code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def UpperCAmelCase ( _lowercase : Optional[Any] , _lowercase : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" lowerCAmelCase_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''deit.embeddings.cls_token'''), ('''dist_token''', '''deit.embeddings.distillation_token'''), ('''patch_embed.proj.weight''', '''deit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''deit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''deit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" lowerCAmelCase_ = [(pair[0], pair[1][4:]) if pair[1].startswith('''deit''' ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ('''norm.weight''', '''deit.layernorm.weight'''), ('''norm.bias''', '''deit.layernorm.bias'''), ('''head.weight''', '''cls_classifier.weight'''), ('''head.bias''', '''cls_classifier.bias'''), ('''head_dist.weight''', '''distillation_classifier.weight'''), ('''head_dist.bias''', '''distillation_classifier.bias'''), ] ) return rename_keys def UpperCAmelCase ( _lowercase : str , _lowercase : str , _lowercase : Union[str, Any]=False ) -> Union[str, Any]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase_ = '''''' else: lowerCAmelCase_ = '''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase_ = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) lowerCAmelCase_ = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase_ = in_proj_bias[: config.hidden_size] lowerCAmelCase_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase_ = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase_ = in_proj_bias[-config.hidden_size :] def UpperCAmelCase ( _lowercase : str , _lowercase : List[Any] , _lowercase : int ) -> int: """simple docstring""" lowerCAmelCase_ = dct.pop(_lowercase ) lowerCAmelCase_ = val def UpperCAmelCase ( ) -> int: """simple docstring""" lowerCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase_ = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def UpperCAmelCase ( _lowercase : Tuple , _lowercase : Optional[int] ) -> Any: """simple docstring""" lowerCAmelCase_ = DeiTConfig() # all deit models have fine-tuned heads lowerCAmelCase_ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size lowerCAmelCase_ = 1_0_0_0 lowerCAmelCase_ = '''huggingface/label-files''' lowerCAmelCase_ = '''imagenet-1k-id2label.json''' lowerCAmelCase_ = json.load(open(hf_hub_download(_lowercase , _lowercase , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase_ = {int(_lowercase ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} lowerCAmelCase_ = int(deit_name[-6:-4] ) lowerCAmelCase_ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith('''tiny''' ): lowerCAmelCase_ = 1_9_2 lowerCAmelCase_ = 7_6_8 lowerCAmelCase_ = 1_2 lowerCAmelCase_ = 3 elif deit_name[9:].startswith('''small''' ): lowerCAmelCase_ = 3_8_4 lowerCAmelCase_ = 1_5_3_6 lowerCAmelCase_ = 1_2 lowerCAmelCase_ = 6 if deit_name[9:].startswith('''base''' ): pass elif deit_name[4:].startswith('''large''' ): lowerCAmelCase_ = 1_0_2_4 lowerCAmelCase_ = 4_0_9_6 lowerCAmelCase_ = 2_4 lowerCAmelCase_ = 1_6 # load original model from timm lowerCAmelCase_ = timm.create_model(_lowercase , pretrained=_lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase_ = timm_model.state_dict() lowerCAmelCase_ = create_rename_keys(_lowercase , _lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) read_in_q_k_v(_lowercase , _lowercase , _lowercase ) # load HuggingFace model lowerCAmelCase_ = DeiTForImageClassificationWithTeacher(_lowercase ).eval() model.load_state_dict(_lowercase ) # Check outputs on an image, prepared by DeiTImageProcessor lowerCAmelCase_ = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 lowerCAmelCase_ = DeiTImageProcessor(size=_lowercase , crop_size=config.image_size ) lowerCAmelCase_ = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCAmelCase_ = encoding['''pixel_values'''] lowerCAmelCase_ = model(_lowercase ) lowerCAmelCase_ = timm_model(_lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowercase , outputs.logits , atol=1E-3 ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) print(F"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowercase ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowercase ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) lowercase_ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
552
"""simple docstring""" from collections import Counter from timeit import timeit def UpperCAmelCase ( _lowercase : str = "" , ) -> bool: """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def UpperCAmelCase ( _lowercase : str = "" ) -> bool: """simple docstring""" if len(_lowercase ) == 0: return True lowerCAmelCase_ = input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string lowerCAmelCase_ = {} for character in lower_case_input_str: lowerCAmelCase_ = character_freq_dict.get(_lowercase , 0 ) + 1 lowerCAmelCase_ = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def UpperCAmelCase ( _lowercase : str = "" ) -> None: """simple docstring""" print('''\nFor string = ''' , _lowercase , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(_lowercase ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(_lowercase ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": lowercase_ = input( 'Enter string to determine if it can be rearranged as a palindrome or not: ' ).strip() benchmark(check_str) lowercase_ = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
552
1
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar UpperCAmelCase_ = TypeVar("""T""") class UpperCamelCase__ ( Generic[T] ): '''simple docstring''' def __init__( self, snake_case__, snake_case__ ) -> Optional[int]: """simple docstring""" lowercase_ : Any | T = None lowercase_ : int = len(a_ ) lowercase_ : list[T] = [any_type for _ in range(self.N )] + arr lowercase_ : List[str] = fnc self.build() def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" for p in range(self.N - 1, 0, -1 ): lowercase_ : Optional[int] = self.fn(self.st[p * 2], self.st[p * 2 + 1] ) def snake_case__ ( self, snake_case__, snake_case__ ) -> str: """simple docstring""" p += self.N lowercase_ : List[str] = v while p > 1: lowercase_ : Optional[int] = p // 2 lowercase_ : int = self.fn(self.st[p * 2], self.st[p * 2 + 1] ) def snake_case__ ( self, snake_case__, snake_case__ ) -> List[str]: # noqa: E741 """simple docstring""" lowercase_ : Optional[int] = l + self.N, r + self.N lowercase_ : T | None = None while l <= r: if l % 2 == 1: lowercase_ : int = self.st[l] if res is None else self.fn(a_, self.st[l] ) if r % 2 == 0: lowercase_ : str = self.st[r] if res is None else self.fn(a_, self.st[r] ) lowercase_ : Optional[int] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce UpperCAmelCase_ = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] UpperCAmelCase_ = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } UpperCAmelCase_ = SegmentTree(test_array, min) UpperCAmelCase_ = SegmentTree(test_array, max) UpperCAmelCase_ = SegmentTree(test_array, lambda a, b: a + b) def __magic_name__ ( ) -> Optional[Any]: """simple docstring""" for i in range(len(snake_case__ ) ): for j in range(snake_case__ , len(snake_case__ ) ): lowercase_ : List[Any] = reduce(snake_case__ , test_array[i : j + 1] ) lowercase_ : Dict = reduce(snake_case__ , test_array[i : j + 1] ) lowercase_ : Optional[Any] = reduce(lambda lowercase , lowercase : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(snake_case__ , snake_case__ ) assert max_range == max_segment_tree.query(snake_case__ , snake_case__ ) assert sum_range == sum_segment_tree.query(snake_case__ , snake_case__ ) test_all_segments() for index, value in test_updates.items(): UpperCAmelCase_ = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
706
import os # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_doctest_list.py UpperCAmelCase_ = """.""" if __name__ == "__main__": UpperCAmelCase_ = os.path.join(REPO_PATH, """utils/documentation_tests.txt""") UpperCAmelCase_ = [] UpperCAmelCase_ = [] with open(doctest_file_path) as fp: for line in fp: UpperCAmelCase_ = line.strip() UpperCAmelCase_ = os.path.join(REPO_PATH, line) if not (os.path.isfile(path) or os.path.isdir(path)): non_existent_paths.append(line) all_paths.append(path) if len(non_existent_paths) > 0: UpperCAmelCase_ = """\n""".join(non_existent_paths) raise ValueError(F'''`utils/documentation_tests.txt` contains non-existent paths:\n{non_existent_paths}''') if all_paths != sorted(all_paths): raise ValueError("""Files in `utils/documentation_tests.txt` are not in alphabetical order.""")
436
0
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __UpperCamelCase ( *SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" if not isinstance(__UpperCamelCase , __UpperCamelCase ): __snake_case = list(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) ): __snake_case = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" __snake_case = [ "CUDA out of memory.", # CUDA OOM "cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.", # CUDNN SNAFU "DefaultCPUAllocator: can\'t allocate memory", # CPU OOM ] if isinstance(__UpperCamelCase , __UpperCamelCase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __UpperCamelCase ( SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 1_28 ) -> List[str]: """simple docstring""" if function is None: return functools.partial(__UpperCamelCase , starting_batch_size=__UpperCamelCase ) __snake_case = starting_batch_size def decorator(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() __snake_case = list(inspect.signature(__UpperCamelCase ).parameters.keys() ) # Guard against user error if len(__UpperCamelCase ) < (len(__UpperCamelCase ) + 1): __snake_case = ", ".join([F'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( F'''Batch size was passed into `{function.__name__}` as the first argument when called.''' F'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("No executable batch size found, reached zero." ) try: return function(__UpperCamelCase , *__UpperCamelCase , **__UpperCamelCase ) except Exception as e: if should_reduce_batch_size(__UpperCamelCase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
163
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = {'''configuration_mra''': ['''MRA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MraConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''MRA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MraForMaskedLM''', '''MraForMultipleChoice''', '''MraForQuestionAnswering''', '''MraForSequenceClassification''', '''MraForTokenClassification''', '''MraLayer''', '''MraModel''', '''MraPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
9
0
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): # TODO: is there an appropriate internal test set? UpperCAmelCase : List[Any] = 'ssube/stable-diffusion-x4-upscaler-onnx' def snake_case_ ( self : Any , __snake_case : Any=0 ) -> Optional[Any]: _a : Optional[Any] = floats_tensor((1, 3, 128, 128) , rng=random.Random(__snake_case ) ) _a : Optional[int] = torch.manual_seed(__snake_case ) _a : Tuple = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def snake_case_ ( self : str ) -> Dict: _a : int = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=__snake_case ) _a : Optional[int] = self.get_dummy_inputs() _a : Union[str, Any] = pipe(**__snake_case ).images _a : Optional[Any] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) _a : Optional[Any] = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice - expected_slice ).max() < 1E-1 def snake_case_ ( self : List[Any] ) -> List[Any]: _a : Optional[int] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _a : List[str] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _a : int = self.get_dummy_inputs() _a : List[str] = pipe(**__snake_case ).images _a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a : str = np.array( [0.6_898_892, 0.59_240_556, 0.52_499_527, 0.58_866_215, 0.52_258_235, 0.52_572_715, 0.62_414_473, 0.6_174_387, 0.6_214_964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def snake_case_ ( self : Dict ) -> List[Any]: _a : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _a : Dict = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__snake_case ) _a : Dict = self.get_dummy_inputs() _a : Dict = pipe(**__snake_case ).images _a : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a : int = np.array( [0.7_659_278, 0.76_437_664, 0.75_579_107, 0.7_691_116, 0.77_666_986, 0.7_727_672, 0.7_758_664, 0.7_812_226, 0.76_942_515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def snake_case_ ( self : str ) -> Any: _a : Dict = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _a : Tuple = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__snake_case ) _a : int = self.get_dummy_inputs() _a : List[Any] = pipe(**__snake_case ).images _a : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a : Tuple = np.array( [0.6_974_782, 0.68_902_093, 0.70_135_885, 0.7_583_618, 0.7_804_545, 0.7_854_912, 0.78_667_426, 0.78_743_863, 0.78_070_223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 def snake_case_ ( self : Dict ) -> Tuple: _a : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) _a : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__snake_case ) _a : Tuple = self.get_dummy_inputs() _a : Dict = pipe(**__snake_case ).images _a : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) _a : Union[str, Any] = np.array( [0.77_424_496, 0.773_601, 0.7_645_288, 0.7_769_598, 0.7_772_739, 0.7_738_688, 0.78_187_233, 0.77_879_584, 0.767_043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): @property def snake_case_ ( self : Optional[int] ) -> List[str]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case_ ( self : int ) -> List[Any]: _a : int = ort.SessionOptions() _a : Tuple = False return options def snake_case_ ( self : Tuple ) -> str: _a : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _a : Any = init_image.resize((128, 128) ) # using the PNDM scheduler by default _a : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__snake_case ) _a : Tuple = '''A fantasy landscape, trending on artstation''' _a : Tuple = torch.manual_seed(0 ) _a : str = pipe( prompt=__snake_case , image=__snake_case , guidance_scale=7.5 , num_inference_steps=10 , generator=__snake_case , output_type='''np''' , ) _a : Tuple = output.images _a : List[str] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _a : Any = np.array([0.4_883, 0.4_947, 0.4_980, 0.4_975, 0.4_982, 0.4_980, 0.5_000, 0.5_006, 0.4_972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def snake_case_ ( self : Union[str, Any] ) -> str: _a : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) _a : List[str] = init_image.resize((128, 128) ) _a : List[Any] = LMSDiscreteScheduler.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , subfolder='''scheduler''' ) _a : Any = OnnxStableDiffusionUpscalePipeline.from_pretrained( '''ssube/stable-diffusion-x4-upscaler-onnx''' , scheduler=__snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__snake_case ) _a : Dict = '''A fantasy landscape, trending on artstation''' _a : int = torch.manual_seed(0 ) _a : Union[str, Any] = pipe( prompt=__snake_case , image=__snake_case , guidance_scale=7.5 , num_inference_steps=20 , generator=__snake_case , output_type='''np''' , ) _a : Optional[Any] = output.images _a : Dict = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) _a : Tuple = np.array( [0.50_173_753, 0.50_223_356, 0.502_039, 0.50_233_036, 0.5_023_725, 0.5_022_601, 0.5_018_758, 0.50_234_085, 0.50_241_566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
249
import requests from bsa import BeautifulSoup def lowerCamelCase_ ( UpperCamelCase_ = "AAPL" ): _a : List[str] = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" _a : Any = BeautifulSoup(requests.get(UpperCamelCase_ ).text , '''html.parser''' ) _a : Optional[int] = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
249
1
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) __magic_name__ = logging.getLogger(__name__) @dataclass(frozen=__UpperCamelCase ) class _SCREAMING_SNAKE_CASE : _A : str _A : str _A : Optional[str] = None _A : Optional[str] = None _A : Optional[str] = None @dataclass(frozen=__UpperCamelCase ) class _SCREAMING_SNAKE_CASE : _A : List[int] _A : Optional[List[int]] = None _A : Optional[List[int]] = None _A : Optional[Union[int, float]] = None _A : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): _A : List[InputFeatures] def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = None , lowerCamelCase=False , lowerCamelCase = False , ): snake_case__ = hans_processors[task]() snake_case__ = os.path.join( lowerCamelCase , "cached_{}_{}_{}_{}".format( "dev" if evaluate else "train" , tokenizer.__class__.__name__ , str(lowerCamelCase ) , lowerCamelCase , ) , ) snake_case__ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) snake_case__ , snake_case__ = label_list[2], label_list[1] snake_case__ = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case__ = cached_features_file + ".lock" with FileLock(lowerCamelCase ): if os.path.exists(lowerCamelCase ) and not overwrite_cache: logger.info(F"""Loading features from cached file {cached_features_file}""" ) snake_case__ = torch.load(lowerCamelCase ) else: logger.info(F"""Creating features from dataset file at {data_dir}""" ) snake_case__ = ( processor.get_dev_examples(lowerCamelCase ) if evaluate else processor.get_train_examples(lowerCamelCase ) ) logger.info("Training examples: %s" , len(lowerCamelCase ) ) snake_case__ = hans_convert_examples_to_features(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) logger.info("Saving features into cached file %s" , lowerCamelCase ) torch.save(self.features , lowerCamelCase ) def __len__( self ): return len(self.features ) def __getitem__( self , lowerCamelCase ): return self.features[i] def A_ ( self ): return self.label_list if is_tf_available(): import tensorflow as tf class _SCREAMING_SNAKE_CASE : _A : List[InputFeatures] def __init__( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = 1_28 , lowerCamelCase=False , lowerCamelCase = False , ): snake_case__ = hans_processors[task]() snake_case__ = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) snake_case__ , snake_case__ = label_list[2], label_list[1] snake_case__ = label_list snake_case__ = processor.get_dev_examples(lowerCamelCase ) if evaluate else processor.get_train_examples(lowerCamelCase ) snake_case__ = hans_convert_examples_to_features(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="convert examples to features" ): if ex_index % 1_00_00 == 0: logger.info("Writing example %d of %d" % (ex_index, len(lowerCamelCase )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) snake_case__ = tf.data.Dataset.from_generator( lowerCamelCase , ( { "example_id": tf.intaa, "input_ids": tf.intaa, "attention_mask": tf.intaa, "token_type_ids": tf.intaa, }, tf.intaa, ) , ( { "example_id": tf.TensorShape([] ), "input_ids": tf.TensorShape([None, None] ), "attention_mask": tf.TensorShape([None, None] ), "token_type_ids": tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) , ) def A_ ( self ): return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self , lowerCamelCase ): return self.features[i] def A_ ( self ): return self.label_list class _SCREAMING_SNAKE_CASE ( __UpperCamelCase ): def A_ ( self , lowerCamelCase ): return self._create_examples(self._read_tsv(os.path.join(lowerCamelCase , "heuristics_train_set.txt" ) ) , "train" ) def A_ ( self , lowerCamelCase ): return self._create_examples(self._read_tsv(os.path.join(lowerCamelCase , "heuristics_evaluation_set.txt" ) ) , "dev" ) def A_ ( self ): return ["contradiction", "entailment", "neutral"] def A_ ( self , lowerCamelCase , lowerCamelCase ): snake_case__ = [] for i, line in enumerate(lowerCamelCase ): if i == 0: continue snake_case__ = "%s-%s" % (set_type, line[0]) snake_case__ = line[5] snake_case__ = line[6] snake_case__ = line[7][2:] if line[7].startswith("ex" ) else line[7] snake_case__ = line[0] examples.append(InputExample(guid=lowerCamelCase , text_a=lowerCamelCase , text_b=lowerCamelCase , label=lowerCamelCase , pairID=lowerCamelCase ) ) return examples def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): snake_case__ = {label: i for i, label in enumerate(__lowerCAmelCase )} snake_case__ = [] for ex_index, example in tqdm.tqdm(enumerate(__lowerCAmelCase ) , desc="convert examples to features" ): if ex_index % 10_000 == 0: logger.info("Writing example %d" % (ex_index) ) snake_case__ = tokenizer( example.text_a , example.text_b , add_special_tokens=__lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length" , truncation=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , ) snake_case__ = label_map[example.label] if example.label in label_map else 0 snake_case__ = int(example.pairID ) features.append(InputFeatures(**__lowerCAmelCase , label=__lowerCAmelCase , pairID=__lowerCAmelCase ) ) for i, example in enumerate(examples[:5] ): logger.info("*** Example ***" ) logger.info(F"""guid: {example}""" ) logger.info(F"""features: {features[i]}""" ) return features __magic_name__ = { '''hans''': 3, } __magic_name__ = { '''hans''': HansProcessor, }
276
import shutil import tempfile import unittest import numpy as np import pytest from transformers import is_speech_available, is_vision_available from transformers.testing_utils import require_torch if is_vision_available(): from transformers import TvltImageProcessor if is_speech_available(): from transformers import TvltFeatureExtractor from transformers import TvltProcessor @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def A_ ( self ): snake_case__ = "ZinengTang/tvlt-base" snake_case__ = tempfile.mkdtemp() def A_ ( self , **lowerCamelCase ): return TvltImageProcessor.from_pretrained(self.checkpoint , **lowerCamelCase ) def A_ ( self , **lowerCamelCase ): return TvltFeatureExtractor.from_pretrained(self.checkpoint , **lowerCamelCase ) def A_ ( self ): shutil.rmtree(self.tmpdirname ) def A_ ( self ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=lowerCamelCase , feature_extractor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) snake_case__ = TvltProcessor.from_pretrained(self.tmpdirname ) self.assertIsInstance(processor.feature_extractor , lowerCamelCase ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def A_ ( self ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=lowerCamelCase , feature_extractor=lowerCamelCase ) snake_case__ = np.ones([1_20_00] ) snake_case__ = feature_extractor(lowerCamelCase , return_tensors="np" ) snake_case__ = processor(audio=lowerCamelCase , return_tensors="np" ) for key in audio_dict.keys(): self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A_ ( self ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=lowerCamelCase , feature_extractor=lowerCamelCase ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = image_processor(lowerCamelCase , return_tensors="np" ) snake_case__ = processor(images=lowerCamelCase , return_tensors="np" ) for key in image_dict.keys(): self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A_ ( self ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=lowerCamelCase , feature_extractor=lowerCamelCase ) snake_case__ = np.ones([1_20_00] ) snake_case__ = np.ones([3, 2_24, 2_24] ) snake_case__ = processor(audio=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["audio_values", "audio_mask", "pixel_values", "pixel_mask"] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def A_ ( self ): snake_case__ = self.get_image_processor() snake_case__ = self.get_feature_extractor() snake_case__ = TvltProcessor(image_processor=lowerCamelCase , feature_extractor=lowerCamelCase ) self.assertListEqual( processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg="`processor` and `image_processor`+`feature_extractor` model input names do not match" , )
