_std def UpperCamelCase__ ( self : str ) -> Union[str, Any]: return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class UpperCAmelCase ( lowercase_ , unittest.TestCase): """simple docstring""" lowerCAmelCase_ = PoolFormerImageProcessor if is_vision_available() else None def UpperCamelCase__ ( self : Optional[int] ) -> int: _UpperCamelCase =PoolFormerImageProcessingTester(self ) @property def UpperCamelCase__ ( self : Tuple ) -> Optional[int]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase__ ( self : Optional[Any] ) -> int: _UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_resize_and_center_crop''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''size''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''crop_pct''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase__ , '''image_std''' ) ) def UpperCamelCase__ ( self : Any ) -> Dict: _UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 30} ) self.assertEqual(image_processor.crop_size , {'''height''': 30, '''width''': 30} ) _UpperCamelCase =self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def UpperCamelCase__ ( self : Dict ) -> Optional[Any]: pass def UpperCamelCase__ ( self : Union[str, Any] ) -> List[Any]: # Initialize image_processing _UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PIL images _UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , Image.Image ) # Test not batched input _UpperCamelCase =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase =image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase__ ( self : Union[str, Any] ) -> Optional[int]: # Initialize image_processing _UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , numpify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , np.ndarray ) # Test not batched input _UpperCamelCase =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase =image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def UpperCamelCase__ ( self : str ) -> List[Any]: # Initialize image_processing _UpperCamelCase =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _UpperCamelCase =prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase__ , torchify=UpperCamelCase__ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase__ , torch.Tensor ) # Test not batched input _UpperCamelCase =image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _UpperCamelCase =image_processing(UpperCamelCase__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
271
0
'''simple docstring''' _a : Union[str, Any] = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" _a : int = [{"type": "code", "content": INSTALL_CONTENT}] _a : Optional[int] = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
56
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Optional[int] = { "EleutherAI/gpt-j-6B": "https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json", # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = """gptj""" _SCREAMING_SNAKE_CASE = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : int , UpperCamelCase__ : List[Any]=5_0_4_0_0 , UpperCamelCase__ : int=2_0_4_8 , UpperCamelCase__ : Dict=4_0_9_6 , UpperCamelCase__ : Dict=2_8 , UpperCamelCase__ : str=1_6 , UpperCamelCase__ : Union[str, Any]=6_4 , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]="gelu_new" , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : int=0.0 , UpperCamelCase__ : str=1E-5 , UpperCamelCase__ : Tuple=0.0_2 , UpperCamelCase__ : Any=True , UpperCamelCase__ : Union[str, Any]=5_0_2_5_6 , UpperCamelCase__ : int=5_0_2_5_6 , UpperCamelCase__ : int=False , **UpperCamelCase__ : Tuple , ): """simple docstring""" UpperCamelCase = vocab_size UpperCamelCase = n_positions UpperCamelCase = n_embd UpperCamelCase = n_layer UpperCamelCase = n_head UpperCamelCase = n_inner UpperCamelCase = rotary_dim UpperCamelCase = activation_function UpperCamelCase = resid_pdrop UpperCamelCase = embd_pdrop UpperCamelCase = attn_pdrop UpperCamelCase = layer_norm_epsilon UpperCamelCase = initializer_range UpperCamelCase = use_cache UpperCamelCase = bos_token_id UpperCamelCase = eos_token_id super().__init__( bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ ) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase__ : PretrainedConfig , UpperCamelCase__ : str = "default" , UpperCamelCase__ : List[PatchingSpec] = None , UpperCamelCase__ : bool = False , ): """simple docstring""" super().__init__(UpperCamelCase__ , task=UpperCamelCase__ , patching_specs=UpperCamelCase__ , use_past=UpperCamelCase__ ) if not getattr(self._config , 'pad_token_id' , UpperCamelCase__ ): # TODO: how to do that better? UpperCamelCase = 0 @property def A ( self : Tuple ): """simple docstring""" UpperCamelCase = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(UpperCamelCase__ , direction='inputs' ) UpperCamelCase = {0: 'batch', 1: 'past_sequence + sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return common_inputs @property def A ( self : List[str] ): """simple docstring""" return self._config.n_layer @property def A ( self : str ): """simple docstring""" return self._config.n_head def A ( self : List[Any] , UpperCamelCase__ : PreTrainedTokenizer , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): """simple docstring""" UpperCamelCase = super(UpperCamelCase__ , self ).generate_dummy_inputs( UpperCamelCase__ , batch_size=UpperCamelCase__ , seq_length=UpperCamelCase__ , is_pair=UpperCamelCase__ , framework=UpperCamelCase__ ) # We need to order the input in the way they appears in the forward() UpperCamelCase = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch UpperCamelCase , UpperCamelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values UpperCamelCase = seqlen + 2 UpperCamelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCamelCase = [ (torch.zeros(UpperCamelCase__ ), torch.zeros(UpperCamelCase__ )) for _ in range(self.num_layers ) ] UpperCamelCase = common_inputs['attention_mask'] if self.use_past: UpperCamelCase = ordered_inputs['attention_mask'].dtype UpperCamelCase = torch.cat( [ordered_inputs['attention_mask'], torch.ones(UpperCamelCase__ , UpperCamelCase__ , dtype=UpperCamelCase__ )] , dim=1 ) return ordered_inputs @property def A ( self : int ): """simple docstring""" return 1_3
430
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '''▁''' _A = {'''vocab_file''': '''sentencepiece.bpe.model'''} _A = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } _A = { '''xlm-roberta-base''': 512, '''xlm-roberta-large''': 512, '''xlm-roberta-large-finetuned-conll02-dutch''': 512, '''xlm-roberta-large-finetuned-conll02-spanish''': 512, '''xlm-roberta-large-finetuned-conll03-english''': 512, '''xlm-roberta-large-finetuned-conll03-german''': 512, } class A ( __UpperCAmelCase ): __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ['input_ids', 'attention_mask'] def __init__( self, UpperCamelCase__, UpperCamelCase__="<s>", UpperCamelCase__="</s>", UpperCamelCase__="</s>", UpperCamelCase__="<s>", UpperCamelCase__="<unk>", UpperCamelCase__="<pad>", UpperCamelCase__="<mask>", UpperCamelCase__ = None, **UpperCamelCase__, ): """simple docstring""" lowerCAmelCase_ = AddedToken(UpperCamelCase__, lstrip=UpperCamelCase__, rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__, UpperCamelCase__ ) else mask_token lowerCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase__, eos_token=UpperCamelCase__, unk_token=UpperCamelCase__, sep_token=UpperCamelCase__, cls_token=UpperCamelCase__, pad_token=UpperCamelCase__, mask_token=UpperCamelCase__, sp_model_kwargs=self.sp_model_kwargs, **UpperCamelCase__, ) lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase__ ) ) lowerCAmelCase_ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCAmelCase_ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCAmelCase_ = 1 lowerCAmelCase_ = len(self.sp_model ) + self.fairseq_offset lowerCAmelCase_ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" lowerCAmelCase_ = self.__dict__.copy() lowerCAmelCase_ = None lowerCAmelCase_ = self.sp_model.serialized_model_proto() return state def __setstate__( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): lowerCAmelCase_ = {} lowerCAmelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] lowerCAmelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None, UpperCamelCase__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__, token_ids_a=UpperCamelCase__, already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" lowerCAmelCase_ = [self.sep_token_id] lowerCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = {self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" return self.sp_model.encode(UpperCamelCase__, out_type=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCAmelCase_ = self.sp_model.PieceToId(UpperCamelCase__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = ''''''.join(UpperCamelCase__ ).replace(UpperCamelCase__, ''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__ = None ): """simple docstring""" if not os.path.isdir(UpperCamelCase__ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase_ = os.path.join( UpperCamelCase__, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__, '''wb''' ) as fi: lowerCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,)
325
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class A ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = '''ZinengTang/tvlt-base''' lowerCAmelCase_ = tempfile.mkdtemp() def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return TvltImageProcessor.from_pretrained(self.checkpoint, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, **UpperCamelCase__ ): """simple docstring""" return TvltFeatureExtractor.from_pretrained(self.checkpoint, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_feature_extractor() lowerCAmelCase_ = TvltProcessor(image_processor=UpperCamelCase__, feature_extractor=UpperCamelCase__ ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor, UpperCamelCase__ ) self.assertIsInstance(processor.image_processor, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_feature_extractor() lowerCAmelCase_ = TvltProcessor(image_processor=UpperCamelCase__, feature_extractor=UpperCamelCase__ ) lowerCAmelCase_ = np.ones([1_2000] ) lowerCAmelCase_ = feature_extractor(UpperCamelCase__, return_tensors='''np''' ) lowerCAmelCase_ = processor(audio=UpperCamelCase__, return_tensors='''np''' ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum(), input_processor[key].sum(), delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_feature_extractor() lowerCAmelCase_ = TvltProcessor(image_processor=UpperCamelCase__, feature_extractor=UpperCamelCase__ ) lowerCAmelCase_ = np.ones([3, 224, 224] ) lowerCAmelCase_ = image_processor(UpperCamelCase__, return_tensors='''np''' ) lowerCAmelCase_ = processor(images=UpperCamelCase__, return_tensors='''np''' ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum(), input_processor[key].sum(), delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_feature_extractor() lowerCAmelCase_ = TvltProcessor(image_processor=UpperCamelCase__, feature_extractor=UpperCamelCase__ ) lowerCAmelCase_ = np.ones([1_2000] ) lowerCAmelCase_ = np.ones([3, 224, 224] ) lowerCAmelCase_ = processor(audio=UpperCamelCase__, images=UpperCamelCase__ ) self.assertListEqual(list(inputs.keys() ), ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase__ ): processor() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.get_image_processor() lowerCAmelCase_ = self.get_feature_extractor() lowerCAmelCase_ = TvltProcessor(image_processor=UpperCamelCase__, feature_extractor=UpperCamelCase__ ) self.assertListEqual( processor.model_input_names, image_processor.model_input_names + feature_extractor.model_input_names, msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''', )
325
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase : List[str] = { "configuration_poolformer": [ "POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PoolFormerConfig", "PoolFormerOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = ["PoolFormerFeatureExtractor"] _lowerCAmelCase : Union[str, Any] = ["PoolFormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Any = [ "POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "PoolFormerForImageClassification", "PoolFormerModel", "PoolFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure)
242
'''simple docstring''' import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def lowercase ( __magic_name__="" ): '''simple docstring''' UpperCAmelCase : Dict = tempfile.mkdtemp() return os.path.join(__magic_name__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 UpperCAmelCase : int = AgentAudio(snake_case ) UpperCAmelCase : str = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(snake_case ) ) # Ensure that the file contains the same value as the original tensor UpperCAmelCase , UpperCAmelCase : str = sf.read(snake_case ) self.assertTrue(torch.allclose(snake_case , torch.tensor(snake_case ) , atol=1e-4 ) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 UpperCAmelCase : Any = get_new_path(suffix=".wav" ) sf.write(snake_case , snake_case , 1_6_0_0_0 ) UpperCAmelCase : Optional[Any] = AgentAudio(snake_case ) self.assertTrue(torch.allclose(snake_case , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , snake_case ) @require_vision @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3) ) UpperCAmelCase : Tuple = AgentImage(snake_case ) UpperCAmelCase : Tuple = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case ) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" UpperCAmelCase : Any = Image.open(snake_case ) UpperCAmelCase : List[str] = AgentImage(snake_case ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case ) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" UpperCAmelCase : Dict = Image.open(snake_case ) UpperCAmelCase : int = AgentImage(snake_case ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case ) ) class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = "Hey!" UpperCAmelCase : Tuple = AgentText(snake_case ) self.assertEqual(snake_case , agent_type.to_string() ) self.assertEqual(snake_case , agent_type.to_raw() ) self.assertEqual(snake_case , snake_case )
679
0
'''simple docstring''' import baseaa def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : str ) -> bytes: return baseaa.baaencode(string.encode("""utf-8""" ) ) def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : bytes ) -> str: return baseaa.baadecode(_UpperCAmelCase ).decode("""utf-8""" ) if __name__ == "__main__": A__: Dict = '''Hello World!''' A__: List[Any] = baseaa_encode(test) print(encoded) A__: List[str] = baseaa_decode(encoded) print(decoded)
506
'''simple docstring''' A__: Dict = { '''Pillow''': '''Pillow<10.0.0''', '''accelerate''': '''accelerate>=0.20.3''', '''av''': '''av==9.2.0''', '''beautifulsoup4''': '''beautifulsoup4''', '''black''': '''black~=23.1''', '''codecarbon''': '''codecarbon==1.2.0''', '''cookiecutter''': '''cookiecutter==1.7.3''', '''dataclasses''': '''dataclasses''', '''datasets''': '''datasets!=2.5.0''', '''decord''': '''decord==0.6.0''', '''deepspeed''': '''deepspeed>=0.9.3''', '''diffusers''': '''diffusers''', '''dill''': '''dill<0.3.5''', '''evaluate''': '''evaluate>=0.2.0''', '''fairscale''': '''fairscale>0.3''', '''faiss-cpu''': '''faiss-cpu''', '''fastapi''': '''fastapi''', '''filelock''': '''filelock''', '''flax''': '''flax>=0.4.1,<=0.7.0''', '''ftfy''': '''ftfy''', '''fugashi''': '''fugashi>=1.0''', '''GitPython''': '''GitPython<3.1.19''', '''hf-doc-builder''': '''hf-doc-builder>=0.3.0''', '''huggingface-hub''': '''huggingface-hub>=0.14.1,<1.0''', '''importlib_metadata''': '''importlib_metadata''', '''ipadic''': '''ipadic>=1.0.0,<2.0''', '''isort''': '''isort>=5.5.4''', '''jax''': '''jax>=0.2.8,!=0.3.2,<=0.4.13''', '''jaxlib''': '''jaxlib>=0.1.65,<=0.4.13''', '''jieba''': '''jieba''', '''kenlm''': '''kenlm''', '''keras-nlp''': '''keras-nlp>=0.3.1''', '''librosa''': '''librosa''', '''nltk''': '''nltk''', '''natten''': '''natten>=0.14.6''', '''numpy''': '''numpy>=1.17''', '''onnxconverter-common''': '''onnxconverter-common''', '''onnxruntime-tools''': '''onnxruntime-tools>=1.4.2''', '''onnxruntime''': '''onnxruntime>=1.4.0''', '''opencv-python''': '''opencv-python''', '''optuna''': '''optuna''', '''optax''': '''optax>=0.0.8,<=0.1.4''', '''packaging''': '''packaging>=20.0''', '''parameterized''': '''parameterized''', '''phonemizer''': '''phonemizer''', '''protobuf''': '''protobuf''', '''psutil''': '''psutil''', '''pyyaml''': '''pyyaml>=5.1''', '''pydantic''': '''pydantic<2''', '''pytest''': '''pytest>=7.2.0''', '''pytest-timeout''': '''pytest-timeout''', '''pytest-xdist''': '''pytest-xdist''', '''python''': '''python>=3.8.0''', '''ray[tune]''': '''ray[tune]''', '''regex''': '''regex!=2019.12.17''', '''requests''': '''requests''', '''rhoknp''': '''rhoknp>=1.1.0,<1.3.1''', '''rjieba''': '''rjieba''', '''rouge-score''': '''rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1''', '''ruff''': '''ruff>=0.0.241,<=0.0.259''', '''sacrebleu''': '''sacrebleu>=1.4.12,<2.0.0''', '''sacremoses''': '''sacremoses''', '''safetensors''': '''safetensors>=0.3.1''', '''sagemaker''': '''sagemaker>=2.31.0''', '''scikit-learn''': '''scikit-learn''', '''sentencepiece''': '''sentencepiece>=0.1.91,!=0.1.92''', '''sigopt''': '''sigopt''', '''starlette''': '''starlette''', '''sudachipy''': '''sudachipy>=0.6.6''', '''sudachidict_core''': '''sudachidict_core>=20220729''', '''tensorflow-cpu''': '''tensorflow-cpu>=2.6,<2.14''', '''tensorflow''': '''tensorflow>=2.6,<2.14''', '''tensorflow-text''': '''tensorflow-text<2.14''', '''tf2onnx''': '''tf2onnx''', '''timeout-decorator''': '''timeout-decorator''', '''timm''': '''timm''', '''tokenizers''': '''tokenizers>=0.11.1,!=0.11.3,<0.14''', '''torch''': '''torch>=1.9,!=1.12.0''', '''torchaudio''': '''torchaudio''', '''torchvision''': '''torchvision''', '''pyctcdecode''': '''pyctcdecode>=0.4.0''', '''tqdm''': '''tqdm>=4.27''', '''unidic''': '''unidic>=1.0.2''', '''unidic_lite''': '''unidic_lite>=1.0.7''', '''urllib3''': '''urllib3<2.0.0''', '''uvicorn''': '''uvicorn''', }
506
1
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class UpperCamelCase (unittest.TestCase ): def __snake_case ( self :Any ) ->Tuple: lowercase : int = inspect.getfile(accelerate.test_utils ) lowercase : Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) lowercase : Union[str, Any] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_distributed_data_loop.py"""] ) lowercase : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_ops.py"""] ) @require_multi_gpu def __snake_case ( self :Optional[Any] ) ->Tuple: print(f"""Found {torch.cuda.device_count()} devices.""" ) lowercase : Tuple = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__magic_name__ , env=os.environ.copy() ) @require_multi_gpu def __snake_case ( self :Union[str, Any] ) ->Dict: print(f"""Found {torch.cuda.device_count()} devices.""" ) lowercase : Any = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path] print(f"""Command: {cmd}""" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__magic_name__ , env=os.environ.copy() ) @require_multi_gpu def __snake_case ( self :Optional[Any] ) ->Union[str, Any]: lowercase : int = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__magic_name__ , env=os.environ.copy() ) @require_multi_gpu def __snake_case ( self :List[str] ) ->Union[str, Any]: print(f"""Found {torch.cuda.device_count()} devices, using 2 devices only""" ) lowercase : Union[str, Any] = ["""torchrun""", f"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="""0,1""" ): execute_subprocess_async(__magic_name__ , env=os.environ.copy() ) if __name__ == "__main__": _lowerCAmelCase = Accelerator() _lowerCAmelCase = (accelerator.state.process_index + 2, 10) _lowerCAmelCase = torch.randint(0, 10, shape).to(accelerator.device) _lowerCAmelCase = '' _lowerCAmelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." _lowerCAmelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." _lowerCAmelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
264
"""simple docstring""" from __future__ import annotations from scipy.special import comb # type: ignore class UpperCamelCase : def __init__( self :Any , __magic_name__ :list[tuple[float, float]] ) ->str: lowercase : List[Any] = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. lowercase : Optional[int] = len(__magic_name__ ) - 1 def __snake_case ( self :List[str] , __magic_name__ :float ) ->list[float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase : list[float] = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , __magic_name__ ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(__magic_name__ ) , 5 ) == 1 return output_values def __snake_case ( self :List[str] , __magic_name__ :float ) ->tuple[float, float]: assert 0 <= t <= 1, "Time t must be between 0 and 1." lowercase : str = self.basis_function(__magic_name__ ) lowercase : Optional[int] = 0.0 lowercase : List[str] = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __snake_case ( self :Tuple , __magic_name__ :float = 0.01 ) ->List[str]: from matplotlib import pyplot as plt # type: ignore lowercase : list[float] = [] # x coordinates of points to plot lowercase : list[float] = [] # y coordinates of points to plot lowercase : int = 0.0 while t <= 1: lowercase : List[Any] = self.bezier_curve_function(__magic_name__ ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size lowercase : Union[str, Any] = [i[0] for i in self.list_of_points] lowercase : Optional[int] = [i[1] for i in self.list_of_points] plt.plot( __magic_name__ , __magic_name__ , color="""blue""" , label="""Curve of Degree """ + str(self.degree ) , ) plt.scatter(__magic_name__ , __magic_name__ , color="""red""" , label="""Control Points""" ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
264
1
class UpperCamelCase : def __init__( self , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = name A__ = val def __str__( self ): return F"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__( self , UpperCAmelCase__ ): return self.val < other.val class UpperCamelCase : def __init__( self , UpperCAmelCase__ ): A__ = {} A__ = {} A__ = self.build_heap(UpperCAmelCase__ ) def __getitem__( self , UpperCAmelCase__ ): return self.get_value(UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ ): return (idx - 1) // 2 def __A ( self , UpperCAmelCase__ ): return idx * 2 + 1 def __A ( self , UpperCAmelCase__ ): return idx * 2 + 2 def __A ( self , UpperCAmelCase__ ): return self.heap_dict[key] def __A ( self , UpperCAmelCase__ ): A__ = len(UpperCAmelCase__ ) - 1 A__ = self.get_parent_idx(UpperCAmelCase__ ) for idx, i in enumerate(UpperCAmelCase__ ): A__ = idx A__ = i.val for i in range(UpperCAmelCase__ , -1 , -1 ): self.sift_down(UpperCAmelCase__ , UpperCAmelCase__ ) return array def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): while True: A__ = self.get_left_child_idx(UpperCAmelCase__ ) # noqa: E741 A__ = self.get_right_child_idx(UpperCAmelCase__ ) A__ = idx if l < len(UpperCAmelCase__ ) and array[l] < array[idx]: A__ = l if r < len(UpperCAmelCase__ ) and array[r] < array[smallest]: A__ = r if smallest != idx: A__ , A__ = array[smallest], array[idx] ( ( A__ ) , ( A__ ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) A__ = smallest else: break def __A ( self , UpperCAmelCase__ ): A__ = self.get_parent_idx(UpperCAmelCase__ ) while p >= 0 and self.heap[p] > self.heap[idx]: A__ , A__ = self.heap[idx], self.heap[p] A__ , A__ = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) A__ = p A__ = self.get_parent_idx(UpperCAmelCase__ ) def __A ( self ): return self.heap[0] def __A ( self ): A__ , A__ = self.heap[-1], self.heap[0] A__ , A__ = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) A__ = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def __A ( self , UpperCAmelCase__ ): self.heap.append(UpperCAmelCase__ ) A__ = len(self.heap ) - 1 A__ = node.val self.sift_up(len(self.heap ) - 1 ) def __A ( self ): return len(self.heap ) == 0 def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" A__ = new_value A__ = new_value self.sift_up(self.idx_of_element[node] ) UpperCAmelCase_ : int = Node("R", -1) UpperCAmelCase_ : List[Any] = Node("B", 6) UpperCAmelCase_ : Any = Node("A", 3) UpperCAmelCase_ : str = Node("X", 1) UpperCAmelCase_ : Union[str, Any] = Node("E", 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array UpperCAmelCase_ : Dict = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print("Min Heap - before decrease key") for i in my_min_heap.heap: print(i) print("Min Heap - After decrease key of node [B -> -17]") my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
232
def UpperCamelCase ( _A : int = 50 )-> int: """simple docstring""" A__ = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F'''{solution() = }''')
232
1
def __UpperCAmelCase( ): for n in range(1 , 1_00_00_00 ): yield n * (n + 1) // 2 def __UpperCAmelCase( lowercase_ ): _lowerCamelCase : Any = 1 _lowerCamelCase : Dict = 2 while i * i <= n: _lowerCamelCase : List[Any] = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def __UpperCAmelCase( ): return next(i for i in triangle_number_generator() if count_divisors(lowercase_ ) > 5_00 ) if __name__ == "__main__": print(solution())
114
"""simple docstring""" from graphs.minimum_spanning_tree_kruskal import kruskal def __snake_case ( ): """simple docstring""" _lowerCAmelCase = 9 _lowerCAmelCase = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _lowerCAmelCase = kruskal(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowerCAmelCase = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(SCREAMING_SNAKE_CASE ) == sorted(SCREAMING_SNAKE_CASE )
580
0
'''simple docstring''' import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowercase_ ( _lowercase , _lowercase , _lowercase ) -> int: '''simple docstring''' lowerCamelCase_ : List[str] = MobileBertConfig.from_json_file(_lowercase ) print(F"""Building PyTorch model from configuration: {config}""" ) lowerCamelCase_ : Optional[int] = MobileBertForPreTraining(_lowercase ) # Load weights from tf checkpoint lowerCamelCase_ : Optional[int] = load_tf_weights_in_mobilebert(_lowercase , _lowercase , _lowercase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , _lowercase ) if __name__ == "__main__": __lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--mobilebert_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained MobileBERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __lowercase : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
357
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowercase : Any = logging.get_logger(__name__) __lowercase : List[str] = '''▁''' __lowercase : Optional[Any] = {'''vocab_file''': '''sentencepiece.bpe.model'''} __lowercase : List[str] = { '''vocab_file''': { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model''' ), } } __lowercase : Union[str, Any] = { '''xlm-roberta-base''': 512, '''xlm-roberta-large''': 512, '''xlm-roberta-large-finetuned-conll02-dutch''': 512, '''xlm-roberta-large-finetuned-conll02-spanish''': 512, '''xlm-roberta-large-finetuned-conll03-english''': 512, '''xlm-roberta-large-finetuned-conll03-german''': 512, } class __lowercase ( _lowercase ): lowerCamelCase : Any = VOCAB_FILES_NAMES lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] def __init__(self , A , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , A = None , **A , ): # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token lowerCamelCase_ : Dict = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) lowerCamelCase_ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A ) ) lowerCamelCase_ : Tuple = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token lowerCamelCase_ : str = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowerCamelCase_ : int = 1 lowerCamelCase_ : Union[str, Any] = len(self.sp_model ) + self.fairseq_offset lowerCamelCase_ : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ): lowerCamelCase_ : Any = self.__dict__.copy() lowerCamelCase_ : Optional[Any] = None lowerCamelCase_ : int = self.sp_model.serialized_model_proto() return state def __setstate__(self , A ): lowerCamelCase_ : Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase_ : str = {} lowerCamelCase_ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase__ (self , A , A = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ : Optional[int] = [self.cls_token_id] lowerCamelCase_ : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__ (self , A , A = None , A = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is None: return [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : List[str] = [self.sep_token_id] lowerCamelCase_ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase__ (self ): return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def UpperCAmelCase__ (self ): lowerCamelCase_ : str = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ (self , A ): return self.sp_model.encode(A , out_type=A ) def UpperCAmelCase__ (self , A ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowerCamelCase_ : int = self.sp_model.PieceToId(A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase__ (self , A ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Optional[int] = ''''''.join(A ).replace(A , ''' ''' ).strip() return out_string def UpperCAmelCase__ (self , A , A = None ): if not os.path.isdir(A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ : str = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , '''wb''' ) as fi: lowerCamelCase_ : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
357
1
def SCREAMING_SNAKE_CASE ( snake_case = 1_000 ) -> int: __lowercase , __lowercase = 1, 1 __lowercase = [] for i in range(1 , n + 1 ): __lowercase = prev_numerator + 2 * prev_denominator __lowercase = prev_numerator + prev_denominator if len(str(snake_case ) ) > len(str(snake_case ) ): result.append(snake_case ) __lowercase = numerator __lowercase = denominator return len(snake_case ) if __name__ == "__main__": print(F"""{solution() = }""")
375
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) SCREAMING_SNAKE_CASE_ : str = { '''iou_prediction_head.layers.0''': '''iou_prediction_head.proj_in''', '''iou_prediction_head.layers.1''': '''iou_prediction_head.layers.0''', '''iou_prediction_head.layers.2''': '''iou_prediction_head.proj_out''', '''mask_decoder.output_upscaling.0''': '''mask_decoder.upscale_conv1''', '''mask_decoder.output_upscaling.1''': '''mask_decoder.upscale_layer_norm''', '''mask_decoder.output_upscaling.3''': '''mask_decoder.upscale_conv2''', '''mask_downscaling.0''': '''mask_embed.conv1''', '''mask_downscaling.1''': '''mask_embed.layer_norm1''', '''mask_downscaling.3''': '''mask_embed.conv2''', '''mask_downscaling.4''': '''mask_embed.layer_norm2''', '''mask_downscaling.6''': '''mask_embed.conv3''', '''point_embeddings''': '''point_embed''', '''pe_layer.positional_encoding_gaussian_matrix''': '''shared_embedding.positional_embedding''', '''image_encoder''': '''vision_encoder''', '''neck.0''': '''neck.conv1''', '''neck.1''': '''neck.layer_norm1''', '''neck.2''': '''neck.conv2''', '''neck.3''': '''neck.layer_norm2''', '''patch_embed.proj''': '''patch_embed.projection''', '''.norm''': '''.layer_norm''', '''blocks''': '''layers''', } def SCREAMING_SNAKE_CASE ( snake_case ) -> Tuple: __lowercase = {} state_dict.pop('pixel_mean' , snake_case ) state_dict.pop('pixel_std' , snake_case ) __lowercase = r'.*.output_hypernetworks_mlps.(\d+).layers.(\d+).*' for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __lowercase = key.replace(snake_case , snake_case ) if re.match(snake_case , snake_case ): __lowercase = int(re.match(snake_case , snake_case ).group(2 ) ) if layer_nb == 0: __lowercase = key.replace('layers.0' , 'proj_in' ) elif layer_nb == 1: __lowercase = key.replace('layers.1' , 'layers.0' ) elif layer_nb == 2: __lowercase = key.replace('layers.2' , 'proj_out' ) __lowercase = value __lowercase = model_state_dict[ 'prompt_encoder.shared_embedding.positional_embedding' ] return model_state_dict def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case , snake_case="ybelkada/segment-anything" ) -> int: __lowercase = hf_hub_download(snake_case , F"checkpoints/{model_name}.pth" ) if "sam_vit_b" in model_name: __lowercase = SamConfig() elif "sam_vit_l" in model_name: __lowercase = SamVisionConfig( hidden_size=1_024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) __lowercase = SamConfig( vision_config=snake_case , ) elif "sam_vit_h" in model_name: __lowercase = SamVisionConfig( hidden_size=1_280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) __lowercase = SamConfig( vision_config=snake_case , ) __lowercase = torch.load(snake_case , map_location='cpu' ) __lowercase = replace_keys(snake_case ) __lowercase = SamImageProcessor() __lowercase = SamProcessor(image_processor=snake_case ) __lowercase = SamModel(snake_case ) hf_model.load_state_dict(snake_case ) __lowercase = hf_model.to('cuda' ) __lowercase = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png' __lowercase = Image.open(requests.get(snake_case , stream=snake_case ).raw ).convert('RGB' ) __lowercase = [[[400, 650]]] __lowercase = [[1]] __lowercase = processor(images=np.array(snake_case ) , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __lowercase = hf_model(**snake_case ) __lowercase = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 __lowercase = processor( images=np.array(snake_case ) , input_points=snake_case , input_labels=snake_case , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __lowercase = hf_model(**snake_case ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 __lowercase = ((75, 275, 1_725, 850),) __lowercase = processor(images=np.array(snake_case ) , input_boxes=snake_case , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __lowercase = hf_model(**snake_case ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. __lowercase = [[[400, 650], [800, 650]]] __lowercase = [[1, 1]] __lowercase = processor( images=np.array(snake_case ) , input_points=snake_case , input_labels=snake_case , return_tensors='pt' ).to('cuda' ) with torch.no_grad(): __lowercase = hf_model(**snake_case ) __lowercase = output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Optional[Any] = argparse.ArgumentParser() SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['''sam_vit_b_01ec64''', '''sam_vit_h_4b8939''', '''sam_vit_l_0b3195'''] parser.add_argument( '''--model_name''', default='''sam_vit_h_4b8939''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) parser.add_argument( '''--model_hub_id''', default='''ybelkada/segment-anything''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) SCREAMING_SNAKE_CASE_ : List[Any] = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
375
1
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler a__ : int = 1_6 a__ : Union[str, Any] = 3_2 def _UpperCamelCase ( __A , __A = 16 , __A = "bert-base-cased" ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = AutoTokenizer.from_pretrained(__A ) UpperCamelCase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(__A ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__A , max_length=__A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCamelCase__ = datasets.map( __A , batched=__A , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=__A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(__A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__A , padding="max_length" , max_length=128 , return_tensors="pt" ) return tokenizer.pad(__A , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. UpperCamelCase__ = DataLoader( tokenized_datasets["train"] , shuffle=__A , collate_fn=__A , batch_size=__A ) UpperCamelCase__ = DataLoader( tokenized_datasets["validation"] , shuffle=__A , collate_fn=__A , batch_size=__A ) return train_dataloader, eval_dataloader def _UpperCamelCase ( __A , __A ) -> List[str]: '''simple docstring''' UpperCamelCase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase__ = config["lr"] UpperCamelCase__ = int(config["num_epochs"] ) UpperCamelCase__ = int(config["seed"] ) UpperCamelCase__ = int(config["batch_size"] ) UpperCamelCase__ = args.model_name_or_path set_seed(__A ) UpperCamelCase__ , UpperCamelCase__ = get_dataloaders(__A , __A , __A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase__ = AutoModelForSequenceClassification.from_pretrained(__A , return_dict=__A ) # Instantiate optimizer UpperCamelCase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCamelCase__ = optimizer_cls(params=model.parameters() , lr=__A ) if accelerator.state.deepspeed_plugin is not None: UpperCamelCase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: UpperCamelCase__ = 1 UpperCamelCase__ = (len(__A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCamelCase__ = get_linear_schedule_with_warmup( optimizer=__A , num_warmup_steps=0 , num_training_steps=__A , ) else: UpperCamelCase__ = DummyScheduler(__A , total_num_steps=__A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = accelerator.prepare( __A , __A , __A , __A , __A ) # We need to keep track of how many total steps we have iterated over UpperCamelCase__ = 0 # We also need to keep track of the stating epoch so files are named properly UpperCamelCase__ = 0 # Now we train the model UpperCamelCase__ = evaluate.load("glue" , "mrpc" ) UpperCamelCase__ = 0 UpperCamelCase__ = {} for epoch in range(__A , __A ): model.train() for step, batch in enumerate(__A ): UpperCamelCase__ = model(**__A ) UpperCamelCase__ = outputs.loss UpperCamelCase__ = loss / gradient_accumulation_steps accelerator.backward(__A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() UpperCamelCase__ = 0 for step, batch in enumerate(__A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase__ = model(**__A ) UpperCamelCase__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCamelCase__ , UpperCamelCase__ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__A ) - 1: UpperCamelCase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCamelCase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__A , references=__A , ) UpperCamelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __A ) UpperCamelCase__ = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: UpperCamelCase__ = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(__A , __A ) def _UpperCamelCase ( ) -> Tuple: '''simple docstring''' UpperCamelCase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=__A , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=__A , ) parser.add_argument( "--output_dir" , type=__A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=__A , default=__A , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=__A , default=3 , help="Number of train epochs." , ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = {"lr": 2E-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(__A , __A ) if __name__ == "__main__": main()
721
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a__ : List[Any] = logging.get_logger(__name__) def _UpperCamelCase ( __A , __A , __A , __A ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(__A , __A , __A=0 , __A=None ): UpperCamelCase__ = round(val / multiple ) * multiple if max_val is not None and x > max_val: UpperCamelCase__ = math.floor(val / multiple ) * multiple if x < min_val: UpperCamelCase__ = math.ceil(val / multiple ) * multiple return x UpperCamelCase__ = (output_size, output_size) if isinstance(__A , __A ) else output_size UpperCamelCase__ , UpperCamelCase__ = get_image_size(__A ) UpperCamelCase__ , UpperCamelCase__ = output_size # determine new height and width UpperCamelCase__ = output_height / input_height UpperCamelCase__ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width UpperCamelCase__ = scale_width else: # fit height UpperCamelCase__ = scale_height UpperCamelCase__ = constraint_to_multiple_of(scale_height * input_height , multiple=__A ) UpperCamelCase__ = constraint_to_multiple_of(scale_width * input_width , multiple=__A ) return (new_height, new_width) class lowercase_ ( a__ ): __UpperCAmelCase = ['pixel_values'] def __init__( self , a = True , a = None , a = PILImageResampling.BILINEAR , a = False , a = 1 , a = True , a = 1 / 2_55 , a = True , a = None , a = None , **a , ): super().__init__(**a ) UpperCamelCase__ = size if size is not None else {"height": 3_84, "width": 3_84} UpperCamelCase__ = get_size_dict(a ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = keep_aspect_ratio UpperCamelCase__ = ensure_multiple_of UpperCamelCase__ = resample UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self , a , a , a = False , a = 1 , a = PILImageResampling.BICUBIC , a = None , **a , ): UpperCamelCase__ = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) UpperCamelCase__ = get_resize_output_image_size( a , output_size=(size["height"], size["width"]) , keep_aspect_ratio=a , multiple=a , ) return resize(a , size=a , resample=a , data_format=a , **a ) def __a ( self , a , a , a = None , **a , ): return rescale(a , scale=a , data_format=a , **a ) def __a ( self , a , a , a , a = None , **a , ): return normalize(a , mean=a , std=a , data_format=a , **a ) def __a ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ): UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(a ) UpperCamelCase__ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio UpperCamelCase__ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = make_list_of_images(a ) if not valid_images(a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(a ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=a , size=a , resample=a ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=a , mean=a , std=a ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(a , a ) for image in images] UpperCamelCase__ = {"pixel_values": images} return BatchFeature(data=a , tensor_type=a ) def __a ( self , a , a = None ): UpperCamelCase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a ) != len(a ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(a ): UpperCamelCase__ = target_sizes.numpy() UpperCamelCase__ = [] for idx in range(len(a ) ): UpperCamelCase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=a ) UpperCamelCase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a ) else: UpperCamelCase__ = logits.argmax(dim=1 ) UpperCamelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
223
0
from __future__ import annotations import time import numpy as np snake_case : Union[str, Any] = [8, 5, 9, 7] snake_case : Optional[int] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] snake_case : Union[str, Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class __lowercase : """simple docstring""" def __init__( self , A_ , A_ , A_ , )-> None: _SCREAMING_SNAKE_CASE = claim_vector _SCREAMING_SNAKE_CASE = allocated_resources_table _SCREAMING_SNAKE_CASE = maximum_claim_table def __magic_name__ ( self )-> list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def __magic_name__ ( self )-> list[int]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def __magic_name__ ( self )-> list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(A_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def __magic_name__ ( self )-> dict[int, list[int]]: return {self.__need().index(A_ ): i for i in self.__need()} def __magic_name__ ( self , **A_ )-> None: _SCREAMING_SNAKE_CASE = self.__need() _SCREAMING_SNAKE_CASE = self.__allocated_resources_table _SCREAMING_SNAKE_CASE = self.__available_resources() _SCREAMING_SNAKE_CASE = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: _SCREAMING_SNAKE_CASE = False for each_need in need_list: _SCREAMING_SNAKE_CASE = True for index, need in enumerate(A_ ): if need > available_resources[index]: _SCREAMING_SNAKE_CASE = False break if execution: _SCREAMING_SNAKE_CASE = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: _SCREAMING_SNAKE_CASE = original_need_index print(F'''Process {process_number + 1} is executing.''' ) # remove the process run from stack need_list.remove(A_ ) # update available/freed resources stack _SCREAMING_SNAKE_CASE = np.array(A_ ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(A_ ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def __magic_name__ ( self )-> str: print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( F'''P{self.__allocated_resources_table.index(A_ ) + 1}''' + ' '.join(F'''{it:>8}''' for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( F'''P{self.__maximum_claim_table.index(A_ ) + 1}''' + ' '.join(F'''{it:>8}''' for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(A_ ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(A_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
605
from __future__ import annotations from typing import Any def SCREAMING_SNAKE_CASE ( UpperCAmelCase__ ): """simple docstring""" if not postfix_notation: return 0 _SCREAMING_SNAKE_CASE = {'+', '-', '*', '/'} _SCREAMING_SNAKE_CASE = [] for token in postfix_notation: if token in operations: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(UpperCAmelCase__ ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
605
1
"""simple docstring""" import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowerCAmelCase ( snake_case__ ): '''simple docstring''' A = (KDPMaDiscreteScheduler,) A = 1_0 def lowerCamelCase__ ( self :Tuple , **lowerCamelCase_ :Dict ) -> int: """simple docstring""" UpperCamelCase__ = { "num_train_timesteps": 1_1_0_0, "beta_start": 0.0_001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCamelCase_ ) return config def lowerCamelCase__ ( self :Optional[int] ) -> List[str]: """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def lowerCamelCase__ ( self :Optional[int] ) -> str: """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCamelCase_ , beta_end=lowerCamelCase_ ) def lowerCamelCase__ ( self :Union[str, Any] ) -> Optional[int]: """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCamelCase_ ) def lowerCamelCase__ ( self :Any ) -> Optional[Any]: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def lowerCamelCase__ ( self :Dict ) -> str: """simple docstring""" UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config(prediction_type="v_prediction" ) UpperCamelCase__ = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCamelCase__ = sample.to(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase__ = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = model(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = output.prev_sample UpperCamelCase__ = torch.sum(torch.abs(lowerCamelCase_ ) ) UpperCamelCase__ = torch.mean(torch.abs(lowerCamelCase_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0_002 ) < 1e-3 def lowerCamelCase__ ( self :Tuple ) -> Union[str, Any]: """simple docstring""" if torch_device == "mps": return UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCamelCase__ = sample.to(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase__ = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = model(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = output.prev_sample UpperCamelCase__ = torch.sum(torch.abs(lowerCamelCase_ ) ) UpperCamelCase__ = torch.mean(torch.abs(lowerCamelCase_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 def lowerCamelCase__ ( self :Union[str, Any] ) -> Any: """simple docstring""" if torch_device == "mps": return UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCamelCase_ ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter.to(lowerCamelCase_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCamelCase__ = scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = model(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = output.prev_sample UpperCamelCase__ = torch.sum(torch.abs(lowerCamelCase_ ) ) UpperCamelCase__ = torch.mean(torch.abs(lowerCamelCase_ ) ) if str(lowerCamelCase_ ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1e-2 assert abs(result_mean.item() - 0.0_266 ) < 1e-3
304