276
1
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class a__ ( __snake_case , unittest.TestCase ): A__ : Optional[int] = ProphetNetTokenizer A__ : List[str] = False def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: super().setUp() __a = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> Optional[int]: __a = 'UNwant\u00E9d,running' __a = 'unwanted, running' return input_text, output_text def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: __a = self.tokenizer_class(self.vocab_file ) __a = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(UpperCAmelCase , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: __a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def __SCREAMING_SNAKE_CASE ( self ) -> int: __a = BasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = BasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = BasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __SCREAMING_SNAKE_CASE ( self ) -> int: __a = BasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = BasicTokenizer(do_lower_case=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: __a = BasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: __a = BasicTokenizer(do_lower_case=UpperCAmelCase , strip_accents=UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = BasicTokenizer(do_lower_case=UpperCAmelCase , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def __SCREAMING_SNAKE_CASE ( self ) -> int: __a = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] __a = {} for i, token in enumerate(UpperCAmelCase ): __a = i __a = WordpieceTokenizer(vocab=UpperCAmelCase , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: __a = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __a = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __a = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] __a = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors='pt' ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) __a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def __SCREAMING_SNAKE_CASE ( self ) -> int: self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Dict: __a = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) __a = tokenizer.encode('sequence builders' , add_special_tokens=UpperCAmelCase ) __a = tokenizer.encode('multi-sequence build' , add_special_tokens=UpperCAmelCase ) __a = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase ) __a = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase , UpperCAmelCase ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
706
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCamelCase_ : Dict = logging.get_logger(__name__) lowerCamelCase_ : Optional[int] = {name: getattr(transformers, name + """Fast""") for name in SLOW_TO_FAST_CONVERTERS} def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f'''Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.''' ) if tokenizer_name is None: __a = TOKENIZER_CLASSES else: __a = {tokenizer_name: getattr(__lowerCamelCase , tokenizer_name + 'Fast' )} logger.info(f'''Loading tokenizer classes: {tokenizer_names}''' ) for tokenizer_name in tokenizer_names: __a = TOKENIZER_CLASSES[tokenizer_name] __a = True if checkpoint_name is None: __a = list(tokenizer_class.max_model_input_sizes.keys() ) else: __a = [checkpoint_name] logger.info(f'''For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}''' ) for checkpoint in checkpoint_names: logger.info(f'''Loading {tokenizer_class.__class__.__name__} {checkpoint}''' ) # Load tokenizer __a = tokenizer_class.from_pretrained(__lowerCamelCase , force_download=__lowerCamelCase ) # Save fast tokenizer logger.info(f'''Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}''' ) # For organization names we create sub-directories if "/" in checkpoint: __a , __a = checkpoint.split('/' ) __a = os.path.join(__lowerCamelCase , __lowerCamelCase ) elif add_prefix: __a = checkpoint __a = dump_path else: __a = None __a = dump_path logger.info(f'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: __a = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] __a = file_path.split(__lowerCamelCase )[-1][0] if next_char == "/": __a = os.path.join(__lowerCamelCase , __lowerCamelCase ) __a = None logger.info(f'''=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}''' ) __a = tokenizer.save_pretrained( __lowerCamelCase , legacy_format=__lowerCamelCase , filename_prefix=__lowerCamelCase ) logger.info(f'''=> File names {file_names}''' ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(__lowerCamelCase ) logger.info(f'''=> removing {file_name}''' ) if __name__ == "__main__": lowerCamelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--dump_path""", default=None, type=str, required=True, help="""Path to output generated fast tokenizer files.""" ) parser.add_argument( """--tokenizer_name""", default=None, type=str, help=( F'''Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ''' """download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--checkpoint_name""", default=None, type=str, help="""Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.""", ) parser.add_argument( """--force_download""", action="""store_true""", help="""Re-download checkpoints.""", ) lowerCamelCase_ : List[str] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
246
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = torch.device('''cpu''') def snake_case ( ): UpperCAmelCase_ : str = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : str = Image.open(requests.get(A__ ,stream=A__ ).raw ) return im def snake_case ( A__ ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : Tuple = dct.pop(A__ ) UpperCAmelCase_ : Optional[Any] = val def snake_case ( A__ ): UpperCAmelCase_ : List[str] = [] for k in state_dict.keys(): UpperCAmelCase_ : Union[str, Any] = k if ".pwconv" in k: UpperCAmelCase_ : Dict = k_new.replace(".pwconv" ,".point_wise_conv" ) if ".dwconv" in k: UpperCAmelCase_ : Any = k_new.replace(".dwconv" ,".depth_wise_conv" ) if ".Proj." in k: UpperCAmelCase_ : Dict = k_new.replace(".Proj." ,".proj." ) if "patch_embed" in k_new: UpperCAmelCase_ : Tuple = k_new.replace("patch_embed" ,"swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: UpperCAmelCase_ : List[Any] = k_new.split("." ) if ls[2].isdigit(): UpperCAmelCase_ : Tuple = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: UpperCAmelCase_ : Optional[Any] = k_new.replace("network" ,"swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : Optional[int] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ : Optional[Any] = 10_00 UpperCAmelCase_ : str = "huggingface/label-files" UpperCAmelCase_ : str = "imagenet-1k-id2label.json" UpperCAmelCase_ : List[str] = json.load(open(hf_hub_download(A__ ,A__ ,repo_type="dataset" ) ,"r" ) ) UpperCAmelCase_ : Tuple = {int(A__ ): v for k, v in idalabel.items()} UpperCAmelCase_ : List[Any] = idalabel UpperCAmelCase_ : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCAmelCase_ : Tuple = [3, 3, 6, 4] UpperCAmelCase_ : str = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": UpperCAmelCase_ : Optional[Any] = [3, 3, 9, 6] UpperCAmelCase_ : Optional[Any] = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": UpperCAmelCase_ : int = [4, 3, 10, 5] UpperCAmelCase_ : Union[str, Any] = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": UpperCAmelCase_ : Dict = [4, 4, 12, 6] UpperCAmelCase_ : Optional[int] = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): UpperCAmelCase_ : List[Any] = torch.hub.load_state_dict_from_url(A__ ,map_location="cpu" ,check_hash=A__ ) else: UpperCAmelCase_ : Any = torch.load(A__ ,map_location="cpu" ) UpperCAmelCase_ : List[str] = checkpoint UpperCAmelCase_ : Dict = create_rename_keys(A__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(A__ ,A__ ,A__ ) # load HuggingFace model UpperCAmelCase_ : Optional[int] = SwiftFormerForImageClassification(A__ ).eval() hf_model.load_state_dict(A__ ) # prepare test inputs UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : int = ViTImageProcessor.from_pretrained("preprocessor_config" ) UpperCAmelCase_ : int = processor(images=A__ ,return_tensors="pt" ) # compare outputs from both models UpperCAmelCase_ : List[Any] = get_expected_output(A__ ) UpperCAmelCase_ : int = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] ,A__ ,atol=1e-3 ) Path(A__ ).mkdir(exist_ok=A__ ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(A__ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') lowerCamelCase_ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
95
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _lowercase = '''src/diffusers''' _lowercase = '''.''' # This is to make sure the diffusers module imported is the one in the repo. _lowercase = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) _lowercase = spec.loader.load_module() def UpperCamelCase ( snake_case__ , snake_case__): return line.startswith(snake_case__) or len(snake_case__) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$" , snake_case__) is not None def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Tuple = object_name.split(".") lowerCAmelCase_ : Union[str, Any] = 0 # First let's find the module where our object lives. lowerCAmelCase_ : Union[str, Any] = parts[i] while i < len(snake_case__) and not os.path.isfile(os.path.join(snake_case__ , F'''{module}.py''')): i += 1 if i < len(snake_case__): lowerCAmelCase_ : Dict = os.path.join(snake_case__ , parts[i]) if i >= len(snake_case__): raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''') with open(os.path.join(snake_case__ , F'''{module}.py''') , "r" , encoding="utf-8" , newline="\n") as f: lowerCAmelCase_ : Optional[Any] = f.readlines() # Now let's find the class / func in the code! lowerCAmelCase_ : Union[str, Any] = "" lowerCAmelCase_ : int = 0 for name in parts[i + 1 :]: while ( line_index < len(snake_case__) and re.search(RF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index]) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(snake_case__): raise ValueError(F''' {object_name} does not match any function or class in {module}.''') # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowerCAmelCase_ : Union[str, Any] = line_index while line_index < len(snake_case__) and _should_continue(lines[line_index] , snake_case__): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 lowerCAmelCase_ : List[str] = lines[start_index:line_index] return "".join(snake_case__) _lowercase = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') _lowercase = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') _lowercase = re.compile(r'''<FILL\s+[^>]*>''') def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Any = code.split("\n") lowerCAmelCase_ : Any = 0 while idx < len(snake_case__) and len(lines[idx]) == 0: idx += 1 if idx < len(snake_case__): return re.search(R"^(\s*)\S" , lines[idx]).groups()[0] return "" def UpperCamelCase ( snake_case__): lowerCAmelCase_ : Dict = len(get_indent(snake_case__)) > 0 if has_indent: lowerCAmelCase_ : Dict = F'''class Bla:\n{code}''' lowerCAmelCase_ : Optional[int] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=snake_case__) lowerCAmelCase_ : Optional[Any] = black.format_str(snake_case__ , mode=snake_case__) lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = style_docstrings_in_code(snake_case__) return result[len("class Bla:\n") :] if has_indent else result def UpperCamelCase ( snake_case__ , snake_case__=False): with open(snake_case__ , "r" , encoding="utf-8" , newline="\n") as f: lowerCAmelCase_ : Tuple = f.readlines() lowerCAmelCase_ : Tuple = [] lowerCAmelCase_ : Union[str, Any] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(snake_case__): lowerCAmelCase_ : Optional[int] = _re_copy_warning.search(lines[line_index]) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = search.groups() lowerCAmelCase_ : int = find_code_in_diffusers(snake_case__) lowerCAmelCase_ : Dict = get_indent(snake_case__) lowerCAmelCase_ : Union[str, Any] = line_index + 1 if indent == theoretical_indent else line_index + 2 lowerCAmelCase_ : str = theoretical_indent lowerCAmelCase_ : Union[str, Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowerCAmelCase_ : Optional[int] = True while line_index < len(snake_case__) and should_continue: line_index += 1 if line_index >= len(snake_case__): break lowerCAmelCase_ : Dict = lines[line_index] lowerCAmelCase_ : List[str] = _should_continue(snake_case__ , snake_case__) and re.search(F'''^{indent}# End copy''' , snake_case__) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1]) <= 1: line_index -= 1 lowerCAmelCase_ : Dict = lines[start_index:line_index] lowerCAmelCase_ : Optional[int] = "".join(snake_case__) # Remove any nested `Copied from` comments to avoid circular copies lowerCAmelCase_ : List[Any] = [line for line in theoretical_code.split("\n") if _re_copy_warning.search(snake_case__) is None] lowerCAmelCase_ : Optional[Any] = "\n".join(snake_case__) # Before comparing, use the `replace_pattern` on the original code. if len(snake_case__) > 0: lowerCAmelCase_ : List[str] = replace_pattern.replace("with" , "").split(",") lowerCAmelCase_ : Tuple = [_re_replace_pattern.search(snake_case__) for p in patterns] for pattern in patterns: if pattern is None: continue lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = pattern.groups() lowerCAmelCase_ : int = re.sub(snake_case__ , snake_case__ , snake_case__) if option.strip() == "all-casing": lowerCAmelCase_ : List[str] = re.sub(obja.lower() , obja.lower() , snake_case__) lowerCAmelCase_ : int = re.sub(obja.upper() , obja.upper() , snake_case__) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowerCAmelCase_ : List[Any] = blackify(lines[start_index - 1] + theoretical_code) lowerCAmelCase_ : Union[str, Any] = theoretical_code[len(lines[start_index - 1]) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index]) if overwrite: lowerCAmelCase_ : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:] lowerCAmelCase_ : Union[str, Any] = start_index + 1 if overwrite and len(snake_case__) > 0: # Warn the user a file has been modified. print(F'''Detected changes, rewriting {filename}.''') with open(snake_case__ , "w" , encoding="utf-8" , newline="\n") as f: f.writelines(snake_case__) return diffs def UpperCamelCase ( snake_case__ = False): lowerCAmelCase_ : Tuple = glob.glob(os.path.join(snake_case__ , "**/*.py") , recursive=snake_case__) lowerCAmelCase_ : int = [] for filename in all_files: lowerCAmelCase_ : Union[str, Any] = is_copy_consistent(snake_case__ , snake_case__) diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(snake_case__) > 0: lowerCAmelCase_ : Optional[Any] = "\n".join(snake_case__) raise Exception( "Found the following copy inconsistencies:\n" + diff + "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.") if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _lowercase = parser.parse_args() check_copies(args.fix_and_overwrite)
659
0
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa snake_case__ : Dict = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = "summarization" _a = ["loss"] _a = ROUGE_KEYS _a = "rouge2" def __init__( self : Any , __a : Dict , **__a : Dict ) ->str: if hparams.sortish_sampler and hparams.gpus > 1: lowerCamelCase_ : str = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(__a , num_labels=__a , mode=self.mode , **__a ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) lowerCamelCase_ : List[str] = Path(self.output_dir ) / """metrics.json""" lowerCamelCase_ : Optional[int] = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) lowerCamelCase_ : Optional[Any] = 0 lowerCamelCase_ : Optional[int] = defaultdict(__a ) lowerCamelCase_ : Any = self.config.model_type lowerCamelCase_ : Dict = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size lowerCamelCase_ : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } lowerCamelCase_ : Optional[Any] = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } lowerCamelCase_ : str = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} lowerCamelCase_ : Tuple = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) lowerCamelCase_ : Any = get_git_info()["""repo_sha"""] lowerCamelCase_ : Tuple = hparams.num_workers lowerCamelCase_ : int = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , __a ): lowerCamelCase_ : List[Any] = self.tokenizer.lang_code_to_id[hparams.tgt_lang] lowerCamelCase_ : Dict = self.decoder_start_token_id lowerCamelCase_ : Tuple = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) lowerCamelCase_ : str = False lowerCamelCase_ : int = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: lowerCamelCase_ : Optional[Any] = self.hparams.eval_max_gen_length else: lowerCamelCase_ : Dict = self.model.config.max_length lowerCamelCase_ : str = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def _lowerCAmelCase ( self : List[Any] , __a : Dict[str, torch.Tensor] ) ->Dict[str, List[str]]: lowerCamelCase_ : Optional[int] = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(__a , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) lowerCamelCase_ : List[Any] = True return readable_batch def _lowerCAmelCase ( self : Optional[int] , __a : Any , **__a : str ) ->List[str]: return self.model(__a , **__a ) def _lowerCAmelCase ( self : Optional[Any] , __a : List[int] ) ->Dict: lowerCamelCase_ : Tuple = self.tokenizer.batch_decode( __a , skip_special_tokens=__a , clean_up_tokenization_spaces=__a ) return lmap(str.strip , __a ) def _lowerCAmelCase ( self : Dict , __a : dict ) ->Tuple: lowerCamelCase_ : Optional[Any] = self.tokenizer.pad_token_id lowerCamelCase_ : List[Any] = batch["""input_ids"""], batch["""attention_mask"""] lowerCamelCase_ : Any = batch["""labels"""] if isinstance(self.model , __a ): lowerCamelCase_ : int = self.model._shift_right(__a ) else: lowerCamelCase_ : Optional[int] = shift_tokens_right(__a , __a ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero lowerCamelCase_ : Dict = decoder_input_ids self.save_readable_batch(__a ) lowerCamelCase_ : Optional[int] = self(__a , attention_mask=__a , decoder_input_ids=__a , use_cache=__a ) lowerCamelCase_ : str = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id lowerCamelCase_ : Optional[int] = nn.CrossEntropyLoss(ignore_index=__a ) assert lm_logits.shape[-1] == self.vocab_size lowerCamelCase_ : Dict = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: lowerCamelCase_ : Tuple = nn.functional.log_softmax(__a , dim=-1 ) lowerCamelCase_ : Any = label_smoothed_nll_loss( __a , __a , self.hparams.label_smoothing , ignore_index=__a ) return (loss,) @property def _lowerCAmelCase ( self : List[Any] ) ->int: return self.tokenizer.pad_token_id def _lowerCAmelCase ( self : Dict , __a : List[str] , __a : Optional[Any] ) ->Dict: lowerCamelCase_ : int = self._step(__a ) lowerCamelCase_ : str = dict(zip(self.loss_names , __a ) ) # tokens per batch lowerCamelCase_ : Optional[Any] = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() lowerCamelCase_ : List[str] = batch["""input_ids"""].shape[0] lowerCamelCase_ : Dict = batch["""input_ids"""].eq(self.pad ).sum() lowerCamelCase_ : Union[str, Any] = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def _lowerCAmelCase ( self : Union[str, Any] , __a : Tuple , __a : Tuple ) ->Dict: return self._generative_step(__a ) def _lowerCAmelCase ( self : Dict , __a : int , __a : List[Any]="val" ) ->Dict: self.step_count += 1 lowerCamelCase_ : Dict = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} lowerCamelCase_ : Dict = losses["""loss"""] lowerCamelCase_ : List[str] = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } lowerCamelCase_ : Optional[int] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) lowerCamelCase_ : torch.FloatTensor = torch.tensor(__a ).type_as(__a ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(__a ) lowerCamelCase_ : Tuple = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} lowerCamelCase_ : Tuple = self.step_count self.metrics[prefix].append(__a ) # callback writes this to self.metrics_save_path lowerCamelCase_ : Optional[Any] = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def _lowerCAmelCase ( self : str , __a : Any , __a : Dict ) ->Dict: return calculate_rouge(__a , __a ) def _lowerCAmelCase ( self : str , __a : dict ) ->dict: lowerCamelCase_ : Union[str, Any] = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') lowerCamelCase_ : Union[str, Any] = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=__a , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) lowerCamelCase_ : Tuple = (time.time() - ta) / batch["""input_ids"""].shape[0] lowerCamelCase_ : List[str] = self.ids_to_clean_text(__a ) lowerCamelCase_ : List[str] = self.ids_to_clean_text(batch["""labels"""] ) lowerCamelCase_ : List[str] = self._step(__a ) lowerCamelCase_ : Dict = dict(zip(self.loss_names , __a ) ) lowerCamelCase_ : Dict = self.calc_generative_metrics(__a , __a ) lowerCamelCase_ : List[Any] = np.mean(lmap(__a , __a ) ) base_metrics.update(gen_time=__a , gen_len=__a , preds=__a , target=__a , **__a ) return base_metrics def _lowerCAmelCase ( self : Optional[int] , __a : List[Any] , __a : Optional[Any] ) ->List[Any]: return self._generative_step(__a ) def _lowerCAmelCase ( self : List[Any] , __a : List[Any] ) ->List[Any]: return self.validation_epoch_end(__a , prefix="""test""" ) def _lowerCAmelCase ( self : Optional[int] , __a : int ) ->SeqaSeqDataset: lowerCamelCase_ : List[str] = self.n_obs[type_path] lowerCamelCase_ : Tuple = self.target_lens[type_path] lowerCamelCase_ : Tuple = self.dataset_class( self.tokenizer , type_path=__a , n_obs=__a , max_target_length=__a , **self.dataset_kwargs , ) return dataset def _lowerCAmelCase ( self : Any , __a : str , __a : int , __a : bool = False ) ->DataLoader: lowerCamelCase_ : List[Any] = self.get_dataset(__a ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": lowerCamelCase_ : str = dataset.make_sortish_sampler(__a , distributed=self.hparams.gpus > 1 ) return DataLoader( __a , batch_size=__a , collate_fn=dataset.collate_fn , shuffle=__a , num_workers=self.num_workers , sampler=__a , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": lowerCamelCase_ : Optional[int] = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( __a , batch_sampler=__a , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( __a , batch_size=__a , collate_fn=dataset.collate_fn , shuffle=__a , num_workers=self.num_workers , sampler=__a , ) def _lowerCAmelCase ( self : Optional[Any] ) ->DataLoader: lowerCamelCase_ : Optional[int] = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=__a ) return dataloader def _lowerCAmelCase ( self : Union[str, Any] ) ->DataLoader: return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def _lowerCAmelCase ( self : int ) ->DataLoader: return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def _lowerCAmelCase ( __a : Dict , __a : List[Any] ) ->Any: BaseTransformer.add_model_specific_args(__a , __a ) add_generic_args(__a , __a ) parser.add_argument( """--max_source_length""" , default=1_024 , type=__a , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=56 , type=__a , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=142 , type=__a , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=142 , type=__a , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=__a ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=__a ) parser.add_argument("""--max_tokens_per_batch""" , type=__a , default=__a ) parser.add_argument("""--logger_name""" , type=__a , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=__a , default=-1 , required=__a , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=__a , default=500 , required=__a , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=__a , default=-1 , required=__a , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=__a , default="""summarization""" , required=__a , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=__a , default=0.0 , required=__a ) parser.add_argument("""--src_lang""" , type=__a , default="""""" , required=__a ) parser.add_argument("""--tgt_lang""" , type=__a , default="""""" , required=__a ) parser.add_argument("""--eval_beams""" , type=__a , default=__a , required=__a ) parser.add_argument( """--val_metric""" , type=__a , default=__a , required=__a , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=__a , default=__a , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=__a , default=1 , required=__a , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=__a , default=-1 , required=__a , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class SCREAMING_SNAKE_CASE_ (a__ ): '''simple docstring''' _a = "translation" _a = ["loss"] _a = ["bleu"] _a = "bleu" def __init__( self : str , __a : str , **__a : int ) ->Optional[int]: super().__init__(__a , **__a ) lowerCamelCase_ : Dict = hparams.src_lang lowerCamelCase_ : Any = hparams.tgt_lang def _lowerCAmelCase ( self : Tuple , __a : int , __a : Optional[Any] ) ->dict: return calculate_bleu(__a , __a ) def __lowerCamelCase ( A__ : str , A__ : int=None ) -> SummarizationModule: Path(args.output_dir ).mkdir(exist_ok=A__ ) check_output_dir(A__ , expected_items=3 ) if model is None: if "summarization" in args.task: lowerCamelCase_ : SummarizationModule = SummarizationModule(A__ ) else: lowerCamelCase_ : SummarizationModule = TranslationModule(A__ ) lowerCamelCase_ : List[str] = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): lowerCamelCase_ : Tuple = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger lowerCamelCase_ : List[str] = os.environ.get("""WANDB_PROJECT""" , A__ ) lowerCamelCase_ : List[Any] = WandbLogger(name=model.output_dir.name , project=A__ ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger lowerCamelCase_ : Union[str, Any] = WandbLogger(name=model.output_dir.name , project=f'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: lowerCamelCase_ : List[str] = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: lowerCamelCase_ : Optional[Any] = False lowerCamelCase_ : str = args.val_metric == """loss""" lowerCamelCase_ : pl.Trainer = generic_train( A__ , A__ , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , A__ ) , early_stopping_callback=A__ , logger=A__ , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model lowerCamelCase_ : Optional[int] = """""" lowerCamelCase_ : str = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=A__ ) ) if checkpoints: lowerCamelCase_ : Optional[int] = checkpoints[-1] lowerCamelCase_ : Dict = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": snake_case__ : List[Any] = argparse.ArgumentParser() snake_case__ : Any = pl.Trainer.add_argparse_args(parser) snake_case__ : Any = SummarizationModule.add_model_specific_args(parser, os.getcwd()) snake_case__ : str = parser.parse_args() main(args)