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowerCAmelCase ( snake_case__ ): '''simple docstring''' def __init__( self :int , lowerCamelCase_ :TransformeraDModel , lowerCamelCase_ :AutoencoderKL , lowerCamelCase_ :KarrasDiffusionSchedulers , lowerCamelCase_ :Optional[Dict[int, str]] = None , ) -> int: """simple docstring""" super().__init__() self.register_modules(transformer=lowerCamelCase_ , vae=lowerCamelCase_ , scheduler=lowerCamelCase_ ) # create a imagenet -> id dictionary for easier use UpperCamelCase__ = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): UpperCamelCase__ = int(lowerCamelCase_ ) UpperCamelCase__ = dict(sorted(self.labels.items() ) ) def lowerCamelCase__ ( self :Tuple , lowerCamelCase_ :Union[str, List[str]] ) -> List[int]: """simple docstring""" if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCamelCase__ = list(lowerCamelCase_ ) for l in label: if l not in self.labels: raise ValueError( f'{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.' ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self :Optional[int] , lowerCamelCase_ :List[int] , lowerCamelCase_ :float = 4.0 , lowerCamelCase_ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase_ :int = 5_0 , lowerCamelCase_ :Optional[str] = "pil" , lowerCamelCase_ :bool = True , ) -> Union[ImagePipelineOutput, Tuple]: """simple docstring""" UpperCamelCase__ = len(lowerCamelCase_ ) UpperCamelCase__ = self.transformer.config.sample_size UpperCamelCase__ = self.transformer.config.in_channels UpperCamelCase__ = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowerCamelCase_ , device=self.device , dtype=self.transformer.dtype , ) UpperCamelCase__ = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents UpperCamelCase__ = torch.tensor(lowerCamelCase_ , device=self.device ).reshape(-1 ) UpperCamelCase__ = torch.tensor([1_0_0_0] * batch_size , device=self.device ) UpperCamelCase__ = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowerCamelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: UpperCamelCase__ = latent_model_input[: len(lowerCamelCase_ ) // 2] UpperCamelCase__ = torch.cat([half, half] , dim=0 ) UpperCamelCase__ = self.scheduler.scale_model_input(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase__ = t if not torch.is_tensor(lowerCamelCase_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) UpperCamelCase__ = latent_model_input.device.type == "mps" if isinstance(lowerCamelCase_ , lowerCamelCase_ ): UpperCamelCase__ = torch.floataa if is_mps else torch.floataa else: UpperCamelCase__ = torch.intaa if is_mps else torch.intaa UpperCamelCase__ = torch.tensor([timesteps] , dtype=lowerCamelCase_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: UpperCamelCase__ = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCamelCase__ = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output UpperCamelCase__ = self.transformer( lowerCamelCase_ , timestep=lowerCamelCase_ , class_labels=lowerCamelCase_ ).sample # perform guidance if guidance_scale > 1: UpperCamelCase__ , UpperCamelCase__ = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] UpperCamelCase__ , UpperCamelCase__ = torch.split(lowerCamelCase_ , len(lowerCamelCase_ ) // 2 , dim=0 ) UpperCamelCase__ = uncond_eps + guidance_scale * (cond_eps - uncond_eps) UpperCamelCase__ = torch.cat([half_eps, half_eps] , dim=0 ) UpperCamelCase__ = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: UpperCamelCase__ , UpperCamelCase__ = torch.split(lowerCamelCase_ , lowerCamelCase_ , dim=1 ) else: UpperCamelCase__ = noise_pred # compute previous image: x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample if guidance_scale > 1: UpperCamelCase__ , UpperCamelCase__ = latent_model_input.chunk(2 , dim=0 ) else: UpperCamelCase__ = latent_model_input UpperCamelCase__ = 1 / self.vae.config.scaling_factor * latents UpperCamelCase__ = self.vae.decode(lowerCamelCase_ ).sample UpperCamelCase__ = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCamelCase__ = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(lowerCamelCase_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowerCamelCase_ )
304
1
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class UpperCAmelCase ( __UpperCAmelCase ): @require_torch def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' UpperCamelCase = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' UpperCamelCase = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache UpperCamelCase = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(_lowerCamelCase ) BertModel.from_pretrained(_lowerCamelCase ) BertTokenizer.from_pretrained(_lowerCamelCase ) pipeline(task="""fill-mask""" , model=_lowerCamelCase ) # baseline - just load from_pretrained with normal network UpperCamelCase = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed UpperCamelCase = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCamelCase = '''1''' UpperCamelCase = subprocess.run(_lowerCamelCase , env=_lowerCamelCase , check=_lowerCamelCase , capture_output=_lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' UpperCamelCase = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' UpperCamelCase = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache UpperCamelCase = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(_lowerCamelCase ) BertModel.from_pretrained(_lowerCamelCase ) BertTokenizer.from_pretrained(_lowerCamelCase ) pipeline(task="""fill-mask""" , model=_lowerCamelCase ) # baseline - just load from_pretrained with normal network UpperCamelCase = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed UpperCamelCase = self.get_env() UpperCamelCase = subprocess.run(_lowerCamelCase , env=_lowerCamelCase , check=_lowerCamelCase , capture_output=_lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' UpperCamelCase = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' UpperCamelCase = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network UpperCamelCase = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed UpperCamelCase = self.get_env() UpperCamelCase = subprocess.run(_lowerCamelCase , env=_lowerCamelCase , check=_lowerCamelCase , capture_output=_lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # next emulate no network UpperCamelCase = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCamelCase = '''1''' UpperCamelCase = subprocess.run(_lowerCamelCase , env=_lowerCamelCase , check=_lowerCamelCase , capture_output=_lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) @require_torch def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = ''' from transformers import pipeline ''' UpperCamelCase = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' UpperCamelCase = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' UpperCamelCase = self.get_env() UpperCamelCase = '''1''' UpperCamelCase = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] UpperCamelCase = subprocess.run(_lowerCamelCase , env=_lowerCamelCase , check=_lowerCamelCase , capture_output=_lowerCamelCase ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""" ) , ) @require_torch def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = ''' from transformers import AutoModel ''' UpperCamelCase = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network UpperCamelCase = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed UpperCamelCase = self.get_env() UpperCamelCase = subprocess.run(_lowerCamelCase , env=_lowerCamelCase , check=_lowerCamelCase , capture_output=_lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCamelCase = '''1''' UpperCamelCase = subprocess.run(_lowerCamelCase , env=_lowerCamelCase , check=_lowerCamelCase , capture_output=_lowerCamelCase ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn("""success""" , result.stdout.decode() )
386
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class snake_case ( __UpperCAmelCase ): lowerCamelCase__ = '''roc_bert''' def __init__( self :Union[str, Any] , _lowerCamelCase :Any=3_0_5_2_2 , _lowerCamelCase :str=7_6_8 , _lowerCamelCase :Optional[Any]=1_2 , _lowerCamelCase :List[str]=1_2 , _lowerCamelCase :str=3_0_7_2 , _lowerCamelCase :Tuple="gelu" , _lowerCamelCase :List[Any]=0.1 , _lowerCamelCase :List[str]=0.1 , _lowerCamelCase :Optional[int]=5_1_2 , _lowerCamelCase :Dict=2 , _lowerCamelCase :Any=0.0_2 , _lowerCamelCase :Optional[int]=1e-12 , _lowerCamelCase :str=True , _lowerCamelCase :Any=0 , _lowerCamelCase :List[str]="absolute" , _lowerCamelCase :List[Any]=None , _lowerCamelCase :Any=True , _lowerCamelCase :Union[str, Any]=True , _lowerCamelCase :str=7_6_8 , _lowerCamelCase :Union[str, Any]=9_1_0 , _lowerCamelCase :List[Any]=5_1_2 , _lowerCamelCase :Optional[int]=2_4_8_5_8 , _lowerCamelCase :Union[str, Any]=True , **_lowerCamelCase :str , ): __SCREAMING_SNAKE_CASE : List[str] = vocab_size __SCREAMING_SNAKE_CASE : int = max_position_embeddings __SCREAMING_SNAKE_CASE : List[str] = hidden_size __SCREAMING_SNAKE_CASE : str = num_hidden_layers __SCREAMING_SNAKE_CASE : int = num_attention_heads __SCREAMING_SNAKE_CASE : Any = intermediate_size __SCREAMING_SNAKE_CASE : Optional[int] = hidden_act __SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range __SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size __SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps __SCREAMING_SNAKE_CASE : Optional[int] = use_cache __SCREAMING_SNAKE_CASE : str = enable_pronunciation __SCREAMING_SNAKE_CASE : List[str] = enable_shape __SCREAMING_SNAKE_CASE : Tuple = pronunciation_embed_dim __SCREAMING_SNAKE_CASE : Optional[Any] = pronunciation_vocab_size __SCREAMING_SNAKE_CASE : str = shape_embed_dim __SCREAMING_SNAKE_CASE : Union[str, Any] = shape_vocab_size __SCREAMING_SNAKE_CASE : Tuple = concat_input __SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type __SCREAMING_SNAKE_CASE : str = classifier_dropout super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase )
674
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { "microsoft/swinv2-tiny-patch4-window8-256": ( "https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json" ), } class lowerCAmelCase__ ( __lowercase ): UpperCamelCase_ : Optional[int] = "swinv2" UpperCamelCase_ : Union[str, Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , a=2_24 , a=4 , a=3 , a=96 , a=[2, 2, 6, 2] , a=[3, 6, 12, 24] , a=7 , a=4.0 , a=True , a=0.0 , a=0.0 , a=0.1 , a="gelu" , a=False , a=0.02 , a=1e-5 , a=32 , **a , ) -> Any: '''simple docstring''' super().__init__(**a ) _UpperCamelCase = image_size _UpperCamelCase = patch_size _UpperCamelCase = num_channels _UpperCamelCase = embed_dim _UpperCamelCase = depths _UpperCamelCase = len(a ) _UpperCamelCase = num_heads _UpperCamelCase = window_size _UpperCamelCase = mlp_ratio _UpperCamelCase = qkv_bias _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = drop_path_rate _UpperCamelCase = hidden_act _UpperCamelCase = use_absolute_embeddings _UpperCamelCase = layer_norm_eps _UpperCamelCase = initializer_range _UpperCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _UpperCamelCase = int(embed_dim * 2 ** (len(a ) - 1) ) _UpperCamelCase = (0, 0, 0, 0)
202
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): UpperCamelCase_ : List[Any] = StableDiffusionInpaintPipeline UpperCamelCase_ : int = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS UpperCamelCase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase_ : Tuple = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase_ : int = frozenset([] ) def A_ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a , ) _UpperCamelCase = PNDMScheduler(skip_prk_steps=a ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_28 , ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act="""gelu""" , projection_dim=5_12 , ) _UpperCamelCase = CLIPTextModel(a ) _UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _UpperCamelCase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def A_ ( self , a , a=0 ) -> List[Any]: '''simple docstring''' _UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(a ) ).to(a ) _UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] _UpperCamelCase = Image.fromarray(np.uinta(a ) ).convert("""RGB""" ).resize((64, 64) ) _UpperCamelCase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(a ).startswith("""mps""" ): _UpperCamelCase = torch.manual_seed(a ) else: _UpperCamelCase = torch.Generator(device=a ).manual_seed(a ) _UpperCamelCase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionInpaintPipeline(**a ) _UpperCamelCase = sd_pipe.to(a ) sd_pipe.set_progress_bar_config(disable=a ) _UpperCamelCase = self.get_dummy_inputs(a ) _UpperCamelCase = sd_pipe(**a ).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.4727, 0.5735, 0.3941, 0.5446, 0.5926, 0.4394, 0.5062, 0.4654, 0.4476] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def A_ ( self ) -> Tuple: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def A_ ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) _UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting""" _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained(a , safety_checker=a ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() _UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=a , image=a , mask_image=a , generator=a , output_type="""np""" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 9e-3 def A_ ( self ) -> str: '''simple docstring''' _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _UpperCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) _UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting""" _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( a , torch_dtype=torch.floataa , safety_checker=a , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing() _UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=a , image=a , mask_image=a , generator=a , output_type="""np""" , ) _UpperCamelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 5e-1 def A_ ( self ) -> Dict: '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) _UpperCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) _UpperCamelCase = """stabilityai/stable-diffusion-2-inpainting""" _UpperCamelCase = PNDMScheduler.from_pretrained(a , subfolder="""scheduler""" ) _UpperCamelCase = StableDiffusionInpaintPipeline.from_pretrained( a , safety_checker=a , scheduler=a , torch_dtype=torch.floataa , ) pipe.to(a ) pipe.set_progress_bar_config(disable=a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() _UpperCamelCase = """Face of a yellow cat, high resolution, sitting on a park bench""" _UpperCamelCase = torch.manual_seed(0 ) _UpperCamelCase = pipe( prompt=a , image=a , mask_image=a , generator=a , num_inference_steps=2 , output_type="""np""" , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
202
1
from math import pi, sqrt, tan def A__ ( snake_case_ : float ): if side_length < 0: raise ValueError('''surface_area_cube() only accepts non-negative values''' ) return 6 * side_length**2 def A__ ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): if length < 0 or breadth < 0 or height < 0: raise ValueError('''surface_area_cuboid() only accepts non-negative values''' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def A__ ( snake_case_ : float ): if radius < 0: raise ValueError('''surface_area_sphere() only accepts non-negative values''' ) return 4 * pi * radius**2 def A__ ( snake_case_ : float ): if radius < 0: raise ValueError('''surface_area_hemisphere() only accepts non-negative values''' ) return 3 * pi * radius**2 def A__ ( snake_case_ : float , snake_case_ : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cone() only accepts non-negative values''' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def A__ ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( '''surface_area_conical_frustum() only accepts non-negative values''' ) SCREAMING_SNAKE_CASE__: Optional[Any]= (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def A__ ( snake_case_ : float , snake_case_ : float ): if radius < 0 or height < 0: raise ValueError('''surface_area_cylinder() only accepts non-negative values''' ) return 2 * pi * radius * (height + radius) def A__ ( snake_case_ : float , snake_case_ : float ): if torus_radius < 0 or tube_radius < 0: raise ValueError('''surface_area_torus() only accepts non-negative values''' ) if torus_radius < tube_radius: raise ValueError( '''surface_area_torus() does not support spindle or self intersecting tori''' ) return 4 * pow(snake_case_ , 2 ) * torus_radius * tube_radius def A__ ( snake_case_ : float , snake_case_ : float ): if length < 0 or width < 0: raise ValueError('''area_rectangle() only accepts non-negative values''' ) return length * width def A__ ( snake_case_ : float ): if side_length < 0: raise ValueError('''area_square() only accepts non-negative values''' ) return side_length**2 def A__ ( snake_case_ : float , snake_case_ : float ): if base < 0 or height < 0: raise ValueError('''area_triangle() only accepts non-negative values''' ) return (base * height) / 2 def A__ ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('''area_triangle_three_sides() only accepts non-negative values''' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('''Given three sides do not form a triangle''' ) SCREAMING_SNAKE_CASE__: Dict= (sidea + sidea + sidea) / 2 SCREAMING_SNAKE_CASE__: Dict= sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def A__ ( snake_case_ : float , snake_case_ : float ): if base < 0 or height < 0: raise ValueError('''area_parallelogram() only accepts non-negative values''' ) return base * height def A__ ( snake_case_ : float , snake_case_ : float , snake_case_ : float ): if basea < 0 or basea < 0 or height < 0: raise ValueError('''area_trapezium() only accepts non-negative values''' ) return 1 / 2 * (basea + basea) * height def A__ ( snake_case_ : float ): if radius < 0: raise ValueError('''area_circle() only accepts non-negative values''' ) return pi * radius**2 def A__ ( snake_case_ : float , snake_case_ : float ): if radius_x < 0 or radius_y < 0: raise ValueError('''area_ellipse() only accepts non-negative values''' ) return pi * radius_x * radius_y def A__ ( snake_case_ : float , snake_case_ : float ): if diagonal_a < 0 or diagonal_a < 0: raise ValueError('''area_rhombus() only accepts non-negative values''' ) return 1 / 2 * diagonal_a * diagonal_a def A__ ( snake_case_ : int , snake_case_ : float ): if not isinstance(snake_case_ , snake_case_ ) or sides < 3: raise ValueError( '''area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides''' ) elif length < 0: raise ValueError( '''area_reg_polygon() only accepts non-negative values as \ length of a side''' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(f'''Rectangle: {area_rectangle(1_0, 2_0) = }''') print(f'''Square: {area_square(1_0) = }''') print(f'''Triangle: {area_triangle(1_0, 1_0) = }''') print(f'''Triangle: {area_triangle_three_sides(5, 1_2, 1_3) = }''') print(f'''Parallelogram: {area_parallelogram(1_0, 2_0) = }''') print(f'''Rhombus: {area_rhombus(1_0, 2_0) = }''') print(f'''Trapezium: {area_trapezium(1_0, 2_0, 3_0) = }''') print(f'''Circle: {area_circle(2_0) = }''') print(f'''Ellipse: {area_ellipse(1_0, 2_0) = }''') print('\nSurface Areas of various geometric shapes: \n') print(f'''Cube: {surface_area_cube(2_0) = }''') print(f'''Cuboid: {surface_area_cuboid(1_0, 2_0, 3_0) = }''') print(f'''Sphere: {surface_area_sphere(2_0) = }''') print(f'''Hemisphere: {surface_area_hemisphere(2_0) = }''') print(f'''Cone: {surface_area_cone(1_0, 2_0) = }''') print(f'''Conical Frustum: {surface_area_conical_frustum(1_0, 2_0, 3_0) = }''') print(f'''Cylinder: {surface_area_cylinder(1_0, 2_0) = }''') print(f'''Torus: {surface_area_torus(2_0, 1_0) = }''') print(f'''Equilateral Triangle: {area_reg_polygon(3, 1_0) = }''') print(f'''Square: {area_reg_polygon(4, 1_0) = }''') print(f'''Reqular Pentagon: {area_reg_polygon(5, 1_0) = }''')
64
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase : Tuple = logging.get_logger(__name__) lowercase : Dict = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class _a (a__ ): '''simple docstring''' lowerCAmelCase_ : str = """deta""" lowerCAmelCase_ : Any = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self ,__a=None ,__a=900 ,__a=2_048 ,__a=6 ,__a=2_048 ,__a=8 ,__a=6 ,__a=1_024 ,__a=8 ,__a=0.0 ,__a=True ,__a="relu" ,__a=256 ,__a=0.1 ,__a=0.0 ,__a=0.0 ,__a=0.02 ,__a=1.0 ,__a=True ,__a=False ,__a="sine" ,__a=5 ,__a=4 ,__a=4 ,__a=True ,__a=300 ,__a=True ,__a=True ,__a=1 ,__a=5 ,__a=2 ,__a=1 ,__a=1 ,__a=5 ,__a=2 ,__a=0.1 ,__a=0.25 ,**__a ,) -> int: if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) snake_case : int = CONFIG_MAPPING["""resnet"""](out_features=["""stage2""", """stage3""", """stage4"""] ) else: if isinstance(__a ,__a ): snake_case : str = backbone_config.pop("""model_type""" ) snake_case : Optional[Any] = CONFIG_MAPPING[backbone_model_type] snake_case : List[Any] = config_class.from_dict(__a ) snake_case : Any = backbone_config snake_case : Optional[Any] = num_queries snake_case : Dict = max_position_embeddings snake_case : int = d_model snake_case : str = encoder_ffn_dim snake_case : Dict = encoder_layers snake_case : List[Any] = encoder_attention_heads snake_case : int = decoder_ffn_dim snake_case : List[Any] = decoder_layers snake_case : Dict = decoder_attention_heads snake_case : Dict = dropout snake_case : Dict = attention_dropout snake_case : List[Any] = activation_dropout snake_case : Dict = activation_function snake_case : List[Any] = init_std snake_case : Any = init_xavier_std snake_case : List[Any] = encoder_layerdrop snake_case : Optional[Any] = auxiliary_loss snake_case : Optional[int] = position_embedding_type # deformable attributes snake_case : Tuple = num_feature_levels snake_case : List[Any] = encoder_n_points snake_case : Dict = decoder_n_points snake_case : int = two_stage snake_case : Any = two_stage_num_proposals snake_case : List[str] = with_box_refine snake_case : Tuple = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("""If two_stage is True, with_box_refine must be True.""" ) # Hungarian matcher snake_case : Optional[int] = class_cost snake_case : int = bbox_cost snake_case : Optional[int] = giou_cost # Loss coefficients snake_case : str = mask_loss_coefficient snake_case : Any = dice_loss_coefficient snake_case : List[Any] = bbox_loss_coefficient snake_case : List[Any] = giou_loss_coefficient snake_case : List[str] = eos_coefficient snake_case : Optional[Any] = focal_alpha super().__init__(is_encoder_decoder=__a ,**__a ) @property def snake_case_ ( self ) -> int: return self.encoder_attention_heads @property def snake_case_ ( self ) -> int: return self.d_model def snake_case_ ( self ) -> List[str]: snake_case : List[str] = copy.deepcopy(self.__dict__ ) snake_case : List[str] = self.backbone_config.to_dict() snake_case : List[Any] = self.__class__.model_type return output
116
0
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) UpperCAmelCase_ = logging.getLogger() def UpperCAmelCase ( ) -> List[str]: _snake_case : Dict = argparse.ArgumentParser() parser.add_argument("""-f""" ) _snake_case : List[Any] = parser.parse_args() return args.f def UpperCAmelCase ( A__ ) -> Tuple: _snake_case : Union[str, Any] = {} _snake_case : int = os.path.join(A__ , """all_results.json""" ) if os.path.exists(A__ ): with open(A__ , """r""" ) as f: _snake_case : int = json.load(A__ ) else: raise ValueError(f'''can\'t find {path}''' ) return results def UpperCAmelCase ( ) -> List[str]: _snake_case : Union[str, Any] = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() UpperCAmelCase_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __SCREAMING_SNAKE_CASE ( lowercase__ ): """simple docstring""" @classmethod def __lowerCamelCase( cls ): """simple docstring""" _snake_case : Union[str, Any] = tempfile.mkdtemp() _snake_case : Optional[int] = os.path.join(cls.tmpdir , """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) _snake_case : List[str] = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def __lowerCamelCase( cls ): """simple docstring""" shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : Any = self.get_auto_remove_tmp_dir() _snake_case : Optional[int] = f''' {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) _snake_case : Optional[Any] = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , """glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : Dict = self.get_auto_remove_tmp_dir() _snake_case : int = f''' {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking '''.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) _snake_case : Optional[Any] = get_results(SCREAMING_SNAKE_CASE__ ) self.assertLess(result["""perplexity"""] , 1_00 ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , """clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : Dict = self.get_auto_remove_tmp_dir() _snake_case : Any = f''' {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _snake_case : Union[str, Any] = get_results(SCREAMING_SNAKE_CASE__ ) self.assertLess(result["""perplexity"""] , 42 ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , """mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : int = 7 if get_gpu_count() > 1 else 2 _snake_case : Dict = self.get_auto_remove_tmp_dir() _snake_case : Union[str, Any] = f''' {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _snake_case : List[Any] = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.75 ) self.assertLess(result["""train_loss"""] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , """ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : List[str] = self.get_auto_remove_tmp_dir() _snake_case : List[str] = f''' {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _snake_case : Any = get_results(SCREAMING_SNAKE_CASE__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""] , 28 ) self.assertGreaterEqual(result["""eval_exact"""] , 28 ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , """qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : List[Any] = self.get_auto_remove_tmp_dir() _snake_case : Any = f''' {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking '''.split() run_command(self._launch_args + testargs ) _snake_case : Union[str, Any] = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result["""eval_accuracy"""] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , """swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : Union[str, Any] = self.get_auto_remove_tmp_dir() _snake_case : List[str] = f''' {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _snake_case : List[str] = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result["""eval_rouge1"""] , 10 ) self.assertGreaterEqual(result["""eval_rouge2"""] , 2 ) self.assertGreaterEqual(result["""eval_rougeL"""] , 7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""] , 7 ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , """summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : int = self.get_auto_remove_tmp_dir() _snake_case : str = f''' {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking '''.split() run_command(self._launch_args + testargs ) _snake_case : Dict = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result["""eval_bleu"""] , 30 ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , """translation_no_trainer""" ) ) ) @slow def __lowerCamelCase( self ): """simple docstring""" _snake_case : Optional[Any] = logging.StreamHandler(sys.stdout ) logger.addHandler(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = self.get_auto_remove_tmp_dir() _snake_case : Any = f''' {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch '''.split() run_command(self._launch_args + testargs ) _snake_case : Union[str, Any] = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result["""eval_overall_accuracy"""] , 0.10 ) @mock.patch.dict(os.environ , {"""WANDB_MODE""": """offline"""} ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : Optional[Any] = self.get_auto_remove_tmp_dir() _snake_case : Optional[int] = f''' {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 '''.split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) _snake_case : Dict = get_results(SCREAMING_SNAKE_CASE__ ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , """step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE__ , """image_classification_no_trainer""" ) ) )
703
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class __SCREAMING_SNAKE_CASE : """simple docstring""" SCREAMING_SNAKE_CASE_ = BlenderbotSmallConfig SCREAMING_SNAKE_CASE_ = {} SCREAMING_SNAKE_CASE_ = 'gelu' def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=99 , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=20 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=0 , ): """simple docstring""" _snake_case : Any = parent _snake_case : str = batch_size _snake_case : Optional[Any] = seq_length _snake_case : Union[str, Any] = is_training _snake_case : int = use_labels _snake_case : int = vocab_size _snake_case : Tuple = hidden_size _snake_case : Any = num_hidden_layers _snake_case : Optional[int] = num_attention_heads _snake_case : List[str] = intermediate_size _snake_case : int = hidden_dropout_prob _snake_case : str = attention_probs_dropout_prob _snake_case : str = max_position_embeddings _snake_case : Optional[Any] = eos_token_id _snake_case : Dict = pad_token_id _snake_case : Dict = bos_token_id def __lowerCamelCase( self ): """simple docstring""" _snake_case : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _snake_case : Union[str, Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _snake_case : Tuple = tf.concat([input_ids, eos_tensor] , axis=1 ) _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case : int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _snake_case : Dict = prepare_blenderbot_small_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, inputs_dict def __lowerCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _snake_case : Dict = TFBlenderbotSmallModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder() _snake_case : Any = inputs_dict["""input_ids"""] _snake_case : Optional[int] = input_ids[:1, :] _snake_case : Any = inputs_dict["""attention_mask"""][:1, :] _snake_case : Dict = inputs_dict["""head_mask"""] _snake_case : Dict = 1 # first forward pass _snake_case : str = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , head_mask=SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : Tuple = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Any = ids_tensor((self.batch_size, 3) , config.vocab_size ) _snake_case : Dict = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _snake_case : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) _snake_case : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _snake_case : Dict = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ )[0] _snake_case : Dict = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _snake_case : List[str] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _snake_case : List[Any] = output_from_no_past[:, -3:, random_slice_idx] _snake_case : List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rtol=1e-3 ) def UpperCAmelCase ( A__ , A__ , A__ , A__=None , A__=None , A__=None , A__=None , A__=None , ) -> Union[str, Any]: if attention_mask is None: _snake_case : str = tf.cast(tf.math.not_equal(A__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case : Optional[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case : Optional[Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : Optional[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _snake_case : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) SCREAMING_SNAKE_CASE_ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () SCREAMING_SNAKE_CASE_ = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def __lowerCamelCase( self ): """simple docstring""" _snake_case : int = TFBlenderbotSmallModelTester(self ) _snake_case : List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase( self ): """simple docstring""" self.config_tester.run_common_tests() def __lowerCamelCase( self ): """simple docstring""" _snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*SCREAMING_SNAKE_CASE__ ) @require_tokenizers @require_tf class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] SCREAMING_SNAKE_CASE_ = 'facebook/blenderbot_small-90M' @cached_property def __lowerCamelCase( self ): """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" ) @cached_property def __lowerCamelCase( self ): """simple docstring""" _snake_case : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def __lowerCamelCase( self ): """simple docstring""" _snake_case : Tuple = self.tokenizer(self.src_text , return_tensors="""tf""" ) _snake_case : List[str] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=SCREAMING_SNAKE_CASE__ , ) _snake_case : Optional[int] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=SCREAMING_SNAKE_CASE__ )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
519
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = { '''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''', # See all WavLM models at https://huggingface.co/models?filter=wavlm } class a ( __snake_case ): SCREAMING_SNAKE_CASE : Optional[Any] = """wavlm""" def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : int=32 , __SCREAMING_SNAKE_CASE : Any=768 , __SCREAMING_SNAKE_CASE : Optional[int]=12 , __SCREAMING_SNAKE_CASE : int=12 , __SCREAMING_SNAKE_CASE : Optional[Any]=3072 , __SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : Any=0.1 , __SCREAMING_SNAKE_CASE : List[str]=0.1 , __SCREAMING_SNAKE_CASE : Any=0.0 , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : str=0.1 , __SCREAMING_SNAKE_CASE : Any=0.02 , __SCREAMING_SNAKE_CASE : Optional[int]=1e-5 , __SCREAMING_SNAKE_CASE : Union[str, Any]="group" , __SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , __SCREAMING_SNAKE_CASE : List[str]=(512, 512, 512, 512, 512, 512, 512) , __SCREAMING_SNAKE_CASE : Optional[int]=(5, 2, 2, 2, 2, 2, 2) , __SCREAMING_SNAKE_CASE : Union[str, Any]=(10, 3, 3, 3, 3, 2, 2) , __SCREAMING_SNAKE_CASE : Dict=False , __SCREAMING_SNAKE_CASE : int=128 , __SCREAMING_SNAKE_CASE : Optional[Any]=16 , __SCREAMING_SNAKE_CASE : Optional[Any]=320 , __SCREAMING_SNAKE_CASE : List[str]=800 , __SCREAMING_SNAKE_CASE : Optional[Any]=False , __SCREAMING_SNAKE_CASE : Any=True , __SCREAMING_SNAKE_CASE : Optional[Any]=0.05 , __SCREAMING_SNAKE_CASE : Union[str, Any]=10 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : int=0.0 , __SCREAMING_SNAKE_CASE : Any=10 , __SCREAMING_SNAKE_CASE : Optional[Any]=320 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : List[Any]=0.1 , __SCREAMING_SNAKE_CASE : Tuple=100 , __SCREAMING_SNAKE_CASE : str=256 , __SCREAMING_SNAKE_CASE : Optional[int]=256 , __SCREAMING_SNAKE_CASE : Optional[int]=0.1 , __SCREAMING_SNAKE_CASE : Dict="mean" , __SCREAMING_SNAKE_CASE : int=False , __SCREAMING_SNAKE_CASE : str=False , __SCREAMING_SNAKE_CASE : Tuple=256 , __SCREAMING_SNAKE_CASE : Dict=(512, 512, 512, 512, 1500) , __SCREAMING_SNAKE_CASE : int=(5, 3, 3, 1, 1) , __SCREAMING_SNAKE_CASE : Optional[int]=(1, 2, 3, 1, 1) , __SCREAMING_SNAKE_CASE : Dict=512 , __SCREAMING_SNAKE_CASE : Union[str, Any]=80 , __SCREAMING_SNAKE_CASE : Dict=0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=1 , __SCREAMING_SNAKE_CASE : Any=2 , __SCREAMING_SNAKE_CASE : Tuple=False , __SCREAMING_SNAKE_CASE : str=3 , __SCREAMING_SNAKE_CASE : Union[str, Any]=2 , __SCREAMING_SNAKE_CASE : int=3 , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : List[Any] , ) -> Dict: super().__init__(**__SCREAMING_SNAKE_CASE , pad_token_id=__SCREAMING_SNAKE_CASE , bos_token_id=__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = hidden_size lowerCamelCase_ = feat_extract_norm lowerCamelCase_ = feat_extract_activation lowerCamelCase_ = list(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = list(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = list(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = conv_bias lowerCamelCase_ = num_buckets lowerCamelCase_ = max_bucket_distance lowerCamelCase_ = num_conv_pos_embeddings lowerCamelCase_ = num_conv_pos_embedding_groups lowerCamelCase_ = len(self.conv_dim ) lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = feat_proj_dropout lowerCamelCase_ = final_dropout lowerCamelCase_ = layerdrop lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = num_ctc_classes lowerCamelCase_ = vocab_size lowerCamelCase_ = do_stable_layer_norm lowerCamelCase_ = use_weighted_layer_sum lowerCamelCase_ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==' ' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =' F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase_ = apply_spec_augment lowerCamelCase_ = mask_time_prob lowerCamelCase_ = mask_time_length lowerCamelCase_ = mask_time_min_masks lowerCamelCase_ = mask_feature_prob lowerCamelCase_ = mask_feature_length # parameters for pretraining with codevector quantized representations lowerCamelCase_ = num_codevectors_per_group lowerCamelCase_ = num_codevector_groups lowerCamelCase_ = contrastive_logits_temperature lowerCamelCase_ = num_negatives lowerCamelCase_ = codevector_dim lowerCamelCase_ = proj_codevector_dim lowerCamelCase_ = diversity_loss_weight # ctc loss lowerCamelCase_ = ctc_loss_reduction lowerCamelCase_ = ctc_zero_infinity # adapter lowerCamelCase_ = add_adapter lowerCamelCase_ = adapter_kernel_size lowerCamelCase_ = adapter_stride lowerCamelCase_ = num_adapter_layers lowerCamelCase_ = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. lowerCamelCase_ = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. lowerCamelCase_ = list(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = list(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = list(__SCREAMING_SNAKE_CASE ) lowerCamelCase_ = xvector_output_dim @property def UpperCamelCase ( self : Tuple ) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1 )
549
"""simple docstring""" import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class a ( unittest.TestCase ): @require_torch def UpperCamelCase ( self : str ) -> str: lowerCamelCase_ = pipeline( task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused' ) lowerCamelCase_ = load_dataset('ashraq/esc50' ) lowerCamelCase_ = dataset['train']['audio'][-1]['array'] lowerCamelCase_ = audio_classifier(__SCREAMING_SNAKE_CASE , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , [{'score': 0.501, 'label': 'Sound of a dog'}, {'score': 0.499, 'label': 'Sound of vaccum cleaner'}] , ) @unittest.skip('No models are available in TF' ) def UpperCamelCase ( self : Tuple ) -> Optional[Any]: pass @slow @require_torch def UpperCamelCase ( self : Optional[Any] ) -> Optional[Any]: lowerCamelCase_ = pipeline( task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , ) # This is an audio of a dog lowerCamelCase_ = load_dataset('ashraq/esc50' ) lowerCamelCase_ = dataset['train']['audio'][-1]['array'] lowerCamelCase_ = audio_classifier(__SCREAMING_SNAKE_CASE , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ] , ) lowerCamelCase_ = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , [ [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) lowerCamelCase_ = audio_classifier( [audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5 ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , [ [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) @unittest.skip('No models are available in TF' ) def UpperCamelCase ( self : Optional[int] ) -> int: pass
549
1
"""simple docstring""" import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib lowercase__ : Optional[int] = threading.Lock() lowercase__ : Optional[logging.Handler] = None lowercase__ : Optional[int] = { '''debug''': logging.DEBUG, '''info''': logging.INFO, '''warning''': logging.WARNING, '''error''': logging.ERROR, '''critical''': logging.CRITICAL, } lowercase__ : Tuple = logging.WARNING lowercase__ : Optional[int] = True def __lowercase ( ): snake_case_ : Dict = os.getenv('''TRANSFORMERS_VERBOSITY''' , _a ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, " f"has to be one of: { ', '.join(log_levels.keys() ) }" ) return _default_log_level def __lowercase ( ): return __name__.split('''.''' )[0] def __lowercase ( ): return logging.getLogger(_get_library_name() ) def __lowercase ( ): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return snake_case_ : Tuple = logging.StreamHandler() # Set sys.stderr as stream. snake_case_ : str = sys.stderr.flush # Apply our default configuration to the library root logger. snake_case_ : Optional[int] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) snake_case_ : Optional[int] = False def __lowercase ( ): global _default_handler with _lock: if not _default_handler: return snake_case_ : List[Any] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) snake_case_ : Optional[Any] = None def __lowercase ( ): return log_levels def __lowercase ( _a = None ): if name is None: snake_case_ : int = _get_library_name() _configure_library_root_logger() return logging.getLogger(_a ) def __lowercase ( ): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def __lowercase ( _a ): _configure_library_root_logger() _get_library_root_logger().setLevel(_a ) def __lowercase ( ): return set_verbosity(_a ) def __lowercase ( ): return set_verbosity(_a ) def __lowercase ( ): return set_verbosity(_a ) def __lowercase ( ): return set_verbosity(_a ) def __lowercase ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def __lowercase ( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def __lowercase ( _a ): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(_a ) def __lowercase ( _a ): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(_a ) def __lowercase ( ): _configure_library_root_logger() snake_case_ : Optional[int] = False def __lowercase ( ): _configure_library_root_logger() snake_case_ : str = True def __lowercase ( ): snake_case_ : Tuple = _get_library_root_logger().handlers for handler in handlers: snake_case_ : str = logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' ) handler.setFormatter(_a ) def __lowercase ( ): snake_case_ : Optional[Any] = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(_a ) def __lowercase ( self , *_a , **_a ): snake_case_ : str = os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' , _a ) if no_advisory_warnings: return self.warning(*_a , **_a ) lowercase__ : List[str] = warning_advice @functools.lru_cache(_a ) def __lowercase ( self , *_a , **_a ): self.warning(*_a , **_a ) lowercase__ : int = warning_once class _UpperCAmelCase : def __init__( self : Any , *lowercase_ : List[str] , **lowercase_ : Union[str, Any] ): # pylint: disable=unused-argument snake_case_ : Optional[Any] = args[0] if args else None def __iter__( self : int ): return iter(self._iterator ) def __getattr__( self : List[str] , lowercase_ : str ): def empty_fn(*lowercase_ : Optional[Any] , **lowercase_ : Tuple ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : int ): return self def __exit__( self : Tuple , lowercase_ : Union[str, Any] , lowercase_ : int , lowercase_ : Any ): return class _UpperCAmelCase : def __call__( self : Tuple , *lowercase_ : Optional[int] , **lowercase_ : int ): if _tqdm_active: return tqdm_lib.tqdm(*lowercase_ , **lowercase_ ) else: return EmptyTqdm(*lowercase_ , **lowercase_ ) def _snake_case ( self : List[Any] , *lowercase_ : str , **lowercase_ : str ): snake_case_ : Union[str, Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*lowercase_ , **lowercase_ ) def _snake_case ( self : str ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowercase__ : Dict = _tqdm_cls() def __lowercase ( ): global _tqdm_active return bool(_tqdm_active ) def __lowercase ( ): global _tqdm_active snake_case_ : str = True hf_hub_utils.enable_progress_bars() def __lowercase ( ): global _tqdm_active snake_case_ : int = False hf_hub_utils.disable_progress_bars()
714
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase): @slow def _snake_case ( self : List[Any] ): snake_case_ : List[Any] = AutoImageProcessor.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) snake_case_ : List[Any] = AutoModelForImageClassification.from_pretrained('''microsoft/dit-base-finetuned-rvlcdip''' ) model.to(lowercase_ ) from datasets import load_dataset snake_case_ : str = load_dataset('''nielsr/rvlcdip-demo''' ) snake_case_ : Tuple = dataset['''train'''][0]['''image'''].convert('''RGB''' ) snake_case_ : Union[str, Any] = image_processor(lowercase_ , return_tensors='''pt''' ).to(lowercase_ ) # forward pass with torch.no_grad(): snake_case_ : List[Any] = model(**lowercase_ ) snake_case_ : int = outputs.logits snake_case_ : Any = torch.Size((1, 16) ) self.assertEqual(logits.shape , lowercase_ ) snake_case_ : Any = torch.tensor( [-0.41_58, -0.40_92, -0.43_47] , device=lowercase_ , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ) )
485
0
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowercase_ ,lowercase_ ) -> list[int]: """simple docstring""" _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Optional[int] = len(__UpperCamelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: _UpperCamelCase : Optional[int] = i + 1 else: _UpperCamelCase : int = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"""{two_pointer([2, 7, 11, 15], 9) = }""")
624
import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def A ( __UpperCamelCase ) -> Union[str, Any]: if hor == 128: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D') elif hor == 32: A__ = ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D') A__ = (32, 64, 128, 256) A__ = ('UpResnetBlock1D', 'UpResnetBlock1D', 'UpResnetBlock1D') A__ = torch.load(f'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) A__ = model.state_dict() A__ = { 'down_block_types': down_block_types, 'block_out_channels': block_out_channels, 'up_block_types': up_block_types, 'layers_per_block': 1, 'use_timestep_embedding': True, 'out_block_type': 'OutConv1DBlock', 'norm_num_groups': 8, 'downsample_each_block': False, 'in_channels': 14, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'flip_sin_to_cos': False, 'freq_shift': 1, 'sample_size': 65_536, 'mid_block_type': 'MidResTemporalBlock1D', 'act_fn': 'mish', } A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , f'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(f'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) def A ( ) -> List[str]: A__ = { 'in_channels': 14, 'down_block_types': ('DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D', 'DownResnetBlock1D'), 'up_block_types': (), 'out_block_type': 'ValueFunction', 'mid_block_type': 'ValueFunctionMidBlock1D', 'block_out_channels': (32, 64, 128, 256), 'layers_per_block': 1, 'downsample_each_block': True, 'sample_size': 65_536, 'out_channels': 14, 'extra_in_channels': 0, 'time_embedding_type': 'positional', 'use_timestep_embedding': True, 'flip_sin_to_cos': False, 'freq_shift': 1, 'norm_num_groups': 8, 'act_fn': 'mish', } A__ = torch.load('/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch' ) A__ = model A__ = UNetaDModel(**__UpperCamelCase ) print(f'''length of state dict: {len(state_dict.keys() )}''' ) print(f'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) A__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): A__ = state_dict.pop(__UpperCamelCase ) hf_value_function.load_state_dict(__UpperCamelCase ) torch.save(hf_value_function.state_dict() , 'hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin' ) with open('hub/hopper-medium-v2/value_function/config.json' , 'w' ) as f: json.dump(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": unet(3_2) # unet(128) value_function()
9