706
import fire from utils import calculate_rouge, save_json def __lowerCamelCase ( A__ : Union[str, Any] , A__ : Optional[int] , A__ : Dict=None , **A__ : Dict ) -> str: lowerCamelCase_ : Union[str, Any] = [x.strip() for x in open(A__ ).readlines()] lowerCamelCase_ : Union[str, Any] = [x.strip() for x in open(A__ ).readlines()][: len(A__ )] lowerCamelCase_ : int = calculate_rouge(A__ , A__ , **A__ ) if save_path is not None: save_json(A__ , A__ , indent=A__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
171
0
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _UpperCAmelCase = logging.get_logger(__name__) # General docstring _UpperCAmelCase = """RegNetConfig""" # Base docstring _UpperCAmelCase = """facebook/regnet-y-040""" _UpperCAmelCase = [1, 1088, 7, 7] # Image classification docstring _UpperCAmelCase = """facebook/regnet-y-040""" _UpperCAmelCase = """tabby, tabby cat""" _UpperCAmelCase = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase = 3 , lowercase = 1 , lowercase = 1 , lowercase = "relu" , **lowercase , ): """simple docstring""" super().__init__(**lowercase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb A_ : List[str] = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) A_ : Tuple = tf.keras.layers.ConvaD( filters=lowercase , kernel_size=lowercase , strides=lowercase , padding='VALID' , groups=lowercase , use_bias=lowercase , name='convolution' , ) A_ : Dict = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) A_ : Optional[int] = ACTaFN[activation] if activation is not None else tf.identity def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : int = self.convolution(self.padding(lowercase ) ) A_ : Optional[Any] = self.normalization(lowercase ) A_ : Union[str, Any] = self.activation(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Dict = config.num_channels A_ : Dict = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='embedder' , ) def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Union[str, Any] = shape_list(lowercase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) A_ : Optional[Any] = tf.transpose(lowercase , perm=(0, 2, 3, 1) ) A_ : Dict = self.embedder(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase = 2 , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Optional[int] = tf.keras.layers.ConvaD( filters=lowercase , kernel_size=1 , strides=lowercase , use_bias=lowercase , name='convolution' ) A_ : Tuple = tf.keras.layers.BatchNormalization(epsilon=1E-5 , momentum=0.9 , name='normalization' ) def lowerCAmelCase_ ( self , lowercase , lowercase = False ): """simple docstring""" return self.normalization(self.convolution(lowercase ) , training=lowercase ) class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : List[Any] = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='pooler' ) A_ : Any = [ tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='relu' , name='attention.0' ), tf.keras.layers.ConvaD(filters=lowercase , kernel_size=1 , activation='sigmoid' , name='attention.2' ), ] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : str = self.pooler(lowercase ) for layer_module in self.attention: A_ : List[str] = layer_module(lowercase ) A_ : str = hidden_state * pooled return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Union[str, Any] = in_channels != out_channels or stride != 1 A_ : Optional[Any] = max(1 , out_channels // config.groups_width ) A_ : List[Any] = ( TFRegNetShortCut(lowercase , stride=lowercase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. A_ : Optional[Any] = [ TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='layer.1' ), TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='layer.2' ), ] A_ : int = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Optional[Any] = hidden_state for layer_module in self.layers: A_ : Union[str, Any] = layer_module(lowercase ) A_ : int = self.shortcut(lowercase ) hidden_state += residual A_ : Optional[int] = self.activation(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 1 , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Any = in_channels != out_channels or stride != 1 A_ : Union[str, Any] = max(1 , out_channels // config.groups_width ) A_ : str = ( TFRegNetShortCut(lowercase , stride=lowercase , name='shortcut' ) if should_apply_shortcut else tf.keras.layers.Activation('linear' , name='shortcut' ) ) A_ : Optional[int] = [ TFRegNetConvLayer(lowercase , kernel_size=1 , activation=config.hidden_act , name='layer.0' ), TFRegNetConvLayer( lowercase , stride=lowercase , groups=lowercase , activation=config.hidden_act , name='layer.1' ), TFRegNetSELayer(lowercase , reduced_channels=int(round(in_channels / 4 ) ) , name='layer.2' ), TFRegNetConvLayer(lowercase , kernel_size=1 , activation=lowercase , name='layer.3' ), ] A_ : str = ACTaFN[config.hidden_act] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" A_ : Any = hidden_state for layer_module in self.layers: A_ : Optional[Any] = layer_module(lowercase ) A_ : Optional[Any] = self.shortcut(lowercase ) hidden_state += residual A_ : Tuple = self.activation(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , lowercase , lowercase , lowercase = 2 , lowercase = 2 , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : List[Any] = TFRegNetXLayer if config.layer_type == 'x' else TFRegNetYLayer A_ : int = [ # downsampling is done in the first layer with stride of 2 layer(lowercase , lowercase , lowercase , stride=lowercase , name='layers.0' ), *[layer(lowercase , lowercase , lowercase , name=F'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def lowerCAmelCase_ ( self , lowercase ): """simple docstring""" for layer_module in self.layers: A_ : List[str] = layer_module(lowercase ) return hidden_state class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : Any = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='stages.0' , ) ) A_ : int = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(lowercase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(lowercase , lowercase , lowercase , depth=lowercase , name=F'''stages.{i+1}''' ) ) def lowerCAmelCase_ ( self , lowercase , lowercase = False , lowercase = True ): """simple docstring""" A_ : Optional[Any] = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A_ : Optional[Any] = hidden_states + (hidden_state,) A_ : List[Any] = stage_module(lowercase ) if output_hidden_states: A_ : str = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=lowercase , hidden_states=lowercase ) @keras_serializable class UpperCAmelCase ( tf.keras.layers.Layer ): '''simple docstring''' lowerCamelCase_ = RegNetConfig def __init__( self , lowercase , **lowercase ): """simple docstring""" super().__init__(**lowercase ) A_ : List[Any] = config A_ : List[str] = TFRegNetEmbeddings(lowercase , name='embedder' ) A_ : Dict = TFRegNetEncoder(lowercase , name='encoder' ) A_ : Any = tf.keras.layers.GlobalAveragePoolingaD(keepdims=lowercase , name='pooler' ) @unpack_inputs def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = None , lowercase = False , ): """simple docstring""" A_ : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : Any = return_dict if return_dict is not None else self.config.use_return_dict A_ : int = self.embedder(lowercase , training=lowercase ) A_ : int = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase ) A_ : List[Any] = encoder_outputs[0] A_ : Any = self.pooler(lowercase ) # Change to NCHW output format have uniformity in the modules A_ : Optional[int] = tf.transpose(lowercase , perm=(0, 3, 1, 2) ) A_ : List[str] = tf.transpose(lowercase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: A_ : Dict = tuple([tf.transpose(lowercase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowercase , pooler_output=lowercase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class UpperCAmelCase ( __A ): '''simple docstring''' lowerCamelCase_ = RegNetConfig lowerCamelCase_ = '''regnet''' lowerCamelCase_ = '''pixel_values''' @property def lowerCAmelCase_ ( self ): """simple docstring""" return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} _UpperCAmelCase = r""" Parameters: This model is a Tensorflow [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and behavior. config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ _UpperCAmelCase = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConveNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( '''The bare RegNet model outputting raw features without any specific head on top.''' , __A , ) class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , lowercase , *lowercase , **lowercase ): """simple docstring""" super().__init__(lowercase , *lowercase , **lowercase ) A_ : Union[str, Any] = TFRegNetMainLayer(lowercase , name='regnet' ) @unpack_inputs @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def lowerCAmelCase_ ( self , lowercase , lowercase = None , lowercase = None , lowercase=False , ): """simple docstring""" A_ : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : str = return_dict if return_dict is not None else self.config.use_return_dict A_ : int = self.regnet( pixel_values=lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( ''' RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , __A , ) class UpperCAmelCase ( __A , __A ): '''simple docstring''' def __init__( self , lowercase , *lowercase , **lowercase ): """simple docstring""" super().__init__(lowercase , *lowercase , **lowercase ) A_ : str = config.num_labels A_ : Optional[Any] = TFRegNetMainLayer(lowercase , name='regnet' ) # classification head A_ : int = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='classifier.1' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def lowerCAmelCase_ ( self , lowercase = None , lowercase = None , lowercase = None , lowercase = None , lowercase=False , ): """simple docstring""" A_ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict A_ : Dict = self.regnet( lowercase , output_hidden_states=lowercase , return_dict=lowercase , training=lowercase ) A_ : Any = outputs.pooler_output if return_dict else outputs[1] A_ : Union[str, Any] = self.classifier[0](lowercase ) A_ : Dict = self.classifier[1](lowercase ) A_ : Dict = None if labels is None else self.hf_compute_loss(labels=lowercase , logits=lowercase ) if not return_dict: A_ : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states )
558
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) _UpperCAmelCase = logging.getLogger(__name__) def UpperCamelCase ( __lowercase : Any ,__lowercase : List[str] ): '''simple docstring''' A_ : str = np.argmax(__lowercase ,axis=1 ) return np.sum(outputs == labels ) def UpperCamelCase ( __lowercase : Optional[int] ): '''simple docstring''' with open(__lowercase ,encoding='utf_8' ) as f: A_ : Union[str, Any] = csv.reader(__lowercase ) A_ : Optional[Any] = [] next(__lowercase ) # skip the first line for line in tqdm(__lowercase ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def UpperCamelCase ( __lowercase : str ,__lowercase : str ,__lowercase : int ,__lowercase : str ,__lowercase : Optional[Any] ,__lowercase : List[Any] ): '''simple docstring''' A_ : Dict = [] for dataset in encoded_datasets: A_ : int = len(__lowercase ) A_ : List[str] = np.zeros((n_batch, 2, input_len) ,dtype=np.intaa ) A_ : List[str] = np.zeros((n_batch, 2) ,dtype=np.intaa ) A_ : Any = np.full((n_batch, 2, input_len) ,fill_value=-1_00 ,dtype=np.intaa ) A_ : List[Any] = np.zeros((n_batch,) ,dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(__lowercase ): A_ : Optional[Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A_ : Any = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A_ : List[Any] = with_conta A_ : Any = with_conta A_ : List[str] = len(__lowercase ) - 1 A_ : List[str] = len(__lowercase ) - 1 A_ : List[Any] = with_conta A_ : List[Any] = with_conta A_ : Optional[Any] = mc_label A_ : List[str] = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(__lowercase ) for t in all_inputs ) ) return tensor_datasets def UpperCamelCase ( ): '''simple docstring''' A_ : Tuple = argparse.ArgumentParser() parser.add_argument('--model_name' ,type=__lowercase ,default='openai-gpt' ,help='pretrained model name' ) parser.add_argument('--do_train' ,action='store_true' ,help='Whether to run training.' ) parser.add_argument('--do_eval' ,action='store_true' ,help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' ,default=__lowercase ,type=__lowercase ,required=__lowercase ,help='The output directory where the model predictions and checkpoints will be written.' ,) parser.add_argument('--train_dataset' ,type=__lowercase ,default='' ) parser.add_argument('--eval_dataset' ,type=__lowercase ,default='' ) parser.add_argument('--seed' ,type=__lowercase ,default=42 ) parser.add_argument('--num_train_epochs' ,type=__lowercase ,default=3 ) parser.add_argument('--train_batch_size' ,type=__lowercase ,default=8 ) parser.add_argument('--eval_batch_size' ,type=__lowercase ,default=16 ) parser.add_argument('--adam_epsilon' ,default=1e-8 ,type=__lowercase ,help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' ,type=__lowercase ,default=1 ) parser.add_argument( '--max_steps' ,default=-1 ,type=__lowercase ,help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) ,) parser.add_argument( '--gradient_accumulation_steps' ,type=__lowercase ,default=1 ,help='Number of updates steps to accumulate before performing a backward/update pass.' ,) parser.add_argument('--learning_rate' ,type=__lowercase ,default=6.2_5e-5 ) parser.add_argument('--warmup_steps' ,default=0 ,type=__lowercase ,help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' ,type=__lowercase ,default='warmup_linear' ) parser.add_argument('--weight_decay' ,type=__lowercase ,default=0.01 ) parser.add_argument('--lm_coef' ,type=__lowercase ,default=0.9 ) parser.add_argument('--n_valid' ,type=__lowercase ,default=3_74 ) parser.add_argument('--server_ip' ,type=__lowercase ,default='' ,help='Can be used for distant debugging.' ) parser.add_argument('--server_port' ,type=__lowercase ,default='' ,help='Can be used for distant debugging.' ) A_ : Optional[Any] = parser.parse_args() print(__lowercase ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) ,redirect_output=__lowercase ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) A_ : Tuple = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) A_ : Dict = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(__lowercase ,__lowercase ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset A_ : Tuple = ['_start_', '_delimiter_', '_classify_'] A_ : Optional[int] = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(__lowercase ) A_ : Any = tokenizer.convert_tokens_to_ids(__lowercase ) A_ : Tuple = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(__lowercase ) ) model.to(__lowercase ) # Load and encode the datasets def tokenize_and_encode(__lowercase : Tuple ): if isinstance(__lowercase ,__lowercase ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__lowercase ) ) elif isinstance(__lowercase ,__lowercase ): return obj return [tokenize_and_encode(__lowercase ) for o in obj] logger.info('Encoding dataset...' ) A_ : Any = load_rocstories_dataset(args.train_dataset ) A_ : Any = load_rocstories_dataset(args.eval_dataset ) A_ : Dict = (train_dataset, eval_dataset) A_ : str = tokenize_and_encode(__lowercase ) # Compute the max input length for the Transformer A_ : Tuple = model.config.n_positions // 2 - 2 A_ : Optional[Any] = max( len(story[:max_length] ) + max(len(conta[:max_length] ) ,len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) A_ : str = min(__lowercase ,model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders A_ : List[str] = pre_process_datasets(__lowercase ,__lowercase ,__lowercase ,*__lowercase ) A_ , A_ : List[str] = tensor_datasets[0], tensor_datasets[1] A_ : str = TensorDataset(*__lowercase ) A_ : Optional[Any] = RandomSampler(__lowercase ) A_ : Optional[int] = DataLoader(__lowercase ,sampler=__lowercase ,batch_size=args.train_batch_size ) A_ : Optional[Any] = TensorDataset(*__lowercase ) A_ : Union[str, Any] = SequentialSampler(__lowercase ) A_ : List[str] = DataLoader(__lowercase ,sampler=__lowercase ,batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: A_ : List[Any] = args.max_steps A_ : List[str] = args.max_steps // (len(__lowercase ) // args.gradient_accumulation_steps) + 1 else: A_ : int = len(__lowercase ) // args.gradient_accumulation_steps * args.num_train_epochs A_ : List[Any] = list(model.named_parameters() ) A_ : int = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] A_ : Optional[int] = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] A_ : int = AdamW(__lowercase ,lr=args.learning_rate ,eps=args.adam_epsilon ) A_ : str = get_linear_schedule_with_warmup( __lowercase ,num_warmup_steps=args.warmup_steps ,num_training_steps=__lowercase ) if args.do_train: A_ , A_ , A_ : str = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) ,desc='Epoch' ): A_ : int = 0 A_ : str = 0 A_ : Any = tqdm(__lowercase ,desc='Training' ) for step, batch in enumerate(__lowercase ): A_ : Optional[Any] = tuple(t.to(__lowercase ) for t in batch ) A_ , A_ , A_ , A_ : Optional[int] = batch A_ : int = model(__lowercase ,mc_token_ids=__lowercase ,lm_labels=__lowercase ,mc_labels=__lowercase ) A_ : Optional[int] = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() A_ : Optional[Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 A_ : Dict = 'Training loss: {:.2e} lr: {:.2e}'.format(__lowercase ,scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer A_ : Optional[Any] = model.module if hasattr(__lowercase ,'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` A_ : Tuple = os.path.join(args.output_dir ,__lowercase ) A_ : str = os.path.join(args.output_dir ,__lowercase ) torch.save(model_to_save.state_dict() ,__lowercase ) model_to_save.config.to_json_file(__lowercase ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned A_ : Optional[int] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) A_ : List[str] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(__lowercase ) if args.do_eval: model.eval() A_ , A_ : List[str] = 0, 0 A_ , A_ : Dict = 0, 0 for batch in tqdm(__lowercase ,desc='Evaluating' ): A_ : List[str] = tuple(t.to(__lowercase ) for t in batch ) A_ , A_ , A_ , A_ : Tuple = batch with torch.no_grad(): A_ , A_ , A_ , A_ : List[str] = model( __lowercase ,mc_token_ids=__lowercase ,lm_labels=__lowercase ,mc_labels=__lowercase ) A_ : str = mc_logits.detach().cpu().numpy() A_ : Optional[int] = mc_labels.to('cpu' ).numpy() A_ : int = accuracy(__lowercase ,__lowercase ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 A_ : int = eval_loss / nb_eval_steps A_ : Optional[Any] = eval_accuracy / nb_eval_examples A_ : Union[str, Any] = tr_loss / nb_tr_steps if args.do_train else None A_ : Any = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} A_ : Dict = os.path.join(args.output_dir ,'eval_results.txt' ) with open(__lowercase ,'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' ,__lowercase ,str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
558
1