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __A = logging.getLogger(__name__) def __A ( _lowercase , _lowercase , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , ): '''simple docstring''' _A = bnb_quantization_config.load_in_abit _A = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) _A = [] # custom device map if isinstance(_lowercase , _lowercase ) and len(device_map.keys() ) > 1: _A = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: _A = get_keys_to_not_convert(_lowercase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_lowercase ) _A = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: _A = [] _A = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_lowercase ) # compatibility with peft _A = load_in_abit _A = load_in_abit _A = get_parameter_device(_lowercase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) _A = replace_with_bnb_layers(_lowercase , _lowercase , modules_to_not_convert=_lowercase ) # convert param to the right dtype _A = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: _A = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) _A = getattr(_lowercase , _lowercase , _lowercase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(_lowercase ): param.to(_lowercase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( f"""The model device type is {model_device.type}. However, cuda is needed for quantization.""" '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( f"""`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} """ ) else: with init_empty_weights(): _A = replace_with_bnb_layers( _lowercase , _lowercase , modules_to_not_convert=_lowercase ) _A = get_quantized_model_device_map( _lowercase , _lowercase , _lowercase , max_memory=_lowercase , no_split_module_classes=_lowercase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): _A = True _A = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( _lowercase , _lowercase , _lowercase , dtype=bnb_quantization_config.torch_dtype , offload_folder=_lowercase , offload_state_dict=_lowercase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(_lowercase , device_map=_lowercase , offload_dir=_lowercase ) def __A ( _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=None ): '''simple docstring''' if device_map is None: if torch.cuda.is_available(): _A = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(_lowercase , _lowercase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) _A = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) _A = {} _A = special_dtypes _A = no_split_module_classes _A = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": _A = get_balanced_memory( _lowercase , low_zero=(device_map == '''balanced_low_0''') , max_memory=_lowercase , **_lowercase , ) _A = max_memory _A = infer_auto_device_map(_lowercase , **_lowercase ) if isinstance(_lowercase , _lowercase ): # check if don't have any quantized module on the cpu _A = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules _A = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def __A ( _lowercase , _lowercase , _lowercase=None , _lowercase=None ): '''simple docstring''' if modules_to_not_convert is None: _A = [] _A ,_A = _replace_with_bnb_layers( _lowercase , _lowercase , _lowercase , _lowercase ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def __A ( _lowercase , _lowercase , _lowercase=None , _lowercase=None , ): '''simple docstring''' _A = False for name, module in model.named_children(): if current_key_name is None: _A = [] current_key_name.append(_lowercase ) if isinstance(_lowercase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` _A = '''.'''.join(_lowercase ) _A = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: _A = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: _A = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_lowercase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: _A = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) _A = module.weight.data if module.bias is not None: _A = module.bias.data bnb_module.requires_grad_(_lowercase ) setattr(_lowercase , _lowercase , _lowercase ) _A = True if len(list(module.children() ) ) > 0: _A ,_A = _replace_with_bnb_layers( _lowercase , _lowercase , _lowercase , _lowercase ) _A = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __A ( _lowercase ): '''simple docstring''' with init_empty_weights(): _A = deepcopy(_lowercase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` _A = find_tied_parameters(_lowercase ) # For compatibility with Accelerate < 0.18 if isinstance(_lowercase , _lowercase ): _A = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: _A = sum(_lowercase , [] ) _A = len(_lowercase ) > 0 # Check if it is a base model _A = False if hasattr(_lowercase , '''base_model_prefix''' ): _A = not hasattr(_lowercase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head _A = list(model.named_children() ) _A = [list_modules[-1][0]] # add last module together with tied weights _A = set(_lowercase ) - set(_lowercase ) _A = list(set(_lowercase ) ) + list(_lowercase ) # remove ".weight" from the keys _A = ['''.weight''', '''.bias'''] _A = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: _A = name.replace(_lowercase , '''''' ) filtered_module_names.append(_lowercase ) return filtered_module_names def __A ( _lowercase ): '''simple docstring''' for m in model.modules(): if isinstance(_lowercase , bnb.nn.Linearabit ): return True return False def __A ( _lowercase ): '''simple docstring''' return next(parameter.parameters() ).device def __A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ): '''simple docstring''' if fpaa_statistics is None: set_module_tensor_to_device(_lowercase , _lowercase , 0 , dtype=_lowercase , value=_lowercase ) _A = param_name _A = model if "." in tensor_name: _A = tensor_name.split('''.''' ) for split in splits[:-1]: _A = getattr(_lowercase , _lowercase ) if new_module is None: raise ValueError(f"""{module} has no attribute {split}.""" ) _A = new_module _A = splits[-1] # offload weights _A = False offload_weight(module._parameters[tensor_name] , _lowercase , _lowercase , index=_lowercase ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , _lowercase , index=_lowercase , ) else: offload_weight(_lowercase , _lowercase , _lowercase , index=_lowercase ) offload_weight(_lowercase , param_name.replace('''weight''' , '''SCB''' ) , _lowercase , index=_lowercase ) set_module_tensor_to_device(_lowercase , _lowercase , '''meta''' , dtype=_lowercase , value=torch.empty(*param.size() ) )
62
import json import os import unittest from transformers.models.blenderbot_small.tokenization_blenderbot_small import ( VOCAB_FILES_NAMES, BlenderbotSmallTokenizer, ) from ...test_tokenization_common import TokenizerTesterMixin class SCREAMING_SNAKE_CASE ( snake_case , unittest.TestCase ): """simple docstring""" A_ = BlenderbotSmallTokenizer A_ = False def __A ( self: List[str] ) -> int: super().setUp() _A = ['''__start__''', '''adapt''', '''act''', '''ap@@''', '''te''', '''__end__''', '''__unk__'''] _A = dict(zip(__A , range(len(__A ) ) ) ) _A = ['''#version: 0.2''', '''a p''', '''t e</w>''', '''ap t</w>''', '''a d''', '''ad apt</w>''', '''a c''', '''ac t</w>''', ''''''] _A = {'''unk_token''': '''__unk__''', '''bos_token''': '''__start__''', '''eos_token''': '''__end__'''} _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__A ) ) def __A ( self: str , **__A: Optional[Any] ) -> Dict: kwargs.update(self.special_tokens_map ) return BlenderbotSmallTokenizer.from_pretrained(self.tmpdirname , **__A ) def __A ( self: str , __A: List[str] ) -> int: _A = '''adapt act apte''' _A = '''adapt act apte''' return input_text, output_text def __A ( self: Union[str, Any] ) -> Any: _A = BlenderbotSmallTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _A = '''adapt act apte''' _A = ['''adapt''', '''act''', '''ap@@''', '''te'''] _A = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) _A = [tokenizer.bos_token] + tokens + [tokenizer.eos_token] _A = [0, 1, 2, 3, 4, 5] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) def __A ( self: Any ) -> List[str]: _A = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) assert tok('''sam''' ).input_ids == [13_84] _A = '''I am a small frog.''' _A = tok([src_text] , padding=__A , truncation=__A )['''input_ids'''] _A = tok.batch_decode(__A , skip_special_tokens=__A , clean_up_tokenization_spaces=__A )[0] assert src_text != decoded # I wish it did! assert decoded == "i am a small frog ." def __A ( self: Any ) -> int: _A = BlenderbotSmallTokenizer.from_pretrained('''facebook/blenderbot-90M''' ) _A = '''I am a small frog .''' _A = '''.''' _A = tok(__A )['''input_ids'''] _A = tok(__A )['''input_ids'''] assert encoded[-1] == encoded_dot[0]
62
1
"""simple docstring""" from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase__ : def __init__( self : Optional[Any] , snake_case__ : int , snake_case__ : Tuple=1_3 , snake_case__ : List[str]=3_0 , snake_case__ : Any=2 , snake_case__ : Any=3 , snake_case__ : str=True , snake_case__ : Optional[Any]=True , snake_case__ : Optional[int]=3_2 , snake_case__ : Optional[Any]=2 , snake_case__ : int=4 , snake_case__ : Optional[int]=3_7 , snake_case__ : Tuple="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : str=0.1 , snake_case__ : str=1_0 , snake_case__ : Optional[Any]=0.02 , snake_case__ : Optional[int]=3 , snake_case__ : Tuple=0.6 , snake_case__ : Any=None , ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Tuple = image_size UpperCAmelCase__ : Dict = patch_size UpperCAmelCase__ : Optional[Any] = num_channels UpperCAmelCase__ : str = is_training UpperCAmelCase__ : List[Any] = use_labels UpperCAmelCase__ : str = hidden_size UpperCAmelCase__ : Optional[int] = num_hidden_layers UpperCAmelCase__ : List[Any] = num_attention_heads UpperCAmelCase__ : Dict = intermediate_size UpperCAmelCase__ : Union[str, Any] = hidden_act UpperCAmelCase__ : Dict = hidden_dropout_prob UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Dict = type_sequence_label_size UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : Union[str, Any] = mask_ratio UpperCAmelCase__ : List[str] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase__ : Optional[Any] = (image_size // patch_size) ** 2 UpperCAmelCase__ : List[Any] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __a ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[Any] = None if self.use_labels: UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Optional[int] = self.get_config() return config, pixel_values, labels def __a ( self : str ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def __a ( self : Dict , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Dict = TFViTMAEModel(config=snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , training=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Tuple = TFViTMAEForPreTraining(snake_case__ ) UpperCAmelCase__ : str = model(snake_case__ , training=snake_case__ ) # expected sequence length = num_patches UpperCAmelCase__ : Optional[int] = (self.image_size // self.patch_size) ** 2 UpperCAmelCase__ : Any = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase__ : List[Any] = 1 UpperCAmelCase__ : Any = TFViTMAEForPreTraining(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : str = model(snake_case__ , training=snake_case__ ) UpperCAmelCase__ : List[str] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Any = self.prepare_config_and_inputs() ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) : str = config_and_inputs UpperCAmelCase__ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class lowerCAmelCase__ ( __magic_name__ , __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =(TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () SCREAMING_SNAKE_CASE_ ={'''feature-extraction''': TFViTMAEModel} if is_tf_available() else {} SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False SCREAMING_SNAKE_CASE_ =False def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : str = TFViTMAEModelTester(self ) UpperCAmelCase__ : Any = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 ) def __a ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def __a ( self : Optional[int] ): '''simple docstring''' pass def __a ( self : str ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCAmelCase__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , tf.keras.layers.Layer ) ) def __a ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : str = model_class(snake_case__ ) UpperCAmelCase__ : Dict = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Tuple = [*signature.parameters.keys()] UpperCAmelCase__ : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __a ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*snake_case__ ) def __a ( self : Tuple ): '''simple docstring''' # make the mask reproducible np.random.seed(2 ) UpperCAmelCase__ , UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase__ : Dict = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[Any] = model_class(snake_case__ ) UpperCAmelCase__ : Any = self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , noise=snake_case__ ) UpperCAmelCase__ : Optional[Any] = copy.deepcopy(self._prepare_for_class(snake_case__ , snake_case__ ) ) UpperCAmelCase__ : List[Any] = model(**snake_case__ , noise=snake_case__ ) UpperCAmelCase__ : Tuple = outputs_dict[0].numpy() UpperCAmelCase__ : Any = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1e-6 ) def __a ( self : int ): '''simple docstring''' # make the mask reproducible np.random.seed(2 ) UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : str = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase__ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(snake_case__ : Any ): UpperCAmelCase__ : Optional[Any] = {} for k, v in inputs_dict.items(): if tf.is_tensor(snake_case__ ): UpperCAmelCase__ : Optional[Any] = v.numpy() else: UpperCAmelCase__ : Any = np.array(snake_case__ ) return inputs_np_dict for model_class in self.all_model_classes: UpperCAmelCase__ : Dict = model_class(snake_case__ ) UpperCAmelCase__ : Dict = self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase__ : int = prepare_numpy_arrays(snake_case__ ) UpperCAmelCase__ : List[str] = model(snake_case__ , noise=snake_case__ ) UpperCAmelCase__ : Union[str, Any] = model(**snake_case__ , noise=snake_case__ ) self.assert_outputs_same(snake_case__ , snake_case__ ) def __a ( self : int , snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : int ): '''simple docstring''' # make masks reproducible np.random.seed(2 ) UpperCAmelCase__ : Union[str, Any] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCAmelCase__ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase__ : Optional[Any] = tf.constant(snake_case__ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase__ : int = tf_noise super().check_pt_tf_models(snake_case__ , snake_case__ , snake_case__ ) def __a ( self : Tuple ): '''simple docstring''' # make mask reproducible np.random.seed(2 ) UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Any = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(snake_case__ ) if module_member_name.endswith("MainLayer" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("MainLayer" )] == model_class.__name__[: -len("Model" )] for module_member in (getattr(snake_case__ , snake_case__ ),) if isinstance(snake_case__ , snake_case__ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(snake_case__ , "_keras_serializable" , snake_case__ ) } UpperCAmelCase__ : Union[str, Any] = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase__ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase__ : Tuple = tf.convert_to_tensor(snake_case__ ) inputs_dict.update({"noise": noise} ) for main_layer_class in tf_main_layer_classes: UpperCAmelCase__ : List[Any] = main_layer_class(snake_case__ ) UpperCAmelCase__ : Tuple = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCAmelCase__ : int = tf.keras.Model(snake_case__ , outputs=main_layer(snake_case__ ) ) UpperCAmelCase__ : str = model(snake_case__ ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCAmelCase__ : List[str] = os.path.join(snake_case__ , "keras_model.h5" ) model.save(snake_case__ ) UpperCAmelCase__ : str = tf.keras.models.load_model( snake_case__ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(snake_case__ , tf.keras.Model ) UpperCAmelCase__ : Union[str, Any] = model(snake_case__ ) self.assert_outputs_same(snake_case__ , snake_case__ ) @slow def __a ( self : Dict ): '''simple docstring''' # make mask reproducible np.random.seed(2 ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : Any = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase__ : Any = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase__ : Optional[Any] = model_class(snake_case__ ) UpperCAmelCase__ : Optional[int] = self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase__ : List[str] = model(snake_case__ , noise=snake_case__ ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase__ : Dict = outputs.last_hidden_state.numpy() UpperCAmelCase__ : Tuple = 0 else: UpperCAmelCase__ : Tuple = outputs.logits.numpy() UpperCAmelCase__ : int = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case__ , saved_model=snake_case__ ) UpperCAmelCase__ : Dict = model_class.from_pretrained(snake_case__ ) UpperCAmelCase__ : List[str] = model(snake_case__ , noise=snake_case__ ) if model_class.__name__ == "TFViTMAEModel": UpperCAmelCase__ : List[str] = after_outputs["last_hidden_state"].numpy() UpperCAmelCase__ : List[str] = 0 else: UpperCAmelCase__ : List[str] = after_outputs["logits"].numpy() UpperCAmelCase__ : List[Any] = 0 UpperCAmelCase__ : List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case__ , 1e-5 ) def __a ( self : Optional[int] ): '''simple docstring''' # make mask reproducible np.random.seed(2 ) UpperCAmelCase__ , UpperCAmelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ : int = int((config.image_size // config.patch_size) ** 2 ) UpperCAmelCase__ : Optional[int] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCAmelCase__ : Any = model_class(snake_case__ ) UpperCAmelCase__ : List[Any] = self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase__ : Optional[Any] = model(snake_case__ , noise=snake_case__ ) UpperCAmelCase__ : List[str] = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(snake_case__ ) UpperCAmelCase__ : str = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCAmelCase__ : List[str] = model_class.from_config(model.config ) UpperCAmelCase__ : Union[str, Any] = new_model(snake_case__ ) # Build model new_model.set_weights(model.get_weights() ) UpperCAmelCase__ : List[Any] = new_model(snake_case__ , noise=snake_case__ ) self.assert_outputs_same(snake_case__ , snake_case__ ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def __a ( self : int ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def __a ( self : Any ): '''simple docstring''' pass @slow def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = TFViTMAEModel.from_pretrained("google/vit-base-patch16-224" ) self.assertIsNotNone(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( )-> Any: '''simple docstring''' UpperCAmelCase__ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def __a ( self : Optional[int] ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def __a ( self : Optional[int] ): '''simple docstring''' # make random mask reproducible across the PT and TF model np.random.seed(2 ) UpperCAmelCase__ : Dict = TFViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ) UpperCAmelCase__ : int = self.default_image_processor UpperCAmelCase__ : Union[str, Any] = prepare_img() UpperCAmelCase__ : Tuple = image_processor(images=snake_case__ , return_tensors="tf" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase__ : Any = ViTMAEConfig() UpperCAmelCase__ : Any = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase__ : List[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCAmelCase__ : str = model(**snake_case__ , noise=snake_case__ ) # verify the logits UpperCAmelCase__ : Union[str, Any] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] ) self.assertEqual(outputs.logits.shape , snake_case__ ) UpperCAmelCase__ : Optional[Any] = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , snake_case__ , atol=1e-4 )
438
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class lowerCAmelCase__ : def __init__( self : Any , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : Any = data UpperCAmelCase__ : Node | None = None class lowerCAmelCase__ : def __init__( self : Dict ): '''simple docstring''' UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : Optional[int] = None def __iter__( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.head while self.head: yield node.data UpperCAmelCase__ : Optional[Any] = node.next if node == self.head: break def __len__( self : Tuple ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : str ): '''simple docstring''' return "->".join(str(snake_case__ ) for item in iter(self ) ) def __a ( self : Optional[Any] , snake_case__ : Any ): '''simple docstring''' self.insert_nth(len(self ) , snake_case__ ) def __a ( self : Optional[Any] , snake_case__ : Any ): '''simple docstring''' self.insert_nth(0 , snake_case__ ) def __a ( self : Any , snake_case__ : int , snake_case__ : Any ): '''simple docstring''' if index < 0 or index > len(self ): raise IndexError("list index out of range." ) UpperCAmelCase__ : Any = Node(snake_case__ ) if self.head is None: UpperCAmelCase__ : Union[str, Any] = new_node # first node points itself UpperCAmelCase__ : List[str] = new_node elif index == 0: # insert at head UpperCAmelCase__ : Optional[Any] = self.head UpperCAmelCase__ : List[Any] = new_node else: UpperCAmelCase__ : Union[str, Any] = self.head for _ in range(index - 1 ): UpperCAmelCase__ : Dict = temp.next UpperCAmelCase__ : Tuple = temp.next UpperCAmelCase__ : str = new_node if index == len(self ) - 1: # insert at tail UpperCAmelCase__ : Union[str, Any] = new_node def __a ( self : List[Any] ): '''simple docstring''' return self.delete_nth(0 ) def __a ( self : Optional[Any] ): '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def __a ( self : Tuple , snake_case__ : int = 0 ): '''simple docstring''' if not 0 <= index < len(self ): raise IndexError("list index out of range." ) UpperCAmelCase__ : Union[str, Any] = self.head if self.head == self.tail: # just one node UpperCAmelCase__ : str = None elif index == 0: # delete head node UpperCAmelCase__ : List[Any] = self.tail.next.next UpperCAmelCase__ : Dict = self.head.next else: UpperCAmelCase__ : List[Any] = self.head for _ in range(index - 1 ): UpperCAmelCase__ : Tuple = temp.next UpperCAmelCase__ : Dict = temp.next UpperCAmelCase__ : Dict = temp.next.next if index == len(self ) - 1: # delete at tail UpperCAmelCase__ : int = temp return delete_node.data def __a ( self : Any ): '''simple docstring''' return len(self ) == 0 def SCREAMING_SNAKE_CASE__ ( )-> None: '''simple docstring''' UpperCAmelCase__ : str = CircularLinkedList() assert len(snake_case ) == 0 assert circular_linked_list.is_empty() is True assert str(snake_case ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(snake_case ) == i circular_linked_list.insert_nth(snake_case , i + 1 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
438
1
def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: __lowercase : str = [1] for i in range(2 , __lowerCAmelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __lowercase : Any = [] __lowercase : Dict = list(range(__lowerCAmelCase ) ) # Find permutation while factorials: __lowercase : str = factorials.pop() __lowercase , __lowercase : List[str] = divmod(__lowerCAmelCase , __lowerCAmelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
284
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging __lowerCAmelCase : Tuple = logging.get_logger(__name__) __lowerCAmelCase : int = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} # See all LED models at https://huggingface.co/models?filter=LED __lowerCAmelCase : List[Any] = { "vocab_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json", }, "merges_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt", }, "tokenizer_file": { "allenai/led-base-16384": "https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json", }, } __lowerCAmelCase : List[Any] = { "allenai/led-base-16384": 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def UpperCAmelCase_ ( ) -> List[Any]: __lowercase : Union[str, Any] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __lowercase : Any = bs[:] __lowercase : Union[str, Any] = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowerCAmelCase ) cs.append(2**8 + n ) n += 1 __lowercase : List[str] = [chr(__lowerCAmelCase ) for n in cs] return dict(zip(__lowerCAmelCase , __lowerCAmelCase ) ) def UpperCAmelCase_ ( __lowerCAmelCase ) -> List[str]: __lowercase : Optional[int] = set() __lowercase : Dict = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __lowercase : List[Any] = char return pairs class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : str = VOCAB_FILES_NAMES A__ : Any = PRETRAINED_VOCAB_FILES_MAP A__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ : Union[str, Any] = ['''input_ids''', '''attention_mask'''] def __init__( self : Dict , _snake_case : List[Any] , _snake_case : Dict , _snake_case : int="replace" , _snake_case : Optional[int]="<s>" , _snake_case : List[Any]="</s>" , _snake_case : str="</s>" , _snake_case : Optional[int]="<s>" , _snake_case : List[Any]="<unk>" , _snake_case : Optional[Any]="<pad>" , _snake_case : List[Any]="<mask>" , _snake_case : Optional[Any]=False , **_snake_case : Dict , ): __lowercase : str = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else bos_token __lowercase : List[Any] = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else eos_token __lowercase : Union[str, Any] = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else sep_token __lowercase : List[str] = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else cls_token __lowercase : Any = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else unk_token __lowercase : Optional[Any] = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __lowercase : Any = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else mask_token super().__init__( errors=_snake_case , bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , sep_token=_snake_case , cls_token=_snake_case , pad_token=_snake_case , mask_token=_snake_case , add_prefix_space=_snake_case , **_snake_case , ) with open(_snake_case , encoding='''utf-8''' ) as vocab_handle: __lowercase : List[str] = json.load(_snake_case ) __lowercase : Optional[Any] = {v: k for k, v in self.encoder.items()} __lowercase : Dict = errors # how to handle errors in decoding __lowercase : str = bytes_to_unicode() __lowercase : Dict = {v: k for k, v in self.byte_encoder.items()} with open(_snake_case , encoding='''utf-8''' ) as merges_handle: __lowercase : Any = merges_handle.read().split('''\n''' )[1:-1] __lowercase : Tuple = [tuple(merge.split() ) for merge in bpe_merges] __lowercase : Dict = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) __lowercase : Dict = {} __lowercase : str = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __lowercase : str = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def snake_case_ ( self : Dict ): return len(self.encoder ) def snake_case_ ( self : List[str] ): return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self : Tuple , _snake_case : str ): if token in self.cache: return self.cache[token] __lowercase : Optional[Any] = tuple(_snake_case ) __lowercase : str = get_pairs(_snake_case ) if not pairs: return token while True: __lowercase : Dict = min(_snake_case , key=lambda _snake_case : self.bpe_ranks.get(_snake_case , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break __lowercase , __lowercase : Tuple = bigram __lowercase : Dict = [] __lowercase : int = 0 while i < len(_snake_case ): try: __lowercase : List[Any] = word.index(_snake_case , _snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __lowercase : Optional[int] = j if word[i] == first and i < len(_snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __lowercase : str = tuple(_snake_case ) __lowercase : Tuple = new_word if len(_snake_case ) == 1: break else: __lowercase : Any = get_pairs(_snake_case ) __lowercase : Union[str, Any] = ''' '''.join(_snake_case ) __lowercase : Union[str, Any] = word return word def snake_case_ ( self : Tuple , _snake_case : List[Any] ): __lowercase : Optional[int] = [] for token in re.findall(self.pat , _snake_case ): __lowercase : Dict = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_snake_case ).split(''' ''' ) ) return bpe_tokens def snake_case_ ( self : Union[str, Any] , _snake_case : List[Any] ): return self.encoder.get(_snake_case , self.encoder.get(self.unk_token ) ) def snake_case_ ( self : Dict , _snake_case : List[Any] ): return self.decoder.get(_snake_case ) def snake_case_ ( self : int , _snake_case : Dict ): __lowercase : List[Any] = ''''''.join(_snake_case ) __lowercase : Any = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def snake_case_ ( self : Optional[Any] , _snake_case : str , _snake_case : Optional[str] = None ): if not os.path.isdir(_snake_case ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return __lowercase : Union[str, Any] = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) __lowercase : str = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_snake_case , ensure_ascii=_snake_case ) + '''\n''' ) __lowercase : List[str] = 0 with open(_snake_case , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _snake_case : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' ''' Please check that the tokenizer is not corrupted!''' ) __lowercase : List[str] = token_index writer.write(''' '''.join(_snake_case ) + '''\n''' ) index += 1 return vocab_file, merge_file def snake_case_ ( self : Dict , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowercase : int = [self.cls_token_id] __lowercase : int = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self : List[Any] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) + [1] return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) + [1] def snake_case_ ( self : Union[str, Any] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ): __lowercase : Dict = [self.sep_token_id] __lowercase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case_ ( self : List[str] , _snake_case : Union[str, Any] , _snake_case : Optional[int]=False , **_snake_case : List[Any] ): __lowercase : int = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_snake_case ) > 0 and not text[0].isspace()): __lowercase : Optional[Any] = ''' ''' + text return (text, kwargs) def snake_case_ ( self : Tuple , _snake_case : Union[Dict[str, EncodedInput], BatchEncoding] , _snake_case : Optional[int] = None , _snake_case : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _snake_case : Optional[int] = None , _snake_case : Optional[bool] = None , ): __lowercase : Optional[Any] = super()._pad( encoded_inputs=_snake_case , max_length=_snake_case , padding_strategy=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=_snake_case , ) # Load from model defaults if return_attention_mask is None: __lowercase : List[str] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __lowercase : Dict = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __lowercase : Tuple = len(encoded_inputs['''global_attention_mask'''] ) != len(_snake_case ) if needs_to_be_padded: __lowercase : List[Any] = len(_snake_case ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __lowercase : Union[str, Any] = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": __lowercase : Union[str, Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
284
1
from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
216
from itertools import product def _snake_case ( lowerCAmelCase : int , lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = sides_number SCREAMING_SNAKE_CASE_ : List[str] = max_face_number * dice_number SCREAMING_SNAKE_CASE_ : Tuple = [0] * (max_total + 1) SCREAMING_SNAKE_CASE_ : Tuple = 1 SCREAMING_SNAKE_CASE_ : List[str] = range(lowerCAmelCase , max_face_number + 1 ) for dice_numbers in product(lowerCAmelCase , repeat=lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = sum(lowerCAmelCase ) totals_frequencies[total] += 1 return totals_frequencies def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = total_frequency_distribution( sides_number=4 , dice_number=9 ) SCREAMING_SNAKE_CASE_ : List[str] = total_frequency_distribution( sides_number=6 , dice_number=6 ) SCREAMING_SNAKE_CASE_ : List[Any] = 0 SCREAMING_SNAKE_CASE_ : str = 9 SCREAMING_SNAKE_CASE_ : Any = 4 * 9 SCREAMING_SNAKE_CASE_ : str = 6 for peter_total in range(lowerCAmelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) SCREAMING_SNAKE_CASE_ : Dict = (4**9) * (6**6) SCREAMING_SNAKE_CASE_ : Union[str, Any] = peter_wins_count / total_games_number SCREAMING_SNAKE_CASE_ : Optional[Any] = round(lowerCAmelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'''{solution() = }''')
216
1
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __A ( _UpperCamelCase ): """simple docstring""" def A__ ( self , __snake_case): with open(__a , encoding='utf-8') as input_file: _UpperCamelCase : Dict = re.compile(r'(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)') _UpperCamelCase : Dict = input_file.read() _UpperCamelCase : List[str] = regexp.search(__a) return match def A__ ( self , __snake_case): with open(__a , encoding='utf-8') as input_file: _UpperCamelCase : str = re.compile(r'#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()' , re.DOTALL) _UpperCamelCase : Optional[int] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` _UpperCamelCase : int = regexp.finditer(__a) _UpperCamelCase : Tuple = [match for match in matches if match is not None and match.group(1) is not None] return matches[0] if matches else None def A__ ( self): _UpperCamelCase : Dict = Path('./datasets') _UpperCamelCase : List[str] = list(dataset_paths.absolute().glob('**/*.py')) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__a)): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''') def A__ ( self): _UpperCamelCase : List[str] = Path('./datasets') _UpperCamelCase : str = list(dataset_paths.absolute().glob('**/*.py')) for dataset in dataset_files: if self._no_print_statements(str(__a)): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''')
707
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
648
0
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE : int = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[Any] = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __SCREAMING_SNAKE_CASE : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
452
'''simple docstring''' from torch import nn def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
672
0
"""simple docstring""" def A__ ( UpperCamelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = len(UpperCamelCase__ ) for i in range(length - 1 ): _SCREAMING_SNAKE_CASE = i for k in range(i + 1 , UpperCamelCase__ ): if collection[k] < collection[least]: _SCREAMING_SNAKE_CASE = k if least != i: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = (collection[i], collection[least]) return collection if __name__ == "__main__": lowerCamelCase : int = input("""Enter numbers separated by a comma:\n""").strip() lowerCamelCase : Tuple = [int(item) for item in user_input.split(""",""")] print(selection_sort(unsorted))
168
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A__ ( UpperCamelCase__ = "laptop" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = F'''https://www.amazon.in/laptop/s?k={product}''' _SCREAMING_SNAKE_CASE = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } _SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).text ) # Initialize a Pandas dataframe with the column titles _SCREAMING_SNAKE_CASE = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: _SCREAMING_SNAKE_CASE = item.ha.text _SCREAMING_SNAKE_CASE = '''https://www.amazon.in/''' + item.ha.a['''href'''] _SCREAMING_SNAKE_CASE = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: _SCREAMING_SNAKE_CASE = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: _SCREAMING_SNAKE_CASE = '''Not available''' try: _SCREAMING_SNAKE_CASE = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: _SCREAMING_SNAKE_CASE = '''''' try: _SCREAMING_SNAKE_CASE = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 100 ) except ValueError: _SCREAMING_SNAKE_CASE = float('''nan''' ) except AttributeError: pass _SCREAMING_SNAKE_CASE = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _SCREAMING_SNAKE_CASE = ''' ''' _SCREAMING_SNAKE_CASE = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowerCamelCase : str = """headphones""" get_amazon_product_data(product).to_csv(F'''Amazon Product Data for {product}.csv''')
168
1
import math def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int ): UpperCamelCase_ : Tuple = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(_SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : float = 1 / 1_2345 ): UpperCamelCase_ : Union[str, Any] = 0 UpperCamelCase_ : str = 0 UpperCamelCase_ : Optional[Any] = 3 while True: UpperCamelCase_ : Any = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ : Tuple = int(_SCREAMING_SNAKE_CASE ) total_partitions += 1 if check_partition_perfect(_SCREAMING_SNAKE_CASE ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(_SCREAMING_SNAKE_CASE ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
635
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a : List[str] = 16 a : str = 32 def __magic_name__ ( UpperCamelCase : Accelerator , UpperCamelCase : int = 16 ) -> Dict: a__ = AutoTokenizer.from_pretrained('bert-base-cased' ) a__ = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCamelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) a__ = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCamelCase , max_length=UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a__ = datasets.map( UpperCamelCase , batched=UpperCamelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCamelCase : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. a__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a__ = 16 elif accelerator.mixed_precision != "no": a__ = 8 else: a__ = None return tokenizer.pad( UpperCamelCase , padding='longest' , max_length=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_tensors='pt' , ) # Instantiate dataloaders. a__ = DataLoader( tokenized_datasets['train'] , shuffle=UpperCamelCase , collate_fn=UpperCamelCase , batch_size=UpperCamelCase ) a__ = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCamelCase , collate_fn=UpperCamelCase , batch_size=UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders a : Union[str, Any] = mocked_dataloaders # noqa: F811 def __magic_name__ ( UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] ) -> Optional[Any]: # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , UpperCamelCase ) == "1": a__ = 2 # New Code # a__ = int(args.gradient_accumulation_steps ) a__ = int(args.local_sgd_steps ) # Initialize accelerator a__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=UpperCamelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ = config['lr'] a__ = int(config['num_epochs'] ) a__ = int(config['seed'] ) a__ = int(config['batch_size'] ) a__ = evaluate.load('glue' , 'mrpc' ) set_seed(UpperCamelCase ) a__ , a__ = get_dataloaders(UpperCamelCase , UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a__ = model.to(accelerator.device ) # Instantiate optimizer a__ = AdamW(params=model.parameters() , lr=UpperCamelCase ) # Instantiate scheduler a__ = get_linear_schedule_with_warmup( optimizer=UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ , a__ , a__ , a__ , a__ = accelerator.prepare( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # Now we train the model for epoch in range(UpperCamelCase ): model.train() with LocalSGD( accelerator=UpperCamelCase , model=UpperCamelCase , local_sgd_steps=UpperCamelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(UpperCamelCase ): a__ = model(**UpperCamelCase ) a__ = output.loss accelerator.backward(UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): a__ = model(**UpperCamelCase ) a__ = outputs.logits.argmax(dim=-1 ) a__ , a__ = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=UpperCamelCase , references=UpperCamelCase , ) a__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , UpperCamelCase ) def __magic_name__ ( ) -> Any: a__ = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=UpperCamelCase , default=UpperCamelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=UpperCamelCase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument( '--local_sgd_steps' , type=UpperCamelCase , default=8 , help='Number of local SGD steps or None to disable local SGD' ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) a__ = parser.parse_args() a__ = {'lr': 2E-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(UpperCamelCase , UpperCamelCase ) if __name__ == "__main__": main()
273
0
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib lowerCamelCase : List[Any] =threading.Lock() lowerCamelCase : Optional[logging.Handler] =None lowerCamelCase : int ={ 'debug': logging.DEBUG, 'info': logging.INFO, 'warning': logging.WARNING, 'error': logging.ERROR, 'critical': logging.CRITICAL, } lowerCamelCase : str =logging.WARNING lowerCamelCase : Tuple =True def lowercase__( ): snake_case__ : Optional[Any] = os.getenv('TRANSFORMERS_VERBOSITY' , A ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, ''' f'''has to be one of: { ", ".join(log_levels.keys() ) }''' ) return _default_log_level def lowercase__( ): return __name__.split('.' )[0] def lowercase__( ): return logging.getLogger(_get_library_name() ) def lowercase__( ): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return snake_case__ : Optional[int] = logging.StreamHandler() # Set sys.stderr as stream. snake_case__ : List[Any] = sys.stderr.flush # Apply our default configuration to the library root logger. snake_case__ : Optional[Any] = _get_library_root_logger() library_root_logger.addHandler(_default_handler ) library_root_logger.setLevel(_get_default_logging_level() ) snake_case__ : Union[str, Any] = False def lowercase__( ): global _default_handler with _lock: if not _default_handler: return snake_case__ : List[Any] = _get_library_root_logger() library_root_logger.removeHandler(_default_handler ) library_root_logger.setLevel(logging.NOTSET ) snake_case__ : Any = None def lowercase__( ): return log_levels def lowercase__( A = None ): if name is None: snake_case__ : Tuple = _get_library_name() _configure_library_root_logger() return logging.getLogger(A ) def lowercase__( ): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def lowercase__( A ): _configure_library_root_logger() _get_library_root_logger().setLevel(A ) def lowercase__( ): return set_verbosity(A ) def lowercase__( ): return set_verbosity(A ) def lowercase__( ): return set_verbosity(A ) def lowercase__( ): return set_verbosity(A ) def lowercase__( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler ) def lowercase__( ): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler ) def lowercase__( A ): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(A ) def lowercase__( A ): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(A ) def lowercase__( ): _configure_library_root_logger() snake_case__ : str = False def lowercase__( ): _configure_library_root_logger() snake_case__ : int = True def lowercase__( ): snake_case__ : List[Any] = _get_library_root_logger().handlers for handler in handlers: snake_case__ : Tuple = logging.Formatter('[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s' ) handler.setFormatter(A ) def lowercase__( ): snake_case__ : Any = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(A ) def lowercase__( self , *A , **A ): snake_case__ : int = os.getenv('TRANSFORMERS_NO_ADVISORY_WARNINGS' , A ) if no_advisory_warnings: return self.warning(*A , **A ) lowerCamelCase : Any =warning_advice @functools.lru_cache(A ) def lowercase__( self , *A , **A ): self.warning(*A , **A ) lowerCamelCase : Union[str, Any] =warning_once class snake_case__ : def __init__( self : List[Any] , *_lowerCamelCase : Optional[int] , **_lowerCamelCase : List[Any] ): # pylint: disable=unused-argument snake_case__ : Optional[Any] = args[0] if args else None def __iter__( self : str ): return iter(self._iterator ) def __getattr__( self : Any , _lowerCamelCase : Any ): def empty_fn(*_lowerCamelCase : int , **_lowerCamelCase : Any ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : int ): return self def __exit__( self : Dict , _lowerCamelCase : Any , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] ): return class snake_case__ : def __call__( self : Tuple , *_lowerCamelCase : str , **_lowerCamelCase : List[str] ): if _tqdm_active: return tqdm_lib.tqdm(*_lowerCamelCase , **_lowerCamelCase ) else: return EmptyTqdm(*_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[Any] , *_lowerCamelCase : Dict , **_lowerCamelCase : List[Any] ): snake_case__ : Union[str, Any] = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase__ ( self : Optional[int] ): if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowerCamelCase : List[Any] =_tqdm_cls() def lowercase__( ): global _tqdm_active return bool(_tqdm_active ) def lowercase__( ): global _tqdm_active snake_case__ : Union[str, Any] = True hf_hub_utils.enable_progress_bars() def lowercase__( ): global _tqdm_active snake_case__ : int = False hf_hub_utils.disable_progress_bars()
703
import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoFeatureExtractor, WavaVecaFeatureExtractor from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 lowerCamelCase : Any = get_tests_dir('fixtures') class snake_case__ ( unittest.TestCase ): def UpperCAmelCase__ ( self : str ): # A mock response for an HTTP head request to emulate server down snake_case__ : int = mock.Mock() snake_case__ : Any = 5_0_0 snake_case__ : Dict = {} snake_case__ : List[str] = HTTPError snake_case__ : str = {} # Download this model to make sure it's in the cache. snake_case__ : List[str] = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request' , return_value=_lowerCamelCase ) as mock_head: snake_case__ : Dict = WavaVecaFeatureExtractor.from_pretrained('hf-internal-testing/tiny-random-wav2vec2' ) # This check we did call the fake head request mock_head.assert_called() def UpperCAmelCase__ ( self : Optional[Any] ): # This test is for deprecated behavior and can be removed in v5 snake_case__ : List[Any] = WavaVecaFeatureExtractor.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-wav2vec2/resolve/main/preprocessor_config.json' ) @is_staging_test class snake_case__ ( unittest.TestCase ): @classmethod def UpperCAmelCase__ ( cls : str ): snake_case__ : Tuple = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def UpperCAmelCase__ ( cls : int ): try: delete_repo(token=cls._token , repo_id='test-feature-extractor' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='valid_org/test-feature-extractor-org' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='test-dynamic-feature-extractor' ) except HTTPError: pass def UpperCAmelCase__ ( self : int ): snake_case__ : Dict = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('test-feature-extractor' , use_auth_token=self._token ) snake_case__ : Any = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCamelCase , repo_id='test-feature-extractor' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) snake_case__ : Any = WavaVecaFeatureExtractor.from_pretrained(F'''{USER}/test-feature-extractor''' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def UpperCAmelCase__ ( self : List[str] ): snake_case__ : str = WavaVecaFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('valid_org/test-feature-extractor' , use_auth_token=self._token ) snake_case__ : Dict = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='valid_org/test-feature-extractor' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained( _lowerCamelCase , repo_id='valid_org/test-feature-extractor-org' , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) snake_case__ : str = WavaVecaFeatureExtractor.from_pretrained('valid_org/test-feature-extractor-org' ) for k, v in feature_extractor.__dict__.items(): self.assertEqual(_lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) def UpperCAmelCase__ ( self : List[Any] ): CustomFeatureExtractor.register_for_auto_class() snake_case__ : Optional[int] = CustomFeatureExtractor.from_pretrained(_lowerCamelCase ) feature_extractor.push_to_hub('test-dynamic-feature-extractor' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual( feature_extractor.auto_map , {'AutoFeatureExtractor': 'custom_feature_extraction.CustomFeatureExtractor'} , ) snake_case__ : int = AutoFeatureExtractor.from_pretrained( F'''{USER}/test-dynamic-feature-extractor''' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module self.assertEqual(new_feature_extractor.__class__.__name__ , 'CustomFeatureExtractor' )
303
0
'''simple docstring''' import math from datetime import datetime, timedelta def a_ ( __UpperCAmelCase ) -> datetime: """simple docstring""" snake_case: List[str] =year % 19 snake_case: int =year % 4 snake_case: int =year % 7 snake_case: Union[str, Any] =math.floor(year / 1_00 ) snake_case: List[Any] =math.floor((13 + 8 * leap_day_inhibits) / 25 ) snake_case: Optional[Any] =leap_day_inhibits / 4 snake_case: int =( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 snake_case: List[Any] =(4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 snake_case: Optional[int] =(19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon snake_case: Tuple =( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__UpperCAmelCase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__UpperCAmelCase , 4 , 18 ) else: return datetime(__UpperCAmelCase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_994, 2_000, 2_010, 2_021, 2_023): a = 'will be' if year > datetime.now().year else 'was' print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
350
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ['OwlViTFeatureExtractor'] a = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
350
1
import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __magic_name__ ( unittest.TestCase ): @property def lowerCAmelCase ( self) -> str: '''simple docstring''' torch.manual_seed(0) _UpperCAmelCase : List[Any] =UNetaDModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : int =self.dummy_uncond_unet _UpperCAmelCase : Any =KarrasVeScheduler() _UpperCAmelCase : str =KarrasVePipeline(unet=__a , scheduler=__a) pipe.to(__a) pipe.set_progress_bar_config(disable=__a) _UpperCAmelCase : Optional[int] =torch.manual_seed(0) _UpperCAmelCase : Tuple =pipe(num_inference_steps=2 , generator=__a , output_type='numpy').images _UpperCAmelCase : int =torch.manual_seed(0) _UpperCAmelCase : Any =pipe(num_inference_steps=2 , generator=__a , output_type='numpy' , return_dict=__a)[0] _UpperCAmelCase : Union[str, Any] =image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[Any] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _UpperCAmelCase : Union[str, Any] =np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch class __magic_name__ ( unittest.TestCase ): def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Any ='google/ncsnpp-celebahq-256' _UpperCAmelCase : List[str] =UNetaDModel.from_pretrained(__a) _UpperCAmelCase : str =KarrasVeScheduler() _UpperCAmelCase : List[str] =KarrasVePipeline(unet=__a , scheduler=__a) pipe.to(__a) pipe.set_progress_bar_config(disable=__a) _UpperCAmelCase : List[str] =torch.manual_seed(0) _UpperCAmelCase : List[str] =pipe(num_inference_steps=2_0 , generator=__a , output_type='numpy').images _UpperCAmelCase : Optional[int] =image[0, -3:, -3:, -1] assert image.shape == (1, 2_5_6, 2_5_6, 3) _UpperCAmelCase : List[str] =np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
712
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __magic_name__ ( unittest.TestCase ): def __init__( self , snake_case , snake_case=7 , snake_case=3 , snake_case=1_8 , snake_case=3_0 , snake_case=4_0_0 , snake_case=True , snake_case=None , snake_case=True , ) -> List[Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] =size if size is not None else {'height': 1_8, 'width': 1_8} _UpperCAmelCase : Optional[Any] =parent _UpperCAmelCase : Any =batch_size _UpperCAmelCase : Union[str, Any] =num_channels _UpperCAmelCase : List[str] =image_size _UpperCAmelCase : List[Any] =min_resolution _UpperCAmelCase : Optional[Any] =max_resolution _UpperCAmelCase : List[Any] =do_resize _UpperCAmelCase : Union[str, Any] =size _UpperCAmelCase : List[Any] =apply_ocr def lowerCAmelCase ( self) -> List[Any]: '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __magic_name__ ( lowerCAmelCase ,unittest.TestCase ): UpperCAmelCase =LayoutLMvaImageProcessor if is_pytesseract_available() else None def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCAmelCase : int =LayoutLMvaImageProcessingTester(self) @property def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCAmelCase : List[Any] =self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(snake_case , 'do_resize')) self.assertTrue(hasattr(snake_case , 'size')) self.assertTrue(hasattr(snake_case , 'apply_ocr')) def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : int =self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {'height': 1_8, 'width': 1_8}) _UpperCAmelCase : Union[str, Any] =self.image_processing_class.from_dict(self.image_processor_dict , size=4_2) self.assertEqual(image_processor.size , {'height': 4_2, 'width': 4_2}) def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase ( self) -> int: '''simple docstring''' # Initialize image_processing _UpperCAmelCase : Optional[int] =self.image_processing_class(**self.image_processor_dict) # create random PIL images _UpperCAmelCase : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case) for image in image_inputs: self.assertIsInstance(snake_case , Image.Image) # Test not batched input _UpperCAmelCase : Union[str, Any] =image_processing(image_inputs[0] , return_tensors='pt') self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) self.assertIsInstance(encoding.words , snake_case) self.assertIsInstance(encoding.boxes , snake_case) # Test batched _UpperCAmelCase : str =image_processing(snake_case , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowerCAmelCase ( self) -> Any: '''simple docstring''' # Initialize image_processing _UpperCAmelCase : Union[str, Any] =self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _UpperCAmelCase : Any =prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , numpify=snake_case) for image in image_inputs: self.assertIsInstance(snake_case , np.ndarray) # Test not batched input _UpperCAmelCase : List[str] =image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase : str =image_processing(snake_case , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowerCAmelCase ( self) -> str: '''simple docstring''' # Initialize image_processing _UpperCAmelCase : Optional[int] =self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _UpperCAmelCase : Tuple =prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case , torchify=snake_case) for image in image_inputs: self.assertIsInstance(snake_case , torch.Tensor) # Test not batched input _UpperCAmelCase : Optional[Any] =image_processing(image_inputs[0] , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched _UpperCAmelCase : List[Any] =image_processing(snake_case , return_tensors='pt').pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' # with apply_OCR = True _UpperCAmelCase : str =LayoutLMvaImageProcessor() from datasets import load_dataset _UpperCAmelCase : Tuple =load_dataset('hf-internal-testing/fixtures_docvqa' , split='test') _UpperCAmelCase : Tuple =Image.open(ds[0]['file']).convert('RGB') _UpperCAmelCase : Any =image_processing(snake_case , return_tensors='pt') self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4)) self.assertEqual(len(encoding.words) , len(encoding.boxes)) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 _UpperCAmelCase : Dict =[['11:14', 'to', '11:39', 'a.m', '11:39', 'to', '11:44', 'a.m.', '11:44', 'a.m.', 'to', '12:25', 'p.m.', '12:25', 'to', '12:58', 'p.m.', '12:58', 'to', '4:00', 'p.m.', '2:00', 'to', '5:00', 'p.m.', 'Coffee', 'Break', 'Coffee', 'will', 'be', 'served', 'for', 'men', 'and', 'women', 'in', 'the', 'lobby', 'adjacent', 'to', 'exhibit', 'area.', 'Please', 'move', 'into', 'exhibit', 'area.', '(Exhibits', 'Open)', 'TRRF', 'GENERAL', 'SESSION', '(PART', '|)', 'Presiding:', 'Lee', 'A.', 'Waller', 'TRRF', 'Vice', 'President', '“Introductory', 'Remarks”', 'Lee', 'A.', 'Waller,', 'TRRF', 'Vice', 'Presi-', 'dent', 'Individual', 'Interviews', 'with', 'TRRF', 'Public', 'Board', 'Members', 'and', 'Sci-', 'entific', 'Advisory', 'Council', 'Mem-', 'bers', 'Conducted', 'by', 'TRRF', 'Treasurer', 'Philip', 'G.', 'Kuehn', 'to', 'get', 'answers', 'which', 'the', 'public', 'refrigerated', 'warehousing', 'industry', 'is', 'looking', 'for.', 'Plus', 'questions', 'from', 'the', 'floor.', 'Dr.', 'Emil', 'M.', 'Mrak,', 'University', 'of', 'Cal-', 'ifornia,', 'Chairman,', 'TRRF', 'Board;', 'Sam', 'R.', 'Cecil,', 'University', 'of', 'Georgia', 'College', 'of', 'Agriculture;', 'Dr.', 'Stanley', 'Charm,', 'Tufts', 'University', 'School', 'of', 'Medicine;', 'Dr.', 'Robert', 'H.', 'Cotton,', 'ITT', 'Continental', 'Baking', 'Company;', 'Dr.', 'Owen', 'Fennema,', 'University', 'of', 'Wis-', 'consin;', 'Dr.', 'Robert', 'E.', 'Hardenburg,', 'USDA.', 'Questions', 'and', 'Answers', 'Exhibits', 'Open', 'Capt.', 'Jack', 'Stoney', 'Room', 'TRRF', 'Scientific', 'Advisory', 'Council', 'Meeting', 'Ballroom', 'Foyer']] # noqa: E231 _UpperCAmelCase : Optional[int] =[[[1_4_1, 5_7, 2_1_4, 6_9], [2_2_8, 5_8, 2_5_2, 6_9], [1_4_1, 7_5, 2_1_6, 8_8], [2_3_0, 7_9, 2_8_0, 8_8], [1_4_2, 2_6_0, 2_1_8, 2_7_3], [2_3_0, 2_6_1, 2_5_5, 2_7_3], [1_4_3, 2_7_9, 2_1_8, 2_9_0], [2_3_1, 2_8_2, 2_9_0, 2_9_1], [1_4_3, 3_4_2, 2_1_8, 3_5_4], [2_3_1, 3_4_5, 2_8_9, 3_5_5], [2_0_2, 3_6_2, 2_2_7, 3_7_3], [1_4_3, 3_7_9, 2_2_0, 3_9_2], [2_3_1, 3_8_2, 2_9_1, 3_9_4], [1_4_4, 7_1_4, 2_2_0, 7_2_6], [2_3_1, 7_1_5, 2_5_6, 7_2_6], [1_4_4, 7_3_2, 2_2_0, 7_4_5], [2_3_2, 7_3_6, 2_9_1, 7_4_7], [1_4_4, 7_6_9, 2_1_8, 7_8_2], [2_3_1, 7_7_0, 2_5_6, 7_8_2], [1_4_1, 7_8_8, 2_0_2, 8_0_1], [2_1_5, 7_9_1, 2_7_4, 8_0_4], [1_4_3, 8_2_6, 2_0_4, 8_3_8], [2_1_5, 8_2_6, 2_4_0, 8_3_8], [1_4_2, 8_4_4, 2_0_2, 8_5_7], [2_1_5, 8_4_7, 2_7_4, 8_5_9], [3_3_4, 5_7, 4_2_7, 6_9], [4_4_0, 5_7, 5_2_2, 6_9], [3_6_9, 7_5, 4_6_1, 8_8], [4_6_9, 7_5, 5_1_6, 8_8], [5_2_8, 7_6, 5_6_2, 8_8], [5_7_0, 7_6, 6_6_7, 8_8], [6_7_5, 7_5, 7_1_1, 8_7], [7_2_1, 7_9, 7_7_8, 8_8], [7_8_9, 7_5, 8_4_0, 8_8], [3_6_9, 9_7, 4_7_0, 1_0_7], [4_8_4, 9_4, 5_0_7, 1_0_6], [5_1_8, 9_4, 5_6_2, 1_0_7], [5_7_6, 9_4, 6_5_5, 1_1_0], [6_6_8, 9_4, 7_9_2, 1_0_9], [8_0_4, 9_5, 8_2_9, 1_0_7], [3_6_9, 1_1_3, 4_6_5, 1_2_5], [4_7_7, 1_1_6, 5_4_7, 1_2_5], [5_6_2, 1_1_3, 6_5_8, 1_2_5], [6_7_1, 1_1_6, 7_4_8, 1_2_5], [7_6_1, 1_1_3, 8_1_1, 1_2_5], [3_6_9, 1_3_1, 4_6_5, 1_4_3], [4_7_7, 1_3_3, 5_4_8, 1_4_3], [5_6_3, 1_3_0, 6_9_8, 1_4_5], [7_1_0, 1_3_0, 8_0_2, 1_4_6], [3_3_6, 1_7_1, 4_1_2, 1_8_3], [4_2_3, 1_7_1, 5_7_2, 1_8_3], [5_8_2, 1_7_0, 7_1_6, 1_8_4], [7_2_8, 1_7_1, 8_1_7, 1_8_7], [8_2_9, 1_7_1, 8_4_4, 1_8_6], [3_3_8, 1_9_7, 4_8_2, 2_1_2], [5_0_7, 1_9_6, 5_5_7, 2_0_9], [5_6_9, 1_9_6, 5_9_5, 2_0_8], [6_1_0, 1_9_6, 7_0_2, 2_0_9], [5_0_5, 2_1_4, 5_8_3, 2_2_6], [5_9_5, 2_1_4, 6_5_6, 2_2_7], [6_7_0, 2_1_5, 8_0_7, 2_2_7], [3_3_5, 2_5_9, 5_4_3, 2_7_4], [5_5_6, 2_5_9, 7_0_8, 2_7_2], [3_7_2, 2_7_9, 4_2_2, 2_9_1], [4_3_5, 2_7_9, 4_6_0, 2_9_1], [4_7_4, 2_7_9, 5_7_4, 2_9_2], [5_8_7, 2_7_8, 6_6_4, 2_9_1], [6_7_6, 2_7_8, 7_3_8, 2_9_1], [7_5_1, 2_7_9, 8_3_4, 2_9_1], [3_7_2, 2_9_8, 4_3_4, 3_1_0], [3_3_5, 3_4_1, 4_8_3, 3_5_4], [4_9_7, 3_4_1, 6_5_5, 3_5_4], [6_6_7, 3_4_1, 7_2_8, 3_5_4], [7_4_0, 3_4_1, 8_2_5, 3_5_4], [3_3_5, 3_6_0, 4_3_0, 3_7_2], [4_4_2, 3_6_0, 5_3_4, 3_7_2], [5_4_5, 3_5_9, 6_8_7, 3_7_2], [6_9_7, 3_6_0, 7_5_4, 3_7_2], [7_6_5, 3_6_0, 8_2_3, 3_7_3], [3_3_4, 3_7_8, 4_2_8, 3_9_1], [4_4_0, 3_7_8, 5_7_7, 3_9_4], [5_9_0, 3_7_8, 7_0_5, 3_9_1], [7_2_0, 3_7_8, 8_0_1, 3_9_1], [3_3_4, 3_9_7, 4_0_0, 4_0_9], [3_7_0, 4_1_6, 5_2_9, 4_2_9], [5_4_4, 4_1_6, 5_7_6, 4_3_2], [5_8_7, 4_1_6, 6_6_5, 4_2_8], [6_7_7, 4_1_6, 8_1_4, 4_2_9], [3_7_2, 4_3_5, 4_5_2, 4_5_0], [4_6_5, 4_3_4, 4_9_5, 4_4_7], [5_1_1, 4_3_4, 6_0_0, 4_4_7], [6_1_1, 4_3_6, 6_3_7, 4_4_7], [6_4_9, 4_3_6, 6_9_4, 4_5_1], [7_0_5, 4_3_8, 8_2_4, 4_4_7], [3_6_9, 4_5_3, 4_5_2, 4_6_6], [4_6_4, 4_5_4, 5_0_9, 4_6_6], [5_2_2, 4_5_3, 6_1_1, 4_6_9], [6_2_5, 4_5_3, 7_9_2, 4_6_9], [3_7_0, 4_7_2, 5_5_6, 4_8_8], [5_7_0, 4_7_2, 6_8_4, 4_8_7], [6_9_7, 4_7_2, 7_1_8, 4_8_5], [7_3_2, 4_7_2, 8_3_5, 4_8_8], [3_6_9, 4_9_0, 4_1_1, 5_0_3], [4_2_5, 4_9_0, 4_8_4, 5_0_3], [4_9_6, 4_9_0, 6_3_5, 5_0_6], [6_4_5, 4_9_0, 7_0_7, 5_0_3], [7_1_8, 4_9_1, 7_6_1, 5_0_3], [7_7_1, 4_9_0, 8_4_0, 5_0_3], [3_3_6, 5_1_0, 3_7_4, 5_2_1], [3_8_8, 5_1_0, 4_4_7, 5_2_2], [4_6_0, 5_1_0, 4_8_9, 5_2_1], [5_0_3, 5_1_0, 5_8_0, 5_2_2], [5_9_2, 5_0_9, 7_3_6, 5_2_5], [7_4_5, 5_0_9, 7_7_0, 5_2_2], [7_8_1, 5_0_9, 8_4_0, 5_2_2], [3_3_8, 5_2_8, 4_3_4, 5_4_1], [4_4_8, 5_2_8, 5_9_6, 5_4_1], [6_0_9, 5_2_7, 6_8_7, 5_4_0], [7_0_0, 5_2_8, 7_9_2, 5_4_1], [3_3_6, 5_4_6, 3_9_7, 5_5_9], [4_0_7, 5_4_6, 4_3_1, 5_5_9], [4_4_3, 5_4_6, 5_2_5, 5_6_0], [5_3_7, 5_4_6, 6_8_0, 5_6_2], [6_8_8, 5_4_6, 7_1_4, 5_5_9], [7_2_2, 5_4_6, 8_3_7, 5_6_2], [3_3_6, 5_6_5, 4_4_9, 5_8_1], [4_6_1, 5_6_5, 4_8_5, 5_7_7], [4_9_7, 5_6_5, 6_6_5, 5_8_1], [6_8_1, 5_6_5, 7_1_8, 5_7_7], [7_3_2, 5_6_5, 8_3_7, 5_8_0], [3_3_7, 5_8_4, 4_3_8, 5_9_7], [4_5_2, 5_8_3, 5_2_1, 5_9_6], [5_3_5, 5_8_4, 6_7_7, 5_9_9], [6_9_0, 5_8_3, 7_8_7, 5_9_6], [8_0_1, 5_8_3, 8_2_5, 5_9_6], [3_3_8, 6_0_2, 4_7_8, 6_1_5], [4_9_2, 6_0_2, 5_3_0, 6_1_4], [5_4_3, 6_0_2, 6_3_8, 6_1_5], [6_5_0, 6_0_2, 6_7_6, 6_1_4], [6_8_8, 6_0_2, 7_8_8, 6_1_5], [8_0_2, 6_0_2, 8_4_3, 6_1_4], [3_3_7, 6_2_1, 5_0_2, 6_3_3], [5_1_6, 6_2_1, 6_1_5, 6_3_7], [6_2_9, 6_2_1, 7_7_4, 6_3_6], [7_8_9, 6_2_1, 8_2_7, 6_3_3], [3_3_7, 6_3_9, 4_1_8, 6_5_2], [4_3_2, 6_4_0, 5_7_1, 6_5_3], [5_8_7, 6_3_9, 7_3_1, 6_5_5], [7_4_3, 6_3_9, 7_6_9, 6_5_2], [7_8_0, 6_3_9, 8_4_1, 6_5_2], [3_3_8, 6_5_8, 4_4_0, 6_7_3], [4_5_5, 6_5_8, 4_9_1, 6_7_0], [5_0_8, 6_5_8, 6_0_2, 6_7_1], [6_1_6, 6_5_8, 6_3_8, 6_7_0], [6_5_4, 6_5_8, 8_3_5, 6_7_4], [3_3_7, 6_7_7, 4_2_9, 6_8_9], [3_3_7, 7_1_4, 4_8_2, 7_2_6], [4_9_5, 7_1_4, 5_4_8, 7_2_6], [5_6_1, 7_1_4, 6_8_3, 7_2_6], [3_3_8, 7_7_0, 4_6_1, 7_8_2], [4_7_4, 7_6_9, 5_5_4, 7_8_5], [4_8_9, 7_8_8, 5_6_2, 8_0_3], [5_7_6, 7_8_8, 6_4_3, 8_0_1], [6_5_6, 7_8_7, 7_5_1, 8_0_4], [7_6_4, 7_8_8, 8_4_4, 8_0_1], [3_3_4, 8_2_5, 4_2_1, 8_3_8], [4_3_0, 8_2_4, 5_7_4, 8_3_8], [5_8_4, 8_2_4, 7_2_3, 8_4_1], [3_3_5, 8_4_4, 4_5_0, 8_5_7], [4_6_4, 8_4_3, 5_8_3, 8_6_0], [6_2_8, 8_6_2, 7_5_5, 8_7_5], [7_6_9, 8_6_1, 8_4_8, 8_7_8]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , snake_case) self.assertListEqual(encoding.boxes , snake_case) # with apply_OCR = False _UpperCAmelCase : Dict =LayoutLMvaImageProcessor(apply_ocr=snake_case) _UpperCAmelCase : Optional[int] =image_processing(snake_case , return_tensors='pt') self.assertEqual(encoding.pixel_values.shape , (1, 3, 2_2_4, 2_2_4))
331
0
"""simple docstring""" from itertools import product def __magic_name__ ( UpperCamelCase : int , UpperCamelCase : int ) -> list[int]: a__ = sides_number a__ = max_face_number * dice_number a__ = [0] * (max_total + 1) a__ = 1 a__ = range(UpperCamelCase , max_face_number + 1 ) for dice_numbers in product(UpperCamelCase , repeat=UpperCamelCase ): a__ = sum(UpperCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def __magic_name__ ( ) -> float: a__ = total_frequency_distribution( sides_number=4 , dice_number=9 ) a__ = total_frequency_distribution( sides_number=6 , dice_number=6 ) a__ = 0 a__ = 9 a__ = 4 * 9 a__ = 6 for peter_total in range(UpperCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) a__ = (4**9) * (6**6) a__ = peter_wins_count / total_games_number a__ = round(UpperCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
273
"""simple docstring""" import math class lowercase: def lowercase__ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" a__ = 0.0 a__ = 0.0 for i in range(len(__SCREAMING_SNAKE_CASE ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def lowercase__ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> list[list[int | float]]: """simple docstring""" for i in range(len(__SCREAMING_SNAKE_CASE ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def __magic_name__ ( ) -> None: # Training Examples ( m, n ) a__ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) a__ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training a__ = SelfOrganizingMap() a__ = 3 a__ = 0.5 for _ in range(UpperCamelCase ): for j in range(len(UpperCamelCase ) ): # training sample a__ = training_samples[j] # Compute the winning vector a__ = self_organizing_map.get_winner(UpperCamelCase , UpperCamelCase ) # Update the winning vector a__ = self_organizing_map.update(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) # classify test sample a__ = [0, 0, 0, 1] a__ = self_organizing_map.get_winner(UpperCamelCase , UpperCamelCase ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
273
1
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class __magic_name__ ( unittest.TestCase): def UpperCAmelCase__ ( self : str ) -> List[str]: '''simple docstring''' UpperCamelCase__ : Union[str, Any] = '''ylacombe/bark-small''' UpperCamelCase__ : Dict = tempfile.mkdtemp() UpperCamelCase__ : Dict = '''en_speaker_1''' UpperCamelCase__ : Optional[int] = '''This is a test string''' UpperCamelCase__ : Union[str, Any] = '''speaker_embeddings_path.json''' UpperCamelCase__ : str = '''speaker_embeddings''' def UpperCAmelCase__ ( self : Union[str, Any] , **lowerCamelCase__ : Dict ) -> Optional[Any]: '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : str ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' UpperCamelCase__ : List[str] = self.get_tokenizer() UpperCamelCase__ : str = BarkProcessor(tokenizer=lowerCamelCase__ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ : Optional[Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCAmelCase__ ( self : str ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ : List[str] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCamelCase__ : Union[str, Any] = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCamelCase__ : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCAmelCase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' UpperCamelCase__ : int = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCamelCase__ : str = 35 UpperCamelCase__ : int = 2 UpperCamelCase__ : List[Any] = 8 UpperCamelCase__ : str = { '''semantic_prompt''': np.ones(lowerCamelCase__ ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCamelCase__ : int = processor(text=self.input_string , voice_preset=lowerCamelCase__ ) UpperCamelCase__ : Dict = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCamelCase__ : Tuple = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(lowerCamelCase__ , **lowerCamelCase__ ) UpperCamelCase__ : Dict = processor(text=self.input_string , voice_preset=lowerCamelCase__ ) UpperCamelCase__ : Optional[Any] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCamelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCamelCase__ : Dict = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.get_tokenizer() UpperCamelCase__ : Tuple = BarkProcessor(tokenizer=lowerCamelCase__ ) UpperCamelCase__ : List[str] = processor(text=self.input_string ) UpperCamelCase__ : str = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
106
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __magic_name__ ( __lowerCAmelCase): A: Optional[Any] = ["image_processor", "tokenizer"] A: Optional[Any] = "LayoutLMv2ImageProcessor" A: List[str] = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") def __init__( self : Dict , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : List[str]=None , **lowerCamelCase__ : Any ) -> Optional[Any]: '''simple docstring''' if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCamelCase__ , ) UpperCamelCase__ : str = kwargs.pop('''feature_extractor''' ) UpperCamelCase__ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCamelCase__ , lowerCamelCase__ ) def __call__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCamelCase__ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowerCamelCase__ : Union[List[List[int]], List[List[List[int]]]] = None , lowerCamelCase__ : Optional[Union[List[int], List[List[int]]]] = None , lowerCamelCase__ : bool = True , lowerCamelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCamelCase__ : Union[bool, str, TruncationStrategy] = None , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : int = 0 , lowerCamelCase__ : Optional[int] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : Optional[bool] = None , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = False , lowerCamelCase__ : bool = True , lowerCamelCase__ : Optional[Union[str, TensorType]] = None , **lowerCamelCase__ : Any , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes ''' '''if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError('''You cannot return overflowing tokens without returning the offsets mapping.''' ) # first, apply the image processor UpperCamelCase__ : Optional[Any] = self.image_processor(images=lowerCamelCase__ , return_tensors=lowerCamelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCamelCase__ , lowerCamelCase__ ): UpperCamelCase__ : Optional[int] = [text] # add batch dimension (as the image processor always adds a batch dimension) UpperCamelCase__ : Optional[int] = features['''words'''] UpperCamelCase__ : Optional[int] = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , stride=lowerCamelCase__ , pad_to_multiple_of=lowerCamelCase__ , return_token_type_ids=lowerCamelCase__ , return_attention_mask=lowerCamelCase__ , return_overflowing_tokens=lowerCamelCase__ , return_special_tokens_mask=lowerCamelCase__ , return_offsets_mapping=lowerCamelCase__ , return_length=lowerCamelCase__ , verbose=lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ , ) # add pixel values UpperCamelCase__ : Optional[Any] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: UpperCamelCase__ : Union[str, Any] = self.get_overflowing_images(lowerCamelCase__ , encoded_inputs['''overflow_to_sample_mapping'''] ) UpperCamelCase__ : Tuple = images return encoded_inputs def UpperCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Any , lowerCamelCase__ : List[Any] ) -> str: '''simple docstring''' UpperCamelCase__ : int = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F" {len(lowerCamelCase__ )} and {len(lowerCamelCase__ )}" ) return images_with_overflow def UpperCAmelCase__ ( self : int , *lowerCamelCase__ : Dict , **lowerCamelCase__ : str ) -> str: '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase__ , **lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[str] , *lowerCamelCase__ : int , **lowerCamelCase__ : str ) -> Tuple: '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase__ , **lowerCamelCase__ ) @property def UpperCAmelCase__ ( self : int ) -> str: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "image"] @property def UpperCAmelCase__ ( self : Dict ) -> Tuple: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCamelCase__ , ) return self.image_processor_class @property def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCamelCase__ , ) return self.image_processor
106
1
"""simple docstring""" import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class _snake_case : '''simple docstring''' def __init__( self : List[Any] , snake_case : int , snake_case : int , snake_case : int ): if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) UpperCAmelCase_ :List[Any] = img UpperCAmelCase_ :Any = img.shape[1] UpperCAmelCase_ :str = img.shape[0] UpperCAmelCase_ :Dict = dst_width UpperCAmelCase_ :List[Any] = dst_height UpperCAmelCase_ :Optional[Any] = self.src_w / self.dst_w UpperCAmelCase_ :Dict = self.src_h / self.dst_h UpperCAmelCase_ :Dict = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def snake_case_ ( self : Dict ): for i in range(self.dst_h ): for j in range(self.dst_w ): UpperCAmelCase_ :List[Any] = self.img[self.get_y(snake_case )][self.get_x(snake_case )] def snake_case_ ( self : Tuple , snake_case : int ): return int(self.ratio_x * x ) def snake_case_ ( self : int , snake_case : int ): return int(self.ratio_y * y ) if __name__ == "__main__": __lowerCamelCase = 8_00, 6_00 __lowerCamelCase = imread("image_data/lena.jpg", 1) __lowerCamelCase = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( f'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
608
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase_ : int = { """configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""], """tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Any = [ """TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """AdaptiveEmbedding""", """TransfoXLForSequenceClassification""", """TransfoXLLMHeadModel""", """TransfoXLModel""", """TransfoXLPreTrainedModel""", """load_tf_weights_in_transfo_xl""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Tuple = [ """TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAdaptiveEmbedding""", """TFTransfoXLForSequenceClassification""", """TFTransfoXLLMHeadModel""", """TFTransfoXLMainLayer""", """TFTransfoXLModel""", """TFTransfoXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCamelCase_ : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
461
0
from __future__ import annotations from cmath import sqrt def lowerCamelCase__ ( __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int ): """simple docstring""" if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) lowerCAmelCase_ = b * b - 4 * a * c lowerCAmelCase_ = (-b + sqrt(__lowerCAmelCase )) / (2 * a) lowerCAmelCase_ = (-b - sqrt(__lowerCAmelCase )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def lowerCamelCase__ ( ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = quadratic_roots(a=5 , b=6 , c=1 ) print(F"""The solutions are: {solutiona} and {solutiona}""" ) if __name__ == "__main__": main()
279
import math class _lowerCAmelCase : def __init__( self , _UpperCamelCase=0 ) -> Tuple: # a graph with Node 0,1,...,N-1 lowerCAmelCase_ = n lowerCAmelCase_ = [ [math.inf for j in range(0 , _UpperCamelCase )] for i in range(0 , _UpperCamelCase ) ] # adjacency matrix for weight lowerCAmelCase_ = [ [math.inf for j in range(0 , _UpperCamelCase )] for i in range(0 , _UpperCamelCase ) ] # dp[i][j] stores minimum distance from i to j def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: lowerCAmelCase_ = w def __a ( self ) -> List[str]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowerCAmelCase_ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> Dict: return self.dp[u][v] if __name__ == "__main__": _A = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
279
1
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __UpperCamelCase : List[str] = logging.get_logger(__name__) class a ( a__ ): snake_case__ = ['''input_features'''] def __init__( self , _snake_case=80 , _snake_case=1_60_00 , _snake_case=1_60 , _snake_case=30 , _snake_case=4_00 , _snake_case=0.0 , _snake_case=False , **_snake_case , ): """simple docstring""" super().__init__( feature_size=_snake_case , sampling_rate=_snake_case , padding_value=_snake_case , return_attention_mask=_snake_case , **_snake_case , ) lowerCAmelCase = n_fft lowerCAmelCase = hop_length lowerCAmelCase = chunk_length lowerCAmelCase = chunk_length * sampling_rate lowerCAmelCase = self.n_samples // hop_length lowerCAmelCase = sampling_rate lowerCAmelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=_snake_case , min_frequency=0.0 , max_frequency=8_000.0 , sampling_rate=_snake_case , norm='slaney' , mel_scale='slaney' , ) def UpperCamelCase__ ( self , _snake_case ): """simple docstring""" lowerCAmelCase = spectrogram( _snake_case , window_function(self.n_fft , 'hann' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='log10' , ) lowerCAmelCase = log_spec[:, :-1] lowerCAmelCase = np.maximum(_snake_case , log_spec.max() - 8.0 ) lowerCAmelCase = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCamelCase__ ( _snake_case , _snake_case , _snake_case = 0.0 ): """simple docstring""" if attention_mask is not None: lowerCAmelCase = np.array(_snake_case , np.intaa ) lowerCAmelCase = [] for vector, length in zip(_snake_case , attention_mask.sum(-1 ) ): lowerCAmelCase = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: lowerCAmelCase = padding_value normed_input_values.append(_snake_case ) else: lowerCAmelCase = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self , _snake_case , _snake_case = True , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = "max_length" , _snake_case = None , _snake_case = None , _snake_case = None , **_snake_case , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) lowerCAmelCase = isinstance(_snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowerCAmelCase = is_batched_numpy or ( isinstance(_snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_snake_case , np.ndarray ): lowerCAmelCase = np.asarray(_snake_case , dtype=np.floataa ) elif isinstance(_snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase = [np.asarray([raw_speech] ).T] lowerCAmelCase = BatchFeature({'input_features': raw_speech} ) # convert into correct format for padding lowerCAmelCase = self.pad( _snake_case , padding=_snake_case , max_length=max_length if max_length else self.n_samples , truncation=_snake_case , pad_to_multiple_of=_snake_case , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowerCAmelCase = self.zero_mean_unit_var_norm( padded_inputs['input_features'] , attention_mask=padded_inputs['attention_mask'] , padding_value=self.padding_value , ) lowerCAmelCase = np.stack(padded_inputs['input_features'] , axis=0 ) # make sure list is in array format lowerCAmelCase = padded_inputs.get('input_features' ).transpose(2 , 0 , 1 ) lowerCAmelCase = [self._np_extract_fbank_features(_snake_case ) for waveform in input_features[0]] if isinstance(input_features[0] , _snake_case ): lowerCAmelCase = [np.asarray(_snake_case , dtype=np.floataa ) for feature in input_features] else: lowerCAmelCase = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowerCAmelCase = padded_inputs['attention_mask'][:, :: self.hop_length] if return_tensors is not None: lowerCAmelCase = padded_inputs.convert_to_tensors(_snake_case ) return padded_inputs def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = copy.deepcopy(self.__dict__ ) lowerCAmelCase = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
4
'''simple docstring''' import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __UpperCAmelCase : @staticmethod def UpperCAmelCase_ ( *_lowerCamelCase , **_lowerCamelCase ): pass def snake_case_ ( __snake_case : int) -> Union[str, Any]: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. A_ : Any =( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class __UpperCAmelCase ( unittest.TestCase ): __A : Union[str, Any] = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = pipeline( '''document-question-answering''' , model=_lowerCamelCase , tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) lowerCAmelCase_ = INVOICE_URL lowerCAmelCase_ = list(zip(*apply_tesseract(load_image(_lowerCamelCase ) , _lowerCamelCase , '''''' ) ) ) lowerCAmelCase_ = '''What is the placebo?''' lowerCAmelCase_ = [ { '''image''': load_image(_lowerCamelCase ), '''question''': question, }, { '''image''': image, '''question''': question, }, { '''image''': image, '''question''': question, '''word_boxes''': word_boxes, }, ] return dqa_pipeline, examples def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = dqa_pipeline(_lowerCamelCase , top_k=2 ) self.assertEqual( _lowerCamelCase , [ [ {'''score''': ANY(_lowerCamelCase ), '''answer''': ANY(_lowerCamelCase ), '''start''': ANY(_lowerCamelCase ), '''end''': ANY(_lowerCamelCase )}, {'''score''': ANY(_lowerCamelCase ), '''answer''': ANY(_lowerCamelCase ), '''start''': ANY(_lowerCamelCase ), '''end''': ANY(_lowerCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase_ ( self ): lowerCAmelCase_ = pipeline('''document-question-answering''' , model='''hf-internal-testing/tiny-random-layoutlmv2''' ) lowerCAmelCase_ = INVOICE_URL lowerCAmelCase_ = '''How many cats are there?''' lowerCAmelCase_ = [ {'''score''': 0.00_01, '''answer''': '''oy 2312/2019''', '''start''': 38, '''end''': 39}, {'''score''': 0.00_01, '''answer''': '''oy 2312/2019 DUE''', '''start''': 38, '''end''': 40}, ] lowerCAmelCase_ = dqa_pipeline(image=_lowerCamelCase , question=_lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(_lowerCamelCase , decimals=4 ) , _lowerCamelCase ) lowerCAmelCase_ = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual(nested_simplify(_lowerCamelCase , decimals=4 ) , _lowerCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowerCAmelCase_ = dqa_pipeline(image=_lowerCamelCase , question=_lowerCamelCase , top_k=2 ) self.assertEqual(_lowerCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowerCAmelCase_ = '''./tests/fixtures/tests_samples/COCO/000000039769.png''' lowerCAmelCase_ = [] lowerCAmelCase_ = [] lowerCAmelCase_ = dqa_pipeline(image=_lowerCamelCase , question=_lowerCamelCase , words=_lowerCamelCase , boxes=_lowerCamelCase , top_k=2 ) self.assertEqual(_lowerCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase_ ( self ): lowerCAmelCase_ = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , ) lowerCAmelCase_ = INVOICE_URL lowerCAmelCase_ = '''What is the invoice number?''' lowerCAmelCase_ = dqa_pipeline(image=_lowerCamelCase , question=_lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.99_44, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.00_09, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowerCAmelCase_ = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.99_44, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.00_09, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowerCAmelCase_ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.99_44, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.00_09, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def UpperCAmelCase_ ( self ): lowerCAmelCase_ = pipeline( '''document-question-answering''' , model='''tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa''' , revision='''9977165''' , max_seq_len=50 , ) lowerCAmelCase_ = INVOICE_URL lowerCAmelCase_ = '''What is the invoice number?''' lowerCAmelCase_ = dqa_pipeline(image=_lowerCamelCase , question=_lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.99_74, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.99_48, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowerCAmelCase_ = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.99_74, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.99_48, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowerCAmelCase_ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.99_74, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, {'''score''': 0.99_48, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def UpperCAmelCase_ ( self ): lowerCAmelCase_ = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=_lowerCamelCase ) lowerCAmelCase_ = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=_lowerCamelCase , revision='''3dc6de3''' , ) lowerCAmelCase_ = INVOICE_URL lowerCAmelCase_ = '''What is the invoice number?''' lowerCAmelCase_ = dqa_pipeline(image=_lowerCamelCase , question=_lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.42_51, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.08_19, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowerCAmelCase_ = dqa_pipeline({'''image''': image, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.42_51, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.08_19, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) lowerCAmelCase_ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.42_51, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.08_19, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] ] * 2 , ) lowerCAmelCase_ = list(zip(*apply_tesseract(load_image(_lowerCamelCase ) , _lowerCamelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowerCAmelCase_ = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.42_51, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.08_19, '''answer''': '''1110212019''', '''start''': 23, '''end''': 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def UpperCAmelCase_ ( self ): lowerCAmelCase_ = AutoTokenizer.from_pretrained( '''impira/layoutlm-document-qa''' , revision='''3dc6de3''' , add_prefix_space=_lowerCamelCase ) lowerCAmelCase_ = pipeline( '''document-question-answering''' , model='''impira/layoutlm-document-qa''' , tokenizer=_lowerCamelCase , revision='''3dc6de3''' , max_seq_len=50 , ) lowerCAmelCase_ = INVOICE_URL lowerCAmelCase_ = '''What is the invoice number?''' lowerCAmelCase_ = dqa_pipeline(image=_lowerCamelCase , question=_lowerCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.99_99, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.99_98, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) lowerCAmelCase_ = dqa_pipeline( [{'''image''': image, '''question''': question}, {'''image''': image, '''question''': question}] , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ [ {'''score''': 0.99_99, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.99_98, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] ] * 2 , ) lowerCAmelCase_ = list(zip(*apply_tesseract(load_image(_lowerCamelCase ) , _lowerCamelCase , '''''' ) ) ) # This model should also work if `image` is set to None lowerCAmelCase_ = dqa_pipeline({'''image''': None, '''word_boxes''': word_boxes, '''question''': question} , top_k=2 ) self.assertEqual( nested_simplify(_lowerCamelCase , decimals=4 ) , [ {'''score''': 0.99_99, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, {'''score''': 0.99_98, '''answer''': '''us-001''', '''start''': 16, '''end''': 16}, ] , ) @slow @require_torch def UpperCAmelCase_ ( self ): lowerCAmelCase_ = pipeline( '''document-question-answering''' , model='''naver-clova-ix/donut-base-finetuned-docvqa''' , tokenizer=AutoTokenizer.from_pretrained('''naver-clova-ix/donut-base-finetuned-docvqa''' ) , feature_extractor='''naver-clova-ix/donut-base-finetuned-docvqa''' , ) lowerCAmelCase_ = INVOICE_URL lowerCAmelCase_ = '''What is the invoice number?''' lowerCAmelCase_ = dqa_pipeline(image=_lowerCamelCase , question=_lowerCamelCase , top_k=2 ) self.assertEqual(nested_simplify(_lowerCamelCase , decimals=4 ) , [{'''answer''': '''us-001'''}] ) @require_tf @unittest.skip('''Document question answering not implemented in TF''' ) def UpperCAmelCase_ ( self ): pass
274
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _A : Optional[Any] ={'''configuration_xlnet''': ['''XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLNetConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Tuple =['''XLNetTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =['''XLNetTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : Any =[ '''XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLNetForMultipleChoice''', '''XLNetForQuestionAnswering''', '''XLNetForQuestionAnsweringSimple''', '''XLNetForSequenceClassification''', '''XLNetForTokenClassification''', '''XLNetLMHeadModel''', '''XLNetModel''', '''XLNetPreTrainedModel''', '''load_tf_weights_in_xlnet''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A : str =[ '''TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLNetForMultipleChoice''', '''TFXLNetForQuestionAnsweringSimple''', '''TFXLNetForSequenceClassification''', '''TFXLNetForTokenClassification''', '''TFXLNetLMHeadModel''', '''TFXLNetMainLayer''', '''TFXLNetModel''', '''TFXLNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _A : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
4
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def __UpperCamelCase ( _lowercase ) -> Tuple: _lowercase : Tuple = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: _lowercase : Tuple = 4 _lowercase : Union[str, Any] = 48 _lowercase : Any = 'pixelshuffle_aux' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : Dict = [6, 6, 6, 6] _lowercase : Optional[int] = 60 _lowercase : List[str] = [6, 6, 6, 6] _lowercase : Dict = 'pixelshuffledirect' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : str = 4 _lowercase : str = 'nearest+conv' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: _lowercase : str = 1 _lowercase : Tuple = 1 _lowercase : Dict = 126 _lowercase : Optional[int] = 7 _lowercase : List[Any] = 2_5_5.0 _lowercase : Tuple = '' return config def __UpperCamelCase ( _lowercase, _lowercase ) -> str: if "patch_embed.proj" in name and "layers" not in name: _lowercase : Tuple = name.replace('patch_embed.proj', 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.norm', 'embeddings.patch_embeddings.layernorm' ) if "layers" in name: _lowercase : Tuple = name.replace('layers', 'encoder.stages' ) if "residual_group.blocks" in name: _lowercase : str = name.replace('residual_group.blocks', 'layers' ) if "attn.proj" in name: _lowercase : str = name.replace('attn.proj', 'attention.output.dense' ) if "attn" in name: _lowercase : List[Any] = name.replace('attn', 'attention.self' ) if "norm1" in name: _lowercase : List[str] = name.replace('norm1', 'layernorm_before' ) if "norm2" in name: _lowercase : Tuple = name.replace('norm2', 'layernorm_after' ) if "mlp.fc1" in name: _lowercase : int = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: _lowercase : List[str] = name.replace('mlp.fc2', 'output.dense' ) if "q_bias" in name: _lowercase : Optional[Any] = name.replace('q_bias', 'query.bias' ) if "k_bias" in name: _lowercase : str = name.replace('k_bias', 'key.bias' ) if "v_bias" in name: _lowercase : int = name.replace('v_bias', 'value.bias' ) if "cpb_mlp" in name: _lowercase : Any = name.replace('cpb_mlp', 'continuous_position_bias_mlp' ) if "patch_embed.proj" in name: _lowercase : Union[str, Any] = name.replace('patch_embed.proj', 'patch_embed.projection' ) if name == "norm.weight": _lowercase : Union[str, Any] = 'layernorm.weight' if name == "norm.bias": _lowercase : List[Any] = 'layernorm.bias' if "conv_first" in name: _lowercase : Tuple = name.replace('conv_first', 'first_convolution' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: _lowercase : List[str] = name.replace('conv_last', 'final_convolution' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: _lowercase : Union[str, Any] = name.replace('conv_before_upsample.0', 'conv_before_upsample' ) if "upsample.0" in name: _lowercase : str = name.replace('upsample.0', 'upsample.convolution_0' ) if "upsample.2" in name: _lowercase : Union[str, Any] = name.replace('upsample.2', 'upsample.convolution_1' ) _lowercase : Optional[int] = 'upsample.' + name elif config.upsampler == "pixelshuffledirect": _lowercase : Optional[Any] = name.replace('upsample.0.weight', 'upsample.conv.weight' ) _lowercase : str = name.replace('upsample.0.bias', 'upsample.conv.bias' ) else: pass else: _lowercase : Tuple = 'swin2sr.' + name return name def __UpperCamelCase ( _lowercase, _lowercase ) -> List[str]: for key in orig_state_dict.copy().keys(): _lowercase : int = orig_state_dict.pop(_lowercase ) if "qkv" in key: _lowercase : Tuple = key.split('.' ) _lowercase : Optional[Any] = int(key_split[1] ) _lowercase : Any = int(key_split[4] ) _lowercase : Optional[Any] = config.embed_dim if "weight" in key: _lowercase : Optional[int] = val[:dim, :] _lowercase : int = val[dim : dim * 2, :] _lowercase : int = val[-dim:, :] else: _lowercase : Optional[Any] = val[:dim] _lowercase : Tuple = val[dim : dim * 2] _lowercase : List[str] = val[-dim:] pass else: _lowercase : List[Any] = val return orig_state_dict def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Union[str, Any]: _lowercase : Optional[Any] = get_config(_lowercase ) _lowercase : Union[str, Any] = SwinaSRForImageSuperResolution(_lowercase ) model.eval() _lowercase : List[Any] = torch.hub.load_state_dict_from_url(_lowercase, map_location='cpu' ) _lowercase : Any = convert_state_dict(_lowercase, _lowercase ) _lowercase , _lowercase : str = model.load_state_dict(_lowercase, strict=_lowercase ) if len(_lowercase ) > 0: raise ValueError('Missing keys when converting: {}'.format(_lowercase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'''Unexpected key {key} in state_dict''' ) # verify values _lowercase : str = 'https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true' _lowercase : Any = Image.open(requests.get(_lowercase, stream=_lowercase ).raw ).convert('RGB' ) _lowercase : Tuple = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values _lowercase : Tuple = 126 if 'Jpeg' in checkpoint_url else 256 _lowercase : List[str] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6], std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) _lowercase : Optional[Any] = transforms(_lowercase ).unsqueeze(0 ) if config.num_channels == 1: _lowercase : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) _lowercase : Optional[int] = model(_lowercase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 512, 512] ) _lowercase : Tuple = torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: _lowercase : Optional[Any] = torch.Size([1, 3, 1024, 1024] ) _lowercase : int = torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here _lowercase : Optional[int] = torch.Size([1, 3, 1024, 1024] ) _lowercase : Dict = torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: _lowercase : List[str] = torch.Size([1, 3, 512, 512] ) _lowercase : int = torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: _lowercase : Any = torch.Size([1, 3, 1024, 1024] ) _lowercase : Union[str, Any] = torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3], _lowercase, atol=1E-3 ) print('Looks ok!' ) _lowercase : List[str] = { 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth': ( 'swin2SR-classical-sr-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth': ( 'swin2SR-classical-sr-x4-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth': ( 'swin2SR-compressed-sr-x4-48' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth': ( 'swin2SR-lightweight-x2-64' ), 'https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth': ( 'swin2SR-realworld-sr-x4-64-bsrgan-psnr' ), } _lowercase : int = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_lowercase ) if push_to_hub: model.push_to_hub(f'''caidas/{model_name}''' ) processor.push_to_hub(f'''caidas/{model_name}''' ) if __name__ == "__main__": _A : Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') _A : int =parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
1
from __future__ import annotations def __UpperCAmelCase ( __a : list[int] ,__a : int ) -> int: """simple docstring""" if len(__a ) < k or k < 0: raise ValueError('''Invalid Input''' ) _a : Any = sum(array[:k] ) for i in range(len(__a ) - k ): _a : int = current_sum - array[i] + array[i + k] _a : List[Any] = max(__a ,__a ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() a__ = [randint(-1000, 1000) for i in range(100)] a__ = randint(0, 110) print(f'''The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}''')
14
'''simple docstring''' from __future__ import annotations from decimal import Decimal from numpy import array def a ( __a ) -> list[list[float]]: '''simple docstring''' UpperCamelCase__ :int = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(__a ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix UpperCamelCase__ :str = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements UpperCamelCase__ :List[Any] = [[0.0, 0.0], [0.0, 0.0]] UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = matrix[1][1], matrix[0][0] UpperCamelCase__ , UpperCamelCase__ :Dict = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(__a ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(__a ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule UpperCamelCase__ :int = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix UpperCamelCase__ :List[Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] UpperCamelCase__ :Tuple = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) UpperCamelCase__ :List[str] = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) UpperCamelCase__ :Union[str, Any] = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) UpperCamelCase__ :List[Any] = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) UpperCamelCase__ :Optional[int] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) UpperCamelCase__ :List[Any] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) UpperCamelCase__ :List[Any] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) UpperCamelCase__ :List[str] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) UpperCamelCase__ :Dict = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) UpperCamelCase__ :Optional[Any] = array(__a ) for i in range(3 ): for j in range(3 ): UpperCamelCase__ :Optional[Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix UpperCamelCase__ :Any = array(__a ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(__a ) # Calculate the inverse of the matrix return [[float(d(__a ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
189
0
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class a__ ( UpperCamelCase__ ): _a : List[Any] = """facebook/bart-large-mnli""" _a : Optional[Any] = ( """This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which """ """should be the text to classify, and `labels`, which should be the list of labels to use for classification. """ """It returns the most likely label in the list of provided `labels` for the input text.""" ) _a : Union[str, Any] = """text_classifier""" _a : int = AutoTokenizer _a : Tuple = AutoModelForSequenceClassification _a : str = ["""text""", ["""text"""]] _a : List[Any] = ["""text"""] def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" super().setup() __lowerCAmelCase = self.model.config __lowerCAmelCase = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): __lowerCAmelCase = int(__A ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" __lowerCAmelCase = labels return self.pre_processor( [text] * len(__A ) , [f"""This example is {label}""" for label in labels] , return_tensors="pt" , padding="max_length" , ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" __lowerCAmelCase = outputs.logits __lowerCAmelCase = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
715
from math import ceil, sqrt def _a ( SCREAMING_SNAKE_CASE_ : int = 1_00_00_00 ): __lowerCAmelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: __lowerCAmelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: __lowerCAmelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f'''{solution() = }''')
552
0
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: int ) -> Optional[int]: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True A__ = 4 A__ = (1 << p) - 1 for _ in range(p - 2 ): A__ = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
514