"""simple docstring""" from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case_ ( a_ ): __lowerCAmelCase = "new-model" if is_tf_available(): class snake_case_ ( a_ ): __lowerCAmelCase = NewModelConfig @require_tf class snake_case_ ( unittest.TestCase ): @slow def snake_case_ ( self ): a_ : Dict = "bert-base-cased" a_ : str = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) a_ : Optional[Any] = TFAutoModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def snake_case_ ( self ): a_ : List[Any] = "bert-base-cased" a_ : Dict = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) a_ : Tuple = TFAutoModelForPreTraining.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def snake_case_ ( self ): for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : int = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) a_ : Optional[int] = TFAutoModelForCausalLM.from_pretrained(a_ ) a_ , a_ : Tuple = TFAutoModelForCausalLM.from_pretrained(a_ , output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def snake_case_ ( self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Dict = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) a_ : Any = TFAutoModelWithLMHead.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def snake_case_ ( self ): for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : str = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) a_ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(a_ ) a_ , a_ : int = TFAutoModelForMaskedLM.from_pretrained(a_ , output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def snake_case_ ( self ): for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ : Union[str, Any] = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) a_ : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(a_ ) a_ , a_ : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(a_ , output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def snake_case_ ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: a_ : List[Any] = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) a_ : str = TFAutoModelForSequenceClassification.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow def snake_case_ ( self ): # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: a_ : Dict = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) a_ : Dict = TFAutoModelForQuestionAnswering.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) @slow @require_tensorflow_probability def snake_case_ ( self ): for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: a_ : Any = AutoConfig.from_pretrained(a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) a_ : Optional[int] = TFAutoModelForTableQuestionAnswering.from_pretrained(a_ ) a_ , a_ : Optional[Any] = TFAutoModelForTableQuestionAnswering.from_pretrained( a_ , output_loading_info=a_ ) self.assertIsNotNone(a_ ) self.assertIsInstance(a_ , a_ ) def snake_case_ ( self ): a_ : Tuple = TFAutoModelWithLMHead.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=a_ ) , 1_4_4_1_0 ) def snake_case_ ( self ): a_ : List[Any] = TFAutoModelWithLMHead.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) self.assertEqual(model.num_parameters() , 1_4_4_1_0 ) self.assertEqual(model.num_parameters(only_trainable=a_ ) , 1_4_4_1_0 ) def snake_case_ ( self ): # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel a_ : int = TFAutoModel.from_pretrained("sgugger/funnel-random-tiny" ) self.assertIsInstance(a_ , a_ ) a_ : List[str] = copy.deepcopy(model.config ) a_ : List[Any] = ["FunnelBaseModel"] a_ : str = TFAutoModel.from_config(a_ ) self.assertIsInstance(a_ , a_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a_ ) a_ : int = TFAutoModel.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) def snake_case_ ( self ): try: AutoConfig.register("new-model" , a_ ) a_ : Optional[int] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(a_ ): auto_class.register(a_ , a_ ) auto_class.register(a_ , a_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(a_ ): auto_class.register(a_ , a_ ) # Now that the config is registered, it can be used as any other config with the auto-API a_ : Optional[int] = BertModelTester(self ).get_config() a_ : Any = NewModelConfig(**tiny_config.to_dict() ) a_ : List[str] = auto_class.from_config(a_ ) self.assertIsInstance(a_ , a_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(a_ ) a_ : str = auto_class.from_pretrained(a_ ) self.assertIsInstance(a_ , a_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def snake_case_ ( self ): with self.assertRaisesRegex( a_ , "bert-base is not a local folder and is not a valid model identifier" ): a_ : Any = TFAutoModel.from_pretrained("bert-base" ) def snake_case_ ( self ): with self.assertRaisesRegex( a_ , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): a_ : Optional[int] = TFAutoModel.from_pretrained(a_ , revision="aaaaaa" ) def snake_case_ ( self ): with self.assertRaisesRegex( a_ , "hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin" , ): a_ : List[Any] = TFAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def snake_case_ ( self ): with self.assertRaisesRegex(a_ , "Use `from_pt=True` to load this model" ): a_ : Tuple = TFAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" ) def snake_case_ ( self ): # Make sure we have cached the model. a_ : Optional[int] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) with RequestCounter() as counter: a_ : Optional[Any] = TFAutoModel.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint a_ : Any = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) with RequestCounter() as counter: a_ : List[str] = TFAutoModel.from_pretrained("ArthurZ/tiny-random-bert-sharded" ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
370
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case_ ( a_ ,unittest.TestCase ): __lowerCAmelCase = KandinskyImgaImgPipeline __lowerCAmelCase = ["prompt", "image_embeds", "negative_image_embeds", "image"] __lowerCAmelCase = [ "prompt", "negative_prompt", "image_embeds", "negative_image_embeds", "image", ] __lowerCAmelCase = [ "generator", "height", "width", "strength", "guidance_scale", "negative_prompt", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] __lowerCAmelCase = False @property def snake_case_ ( self ): return 3_2 @property def snake_case_ ( self ): return 3_2 @property def snake_case_ ( self ): return self.time_input_dim @property def snake_case_ ( self ): return self.time_input_dim * 4 @property def snake_case_ ( self ): return 1_0_0 @property def snake_case_ ( self ): a_ : List[str] = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def snake_case_ ( self ): torch.manual_seed(0 ) a_ : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) a_ : str = MultilingualCLIP(a_ ) a_ : Any = text_encoder.eval() return text_encoder @property def snake_case_ ( self ): torch.manual_seed(0 ) a_ : Union[str, Any] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } a_ : Dict = UNetaDConditionModel(**a_ ) return model @property def snake_case_ ( self ): return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def snake_case_ ( self ): torch.manual_seed(0 ) a_ : int = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self ): a_ : Dict = self.dummy_text_encoder a_ : Dict = self.dummy_tokenizer a_ : Optional[int] = self.dummy_unet a_ : Dict = self.dummy_movq a_ : List[str] = { "num_train_timesteps": 1_0_0_0, "beta_schedule": "linear", "beta_start": 0.00_085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } a_ : List[Any] = DDIMScheduler(**a_ ) a_ : Union[str, Any] = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def snake_case_ ( self , a_ , a_=0 ): a_ : Optional[int] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(a_ ) ).to(a_ ) a_ : Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(a_ ) # create init_image a_ : Optional[int] = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(a_ ) ).to(a_ ) a_ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] a_ : int = Image.fromarray(np.uinta(a_ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) if str(a_ ).startswith("mps" ): a_ : Any = torch.manual_seed(a_ ) else: a_ : Any = torch.Generator(device=a_ ).manual_seed(a_ ) a_ : List[Any] = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 1_0, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def snake_case_ ( self ): a_ : Optional[Any] = "cpu" a_ : List[Any] = self.get_dummy_components() a_ : Union[str, Any] = self.pipeline_class(**a_ ) a_ : Tuple = pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) a_ : Union[str, Any] = pipe(**self.get_dummy_inputs(a_ ) ) a_ : Any = output.images a_ : str = pipe( **self.get_dummy_inputs(a_ ) , return_dict=a_ , )[0] a_ : List[str] = image[0, -3:, -3:, -1] a_ : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) a_ : Optional[int] = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def snake_case_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ): a_ : Optional[int] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy" ) a_ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) a_ : Optional[Any] = "A red cartoon frog, 4k" a_ : int = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(a_ ) a_ : int = KandinskyImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1" , torch_dtype=torch.floataa ) a_ : List[Any] = pipeline.to(a_ ) pipeline.set_progress_bar_config(disable=a_ ) a_ : int = torch.Generator(device="cpu" ).manual_seed(0 ) a_ , a_ : Optional[int] = pipe_prior( a_ , generator=a_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() a_ : List[Any] = pipeline( a_ , image=a_ , image_embeds=a_ , negative_image_embeds=a_ , generator=a_ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type="np" , ) a_ : int = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(a_ , a_ )
370
1
'''simple docstring''' import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def _lowerCAmelCase ( __magic_name__ : BertModel , __magic_name__ : str , __magic_name__ : str ) -> List[str]: lowercase : Optional[Any] =('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') lowercase : Any =( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(__snake_case ): os.makedirs(__snake_case ) lowercase : Union[str, Any] =model.state_dict() def to_tf_var_name(__magic_name__ : str ): for patt, repl in iter(__snake_case ): lowercase : Optional[Any] =name.replace(__snake_case , __snake_case ) return f'''bert/{name}''' def create_tf_var(__magic_name__ : np.ndarray , __magic_name__ : str , __magic_name__ : tf.Session ): lowercase : Any =tf.dtypes.as_dtype(tensor.dtype ) lowercase : str =tf.get_variable(dtype=__snake_case , shape=tensor.shape , name=__snake_case , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__snake_case ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: lowercase : Dict =to_tf_var_name(__snake_case ) lowercase : Optional[int] =state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): lowercase : int =torch_tensor.T lowercase : Optional[int] =create_tf_var(tensor=__snake_case , name=__snake_case , session=__snake_case ) tf.keras.backend.set_value(__snake_case , __snake_case ) lowercase : Any =session.run(__snake_case ) print(f'''Successfully created {tf_name}: {np.allclose(__snake_case , __snake_case )}''' ) lowercase : List[str] =tf.train.Saver(tf.trainable_variables() ) saver.save(__snake_case , os.path.join(__snake_case , model_name.replace('''-''' , '''_''' ) + '''.ckpt''' ) ) def _lowerCAmelCase ( __magic_name__ : str=None ) -> Dict: lowercase : int =argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=__snake_case , required=__snake_case , help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''' , type=__snake_case , default=__snake_case , required=__snake_case , help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''' , type=__snake_case , required=__snake_case , help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''' , type=__snake_case , required=__snake_case , help='''Directory in which to save tensorflow model''' ) lowercase : List[str] =parser.parse_args(__snake_case ) lowercase : Tuple =BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__snake_case , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
92
def _A ( __snake_case :int , __snake_case :float , __snake_case :float ) -> float: """simple docstring""" return round(float(moles / volume ) * nfactor ) def _A ( __snake_case :float , __snake_case :float , __snake_case :float ) -> float: """simple docstring""" return round(float((moles * 0.0_8_2_1 * temperature) / (volume) ) ) def _A ( __snake_case :float , __snake_case :float , __snake_case :float ) -> float: """simple docstring""" return round(float((moles * 0.0_8_2_1 * temperature) / (pressure) ) ) def _A ( __snake_case :float , __snake_case :float , __snake_case :float ) -> float: """simple docstring""" return round(float((pressure * volume) / (0.0_8_2_1 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
693
0
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __snake_case ( SCREAMING_SNAKE_CASE: int ): """simple docstring""" _lowerCAmelCase = prime_factors(SCREAMING_SNAKE_CASE ) if is_square_free(SCREAMING_SNAKE_CASE ): return -1 if len(SCREAMING_SNAKE_CASE ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __snake_case ( SCREAMING_SNAKE_CASE: Optional[int] ): """simple docstring""" _lowerCAmelCase = [] embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", f"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", f"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", f"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( f"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", f"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __snake_case ( SCREAMING_SNAKE_CASE: Any , SCREAMING_SNAKE_CASE: Tuple ): """simple docstring""" _lowerCAmelCase = [] attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", f"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( f"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", f"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", f"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", f"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", f"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (f"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", f"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __snake_case ( SCREAMING_SNAKE_CASE: int ): """simple docstring""" _lowerCAmelCase = [] token.append((f"""cvt.encoder.stages.{idx}.cls_token""", 'stage2.cls_token') ) return token def __snake_case ( ): """simple docstring""" _lowerCAmelCase = [] head.append(('layernorm.weight', 'norm.weight') ) head.append(('layernorm.bias', 'norm.bias') ) head.append(('classifier.weight', 'head.weight') ) head.append(('classifier.bias', 'head.bias') ) return head def __snake_case ( SCREAMING_SNAKE_CASE: List[Any] , SCREAMING_SNAKE_CASE: Optional[Any] , SCREAMING_SNAKE_CASE: List[str] , SCREAMING_SNAKE_CASE: str ): """simple docstring""" _lowerCAmelCase = 'imagenet-1k-id2label.json' _lowerCAmelCase = 1000 _lowerCAmelCase = 'huggingface/label-files' _lowerCAmelCase = num_labels _lowerCAmelCase = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) ) , 'r' ) ) _lowerCAmelCase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = _lowerCAmelCase = CvtConfig(num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('/' , 1 )[-1][4:6] == "13": _lowerCAmelCase = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('/' , 1 )[-1][4:6] == "21": _lowerCAmelCase = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: _lowerCAmelCase = [2, 2, 20] _lowerCAmelCase = [3, 12, 16] _lowerCAmelCase = [192, 768, 1024] _lowerCAmelCase = CvtForImageClassification(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' ) _lowerCAmelCase = image_size _lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device('cpu' ) ) _lowerCAmelCase = OrderedDict() _lowerCAmelCase = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: _lowerCAmelCase = list_of_state_dict + cls_token(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = list_of_state_dict + embeddings(SCREAMING_SNAKE_CASE ) for cnt in range(config.depth[idx] ): _lowerCAmelCase = list_of_state_dict + attention(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowerCAmelCase = list_of_state_dict + final() for gg in list_of_state_dict: print(SCREAMING_SNAKE_CASE ) for i in range(len(SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = original_weights[list_of_state_dict[i][1]] model.load_state_dict(SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=3_8_4, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _snake_case = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
491
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase = logging.get_logger(__name__) def UpperCAmelCase ( A : Optional[int] , A : str , A : str , A : int ): '''simple docstring''' _UpperCAmelCase = original_name.split('.' )[0] _UpperCAmelCase = key.split('.' ) _UpperCAmelCase = int(key_list[key_list.index(A ) - 2] ) _UpperCAmelCase = int(key_list[key_list.index(A ) - 1] ) _UpperCAmelCase = orig_block_num - offset _UpperCAmelCase = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' , f'block.{new_block_num}.{layer_num}.{new_name}' ) return key def UpperCAmelCase ( A : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = OrderedDict() _UpperCAmelCase , _UpperCAmelCase = 0, 0 for key, value in state_dict.items(): if key.startswith('network' ): _UpperCAmelCase = key.replace('network' , 'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 _UpperCAmelCase = key[: key.find('proj' )] _UpperCAmelCase = key.replace(A , f'patch_embeddings.{total_embed_found}.' ) _UpperCAmelCase = key.replace('proj' , 'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: _UpperCAmelCase = 'poolformer.encoder.' + key if "mlp.fc1" in key: _UpperCAmelCase = replace_key_with_offset(A , A , 'mlp.fc1' , 'output.conv1' ) if "mlp.fc2" in key: _UpperCAmelCase = replace_key_with_offset(A , A , 'mlp.fc2' , 'output.conv2' ) if "norm1" in key: _UpperCAmelCase = replace_key_with_offset(A , A , 'norm1' , 'before_norm' ) if "norm2" in key: _UpperCAmelCase = replace_key_with_offset(A , A , 'norm2' , 'after_norm' ) if "layer_scale_1" in key: _UpperCAmelCase = replace_key_with_offset(A , A , 'layer_scale_1' , 'layer_scale_1' ) if "layer_scale_2" in key: _UpperCAmelCase = replace_key_with_offset(A , A , 'layer_scale_2' , 'layer_scale_2' ) if "head" in key: _UpperCAmelCase = key.replace('head' , 'classifier' ) _UpperCAmelCase = value return new_state_dict def UpperCAmelCase ( ): '''simple docstring''' _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = Image.open(requests.get(A , stream=A ).raw ) return image @torch.no_grad() def UpperCAmelCase ( A : str , A : List[Any] , A : int ): '''simple docstring''' _UpperCAmelCase = PoolFormerConfig() # set attributes based on model_name _UpperCAmelCase = 'huggingface/label-files' _UpperCAmelCase = model_name[-3:] _UpperCAmelCase = 1000 _UpperCAmelCase = 'imagenet-1k-id2label.json' _UpperCAmelCase = (1, 1000) # set config attributes _UpperCAmelCase = json.load(open(hf_hub_download(A , A , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(A ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} if size == "s12": _UpperCAmelCase = [2, 2, 6, 2] _UpperCAmelCase = [64, 128, 320, 512] _UpperCAmelCase = 4.0 _UpperCAmelCase = 0.9 elif size == "s24": _UpperCAmelCase = [4, 4, 12, 4] _UpperCAmelCase = [64, 128, 320, 512] _UpperCAmelCase = 4.0 _UpperCAmelCase = 0.9 elif size == "s36": _UpperCAmelCase = [6, 6, 18, 6] _UpperCAmelCase = [64, 128, 320, 512] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.9 elif size == "m36": _UpperCAmelCase = [6, 6, 18, 6] _UpperCAmelCase = [96, 192, 384, 768] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.95 elif size == "m48": _UpperCAmelCase = [8, 8, 24, 8] _UpperCAmelCase = [96, 192, 384, 768] _UpperCAmelCase = 4.0 _UpperCAmelCase = 1e-6 _UpperCAmelCase = 0.95 else: raise ValueError(f'Size {size} not supported' ) # load image processor _UpperCAmelCase = PoolFormerImageProcessor(crop_pct=A ) # Prepare image _UpperCAmelCase = prepare_img() _UpperCAmelCase = image_processor(images=A , return_tensors='pt' ).pixel_values logger.info(f'Converting model {model_name}...' ) # load original state dict _UpperCAmelCase = torch.load(A , map_location=torch.device('cpu' ) ) # rename keys _UpperCAmelCase = rename_keys(A ) # create HuggingFace model and load state dict _UpperCAmelCase = PoolFormerForImageClassification(A ) model.load_state_dict(A ) model.eval() # Define image processor _UpperCAmelCase = PoolFormerImageProcessor(crop_pct=A ) _UpperCAmelCase = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values # forward pass _UpperCAmelCase = model(A ) _UpperCAmelCase = outputs.logits # define expected logit slices for different models if size == "s12": _UpperCAmelCase = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": _UpperCAmelCase = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": _UpperCAmelCase = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": _UpperCAmelCase = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": _UpperCAmelCase = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , A , atol=1e-2 ) # finally, save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(A ).mkdir(exist_ok=A ) model.save_pretrained(A ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(A ) if __name__ == "__main__": lowercase = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowercase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
573
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase__ : '''simple docstring''' @staticmethod def lowerCamelCase_ ( *snake_case , **snake_case ) -> str: pass @is_pipeline_test @require_vision @require_timm @require_torch class lowercase__ ( unittest.TestCase ): '''simple docstring''' _UpperCAmelCase = MODEL_FOR_OBJECT_DETECTION_MAPPING def lowerCamelCase_ ( self , snake_case , snake_case , snake_case ) -> Union[str, Any]: _UpperCAmelCase = ObjectDetectionPipeline(model=snake_case , image_processor=snake_case ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def lowerCamelCase_ ( self , snake_case , snake_case ) -> List[Any]: _UpperCAmelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0 ) self.assertGreater(len(snake_case ) , 0 ) for detected_object in outputs: self.assertEqual( snake_case , { 'score': ANY(snake_case ), 'label': ANY(snake_case ), 'box': {'xmin': ANY(snake_case ), 'ymin': ANY(snake_case ), 'xmax': ANY(snake_case ), 'ymax': ANY(snake_case )}, } , ) import datasets _UpperCAmelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) _UpperCAmelCase = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] _UpperCAmelCase = object_detector(snake_case , threshold=0.0 ) self.assertEqual(len(snake_case ) , len(snake_case ) ) for outputs in batch_outputs: self.assertGreater(len(snake_case ) , 0 ) for detected_object in outputs: self.assertEqual( snake_case , { 'score': ANY(snake_case ), 'label': ANY(snake_case ), 'box': {'xmin': ANY(snake_case ), 'ymin': ANY(snake_case ), 'xmax': ANY(snake_case ), 'ymax': ANY(snake_case )}, } , ) @require_tf @unittest.skip('Object detection not implemented in TF' ) def lowerCamelCase_ ( self ) -> List[Any]: pass @require_torch def lowerCamelCase_ ( self ) -> int: _UpperCAmelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3' _UpperCAmelCase = AutoModelForObjectDetection.from_pretrained(snake_case ) _UpperCAmelCase = AutoFeatureExtractor.from_pretrained(snake_case ) _UpperCAmelCase = ObjectDetectionPipeline(model=snake_case , feature_extractor=snake_case ) _UpperCAmelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0 ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ] , ) _UpperCAmelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ] , ) @require_torch @slow def lowerCamelCase_ ( self ) -> Optional[Any]: _UpperCAmelCase = 'facebook/detr-resnet-50' _UpperCAmelCase = AutoModelForObjectDetection.from_pretrained(snake_case ) _UpperCAmelCase = AutoFeatureExtractor.from_pretrained(snake_case ) _UpperCAmelCase = ObjectDetectionPipeline(model=snake_case , feature_extractor=snake_case ) _UpperCAmelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) _UpperCAmelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] , ) @require_torch @slow def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = 'facebook/detr-resnet-50' _UpperCAmelCase = pipeline('object-detection' , model=snake_case ) _UpperCAmelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) _UpperCAmelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] , ) @require_torch @slow def lowerCamelCase_ ( self ) -> Tuple: _UpperCAmelCase = 0.9985 _UpperCAmelCase = 'facebook/detr-resnet-50' _UpperCAmelCase = pipeline('object-detection' , model=snake_case ) _UpperCAmelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=snake_case ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) @require_torch @require_pytesseract @slow def lowerCamelCase_ ( self ) -> List[str]: _UpperCAmelCase = 'Narsil/layoutlmv3-finetuned-funsd' _UpperCAmelCase = 0.9993 _UpperCAmelCase = pipeline('object-detection' , model=snake_case , threshold=snake_case ) _UpperCAmelCase = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(snake_case , decimals=4 ) , [ {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ] , )
573
1