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[Any]=None ): return field(default_factory=lambda: default , metadata=UpperCamelCase__ ) @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( metadata={"help": "The csv file to plot."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Disable logarithmic scale when plotting"} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) __SCREAMING_SNAKE_CASE = list_field( default=a , metadata={"help": "List of model names that are used instead of the ones in the csv file."}) def _UpperCAmelCase (UpperCamelCase__ : List[str] ): try: int(UpperCamelCase__ ) return True except ValueError: return False def _UpperCAmelCase (UpperCamelCase__ : int ): try: float(UpperCamelCase__ ) return True except ValueError: return False class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase) -> Dict: _A : int = args _A : Union[str, Any] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}}) with open(self.args.csv_file , newline="") as csv_file: _A : Union[str, Any] = csv.DictReader(__lowerCamelCase) for row in reader: _A : List[str] = row["model"] self.result_dict[model_name]["bsz"].append(int(row["batch_size"])) self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"])) if can_convert_to_int(row["result"]): # value is not None _A : Union[str, Any] = int(row["result"]) elif can_convert_to_float(row["result"]): # value is not None _A : Dict = float(row["result"]) def _lowerCamelCase ( self) -> Dict: _A , _A : Any = plt.subplots() _A : Tuple = "Time usage" if self.args.is_time else "Memory usage" _A : int = title_str + " for training" if self.args.is_train else title_str + " for inference" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("log") ax.set_yscale("log") for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter()) for model_name_idx, model_name in enumerate(self.result_dict.keys()): _A : Optional[int] = sorted(set(self.result_dict[model_name]["bsz"])) _A : List[str] = sorted(set(self.result_dict[model_name]["seq_len"])) _A : int = self.result_dict[model_name]["result"] ((_A) , (_A)) : Optional[Any] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _A : Tuple = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _A : Tuple = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__lowerCamelCase , ) else: _A : Dict = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_A) , (_A)) : Optional[Any] = ( ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz") ) _A : Union[str, Any] = np.asarray(__lowerCamelCase , __lowerCamelCase)[: len(__lowerCamelCase)] plt.scatter( __lowerCamelCase , __lowerCamelCase , label=F"{label_model_name} - {inner_loop_label}: {inner_loop_value}") plt.plot(__lowerCamelCase , __lowerCamelCase , "--") title_str += F" {label_model_name} vs." _A : int = title_str[:-4] _A : Dict = "Time in s" if self.args.is_time else "Memory in MB" # plot plt.title(__lowerCamelCase) plt.xlabel(__lowerCamelCase) plt.ylabel(__lowerCamelCase) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file) else: plt.show() def _UpperCAmelCase (): _A : Optional[Any] = HfArgumentParser(UpperCamelCase__ ) _A : str = parser.parse_args_into_dataclasses()[0] _A : Optional[Any] = Plot(args=UpperCamelCase__ ) plot.plot() if __name__ == "__main__": main()
503
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { """vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_config_file""": """tokenizer_config.json""", } lowerCAmelCase = { """vocab_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"""}, """merges_file""": {"""facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"""}, """tokenizer_config_file""": { """facebook/blenderbot-3B""": """https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json""" }, } lowerCAmelCase = {"""facebook/blenderbot-3B""": 128} class _a ( UpperCamelCase__ ): _lowercase : int = VOCAB_FILES_NAMES _lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _lowercase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Any = ["input_ids", "attention_mask"] _lowercase : Tuple = BlenderbotTokenizer def __init__( self: Tuple , UpperCamelCase_: List[Any]=None , UpperCamelCase_: int=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: int="replace" , UpperCamelCase_: List[Any]="<s>" , UpperCamelCase_: Optional[Any]="</s>" , UpperCamelCase_: Optional[int]="</s>" , UpperCamelCase_: int="<s>" , UpperCamelCase_: Optional[int]="<unk>" , UpperCamelCase_: Tuple="<pad>" , UpperCamelCase_: Optional[int]="<mask>" , UpperCamelCase_: Tuple=False , UpperCamelCase_: Optional[int]=True , **UpperCamelCase_: int , ) -> Dict: """simple docstring""" super().__init__( UpperCamelCase_ , UpperCamelCase_ , tokenizer_file=UpperCamelCase_ , errors=UpperCamelCase_ , bos_token=UpperCamelCase_ , eos_token=UpperCamelCase_ , sep_token=UpperCamelCase_ , cls_token=UpperCamelCase_ , unk_token=UpperCamelCase_ , pad_token=UpperCamelCase_ , mask_token=UpperCamelCase_ , add_prefix_space=UpperCamelCase_ , trim_offsets=UpperCamelCase_ , **UpperCamelCase_ , ) lowercase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCamelCase_ ) != add_prefix_space: lowercase__ = getattr(UpperCamelCase_ , pre_tok_state.pop('''type''' ) ) lowercase__ = add_prefix_space lowercase__ = pre_tok_class(**UpperCamelCase_ ) lowercase__ = add_prefix_space lowercase__ = '''post_processor''' lowercase__ = getattr(self.backend_tokenizer , UpperCamelCase_ , UpperCamelCase_ ) if tokenizer_component_instance: lowercase__ = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase__ = tuple(state['''sep'''] ) if "cls" in state: lowercase__ = tuple(state['''cls'''] ) lowercase__ = False if state.get('''add_prefix_space''' , UpperCamelCase_ ) != add_prefix_space: lowercase__ = add_prefix_space lowercase__ = True if state.get('''trim_offsets''' , UpperCamelCase_ ) != trim_offsets: lowercase__ = trim_offsets lowercase__ = True if changes_to_apply: lowercase__ = getattr(UpperCamelCase_ , state.pop('''type''' ) ) lowercase__ = component_class(**UpperCamelCase_ ) setattr(self.backend_tokenizer , UpperCamelCase_ , UpperCamelCase_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowerCamelCase_ ( self: int ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase_: Dict ) -> str: """simple docstring""" lowercase__ = AddedToken(UpperCamelCase_ , lstrip=UpperCamelCase_ , rstrip=UpperCamelCase_ ) if isinstance(UpperCamelCase_ , UpperCamelCase_ ) else value lowercase__ = value def lowerCamelCase_ ( self: str , *UpperCamelCase_: Optional[Any] , **UpperCamelCase_: Dict ) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('''is_split_into_words''' , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple , *UpperCamelCase_: Dict , **UpperCamelCase_: Any ) -> BatchEncoding: """simple docstring""" lowercase__ = kwargs.get('''is_split_into_words''' , UpperCamelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase_ , **UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: str , UpperCamelCase_: Optional[str] = None ) -> Tuple[str]: """simple docstring""" lowercase__ = self._tokenizer.model.save(UpperCamelCase_ , name=UpperCamelCase_ ) return tuple(UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: List[int] , UpperCamelCase_: Optional[List[int]] = None ) -> List[Any]: """simple docstring""" return token_ids_a + [self.eos_token_id] def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase_: "Conversation" ) -> List[int]: """simple docstring""" lowercase__ = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(UpperCamelCase_ ) lowercase__ = ''' '''.join(UpperCamelCase_ ) lowercase__ = self.encode(UpperCamelCase_ ) if len(UpperCamelCase_ ) > self.model_max_length: lowercase__ = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
706
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } lowerCAmelCase = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" for attribute in key.split('''.''' ): lowercase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: lowercase__ = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: lowercase__ = hf_pointer.shape assert hf_shape == value.shape, ( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase__ = value elif weight_type == "weight_g": lowercase__ = value elif weight_type == "weight_v": lowercase__ = value elif weight_type == "bias": lowercase__ = value else: lowercase__ = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [] lowercase__ = fairseq_model.state_dict() lowercase__ = hf_model.feature_extractor lowercase__ = hf_model.adapter for name, value in fairseq_dict.items(): lowercase__ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) lowercase__ = True elif any(x in name for x in ['''adaptor''', '''w2v_encoder.proj.''', '''w2v_proj_ln.'''] ): load_adapter(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowercase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: lowercase__ = True if "*" in mapped_key: lowercase__ = name.split(SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] lowercase__ = mapped_key.replace('''*''' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: lowercase__ = '''weight_g''' elif "weight_v" in name: lowercase__ = '''weight_v''' elif "bias" in name: lowercase__ = '''bias''' elif "weight" in name: lowercase__ = '''weight''' else: lowercase__ = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(f'Unused weights: {unused_weights}' ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = full_name.split('''conv_layers.''' )[-1] lowercase__ = name.split('''.''' ) lowercase__ = int(items[0] ) lowercase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowercase__ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'{full_name} has size {value.shape}, but' f' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase__ = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = full_name.split('''adaptor.''' )[-1] lowercase__ = name.split('''.''' ) if items[1].isdigit(): lowercase__ = int(items[1] ) else: lowercase__ = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.' lowercase__ = value logger.info(f'Adapter proj layer norm bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.' lowercase__ = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.' lowercase__ = value logger.info(f'Adapter proj layer bias was initialized from {full_name}.' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.' lowercase__ = value logger.info(f'Adapter proj layer weight was initialized from {full_name}.' ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.' lowercase__ = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.' lowercase__ = value logger.info(f'Adapter layer {layer_id} bias was initialized from {full_name}.' ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = emb.weight.shape lowercase__ = nn.Linear(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , bias=SCREAMING_SNAKE_CASE ) lowercase__ = emb.weight.data return lin_layer @torch.no_grad() def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase__ = WavaVecaConfig.from_pretrained( SCREAMING_SNAKE_CASE , add_adapter=SCREAMING_SNAKE_CASE , adapter_stride=SCREAMING_SNAKE_CASE , adapter_kernel_size=SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE , output_hidden_size=SCREAMING_SNAKE_CASE , ) lowercase__ = MBartConfig.from_pretrained(SCREAMING_SNAKE_CASE ) # load model lowercase__ , lowercase__ , lowercase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ '''config_yaml''': config_yaml_path, '''data''': '''/'''.join(dict_path.split('''/''' )[:-1] ), '''w2v_path''': checkpoint_path, '''load_pretrained_decoder_from''': None, } , ) lowercase__ = model[0].eval() # load feature extractor lowercase__ = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE , use_auth_token=SCREAMING_SNAKE_CASE ) # set weights for wav2vec2 encoder lowercase__ = WavaVecaModel(SCREAMING_SNAKE_CASE ) recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE ) # load decoder weights lowercase__ = MBartForCausalLM(SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE ) logger.warning(f'The following keys are missing when loading the decoder weights: {missing_keys}' ) logger.warning(f'The following keys are unexpected when loading the decoder weights: {unexpected_keys}' ) lowercase__ = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE , decoder=SCREAMING_SNAKE_CASE ) lowercase__ = False lowercase__ = MBartaaTokenizer(SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) lowercase__ = hf_wavavec.config.to_dict() lowercase__ = tokenizer.pad_token_id lowercase__ = tokenizer.bos_token_id lowercase__ = tokenizer.eos_token_id lowercase__ = '''mbart50''' lowercase__ = '''wav2vec2''' lowercase__ = tokenizer.eos_token_id lowercase__ = 25_00_04 lowercase__ = tokenizer.eos_token_id lowercase__ = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=1024, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=25_0004, type=int, help='`decoder_start_token_id` of model config') lowerCAmelCase = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
429
0
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCamelCase__ ( _lowercase ): '''simple docstring''' for param in module.parameters(): UpperCAmelCase_ : str = False def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : List[str] = '''cuda''' if torch.cuda.is_available() else '''cpu''' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): UpperCAmelCase_ : Dict = '''mps''' if device == "mps": print( '''WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch''' ''' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues''' ''' with generations.''' ) return device def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Tuple = plt.imshow(_lowercase ) fig.axes.get_xaxis().set_visible(_lowercase ) fig.axes.get_yaxis().set_visible(_lowercase ) plt.show() def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = datetime.now() UpperCAmelCase_ : Optional[Any] = current_time.strftime('''%H:%M:%S''' ) return timestamp
30
"""simple docstring""" from torch import nn class lowerCAmelCase__ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : str , lowercase_ : str): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : int = class_size SCREAMING_SNAKE_CASE_ : Dict = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) SCREAMING_SNAKE_CASE_ : Any = nn.Linear(lowercase_ , lowercase_) def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.mlp(lowercase_) return logits
512
0
'''simple docstring''' import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __magic_name__ ( UpperCAmelCase__): def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , lowercase_ : str ): with open(__lowerCAmelCase , encoding="""utf-8""" ) as input_file: lowercase_ : Any = re.compile(r"""(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)""" ) lowercase_ : str = input_file.read() lowercase_ : List[str] = regexp.search(__lowerCAmelCase ) return match def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : str ): with open(__lowerCAmelCase , encoding="""utf-8""" ) as input_file: lowercase_ : str = re.compile(r"""#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()""" , re.DOTALL ) lowercase_ : Union[str, Any] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` lowercase_ : Dict = regexp.finditer(__lowerCAmelCase ) lowercase_ : List[Any] = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[int] = Path("""./datasets""" ) lowercase_ : Tuple = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__lowerCAmelCase ) ): raise AssertionError(f'''open(...) must use utf-8 encoding in {dataset}''' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : List[Any] = Path("""./datasets""" ) lowercase_ : List[Any] = list(dataset_paths.absolute().glob("""**/*.py""" ) ) for dataset in dataset_files: if self._no_print_statements(str(__lowerCAmelCase ) ): raise AssertionError(f'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
709
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class __magic_name__ ( unittest.TestCase): @slow def SCREAMING_SNAKE_CASE_ ( self : str ): lowercase_ : Any = TFAutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" ) lowercase_ : Dict = AutoTokenizer.from_pretrained("""google/mt5-small""" ) lowercase_ : Union[str, Any] = tokenizer("""Hello there""" , return_tensors="""tf""" ).input_ids lowercase_ : List[str] = tokenizer("""Hi I am""" , return_tensors="""tf""" ).input_ids lowercase_ : Optional[Any] = model(lowercase_ , labels=lowercase_ ).loss lowercase_ : Optional[int] = -tf.math.reduce_mean(lowercase_ ).numpy() lowercase_ : Optional[int] = -21.22_81_68 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
30
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() snake_case_ : str = logging.get_logger(__name__) def __snake_case ( _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Optional[Any]=False): UpperCamelCase = [] # fmt: off # stem: rename_keys.append(('''cls_token''', '''vit.embeddings.cls_token''')) rename_keys.append(('''pos_embed''', '''vit.embeddings.position_embeddings''')) rename_keys.append(('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight''')) rename_keys.append(('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias''')) # backbone rename_keys.append(('''patch_embed.backbone.stem.conv.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.weight''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight''')) rename_keys.append(('''patch_embed.backbone.stem.norm.bias''', '''vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias''')) for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight')) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight')) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias')) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight')) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight')) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias')) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight')) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight')) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias')) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight')) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight')) rename_keys.append((f'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias', f'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias')) # transformer encoder for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'blocks.{i}.norm1.weight', f'vit.encoder.layer.{i}.layernorm_before.weight')) rename_keys.append((f'blocks.{i}.norm1.bias', f'vit.encoder.layer.{i}.layernorm_before.bias')) rename_keys.append((f'blocks.{i}.attn.proj.weight', f'vit.encoder.layer.{i}.attention.output.dense.weight')) rename_keys.append((f'blocks.{i}.attn.proj.bias', f'vit.encoder.layer.{i}.attention.output.dense.bias')) rename_keys.append((f'blocks.{i}.norm2.weight', f'vit.encoder.layer.{i}.layernorm_after.weight')) rename_keys.append((f'blocks.{i}.norm2.bias', f'vit.encoder.layer.{i}.layernorm_after.bias')) rename_keys.append((f'blocks.{i}.mlp.fc1.weight', f'vit.encoder.layer.{i}.intermediate.dense.weight')) rename_keys.append((f'blocks.{i}.mlp.fc1.bias', f'vit.encoder.layer.{i}.intermediate.dense.bias')) rename_keys.append((f'blocks.{i}.mlp.fc2.weight', f'vit.encoder.layer.{i}.output.dense.weight')) rename_keys.append((f'blocks.{i}.mlp.fc2.bias', f'vit.encoder.layer.{i}.output.dense.bias')) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ]) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''') else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ]) # fmt: on return rename_keys def __snake_case ( _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Tuple, _UpperCAmelCase : int=False): for i in range(config.num_hidden_layers): if base_model: UpperCamelCase = '''''' else: UpperCamelCase = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase = state_dict.pop(f'blocks.{i}.attn.qkv.weight') UpperCamelCase = state_dict.pop(f'blocks.{i}.attn.qkv.bias') # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase = in_proj_bias[: config.hidden_size] UpperCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase = in_proj_bias[-config.hidden_size :] def __snake_case ( _UpperCAmelCase : Optional[Any]): UpperCamelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase) def __snake_case ( _UpperCAmelCase : Tuple, _UpperCAmelCase : Tuple, _UpperCAmelCase : Union[str, Any]): UpperCamelCase = dct.pop(_UpperCAmelCase) UpperCamelCase = val def __snake_case ( ): UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCamelCase = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase).raw) return im @torch.no_grad() def __snake_case ( _UpperCAmelCase : List[Any], _UpperCAmelCase : List[str], _UpperCAmelCase : Optional[int]=False): UpperCamelCase = BitConfig( global_padding='''same''', layer_type='''bottleneck''', depths=(3, 4, 9), out_features=['''stage3'''], embedding_dynamic_padding=_UpperCAmelCase, ) UpperCamelCase = ViTHybridConfig(backbone_config=_UpperCAmelCase, image_size=384, num_labels=1000) UpperCamelCase = False # load original model from timm UpperCamelCase = timm.create_model(_UpperCAmelCase, pretrained=_UpperCAmelCase) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCamelCase = timm_model.state_dict() if base_model: remove_classification_head_(_UpperCAmelCase) UpperCamelCase = create_rename_keys(_UpperCAmelCase, _UpperCAmelCase) for src, dest in rename_keys: rename_key(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase) read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase) UpperCamelCase = '''huggingface/label-files''' UpperCamelCase = '''imagenet-1k-id2label.json''' UpperCamelCase = json.load(open(hf_hub_download(_UpperCAmelCase, _UpperCAmelCase, repo_type='''dataset'''), '''r''')) UpperCamelCase = {int(_UpperCAmelCase): v for k, v in idalabel.items()} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": UpperCamelCase = ViTHybridModel(_UpperCAmelCase).eval() else: UpperCamelCase = ViTHybridForImageClassification(_UpperCAmelCase).eval() model.load_state_dict(_UpperCAmelCase) # create image processor UpperCamelCase = create_transform(**resolve_data_config({}, model=_UpperCAmelCase)) UpperCamelCase = transform.transforms UpperCamelCase = { '''bilinear''': PILImageResampling.BILINEAR, '''bicubic''': PILImageResampling.BICUBIC, '''nearest''': PILImageResampling.NEAREST, } UpperCamelCase = ViTHybridImageProcessor( do_resize=_UpperCAmelCase, size={'''shortest_edge''': timm_transforms[0].size}, resample=pillow_resamplings[timm_transforms[0].interpolation.value], do_center_crop=_UpperCAmelCase, crop_size={'''height''': timm_transforms[1].size[0], '''width''': timm_transforms[1].size[1]}, do_normalize=_UpperCAmelCase, image_mean=timm_transforms[-1].mean.tolist(), image_std=timm_transforms[-1].std.tolist(), ) UpperCamelCase = prepare_img() UpperCamelCase = transform(_UpperCAmelCase).unsqueeze(0) UpperCamelCase = processor(_UpperCAmelCase, return_tensors='''pt''').pixel_values # verify pixel values assert torch.allclose(_UpperCAmelCase, _UpperCAmelCase) # verify logits with torch.no_grad(): UpperCamelCase = model(_UpperCAmelCase) UpperCamelCase = outputs.logits print('''Predicted class:''', logits.argmax(-1).item()) if base_model: UpperCamelCase = timm_model.forward_features(_UpperCAmelCase) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_UpperCAmelCase, outputs.pooler_output, atol=1E-3) else: UpperCamelCase = timm_model(_UpperCAmelCase) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_UpperCAmelCase, outputs.logits, atol=1E-3) print('''Looks ok!''') if pytorch_dump_folder_path is not None: Path(_UpperCAmelCase).mkdir(exist_ok=_UpperCAmelCase) print(f'Saving model {vit_name} to {pytorch_dump_folder_path}') model.save_pretrained(_UpperCAmelCase) print(f'Saving processor to {pytorch_dump_folder_path}') processor.save_pretrained(_UpperCAmelCase) if push_to_hub: print(f'Pushing model and processor to the hub {vit_name}') model.push_to_hub(f'ybelkada/{vit_name}') processor.push_to_hub(f'ybelkada/{vit_name}') if __name__ == "__main__": snake_case_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) snake_case_ : List[str] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
212
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) snake_case_ : Optional[Any] = { 'configuration_blenderbot': [ 'BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotConfig', 'BlenderbotOnnxConfig', ], 'tokenization_blenderbot': ['BlenderbotTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = ['BlenderbotTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ 'BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotForCausalLM', 'BlenderbotForConditionalGeneration', 'BlenderbotModel', 'BlenderbotPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ 'TFBlenderbotForConditionalGeneration', 'TFBlenderbotModel', 'TFBlenderbotPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Any = [ 'FlaxBlenderbotForConditionalGeneration', 'FlaxBlenderbotModel', 'FlaxBlenderbotPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys snake_case_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
212
1
"""simple docstring""" from __future__ import annotations def __UpperCAmelCase ( _snake_case : float, _snake_case : float, _snake_case : float ): if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
227
"""simple docstring""" import argparse import datetime def __UpperCAmelCase ( _snake_case : str ): _lowercase = { "0": "Sunday", "1": "Monday", "2": "Tuesday", "3": "Wednesday", "4": "Thursday", "5": "Friday", "6": "Saturday", } _lowercase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(_snake_case ) < 1_1: raise ValueError("Must be 10 characters long" ) # Get month _lowercase = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 1_3: raise ValueError("Month must be between 1 - 12" ) _lowercase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get day _lowercase = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 3_2: raise ValueError("Date must be between 1 - 31" ) # Get second separator _lowercase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("Date separator must be '-' or '/'" ) # Get year _lowercase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 4_5 < y < 8_5_0_0: raise ValueError( "Year out of range. There has to be some sort of limit...right?" ) # Get datetime obj for validation _lowercase = datetime.date(int(_snake_case ), int(_snake_case ), int(_snake_case ) ) # Start math if m <= 2: _lowercase = y - 1 _lowercase = m + 1_2 # maths var _lowercase = int(str(_snake_case )[:2] ) _lowercase = int(str(_snake_case )[2:] ) _lowercase = int(2.6 * m - 5.3_9 ) _lowercase = int(c / 4 ) _lowercase = int(k / 4 ) _lowercase = int(d + k ) _lowercase = int(t + u + v + x ) _lowercase = int(z - (2 * c) ) _lowercase = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("The date was evaluated incorrectly. Contact developer." ) # Response _lowercase = f"""Your date {date_input}, is a {days[str(_snake_case )]}!""" return response if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Any = argparse.ArgumentParser( description=( "Find out what day of the week nearly any date is or was. Enter " "date as a string in the mm-dd-yyyy or mm/dd/yyyy format" ) ) parser.add_argument( "date_input", type=str, help="Date as a string (mm-dd-yyyy or mm/dd/yyyy)" ) __UpperCamelCase : str = parser.parse_args() zeller(args.date_input)
227
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class UpperCamelCase_ : """simple docstring""" def __init__( self : List[Any] , _lowerCamelCase : int ) -> None: __magic_name__ = value __magic_name__ = None __magic_name__ = None class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[int] , _lowerCamelCase : Node ) -> None: __magic_name__ = tree def __A ( self : List[str] , _lowerCamelCase : Node | None ) -> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : int ) -> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
664
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ : Union[str, Any] ={'configuration_focalnet': ['FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FocalNetConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : str =[ 'FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FocalNetForImageClassification', 'FocalNetForMaskedImageModeling', 'FocalNetBackbone', 'FocalNetModel', 'FocalNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys __magic_name__ : List[Any] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
664
1
'''simple docstring''' from ..utils import DummyObject, requires_backends class _lowerCAmelCase ( metaclass=__A ): """simple docstring""" lowerCamelCase = ['''note_seq'''] def __init__( self , *_lowerCamelCase , **_lowerCamelCase ) -> List[str]: requires_backends(self , ["""note_seq"""] ) @classmethod def UpperCAmelCase_ ( cls , *_lowerCamelCase , **_lowerCamelCase ) -> int: requires_backends(cls , ["""note_seq"""] ) @classmethod def UpperCAmelCase_ ( cls , *_lowerCamelCase , **_lowerCamelCase ) -> List[Any]: requires_backends(cls , ["""note_seq"""] )
385
'''simple docstring''' import numpy as np import qiskit def UpperCAmelCase ( a_ = 8 , a_ = None ) -> str: """simple docstring""" A_ : List[Any] = np.random.default_rng(seed=a_ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. A_ : Union[str, Any] = 6 * key_len # Measurement basis for Alice's qubits. A_ : Dict = rng.integers(2 , size=a_ ) # The set of states Alice will prepare. A_ : Optional[int] = rng.integers(2 , size=a_ ) # Measurement basis for Bob's qubits. A_ : List[Any] = rng.integers(2 , size=a_ ) # Quantum Circuit to simulate BB84 A_ : Optional[Any] = qiskit.QuantumCircuit(a_ , name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(a_ ): if alice_state[index] == 1: bbaa_circ.x(a_ ) if alice_basis[index] == 1: bbaa_circ.h(a_ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(a_ ): if bob_basis[index] == 1: bbaa_circ.h(a_ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. A_ : List[Any] = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. A_ : int = qiskit.execute(a_ , a_ , shots=1 , seed_simulator=a_ ) # Returns the result of measurement. A_ : Any = job.result().get_counts(a_ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. A_ : Optional[Any] = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( a_ , a_ , a_ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. A_ : Optional[int] = gen_key[:key_len] if len(a_ ) >= key_len else gen_key.ljust(a_ , """0""" ) return key if __name__ == "__main__": print(f'The generated key is : {bbaa(8, seed=0)}') from doctest import testmod testmod()
385
1
import unittest from transformers import DonutProcessor a_ : List[Any] = 'naver-clova-ix/donut-base' class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def _a (self ): '''simple docstring''' lowerCamelCase = DonutProcessor.from_pretrained(__a ) def _a (self ): '''simple docstring''' lowerCamelCase = { "name": "John Doe", "age": "99", "city": "Atlanta", "state": "GA", "zip": "30301", "phone": "123-4567", "nicknames": [{"nickname": "Johnny"}, {"nickname": "JD"}], } lowerCamelCase = ( "<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>" "<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>" "<s_nicknames><s_nickname>Johnny</s_nickname>" "<sep/><s_nickname>JD</s_nickname></s_nicknames>" ) lowerCamelCase = self.processor.tokenajson(__a ) self.assertDictEqual(__a , __a )
623
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = MobileBertConfig.from_json_file(UpperCAmelCase__ ) print(F"""Building PyTorch model from configuration: {config}""" ) lowerCamelCase = MobileBertForPreTraining(UpperCAmelCase__ ) # Load weights from tf checkpoint lowerCamelCase = load_tf_weights_in_mobilebert(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCAmelCase__ ) if __name__ == "__main__": a_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ : List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
623
1
import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) lowercase = logging.getLogger() def UpperCAmelCase_ ( lowercase__ ): '''simple docstring''' a_ ={} a_ =os.path.join(lowercase__ , "all_results.json" ) if os.path.exists(lowercase__ ): with open(lowercase__ , "r" ) as f: a_ =json.load(lowercase__ ) else: raise ValueError(F"""can't find {path}""" ) return results lowercase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class UpperCAmelCase ( __a): '''simple docstring''' def lowercase_ ( self) -> List[Any]: """simple docstring""" import xla_spawn a_ =self.get_auto_remove_tmp_dir() a_ =f""" ./examples/pytorch/text-classification/run_glue.py --num_cores=8 ./examples/pytorch/text-classification/run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --overwrite_output_dir --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --do_train --do_eval --debug tpu_metrics_debug --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --max_steps=10 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(lowerCAmelCase_ , "argv" , lowerCAmelCase_): a_ =time() xla_spawn.main() a_ =time() a_ =get_results(lowerCAmelCase_) self.assertGreaterEqual(result["eval_accuracy"] , 0.7_5) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_0_0) def lowercase_ ( self) -> Tuple: """simple docstring""" import xla_spawn a_ ="\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n ".split() with patch.object(lowerCAmelCase_ , "argv" , lowerCAmelCase_): xla_spawn.main()
709
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { '''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''', } class UpperCAmelCase ( __a): '''simple docstring''' __magic_name__ : int = "switch_transformers" __magic_name__ : List[Any] = ["past_key_values"] __magic_name__ : Union[str, Any] = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , lowerCAmelCase_=3_2_1_2_8 , lowerCAmelCase_=7_6_8 , lowerCAmelCase_=6_4 , lowerCAmelCase_=2_0_4_8 , lowerCAmelCase_=6_4 , lowerCAmelCase_=1_2 , lowerCAmelCase_=3 , lowerCAmelCase_=1_2 , lowerCAmelCase_=3 , lowerCAmelCase_=1_2 , lowerCAmelCase_=8 , lowerCAmelCase_=False , lowerCAmelCase_=0.0_1 , lowerCAmelCase_="float32" , lowerCAmelCase_=False , lowerCAmelCase_=3_2 , lowerCAmelCase_=1_2_8 , lowerCAmelCase_=0.1 , lowerCAmelCase_=1e-6 , lowerCAmelCase_=0.0_0_1 , lowerCAmelCase_=0.0_0_1 , lowerCAmelCase_=1.0 , lowerCAmelCase_="relu" , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=0 , lowerCAmelCase_=1 , **lowerCAmelCase_ , ) -> Optional[int]: """simple docstring""" a_ =vocab_size a_ =d_model a_ =d_kv a_ =d_ff a_ =num_sparse_encoder_layers a_ =num_layers a_ =( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry a_ =num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: a_ =self.num_layers // self.num_sparse_encoder_layers else: a_ =self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: a_ =self.num_decoder_layers // self.num_sparse_decoder_layers else: a_ =self.num_decoder_layers # HACK: this will create 0 sparse layers a_ =num_heads a_ =num_experts a_ =expert_capacity a_ =router_bias a_ =router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""") a_ =router_dtype a_ =router_ignore_padding_tokens a_ =relative_attention_num_buckets a_ =relative_attention_max_distance a_ =dropout_rate a_ =layer_norm_epsilon a_ =initializer_factor a_ =feed_forward_proj a_ =use_cache a_ =add_router_probs a_ =router_z_loss_coef a_ =router_aux_loss_coef a_ =self.feed_forward_proj.split("-") a_ =act_info[-1] a_ =act_info[0] == "gated" if len(lowerCAmelCase_) > 1 and act_info[0] != "gated" or len(lowerCAmelCase_) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " "'gated-gelu' or 'relu'") # for backwards compatibility if feed_forward_proj == "gated-gelu": a_ ="gelu_new" super().__init__( pad_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ , )
41
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : Dict = logging.get_logger(__name__) lowercase : Tuple = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : List[Any] = 'poolformer' def __init__( self , __UpperCamelCase=3 , __UpperCamelCase=16 , __UpperCamelCase=16 , __UpperCamelCase=3 , __UpperCamelCase=4.0 , __UpperCamelCase=[2, 2, 6, 2] , __UpperCamelCase=[64, 1_28, 3_20, 5_12] , __UpperCamelCase=[7, 3, 3, 3] , __UpperCamelCase=[4, 2, 2, 2] , __UpperCamelCase=[2, 1, 1, 1] , __UpperCamelCase=4 , __UpperCamelCase=0.0 , __UpperCamelCase="gelu" , __UpperCamelCase=True , __UpperCamelCase=1E-5 , __UpperCamelCase=0.02 , **__UpperCamelCase , ) -> List[str]: '''simple docstring''' __UpperCamelCase : List[str] = num_channels __UpperCamelCase : List[str] = patch_size __UpperCamelCase : str = stride __UpperCamelCase : Tuple = padding __UpperCamelCase : Optional[Any] = pool_size __UpperCamelCase : List[Any] = hidden_sizes __UpperCamelCase : List[Any] = mlp_ratio __UpperCamelCase : Union[str, Any] = depths __UpperCamelCase : Optional[Any] = patch_sizes __UpperCamelCase : str = strides __UpperCamelCase : List[str] = num_encoder_blocks __UpperCamelCase : Tuple = drop_path_rate __UpperCamelCase : int = hidden_act __UpperCamelCase : Tuple = use_layer_scale __UpperCamelCase : List[Any] = layer_scale_init_value __UpperCamelCase : Tuple = initializer_range super().__init__(**__UpperCamelCase ) class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : Tuple = version.parse('1.11' ) @property def __lowerCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __lowerCamelCase ( self ) -> float: '''simple docstring''' return 2E-3
327
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase : List[str] = logging.get_logger(__name__) lowercase : Optional[int] = {"tokenizer_file": "tokenizer.json"} lowercase : Any = { "tokenizer_file": { "bigscience/tokenizer": "https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json", "bigscience/bloom-560m": "https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json", "bigscience/bloom-1b1": "https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json", "bigscience/bloom-1b7": "https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json", "bigscience/bloom-3b": "https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json", "bigscience/bloom-7b1": "https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json", "bigscience/bloom": "https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json", }, } class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : Optional[int] = VOCAB_FILES_NAMES lowercase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowercase : Dict = ['input_ids', 'attention_mask'] lowercase : Optional[int] = None def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="<unk>" , __UpperCamelCase="<s>" , __UpperCamelCase="</s>" , __UpperCamelCase="<pad>" , __UpperCamelCase=False , __UpperCamelCase=False , **__UpperCamelCase , ) -> Optional[int]: '''simple docstring''' super().__init__( __UpperCamelCase , __UpperCamelCase , tokenizer_file=__UpperCamelCase , unk_token=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , pad_token=__UpperCamelCase , add_prefix_space=__UpperCamelCase , clean_up_tokenization_spaces=__UpperCamelCase , **__UpperCamelCase , ) __UpperCamelCase : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __UpperCamelCase ) != add_prefix_space: __UpperCamelCase : Optional[int] = getattr(__UpperCamelCase , pre_tok_state.pop("type" ) ) __UpperCamelCase : int = add_prefix_space __UpperCamelCase : List[Any] = pre_tok_class(**__UpperCamelCase ) __UpperCamelCase : List[Any] = add_prefix_space def __lowerCamelCase ( self , *__UpperCamelCase , **__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' __UpperCamelCase : int = kwargs.get("is_split_into_words" , __UpperCamelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' " pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def __lowerCamelCase ( self , *__UpperCamelCase , **__UpperCamelCase ) -> BatchEncoding: '''simple docstring''' __UpperCamelCase : Any = kwargs.get("is_split_into_words" , __UpperCamelCase ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' " pretokenized inputs." ) return super()._encode_plus(*__UpperCamelCase , **__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Tuple[str]: '''simple docstring''' __UpperCamelCase : List[str] = self._tokenizer.model.save(__UpperCamelCase , name=__UpperCamelCase ) return tuple(__UpperCamelCase ) def __lowerCamelCase ( self , __UpperCamelCase ) -> List[int]: '''simple docstring''' __UpperCamelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCamelCase , add_special_tokens=__UpperCamelCase ) + [self.eos_token_id] ) if len(__UpperCamelCase ) > self.model_max_length: __UpperCamelCase : int = input_ids[-self.model_max_length :] return input_ids
327
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCAmelCase = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
531
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent UpperCAmelCase = {"""UserAgent""": UserAgent().random} def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> dict: """simple docstring""" snake_case_ = script.contents[0] snake_case_ = json.loads(data[data.find('''{"config"''' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowerCAmelCase_ : '''simple docstring''' def __init__( self , _UpperCAmelCase ): snake_case_ = F'''https://www.instagram.com/{username}/''' snake_case_ = self.get_json() def UpperCamelCase__ ( self ): snake_case_ = requests.get(self.url , headers=_UpperCAmelCase ).text snake_case_ = BeautifulSoup(_UpperCAmelCase , '''html.parser''' ).find_all('''script''' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return F'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return F'''{self.fullname} ({self.username}) is {self.biography}''' @property def UpperCamelCase__ ( self ): return self.user_data["username"] @property def UpperCamelCase__ ( self ): return self.user_data["full_name"] @property def UpperCamelCase__ ( self ): return self.user_data["biography"] @property def UpperCamelCase__ ( self ): return self.user_data["business_email"] @property def UpperCamelCase__ ( self ): return self.user_data["external_url"] @property def UpperCamelCase__ ( self ): return self.user_data["edge_followed_by"]["count"] @property def UpperCamelCase__ ( self ): return self.user_data["edge_follow"]["count"] @property def UpperCamelCase__ ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def UpperCamelCase__ ( self ): return self.user_data["profile_pic_url_hd"] @property def UpperCamelCase__ ( self ): return self.user_data["is_verified"] @property def UpperCamelCase__ ( self ): return self.user_data["is_private"] def __lowerCAmelCase (SCREAMING_SNAKE_CASE = "github" )-> None: """simple docstring""" import os if os.environ.get('''CI''' ): return # test failing on GitHub Actions snake_case_ = InstagramUser(SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 12_0000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('''https://instagram.''' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase = InstagramUser("""github""") print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
531
1
'''simple docstring''' import numpy as np lowerCAmelCase__ : List[str] = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class a : """simple docstring""" def __init__( self : Tuple ): '''simple docstring''' snake_case__ : int = np.array(snake_case_ ) def __magic_name__ ( self : Optional[Any] , snake_case_ : str ): '''simple docstring''' snake_case__ , snake_case__ : Union[str, Any] = np.where(letter == self.SQUARE ) snake_case__ : str = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __magic_name__ ( self : Optional[Any] , snake_case_ : int , snake_case_ : int ): '''simple docstring''' snake_case__ : Optional[Any] = self.SQUARE[indexa - 1, indexa - 1] return letter def __magic_name__ ( self : List[str] , snake_case_ : str ): '''simple docstring''' snake_case__ : List[str] = message.lower() snake_case__ : Optional[int] = message.replace(''' ''' , '''''' ) snake_case__ : Optional[int] = message.replace('''j''' , '''i''' ) snake_case__ : str = np.empty((2, len(snake_case_ )) ) for letter_index in range(len(snake_case_ ) ): snake_case__ : Union[str, Any] = self.letter_to_numbers(message[letter_index] ) snake_case__ : int = numbers[0] snake_case__ : Union[str, Any] = numbers[1] snake_case__ : List[str] = first_step.reshape(2 * len(snake_case_ ) ) snake_case__ : Optional[Any] = '''''' for numbers_index in range(len(snake_case_ ) ): snake_case__ : Dict = int(second_step[numbers_index * 2] ) snake_case__ : Any = int(second_step[(numbers_index * 2) + 1] ) snake_case__ : str = self.numbers_to_letter(snake_case_ , snake_case_ ) snake_case__ : List[Any] = encoded_message + letter return encoded_message def __magic_name__ ( self : List[Any] , snake_case_ : str ): '''simple docstring''' snake_case__ : List[str] = message.lower() message.replace(''' ''' , '''''' ) snake_case__ : Optional[int] = np.empty(2 * len(snake_case_ ) ) for letter_index in range(len(snake_case_ ) ): snake_case__ : Any = self.letter_to_numbers(message[letter_index] ) snake_case__ : Tuple = numbers[0] snake_case__ : int = numbers[1] snake_case__ : List[str] = first_step.reshape((2, len(snake_case_ )) ) snake_case__ : Dict = '''''' for numbers_index in range(len(snake_case_ ) ): snake_case__ : Union[str, Any] = int(second_step[0, numbers_index] ) snake_case__ : Tuple = int(second_step[1, numbers_index] ) snake_case__ : Tuple = self.numbers_to_letter(snake_case_ , snake_case_ ) snake_case__ : List[str] = decoded_message + letter return decoded_message
347
'''simple docstring''' import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self : Tuple , snake_case_ : int , snake_case_ : Union[str, Any]=1_3 , snake_case_ : Optional[Any]=7 , snake_case_ : List[str]=True , snake_case_ : Optional[int]=True , snake_case_ : Optional[int]=True , snake_case_ : List[str]=True , snake_case_ : Optional[Any]=9_9 , snake_case_ : int=3_2 , snake_case_ : str=5 , snake_case_ : int=4 , snake_case_ : List[str]=3_7 , snake_case_ : Tuple="gelu" , snake_case_ : List[str]=0.1 , snake_case_ : List[Any]=0.1 , snake_case_ : Union[str, Any]=5_1_2 , snake_case_ : Union[str, Any]=1_6 , snake_case_ : List[Any]=2 , snake_case_ : List[Any]=0.0_2 , snake_case_ : Any=False , snake_case_ : List[Any]=True , snake_case_ : Optional[Any]="None" , snake_case_ : Dict=3 , snake_case_ : Optional[int]=4 , snake_case_ : Any=None , ): '''simple docstring''' snake_case__ : Union[str, Any] = parent snake_case__ : Any = batch_size snake_case__ : List[Any] = seq_length snake_case__ : Optional[int] = is_training snake_case__ : Dict = use_input_mask snake_case__ : List[str] = use_token_type_ids snake_case__ : int = use_labels snake_case__ : int = vocab_size snake_case__ : Optional[Any] = hidden_size snake_case__ : int = num_hidden_layers snake_case__ : Optional[Any] = num_attention_heads snake_case__ : Optional[Any] = intermediate_size snake_case__ : Optional[Any] = hidden_act snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : int = max_position_embeddings snake_case__ : List[str] = type_vocab_size snake_case__ : Union[str, Any] = type_sequence_label_size snake_case__ : List[Any] = initializer_range snake_case__ : Any = num_labels snake_case__ : Tuple = num_choices snake_case__ : List[str] = relative_attention snake_case__ : Optional[int] = position_biased_input snake_case__ : Union[str, Any] = pos_att_type snake_case__ : Optional[Any] = scope def __magic_name__ ( self : Optional[int] ): '''simple docstring''' snake_case__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Union[str, Any] = None if self.use_input_mask: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) snake_case__ : int = None if self.use_token_type_ids: snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : List[str] = None snake_case__ : Tuple = None snake_case__ : Any = None if self.use_labels: snake_case__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : Tuple ): '''simple docstring''' return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : int ): '''simple docstring''' self.parent.assertListEqual(list(result.loss.size() ) , [] ) def __magic_name__ ( self : List[str] , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] ): '''simple docstring''' snake_case__ : List[Any] = DebertaVaModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Tuple = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ )[0] snake_case__ : Optional[int] = model(snake_case_ , token_type_ids=snake_case_ )[0] snake_case__ : Dict = model(snake_case_ )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def __magic_name__ ( self : Dict , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : int , snake_case_ : Union[str, Any] ): '''simple docstring''' snake_case__ : Tuple = DebertaVaForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Dict = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __magic_name__ ( self : str , snake_case_ : Optional[Any] , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : Tuple ): '''simple docstring''' snake_case__ : Union[str, Any] = self.num_labels snake_case__ : Optional[int] = DebertaVaForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Tuple = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(snake_case_ ) def __magic_name__ ( self : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : Any ): '''simple docstring''' snake_case__ : List[Any] = self.num_labels snake_case__ : Any = DebertaVaForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : Union[str, Any] = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : Any , snake_case_ : Union[str, Any] , snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : List[str] ): '''simple docstring''' snake_case__ : Union[str, Any] = DebertaVaForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : List[str] = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : int , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : str , snake_case_ : Optional[Any] ): '''simple docstring''' snake_case__ : Union[str, Any] = DebertaVaForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() snake_case__ : List[str] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : int = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : List[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : int = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __magic_name__ ( self : int ): '''simple docstring''' snake_case__ : Dict = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Dict = config_and_inputs snake_case__ : Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __UpperCAmelCase = ( { """feature-extraction""": DebertaVaModel, """fill-mask""": DebertaVaForMaskedLM, """question-answering""": DebertaVaForQuestionAnswering, """text-classification""": DebertaVaForSequenceClassification, """token-classification""": DebertaVaForTokenClassification, """zero-shot""": DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = True __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def __magic_name__ ( self : List[Any] ): '''simple docstring''' snake_case__ : int = DebertaVaModelTester(self ) snake_case__ : Optional[Any] = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def __magic_name__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self : Tuple ): '''simple docstring''' snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*snake_case_ ) def __magic_name__ ( self : Any ): '''simple docstring''' snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*snake_case_ ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' snake_case__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*snake_case_ ) def __magic_name__ ( self : Dict ): '''simple docstring''' snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*snake_case_ ) def __magic_name__ ( self : Optional[Any] ): '''simple docstring''' snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*snake_case_ ) def __magic_name__ ( self : Dict ): '''simple docstring''' snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*snake_case_ ) @slow def __magic_name__ ( self : List[str] ): '''simple docstring''' for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : int = DebertaVaModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @require_sentencepiece @require_tokenizers class a ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason='''Model not available yet''' ) def __magic_name__ ( self : str ): '''simple docstring''' pass @slow def __magic_name__ ( self : List[str] ): '''simple docstring''' snake_case__ : Optional[int] = DebertaVaModel.from_pretrained('''microsoft/deberta-v2-xlarge''' ) snake_case__ : Tuple = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) snake_case__ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): snake_case__ : Optional[Any] = model(snake_case_ , attention_mask=snake_case_ )[0] # compare the actual values for a slice. snake_case__ : Dict = torch.tensor( [[[0.2_3_5_6, 0.1_9_4_8, 0.0_3_6_9], [-0.1_0_6_3, 0.3_5_8_6, -0.5_1_5_2], [-0.6_3_9_9, -0.0_2_5_9, -0.2_5_2_5]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case_ , atol=1e-4 ) , F"""{output[:, 1:4, 1:4]}""" )