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _lowerCAmelCase = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n" _lowerCAmelCase = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n" _lowerCAmelCase = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): def UpperCamelCase_ ( self : Optional[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ), '''references''': datasets.Sequence( datasets.Sequence(datasets.Value('''string''' , id='''token''' ) , id='''sequence''' ) , id='''references''' ), } ) , ) def UpperCamelCase_ ( self : int , _A : List[List[List[str]]] , _A : List[List[str]] , _A : int = 1 , _A : int = 4 , ): return { "google_bleu": gleu_score.corpus_gleu( list_of_references=_A , hypotheses=_A , min_len=_A , max_len=_A ) }
71
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class lowerCAmelCase_ ( enum.Enum ): UpperCAmelCase = 0 UpperCAmelCase = 1 UpperCAmelCase = 2 @add_end_docstrings(__lowercase ) class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : Tuple , *_A : List[str] , **_A : str ): super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _UpperCamelCase = None if self.model.config.prefix is not None: _UpperCamelCase = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _UpperCamelCase = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = self._sanitize_parameters(prefix=_A , **self._forward_params ) _UpperCamelCase = {**self._preprocess_params, **preprocess_params} _UpperCamelCase = {**self._forward_params, **forward_params} def UpperCamelCase_ ( self : Dict , _A : Optional[int]=None , _A : Any=None , _A : Optional[int]=None , _A : List[str]=None , _A : List[Any]=None , _A : int=None , _A : Tuple=None , _A : Optional[Any]=None , **_A : Optional[int] , ): _UpperCamelCase = {} if prefix is not None: _UpperCamelCase = prefix if prefix: _UpperCamelCase = self.tokenizer( _A , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) _UpperCamelCase = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) _UpperCamelCase = handle_long_generation preprocess_params.update(_A ) _UpperCamelCase = generate_kwargs _UpperCamelCase = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) _UpperCamelCase = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) _UpperCamelCase = ReturnType.TENSORS if return_type is not None: _UpperCamelCase = return_type if clean_up_tokenization_spaces is not None: _UpperCamelCase = clean_up_tokenization_spaces if stop_sequence is not None: _UpperCamelCase = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) _UpperCamelCase = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def UpperCamelCase_ ( self : int , *_A : Union[str, Any] , **_A : Union[str, Any] ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_A , **_A ) def __call__( self : List[str] , _A : str , **_A : Any ): return super().__call__(_A , **_A ) def UpperCamelCase_ ( self : Optional[Any] , _A : List[str] , _A : int="" , _A : Optional[Any]=None , **_A : Optional[Any] ): _UpperCamelCase = self.tokenizer( prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) _UpperCamelCase = prompt_text if handle_long_generation == "hole": _UpperCamelCase = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: _UpperCamelCase = generate_kwargs['''max_new_tokens'''] else: _UpperCamelCase = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _UpperCamelCase = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) _UpperCamelCase = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: _UpperCamelCase = inputs['''attention_mask'''][:, -keep_length:] return inputs def UpperCamelCase_ ( self : Dict , _A : Optional[int] , **_A : str ): _UpperCamelCase = model_inputs['''input_ids'''] _UpperCamelCase = model_inputs.get('''attention_mask''' , _A ) # Allow empty prompts if input_ids.shape[1] == 0: _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = 1 else: _UpperCamelCase = input_ids.shape[0] _UpperCamelCase = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _UpperCamelCase = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: _UpperCamelCase = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: _UpperCamelCase = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _UpperCamelCase = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _UpperCamelCase = self.model.generate(input_ids=_A , attention_mask=_A , **_A ) _UpperCamelCase = generated_sequence.shape[0] if self.framework == "pt": _UpperCamelCase = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _UpperCamelCase = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def UpperCamelCase_ ( self : List[str] , _A : Dict , _A : Optional[Any]=ReturnType.FULL_TEXT , _A : Dict=True ): _UpperCamelCase = model_outputs['''generated_sequence'''][0] _UpperCamelCase = model_outputs['''input_ids'''] _UpperCamelCase = model_outputs['''prompt_text'''] _UpperCamelCase = generated_sequence.numpy().tolist() _UpperCamelCase = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _UpperCamelCase = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _UpperCamelCase = self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _UpperCamelCase = 0 else: _UpperCamelCase = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) ) if return_type == ReturnType.FULL_TEXT: _UpperCamelCase = prompt_text + text[prompt_length:] else: _UpperCamelCase = text[prompt_length:] _UpperCamelCase = {'''generated_text''': all_text} records.append(_A ) return records
71
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCAmelCase: List[Any] ="\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class lowerCamelCase__ ( unittest.TestCase , __UpperCamelCase ): def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = load_tool("""text-question-answering""" ) self.tool.setup() lowercase : Union[str, Any] = load_tool("""text-question-answering""" , remote=snake_case ) def _UpperCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = self.tool(snake_case , """What did Hugging Face do in April 2021?""" ) self.assertEqual(snake_case , """launched the BigScience Research Workshop""" ) def _UpperCAmelCase ( self ) -> int: """simple docstring""" lowercase : Optional[Any] = self.remote_tool(snake_case , """What did Hugging Face do in April 2021?""" ) self.assertEqual(snake_case , """launched the BigScience Research Workshop""" ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" lowercase : List[str] = self.tool(text=snake_case , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(snake_case , """launched the BigScience Research Workshop""" ) def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" lowercase : List[str] = self.remote_tool(text=snake_case , question="""What did Hugging Face do in April 2021?""" ) self.assertEqual(snake_case , """launched the BigScience Research Workshop""" )
607
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def __snake_case ( ) -> None: print("""Making key files...""" ) make_key_files("""rsa""" ,1024 ) print("""Key files generation successful.""" ) def __snake_case ( __A ) -> tuple[tuple[int, int], tuple[int, int]]: print("""Generating prime p...""" ) lowercase : int = rabinMiller.generate_large_prime(__A ) print("""Generating prime q...""" ) lowercase : Optional[int] = rabinMiller.generate_large_prime(__A ) lowercase : Optional[int] = p * q print("""Generating e that is relatively prime to (p - 1) * (q - 1)...""" ) while True: lowercase : List[str] = random.randrange(2 ** (key_size - 1) ,2 ** (key_size) ) if cryptoMath.gcd(__A ,(p - 1) * (q - 1) ) == 1: break print("""Calculating d that is mod inverse of e...""" ) lowercase : List[Any] = cryptoMath.find_mod_inverse(__A ,(p - 1) * (q - 1) ) lowercase : Any = (n, e) lowercase : Optional[Any] = (n, d) return (public_key, private_key) def __snake_case ( __A ,__A ) -> None: if os.path.exists(F'''{name}_pubkey.txt''' ) or os.path.exists(F'''{name}_privkey.txt''' ): print("""\nWARNING:""" ) print( F'''"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n''' """Use a different name or delete these files and re-run this program.""" ) sys.exit() lowercase , lowercase : Optional[int] = generate_key(__A ) print(F'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(F'''{name}_pubkey.txt''' ,"""w""" ) as out_file: out_file.write(F'''{key_size},{public_key[0]},{public_key[1]}''' ) print(F'''Writing private key to file {name}_privkey.txt...''' ) with open(F'''{name}_privkey.txt''' ,"""w""" ) as out_file: out_file.write(F'''{key_size},{private_key[0]},{private_key[1]}''' ) if __name__ == "__main__": main()
607
1
"""simple docstring""" UpperCamelCase__ = '''Input must be a string of 8 numbers plus letter''' UpperCamelCase__ = '''TRWAGMYFPDXBNJZSQVHLCKE''' def UpperCAmelCase ( snake_case : Optional[Any] ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): _lowerCAmelCase:str = F'Expected string as input, found {type(__SCREAMING_SNAKE_CASE ).__name__}' raise TypeError(__SCREAMING_SNAKE_CASE ) _lowerCAmelCase:Union[str, Any] = spanish_id.replace('''-''' , '''''' ).upper() if len(__SCREAMING_SNAKE_CASE ) != 9: raise ValueError(__SCREAMING_SNAKE_CASE ) try: _lowerCAmelCase:int = int(spanish_id_clean[0:8] ) _lowerCAmelCase:Any = spanish_id_clean[8] except ValueError as ex: raise ValueError(__SCREAMING_SNAKE_CASE ) from ex if letter.isdigit(): raise ValueError(__SCREAMING_SNAKE_CASE ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
701
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def UpperCAmelCase ( ): _lowerCAmelCase:Optional[int] = ArgumentParser( description=( '''PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes''' ) ) # Optional arguments for the launch helper parser.add_argument('''--num_cores''' , type=snake_case , default=1 , help='''Number of TPU cores to use (1 or 8).''' ) # positional parser.add_argument( '''training_script''' , type=snake_case , help=( '''The full path to the single TPU training ''' '''program/script to be launched in parallel, ''' '''followed by all the arguments for the ''' '''training script''' ) , ) # rest from the training program parser.add_argument('''training_script_args''' , nargs=snake_case ) return parser.parse_args() def UpperCAmelCase ( ): _lowerCAmelCase:int = parse_args() # Import training_script as a module. _lowerCAmelCase:Optional[int] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) _lowerCAmelCase:Optional[int] = script_fpath.stem _lowerCAmelCase:Any = importlib.import_module(snake_case ) # Patch sys.argv _lowerCAmelCase:Dict = [args.training_script] + args.training_script_args + ['''--tpu_num_cores''', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
439
0
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def a__ ( _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] ) -> str: """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : str = emb.weight.shape UpperCAmelCase_ : List[Any] = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Tuple = emb.weight.data return lin_layer def a__ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[Any]=None ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = {} for old_key in state_dict.keys(): UpperCAmelCase_ : Optional[int] = old_key if "moe_layer.experts." in key: if expert_idx is not None: UpperCAmelCase_ : List[Any] = key.replace("moe_layer.experts.0" , F'''ffn.experts.expert_{expert_idx}''' ) else: UpperCAmelCase_ : Tuple = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: UpperCAmelCase_ : List[Any] = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: UpperCAmelCase_ : Dict = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: UpperCAmelCase_ : List[str] = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: UpperCAmelCase_ : List[str] = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: UpperCAmelCase_ : Union[str, Any] = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: UpperCAmelCase_ : Any = key.replace("final_layer_norm" , "ff_layer_norm" ) UpperCAmelCase_ : Optional[Any] = state_dict[old_key] return new_dict def a__ ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : str = WEIGHTS_NAME ) -> str: """simple docstring""" UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Optional[Any] = 0 os.makedirs(_SCREAMING_SNAKE_CASE , exist_ok=_SCREAMING_SNAKE_CASE ) for expert in range(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : Any = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : List[Any] = torch.load(_SCREAMING_SNAKE_CASE )["model"] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = rename_fairseq_keys(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Union[str, Any] = os.path.join( _SCREAMING_SNAKE_CASE , weights_name.replace(".bin" , F'''-{len(_SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin''' ) ) torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(_SCREAMING_SNAKE_CASE )[0]].dtype ) # Add the last block UpperCAmelCase_ : Tuple = os.path.join(_SCREAMING_SNAKE_CASE , weights_name.replace(".bin" , F'''-{len(_SCREAMING_SNAKE_CASE )+1:05d}-of-???.bin''' ) ) UpperCAmelCase_ : List[str] = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : str = rename_fairseq_keys(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(_SCREAMING_SNAKE_CASE ) == 1: UpperCAmelCase_ : Dict = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Otherwise, let's build the index UpperCAmelCase_ : Optional[Any] = {} for idx, shard in enumerate(_SCREAMING_SNAKE_CASE ): UpperCAmelCase_ : str = weights_name.replace(".bin" , F'''-{idx+1:05d}-of-{len(_SCREAMING_SNAKE_CASE ):05d}.bin''' ) UpperCAmelCase_ : List[Any] = os.path.join(_SCREAMING_SNAKE_CASE , weights_name.replace(".bin" , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for key in shard: UpperCAmelCase_ : Tuple = shard_file # Add the metadata UpperCAmelCase_ : Dict = {"total_size": total_size} UpperCAmelCase_ : List[Any] = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) , "w" , encoding="utf-8" ) as f: UpperCAmelCase_ : Dict = json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + "\n" f.write(_SCREAMING_SNAKE_CASE ) return metadata, index if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--nllb_moe_checkpoint_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000""", type=str, required=False, help="""Path to a directory containing a folder per layer. Follows the original Google format.""", ) parser.add_argument("""--dtype""", default="""float32""", type=str, required=False, help="""dtype of the saved model""") parser.add_argument( """--pytorch_dump_folder_path""", default="""/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b""", type=str, required=False, help="""Path to the output pytorch model.""", ) _lowerCamelCase = parser.parse_args() _lowerCamelCase , _lowerCamelCase = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) _lowerCamelCase = NllbMoeConfig.from_pretrained( """facebook/nllb-200-3.3B""", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) _lowerCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print("""Done""") model.save_pretrained(args.pytorch_dump_folder_path)
71
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase_ ( lowerCamelCase ): a__ = ['''image_processor''', '''tokenizer'''] a__ = '''ChineseCLIPImageProcessor''' a__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" __magic_name__ :Tuple = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowerCAmelCase , ) __magic_name__ :Optional[Any] = kwargs.pop('''feature_extractor''' ) __magic_name__ :Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :List[Any] = self.image_processor def __call__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __magic_name__ :int = self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if images is not None: __magic_name__ :Dict = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None and images is not None: __magic_name__ :Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase ) def A ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def A ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def A ( self ): """simple docstring""" __magic_name__ :List[Any] = self.tokenizer.model_input_names __magic_name__ :Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowerCAmelCase , ) return self.image_processor_class
0
0
"""simple docstring""" import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class a__ ( UpperCAmelCase_ ): def snake_case__ ( self ): '''simple docstring''' lowercase__ = tempfile.mkdtemp() lowercase__ = 8 # DPR tok lowercase__ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowercase__ = os.path.join(self.tmpdirname, "dpr_tokenizer" ) os.makedirs(_lowercase, exist_ok=_lowercase ) lowercase__ = os.path.join(_lowercase, DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok lowercase__ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase__ = dict(zip(_lowercase, range(len(_lowercase ) ) ) ) lowercase__ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase__ = {"unk_token": "<unk>"} lowercase__ = os.path.join(self.tmpdirname, "bart_tokenizer" ) os.makedirs(_lowercase, exist_ok=_lowercase ) lowercase__ = os.path.join(_lowercase, BART_VOCAB_FILES_NAMES["vocab_file"] ) lowercase__ = os.path.join(_lowercase, BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file, "w", encoding="utf-8" ) as fp: fp.write(json.dumps(_lowercase ) + "\n" ) with open(self.merges_file, "w", encoding="utf-8" ) as fp: fp.write("\n".join(_lowercase ) ) def snake_case__ ( self ): '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname, "dpr_tokenizer" ) ) def snake_case__ ( self ): '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname, "bart_tokenizer" ) ) def snake_case__ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) @require_tokenizers def snake_case__ ( self ): '''simple docstring''' lowercase__ = os.path.join(self.tmpdirname, "rag_tokenizer" ) lowercase__ = RagConfig(question_encoder=DPRConfig().to_dict(), generator=BartConfig().to_dict() ) lowercase__ = RagTokenizer(question_encoder=self.get_dpr_tokenizer(), generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(_lowercase ) rag_tokenizer.save_pretrained(_lowercase ) lowercase__ = RagTokenizer.from_pretrained(_lowercase, config=_lowercase ) self.assertIsInstance(new_rag_tokenizer.question_encoder, _lowercase ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab(), rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator, _lowercase ) self.assertEqual(new_rag_tokenizer.generator.get_vocab(), rag_tokenizer.generator.get_vocab() ) @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = RagTokenizer.from_pretrained("facebook/rag-token-nq" ) lowercase__ = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] lowercase__ = tokenizer(_lowercase ) self.assertIsNotNone(_lowercase ) @slow def snake_case__ ( self ): '''simple docstring''' lowercase__ = RagTokenizer.from_pretrained("facebook/rag-sequence-nq" ) lowercase__ = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] lowercase__ = tokenizer(_lowercase ) self.assertIsNotNone(_lowercase )
703
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowerCAmelCase_: List[str] = 1_6 lowerCAmelCase_: Optional[Any] = 3_2 def __a ( A , A = 16 , A = "bert-base-cased" ): '''simple docstring''' lowercase__ = AutoTokenizer.from_pretrained(A ) lowercase__ = load_dataset("glue" , "mrpc" ) def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) lowercase__ = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowercase__ = datasets.map( A , batched=A , remove_columns=["idx", "sentence1", "sentence2"] , load_from_cache_file=A ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowercase__ = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A , padding="max_length" , max_length=1_28 , return_tensors="pt" ) return tokenizer.pad(A , padding="longest" , return_tensors="pt" ) # Instantiate dataloaders. lowercase__ = DataLoader( tokenized_datasets["train"] , shuffle=A , collate_fn=A , batch_size=A ) lowercase__ = DataLoader( tokenized_datasets["validation"] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader def __a ( A , A ): '''simple docstring''' lowercase__ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowercase__ = config["lr"] lowercase__ = int(config["num_epochs"] ) lowercase__ = int(config["seed"] ) lowercase__ = int(config["batch_size"] ) lowercase__ = args.model_name_or_path set_seed(A ) lowercase__ , lowercase__ = get_dataloaders(A , A , A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowercase__ = AutoModelForSequenceClassification.from_pretrained(A , return_dict=A ) # Instantiate optimizer lowercase__ = ( AdamW if accelerator.state.deepspeed_plugin is None or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) lowercase__ = optimizer_cls(params=model.parameters() , lr=A ) if accelerator.state.deepspeed_plugin is not None: lowercase__ = accelerator.state.deepspeed_plugin.deepspeed_config[ "gradient_accumulation_steps" ] else: lowercase__ = 1 lowercase__ = (len(A ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): lowercase__ = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=0 , num_training_steps=A , ) else: lowercase__ = DummyScheduler(A , total_num_steps=A , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( A , A , A , A , A ) # We need to keep track of how many total steps we have iterated over lowercase__ = 0 # We also need to keep track of the stating epoch so files are named properly lowercase__ = 0 # Now we train the model lowercase__ = evaluate.load("glue" , "mrpc" ) lowercase__ = 0 lowercase__ = {} for epoch in range(A , A ): model.train() for step, batch in enumerate(A ): lowercase__ = model(**A ) lowercase__ = outputs.loss lowercase__ = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() lowercase__ = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times lowercase__ , lowercase__ = accelerator.gather( (predictions, batch["labels"]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(A ) - 1: lowercase__ = predictions[: len(eval_dataloader.dataset ) - samples_seen] lowercase__ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=A , references=A , ) lowercase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , A ) lowercase__ = eval_metric["accuracy"] if best_performance < eval_metric["accuracy"]: lowercase__ = eval_metric["accuracy"] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , "all_results.json" ) , "w" ) as f: json.dump(A , A ) def __a ( ): '''simple docstring''' lowercase__ = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage." ) parser.add_argument( "--model_name_or_path" , type=A , default="bert-base-cased" , help="Path to pretrained model or model identifier from huggingface.co/models." , required=A , ) parser.add_argument( "--output_dir" , type=A , default="." , help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory." , ) parser.add_argument( "--performance_lower_bound" , type=A , default=A , help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value." , ) parser.add_argument( "--num_epochs" , type=A , default=3 , help="Number of train epochs." , ) lowercase__ = parser.parse_args() lowercase__ = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} training_function(A , A ) if __name__ == "__main__": main()
668
0
'''simple docstring''' import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class UpperCAmelCase ( unittest.TestCase ): _lowercase: Union[str, Any] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def lowercase__ ( self : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[Any] , __snake_case : int ) -> str: _lowerCAmelCase = hf_hub_download( repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) _lowerCAmelCase = VideoClassificationPipeline(model=__snake_case , image_processor=__snake_case , top_k=2 ) _lowerCAmelCase = [ example_video_filepath, """https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4""", ] return video_classifier, examples def lowercase__ ( self : Tuple , __snake_case : Optional[Any] , __snake_case : Union[str, Any] ) -> Dict: for example in examples: _lowerCAmelCase = video_classifier(__snake_case ) self.assertEqual( __snake_case , [ {"""score""": ANY(__snake_case ), """label""": ANY(__snake_case )}, {"""score""": ANY(__snake_case ), """label""": ANY(__snake_case )}, ] , ) @require_torch def lowercase__ ( self : Optional[Any] ) -> Tuple: _lowerCAmelCase = """hf-internal-testing/tiny-random-VideoMAEForVideoClassification""" _lowerCAmelCase = VideoMAEFeatureExtractor( size={"""shortest_edge""": 10} , crop_size={"""height""": 10, """width""": 10} ) _lowerCAmelCase = pipeline( """video-classification""" , model=__snake_case , feature_extractor=__snake_case , frame_sampling_rate=4 ) _lowerCAmelCase = hf_hub_download(repo_id="""nateraw/video-demo""" , filename="""archery.mp4""" , repo_type="""dataset""" ) _lowerCAmelCase = video_classifier(__snake_case , top_k=2 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [{"""score""": 0.51_99, """label""": """LABEL_0"""}, {"""score""": 0.48_01, """label""": """LABEL_1"""}] , ) _lowerCAmelCase = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ [{"""score""": 0.51_99, """label""": """LABEL_0"""}, {"""score""": 0.48_01, """label""": """LABEL_1"""}], [{"""score""": 0.51_99, """label""": """LABEL_0"""}, {"""score""": 0.48_01, """label""": """LABEL_1"""}], ] , ) @require_tf def lowercase__ ( self : Union[str, Any] ) -> Dict: pass