347
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { """configuration_pegasus_x""": ["""PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP""", """PegasusXConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ """PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST""", """PegasusXForConditionalGeneration""", """PegasusXModel""", """PegasusXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
589
def _lowercase ( a__ : int , a__ : int ) -> float: """simple docstring""" return base * power(a__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") __lowerCAmelCase = int(input("""Enter the base: """).strip()) __lowerCAmelCase = int(input("""Enter the exponent: """).strip()) __lowerCAmelCase = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents __lowerCAmelCase = 1 / result print(F'''{base} to the power of {exponent} is {result}''')
589
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __magic_name__ = {'''configuration_encoder_decoder''': ['''EncoderDecoderConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''EncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''TFEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''FlaxEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', } __magic_name__ = { '''vocab_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json'''}, '''merges_file''': {'''ctrl''': '''https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt'''}, } __magic_name__ = { '''ctrl''': 256, } __magic_name__ = { '''Pregnancy''': 168_629, '''Christianity''': 7_675, '''Explain''': 106_423, '''Fitness''': 63_440, '''Saving''': 63_163, '''Ask''': 27_171, '''Ass''': 95_985, '''Joke''': 163_509, '''Questions''': 45_622, '''Thoughts''': 49_605, '''Retail''': 52_342, '''Feminism''': 164_338, '''Writing''': 11_992, '''Atheism''': 192_263, '''Netflix''': 48_616, '''Computing''': 39_639, '''Opinion''': 43_213, '''Alone''': 44_967, '''Funny''': 58_917, '''Gaming''': 40_358, '''Human''': 4_088, '''India''': 1_331, '''Joker''': 77_138, '''Diet''': 36_206, '''Legal''': 11_859, '''Norman''': 4_939, '''Tip''': 72_689, '''Weight''': 52_343, '''Movies''': 46_273, '''Running''': 23_425, '''Science''': 2_090, '''Horror''': 37_793, '''Confession''': 60_572, '''Finance''': 12_250, '''Politics''': 16_360, '''Scary''': 191_985, '''Support''': 12_654, '''Technologies''': 32_516, '''Teenage''': 66_160, '''Event''': 32_769, '''Learned''': 67_460, '''Notion''': 182_770, '''Wikipedia''': 37_583, '''Books''': 6_665, '''Extract''': 76_050, '''Confessions''': 102_701, '''Conspiracy''': 75_932, '''Links''': 63_674, '''Narcissus''': 150_425, '''Relationship''': 54_766, '''Relationships''': 134_796, '''Reviews''': 41_671, '''News''': 4_256, '''Translation''': 26_820, '''multilingual''': 128_406, } def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): snake_case__ = set() snake_case__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case__ = char snake_case__ = set(__lowerCAmelCase ) return pairs class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : Tuple = VOCAB_FILES_NAMES _A : str = PRETRAINED_VOCAB_FILES_MAP _A : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : List[Any] = CONTROL_CODES def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase="<unk>" , **lowerCamelCase ): super().__init__(unk_token=lowerCamelCase , **lowerCamelCase ) with open(lowerCamelCase , encoding="utf-8" ) as vocab_handle: snake_case__ = json.load(lowerCamelCase ) snake_case__ = {v: k for k, v in self.encoder.items()} with open(lowerCamelCase , encoding="utf-8" ) as merges_handle: snake_case__ = merges_handle.read().split("\n" )[1:-1] snake_case__ = [tuple(merge.split() ) for merge in merges] snake_case__ = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) snake_case__ = {} @property def A_ ( self ): return len(self.encoder ) def A_ ( self ): return dict(self.encoder , **self.added_tokens_encoder ) def A_ ( self , lowerCamelCase ): if token in self.cache: return self.cache[token] snake_case__ = tuple(lowerCamelCase ) snake_case__ = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) snake_case__ = get_pairs(lowerCamelCase ) if not pairs: return token while True: snake_case__ = min(lowerCamelCase , key=lambda lowerCamelCase : self.bpe_ranks.get(lowerCamelCase , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case__ , snake_case__ = bigram snake_case__ = [] snake_case__ = 0 while i < len(lowerCamelCase ): try: snake_case__ = word.index(lowerCamelCase , lowerCamelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case__ = j if word[i] == first and i < len(lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case__ = tuple(lowerCamelCase ) snake_case__ = new_word if len(lowerCamelCase ) == 1: break else: snake_case__ = get_pairs(lowerCamelCase ) snake_case__ = "@@ ".join(lowerCamelCase ) snake_case__ = word[:-4] snake_case__ = word return word def A_ ( self , lowerCamelCase ): snake_case__ = [] snake_case__ = re.findall(r"\S+\n?" , lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(lowerCamelCase ).split(" " ) ) ) return split_tokens def A_ ( self , lowerCamelCase ): return self.encoder.get(lowerCamelCase , self.encoder.get(self.unk_token ) ) def A_ ( self , lowerCamelCase ): return self.decoder.get(lowerCamelCase , self.unk_token ) def A_ ( self , lowerCamelCase ): snake_case__ = " ".join(lowerCamelCase ).replace("@@ " , "" ).strip() return out_string def A_ ( self , lowerCamelCase , lowerCamelCase = None ): if not os.path.isdir(lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case__ = os.path.join( lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(lowerCamelCase , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCamelCase , ensure_ascii=lowerCamelCase ) + "\n" ) snake_case__ = 0 with open(lowerCamelCase , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCamelCase : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) snake_case__ = token_index writer.write(" ".join(lowerCamelCase ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
276
1
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : List[Any] ) -> List[str]: _lowerCamelCase = tempfile.mkdtemp() _lowerCamelCase = BlipImageProcessor() _lowerCamelCase = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) _lowerCamelCase = BertTokenizerFast.from_pretrained('hf-internal-testing/tiny-random-bert' ) _lowerCamelCase = InstructBlipProcessor(snake_case__ , snake_case__ , snake_case__ ) processor.save_pretrained(self.tmpdirname ) def _snake_case ( self : Union[str, Any] , **snake_case__ : Union[str, Any] ) -> Optional[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).tokenizer def _snake_case ( self : Union[str, Any] , **snake_case__ : Any ) -> Optional[Any]: return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).image_processor def _snake_case ( self : Tuple , **snake_case__ : Any ) -> Optional[int]: return AutoProcessor.from_pretrained(self.tmpdirname , **snake_case__ ).qformer_tokenizer def _snake_case ( self : int ) -> str: shutil.rmtree(self.tmpdirname ) def _snake_case ( self : Optional[Any] ) -> str: _lowerCamelCase = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] _lowerCamelCase = [Image.fromarray(np.moveaxis(snake_case__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self : Any ) -> Optional[Any]: _lowerCamelCase = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) _lowerCamelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) _lowerCamelCase = self.get_image_processor(do_normalize=snake_case__ , padding_value=1.0 ) _lowerCamelCase = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=snake_case__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case__ ) self.assertIsInstance(processor.qformer_tokenizer , snake_case__ ) def _snake_case ( self : Union[str, Any] ) -> Dict: _lowerCamelCase = self.get_image_processor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_qformer_tokenizer() _lowerCamelCase = InstructBlipProcessor( tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ ) _lowerCamelCase = self.prepare_image_inputs() _lowerCamelCase = image_processor(snake_case__ , return_tensors='np' ) _lowerCamelCase = processor(images=snake_case__ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self : Optional[Any] ) -> Optional[int]: _lowerCamelCase = self.get_image_processor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_qformer_tokenizer() _lowerCamelCase = InstructBlipProcessor( tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ ) _lowerCamelCase = 'lower newer' _lowerCamelCase = processor(text=snake_case__ ) _lowerCamelCase = tokenizer(snake_case__ , return_token_type_ids=snake_case__ ) _lowerCamelCase = qformer_tokenizer(snake_case__ , return_token_type_ids=snake_case__ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['qformer_' + key] ) def _snake_case ( self : Union[str, Any] ) -> Dict: _lowerCamelCase = self.get_image_processor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_qformer_tokenizer() _lowerCamelCase = InstructBlipProcessor( tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ ) _lowerCamelCase = 'lower newer' _lowerCamelCase = self.prepare_image_inputs() _lowerCamelCase = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , ) # test if it raises when no input is passed with pytest.raises(snake_case__ ): processor() def _snake_case ( self : str ) -> List[str]: _lowerCamelCase = self.get_image_processor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_qformer_tokenizer() _lowerCamelCase = InstructBlipProcessor( tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ ) _lowerCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCamelCase = processor.batch_decode(snake_case__ ) _lowerCamelCase = tokenizer.batch_decode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) def _snake_case ( self : List[str] ) -> Union[str, Any]: _lowerCamelCase = self.get_image_processor() _lowerCamelCase = self.get_tokenizer() _lowerCamelCase = self.get_qformer_tokenizer() _lowerCamelCase = InstructBlipProcessor( tokenizer=snake_case__ , image_processor=snake_case__ , qformer_tokenizer=snake_case__ ) _lowerCamelCase = 'lower newer' _lowerCamelCase = self.prepare_image_inputs() _lowerCamelCase = processor(text=snake_case__ , images=snake_case__ ) self.assertListEqual( list(inputs.keys() ) , ['input_ids', 'attention_mask', 'qformer_input_ids', 'qformer_attention_mask', 'pixel_values'] , )
718
import argparse import json import pickle from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import MaskFormerConfig, MaskFormerForInstanceSegmentation, MaskFormerImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) def lowerCamelCase ( UpperCamelCase : str ) -> List[str]: _lowerCamelCase = SwinConfig.from_pretrained( 'microsoft/swin-tiny-patch4-window7-224' , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) _lowerCamelCase = MaskFormerConfig(backbone_config=UpperCamelCase ) _lowerCamelCase = 'huggingface/label-files' if "ade20k-full" in model_name: # this should be ok _lowerCamelCase = 8_47 _lowerCamelCase = 'maskformer-ade20k-full-id2label.json' elif "ade" in model_name: # this should be ok _lowerCamelCase = 1_50 _lowerCamelCase = 'ade20k-id2label.json' elif "coco-stuff" in model_name: # this should be ok _lowerCamelCase = 1_71 _lowerCamelCase = 'maskformer-coco-stuff-id2label.json' elif "coco" in model_name: # TODO _lowerCamelCase = 1_33 _lowerCamelCase = 'coco-panoptic-id2label.json' elif "cityscapes" in model_name: # this should be ok _lowerCamelCase = 19 _lowerCamelCase = 'cityscapes-id2label.json' elif "vistas" in model_name: # this should be ok _lowerCamelCase = 65 _lowerCamelCase = 'mapillary-vistas-id2label.json' _lowerCamelCase = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type='dataset' ) , 'r' ) ) _lowerCamelCase = {int(UpperCamelCase ): v for k, v in idalabel.items()} return config def lowerCamelCase ( UpperCamelCase : Any ) -> Any: _lowerCamelCase = [] # stem # fmt: off rename_keys.append(('backbone.patch_embed.proj.weight', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.patch_embed.proj.bias', 'model.pixel_level_module.encoder.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.patch_embed.norm.weight', 'model.pixel_level_module.encoder.model.embeddings.norm.weight') ) rename_keys.append(('backbone.patch_embed.norm.bias', 'model.pixel_level_module.encoder.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.relative_position_index""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.attn.proj.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.norm2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc1.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((F"""backbone.layers.{i}.blocks.{j}.mlp.fc2.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((F"""backbone.layers.{i}.downsample.reduction.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.weight""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((F"""backbone.layers.{i}.downsample.norm.bias""", F"""model.pixel_level_module.encoder.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""model.pixel_level_module.encoder.hidden_states_norms.{i}.bias""") ) # FPN rename_keys.append(('sem_seg_head.layer_4.weight', 'model.pixel_level_module.decoder.fpn.stem.0.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.weight', 'model.pixel_level_module.decoder.fpn.stem.1.weight') ) rename_keys.append(('sem_seg_head.layer_4.norm.bias', 'model.pixel_level_module.decoder.fpn.stem.1.bias') ) for source_index, target_index in zip(range(3 , 0 , -1 ) , range(0 , 3 ) ): rename_keys.append((F"""sem_seg_head.adapter_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.0.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.weight""") ) rename_keys.append((F"""sem_seg_head.adapter_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.proj.1.bias""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.0.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.weight""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.weight""") ) rename_keys.append((F"""sem_seg_head.layer_{source_index}.norm.bias""", F"""model.pixel_level_module.decoder.fpn.layers.{target_index}.block.1.bias""") ) rename_keys.append(('sem_seg_head.mask_features.weight', 'model.pixel_level_module.decoder.mask_projection.weight') ) rename_keys.append(('sem_seg_head.mask_features.bias', 'model.pixel_level_module.decoder.mask_projection.bias') ) # Transformer decoder for idx in range(config.decoder_config.decoder_layers ): # self-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn.out_proj.bias""") ) # cross-attention out projection rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.out_proj.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn.out_proj.bias""") ) # MLP 1 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc1.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear1.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc1.bias""") ) # MLP 2 rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.weight""", F"""model.transformer_module.decoder.layers.{idx}.fc2.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.linear2.bias""", F"""model.transformer_module.decoder.layers.{idx}.fc2.bias""") ) # layernorm 1 (self-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.weight""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm1.bias""", F"""model.transformer_module.decoder.layers.{idx}.self_attn_layer_norm.bias""") ) # layernorm 2 (cross-attention layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.weight""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm2.bias""", F"""model.transformer_module.decoder.layers.{idx}.encoder_attn_layer_norm.bias""") ) # layernorm 3 (final layernorm) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.weight""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.norm3.bias""", F"""model.transformer_module.decoder.layers.{idx}.final_layer_norm.bias""") ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.weight', 'model.transformer_module.decoder.layernorm.weight') ) rename_keys.append(('sem_seg_head.predictor.transformer.decoder.norm.bias', 'model.transformer_module.decoder.layernorm.bias') ) # heads on top rename_keys.append(('sem_seg_head.predictor.query_embed.weight', 'model.transformer_module.queries_embedder.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.weight', 'model.transformer_module.input_projection.weight') ) rename_keys.append(('sem_seg_head.predictor.input_proj.bias', 'model.transformer_module.input_projection.bias') ) rename_keys.append(('sem_seg_head.predictor.class_embed.weight', 'class_predictor.weight') ) rename_keys.append(('sem_seg_head.predictor.class_embed.bias', 'class_predictor.bias') ) for i in range(3 ): rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.weight""", F"""mask_embedder.{i}.0.weight""") ) rename_keys.append((F"""sem_seg_head.predictor.mask_embed.layers.{i}.bias""", F"""mask_embedder.{i}.0.bias""") ) # fmt: on return rename_keys def lowerCamelCase ( UpperCamelCase : str , UpperCamelCase : Tuple , UpperCamelCase : Union[str, Any] ) -> Optional[Any]: _lowerCamelCase = dct.pop(UpperCamelCase ) _lowerCamelCase = val def lowerCamelCase ( UpperCamelCase : Dict , UpperCamelCase : List[Any] ) -> Union[str, Any]: _lowerCamelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): _lowerCamelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.weight""" ) _lowerCamelCase = state_dict.pop(F"""backbone.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[:dim, :] _lowerCamelCase = in_proj_bias[: dim] _lowerCamelCase = in_proj_weight[ dim : dim * 2, : ] _lowerCamelCase = in_proj_bias[ dim : dim * 2 ] _lowerCamelCase = in_proj_weight[ -dim :, : ] _lowerCamelCase = in_proj_bias[-dim :] # fmt: on def lowerCamelCase ( UpperCamelCase : int , UpperCamelCase : Union[str, Any] ) -> str: # fmt: off _lowerCamelCase = config.decoder_config.hidden_size for idx in range(config.decoder_config.decoder_layers ): # read in weights + bias of self-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_weight""" ) _lowerCamelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[: hidden_size, :] _lowerCamelCase = in_proj_bias[:config.hidden_size] _lowerCamelCase = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase = in_proj_weight[-hidden_size :, :] _lowerCamelCase = in_proj_bias[-hidden_size :] # read in weights + bias of cross-attention input projection layer (in the original implementation, this is a single matrix + bias) _lowerCamelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_weight""" ) _lowerCamelCase = state_dict.pop(F"""sem_seg_head.predictor.transformer.decoder.layers.{idx}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict _lowerCamelCase = in_proj_weight[: hidden_size, :] _lowerCamelCase = in_proj_bias[:config.hidden_size] _lowerCamelCase = in_proj_weight[hidden_size : hidden_size * 2, :] _lowerCamelCase = in_proj_bias[hidden_size : hidden_size * 2] _lowerCamelCase = in_proj_weight[-hidden_size :, :] _lowerCamelCase = in_proj_bias[-hidden_size :] # fmt: on def lowerCamelCase ( ) -> torch.Tensor: _lowerCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowerCamelCase = Image.open(requests.get(UpperCamelCase , stream=UpperCamelCase ).raw ) return im @torch.no_grad() def lowerCamelCase ( UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : str , UpperCamelCase : bool = False ) -> Dict: _lowerCamelCase = get_maskformer_config(UpperCamelCase ) # load original state_dict with open(UpperCamelCase , 'rb' ) as f: _lowerCamelCase = pickle.load(UpperCamelCase ) _lowerCamelCase = data['model'] # for name, param in state_dict.items(): # print(name, param.shape) # rename keys _lowerCamelCase = create_rename_keys(UpperCamelCase ) for src, dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) read_in_swin_q_k_v(UpperCamelCase , config.backbone_config ) read_in_decoder_q_k_v(UpperCamelCase , UpperCamelCase ) # update to torch tensors for key, value in state_dict.items(): _lowerCamelCase = torch.from_numpy(UpperCamelCase ) # load 🤗 model _lowerCamelCase = MaskFormerForInstanceSegmentation(UpperCamelCase ) model.eval() for name, param in model.named_parameters(): print(UpperCamelCase , param.shape ) _lowerCamelCase , _lowerCamelCase = model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) assert missing_keys == [ "model.pixel_level_module.encoder.model.layernorm.weight", "model.pixel_level_module.encoder.model.layernorm.bias", ] assert len(UpperCamelCase ) == 0, F"""Unexpected keys: {unexpected_keys}""" # verify results _lowerCamelCase = prepare_img() if "vistas" in model_name: _lowerCamelCase = 65 elif "cityscapes" in model_name: _lowerCamelCase = 6_55_35 else: _lowerCamelCase = 2_55 _lowerCamelCase = True if 'ade' in model_name else False _lowerCamelCase = MaskFormerImageProcessor(ignore_index=UpperCamelCase , reduce_labels=UpperCamelCase ) _lowerCamelCase = image_processor(UpperCamelCase , return_tensors='pt' ) _lowerCamelCase = model(**UpperCamelCase ) print('Logits:' , outputs.class_queries_logits[0, :3, :3] ) if model_name == "maskformer-swin-tiny-ade": _lowerCamelCase = torch.tensor( [[3.6_353, -4.4_770, -2.6_065], [0.5_081, -4.2_394, -3.5_343], [2.1_909, -5.0_353, -1.9_323]] ) assert torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and image processor to {pytorch_dump_folder_path}""" ) Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) model.save_pretrained(UpperCamelCase ) image_processor.save_pretrained(UpperCamelCase ) if push_to_hub: print('Pushing model and image processor to the hub...' ) model.push_to_hub(F"""nielsr/{model_name}""" ) image_processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='maskformer-swin-tiny-ade', type=str, help=('Name of the MaskFormer model you\'d like to convert',), ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/MaskFormer_checkpoints/MaskFormer-Swin-tiny-ADE20k/model.pkl', type=str, help='Path to the original state dict (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A = parser.parse_args() convert_maskformer_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
234
0
import os import tempfile import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from torch import nn from transformers import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_inverse_sqrt_schedule, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) def SCREAMING_SNAKE_CASE_ ( _snake_case :Union[str, Any] , _snake_case :str=10 ) -> Optional[Any]: _A = [] for _ in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() return lrs def SCREAMING_SNAKE_CASE_ ( _snake_case :List[str] , _snake_case :Dict=10 ) -> Optional[int]: _A = [] for step in range(_snake_case ): lrs.append(scheduler.get_lr()[0] ) scheduler.step() if step == num_steps // 2: with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(_snake_case , '''schedule.bin''' ) torch.save(scheduler.state_dict() , _snake_case ) _A = torch.load(_snake_case ) scheduler.load_state_dict(_snake_case ) return lrs @require_torch class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[int] ) -> Any: self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for a, b in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertAlmostEqual(__lowerCAmelCase , __lowerCAmelCase , delta=__lowerCAmelCase ) def snake_case_ ( self : int ) -> Union[str, Any]: _A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCAmelCase ) _A = torch.tensor([0.4, 0.2, -0.5] ) _A = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A = AdamW(params=[w] , lr=2E-1 , weight_decay=0.0 ) for _ in range(1_00 ): _A = criterion(__lowerCAmelCase , __lowerCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) def snake_case_ ( self : int ) -> Union[str, Any]: _A = torch.tensor([0.1, -0.2, -0.1] , requires_grad=__lowerCAmelCase ) _A = torch.tensor([0.4, 0.2, -0.5] ) _A = nn.MSELoss() # No warmup, constant schedule, no gradient clipping _A = Adafactor( params=[w] , lr=1E-2 , eps=(1E-30, 1E-3) , clip_threshold=1.0 , decay_rate=-0.8 , betaa=__lowerCAmelCase , weight_decay=0.0 , relative_step=__lowerCAmelCase , scale_parameter=__lowerCAmelCase , warmup_init=__lowerCAmelCase , ) for _ in range(10_00 ): _A = criterion(__lowerCAmelCase , __lowerCAmelCase ) loss.backward() optimizer.step() w.grad.detach_() # No zero_grad() function on simple tensors. we do it ourselves. w.grad.zero_() self.assertListAlmostEqual(w.tolist() , [0.4, 0.2, -0.5] , tol=1E-2 ) @require_torch class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" a__ : Optional[Any] = nn.Linear(50 , 50) if is_torch_available() else None a__ : Dict = AdamW(m.parameters() , lr=10.0) if is_torch_available() else None a__ : List[Any] = 10 def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : List[Any]=None ) -> List[Any]: self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) for a, b in zip(__lowerCAmelCase , __lowerCAmelCase ): self.assertAlmostEqual(__lowerCAmelCase , __lowerCAmelCase , delta=__lowerCAmelCase , msg=__lowerCAmelCase ) def snake_case_ ( self : Any ) -> str: _A = {'''num_warmup_steps''': 2, '''num_training_steps''': 10} # schedulers doct format # function: (sched_args_dict, expected_learning_rates) _A = { get_constant_schedule: ({}, [10.0] * self.num_steps), get_constant_schedule_with_warmup: ( {'''num_warmup_steps''': 4}, [0.0, 2.5, 5.0, 7.5, 10.0, 10.0, 10.0, 10.0, 10.0, 10.0], ), get_linear_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 8.75, 7.5, 6.25, 5.0, 3.75, 2.5, 1.25], ), get_cosine_schedule_with_warmup: ( {**common_kwargs}, [0.0, 5.0, 10.0, 9.61, 8.53, 6.91, 5.0, 3.08, 1.46, 0.38], ), get_cosine_with_hard_restarts_schedule_with_warmup: ( {**common_kwargs, '''num_cycles''': 2}, [0.0, 5.0, 10.0, 8.53, 5.0, 1.46, 10.0, 8.53, 5.0, 1.46], ), get_polynomial_decay_schedule_with_warmup: ( {**common_kwargs, '''power''': 2.0, '''lr_end''': 1E-7}, [0.0, 5.0, 10.0, 7.656, 5.625, 3.906, 2.5, 1.406, 0.625, 0.156], ), get_inverse_sqrt_schedule: ( {'''num_warmup_steps''': 2}, [0.0, 5.0, 10.0, 8.165, 7.071, 6.325, 5.774, 5.345, 5.0, 4.714], ), } for scheduler_func, data in scheds.items(): _A , _A = data _A = scheduler_func(self.optimizer , **__lowerCAmelCase ) self.assertEqual(len([scheduler.get_lr()[0]] ) , 1 ) _A = unwrap_schedule(__lowerCAmelCase , self.num_steps ) self.assertListAlmostEqual( __lowerCAmelCase , __lowerCAmelCase , tol=1E-2 , msg=f'''failed for {scheduler_func} in normal scheduler''' , ) _A = scheduler_func(self.optimizer , **__lowerCAmelCase ) if scheduler_func.__name__ != "get_constant_schedule": LambdaScheduleWrapper.wrap_scheduler(__lowerCAmelCase ) # wrap to test picklability of the schedule _A = unwrap_and_save_reload_schedule(__lowerCAmelCase , self.num_steps ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase , msg=f'''failed for {scheduler_func} in save and reload''' ) class lowerCamelCase__ : """simple docstring""" def __init__( self : List[Any] , __lowerCAmelCase : Any ) -> List[Any]: _A = fn def __call__( self : Union[str, Any] , *__lowerCAmelCase : Any , **__lowerCAmelCase : List[str] ) -> Dict: return self.fn(*__lowerCAmelCase , **__lowerCAmelCase ) @classmethod def snake_case_ ( self : Any , __lowerCAmelCase : Optional[Any] ) -> List[str]: _A = list(map(self , scheduler.lr_lambdas ) )
2
import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def _A ( __snake_case :int , __snake_case :int , __snake_case :int , __snake_case :int , __snake_case :int , __snake_case :int ) -> np.ndarray: """simple docstring""" if (ksize % 2) == 0: __SCREAMING_SNAKE_CASE = ksize + 1 __SCREAMING_SNAKE_CASE = np.zeros((ksize, ksize) , dtype=np.floataa ) # each value for y in range(__snake_case ): for x in range(__snake_case ): # distance from center __SCREAMING_SNAKE_CASE = x - ksize // 2 __SCREAMING_SNAKE_CASE = y - ksize // 2 # degree to radiant __SCREAMING_SNAKE_CASE = theta / 180 * np.pi __SCREAMING_SNAKE_CASE = np.cos(_theta ) __SCREAMING_SNAKE_CASE = np.sin(_theta ) # get kernel x __SCREAMING_SNAKE_CASE = cos_theta * px + sin_theta * py # get kernel y __SCREAMING_SNAKE_CASE = -sin_theta * px + cos_theta * py # fill kernel __SCREAMING_SNAKE_CASE = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image _snake_case : Union[str, Any] = imread('../image_data/lena.jpg') # turn image in gray scale value _snake_case : List[str] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges _snake_case : int = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 1_20, 1_50]: _snake_case : List[str] = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) _snake_case : Optional[Any] = out / out.max() * 2_55 _snake_case : Union[str, Any] = out.astype(np.uinta) imshow('Original', gray) imshow('Gabor filter with 20x20 mask and 6 directions', out) waitKey(0)
693
0
"""simple docstring""" def _A ( __lowercase , __lowercase ): """simple docstring""" return "\n".join( f"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
714
"""simple docstring""" class SCREAMING_SNAKE_CASE__ : # Public class to implement a graph def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[list[bool]] ): lowerCamelCase__ = row lowerCamelCase__ = col lowerCamelCase__ = graph def __UpperCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[list[bool]] ): return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def __UpperCAmelCase ( self : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[list[bool]] ): # Checking all 8 elements surrounding nth element lowerCamelCase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowerCamelCase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowerCamelCase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] , j + col_nbr[k] , SCREAMING_SNAKE_CASE_ ): self.diffs(i + row_nbr[k] , j + col_nbr[k] , SCREAMING_SNAKE_CASE_ ) def __UpperCAmelCase ( self : int ): # And finally, count all islands. lowerCamelCase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowerCamelCase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) count += 1 return count
258
0
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def lowercase (SCREAMING_SNAKE_CASE_ : Any ) -> Optional[int]: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def lowercase (SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue SCREAMING_SNAKE_CASE = key.replace('heads.cmd.mim_head.cls.predictions' , 'mmm_image_head' ) SCREAMING_SNAKE_CASE = key.replace('heads.cmd.mlm_head.cls.predictions' , 'mmm_text_head' ) SCREAMING_SNAKE_CASE = key.replace('heads.cmd.itm_head.cls' , 'itm_head' ) SCREAMING_SNAKE_CASE = key.replace('heads.cmd.itm_head.pooler' , 'itm_head.pooler' ) SCREAMING_SNAKE_CASE = key.replace('heads.cmd.clip_head.logit_scale' , 'flava.logit_scale' ) SCREAMING_SNAKE_CASE = key.replace('heads.fairseq_mlm.cls.predictions' , 'mlm_head' ) SCREAMING_SNAKE_CASE = key.replace('heads.imagenet.mim_head.cls.predictions' , 'mim_head' ) SCREAMING_SNAKE_CASE = key.replace('mm_text_projection' , 'flava.text_to_mm_projection' ) SCREAMING_SNAKE_CASE = key.replace('mm_image_projection' , 'flava.image_to_mm_projection' ) SCREAMING_SNAKE_CASE = key.replace('image_encoder.module' , 'flava.image_model' ) SCREAMING_SNAKE_CASE = key.replace('text_encoder.module' , 'flava.text_model' ) SCREAMING_SNAKE_CASE = key.replace('mm_encoder.module.encoder.cls_token' , 'flava.multimodal_model.cls_token' ) SCREAMING_SNAKE_CASE = key.replace('mm_encoder.module' , 'flava.multimodal_model' ) SCREAMING_SNAKE_CASE = key.replace('text_projection' , 'flava.text_projection' ) SCREAMING_SNAKE_CASE = key.replace('image_projection' , 'flava.image_projection' ) SCREAMING_SNAKE_CASE = value.float() for key, value in codebook_state_dict.items(): SCREAMING_SNAKE_CASE = value return upgrade @torch.no_grad() def lowercase (SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[str]=None ) -> List[Any]: if config_path is not None: SCREAMING_SNAKE_CASE = FlavaConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: SCREAMING_SNAKE_CASE = FlavaConfig() SCREAMING_SNAKE_CASE = FlavaForPreTraining(SCREAMING_SNAKE_CASE_ ).eval() SCREAMING_SNAKE_CASE = convert_dalle_checkpoint(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , save_checkpoint=SCREAMING_SNAKE_CASE_ ) if os.path.exists(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) else: SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) SCREAMING_SNAKE_CASE = upgrade_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) hf_model.load_state_dict(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = hf_model.state_dict() SCREAMING_SNAKE_CASE = count_parameters(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = count_parameters(SCREAMING_SNAKE_CASE_ ) + count_parameters(SCREAMING_SNAKE_CASE_ ) assert torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) hf_model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to flava checkpoint''') parser.add_argument('''--codebook_path''', default=None, type=str, help='''Path to flava codebook checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') __UpperCamelCase = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
247
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowerCAmelCase : '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=13 , lowerCAmelCase__=64 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=32 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=37 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=10 , lowerCAmelCase__=0.02 , lowerCAmelCase__=[1, 16, 4, 4] , lowerCAmelCase__=None , ) -> int: SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size SCREAMING_SNAKE_CASE = (self.image_size // 32) ** 2 SCREAMING_SNAKE_CASE = num_patches + 1 def __A ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def __A ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCAmelCase__ , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=lowerCAmelCase__ , ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: SCREAMING_SNAKE_CASE = ViTHybridModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: SCREAMING_SNAKE_CASE = self.type_sequence_label_size SCREAMING_SNAKE_CASE = ViTHybridForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE = model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __A ( self ) -> str: SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : List[str] = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : List[str] = False def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = ViTHybridModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=37 ) def __A ( self ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def __A ( self ) -> List[Any]: pass def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def __A ( self ) -> int: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def __A ( self ) -> List[str]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) def __A ( self ) -> Dict: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(lowerCAmelCase__ ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=lowerCAmelCase__ ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": SCREAMING_SNAKE_CASE = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __A ( self ) -> int: for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = ViTHybridModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def lowercase () -> Union[str, Any]: SCREAMING_SNAKE_CASE = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def __A ( self ) -> List[str]: return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __A ( self ) -> int: SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=lowerCAmelCase__ , return_tensors='pt' ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__ ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.tensor([-1.90_90, -0.49_93, -0.23_89] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) ) @slow @require_accelerate def __A ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384' ) SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto' ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=lowerCAmelCase__ , return_tensors='pt' ) SCREAMING_SNAKE_CASE = model(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = outputs.logits # model predicts one of the 1000 ImageNet classes SCREAMING_SNAKE_CASE = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat' )
247
1
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase = 1000 ) -> int: '''simple docstring''' snake_case_ ,snake_case_ = 1, 1 snake_case_ = 2 while True: snake_case_ = 0 snake_case_ = fa + fa snake_case_ ,snake_case_ = fa, f index += 1 for _ in str(__UpperCAmelCase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
593
'''simple docstring''' def __magic_name__ ( __UpperCAmelCase = 1000 ) -> int: '''simple docstring''' snake_case_ ,snake_case_ = 1, 1 snake_case_ = 2 while True: snake_case_ = 0 snake_case_ = fa + fa snake_case_ ,snake_case_ = fa, f index += 1 for _ in str(__UpperCAmelCase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
593
1
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler UpperCamelCase__ = 16 UpperCamelCase__ = 32 def lowerCamelCase ( _snake_case ,_snake_case = 16 ,_snake_case = "bert-base-cased" ): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(__lowerCAmelCase ) UpperCAmelCase__ : Union[str, Any] = load_dataset('glue' ,'mrpc' ) def tokenize_function(_snake_case ): # max_length=None => use the model max length (it's actually the default) UpperCAmelCase__ : int = tokenizer(examples['sentence1'] ,examples['sentence2'] ,truncation=__lowerCAmelCase ,max_length=__lowerCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset UpperCAmelCase__ : Optional[int] = datasets.map( __lowerCAmelCase ,batched=__lowerCAmelCase ,remove_columns=['idx', 'sentence1', 'sentence2'] ,load_from_cache_file=__lowerCAmelCase ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCAmelCase__ : str = tokenized_datasets.rename_column('label' ,'labels' ) def collate_fn(_snake_case ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__lowerCAmelCase ,padding='max_length' ,max_length=128 ,return_tensors='pt' ) return tokenizer.pad(__lowerCAmelCase ,padding='longest' ,return_tensors='pt' ) # Instantiate dataloaders. UpperCAmelCase__ : Tuple = DataLoader( tokenized_datasets['train'] ,shuffle=__lowerCAmelCase ,collate_fn=__lowerCAmelCase ,batch_size=__lowerCAmelCase ) UpperCAmelCase__ : Any = DataLoader( tokenized_datasets['validation'] ,shuffle=__lowerCAmelCase ,collate_fn=__lowerCAmelCase ,batch_size=__lowerCAmelCase ) return train_dataloader, eval_dataloader def lowerCamelCase ( _snake_case ,_snake_case ,_snake_case ,_snake_case ): model.eval() UpperCAmelCase__ : List[str] = 0 for step, batch in enumerate(__lowerCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCAmelCase__ : List[str] = model(**__lowerCAmelCase ) UpperCAmelCase__ : Any = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times UpperCAmelCase__ : List[str] = accelerator.gather( (predictions, batch['labels']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__lowerCAmelCase ) - 1: UpperCAmelCase__ : Tuple = predictions[: len(eval_dataloader.dataset ) - samples_seen] UpperCAmelCase__ : Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__lowerCAmelCase ,references=__lowerCAmelCase ,) UpperCAmelCase__ : Union[str, Any] = metric.compute() return eval_metric["accuracy"] def lowerCamelCase ( _snake_case ,_snake_case ): # Initialize accelerator UpperCAmelCase__ : Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCAmelCase__ : Optional[int] = config["""lr"""] UpperCAmelCase__ : str = int(config['num_epochs'] ) UpperCAmelCase__ : int = int(config['seed'] ) UpperCAmelCase__ : Optional[Any] = int(config['batch_size'] ) UpperCAmelCase__ : Any = args.model_name_or_path set_seed(__lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = get_dataloaders(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCAmelCase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(__lowerCAmelCase ,return_dict=__lowerCAmelCase ) # Instantiate optimizer UpperCAmelCase__ : Union[str, Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) UpperCAmelCase__ : Any = optimizer_cls(params=model.parameters() ,lr=__lowerCAmelCase ) if accelerator.state.deepspeed_plugin is not None: UpperCAmelCase__ : List[str] = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: UpperCAmelCase__ : Any = 1 UpperCAmelCase__ : List[Any] = (len(__lowerCAmelCase ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): UpperCAmelCase__ : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=__lowerCAmelCase ,num_warmup_steps=0 ,num_training_steps=__lowerCAmelCase ,) else: UpperCAmelCase__ : Optional[Any] = DummyScheduler(__lowerCAmelCase ,total_num_steps=__lowerCAmelCase ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCAmelCase__ : Dict = accelerator.prepare( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) # We need to keep track of how many total steps we have iterated over UpperCAmelCase__ : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly UpperCAmelCase__ : List[str] = 0 UpperCAmelCase__ : Union[str, Any] = evaluate.load('glue' ,'mrpc' ) UpperCAmelCase__ : Dict = num_epochs if args.partial_train_epoch is not None: UpperCAmelCase__ : List[str] = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) UpperCAmelCase__ : List[Any] = args.resume_from_checkpoint.split('epoch_' )[1] UpperCAmelCase__ : Tuple = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break UpperCAmelCase__ : Optional[int] = int(__lowerCAmelCase ) + 1 UpperCAmelCase__ : Union[str, Any] = evaluation_loop(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) accelerator.print('resumed checkpoint performance:' ,__lowerCAmelCase ) accelerator.print('resumed checkpoint\'s scheduler\'s lr:' ,lr_scheduler.get_lr()[0] ) accelerator.print('resumed optimizers\'s lr:' ,optimizer.param_groups[0]['lr'] ) with open(os.path.join(args.output_dir ,F'''state_{starting_epoch-1}.json''' ) ,'r' ) as f: UpperCAmelCase__ : str = json.load(__lowerCAmelCase ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model UpperCAmelCase__ : Tuple = {} for epoch in range(__lowerCAmelCase ,__lowerCAmelCase ): model.train() for step, batch in enumerate(__lowerCAmelCase ): UpperCAmelCase__ : Optional[int] = model(**__lowerCAmelCase ) UpperCAmelCase__ : Tuple = outputs.loss UpperCAmelCase__ : Optional[Any] = loss / gradient_accumulation_steps accelerator.backward(__lowerCAmelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 UpperCAmelCase__ : Any = F'''epoch_{epoch}''' UpperCAmelCase__ : Optional[int] = os.path.join(args.output_dir ,__lowerCAmelCase ) accelerator.save_state(__lowerCAmelCase ) UpperCAmelCase__ : Optional[Any] = evaluation_loop(__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ) UpperCAmelCase__ : int = accuracy UpperCAmelCase__ : Union[str, Any] = lr_scheduler.get_lr()[0] UpperCAmelCase__ : List[str] = optimizer.param_groups[0]["""lr"""] UpperCAmelCase__ : Optional[Any] = epoch UpperCAmelCase__ : Optional[Any] = overall_step accelerator.print(F'''epoch {epoch}:''' ,__lowerCAmelCase ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,F'''state_{epoch}.json''' ) ,'w' ) as f: json.dump(__lowerCAmelCase ,__lowerCAmelCase ) def lowerCamelCase ( ): UpperCAmelCase__ : Dict = argparse.ArgumentParser(description='Simple example of training script tracking peak GPU memory usage.' ) parser.add_argument( '--model_name_or_path' ,type=__lowerCAmelCase ,default='bert-base-cased' ,help='Path to pretrained model or model identifier from huggingface.co/models.' ,required=__lowerCAmelCase ,) parser.add_argument( '--output_dir' ,type=__lowerCAmelCase ,default='.' ,help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' ,) parser.add_argument( '--resume_from_checkpoint' ,type=__lowerCAmelCase ,default=__lowerCAmelCase ,help='If the training should continue from a checkpoint folder.' ,) parser.add_argument( '--partial_train_epoch' ,type=__lowerCAmelCase ,default=__lowerCAmelCase ,help='If passed, the training will stop after this number of epochs.' ,) parser.add_argument( '--num_epochs' ,type=__lowerCAmelCase ,default=2 ,help='Number of train epochs.' ,) UpperCAmelCase__ : List[Any] = parser.parse_args() UpperCAmelCase__ : List[Any] = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(__lowerCAmelCase ,__lowerCAmelCase ) if __name__ == "__main__": main()
110
"""simple docstring""" import math import os import sys def _lowercase ( __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Union[str, Any] = """""" try: with open(__lowerCAmelCase , """rb""" ) as binary_file: SCREAMING_SNAKE_CASE__ : Optional[int] = binary_file.read() for dat in data: SCREAMING_SNAKE_CASE__ : Dict = F'''{dat:08b}''' result += curr_byte return result except OSError: print("""File not accessible""" ) sys.exit() def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> None: lexicon.pop(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = last_match_id if math.loga(__lowerCAmelCase ).is_integer(): for curr_key in lexicon: SCREAMING_SNAKE_CASE__ : Dict = """0""" + lexicon[curr_key] SCREAMING_SNAKE_CASE__ : str = bin(__lowerCAmelCase )[2:] def _lowercase ( __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Dict = {"""0""": """0""", """1""": """1"""} SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Optional[int] = """""", """""" SCREAMING_SNAKE_CASE__ : Any = len(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): curr_string += data_bits[i] if curr_string not in lexicon: continue SCREAMING_SNAKE_CASE__ : Optional[int] = lexicon[curr_string] result += last_match_id add_key_to_lexicon(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) index += 1 SCREAMING_SNAKE_CASE__ : List[str] = """""" while curr_string != "" and curr_string not in lexicon: curr_string += "0" if curr_string != "": SCREAMING_SNAKE_CASE__ : List[Any] = lexicon[curr_string] result += last_match_id return result def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> str: SCREAMING_SNAKE_CASE__ : Any = os.path.getsize(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = bin(__lowerCAmelCase )[2:] SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(__lowerCAmelCase ) return "0" * (length_length - 1) + file_length_binary + compressed def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> None: SCREAMING_SNAKE_CASE__ : Optional[int] = 8 try: with open(__lowerCAmelCase , """wb""" ) as opened_file: SCREAMING_SNAKE_CASE__ : Union[str, Any] = [ to_write[i : i + byte_length] for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase ) ] if len(result_byte_array[-1] ) % byte_length == 0: result_byte_array.append("""10000000""" ) else: result_byte_array[-1] += "1" + "0" * ( byte_length - len(result_byte_array[-1] ) - 1 ) for elem in result_byte_array: opened_file.write(int(__lowerCAmelCase , 2 ).to_bytes(1 , byteorder="""big""" ) ) except OSError: print("""File not accessible""" ) sys.exit() def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> None: SCREAMING_SNAKE_CASE__ : Dict = read_file_binary(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = compress_data(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = add_file_length(__lowerCAmelCase , __lowerCAmelCase ) write_file_binary(__lowerCAmelCase , __lowerCAmelCase ) if __name__ == "__main__": compress(sys.argv[1], sys.argv[2])