207
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : int ={ '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[str] =[ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys A__ : str =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
207
1
"""simple docstring""" from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) _lowercase : int = logging.get_logger(__name__) # pylint: disable=invalid-name _lowercase : Any = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to(\"cuda\")\n\n >>> prompt = \"A red cartoon frog, 4k\"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16\n ... )\n >>> pipe.to(\"cuda\")\n\n >>> init_image = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/frog.png\"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save(\"red_frog.png\")\n ```\n" def snake_case__ ( __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict=8 ): """simple docstring""" lowerCamelCase__ : List[Any] =height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 lowerCamelCase__ : List[str] =width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : Any=512 , __lowerCamelCase : Optional[int]=512 ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 ) lowerCamelCase__ : List[str] =np.array(pil_image.convert('''RGB''' ) ) lowerCamelCase__ : int =arr.astype(np.floataa ) / 127.5 - 1 lowerCamelCase__ : Optional[Any] =np.transpose(__lowerCamelCase , [2, 0, 1] ) lowerCamelCase__ : List[str] =torch.from_numpy(__lowerCamelCase ).unsqueeze(0 ) return image class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : List[Any], lowerCamelCase : UNetaDConditionModel, lowerCamelCase : DDPMScheduler, lowerCamelCase : VQModel, )-> Optional[Any]: super().__init__() self.register_modules( unet=lowerCamelCase, scheduler=lowerCamelCase, movq=lowerCamelCase, ) lowerCamelCase__ : Optional[Any] =2 ** (len(self.movq.config.block_out_channels ) - 1) def snake_case ( self : Dict, lowerCamelCase : str, lowerCamelCase : int, lowerCamelCase : str )-> Dict: # get the original timestep using init_timestep lowerCamelCase__ : List[Any] =min(int(num_inference_steps * strength ), lowerCamelCase ) lowerCamelCase__ : Tuple =max(num_inference_steps - init_timestep, 0 ) lowerCamelCase__ : str =self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def snake_case ( self : Optional[int], lowerCamelCase : Dict, lowerCamelCase : int, lowerCamelCase : int, lowerCamelCase : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Any, lowerCamelCase : Optional[int]=None )-> Union[str, Any]: if not isinstance(lowerCamelCase, (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCamelCase )}''' ) lowerCamelCase__ : List[str] =image.to(device=lowerCamelCase, dtype=lowerCamelCase ) lowerCamelCase__ : Dict =batch_size * num_images_per_prompt if image.shape[1] == 4: lowerCamelCase__ : List[str] =image else: if isinstance(lowerCamelCase, lowerCamelCase ) and len(lowerCamelCase ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(lowerCamelCase )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) elif isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : int =[ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCamelCase ) ] lowerCamelCase__ : List[Any] =torch.cat(lowerCamelCase, dim=0 ) else: lowerCamelCase__ : int =self.movq.encode(lowerCamelCase ).latent_dist.sample(lowerCamelCase ) lowerCamelCase__ : Optional[Any] =self.movq.config.scaling_factor * init_latents lowerCamelCase__ : Optional[int] =torch.cat([init_latents], dim=0 ) lowerCamelCase__ : Tuple =init_latents.shape lowerCamelCase__ : Union[str, Any] =randn_tensor(lowerCamelCase, generator=lowerCamelCase, device=lowerCamelCase, dtype=lowerCamelCase ) # get latents lowerCamelCase__ : Any =self.scheduler.add_noise(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : Tuple =init_latents return latents def snake_case ( self : Optional[int], lowerCamelCase : int=0 )-> List[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) lowerCamelCase__ : Optional[Any] =torch.device(F'''cuda:{gpu_id}''' ) lowerCamelCase__ : str =[ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowerCamelCase, lowerCamelCase ) def snake_case ( self : List[str], lowerCamelCase : str=0 )-> List[Any]: if is_accelerate_available() and is_accelerate_version('''>=''', '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) lowerCamelCase__ : List[str] =torch.device(F'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''', silence_dtype_warnings=lowerCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCamelCase__ : str =None for cpu_offloaded_model in [self.unet, self.movq]: lowerCamelCase__ : int =cpu_offload_with_hook(lowerCamelCase, lowerCamelCase, prev_module_hook=lowerCamelCase ) # We'll offload the last model manually. lowerCamelCase__ : int =hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def snake_case ( self : Optional[Any] )-> List[str]: if not hasattr(self.unet, '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(lowerCamelCase, '''_hf_hook''' ) and hasattr(module._hf_hook, '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowerCamelCase ) def __call__( self : List[str], lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]], lowerCamelCase : Union[torch.FloatTensor, PIL.Image.Image, List[torch.FloatTensor], List[PIL.Image.Image]], lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]], lowerCamelCase : int = 512, lowerCamelCase : int = 512, lowerCamelCase : int = 100, lowerCamelCase : float = 4.0, lowerCamelCase : float = 0.3, lowerCamelCase : int = 1, lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None, lowerCamelCase : Optional[str] = "pil", lowerCamelCase : bool = True, )-> List[str]: lowerCamelCase__ : Tuple =self._execution_device lowerCamelCase__ : str =guidance_scale > 1.0 if isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : List[str] =torch.cat(lowerCamelCase, dim=0 ) lowerCamelCase__ : Any =image_embeds.shape[0] if isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : int =torch.cat(lowerCamelCase, dim=0 ) if do_classifier_free_guidance: lowerCamelCase__ : Dict =image_embeds.repeat_interleave(lowerCamelCase, dim=0 ) lowerCamelCase__ : Optional[int] =negative_image_embeds.repeat_interleave(lowerCamelCase, dim=0 ) lowerCamelCase__ : Any =torch.cat([negative_image_embeds, image_embeds], dim=0 ).to(dtype=self.unet.dtype, device=lowerCamelCase ) if not isinstance(lowerCamelCase, lowerCamelCase ): lowerCamelCase__ : Optional[int] =[image] if not all(isinstance(lowerCamelCase, (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F'''Input is in incorrect format: {[type(lowerCamelCase ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' ) lowerCamelCase__ : Union[str, Any] =torch.cat([prepare_image(lowerCamelCase, lowerCamelCase, lowerCamelCase ) for i in image], dim=0 ) lowerCamelCase__ : int =image.to(dtype=image_embeds.dtype, device=lowerCamelCase ) lowerCamelCase__ : Tuple =self.movq.encode(lowerCamelCase )['''latents'''] lowerCamelCase__ : int =latents.repeat_interleave(lowerCamelCase, dim=0 ) self.scheduler.set_timesteps(lowerCamelCase, device=lowerCamelCase ) lowerCamelCase__ : Tuple =self.get_timesteps(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowerCamelCase__ : Any =timesteps[:1].repeat(batch_size * num_images_per_prompt ) lowerCamelCase__ : str =downscale_height_and_width(lowerCamelCase, lowerCamelCase, self.movq_scale_factor ) lowerCamelCase__ : Union[str, Any] =self.prepare_latents( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase, image_embeds.dtype, lowerCamelCase, lowerCamelCase ) for i, t in enumerate(self.progress_bar(lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase__ : Dict =torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase__ : Dict ={'''image_embeds''': image_embeds} lowerCamelCase__ : int =self.unet( sample=lowerCamelCase, timestep=lowerCamelCase, encoder_hidden_states=lowerCamelCase, added_cond_kwargs=lowerCamelCase, return_dict=lowerCamelCase, )[0] if do_classifier_free_guidance: lowerCamelCase__ : Dict =noise_pred.split(latents.shape[1], dim=1 ) lowerCamelCase__ : Optional[Any] =noise_pred.chunk(2 ) lowerCamelCase__ : int =variance_pred.chunk(2 ) lowerCamelCase__ : Optional[Any] =noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCamelCase__ : Union[str, Any] =torch.cat([noise_pred, variance_pred_text], dim=1 ) if not ( hasattr(self.scheduler.config, '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCamelCase__ : List[str] =noise_pred.split(latents.shape[1], dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ : int =self.scheduler.step( lowerCamelCase, lowerCamelCase, lowerCamelCase, generator=lowerCamelCase, )[0] # post-processing lowerCamelCase__ : Union[str, Any] =self.movq.decode(lowerCamelCase, force_not_quantize=lowerCamelCase )['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: lowerCamelCase__ : Dict =image * 0.5 + 0.5 lowerCamelCase__ : str =image.clamp(0, 1 ) lowerCamelCase__ : List[str] =image.cpu().permute(0, 2, 3, 1 ).float().numpy() if output_type == "pil": lowerCamelCase__ : Tuple =self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase )
707
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str, lowerCamelCase : int )-> None: lowerCamelCase__ : str =value lowerCamelCase__ : Node | None =None lowerCamelCase__ : Node | None =None class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : int, lowerCamelCase : Node )-> None: lowerCamelCase__ : Any =tree def snake_case ( self : str, lowerCamelCase : Node | None )-> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self : Dict )-> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
625
0
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path __A : Optional[int] = 'src/transformers' # Matches is_xxx_available() __A : Union[str, Any] = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} __A : Dict = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __A : int = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available __A : int = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") __A : Optional[int] = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __A : Optional[Any] = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", __A : Union[str, Any] = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], __A : int = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo __A : Union[str, Any] = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: __A : Dict = re.compile(R'^\s*try:') # Catches a line with else: __A : Optional[Any] = re.compile(R'^\s*else:') def snake_case__ ( _lowerCamelCase ) ->Dict: """simple docstring""" if _re_test_backend.search(_lowerCamelCase ) is None: return None __lowercase : Any = [b[0] for b in _re_backend.findall(_lowerCamelCase )] backends.sort() return "_and_".join(_lowerCamelCase ) def snake_case__ ( _lowerCamelCase ) ->List[Any]: """simple docstring""" with open(_lowerCamelCase, "r", encoding="utf-8", newline="\n" ) as f: __lowercase : Any = f.readlines() __lowercase : List[Any] = 0 while line_index < len(_lowerCamelCase ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_lowerCamelCase ): return None # First grab the objects without a specific backend in _import_structure __lowercase : Optional[Any] = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: __lowercase : Tuple = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_lowerCamelCase ): __lowercase : Union[str, Any] = _re_one_line_import_struct.search(_lowerCamelCase ).groups()[0] __lowercase : List[Any] = re.findall("\[([^\]]+)\]", _lowerCamelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue __lowercase : List[str] = _re_import_struct_key_value.search(_lowerCamelCase ) if single_line_import_search is not None: __lowercase : Union[str, Any] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(_lowerCamelCase ) > 0] objects.extend(_lowerCamelCase ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 __lowercase : Optional[Any] = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. __lowercase : Dict = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase : List[str] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase : Union[str, Any] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): __lowercase : Optional[int] = lines[line_index] if _re_import_struct_add_one.search(_lowerCamelCase ) is not None: objects.append(_re_import_struct_add_one.search(_lowerCamelCase ).groups()[0] ) elif _re_import_struct_add_many.search(_lowerCamelCase ) is not None: __lowercase : int = _re_import_struct_add_many.search(_lowerCamelCase ).groups()[0].split(", " ) __lowercase : List[str] = [obj[1:-1] for obj in imports if len(_lowerCamelCase ) > 0] objects.extend(_lowerCamelCase ) elif _re_between_brackets.search(_lowerCamelCase ) is not None: __lowercase : Dict = _re_between_brackets.search(_lowerCamelCase ).groups()[0].split(", " ) __lowercase : Optional[int] = [obj[1:-1] for obj in imports if len(_lowerCamelCase ) > 0] objects.extend(_lowerCamelCase ) elif _re_quote_object.search(_lowerCamelCase ) is not None: objects.append(_re_quote_object.search(_lowerCamelCase ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 12 + "\"" ): objects.append(line[13:-3] ) line_index += 1 __lowercase : int = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __lowercase : Dict = [] while ( line_index < len(_lowerCamelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): __lowercase : List[Any] = lines[line_index] __lowercase : int = _re_import.search(_lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 __lowercase : Optional[int] = {"none": objects} # Let's continue with backend-specific objects while line_index < len(_lowerCamelCase ): # If the line is an if is_backend_available, we grab all objects associated. __lowercase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __lowercase : str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __lowercase : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): __lowercase : Union[str, Any] = lines[line_index] __lowercase : Dict = _re_import.search(_lowerCamelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 12 ): objects.append(line[12:-2] ) line_index += 1 __lowercase : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def snake_case__ ( _lowerCamelCase, _lowerCamelCase ) ->Union[str, Any]: """simple docstring""" def find_duplicates(_lowerCamelCase ): return [k for k, v in collections.Counter(_lowerCamelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __lowercase : Dict = [] for key in import_dict_objects.keys(): __lowercase : Dict = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F'Duplicate _import_structure definitions for: {duplicate_imports}' ) __lowercase : int = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F'Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __lowercase : Union[str, Any] = "base imports" if key == "none" else F'{key} backend' errors.append(F'Differences for {name}:' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F' {a} in TYPE_HINT but not in _import_structure.' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F' {a} in _import_structure but not in TYPE_HINT.' ) return errors def snake_case__ ( ) ->Optional[Any]: """simple docstring""" __lowercase : str = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: __lowercase : Union[str, Any] = os.path.join(_lowerCamelCase, "__init__.py" ) __lowercase : Any = parse_init(_lowerCamelCase ) if objects is not None: __lowercase : Tuple = analyze_results(*_lowerCamelCase ) if len(_lowerCamelCase ) > 0: __lowercase : Union[str, Any] = F'Problem in {fname}, both halves do not define the same objects.\n{errors[0]}' failures.append("\n".join(_lowerCamelCase ) ) if len(_lowerCamelCase ) > 0: raise ValueError("\n\n".join(_lowerCamelCase ) ) def snake_case__ ( ) ->Any: """simple docstring""" __lowercase : List[str] = [] for path, directories, files in os.walk(_lowerCamelCase ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(_lowerCamelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_lowerCamelCase ) / folder).glob("*.py" ) ) ) == 0: continue __lowercase : Union[str, Any] = str((Path(_lowerCamelCase ) / folder).relative_to(_lowerCamelCase ) ) __lowercase : Any = short_path.replace(os.path.sep, "." ) submodules.append(_lowerCamelCase ) for fname in files: if fname == "__init__.py": continue __lowercase : Optional[int] = str((Path(_lowerCamelCase ) / fname).relative_to(_lowerCamelCase ) ) __lowercase : Union[str, Any] = short_path.replace(".py", "" ).replace(os.path.sep, "." ) if len(submodule.split("." ) ) == 1: submodules.append(_lowerCamelCase ) return submodules __A : Optional[Any] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def snake_case__ ( ) ->List[str]: """simple docstring""" __lowercase : Optional[Any] = importlib.util.spec_from_file_location( "transformers", os.path.join(_lowerCamelCase, "__init__.py" ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __lowercase : Optional[Any] = spec.loader.load_module() __lowercase : Any = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_lowerCamelCase ) > 0: __lowercase : str = "\n".join(F'- {module}' for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" F'{list_of_modules}\n' "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
575
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __A : Tuple = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') __A : Optional[int] = subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('utf-8').split() __A : Any = '|'.join(sys.argv[1:]) __A : Optional[int] = re.compile(RF"""^({joined_dirs}).*?\.py$""") __A : Tuple = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
575
1
'''simple docstring''' def lowercase__ ( __lowercase : bytes ) -> str: """simple docstring""" return "".join([hex(__lowercase )[2:].zfill(2 ).upper() for byte in list(__lowercase )] ) def lowercase__ ( __lowercase : str ) -> bytes: """simple docstring""" if (len(__lowercase ) % 2) != 0: raise ValueError( 'Base16 encoded data is invalid:\nData does not have an even number of hex digits.' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(__lowercase ) <= set('0123456789ABCDEF' ): raise ValueError( 'Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters.' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(__lowercase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
717
'''simple docstring''' import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class snake_case : """simple docstring""" def __init__( self : str , __A : List[str] , __A : Optional[Any]=1_3 , __A : Any=2 , __A : List[Any]=2_4 , __A : List[str]=1_6 , __A : Tuple=True , __A : int=True , __A : Tuple=3_2 , __A : int=5 , __A : Dict=4 , __A : Any=3_7 , __A : Optional[Any]="gelu" , __A : List[Any]=0.1 , __A : str=0.1 , __A : Dict=1_0 , __A : Any=0.02 , __A : Optional[Any]=None , __A : Dict=2 , __A : Optional[int]=2 , ): __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = patch_size __UpperCamelCase = max_length __UpperCamelCase = num_mel_bins __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = frequency_stride __UpperCamelCase = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) __UpperCamelCase = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 __UpperCamelCase = (self.max_length - self.patch_size) // self.time_stride + 1 __UpperCamelCase = frequency_out_dimension * time_out_dimension __UpperCamelCase = num_patches + 2 def _lowerCamelCase ( self : int ): __UpperCamelCase = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = self.get_config() return config, input_values, labels def _lowerCamelCase ( self : str ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__A , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def _lowerCamelCase ( self : List[str] , __A : str , __A : Dict , __A : Union[str, Any] ): __UpperCamelCase = ASTModel(config=__A ) model.to(__A ) model.eval() __UpperCamelCase = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = {'input_values': input_values} return config, inputs_dict @require_torch class snake_case ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] =( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ : Optional[Any] =( {"audio-classification": ASTForAudioClassification, "feature-extraction": ASTModel} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : List[str] =False SCREAMING_SNAKE_CASE_ : Optional[Any] =False SCREAMING_SNAKE_CASE_ : Dict =False SCREAMING_SNAKE_CASE_ : Dict =False def _lowerCamelCase ( self : Dict , __A : Optional[int] , __A : Optional[int] , __A : Tuple , __A : Optional[int] , __A : Optional[Any] ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = ASTModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__A , has_text_modality=__A , hidden_size=3_7 ) def _lowerCamelCase ( self : List[str] ): self.config_tester.run_common_tests() @unittest.skip(reason='AST does not use inputs_embeds' ) def _lowerCamelCase ( self : int ): pass def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__A , nn.Linear ) ) def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__A ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['input_values'] self.assertListEqual(arg_names[:1] , __A ) def _lowerCamelCase ( self : List[Any] ): __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) @slow def _lowerCamelCase ( self : Tuple ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = ASTModel.from_pretrained(__A ) self.assertIsNotNone(__A ) def lowercase__ ( ) -> List[Any]: """simple docstring""" __UpperCamelCase = hf_hub_download( repo_id='nielsr/audio-spectogram-transformer-checkpoint' , filename='sample_audio.flac' , repo_type='dataset' ) __UpperCamelCase , __UpperCamelCase = torchaudio.load(__lowercase ) return audio, sampling_rate @require_torch @require_torchaudio class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCamelCase ( self : Tuple ): return ( ASTFeatureExtractor.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ) if is_torchaudio_available() else None ) @slow def _lowerCamelCase ( self : Union[str, Any] ): __UpperCamelCase = self.default_feature_extractor __UpperCamelCase = ASTForAudioClassification.from_pretrained('MIT/ast-finetuned-audioset-10-10-0.4593' ).to(__A ) __UpperCamelCase = self.default_feature_extractor __UpperCamelCase , __UpperCamelCase = prepare_audio() __UpperCamelCase = audio.squeeze().numpy() __UpperCamelCase = feature_extractor(__A , sampling_rate=__A , return_tensors='pt' ).to(__A ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__A ) # verify the logits __UpperCamelCase = torch.Size((1, 5_2_7) ) self.assertEqual(outputs.logits.shape , __A ) __UpperCamelCase = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(__A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __A , atol=1e-4 ) )
434
0