680
0
'''simple docstring''' from __future__ import annotations def lowerCAmelCase (__A , __A): """simple docstring""" print(F'''Vertex\tShortest Distance from vertex {src}''') for i, d in enumerate(lowercase__): print(F'''{i}\t\t{d}''') def lowerCAmelCase (__A , __A , __A): """simple docstring""" for j in range(lowercase__): _a , _a , _a = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''') and distance[u] + w < distance[v]: return True return False def lowerCAmelCase (__A , __A , __A , __A): """simple docstring""" _a = [float('''inf''')] * vertex_count _a = 0.0 for _ in range(vertex_count - 1): for j in range(lowercase__): _a , _a , _a = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''') and distance[u] + w < distance[v]: _a = distance[u] + w _a = check_negative_cycle(lowercase__ , lowercase__ , lowercase__) if negative_cycle_exists: raise Exception('''Negative cycle found''') return distance if __name__ == "__main__": import doctest doctest.testmod() lowercase_ : Optional[int] = int(input("Enter number of vertices: ").strip()) lowercase_ : Optional[int] = int(input("Enter number of edges: ").strip()) lowercase_ : Tuple = [{} for _ in range(E)] for i in range(E): print("Edge ", i + 1) lowercase_ , lowercase_ , lowercase_ : List[str] = ( int(x) for x in input("Enter source, destination, weight: ").strip().split(" ") ) lowercase_ : int = {"src": src, "dst": dest, "weight": weight} lowercase_ : List[str] = int(input("\nEnter shortest path source:").strip()) lowercase_ : Optional[Any] = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
719
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool lowercase_ = { "Acehnese Arabic": "ace_Arab", "Acehnese Latin": "ace_Latn", "Mesopotamian Arabic": "acm_Arab", "Ta'izzi-Adeni Arabic": "acq_Arab", "Tunisian Arabic": "aeb_Arab", "Afrikaans": "afr_Latn", "South Levantine Arabic": "ajp_Arab", "Akan": "aka_Latn", "Amharic": "amh_Ethi", "North Levantine Arabic": "apc_Arab", "Modern Standard Arabic": "arb_Arab", "Modern Standard Arabic Romanized": "arb_Latn", "Najdi Arabic": "ars_Arab", "Moroccan Arabic": "ary_Arab", "Egyptian Arabic": "arz_Arab", "Assamese": "asm_Beng", "Asturian": "ast_Latn", "Awadhi": "awa_Deva", "Central Aymara": "ayr_Latn", "South Azerbaijani": "azb_Arab", "North Azerbaijani": "azj_Latn", "Bashkir": "bak_Cyrl", "Bambara": "bam_Latn", "Balinese": "ban_Latn", "Belarusian": "bel_Cyrl", "Bemba": "bem_Latn", "Bengali": "ben_Beng", "Bhojpuri": "bho_Deva", "Banjar Arabic": "bjn_Arab", "Banjar Latin": "bjn_Latn", "Standard Tibetan": "bod_Tibt", "Bosnian": "bos_Latn", "Buginese": "bug_Latn", "Bulgarian": "bul_Cyrl", "Catalan": "cat_Latn", "Cebuano": "ceb_Latn", "Czech": "ces_Latn", "Chokwe": "cjk_Latn", "Central Kurdish": "ckb_Arab", "Crimean Tatar": "crh_Latn", "Welsh": "cym_Latn", "Danish": "dan_Latn", "German": "deu_Latn", "Southwestern Dinka": "dik_Latn", "Dyula": "dyu_Latn", "Dzongkha": "dzo_Tibt", "Greek": "ell_Grek", "English": "eng_Latn", "Esperanto": "epo_Latn", "Estonian": "est_Latn", "Basque": "eus_Latn", "Ewe": "ewe_Latn", "Faroese": "fao_Latn", "Fijian": "fij_Latn", "Finnish": "fin_Latn", "Fon": "fon_Latn", "French": "fra_Latn", "Friulian": "fur_Latn", "Nigerian Fulfulde": "fuv_Latn", "Scottish Gaelic": "gla_Latn", "Irish": "gle_Latn", "Galician": "glg_Latn", "Guarani": "grn_Latn", "Gujarati": "guj_Gujr", "Haitian Creole": "hat_Latn", "Hausa": "hau_Latn", "Hebrew": "heb_Hebr", "Hindi": "hin_Deva", "Chhattisgarhi": "hne_Deva", "Croatian": "hrv_Latn", "Hungarian": "hun_Latn", "Armenian": "hye_Armn", "Igbo": "ibo_Latn", "Ilocano": "ilo_Latn", "Indonesian": "ind_Latn", "Icelandic": "isl_Latn", "Italian": "ita_Latn", "Javanese": "jav_Latn", "Japanese": "jpn_Jpan", "Kabyle": "kab_Latn", "Jingpho": "kac_Latn", "Kamba": "kam_Latn", "Kannada": "kan_Knda", "Kashmiri Arabic": "kas_Arab", "Kashmiri Devanagari": "kas_Deva", "Georgian": "kat_Geor", "Central Kanuri Arabic": "knc_Arab", "Central Kanuri Latin": "knc_Latn", "Kazakh": "kaz_Cyrl", "Kabiyè": "kbp_Latn", "Kabuverdianu": "kea_Latn", "Khmer": "khm_Khmr", "Kikuyu": "kik_Latn", "Kinyarwanda": "kin_Latn", "Kyrgyz": "kir_Cyrl", "Kimbundu": "kmb_Latn", "Northern Kurdish": "kmr_Latn", "Kikongo": "kon_Latn", "Korean": "kor_Hang", "Lao": "lao_Laoo", "Ligurian": "lij_Latn", "Limburgish": "lim_Latn", "Lingala": "lin_Latn", "Lithuanian": "lit_Latn", "Lombard": "lmo_Latn", "Latgalian": "ltg_Latn", "Luxembourgish": "ltz_Latn", "Luba-Kasai": "lua_Latn", "Ganda": "lug_Latn", "Luo": "luo_Latn", "Mizo": "lus_Latn", "Standard Latvian": "lvs_Latn", "Magahi": "mag_Deva", "Maithili": "mai_Deva", "Malayalam": "mal_Mlym", "Marathi": "mar_Deva", "Minangkabau Arabic ": "min_Arab", "Minangkabau Latin": "min_Latn", "Macedonian": "mkd_Cyrl", "Plateau Malagasy": "plt_Latn", "Maltese": "mlt_Latn", "Meitei Bengali": "mni_Beng", "Halh Mongolian": "khk_Cyrl", "Mossi": "mos_Latn", "Maori": "mri_Latn", "Burmese": "mya_Mymr", "Dutch": "nld_Latn", "Norwegian Nynorsk": "nno_Latn", "Norwegian Bokmål": "nob_Latn", "Nepali": "npi_Deva", "Northern Sotho": "nso_Latn", "Nuer": "nus_Latn", "Nyanja": "nya_Latn", "Occitan": "oci_Latn", "West Central Oromo": "gaz_Latn", "Odia": "ory_Orya", "Pangasinan": "pag_Latn", "Eastern Panjabi": "pan_Guru", "Papiamento": "pap_Latn", "Western Persian": "pes_Arab", "Polish": "pol_Latn", "Portuguese": "por_Latn", "Dari": "prs_Arab", "Southern Pashto": "pbt_Arab", "Ayacucho Quechua": "quy_Latn", "Romanian": "ron_Latn", "Rundi": "run_Latn", "Russian": "rus_Cyrl", "Sango": "sag_Latn", "Sanskrit": "san_Deva", "Santali": "sat_Olck", "Sicilian": "scn_Latn", "Shan": "shn_Mymr", "Sinhala": "sin_Sinh", "Slovak": "slk_Latn", "Slovenian": "slv_Latn", "Samoan": "smo_Latn", "Shona": "sna_Latn", "Sindhi": "snd_Arab", "Somali": "som_Latn", "Southern Sotho": "sot_Latn", "Spanish": "spa_Latn", "Tosk Albanian": "als_Latn", "Sardinian": "srd_Latn", "Serbian": "srp_Cyrl", "Swati": "ssw_Latn", "Sundanese": "sun_Latn", "Swedish": "swe_Latn", "Swahili": "swh_Latn", "Silesian": "szl_Latn", "Tamil": "tam_Taml", "Tatar": "tat_Cyrl", "Telugu": "tel_Telu", "Tajik": "tgk_Cyrl", "Tagalog": "tgl_Latn", "Thai": "tha_Thai", "Tigrinya": "tir_Ethi", "Tamasheq Latin": "taq_Latn", "Tamasheq Tifinagh": "taq_Tfng", "Tok Pisin": "tpi_Latn", "Tswana": "tsn_Latn", "Tsonga": "tso_Latn", "Turkmen": "tuk_Latn", "Tumbuka": "tum_Latn", "Turkish": "tur_Latn", "Twi": "twi_Latn", "Central Atlas Tamazight": "tzm_Tfng", "Uyghur": "uig_Arab", "Ukrainian": "ukr_Cyrl", "Umbundu": "umb_Latn", "Urdu": "urd_Arab", "Northern Uzbek": "uzn_Latn", "Venetian": "vec_Latn", "Vietnamese": "vie_Latn", "Waray": "war_Latn", "Wolof": "wol_Latn", "Xhosa": "xho_Latn", "Eastern Yiddish": "ydd_Hebr", "Yoruba": "yor_Latn", "Yue Chinese": "yue_Hant", "Chinese Simplified": "zho_Hans", "Chinese Traditional": "zho_Hant", "Standard Malay": "zsm_Latn", "Zulu": "zul_Latn", } class __A ( A ): '''simple docstring''' __lowerCamelCase : Dict = 'facebook/nllb-200-distilled-600M' __lowerCamelCase : Optional[Any] = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __lowerCamelCase : Optional[int] = 'translator' __lowerCamelCase : int = AutoTokenizer __lowerCamelCase : List[Any] = AutoModelForSeqaSeqLM __lowerCamelCase : int = LANGUAGE_CODES __lowerCamelCase : Tuple = ['text', 'text', 'text'] __lowerCamelCase : Optional[Any] = ['text'] def a__ (self , A , A , A ) -> List[str]: """simple docstring""" if src_lang not in self.lang_to_code: raise ValueError(f'''{src_lang} is not a supported language.''' ) if tgt_lang not in self.lang_to_code: raise ValueError(f'''{tgt_lang} is not a supported language.''' ) _a = self.lang_to_code[src_lang] _a = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( A , return_tensors='''pt''' , src_lang=A , tgt_lang=A ) def a__ (self , A ) -> Optional[Any]: """simple docstring""" return self.model.generate(**A ) def a__ (self , A ) -> List[str]: """simple docstring""" return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=A )
352
0
"""simple docstring""" from __future__ import annotations import math class A__ : '''simple docstring''' def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: int) -> None: """simple docstring""" __lowerCAmelCase : List[Any] = size # approximate the overall size of segment tree with given value __lowerCAmelCase : Dict = [0 for i in range(0 , 4 * size)] # create array to store lazy update __lowerCAmelCase : str = [0 for i in range(0 , 4 * size)] __lowerCAmelCase : str = [0 for i in range(0 , 4 * size)] # flag for lazy update def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: int) -> int: """simple docstring""" return idx * 2 def _SCREAMING_SNAKE_CASE ( self: Optional[int] , _SCREAMING_SNAKE_CASE: int) -> int: """simple docstring""" return idx * 2 + 1 def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: list[int]) -> None: """simple docstring""" if left_element == right_element: __lowerCAmelCase : Union[str, Any] = a[left_element - 1] else: __lowerCAmelCase : List[Any] = (left_element + right_element) // 2 self.build(self.left(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) self.build(self.right(_SCREAMING_SNAKE_CASE) , mid + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Tuple = max( self.segment_tree[self.left(_SCREAMING_SNAKE_CASE)] , self.segment_tree[self.right(_SCREAMING_SNAKE_CASE)]) def _SCREAMING_SNAKE_CASE ( self: str , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int) -> bool: """simple docstring""" if self.flag[idx] is True: __lowerCAmelCase : List[str] = self.lazy[idx] __lowerCAmelCase : Union[str, Any] = False if left_element != right_element: __lowerCAmelCase : Optional[Any] = self.lazy[idx] __lowerCAmelCase : Any = self.lazy[idx] __lowerCAmelCase : List[Any] = True __lowerCAmelCase : str = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __lowerCAmelCase : Any = val if left_element != right_element: __lowerCAmelCase : int = val __lowerCAmelCase : List[Any] = val __lowerCAmelCase : List[str] = True __lowerCAmelCase : Dict = True return True __lowerCAmelCase : Any = (left_element + right_element) // 2 self.update(self.left(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) self.update(self.right(_SCREAMING_SNAKE_CASE) , mid + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = max( self.segment_tree[self.left(_SCREAMING_SNAKE_CASE)] , self.segment_tree[self.right(_SCREAMING_SNAKE_CASE)]) return True def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int) -> int | float: """simple docstring""" if self.flag[idx] is True: __lowerCAmelCase : str = self.lazy[idx] __lowerCAmelCase : List[Any] = False if left_element != right_element: __lowerCAmelCase : Union[str, Any] = self.lazy[idx] __lowerCAmelCase : str = self.lazy[idx] __lowerCAmelCase : List[Any] = True __lowerCAmelCase : int = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __lowerCAmelCase : Dict = (left_element + right_element) // 2 __lowerCAmelCase : Dict = self.query(self.left(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = self.query(self.right(_SCREAMING_SNAKE_CASE) , mid + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) def __str__( self: Tuple) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) for i in range(1 , self.size + 1)]) if __name__ == "__main__": __snake_case : int = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] __snake_case : Optional[int] = 15 __snake_case : Tuple = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
293
"""simple docstring""" import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin __snake_case : List[Any] = get_tests_dir('fixtures/test_sentencepiece.model') __snake_case : Union[str, Any] = {'target_lang': 'fi', 'source_lang': 'en'} __snake_case : Union[str, Any] = '>>zh<<' __snake_case : List[str] = 'Helsinki-NLP/' if is_torch_available(): __snake_case : Optional[int] = 'pt' elif is_tf_available(): __snake_case : List[Any] = 'tf' else: __snake_case : Union[str, Any] = 'jax' @require_sentencepiece class A__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = MarianTokenizer SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = True def _SCREAMING_SNAKE_CASE ( self: int) -> Tuple: """simple docstring""" super().setUp() __lowerCAmelCase : Dict = ["</s>", "<unk>", "▁This", "▁is", "▁a", "▁t", "est", "\u0120", "<pad>"] __lowerCAmelCase : Union[str, Any] = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE)))) __lowerCAmelCase : int = Path(self.tmpdirname) save_json(_SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES["vocab"]) save_json(_SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES["tokenizer_config_file"]) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(_SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES["source_spm"]) copyfile(_SCREAMING_SNAKE_CASE , save_dir / VOCAB_FILES_NAMES["target_spm"]) __lowerCAmelCase : Tuple = MarianTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def _SCREAMING_SNAKE_CASE ( self: Dict , **_SCREAMING_SNAKE_CASE: List[str]) -> MarianTokenizer: """simple docstring""" return MarianTokenizer.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: List[Any] , _SCREAMING_SNAKE_CASE: List[str]) -> Dict: """simple docstring""" return ( "This is a test", "This is a test", ) def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> int: """simple docstring""" __lowerCAmelCase : Union[str, Any] = "</s>" __lowerCAmelCase : int = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE) , _SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[str] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , "</s>") self.assertEqual(vocab_keys[1] , "<unk>") self.assertEqual(vocab_keys[-1] , "<pad>") self.assertEqual(len(_SCREAMING_SNAKE_CASE) , 9) def _SCREAMING_SNAKE_CASE ( self: Tuple) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 9) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Any: """simple docstring""" __lowerCAmelCase : Optional[Any] = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""") __lowerCAmelCase : int = en_de_tokenizer(["I am a small frog"] , return_tensors=_SCREAMING_SNAKE_CASE) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[int] = [38, 121, 14, 697, 3_8848, 0] self.assertListEqual(_SCREAMING_SNAKE_CASE , batch.input_ids[0]) __lowerCAmelCase : Tuple = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = [x.name for x in Path(_SCREAMING_SNAKE_CASE).glob("*")] self.assertIn("source.spm" , _SCREAMING_SNAKE_CASE) MarianTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> List[Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.get_tokenizer() __lowerCAmelCase : int = tok( ["I am a small frog" * 1000, "I am a small frog"] , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) self.assertEqual(batch.input_ids.shape , (2, 512)) def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Any = self.get_tokenizer() __lowerCAmelCase : str = tok(["I am a tiny frog", "I am a small frog"] , padding=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) self.assertEqual(batch_smaller.input_ids.shape , (2, 10)) @slow def _SCREAMING_SNAKE_CASE ( self: Optional[Any]) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Optional[int] = {"input_ids": [[4_3495, 462, 20, 4_2164, 1369, 52, 464, 132, 1703, 492, 13, 7491, 3_8999, 6, 8, 464, 132, 1703, 492, 13, 4669, 3_7867, 13, 7525, 27, 1593, 988, 13, 3_3972, 7029, 6, 20, 8251, 383, 2, 270, 5866, 3788, 2, 2353, 8251, 1_2338, 2, 1_3958, 387, 2, 3629, 6953, 188, 2900, 2, 1_3958, 8011, 1_1501, 23, 8460, 4073, 3_4009, 20, 435, 1_1439, 27, 8, 8460, 4073, 6004, 20, 9988, 375, 27, 33, 266, 1945, 1076, 1350, 3_7867, 3288, 5, 577, 1076, 4374, 8, 5082, 5, 2_6453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 1_0767, 6, 316, 304, 4239, 3, 0], [148, 1_5722, 19, 1839, 12, 1350, 13, 2_2327, 5082, 5418, 4_7567, 3_5938, 59, 318, 1_9552, 108, 2183, 54, 1_4976, 4835, 32, 547, 1114, 8, 315, 2417, 5, 92, 1_9088, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100], [36, 6395, 1_2570, 3_9147, 1_1597, 6, 266, 4, 4_5405, 7296, 3, 0, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100, 5_8100]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name="Helsinki-NLP/opus-mt-en-de" , revision="1a8c2263da11e68e50938f97e10cd57820bd504c" , decode_kwargs={"use_source_tokenizer": True} , ) def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> Any: """simple docstring""" __lowerCAmelCase : List[Any] = MarianTokenizer.from_pretrained("hf-internal-testing/test-marian-two-vocabs") __lowerCAmelCase : List[str] = "Tämä on testi" __lowerCAmelCase : int = "This is a test" __lowerCAmelCase : Union[str, Any] = [76, 7, 2047, 2] __lowerCAmelCase : Dict = [69, 12, 11, 940, 2] __lowerCAmelCase : List[str] = tokenizer(_SCREAMING_SNAKE_CASE).input_ids self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = tokenizer(text_target=_SCREAMING_SNAKE_CASE).input_ids self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = tokenizer.decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)
293
1
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCAmelCase ( lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = '''ssube/stable-diffusion-x4-upscaler-onnx''' def __UpperCAmelCase ( self : List[Any] , lowercase_ : Any=0) -> Any: """simple docstring""" _UpperCamelCase = floats_tensor((1, 3, 128, 128) , rng=random.Random(lowercase_)) _UpperCamelCase = torch.manual_seed(lowercase_) _UpperCamelCase = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __UpperCAmelCase ( self : str) -> List[Any]: """simple docstring""" _UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**lowercase_).images _UpperCamelCase = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) _UpperCamelCase = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice - expected_slice).max() < 1e-1 def __UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" _UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") _UpperCamelCase = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=lowercase_) pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**lowercase_).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def __UpperCAmelCase ( self : Optional[int]) -> Any: """simple docstring""" _UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") _UpperCamelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**lowercase_).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def __UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") _UpperCamelCase = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**lowercase_).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 def __UpperCAmelCase ( self : Any) -> str: """simple docstring""" _UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider") _UpperCamelCase = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = self.get_dummy_inputs() _UpperCamelCase = pipe(**lowercase_).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _UpperCamelCase = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCAmelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCAmelCase ( self : int) -> int: """simple docstring""" _UpperCamelCase = ort.SessionOptions() _UpperCamelCase = False return options def __UpperCAmelCase ( self : Dict) -> List[str]: """simple docstring""" _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg") _UpperCamelCase = init_image.resize((128, 128)) # using the PNDM scheduler by default _UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = "A fantasy landscape, trending on artstation" _UpperCamelCase = torch.manual_seed(0) _UpperCamelCase = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=10 , generator=lowercase_ , output_type="np" , ) _UpperCamelCase = output.images _UpperCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _UpperCamelCase = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 def __UpperCAmelCase ( self : int) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg") _UpperCamelCase = init_image.resize((128, 128)) _UpperCamelCase = LMSDiscreteScheduler.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , subfolder="scheduler") _UpperCamelCase = OnnxStableDiffusionUpscalePipeline.from_pretrained( "ssube/stable-diffusion-x4-upscaler-onnx" , scheduler=lowercase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = "A fantasy landscape, trending on artstation" _UpperCamelCase = torch.manual_seed(0) _UpperCamelCase = pipe( prompt=lowercase_ , image=lowercase_ , guidance_scale=7.5 , num_inference_steps=20 , generator=lowercase_ , output_type="np" , ) _UpperCamelCase = output.images _UpperCamelCase = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _UpperCamelCase = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66]) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
82
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowerCAmelCase__ ( a__ , a__ , a__ ) ->int: '''simple docstring''' _UpperCamelCase = 1.5 _UpperCamelCase = int(factor * num_class_images ) _UpperCamelCase = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=a__ , aesthetic_weight=0.1 ) os.makedirs(f'{class_data_dir}/images' , exist_ok=a__ ) if len(list(Path(f'{class_data_dir}/images' ).iterdir() ) ) >= num_class_images: return while True: _UpperCamelCase = client.query(text=a__ ) if len(a__ ) >= factor * num_class_images or num_images > 1e4: break else: _UpperCamelCase = int(factor * num_images ) _UpperCamelCase = ClipClient( url="https://knn.laion.ai/knn-service" , indice_name="laion_400m" , num_images=a__ , aesthetic_weight=0.1 , ) _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = tqdm(desc="downloading real regularization images" , total=a__ ) with open(f'{class_data_dir}/caption.txt' , "w" ) as fa, open(f'{class_data_dir}/urls.txt' , "w" ) as fa, open( f'{class_data_dir}/images.txt' , "w" ) as fa: while total < num_class_images: _UpperCamelCase = class_images[count] count += 1 try: _UpperCamelCase = requests.get(images["url"] ) if img.status_code == 200: _UpperCamelCase = Image.open(BytesIO(img.content ) ) with open(f'{class_data_dir}/images/{total}.jpg' , "wb" ) as f: f.write(img.content ) fa.write(images["caption"] + "\n" ) fa.write(images["url"] + "\n" ) fa.write(f'{class_data_dir}/images/{total}.jpg' + "\n" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowerCAmelCase__ ( ) ->Optional[Any]: '''simple docstring''' _UpperCamelCase = argparse.ArgumentParser("" , add_help=a__ ) parser.add_argument("--class_prompt" , help="text prompt to retrieve images" , required=a__ , type=a__ ) parser.add_argument("--class_data_dir" , help="path to save images" , required=a__ , type=a__ ) parser.add_argument("--num_class_images" , help="number of images to download" , default=200 , type=a__ ) return parser.parse_args() if __name__ == "__main__": lowerCamelCase__ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
82
1
'''simple docstring''' import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Tuple , snake_case__ : Optional[int] , snake_case__ : Union[str, Any]=13 , snake_case__ : Any=30 , snake_case__ : int=2 , snake_case__ : Union[str, Any]=3 , snake_case__ : int=True , snake_case__ : Tuple=True , snake_case__ : List[Any]=32 , snake_case__ : str=5 , snake_case__ : Optional[int]=4 , snake_case__ : List[str]=37 , snake_case__ : str="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : int=0.1 , snake_case__ : List[str]=10 , snake_case__ : Any=0.02 , snake_case__ : Union[str, Any]=3 , snake_case__ : Dict=0.6 , snake_case__ : Any=None , ): '''simple docstring''' UpperCAmelCase__ : str = parent UpperCAmelCase__ : Optional[int] = batch_size UpperCAmelCase__ : Optional[int] = image_size UpperCAmelCase__ : Tuple = patch_size UpperCAmelCase__ : Dict = num_channels UpperCAmelCase__ : List[Any] = is_training UpperCAmelCase__ : str = use_labels UpperCAmelCase__ : Optional[int] = hidden_size UpperCAmelCase__ : Optional[int] = num_hidden_layers UpperCAmelCase__ : Optional[Any] = num_attention_heads UpperCAmelCase__ : List[Any] = intermediate_size UpperCAmelCase__ : Dict = hidden_act UpperCAmelCase__ : str = hidden_dropout_prob UpperCAmelCase__ : Dict = attention_probs_dropout_prob UpperCAmelCase__ : Dict = type_sequence_label_size UpperCAmelCase__ : Union[str, Any] = initializer_range UpperCAmelCase__ : Dict = mask_ratio UpperCAmelCase__ : Optional[Any] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCAmelCase__ : Union[str, Any] = (image_size // patch_size) ** 2 UpperCAmelCase__ : str = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def UpperCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ : Optional[Any] = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : int = self.get_config() return config, pixel_values, labels def UpperCamelCase ( self : List[str] ): '''simple docstring''' return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def UpperCamelCase ( self : Dict , snake_case__ : int , snake_case__ : List[Any] , snake_case__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = ViTMAEModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase__ : Any = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self : Optional[Any] , snake_case__ : Optional[int] , snake_case__ : Tuple , snake_case__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : str = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase__ : Dict = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : List[Any] = (self.image_size // self.patch_size) ** 2 UpperCAmelCase__ : Dict = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCAmelCase__ : str = 1 UpperCAmelCase__ : Optional[Any] = ViTMAEForPreTraining(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase__ : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase__ : Dict = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Optional[Any] = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def UpperCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.prepare_config_and_inputs() UpperCAmelCase__ : Any = config_and_inputs UpperCAmelCase__ : List[str] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( _a , _a , unittest.TestCase ): '''simple docstring''' lowercase_ : Tuple = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () lowercase_ : List[str] = {"feature-extraction": ViTMAEModel} if is_torch_available() else {} lowercase_ : int = False lowercase_ : List[Any] = False lowercase_ : str = False lowercase_ : List[str] = False def UpperCamelCase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = ViTMAEModelTester(self ) UpperCAmelCase__ : List[str] = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCamelCase ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMAE does not use inputs_embeds" ) def UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' pass def UpperCamelCase ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Tuple = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def UpperCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : Any = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ : Tuple = [*signature.parameters.keys()] UpperCAmelCase__ : List[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*_SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : int , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Tuple ): '''simple docstring''' np.random.seed(2 ) UpperCAmelCase__ : List[Any] = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) UpperCAmelCase__ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCAmelCase__ : Any = torch.from_numpy(_SCREAMING_SNAKE_CASE ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCAmelCase__ : Union[str, Any] = pt_noise super().check_pt_tf_models(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCamelCase ( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCAmelCase__ : Dict = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) UpperCAmelCase__ : List[str] = outputs[0].cpu().numpy() UpperCAmelCase__ : str = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Any = model_class.from_pretrained(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): UpperCAmelCase__ : int = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # Make sure we don't have nans UpperCAmelCase__ : Tuple = after_outputs[0].cpu().numpy() UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Tuple = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(_SCREAMING_SNAKE_CASE , 1e-5 ) @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def UpperCamelCase ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def UpperCamelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip( reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load\n to get deterministic results." ) def UpperCamelCase ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason="ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load" ) def UpperCamelCase ( self : List[str] ): '''simple docstring''' pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def UpperCamelCase ( self : Tuple ): '''simple docstring''' pass @slow def UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Tuple = ViTMAEModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def snake_case_ ( ): UpperCAmelCase__ : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase ( self : Optional[Any] ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-mae-base" ) if is_vision_available() else None @slow def UpperCamelCase ( self : Union[str, Any] ): '''simple docstring''' np.random.seed(2 ) UpperCAmelCase__ : List[str] = ViTMAEForPreTraining.from_pretrained("facebook/vit-mae-base" ).to(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : int = self.default_image_processor UpperCAmelCase__ : str = prepare_img() UpperCAmelCase__ : Union[str, Any] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="pt" ).to(_SCREAMING_SNAKE_CASE ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCAmelCase__ : Any = ViTMAEConfig() UpperCAmelCase__ : Any = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCAmelCase__ : Optional[Any] = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): UpperCAmelCase__ : int = model(**_SCREAMING_SNAKE_CASE , noise=torch.from_numpy(_SCREAMING_SNAKE_CASE ).to(device=_SCREAMING_SNAKE_CASE ) ) # verify the logits UpperCAmelCase__ : Tuple = torch.Size((1, 1_96, 7_68) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : Optional[Any] = torch.tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(_SCREAMING_SNAKE_CASE ) , atol=1e-4 ) )
199
__a = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ): UpperCAmelCase_ : Union[str, Any] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(_lowercase ) UpperCAmelCase_ : Any = ''''''.join(bin(_lowercase )[2:].zfill(8 ) for byte in data ) UpperCAmelCase_ : Any = len(_lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later UpperCAmelCase_ : Union[str, Any] = B'''=''' * ((6 - len(_lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(_lowercase ) % 6) else: UpperCAmelCase_ : int = B'''''' # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(_lowercase ) , 6 ) ).encode() + padding ) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' if not isinstance(_lowercase , _lowercase ) and not isinstance(_lowercase , _lowercase ): UpperCAmelCase_ : Tuple = ( '''argument should be a bytes-like object or ASCII string, ''' f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(_lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(_lowercase , _lowercase ): try: UpperCAmelCase_ : Any = encoded_data.decode('''utf-8''' ) except UnicodeDecodeError: raise ValueError('''base64 encoded data should only contain ASCII characters''' ) UpperCAmelCase_ : str = encoded_data.count('''=''' ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(_lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCAmelCase_ : List[Any] = encoded_data[:-padding] UpperCAmelCase_ : List[Any] = ''''''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: UpperCAmelCase_ : Tuple = ''''''.join( bin(B64_CHARSET.index(_lowercase ) )[2:].zfill(6 ) for char in encoded_data ) UpperCAmelCase_ : str = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(_lowercase ) , 8 ) ] return bytes(_lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
30
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowerCAmelCase( a__ : str ): '''simple docstring''' lowerCamelCase__ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(a__ , a__ ) def lowerCAmelCase( a__ : Tuple ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ = emb.weight.shape lowerCamelCase__ = nn.Linear(a__ , a__ , bias=a__ ) lowerCamelCase__ = emb.weight.data return lin_layer def lowerCAmelCase( a__ : Dict , a__ : str="facebook/mbart-large-en-ro" , a__ : Any=False , a__ : Optional[int]=False ): '''simple docstring''' lowerCamelCase__ = torch.load(a__ , map_location="cpu" )["model"] remove_ignore_keys_(a__ ) lowerCamelCase__ = state_dict["encoder.embed_tokens.weight"].shape[0] lowerCamelCase__ = MBartConfig.from_pretrained(a__ , vocab_size=a__ ) if mbart_aa and finetuned: lowerCamelCase__ = "relu" lowerCamelCase__ = state_dict["decoder.embed_tokens.weight"] lowerCamelCase__ = MBartForConditionalGeneration(a__ ) model.model.load_state_dict(a__ ) if finetuned: lowerCamelCase__ = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="facebook/mbart-large-cc25", type=str, help="Which huggingface architecture to use: mbart-large", ) parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") lowerCAmelCase_ = parser.parse_args() lowerCAmelCase_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
426
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. lowerCAmelCase_ = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class snake_case_ ( unittest.TestCase ): """simple docstring""" __lowerCAmelCase : List[Any] =MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __lowerCAmelCase : Optional[Any] =TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __lowerCAmelCase : Any ={config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __lowerCAmelCase : Optional[int] ={ config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = ZeroShotClassificationPipeline( model=UpperCamelCase , tokenizer=UpperCamelCase , candidate_labels=["polics", "health"]) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def __UpperCAmelCase ( self , UpperCamelCase , UpperCamelCase): lowerCamelCase__ = classifier("Who are you voting for in 2020?" , candidate_labels="politics") self.assertEqual(UpperCamelCase , {"sequence": ANY(UpperCamelCase), "labels": [ANY(UpperCamelCase)], "scores": [ANY(UpperCamelCase)]}) # No kwarg lowerCamelCase__ = classifier("Who are you voting for in 2020?" , ["politics"]) self.assertEqual(UpperCamelCase , {"sequence": ANY(UpperCamelCase), "labels": [ANY(UpperCamelCase)], "scores": [ANY(UpperCamelCase)]}) lowerCamelCase__ = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"]) self.assertEqual(UpperCamelCase , {"sequence": ANY(UpperCamelCase), "labels": [ANY(UpperCamelCase)], "scores": [ANY(UpperCamelCase)]}) lowerCamelCase__ = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health") self.assertEqual( UpperCamelCase , {"sequence": ANY(UpperCamelCase), "labels": [ANY(UpperCamelCase), ANY(UpperCamelCase)], "scores": [ANY(UpperCamelCase), ANY(UpperCamelCase)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])) , 1.0) lowerCamelCase__ = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"]) self.assertEqual( UpperCamelCase , {"sequence": ANY(UpperCamelCase), "labels": [ANY(UpperCamelCase), ANY(UpperCamelCase)], "scores": [ANY(UpperCamelCase), ANY(UpperCamelCase)]}) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"])) , 1.0) lowerCamelCase__ = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}") self.assertEqual(UpperCamelCase , {"sequence": ANY(UpperCamelCase), "labels": [ANY(UpperCamelCase)], "scores": [ANY(UpperCamelCase)]}) # https://github.com/huggingface/transformers/issues/13846 lowerCamelCase__ = classifier(["I am happy"] , ["positive", "negative"]) self.assertEqual( UpperCamelCase , [ {"sequence": ANY(UpperCamelCase), "labels": [ANY(UpperCamelCase), ANY(UpperCamelCase)], "scores": [ANY(UpperCamelCase), ANY(UpperCamelCase)]} for i in range(1) ] , ) lowerCamelCase__ = classifier(["I am happy", "I am sad"] , ["positive", "negative"]) self.assertEqual( UpperCamelCase , [ {"sequence": ANY(UpperCamelCase), "labels": [ANY(UpperCamelCase), ANY(UpperCamelCase)], "scores": [ANY(UpperCamelCase), ANY(UpperCamelCase)]} for i in range(2) ] , ) with self.assertRaises(UpperCamelCase): classifier("" , candidate_labels="politics") with self.assertRaises(UpperCamelCase): classifier(UpperCamelCase , candidate_labels="politics") with self.assertRaises(UpperCamelCase): classifier("Who are you voting for in 2020?" , candidate_labels="") with self.assertRaises(UpperCamelCase): classifier("Who are you voting for in 2020?" , candidate_labels=UpperCamelCase) with self.assertRaises(UpperCamelCase): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(UpperCamelCase): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=UpperCamelCase , ) self.run_entailment_id(UpperCamelCase) def __UpperCAmelCase ( self , UpperCamelCase): lowerCamelCase__ = zero_shot_classifier.model.config lowerCamelCase__ = config.labelaid lowerCamelCase__ = zero_shot_classifier.entailment_id lowerCamelCase__ = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1) lowerCamelCase__ = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0) lowerCamelCase__ = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0) lowerCamelCase__ = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2) lowerCamelCase__ = original_labelaid self.assertEqual(UpperCamelCase , zero_shot_classifier.entailment_id) @require_torch def __UpperCAmelCase ( self): lowerCamelCase__ = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 1_00 , candidate_labels=["politics", "public health", "science"]) @require_torch def __UpperCAmelCase ( self): lowerCamelCase__ = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) lowerCamelCase__ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(UpperCamelCase) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @require_tf def __UpperCAmelCase ( self): lowerCamelCase__ = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) lowerCamelCase__ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(UpperCamelCase) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.3_3_3, 0.3_3_3, 0.3_3_3], } , ) @slow @require_torch def __UpperCAmelCase ( self): lowerCamelCase__ = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt") lowerCamelCase__ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(UpperCamelCase) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) lowerCamelCase__ = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=UpperCamelCase , ) self.assertEqual( nested_simplify(UpperCamelCase) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , ) @slow @require_tf def __UpperCAmelCase ( self): lowerCamelCase__ = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf") lowerCamelCase__ = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"]) self.assertEqual( nested_simplify(UpperCamelCase) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.9_7_6, 0.0_1_5, 0.0_0_9], } , ) lowerCamelCase__ = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=UpperCamelCase , ) self.assertEqual( nested_simplify(UpperCamelCase) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.8_1_7, 0.7_1_3, 0.0_1_8, 0.0_1_8], } , )
426
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. lowercase = [[1, 2, 4], [1, 2, 3, 4]] lowercase = DisjunctiveConstraint(snake_case ) self.assertTrue(isinstance(dc.token_ids , snake_case ) ) with self.assertRaises(snake_case ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(snake_case ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def SCREAMING_SNAKE_CASE__ ( self ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). lowercase = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(snake_case ): DisjunctiveConstraint(snake_case ) # fails here def SCREAMING_SNAKE_CASE__ ( self ): lowercase = [[1, 2, 3], [1, 2, 4]] lowercase = DisjunctiveConstraint(snake_case ) lowercase , lowercase , lowercase = dc.update(1 ) lowercase = stepped is True and completed is False and reset is False self.assertTrue(snake_case ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase , lowercase , lowercase = dc.update(2 ) lowercase = stepped is True and completed is False and reset is False self.assertTrue(snake_case ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase , lowercase , lowercase = dc.update(3 ) lowercase = stepped is True and completed is True and reset is False self.assertTrue(snake_case ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowercase = DisjunctiveConstraint(snake_case ) lowercase , lowercase , lowercase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowercase , lowercase , lowercase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase , lowercase , lowercase = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowercase , lowercase , lowercase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowercase , lowercase , lowercase = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowercase , lowercase , lowercase = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowercase , lowercase , lowercase = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
84
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''facebook/vit-mae-base''': '''https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json''', # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''vit_mae''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[int]=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Optional[Any]=12 , _UpperCAmelCase : Optional[int]=3_072 , _UpperCAmelCase : Any="gelu" , _UpperCAmelCase : Optional[Any]=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Dict=0.02 , _UpperCAmelCase : List[Any]=1E-1_2 , _UpperCAmelCase : Optional[Any]=224 , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=3 , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : int=16 , _UpperCAmelCase : str=512 , _UpperCAmelCase : int=8 , _UpperCAmelCase : List[Any]=2_048 , _UpperCAmelCase : Optional[Any]=0.75 , _UpperCAmelCase : List[str]=False , **_UpperCAmelCase : Union[str, Any] , ): super().__init__(**_UpperCAmelCase ) _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = layer_norm_eps _A = image_size _A = patch_size _A = num_channels _A = qkv_bias _A = decoder_num_attention_heads _A = decoder_hidden_size _A = decoder_num_hidden_layers _A = decoder_intermediate_size _A = mask_ratio _A = norm_pix_loss
7
0
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : Dict = (DDPMScheduler,) def _lowercase ( self , **__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Any = { '''num_train_timesteps''': 1_000, '''beta_start''': 0.0_001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__SCREAMING_SNAKE_CASE ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0_001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Dict = self.scheduler_classes[0] UpperCamelCase : Union[str, Any] = self.get_scheduler_config() UpperCamelCase : Optional[int] = scheduler_class(**__SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.00_979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" UpperCamelCase : List[Any] = self.scheduler_classes[0] UpperCamelCase : int = self.get_scheduler_config() UpperCamelCase : Optional[Any] = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = self.dummy_model() UpperCamelCase : str = self.dummy_sample_deter UpperCamelCase : str = torch.manual_seed(0 ) for t in reversed(range(__SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual UpperCamelCase : List[Any] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 UpperCamelCase : List[str] = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase : Optional[int] = pred_prev_sample UpperCamelCase : Tuple = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : List[str] = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 258.9_606 ) < 1e-2 assert abs(result_mean.item() - 0.3_372 ) < 1e-3 def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = self.scheduler_classes[0] UpperCamelCase : List[str] = self.get_scheduler_config(prediction_type='''v_prediction''' ) UpperCamelCase : Optional[int] = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Union[str, Any] = len(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = self.dummy_model() UpperCamelCase : str = self.dummy_sample_deter UpperCamelCase : str = torch.manual_seed(0 ) for t in reversed(range(__SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual UpperCamelCase : List[Any] = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 UpperCamelCase : str = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance UpperCamelCase : Optional[int] = pred_prev_sample UpperCamelCase : Dict = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) UpperCamelCase : Union[str, Any] = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 202.0_296 ) < 1e-2 assert abs(result_mean.item() - 0.2_631 ) < 1e-3 def _lowercase ( self ): """simple docstring""" UpperCamelCase : Any = self.scheduler_classes[0] UpperCamelCase : Dict = self.get_scheduler_config() UpperCamelCase : Any = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[int] = scheduler.timesteps for i, timestep in enumerate(__SCREAMING_SNAKE_CASE ): if i == len(__SCREAMING_SNAKE_CASE ) - 1: UpperCamelCase : int = -1 else: UpperCamelCase : List[Any] = timesteps[i + 1] UpperCamelCase : int = scheduler.previous_timestep(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = prev_t.item() self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = self.scheduler_classes[0] UpperCamelCase : Optional[Any] = self.get_scheduler_config() UpperCamelCase : List[str] = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : List[Any] = [100, 87, 50, 51, 0] with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : str = self.scheduler_classes[0] UpperCamelCase : Tuple = self.get_scheduler_config() UpperCamelCase : Optional[Any] = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [100, 87, 50, 1, 0] UpperCamelCase : Any = len(__SCREAMING_SNAKE_CASE ) with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE ) def _lowercase ( self ): """simple docstring""" UpperCamelCase : Tuple = self.scheduler_classes[0] UpperCamelCase : Tuple = self.get_scheduler_config() UpperCamelCase : Any = scheduler_class(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Tuple = [scheduler.config.num_train_timesteps] with self.assertRaises( __SCREAMING_SNAKE_CASE , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
710
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
643
0
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip A: List[str] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def _snake_case ( UpperCamelCase : Dict ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : List[str] , UpperCamelCase : Dict ): return max(metric_fn(UpperCamelCase , UpperCamelCase ) for gt in ground_truths ) def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : Tuple , UpperCamelCase : str ): UpperCAmelCase : List[str] = [line.strip() for line in open(UpperCamelCase , """r""" ).readlines()] UpperCAmelCase : Union[str, Any] = [] if args.gold_data_mode == "qa": UpperCAmelCase : List[Any] = pd.read_csv(UpperCamelCase , sep="""\t""" , header=UpperCamelCase ) for answer_list in data[1]: UpperCAmelCase : int = ast.literal_eval(UpperCamelCase ) answers.append(UpperCamelCase ) else: UpperCAmelCase : str = [line.strip() for line in open(UpperCamelCase , """r""" ).readlines()] UpperCAmelCase : str = [[reference] for reference in references] UpperCAmelCase : List[str] = 0 for prediction, ground_truths in zip(UpperCamelCase , UpperCamelCase ): total += 1 em += metric_max_over_ground_truths(UpperCamelCase , UpperCamelCase , UpperCamelCase ) fa += metric_max_over_ground_truths(UpperCamelCase , UpperCamelCase , UpperCamelCase ) UpperCAmelCase : List[str] = 100.0 * em / total UpperCAmelCase : int = 100.0 * fa / total logger.info(F"F1: {fa:.2f}" ) logger.info(F"EM: {em:.2f}" ) def _snake_case ( UpperCamelCase : Any , UpperCamelCase : int , UpperCamelCase : List[Any] ): UpperCAmelCase : str = args.k UpperCAmelCase : Optional[Any] = [line.strip() for line in open(UpperCamelCase , """r""" ).readlines()] UpperCAmelCase : Dict = [line.strip() for line in open(UpperCamelCase , """r""" ).readlines()] UpperCAmelCase : List[Any] = 0 for hypo, reference in zip(UpperCamelCase , UpperCamelCase ): UpperCAmelCase : Optional[int] = set(hypo.split("""\t""" )[:k] ) UpperCAmelCase : str = set(reference.split("""\t""" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k UpperCAmelCase : List[Any] = 100.0 * em / total logger.info(F"Precision@{k}: {em: .2f}" ) def _snake_case ( UpperCamelCase : Dict , UpperCamelCase : List[str] , UpperCamelCase : Optional[Any] ): def strip_title(UpperCamelCase : List[str] ): if title.startswith("""\"""" ): UpperCAmelCase : List[str] = title[1:] if title.endswith("""\"""" ): UpperCAmelCase : str = title[:-1] return title UpperCAmelCase : Optional[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( UpperCamelCase , return_tensors="""pt""" , padding=UpperCamelCase , truncation=UpperCamelCase , )["""input_ids"""].to(args.device ) UpperCAmelCase : List[str] = rag_model.rag.question_encoder(UpperCamelCase ) UpperCAmelCase : Dict = question_enc_outputs[0] UpperCAmelCase : List[Any] = rag_model.retriever( UpperCamelCase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="""pt""" , ) UpperCAmelCase : Optional[int] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) UpperCAmelCase : Any = [] for docs in all_docs: UpperCAmelCase : Optional[Any] = [strip_title(UpperCamelCase ) for title in docs["""title"""]] provenance_strings.append("""\t""".join(UpperCamelCase ) ) return provenance_strings def _snake_case ( UpperCamelCase : Optional[Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] ): with torch.no_grad(): UpperCAmelCase : Optional[Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( UpperCamelCase , return_tensors="""pt""" , padding=UpperCamelCase , truncation=UpperCamelCase ) UpperCAmelCase : Optional[int] = inputs_dict.input_ids.to(args.device ) UpperCAmelCase : Dict = inputs_dict.attention_mask.to(args.device ) UpperCAmelCase : Optional[Any] = rag_model.generate( # rag_model overwrites generate UpperCamelCase , attention_mask=UpperCamelCase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=UpperCamelCase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) UpperCAmelCase : List[str] = rag_model.retriever.generator_tokenizer.batch_decode(UpperCamelCase , skip_special_tokens=UpperCamelCase ) if args.print_predictions: for q, a in zip(UpperCamelCase , UpperCamelCase ): logger.info("""Q: {} - A: {}""".format(UpperCamelCase , UpperCamelCase ) ) return answers def _snake_case ( ): UpperCAmelCase : Tuple = argparse.ArgumentParser() parser.add_argument( """--model_type""" , choices=["""rag_sequence""", """rag_token""", """bart"""] , type=UpperCamelCase , help=( """RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the""" """ model_name_or_path""" ) , ) parser.add_argument( """--index_name""" , default=UpperCamelCase , choices=["""exact""", """compressed""", """legacy"""] , type=UpperCamelCase , help="""RAG model retriever type""" , ) parser.add_argument( """--index_path""" , default=UpperCamelCase , type=UpperCamelCase , help="""Path to the retrieval index""" , ) parser.add_argument("""--n_docs""" , default=5 , type=UpperCamelCase , help="""Number of retrieved docs""" ) parser.add_argument( """--model_name_or_path""" , default=UpperCamelCase , type=UpperCamelCase , required=UpperCamelCase , help="""Path to pretrained checkpoints or model identifier from huggingface.co/models""" , ) parser.add_argument( """--eval_mode""" , choices=["""e2e""", """retrieval"""] , default="""e2e""" , type=UpperCamelCase , help=( """Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates""" """ precision@k.""" ) , ) parser.add_argument("""--k""" , default=1 , type=UpperCamelCase , help="""k for the precision@k calculation""" ) parser.add_argument( """--evaluation_set""" , default=UpperCamelCase , type=UpperCamelCase , required=UpperCamelCase , help="""Path to a file containing evaluation samples""" , ) parser.add_argument( """--gold_data_path""" , default=UpperCamelCase , type=UpperCamelCase , required=UpperCamelCase , help="""Path to a tab-separated file with gold samples""" , ) parser.add_argument( """--gold_data_mode""" , default="""qa""" , type=UpperCamelCase , choices=["""qa""", """ans"""] , help=( """Format of the gold data file""" """qa - a single line in the following format: question [tab] answer_list""" """ans - a single line of the gold file contains the expected answer string""" ) , ) parser.add_argument( """--predictions_path""" , type=UpperCamelCase , default="""predictions.txt""" , help="""Name of the predictions file, to be stored in the checkpoints directory""" , ) parser.add_argument( """--eval_all_checkpoints""" , action="""store_true""" , help="""Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number""" , ) parser.add_argument( """--eval_batch_size""" , default=8 , type=UpperCamelCase , help="""Batch size per GPU/CPU for evaluation.""" , ) parser.add_argument( """--recalculate""" , help="""Recalculate predictions even if the prediction file exists""" , action="""store_true""" , ) parser.add_argument( """--num_beams""" , default=4 , type=UpperCamelCase , help="""Number of beams to be used when generating answers""" , ) parser.add_argument("""--min_length""" , default=1 , type=UpperCamelCase , help="""Min length of the generated answers""" ) parser.add_argument("""--max_length""" , default=50 , type=UpperCamelCase , help="""Max length of the generated answers""" ) parser.add_argument( """--print_predictions""" , action="""store_true""" , help="""If True, prints predictions while evaluating.""" , ) parser.add_argument( """--print_docs""" , action="""store_true""" , help="""If True, prints docs retried while generating.""" , ) UpperCAmelCase : Optional[int] = parser.parse_args() UpperCAmelCase : Any = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) return args def _snake_case ( UpperCamelCase : Dict ): UpperCAmelCase : List[Any] = {} if args.model_type is None: UpperCAmelCase : Dict = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("""rag""" ): UpperCAmelCase : Tuple = RagTokenForGeneration if args.model_type == """rag_token""" else RagSequenceForGeneration UpperCAmelCase : Optional[int] = args.n_docs if args.index_name is not None: UpperCAmelCase : List[Any] = args.index_name if args.index_path is not None: UpperCAmelCase : Tuple = args.index_path else: UpperCAmelCase : List[Any] = BartForConditionalGeneration UpperCAmelCase : Optional[int] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("""Evaluate the following checkpoints: %s""" , UpperCamelCase ) UpperCAmelCase : str = get_scores if args.eval_mode == """e2e""" else get_precision_at_k UpperCAmelCase : Union[str, Any] = evaluate_batch_eae if args.eval_mode == """e2e""" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("""Calculating metrics based on an existing predictions file: {}""".format(args.predictions_path ) ) score_fn(UpperCamelCase , args.predictions_path , args.gold_data_path ) continue logger.info("""***** Running evaluation for {} *****""".format(UpperCamelCase ) ) logger.info(""" Batch size = %d""" , args.eval_batch_size ) logger.info(""" Predictions will be stored under {}""".format(args.predictions_path ) ) if args.model_type.startswith("""rag""" ): UpperCAmelCase : List[Any] = RagRetriever.from_pretrained(UpperCamelCase , **UpperCamelCase ) UpperCAmelCase : Optional[int] = model_class.from_pretrained(UpperCamelCase , retriever=UpperCamelCase , **UpperCamelCase ) model.retriever.init_retrieval() else: UpperCAmelCase : int = model_class.from_pretrained(UpperCamelCase , **UpperCamelCase ) model.to(args.device ) with open(args.evaluation_set , """r""" ) as eval_file, open(args.predictions_path , """w""" ) as preds_file: UpperCAmelCase : List[str] = [] for line in tqdm(UpperCamelCase ): questions.append(line.strip() ) if len(UpperCamelCase ) == args.eval_batch_size: UpperCAmelCase : Optional[int] = evaluate_batch_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase ) preds_file.write("""\n""".join(UpperCamelCase ) + """\n""" ) preds_file.flush() UpperCAmelCase : Tuple = [] if len(UpperCamelCase ) > 0: UpperCAmelCase : Optional[int] = evaluate_batch_fn(UpperCamelCase , UpperCamelCase , UpperCamelCase ) preds_file.write("""\n""".join(UpperCamelCase ) ) preds_file.flush() score_fn(UpperCamelCase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": A: Optional[int] = get_args() main(args)
160
def _SCREAMING_SNAKE_CASE ( snake_case ) -> int: if not numbers: return 0 if not isinstance(snake_case , (list, tuple) ) or not all( isinstance(snake_case , snake_case ) for number in numbers ): raise ValueError("""numbers must be an iterable of integers""" ) _UpperCAmelCase = _UpperCAmelCase = _UpperCAmelCase = numbers[0] for i in range(1 , len(snake_case ) ): # update the maximum and minimum subarray products _UpperCAmelCase = numbers[i] if number < 0: _UpperCAmelCase , _UpperCAmelCase = min_till_now, max_till_now _UpperCAmelCase = max(snake_case , max_till_now * number ) _UpperCAmelCase = min(snake_case , min_till_now * number ) # update the maximum product found till now _UpperCAmelCase = max(snake_case , snake_case ) return max_prod
518
0
"""simple docstring""" from math import pow, sqrt def UpperCamelCase ( *SCREAMING_SNAKE_CASE_ ) ->bool: _lowerCamelCase : List[Any] = len(SCREAMING_SNAKE_CASE_ ) > 0 and all(value > 0.0 for value in values ) return result def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->float | ValueError: return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->float | ValueError: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->float | ValueError: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->float | ValueError: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->float | ValueError: return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
558
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.02 , _lowercase=4 , ) -> List[Any]: _lowerCamelCase : str = parent _lowerCamelCase : Dict = batch_size _lowerCamelCase : Optional[Any] = seq_length _lowerCamelCase : List[str] = is_training _lowerCamelCase : Dict = use_attention_mask _lowerCamelCase : Optional[Any] = use_token_type_ids _lowerCamelCase : Tuple = use_labels _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : Union[str, Any] = num_attention_heads _lowerCamelCase : Tuple = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_act _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : Tuple = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : List[str] = type_sequence_label_size _lowerCamelCase : Union[str, Any] = initializer_range _lowerCamelCase : str = num_choices def a__ ( self ) -> Dict: _lowerCamelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCamelCase : List[Any] = None if self.use_attention_mask: _lowerCamelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCamelCase : List[Any] = None if self.use_token_type_ids: _lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCamelCase : int = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def a__ ( self ) -> int: _lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs() _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = config_and_inputs _lowerCamelCase : Tuple = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class _UpperCAmelCase ( a_ , unittest.TestCase ): """simple docstring""" __snake_case = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def a__ ( self ) -> Any: _lowerCamelCase : Union[str, Any] = FlaxAlbertModelTester(self ) @slow def a__ ( self ) -> int: for model_class_name in self.all_model_classes: _lowerCamelCase : str = model_class_name.from_pretrained('''albert-base-v2''' ) _lowerCamelCase : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(_lowercase ) @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def a__ ( self ) -> Optional[int]: _lowerCamelCase : Tuple = FlaxAlbertModel.from_pretrained('''albert-base-v2''' ) _lowerCamelCase : List[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _lowerCamelCase : Union[str, Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _lowerCamelCase : str = model(_lowercase , attention_mask=_lowercase )[0] _lowerCamelCase : List[str] = (1, 11, 768) self.assertEqual(output.shape , _lowercase ) _lowerCamelCase : Dict = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _lowercase , atol=1E-4 ) )
558
1
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py lowerCAmelCase_ = '''src/diffusers''' lowerCAmelCase_ = '''.''' # This is to make sure the diffusers module imported is the one in the repo. lowerCAmelCase_ = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) lowerCAmelCase_ = spec.loader.load_module() def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> Any: """simple docstring""" return line.startswith(_UpperCamelCase ) or len(_UpperCamelCase ) <= 1 or re.search(R'''^\s*\)(\s*->.*:|:)\s*$''' , _UpperCamelCase ) is not None def lowerCamelCase_ ( _UpperCamelCase ) -> Optional[Any]: """simple docstring""" snake_case_ : Optional[Any] = object_name.split('''.''' ) snake_case_ : Optional[int] = 0 # First let's find the module where our object lives. snake_case_ : str = parts[i] while i < len(_UpperCamelCase ) and not os.path.isfile(os.path.join(_UpperCamelCase , f'''{module}.py''' ) ): i += 1 if i < len(_UpperCamelCase ): snake_case_ : Optional[Any] = os.path.join(_UpperCamelCase , parts[i] ) if i >= len(_UpperCamelCase ): raise ValueError(f'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(_UpperCamelCase , f'''{module}.py''' ) , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case_ : Any = f.readlines() # Now let's find the class / func in the code! snake_case_ : Optional[int] = '''''' snake_case_ : Any = 0 for name in parts[i + 1 :]: while ( line_index < len(_UpperCamelCase ) and re.search(Rf'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_UpperCamelCase ): raise ValueError(f''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). snake_case_ : Optional[Any] = line_index while line_index < len(_UpperCamelCase ) and _should_continue(lines[line_index] , _UpperCamelCase ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 snake_case_ : Any = lines[start_index:line_index] return "".join(_UpperCamelCase ) lowerCAmelCase_ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') lowerCAmelCase_ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') lowerCAmelCase_ = re.compile(r'''<FILL\s+[^>]*>''') def lowerCamelCase_ ( _UpperCamelCase ) -> List[Any]: """simple docstring""" snake_case_ : Tuple = code.split('''\n''' ) snake_case_ : Optional[int] = 0 while idx < len(_UpperCamelCase ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_UpperCamelCase ): return re.search(R'''^(\s*)\S''' , lines[idx] ).groups()[0] return "" def lowerCamelCase_ ( _UpperCamelCase ) -> List[str]: """simple docstring""" snake_case_ : List[str] = len(get_indent(_UpperCamelCase ) ) > 0 if has_indent: snake_case_ : Optional[Any] = f'''class Bla:\n{code}''' snake_case_ : Union[str, Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=_UpperCamelCase ) snake_case_ : str = black.format_str(_UpperCamelCase , mode=_UpperCamelCase ) snake_case_ , snake_case_ : Optional[int] = style_docstrings_in_code(_UpperCamelCase ) return result[len('''class Bla:\n''' ) :] if has_indent else result def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=False ) -> Tuple: """simple docstring""" with open(_UpperCamelCase , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: snake_case_ : int = f.readlines() snake_case_ : Optional[Any] = [] snake_case_ : Any = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_UpperCamelCase ): snake_case_ : List[Any] = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. snake_case_ , snake_case_ , snake_case_ : Dict = search.groups() snake_case_ : str = find_code_in_diffusers(_UpperCamelCase ) snake_case_ : Tuple = get_indent(_UpperCamelCase ) snake_case_ : List[Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 snake_case_ : Optional[Any] = theoretical_indent snake_case_ : int = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. snake_case_ : Optional[int] = True while line_index < len(_UpperCamelCase ) and should_continue: line_index += 1 if line_index >= len(_UpperCamelCase ): break snake_case_ : Union[str, Any] = lines[line_index] snake_case_ : Union[str, Any] = _should_continue(_UpperCamelCase , _UpperCamelCase ) and re.search(f'''^{indent}# End copy''' , _UpperCamelCase ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 snake_case_ : Union[str, Any] = lines[start_index:line_index] snake_case_ : List[str] = ''''''.join(_UpperCamelCase ) # Remove any nested `Copied from` comments to avoid circular copies snake_case_ : List[str] = [line for line in theoretical_code.split('''\n''' ) if _re_copy_warning.search(_UpperCamelCase ) is None] snake_case_ : str = '''\n'''.join(_UpperCamelCase ) # Before comparing, use the `replace_pattern` on the original code. if len(_UpperCamelCase ) > 0: snake_case_ : Union[str, Any] = replace_pattern.replace('''with''' , '''''' ).split(''',''' ) snake_case_ : List[Any] = [_re_replace_pattern.search(_UpperCamelCase ) for p in patterns] for pattern in patterns: if pattern is None: continue snake_case_ , snake_case_ , snake_case_ : Optional[int] = pattern.groups() snake_case_ : Dict = re.sub(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if option.strip() == "all-casing": snake_case_ : List[Any] = re.sub(obja.lower() , obja.lower() , _UpperCamelCase ) snake_case_ : Optional[Any] = re.sub(obja.upper() , obja.upper() , _UpperCamelCase ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line snake_case_ : str = blackify(lines[start_index - 1] + theoretical_code ) snake_case_ : Any = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: snake_case_ : int = lines[:start_index] + [theoretical_code] + lines[line_index:] snake_case_ : Any = start_index + 1 if overwrite and len(_UpperCamelCase ) > 0: # Warn the user a file has been modified. print(f'''Detected changes, rewriting {filename}.''' ) with open(_UpperCamelCase , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(_UpperCamelCase ) return diffs def lowerCamelCase_ ( _UpperCamelCase = False ) -> str: """simple docstring""" snake_case_ : str = glob.glob(os.path.join(_UpperCamelCase , '''**/*.py''' ) , recursive=_UpperCamelCase ) snake_case_ : Optional[Any] = [] for filename in all_files: snake_case_ : Optional[Any] = is_copy_consistent(_UpperCamelCase , _UpperCamelCase ) diffs += [f'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(_UpperCamelCase ) > 0: snake_case_ : Optional[Any] = '''\n'''.join(_UpperCamelCase ) raise Exception( '''Found the following copy inconsistencies:\n''' + diff + '''\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') lowerCAmelCase_ = parser.parse_args() check_copies(args.fix_and_overwrite)
60
def lowerCAmelCase_ ( __UpperCAmelCase: str ) -> str: return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
253
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor _lowerCamelCase : Any = logging.get_logger(__name__) class snake_case__ ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Dict , *lowerCAmelCase_ : Optional[int] , **lowerCAmelCase_ : Dict ) -> None: warnings.warn( '''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use FlavaImageProcessor instead.''' , __a , ) super().__init__(*__a , **__a )
707
from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def _lowerCAmelCase ( __magic_name__ :str , __magic_name__ :str , __magic_name__ :Optional[str] = None ): if version.parse(hfh.__version__ ).release < version.parse('''0.11.0''' ).release: # old versions of hfh don't url-encode the file path UpperCAmelCase_ = quote(__magic_name__ ) return hfh.hf_hub_url(__magic_name__ , __magic_name__ , repo_type='''dataset''' , revision=__magic_name__ )
407
0
UpperCAmelCase : dict[tuple[int, int, int], int] = {} def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): """simple docstring""" if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on a__ : Optional[Any] =(days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one a__ : Union[str, Any] =_calculate(days - 1 , __A , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 a__ : str =_calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter a__ : List[str] =_calculate(days - 1 , __A , 0 ) a__ : List[str] =state_late + state_absent + state_ontime a__ : List[Any] =prizestrings return prizestrings def _A ( SCREAMING_SNAKE_CASE : int = 30 ): """simple docstring""" return _calculate(__A , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
563
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig __lowercase : Optional[Any] = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : int = '''albert''' def __init__( self ,SCREAMING_SNAKE_CASE_=30000 ,SCREAMING_SNAKE_CASE_=128 ,SCREAMING_SNAKE_CASE_=4096 ,SCREAMING_SNAKE_CASE_=12 ,SCREAMING_SNAKE_CASE_=1 ,SCREAMING_SNAKE_CASE_=64 ,SCREAMING_SNAKE_CASE_=16384 ,SCREAMING_SNAKE_CASE_=1 ,SCREAMING_SNAKE_CASE_="gelu_new" ,SCREAMING_SNAKE_CASE_=0 ,SCREAMING_SNAKE_CASE_=0 ,SCREAMING_SNAKE_CASE_=512 ,SCREAMING_SNAKE_CASE_=2 ,SCREAMING_SNAKE_CASE_=0.02 ,SCREAMING_SNAKE_CASE_=1E-12 ,SCREAMING_SNAKE_CASE_=0.1 ,SCREAMING_SNAKE_CASE_="absolute" ,SCREAMING_SNAKE_CASE_=0 ,SCREAMING_SNAKE_CASE_=2 ,SCREAMING_SNAKE_CASE_=3 ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ ,bos_token_id=SCREAMING_SNAKE_CASE_ ,eos_token_id=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) snake_case : List[str] = vocab_size snake_case : int = embedding_size snake_case : int = hidden_size snake_case : List[Any] = num_hidden_layers snake_case : int = num_hidden_groups snake_case : List[str] = num_attention_heads snake_case : List[str] = inner_group_num snake_case : Any = hidden_act snake_case : Any = intermediate_size snake_case : Union[str, Any] = hidden_dropout_prob snake_case : List[Any] = attention_probs_dropout_prob snake_case : Tuple = max_position_embeddings snake_case : Any = type_vocab_size snake_case : Optional[Any] = initializer_range snake_case : int = layer_norm_eps snake_case : Optional[int] = classifier_dropout_prob snake_case : str = position_embedding_type class _A ( snake_case ): '''simple docstring''' @property def snake_case_ ( self ): '''simple docstring''' if self.task == "multiple-choice": snake_case : List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: snake_case : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
36
0
'''simple docstring''' def snake_case_ ( __snake_case : Union[str, Any]) -> Optional[int]: lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 while i * i <= n: lowerCAmelCase_ = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def snake_case_ ( ) -> Any: lowerCAmelCase_ = 1 lowerCAmelCase_ = 1 while True: i += 1 t_num += i if count_divisors(__snake_case) > 500: break return t_num if __name__ == "__main__": print(solution())
717
'''simple docstring''' from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING A_ : Optional[int] =logging.get_logger(__name__) @add_end_docstrings(__a ) class __UpperCAmelCase ( __a ): def __init__( self , *_lowerCamelCase , **_lowerCamelCase ): super().__init__(*_lowerCamelCase , **_lowerCamelCase ) requires_backends(self , '''decord''' ) self.check_model_type(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None ): lowerCAmelCase_ = {} if frame_sampling_rate is not None: lowerCAmelCase_ = frame_sampling_rate if num_frames is not None: lowerCAmelCase_ = num_frames lowerCAmelCase_ = {} if top_k is not None: lowerCAmelCase_ = top_k return preprocess_params, {}, postprocess_params def __call__( self , _lowerCamelCase , **_lowerCamelCase ): return super().__call__(_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=1 ): if num_frames is None: lowerCAmelCase_ = self.model.config.num_frames if video.startswith('''http://''' ) or video.startswith('''https://''' ): lowerCAmelCase_ = BytesIO(requests.get(_lowerCamelCase ).content ) lowerCAmelCase_ = VideoReader(_lowerCamelCase ) videoreader.seek(0 ) lowerCAmelCase_ = 0 lowerCAmelCase_ = num_frames * frame_sampling_rate - 1 lowerCAmelCase_ = np.linspace(_lowerCamelCase , _lowerCamelCase , num=_lowerCamelCase , dtype=np.intaa ) lowerCAmelCase_ = videoreader.get_batch(_lowerCamelCase ).asnumpy() lowerCAmelCase_ = list(_lowerCamelCase ) lowerCAmelCase_ = self.image_processor(_lowerCamelCase , return_tensors=self.framework ) return model_inputs def UpperCAmelCase_ ( self , _lowerCamelCase ): lowerCAmelCase_ = self.model(**_lowerCamelCase ) return model_outputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=5 ): if top_k > self.model.config.num_labels: lowerCAmelCase_ = self.model.config.num_labels if self.framework == "pt": lowerCAmelCase_ = model_outputs.logits.softmax(-1 )[0] lowerCAmelCase_ ,lowerCAmelCase_ = probs.topk(_lowerCamelCase ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) lowerCAmelCase_ = scores.tolist() lowerCAmelCase_ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_lowerCamelCase , _lowerCamelCase )]
606
0
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING a = logging.get_logger(__name__) a = { 'facebook/detr-resnet-50': 'https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json', # See all DETR models at https://huggingface.co/models?filter=detr } class a_ ( snake_case ): UpperCAmelCase : Union[str, Any] = """detr""" UpperCAmelCase : Tuple = ["""past_key_values"""] UpperCAmelCase : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : Any , a_ : str=True , a_ : str=None , a_ : Dict=3 , a_ : Any=1_0_0 , a_ : Optional[Any]=6 , a_ : List[Any]=2_0_4_8 , a_ : str=8 , a_ : Any=6 , a_ : List[str]=2_0_4_8 , a_ : Any=8 , a_ : str=0.0 , a_ : int=0.0 , a_ : Optional[Any]=True , a_ : int="relu" , a_ : str=2_5_6 , a_ : int=0.1 , a_ : Any=0.0 , a_ : Tuple=0.0 , a_ : Union[str, Any]=0.0_2 , a_ : List[str]=1.0 , a_ : Union[str, Any]=False , a_ : Dict="sine" , a_ : int="resnet50" , a_ : Optional[int]=True , a_ : List[Any]=False , a_ : Any=1 , a_ : Optional[int]=5 , a_ : Tuple=2 , a_ : int=1 , a_ : Tuple=1 , a_ : List[Any]=5 , a_ : List[str]=2 , a_ : Optional[int]=0.1 , **a_ : str , ) -> Union[str, Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) snake_case: Union[str, Any] =CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(a_ , a_ ): snake_case: List[Any] =backbone_config.get('model_type' ) snake_case: Tuple =CONFIG_MAPPING[backbone_model_type] snake_case: List[str] =config_class.from_dict(a_ ) # set timm attributes to None snake_case , snake_case , snake_case: Tuple =None, None, None snake_case: Optional[Any] =use_timm_backbone snake_case: Tuple =backbone_config snake_case: Tuple =num_channels snake_case: Any =num_queries snake_case: Tuple =d_model snake_case: Tuple =encoder_ffn_dim snake_case: Dict =encoder_layers snake_case: Tuple =encoder_attention_heads snake_case: Tuple =decoder_ffn_dim snake_case: Optional[int] =decoder_layers snake_case: Optional[int] =decoder_attention_heads snake_case: str =dropout snake_case: int =attention_dropout snake_case: Dict =activation_dropout snake_case: Optional[int] =activation_function snake_case: str =init_std snake_case: Union[str, Any] =init_xavier_std snake_case: Union[str, Any] =encoder_layerdrop snake_case: Tuple =decoder_layerdrop snake_case: List[Any] =encoder_layers snake_case: List[Any] =auxiliary_loss snake_case: Optional[Any] =position_embedding_type snake_case: List[Any] =backbone snake_case: int =use_pretrained_backbone snake_case: Any =dilation # Hungarian matcher snake_case: Optional[Any] =class_cost snake_case: Tuple =bbox_cost snake_case: List[Any] =giou_cost # Loss coefficients snake_case: List[str] =mask_loss_coefficient snake_case: int =dice_loss_coefficient snake_case: Dict =bbox_loss_coefficient snake_case: Optional[int] =giou_loss_coefficient snake_case: Any =eos_coefficient super().__init__(is_encoder_decoder=a_ , **a_ ) @property def UpperCamelCase ( self : Any ) -> int: return self.encoder_attention_heads @property def UpperCamelCase ( self : List[Any] ) -> int: return self.d_model @classmethod def UpperCamelCase ( cls : Any , a_ : PretrainedConfig , **a_ : int ) -> int: return cls(backbone_config=a_ , **a_ ) def UpperCamelCase ( self : List[str] ) -> Dict[str, any]: snake_case: Any =copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: snake_case: Tuple =self.backbone_config.to_dict() snake_case: Optional[int] =self.__class__.model_type return output class a_ ( snake_case ): UpperCAmelCase : Optional[Any] = version.parse("""1.11""" ) @property def UpperCamelCase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('pixel_mask', {0: 'batch'}), ] ) @property def UpperCamelCase ( self : str ) -> float: return 1E-5 @property def UpperCamelCase ( self : Optional[int] ) -> int: return 1_2
350
'''simple docstring''' from __future__ import annotations def a_ ( __UpperCAmelCase ) -> list[int]: """simple docstring""" snake_case: Tuple =[True] * limit snake_case: Optional[int] =False snake_case: Union[str, Any] =False snake_case: List[Any] =True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): snake_case: str =i * 2 while index < limit: snake_case: List[Any] =False snake_case: List[str] =index + i snake_case: Union[str, Any] =[2] for i in range(3 , __UpperCAmelCase , 2 ): if is_prime[i]: primes.append(__UpperCAmelCase ) return primes def a_ ( __UpperCAmelCase = 1_00_00_00 ) -> int: """simple docstring""" snake_case: str =prime_sieve(__UpperCAmelCase ) snake_case: str =0 snake_case: str =0 for i in range(len(__UpperCAmelCase ) ): for j in range(i + length , len(__UpperCAmelCase ) ): snake_case: Tuple =sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: snake_case: List[str] =j - i snake_case: Optional[int] =sol return largest if __name__ == "__main__": print(F"""{solution() = }""")
350
1
"""simple docstring""" def _lowerCAmelCase ( lowerCamelCase__ : list[list] ) -> list[list]: _SCREAMING_SNAKE_CASE : Optional[Any] = current_set.copy() for row_index, row in enumerate(lowerCamelCase__ ): _SCREAMING_SNAKE_CASE : Any = row[0] for column_index, column in enumerate(lowerCamelCase__ ): if magnitude == 0: _SCREAMING_SNAKE_CASE : Optional[int] = column continue _SCREAMING_SNAKE_CASE : int = column / magnitude # Subtract to cancel term _SCREAMING_SNAKE_CASE : List[Any] = current_set[0] _SCREAMING_SNAKE_CASE : Tuple = [first_row] _SCREAMING_SNAKE_CASE : Optional[Any] = current_set[1::] for row in current_set: _SCREAMING_SNAKE_CASE : List[str] = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(lowerCamelCase__ ) continue for column_index in range(len(lowerCamelCase__ ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(lowerCamelCase__ ) # Create next recursion iteration set if len(final_set[0] ) != 3: _SCREAMING_SNAKE_CASE : Union[str, Any] = final_set[0] _SCREAMING_SNAKE_CASE : int = [] _SCREAMING_SNAKE_CASE : Any = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) _SCREAMING_SNAKE_CASE : Optional[int] = simplify(lowerCamelCase__ ) for i in range(len(lowerCamelCase__ ) ): resultant[i].insert(0, current_first_column[i] ) resultant.insert(0, lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = resultant return final_set def _lowerCAmelCase ( lowerCamelCase__ : list[list] ) -> list: if len(lowerCamelCase__ ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) _SCREAMING_SNAKE_CASE : int = len(lowerCamelCase__ ) + 1 if any(len(lowerCamelCase__ ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(lowerCamelCase__, (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(lowerCamelCase__ ) == 1: return [equations[0][-1] / equations[0][0]] _SCREAMING_SNAKE_CASE : Optional[Any] = equations.copy() if any(0 in row for row in data_set ): _SCREAMING_SNAKE_CASE : Dict = data_set.copy() _SCREAMING_SNAKE_CASE : int = [] for row_index, row in enumerate(lowerCamelCase__ ): if 0 not in row: _SCREAMING_SNAKE_CASE : str = data_set.pop(lowerCamelCase__ ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0, lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : List[str] = data_set.copy() _SCREAMING_SNAKE_CASE : Dict = simplify(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Dict = simplified[::-1] _SCREAMING_SNAKE_CASE : list = [] for row in simplified: _SCREAMING_SNAKE_CASE : Dict = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue _SCREAMING_SNAKE_CASE : str = row.copy()[: len(lowerCamelCase__ ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(lowerCamelCase__ ) == 0: solutions.append(0 ) continue _SCREAMING_SNAKE_CASE : List[Any] = temp_row[1::] _SCREAMING_SNAKE_CASE : str = temp_row[::-1] for column_index, column in enumerate(lowerCamelCase__ ): current_solution -= column * solutions[column_index] solutions.append(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = [] for item in solutions: final.append(float(round(lowerCamelCase__, 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowercase_ : Optional[int] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
704
"""simple docstring""" import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _lowerCAmelCase ( lowerCamelCase__ : Any, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : List[str], lowerCamelCase__ : Any=1_0_2_4 ) -> Optional[int]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = [], [] _SCREAMING_SNAKE_CASE : Union[str, Any] = list(zip(lowerCamelCase__, lowerCamelCase__ ) ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = sorted_examples[0] def is_too_big(lowerCamelCase__ : List[Any] ): return tok(lowerCamelCase__, return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): _SCREAMING_SNAKE_CASE : int = new_src + " " + src _SCREAMING_SNAKE_CASE : Union[str, Any] = new_tgt + " " + tgt if is_too_big(lowerCamelCase__ ) or is_too_big(lowerCamelCase__ ): # cant fit, finalize example finished_src.append(lowerCamelCase__ ) finished_tgt.append(lowerCamelCase__ ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = src, tgt else: # can fit, keep adding _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[Any] = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(lowerCamelCase__ ) finished_tgt.append(lowerCamelCase__ ) return finished_src, finished_tgt def _lowerCAmelCase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Path, lowerCamelCase__ : Dict, lowerCamelCase__ : List[str] ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = Path(lowerCamelCase__ ) save_path.mkdir(exist_ok=lowerCamelCase__ ) for split in ["train"]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' _SCREAMING_SNAKE_CASE : Any = [x.rstrip() for x in Path(lowerCamelCase__ ).open().readlines()] _SCREAMING_SNAKE_CASE : int = [x.rstrip() for x in Path(lowerCamelCase__ ).open().readlines()] _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = pack_examples(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) print(f'''packed {split} split from {len(lowerCamelCase__ )} examples -> {len(lowerCamelCase__ )}.''' ) Path(save_path / f'''{split}.source''' ).open("w" ).write("\n".join(lowerCamelCase__ ) ) Path(save_path / f'''{split}.target''' ).open("w" ).write("\n".join(lowerCamelCase__ ) ) for split in ["val", "test"]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = data_dir / f'''{split}.source''', data_dir / f'''{split}.target''' shutil.copyfile(lowerCamelCase__, save_path / f'''{split}.source''' ) shutil.copyfile(lowerCamelCase__, save_path / f'''{split}.target''' ) def _lowerCAmelCase ( ) -> int: _SCREAMING_SNAKE_CASE : Optional[Any] = argparse.ArgumentParser() parser.add_argument("--tok_name", type=lowerCamelCase__, help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len", type=lowerCamelCase__, default=1_2_8 ) parser.add_argument("--data_dir", type=lowerCamelCase__ ) parser.add_argument("--save_path", type=lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() _SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(lowerCamelCase__, Path(args.data_dir ), args.max_seq_len, args.save_path ) if __name__ == "__main__": packer_cli()
295
0
"""simple docstring""" import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def a ( __UpperCAmelCase : int ) -> Optional[Any]: __magic_name__: Dict = VideoMAEConfig() set_architecture_configs(__UpperCAmelCase , __UpperCAmelCase ) if "finetuned" not in model_name: __magic_name__: Dict = False if "finetuned" in model_name: __magic_name__: Tuple = """huggingface/label-files""" if "kinetics" in model_name: __magic_name__: Any = 4_0_0 __magic_name__: Any = """kinetics400-id2label.json""" elif "ssv2" in model_name: __magic_name__: List[str] = 1_7_4 __magic_name__: Any = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) __magic_name__: int = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type="""dataset""" ) , """r""" ) ) __magic_name__: Union[str, Any] = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} __magic_name__: int = idalabel __magic_name__: str = {v: k for k, v in idalabel.items()} return config def a ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[Any] ) -> Optional[int]: if "small" in model_name: __magic_name__: List[Any] = 3_8_4 __magic_name__: Optional[int] = 1_5_3_6 __magic_name__: Union[str, Any] = 1_2 __magic_name__: List[Any] = 1_6 __magic_name__: Tuple = 1_2 __magic_name__: Optional[Any] = 3 __magic_name__: Dict = 1_9_2 __magic_name__: Tuple = 7_6_8 elif "large" in model_name: __magic_name__: int = 1_0_2_4 __magic_name__: Optional[int] = 4_0_9_6 __magic_name__: Dict = 2_4 __magic_name__: Any = 1_6 __magic_name__: Optional[int] = 1_2 __magic_name__: str = 8 __magic_name__: Optional[Any] = 5_1_2 __magic_name__: Tuple = 2_0_4_8 elif "huge" in model_name: __magic_name__: str = 1_2_8_0 __magic_name__: Optional[int] = 5_1_2_0 __magic_name__: Any = 3_2 __magic_name__: int = 1_6 __magic_name__: Any = 1_2 __magic_name__: int = 8 __magic_name__: Any = 6_4_0 __magic_name__: Tuple = 2_5_6_0 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def a ( __UpperCAmelCase : str ) -> Optional[int]: if "encoder." in name: __magic_name__: List[Any] = name.replace("""encoder.""" , """""" ) if "cls_token" in name: __magic_name__: Any = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: __magic_name__: Tuple = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: __magic_name__: Any = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: __magic_name__: Tuple = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __magic_name__: Optional[int] = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: __magic_name__: int = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: __magic_name__: Any = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: __magic_name__: Optional[int] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: __magic_name__: str = name.replace("""attn""" , """attention.self""" ) if "attn" in name: __magic_name__: Dict = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: __magic_name__: Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: __magic_name__: str = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: __magic_name__: List[str] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: __magic_name__: Union[str, Any] = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: __magic_name__: List[Any] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: __magic_name__: Tuple = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: __magic_name__: Tuple = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: __magic_name__: List[Any] = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: __magic_name__: List[str] = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: __magic_name__: Dict = name.replace("""head""" , """classifier""" ) return name def a ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict ) -> List[Any]: for key in orig_state_dict.copy().keys(): __magic_name__: List[Any] = orig_state_dict.pop(__UpperCAmelCase ) if key.startswith("""encoder.""" ): __magic_name__: Optional[Any] = key.replace("""encoder.""" , """""" ) if "qkv" in key: __magic_name__: List[Any] = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): __magic_name__: Tuple = config.decoder_hidden_size __magic_name__: Optional[Any] = int(key_split[2] ) __magic_name__: Tuple = """decoder.decoder_layers.""" if "weight" in key: __magic_name__: List[str] = val[:dim, :] __magic_name__: Optional[Any] = val[dim : dim * 2, :] __magic_name__: Tuple = val[-dim:, :] else: __magic_name__: Tuple = config.hidden_size __magic_name__: Tuple = int(key_split[1] ) __magic_name__: Tuple = """videomae.encoder.layer.""" if "weight" in key: __magic_name__: Any = val[:dim, :] __magic_name__: List[str] = val[dim : dim * 2, :] __magic_name__: Tuple = val[-dim:, :] else: __magic_name__: Dict = val return orig_state_dict def a ( ) -> List[str]: __magic_name__: int = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) __magic_name__: Any = np.load(__UpperCAmelCase ) return list(__UpperCAmelCase ) def a ( __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : Tuple ) -> Tuple: __magic_name__: Tuple = get_videomae_config(__UpperCAmelCase ) if "finetuned" in model_name: __magic_name__: int = VideoMAEForVideoClassification(__UpperCAmelCase ) else: __magic_name__: List[Any] = VideoMAEForPreTraining(__UpperCAmelCase ) # download original checkpoint, hosted on Google Drive __magic_name__: Dict = """pytorch_model.bin""" gdown.cached_download(__UpperCAmelCase , __UpperCAmelCase , quiet=__UpperCAmelCase ) __magic_name__: str = torch.load(__UpperCAmelCase , map_location="""cpu""" ) if "model" in files: __magic_name__: Union[str, Any] = files["""model"""] else: __magic_name__: List[Any] = files["""module"""] __magic_name__: List[Any] = convert_state_dict(__UpperCAmelCase , __UpperCAmelCase ) model.load_state_dict(__UpperCAmelCase ) model.eval() # verify model on basic input __magic_name__: Any = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) __magic_name__: Any = prepare_video() __magic_name__: Optional[int] = image_processor(__UpperCAmelCase , return_tensors="""pt""" ) if "finetuned" not in model_name: __magic_name__: Dict = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) __magic_name__: List[Any] = torch.load(__UpperCAmelCase ) __magic_name__: int = model(**__UpperCAmelCase ) __magic_name__: int = outputs.logits __magic_name__: Optional[int] = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": __magic_name__: Optional[int] = torch.Size([1, 4_0_0] ) __magic_name__: int = torch.tensor([-0.92_91, -0.40_61, -0.93_07] ) elif model_name == "videomae-small-finetuned-ssv2": __magic_name__: str = torch.Size([1, 1_7_4] ) __magic_name__: str = torch.tensor([0.26_71, -0.46_89, -0.82_35] ) elif model_name == "videomae-base": __magic_name__: Any = torch.Size([1, 1_4_0_8, 1_5_3_6] ) __magic_name__: Optional[Any] = torch.tensor([[0.77_39, 0.79_68, 0.70_89], [0.67_01, 0.74_87, 0.62_09], [0.42_87, 0.51_58, 0.47_73]] ) elif model_name == "videomae-base-short": __magic_name__: List[str] = torch.Size([1, 1_4_0_8, 1_5_3_6] ) __magic_name__: int = torch.tensor([[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] ) # we verified the loss both for normalized and unnormalized targets for this one __magic_name__: Optional[int] = torch.tensor([0.51_42] ) if config.norm_pix_loss else torch.tensor([0.64_69] ) elif model_name == "videomae-large": __magic_name__: str = torch.Size([1, 1_4_0_8, 1_5_3_6] ) __magic_name__: int = torch.tensor([[0.71_49, 0.79_97, 0.69_66], [0.67_68, 0.78_69, 0.69_48], [0.51_39, 0.62_21, 0.56_05]] ) elif model_name == "videomae-large-finetuned-kinetics": __magic_name__: str = torch.Size([1, 4_0_0] ) __magic_name__: Union[str, Any] = torch.tensor([0.07_71, 0.00_11, -0.36_25] ) elif model_name == "videomae-huge-finetuned-kinetics": __magic_name__: Any = torch.Size([1, 4_0_0] ) __magic_name__: Tuple = torch.tensor([0.24_33, 0.16_32, -0.48_94] ) elif model_name == "videomae-base-short-finetuned-kinetics": __magic_name__: List[Any] = torch.Size([1, 4_0_0] ) __magic_name__: int = torch.tensor([0.65_88, 0.09_90, -0.24_93] ) elif model_name == "videomae-base-finetuned-kinetics": __magic_name__: List[str] = torch.Size([1, 4_0_0] ) __magic_name__: int = torch.tensor([0.36_69, -0.06_88, -0.24_21] ) elif model_name == "videomae-base-short-ssv2": __magic_name__: str = torch.Size([1, 1_4_0_8, 1_5_3_6] ) __magic_name__: str = torch.tensor([[0.47_12, 0.52_96, 0.57_86], [0.22_78, 0.27_29, 0.40_26], [0.03_52, 0.07_30, 0.25_06]] ) elif model_name == "videomae-base-short-finetuned-ssv2": __magic_name__: List[Any] = torch.Size([1, 1_7_4] ) __magic_name__: Optional[int] = torch.tensor([-0.05_37, -0.15_39, -0.32_66] ) elif model_name == "videomae-base-ssv2": __magic_name__: List[str] = torch.Size([1, 1_4_0_8, 1_5_3_6] ) __magic_name__: Any = torch.tensor([[0.81_31, 0.87_27, 0.85_46], [0.73_66, 0.93_77, 0.88_70], [0.59_35, 0.88_74, 0.85_64]] ) elif model_name == "videomae-base-finetuned-ssv2": __magic_name__: Optional[Any] = torch.Size([1, 1_7_4] ) __magic_name__: Any = torch.tensor([0.19_61, -0.83_37, -0.63_89] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": __magic_name__: Tuple = outputs.loss assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__UpperCAmelCase ) model.save_pretrained(__UpperCAmelCase ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(__UpperCAmelCase , organization="""nielsr""" ) if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCamelCase = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
96
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import KarrasVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase__ ( A_ ): '''simple docstring''' UpperCAmelCase_ = 42 UpperCAmelCase_ = 42 def __init__( self : Optional[int] , UpperCamelCase : UNetaDModel , UpperCamelCase : KarrasVeScheduler ): """simple docstring""" super().__init__() self.register_modules(unet=UpperCamelCase , scheduler=UpperCamelCase ) @torch.no_grad() def __call__( self : List[str] , UpperCamelCase : int = 1 , UpperCamelCase : int = 50 , UpperCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , **UpperCamelCase : Optional[int] , ): """simple docstring""" _lowercase : Union[str, Any] = self.unet.config.sample_size _lowercase : Dict = (batch_size, 3, img_size, img_size) _lowercase : int = self.unet # sample x_0 ~ N(0, sigma_0^2 * I) _lowercase : Any = randn_tensor(UpperCamelCase , generator=UpperCamelCase , device=self.device ) * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(UpperCamelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # here sigma_t == t_i from the paper _lowercase : Any = self.scheduler.schedule[t] _lowercase : Tuple = self.scheduler.schedule[t - 1] if t > 0 else 0 # 1. Select temporarily increased noise level sigma_hat # 2. Add new noise to move from sample_i to sample_hat _lowercase , _lowercase : Any = self.scheduler.add_noise_to_input(UpperCamelCase , UpperCamelCase , generator=UpperCamelCase ) # 3. Predict the noise residual given the noise magnitude `sigma_hat` # The model inputs and output are adjusted by following eq. (213) in [1]. _lowercase : Optional[int] = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample # 4. Evaluate dx/dt at sigma_hat # 5. Take Euler step from sigma to sigma_prev _lowercase : Dict = self.scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) if sigma_prev != 0: # 6. Apply 2nd order correction # The model inputs and output are adjusted by following eq. (213) in [1]. _lowercase : Optional[Any] = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample _lowercase : Any = self.scheduler.step_correct( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , step_output.prev_sample , step_output['''derivative'''] , ) _lowercase : Dict = step_output.prev_sample _lowercase : List[Any] = (sample / 2 + 0.5).clamp(0 , 1 ) _lowercase : List[Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _lowercase : List[Any] = self.numpy_to_pil(UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase )
322
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _A = {"configuration_swin": ["SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP", "SwinConfig", "SwinOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "SwinForImageClassification", "SwinForMaskedImageModeling", "SwinModel", "SwinPreTrainedModel", "SwinBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSwinForImageClassification", "TFSwinForMaskedImageModeling", "TFSwinModel", "TFSwinPreTrainedModel", ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
279
from string import ascii_lowercase, ascii_uppercase def lowerCamelCase__ ( __lowerCAmelCase : str ): """simple docstring""" if not sentence: return "" lowerCAmelCase_ = dict(zip(__lowerCAmelCase , __lowerCAmelCase ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
279
1