"""simple docstring""" from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __A = logging.get_logger(__name__) class snake_case ( _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Tuple = ["input_features", "attention_mask"] def __init__( self : Any , UpperCamelCase__ : Optional[Any]=8_0 , UpperCamelCase__ : Dict=1_6_0_0_0 , UpperCamelCase__ : Any=0.0 , UpperCamelCase__ : Union[str, Any]=1_0 , UpperCamelCase__ : List[Any]=2_5 , UpperCamelCase__ : Any="hamming_window" , UpperCamelCase__ : Tuple=3_2_7_6_8.0 , UpperCamelCase__ : int=0.97 , UpperCamelCase__ : Tuple=1.0 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : str=True , UpperCamelCase__ : Any=False , **UpperCamelCase__ : str , )-> Optional[Any]: '''simple docstring''' super().__init__(feature_size=lowercase__ , sampling_rate=lowercase__ , padding_value=lowercase__ , **lowercase__) __lowerCAmelCase: Union[str, Any] = feature_size __lowerCAmelCase: str = sampling_rate __lowerCAmelCase: int = padding_value __lowerCAmelCase: List[str] = hop_length __lowerCAmelCase: Optional[int] = win_length __lowerCAmelCase: int = frame_signal_scale __lowerCAmelCase: Any = preemphasis_coeff __lowerCAmelCase: List[str] = mel_floor __lowerCAmelCase: Tuple = normalize_means __lowerCAmelCase: List[Any] = normalize_vars __lowerCAmelCase: List[Any] = win_function __lowerCAmelCase: Union[str, Any] = return_attention_mask __lowerCAmelCase: Optional[Any] = win_length * sampling_rate // 1_0_0_0 __lowerCAmelCase: Tuple = hop_length * sampling_rate // 1_0_0_0 __lowerCAmelCase: Optional[int] = optimal_fft_length(self.sample_size) __lowerCAmelCase: Union[str, Any] = (self.n_fft // 2) + 1 def lowercase_ ( self : Dict , UpperCamelCase__ : Optional[int])-> np.ndarray: '''simple docstring''' if self.win_function == "hamming_window": __lowerCAmelCase: Optional[Any] = window_function(window_length=self.sample_size , name=self.win_function , periodic=lowercase__) else: __lowerCAmelCase: Tuple = window_function(window_length=self.sample_size , name=self.win_function) __lowerCAmelCase: Tuple = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) __lowerCAmelCase: Union[str, Any] = spectrogram( one_waveform * self.frame_signal_scale , window=lowercase__ , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=lowercase__ , preemphasis=self.preemphasis_coeff , mel_filters=lowercase__ , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def lowercase_ ( self : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str])-> str: '''simple docstring''' if self.normalize_means: __lowerCAmelCase: Any = x[:input_length].mean(axis=0) __lowerCAmelCase: Dict = np.subtract(lowercase__ , lowercase__) if self.normalize_vars: __lowerCAmelCase: List[str] = x[:input_length].std(axis=0) __lowerCAmelCase: Tuple = np.divide(lowercase__ , lowercase__) if input_length < x.shape[0]: __lowerCAmelCase: str = padding_value # make sure array is in float32 __lowerCAmelCase: int = x.astype(np.floataa) return x def lowercase_ ( self : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any] = None)-> List[np.ndarray]: '''simple docstring''' __lowerCAmelCase: Optional[int] = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(lowercase__ , lowercase__ , self.padding_value) for x, n in zip(lowercase__ , lowercase__)] def __call__( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : Any = False , UpperCamelCase__ : Optional[Any] = None , UpperCamelCase__ : str = False , UpperCamelCase__ : List[str] = None , UpperCamelCase__ : str = None , UpperCamelCase__ : int = None , UpperCamelCase__ : int = None , **UpperCamelCase__ : List[str] , )-> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}.") else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug.") __lowerCAmelCase: Union[str, Any] = isinstance(lowercase__ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}") __lowerCAmelCase: str = is_batched_numpy or ( isinstance(lowercase__ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: __lowerCAmelCase: Tuple = [np.asarray(lowercase__ , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(lowercase__ , np.ndarray): __lowerCAmelCase: str = np.asarray(lowercase__ , dtype=np.floataa) elif isinstance(lowercase__ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): __lowerCAmelCase: int = raw_speech.astype(np.floataa) # always return batch if not is_batched: __lowerCAmelCase: Any = [raw_speech] # extract fbank features __lowerCAmelCase: Dict = [self._extract_mfsc_features(lowercase__) for one_waveform in raw_speech] # convert into correct format for padding __lowerCAmelCase: Optional[Any] = BatchFeature({"input_features": features}) __lowerCAmelCase: int = self.pad( lowercase__ , padding=lowercase__ , max_length=lowercase__ , truncation=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , **lowercase__ , ) # make sure list is in array format __lowerCAmelCase: Tuple = padded_inputs.get("input_features") if isinstance(input_features[0] , lowercase__): __lowerCAmelCase: Any = [np.asarray(lowercase__ , dtype=np.floataa) for feature in input_features] __lowerCAmelCase: int = padded_inputs.get("attention_mask") if attention_mask is not None: __lowerCAmelCase: int = [np.asarray(lowercase__ , dtype=np.intaa) for array in attention_mask] if self.normalize_means or self.normalize_vars: __lowerCAmelCase: Dict = ( np.array(lowercase__ , dtype=np.intaa) if self._get_padding_strategies(lowercase__ , max_length=lowercase__) is not PaddingStrategy.DO_NOT_PAD and padding else None ) __lowerCAmelCase: Union[str, Any] = self.normalize( padded_inputs["input_features"] , attention_mask=lowercase__) if return_tensors is not None: __lowerCAmelCase: int = padded_inputs.convert_to_tensors(lowercase__) return padded_inputs
346
'''simple docstring''' import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class UpperCAmelCase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : Tuple = FlaxAutoencoderKL @property def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE : Union[str, Any] = 4 SCREAMING_SNAKE_CASE : Tuple = 3 SCREAMING_SNAKE_CASE : str = (32, 32) SCREAMING_SNAKE_CASE : Optional[Any] = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE : Dict = jax.random.uniform(lowercase__ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE : Optional[int] = { 'block_out_channels': [32, 64], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 4, } SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_input return init_dict, inputs_dict
251
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a : Any = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[Any] = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
85
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule a : List[str] = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys a : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
85
1
import argparse SCREAMING_SNAKE_CASE :List[str] = '''docs/source/_static/js/custom.js''' def _lowerCAmelCase ( lowerCAmelCase_ :str )->List[str]: '''simple docstring''' with open(lowerCAmelCase_ , encoding="utf-8" , newline="\n" ) as f: snake_case_ = f.readlines() snake_case_ = 0 # First let's put the right version while not lines[index].startswith("const stableVersion =" ): index += 1 snake_case_ = F'''const stableVersion = \"v{version}\"\n''' # Then update the dictionary while not lines[index].startswith("const versionMapping = {" ): index += 1 # We go until the end while not lines[index].startswith("}" ): index += 1 # We add the new version at the end lines[index - 1] += F''' \"v{version}\": \"v{version}\",\n''' with open(lowerCAmelCase_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lowerCAmelCase_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Optional[int] = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') SCREAMING_SNAKE_CASE :List[Any] = parser.parse_args() update_custom_js(args.version)
283
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class _lowerCAmelCase ( _lowercase ): A__ = 'donut-swin' A__ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __UpperCAmelCase=224 , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=96 , __UpperCAmelCase=[2, 2, 6, 2] , __UpperCAmelCase=[3, 6, 12, 24] , __UpperCAmelCase=7 , __UpperCAmelCase=4.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , **__UpperCAmelCase , ): super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = image_size lowerCAmelCase__ : List[str] = patch_size lowerCAmelCase__ : int = num_channels lowerCAmelCase__ : Optional[Any] = embed_dim lowerCAmelCase__ : int = depths lowerCAmelCase__ : Dict = len(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = num_heads lowerCAmelCase__ : Dict = window_size lowerCAmelCase__ : str = mlp_ratio lowerCAmelCase__ : Optional[int] = qkv_bias lowerCAmelCase__ : Any = hidden_dropout_prob lowerCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase__ : List[str] = drop_path_rate lowerCAmelCase__ : Tuple = hidden_act lowerCAmelCase__ : List[str] = use_absolute_embeddings lowerCAmelCase__ : Dict = layer_norm_eps lowerCAmelCase__ : Any = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase__ : List[Any] = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) )
678
0
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration A = 5_0_0_0_0_0 A ,A = os.path.split(__file__) A = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def lowerCamelCase ( UpperCamelCase : datasets.Dataset , **UpperCamelCase : int ) -> Optional[Any]: _lowerCamelCase = dataset.map(**UpperCamelCase ) @get_duration def lowerCamelCase ( UpperCamelCase : datasets.Dataset , **UpperCamelCase : int ) -> List[str]: _lowerCamelCase = dataset.filter(**UpperCamelCase ) def lowerCamelCase ( ) -> Tuple: _lowerCamelCase = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) _lowerCamelCase = generate_example_dataset( os.path.join(UpperCamelCase , 'dataset.arrow' ) , UpperCamelCase , num_examples=UpperCamelCase ) _lowerCamelCase = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=UpperCamelCase ) def tokenize(UpperCamelCase : Any ): return tokenizer(examples['text'] ) _lowerCamelCase = map(UpperCamelCase ) _lowerCamelCase = map(UpperCamelCase , batched=UpperCamelCase ) _lowerCamelCase = map(UpperCamelCase , function=lambda UpperCamelCase : None , batched=UpperCamelCase ) with dataset.formatted_as(type='numpy' ): _lowerCamelCase = map(UpperCamelCase , function=lambda UpperCamelCase : None , batched=UpperCamelCase ) with dataset.formatted_as(type='pandas' ): _lowerCamelCase = map(UpperCamelCase , function=lambda UpperCamelCase : None , batched=UpperCamelCase ) with dataset.formatted_as(type='torch' , columns='numbers' ): _lowerCamelCase = map(UpperCamelCase , function=lambda UpperCamelCase : None , batched=UpperCamelCase ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): _lowerCamelCase = map(UpperCamelCase , function=lambda UpperCamelCase : None , batched=UpperCamelCase ) _lowerCamelCase = map(UpperCamelCase , function=UpperCamelCase , batched=UpperCamelCase ) _lowerCamelCase = filter(UpperCamelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(UpperCamelCase , 'wb' ) as f: f.write(json.dumps(UpperCamelCase ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
234
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
234
1
def UpperCAmelCase__( __UpperCAmelCase : str ): return "".join(chr(ord(__UpperCAmelCase ) - 32 ) if 'a' <= char <= 'z' else char for char in word ) if __name__ == "__main__": from doctest import testmod testmod()
576
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=32 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): __snake_case : str = parent __snake_case : List[Any] = batch_size __snake_case : int = seq_length __snake_case : Any = is_training __snake_case : Tuple = use_input_mask __snake_case : Optional[Any] = use_token_type_ids __snake_case : List[Any] = use_labels __snake_case : Optional[int] = vocab_size __snake_case : Optional[Any] = hidden_size __snake_case : Dict = num_hidden_layers __snake_case : Optional[Any] = num_attention_heads __snake_case : int = intermediate_size __snake_case : str = hidden_act __snake_case : Optional[int] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Tuple = max_position_embeddings __snake_case : Tuple = type_vocab_size __snake_case : Dict = type_sequence_label_size __snake_case : Union[str, Any] = initializer_range __snake_case : List[Any] = num_labels __snake_case : Dict = num_choices __snake_case : List[Any] = scope def lowercase_ ( self ): __snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case : List[Any] = None if self.use_input_mask: __snake_case : Any = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case : Any = None if self.use_token_type_ids: __snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __snake_case : List[str] = None __snake_case : Dict = None __snake_case : int = None if self.use_labels: __snake_case : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __snake_case : Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ ( self ): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __snake_case : Optional[Any] = BioGptModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Dict = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) __snake_case : Optional[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): __snake_case : List[Any] = BioGptForCausalLM(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ): __snake_case : str = BioGptModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() # create attention mask __snake_case : Any = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCAmelCase ) __snake_case : Any = self.seq_length // 2 __snake_case : Any = 0 # first forward pass __snake_case , __snake_case : List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ).to_tuple() # create hypothetical next token and extent to next_input_ids __snake_case : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids __snake_case : int = ids_tensor((1,) , _UpperCAmelCase ).item() + 1 __snake_case : int = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) __snake_case : List[Any] = random_other_next_tokens # append to next input_ids and attn_mask __snake_case : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case : List[Any] = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_UpperCAmelCase )] , dim=1 , ) # get two different outputs __snake_case : str = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )['last_hidden_state'] __snake_case : str = model(_UpperCAmelCase , past_key_values=_UpperCAmelCase , attention_mask=_UpperCAmelCase )['last_hidden_state'] # select random slice __snake_case : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case : List[Any] = output_from_no_past[:, -1, random_slice_idx].detach() __snake_case : Tuple = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ): __snake_case : Tuple = BioGptModel(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval() __snake_case : List[Any] = torch.ones(input_ids.shape , dtype=torch.long , device=_UpperCAmelCase ) # first forward pass __snake_case : Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) __snake_case , __snake_case : Union[str, Any] = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __snake_case : str = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case : str = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __snake_case : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case : Tuple = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __snake_case : str = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )['last_hidden_state'] __snake_case : Optional[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[ 'last_hidden_state' ] # select random slice __snake_case : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase , _UpperCAmelCase=False ): __snake_case : Tuple = BioGptForCausalLM(_UpperCAmelCase ) model.to(_UpperCAmelCase ) if gradient_checkpointing: model.gradient_checkpointing_enable() __snake_case : List[Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def lowercase_ ( self , _UpperCAmelCase , *_UpperCAmelCase ): __snake_case : Tuple = BioGptModel(_UpperCAmelCase ) __snake_case : Optional[int] = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def lowercase_ ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , *_UpperCAmelCase ): __snake_case : Dict = self.num_labels __snake_case : int = BioGptForTokenClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ ( self ): __snake_case : str = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) : List[Any] = config_and_inputs __snake_case : Tuple = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class __SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) __UpperCAmelCase = (BioGptForCausalLM,) if is_torch_available() else () __UpperCAmelCase = ( { "feature-extraction": BioGptModel, "text-classification": BioGptForSequenceClassification, "text-generation": BioGptForCausalLM, "token-classification": BioGptForTokenClassification, "zero-shot": BioGptForSequenceClassification, } if is_torch_available() else {} ) __UpperCAmelCase = False def lowercase_ ( self ): __snake_case : List[str] = BioGptModelTester(self ) __snake_case : Any = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowercase_ ( self ): self.config_tester.run_common_tests() def lowercase_ ( self ): __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __snake_case : Union[str, Any] = type self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_UpperCAmelCase , gradient_checkpointing=_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_UpperCAmelCase ) def lowercase_ ( self ): __snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_UpperCAmelCase ) @slow def lowercase_ ( self ): __snake_case : str = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(_UpperCAmelCase ) __snake_case : int = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __snake_case : Dict = 'left' # Define PAD Token = EOS Token = 50256 __snake_case : Dict = tokenizer.eos_token __snake_case : Optional[int] = model.config.eos_token_id # use different length sentences to test batching __snake_case : Any = [ 'Hello, my dog is a little', 'Today, I', ] __snake_case : Optional[Any] = tokenizer(_UpperCAmelCase , return_tensors='pt' , padding=_UpperCAmelCase ) __snake_case : Optional[Any] = inputs['input_ids'].to(_UpperCAmelCase ) __snake_case : str = model.generate( input_ids=_UpperCAmelCase , attention_mask=inputs['attention_mask'].to(_UpperCAmelCase ) , ) __snake_case : List[Any] = tokenizer(sentences[0] , return_tensors='pt' ).input_ids.to(_UpperCAmelCase ) __snake_case : List[str] = model.generate(input_ids=_UpperCAmelCase ) __snake_case : Optional[Any] = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() __snake_case : Tuple = tokenizer(sentences[1] , return_tensors='pt' ).input_ids.to(_UpperCAmelCase ) __snake_case : Dict = model.generate(input_ids=_UpperCAmelCase , max_length=model.config.max_length - num_paddings ) __snake_case : Any = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) __snake_case : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_UpperCAmelCase ) __snake_case : Union[str, Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=_UpperCAmelCase ) __snake_case : str = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) self.assertListEqual(_UpperCAmelCase , [non_padded_sentence, padded_sentence] ) @slow def lowercase_ ( self ): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : Tuple = BioGptModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def lowercase_ ( self ): __snake_case , __snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : List[str] = 3 __snake_case : Union[str, Any] = input_dict['input_ids'] __snake_case : Tuple = input_ids.ne(1 ).to(_UpperCAmelCase ) __snake_case : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case : Optional[Any] = BioGptForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase_ ( self ): __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Tuple = 3 __snake_case : Any = 'multi_label_classification' __snake_case : Tuple = input_dict['input_ids'] __snake_case : List[Any] = input_ids.ne(1 ).to(_UpperCAmelCase ) __snake_case : Dict = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __snake_case : str = BioGptForSequenceClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() __snake_case : Dict = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __SCREAMING_SNAKE_CASE ( unittest.TestCase): """simple docstring""" @slow def lowercase_ ( self ): __snake_case : str = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) __snake_case : Tuple = torch.tensor([[2, 4_805, 9, 656, 21]] ) __snake_case : Any = model(_UpperCAmelCase )[0] __snake_case : List[Any] = 42_384 __snake_case : Any = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _UpperCAmelCase ) __snake_case : Dict = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 ) ) @slow def lowercase_ ( self ): __snake_case : List[str] = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __snake_case : Union[str, Any] = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(_UpperCAmelCase ) torch.manual_seed(0 ) __snake_case : Tuple = tokenizer('COVID-19 is' , return_tensors='pt' ).to(_UpperCAmelCase ) __snake_case : Tuple = model.generate( **_UpperCAmelCase , min_length=100 , max_length=1_024 , num_beams=5 , early_stopping=_UpperCAmelCase , ) __snake_case : Tuple = tokenizer.decode(output_ids[0] , skip_special_tokens=_UpperCAmelCase ) __snake_case : str = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
576
1
"""simple docstring""" from __future__ import annotations def snake_case ( UpperCamelCase__ : int ) -> bool: lowerCamelCase : Dict = str(UpperCamelCase__ ) return len(UpperCamelCase__ ) == 9 and set(UpperCamelCase__ ) == set("""123456789""" ) def snake_case ( ) -> int | None: for base_num in range(9999 , 4999 , -1 ): lowerCamelCase : List[Any] = 100002 * base_num if is_9_pandigital(UpperCamelCase__ ): return candidate for base_num in range(333 , 99 , -1 ): lowerCamelCase : Tuple = 1002003 * base_num if is_9_pandigital(UpperCamelCase__ ): return candidate return None if __name__ == "__main__": print(f"""{solution() = }""")
42
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class A__ ( __lowercase , __lowercase , unittest.TestCase): """simple docstring""" snake_case__ : str =StableDiffusionXLImgaImgPipeline snake_case__ : Any =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} snake_case__ : Optional[int] =PipelineTesterMixin.required_optional_params - {'''latents'''} snake_case__ : Dict =TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case__ : Tuple =IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case__ : List[str] =IMAGE_TO_IMAGE_IMAGE_PARAMS def a__ ( self: List[str] )-> int: torch.manual_seed(0 ) lowerCamelCase : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=__a , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) lowerCamelCase : Any = EulerDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) lowerCamelCase : Any = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCamelCase : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=32 , ) lowerCamelCase : Dict = CLIPTextModel(__a ) lowerCamelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=__a ) lowerCamelCase : Dict = CLIPTextModelWithProjection(__a ) lowerCamelCase : Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=__a ) lowerCamelCase : str = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def a__ ( self: Any , __a: str , __a: Tuple=0 )-> Union[str, Any]: lowerCamelCase : List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a ) ).to(__a ) lowerCamelCase : Any = image / 2 + 0.5 if str(__a ).startswith("""mps""" ): lowerCamelCase : Dict = torch.manual_seed(__a ) else: lowerCamelCase : Tuple = torch.Generator(device=__a ).manual_seed(__a ) lowerCamelCase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.75, } return inputs def a__ ( self: Dict )-> Optional[Any]: lowerCamelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase : Union[str, Any] = self.get_dummy_components() lowerCamelCase : Optional[int] = StableDiffusionXLImgaImgPipeline(**__a ) lowerCamelCase : int = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase : Optional[Any] = self.get_dummy_inputs(__a ) lowerCamelCase : Optional[int] = sd_pipe(**__a ).images lowerCamelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase : Any = np.array([0.46_56, 0.48_40, 0.44_39, 0.66_98, 0.55_74, 0.45_24, 0.57_99, 0.59_43, 0.51_65] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self: Optional[int] )-> Union[str, Any]: super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def a__ ( self: Optional[Any] )-> str: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def a__ ( self: List[str] )-> Optional[Any]: pass def a__ ( self: List[Any] )-> Union[str, Any]: lowerCamelCase : Tuple = self.get_dummy_components() lowerCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline(**__a ) lowerCamelCase : str = sd_pipe.to(__a ) lowerCamelCase : Any = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) # forward without prompt embeds lowerCamelCase : Dict = self.get_dummy_inputs(__a ) lowerCamelCase : Any = 3 * ["""this is a negative prompt"""] lowerCamelCase : Optional[int] = negative_prompt lowerCamelCase : Tuple = 3 * [inputs["""prompt"""]] lowerCamelCase : List[Any] = sd_pipe(**__a ) lowerCamelCase : Optional[int] = output.images[0, -3:, -3:, -1] # forward with prompt embeds lowerCamelCase : Tuple = self.get_dummy_inputs(__a ) lowerCamelCase : List[Any] = 3 * ["""this is a negative prompt"""] lowerCamelCase : Tuple = 3 * [inputs.pop("""prompt""" )] ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) : Union[str, Any] = sd_pipe.encode_prompt(__a , negative_prompt=__a ) lowerCamelCase : int = sd_pipe( **__a , prompt_embeds=__a , negative_prompt_embeds=__a , pooled_prompt_embeds=__a , negative_pooled_prompt_embeds=__a , ) lowerCamelCase : Union[str, Any] = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class A__ ( unittest.TestCase): """simple docstring""" def a__ ( self: Dict )-> str: super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self: Union[str, Any] , __a: Any , __a: Any="cpu" , __a: str=torch.floataa , __a: Any=0 )-> Optional[Any]: lowerCamelCase : Optional[Any] = torch.Generator(device=__a ).manual_seed(__a ) lowerCamelCase : List[Any] = np.random.RandomState(__a ).standard_normal((1, 4, 64, 64) ) lowerCamelCase : List[str] = torch.from_numpy(__a ).to(device=__a , dtype=__a ) lowerCamelCase : int = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def a__ ( self: Optional[int] )-> List[str]: lowerCamelCase : Tuple = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) lowerCamelCase : Optional[int] = self.get_inputs(__a ) lowerCamelCase : Optional[Any] = pipe(**__a ).images lowerCamelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) lowerCamelCase : List[str] = np.array([0.4_94_93, 0.4_78_96, 0.4_07_98, 0.5_42_14, 0.5_32_12, 0.4_82_02, 0.4_76_56, 0.4_63_29, 0.4_85_06] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
42
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from timm import create_model from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import BitConfig, BitForImageClassification, BitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' lowerCAmelCase = """huggingface/label-files""" lowerCAmelCase = """imagenet-1k-id2label.json""" lowerCAmelCase = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} lowerCAmelCase = {v: k for k, v in idalabel.items()} lowerCAmelCase = """std_conv""" if """bit""" in model_name else False # note that when using BiT as backbone for ViT-hybrid checkpoints, # one needs to additionally set config.layer_type = "bottleneck", config.stem_type = "same", # config.conv_layer = "std_conv_same" lowerCAmelCase = BitConfig( conv_layer=SCREAMING_SNAKE_CASE , num_labels=10_00 , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , ) return config def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if "stem.conv" in name: lowerCAmelCase = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: lowerCAmelCase = name.replace("""blocks""" , """layers""" ) if "head.fc" in name: lowerCAmelCase = name.replace("""head.fc""" , """classifier.1""" ) if name.startswith("""norm""" ): lowerCAmelCase = """bit.""" + name if "bit" not in name and "classifier" not in name: lowerCAmelCase = """bit.encoder.""" + name return name def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int]=False ): '''simple docstring''' lowerCAmelCase = get_config(SCREAMING_SNAKE_CASE ) # load original model from timm lowerCAmelCase = create_model(SCREAMING_SNAKE_CASE , pretrained=SCREAMING_SNAKE_CASE ) timm_model.eval() # load state_dict of original model lowerCAmelCase = timm_model.state_dict() for key in state_dict.copy().keys(): lowerCAmelCase = state_dict.pop(SCREAMING_SNAKE_CASE ) lowerCAmelCase = val.squeeze() if """head""" in key else val # load HuggingFace model lowerCAmelCase = BitForImageClassification(SCREAMING_SNAKE_CASE ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE ) # create image processor lowerCAmelCase = create_transform(**resolve_data_config({} , model=SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = transform.transforms lowerCAmelCase = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } lowerCAmelCase = BitImageProcessor( do_resize=SCREAMING_SNAKE_CASE , size={"""shortest_edge""": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=SCREAMING_SNAKE_CASE , crop_size={"""height""": timm_transforms[1].size[0], """width""": timm_transforms[1].size[1]} , do_normalize=SCREAMING_SNAKE_CASE , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) lowerCAmelCase = prepare_img() lowerCAmelCase = transform(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) lowerCAmelCase = processor(SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values # verify pixel values assert torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # verify logits with torch.no_grad(): lowerCAmelCase = model(SCREAMING_SNAKE_CASE ) lowerCAmelCase = outputs.logits print("""Logits:""" , logits[0, :3] ) print("""Predicted class:""" , model.config.idalabel[logits.argmax(-1 ).item()] ) lowerCAmelCase = timm_model(SCREAMING_SNAKE_CASE ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(SCREAMING_SNAKE_CASE , outputs.logits , atol=1e-3 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) print(F'Saving model {model_name} and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print(F'Pushing model {model_name} and processor to the hub' ) model.push_to_hub(F'ybelkada/{model_name}' ) processor.push_to_hub(F'ybelkada/{model_name}' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="resnetv2_50x1_bitm", type=str, help="Name of the BiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model to the hub.", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_bit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
532
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
532
1
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : str = logging.get_logger(__name__) def a__ ( A_ ): '''simple docstring''' __magic_name__ = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("""Quantized models are not supported.""" ) __magic_name__ = re.match(R"""^mobilenet_v1_([^_]*)_([^_]*)$""", A_ ) if matches: __magic_name__ = float(matches[1] ) __magic_name__ = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __magic_name__ = 1001 __magic_name__ = """imagenet-1k-id2label.json""" __magic_name__ = """huggingface/label-files""" __magic_name__ = json.load(open(hf_hub_download(A_, A_, repo_type="""dataset""" ), """r""" ) ) __magic_name__ = {int(A_ ) + 1: v for k, v in idalabel.items()} __magic_name__ = """background""" __magic_name__ = idalabel __magic_name__ = {v: k for k, v in idalabel.items()} return config def a__ ( ): '''simple docstring''' __magic_name__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" __magic_name__ = Image.open(requests.get(A_, stream=A_ ).raw ) return im @torch.no_grad() def a__ ( A_, A_, A_, A_=False ): '''simple docstring''' __magic_name__ = get_mobilenet_va_config(A_ ) # Load 🤗 model __magic_name__ = MobileNetVaForImageClassification(A_ ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(A_, A_, A_ ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __magic_name__ = MobileNetVaImageProcessor( crop_size={"""width""": config.image_size, """height""": config.image_size}, size={"""shortest_edge""": config.image_size + 32}, ) __magic_name__ = image_processor(images=prepare_img(), return_tensors="""pt""" ) __magic_name__ = model(**A_ ) __magic_name__ = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __magic_name__ = torch.tensor([-4.1739, -1.1233, 3.1205] ) elif model_name == "mobilenet_v1_0.75_192": __magic_name__ = torch.tensor([-3.9440, -2.3141, -0.3333] ) else: __magic_name__ = None if expected_logits is not None: assert torch.allclose(logits[0, :3], A_, atol=1e-4 ) Path(A_ ).mkdir(exist_ok=A_ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A_ ) if push_to_hub: print("""Pushing to the hub...""" ) __magic_name__ = """google/""" + model_name image_processor.push_to_hub(A_ ) model.push_to_hub(A_ ) if __name__ == "__main__": __lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='mobilenet_v1_1.0_224', type=str, help='Name of the MobileNetV1 model you\'d like to convert. Should in the form \'mobilenet_v1_<depth>_<size>\'.', ) parser.add_argument( '--checkpoint_path', required=True, type=str, help='Path to the original TensorFlow checkpoint (.ckpt file).' ) parser.add_argument( '--pytorch_dump_folder_path', required=True, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase : str = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
76
import collections import importlib.util import os import re from pathlib import Path __lowerCAmelCase : int = 'src/transformers' # Matches is_xxx_available() __lowerCAmelCase : Optional[int] = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} __lowerCAmelCase : Dict = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __lowerCAmelCase : int = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available __lowerCAmelCase : Optional[Any] = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") __lowerCAmelCase : Optional[Any] = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __lowerCAmelCase : Dict = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", __lowerCAmelCase : List[str] = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], __lowerCAmelCase : Optional[int] = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo __lowerCAmelCase : List[str] = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: __lowerCAmelCase : int = re.compile(R'^\s*try:') # Catches a line with else: __lowerCAmelCase : Tuple = re.compile(R'^\s*else:') def a__ ( A_ ): '''simple docstring''' if _re_test_backend.search(A_ ) is None: return None __magic_name__ = [b[0] for b in _re_backend.findall(A_ )] backends.sort() return "_and_".join(A_ ) def a__ ( A_ ): '''simple docstring''' with open(A_, """r""", encoding="""utf-8""", newline="""\n""" ) as f: __magic_name__ = f.readlines() __magic_name__ = 0 while line_index < len(A_ ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(A_ ): return None # First grab the objects without a specific backend in _import_structure __magic_name__ = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: __magic_name__ = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(A_ ): __magic_name__ = _re_one_line_import_struct.search(A_ ).groups()[0] __magic_name__ = re.findall("""\[([^\]]+)\]""", A_ ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue __magic_name__ = _re_import_struct_key_value.search(A_ ) if single_line_import_search is not None: __magic_name__ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(A_ ) > 0] objects.extend(A_ ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 __magic_name__ = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. __magic_name__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __magic_name__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __magic_name__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): __magic_name__ = lines[line_index] if _re_import_struct_add_one.search(A_ ) is not None: objects.append(_re_import_struct_add_one.search(A_ ).groups()[0] ) elif _re_import_struct_add_many.search(A_ ) is not None: __magic_name__ = _re_import_struct_add_many.search(A_ ).groups()[0].split(""", """ ) __magic_name__ = [obj[1:-1] for obj in imports if len(A_ ) > 0] objects.extend(A_ ) elif _re_between_brackets.search(A_ ) is not None: __magic_name__ = _re_between_brackets.search(A_ ).groups()[0].split(""", """ ) __magic_name__ = [obj[1:-1] for obj in imports if len(A_ ) > 0] objects.extend(A_ ) elif _re_quote_object.search(A_ ) is not None: objects.append(_re_quote_object.search(A_ ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 __magic_name__ = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend __magic_name__ = [] while ( line_index < len(A_ ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): __magic_name__ = lines[line_index] __magic_name__ = _re_import.search(A_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 __magic_name__ = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(A_ ): # If the line is an if is_backend_available, we grab all objects associated. __magic_name__ = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: __magic_name__ = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 __magic_name__ = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): __magic_name__ = lines[line_index] __magic_name__ = _re_import.search(A_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 __magic_name__ = objects else: line_index += 1 return import_dict_objects, type_hint_objects def a__ ( A_, A_ ): '''simple docstring''' def find_duplicates(A_ ): return [k for k, v in collections.Counter(A_ ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] __magic_name__ = [] for key in import_dict_objects.keys(): __magic_name__ = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f'''Duplicate _import_structure definitions for: {duplicate_imports}''' ) __magic_name__ = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): __magic_name__ = """base imports""" if key == """none""" else f'''{key} backend''' errors.append(f'''Differences for {name}:''' ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f''' {a} in TYPE_HINT but not in _import_structure.''' ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f''' {a} in _import_structure but not in TYPE_HINT.''' ) return errors def a__ ( ): '''simple docstring''' __magic_name__ = [] for root, _, files in os.walk(A_ ): if "__init__.py" in files: __magic_name__ = os.path.join(A_, """__init__.py""" ) __magic_name__ = parse_init(A_ ) if objects is not None: __magic_name__ = analyze_results(*A_ ) if len(A_ ) > 0: __magic_name__ = f'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(A_ ) ) if len(A_ ) > 0: raise ValueError("""\n\n""".join(A_ ) ) def a__ ( ): '''simple docstring''' __magic_name__ = [] for path, directories, files in os.walk(A_ ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(A_ ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(A_ ) / folder).glob("""*.py""" ) ) ) == 0: continue __magic_name__ = str((Path(A_ ) / folder).relative_to(A_ ) ) __magic_name__ = short_path.replace(os.path.sep, """.""" ) submodules.append(A_ ) for fname in files: if fname == "__init__.py": continue __magic_name__ = str((Path(A_ ) / fname).relative_to(A_ ) ) __magic_name__ = short_path.replace(""".py""", """""" ).replace(os.path.sep, """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(A_ ) return submodules __lowerCAmelCase : Dict = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def a__ ( ): '''simple docstring''' __magic_name__ = importlib.util.spec_from_file_location( """transformers""", os.path.join(A_, """__init__.py""" ), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __magic_name__ = spec.loader.load_module() __magic_name__ = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(A_ ) > 0: __magic_name__ = """\n""".join(f'''- {module}''' for module in module_not_registered ) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" f'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
76
1
'''simple docstring''' def _UpperCamelCase ( __UpperCamelCase ,__UpperCamelCase ) -> float: if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
42
def A__ (snake_case : int ) -> bool: if number < 0: raise ValueError("""number must not be negative""" ) return number & (number - 1) == 0 if __name__ == "__main__": import doctest doctest.testmod()
279
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class lowerCAmelCase_ ( metaclass=lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : Optional[Any] = ["""note_seq"""] def __init__( self , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" requires_backends(self , ['note_seq'] ) @classmethod def snake_case ( cls , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" requires_backends(cls , ['note_seq'] ) @classmethod def snake_case ( cls , *lowerCAmelCase , **lowerCAmelCase ): """simple docstring""" requires_backends(cls , ['note_seq'] )
104
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json", } class lowerCAmelCase_ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase : Dict = """roc_bert""" def __init__( self , lowerCAmelCase=3_05_22 , lowerCAmelCase=7_68 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=30_72 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_12 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=True , lowerCAmelCase=0 , lowerCAmelCase="absolute" , lowerCAmelCase=None , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=7_68 , lowerCAmelCase=9_10 , lowerCAmelCase=5_12 , lowerCAmelCase=2_48_58 , lowerCAmelCase=True , **lowerCAmelCase , ): """simple docstring""" snake_case = vocab_size snake_case = max_position_embeddings snake_case = hidden_size snake_case = num_hidden_layers snake_case = num_attention_heads snake_case = intermediate_size snake_case = hidden_act snake_case = hidden_dropout_prob snake_case = attention_probs_dropout_prob snake_case = initializer_range snake_case = type_vocab_size snake_case = layer_norm_eps snake_case = use_cache snake_case = enable_pronunciation snake_case = enable_shape snake_case = pronunciation_embed_dim snake_case = pronunciation_vocab_size snake_case = shape_embed_dim snake_case = shape_vocab_size snake_case = concat_input snake_case = position_embedding_type snake_case = classifier_dropout super().__init__(pad_token_id=lowerCAmelCase , **lowerCAmelCase )
104
1
from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCamelCase_ : lowerCamelCase_ = 42 lowerCamelCase_ = None lowerCamelCase_ = None _lowerCamelCase = namedtuple('CoinsDistribResult', 'moves excess') def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: TreeNode | None ): if root is None: return 0 # Validation def count_nodes(UpperCamelCase__: TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(UpperCamelCase__: TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(UpperCamelCase__ ) != count_coins(UpperCamelCase__ ): raise ValueError("""The nodes number should be same as the number of coins""" ) # Main calculation def get_distrib(UpperCamelCase__: TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_distrib(node.left ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = get_distrib(node.right ) SCREAMING_SNAKE_CASE__ = 1 - left_distrib_excess SCREAMING_SNAKE_CASE__ = 1 - right_distrib_excess SCREAMING_SNAKE_CASE__ = ( left_distrib_moves + right_distrib_moves + abs(UpperCamelCase__ ) + abs(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE__ = node.data - coins_to_left - coins_to_right return CoinsDistribResult(UpperCamelCase__ , UpperCamelCase__ ) return get_distrib(UpperCamelCase__ )[0] if __name__ == "__main__": import doctest doctest.testmod()
6
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available _lowerCamelCase = {'configuration_speech_encoder_decoder': ['SpeechEncoderDecoderConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['SpeechEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = ['FlaxSpeechEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys _lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
1
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __lowerCAmelCase ( ): raise RuntimeError("CUDA out of memory." ) class _UpperCamelCase (nn.Module ): def __init__( self )-> Any: super().__init__() __lowerCAmelCase = nn.Linear(3 , 4 ) __lowerCAmelCase = nn.BatchNormad(4 ) __lowerCAmelCase = nn.Linear(4 , 5 ) def __UpperCAmelCase ( self , __UpperCamelCase )-> Tuple: return self.lineara(self.batchnorm(self.lineara(__UpperCamelCase ) ) ) class _UpperCamelCase (unittest.TestCase ): def __UpperCAmelCase ( self )-> Union[str, Any]: __lowerCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__UpperCamelCase ): nonlocal batch_sizes batch_sizes.append(__UpperCamelCase ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(__UpperCamelCase , [1_2_8, 6_4, 3_2, 1_6, 8] ) def __UpperCAmelCase ( self )-> Dict: __lowerCAmelCase = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__UpperCamelCase , __UpperCamelCase ): nonlocal batch_sizes batch_sizes.append(__UpperCamelCase ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga __lowerCAmelCase , __lowerCAmelCase = mock_training_loop_function("hello" ) self.assertListEqual(__UpperCamelCase , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, "hello"] ) def __UpperCAmelCase ( self )-> List[Any]: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(__UpperCamelCase ): pass with self.assertRaises(__UpperCamelCase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def __UpperCAmelCase ( self )-> str: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__UpperCamelCase ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(__UpperCamelCase ) as cm: mock_training_loop_function() self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] ) def __UpperCAmelCase ( self )-> Any: @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(__UpperCamelCase ) as cm: mock_training_loop_function(1_2_8 , "hello" , "world" ) self.assertIn("Batch size was passed into `f`" , cm.exception.args[0] ) self.assertIn("`f(arg1='hello', arg2='world')" , cm.exception.args[0] ) def __UpperCAmelCase ( self )-> Any: @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(__UpperCamelCase ): raise ValueError("Oops, we had an error!" ) with self.assertRaises(__UpperCamelCase ) as cm: mock_training_loop_function() self.assertIn("Oops, we had an error!" , cm.exception.args[0] ) @require_cuda def __UpperCAmelCase ( self )-> Union[str, Any]: __lowerCAmelCase = torch.cuda.memory_allocated() __lowerCAmelCase = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , __UpperCamelCase ) __lowerCAmelCase = release_memory(__UpperCamelCase ) self.assertEqual(torch.cuda.memory_allocated() , __UpperCamelCase )
290
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) class _UpperCamelCase (a_ ): snake_case_ = ["""pixel_values"""] def __init__( self , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = PILImageResampling.BICUBIC , __UpperCamelCase = True , __UpperCamelCase = True , __UpperCamelCase = 1 / 2_5_5 , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = None , __UpperCamelCase = None , **__UpperCamelCase , )-> None: super().__init__(**__UpperCamelCase ) __lowerCAmelCase = size if size is not None else {"height": 2_2_4, "width": 2_2_4} __lowerCAmelCase = get_size_dict(__UpperCamelCase ) __lowerCAmelCase = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} __lowerCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase , param_name="crop_size" ) __lowerCAmelCase = do_resize __lowerCAmelCase = do_rescale __lowerCAmelCase = do_normalize __lowerCAmelCase = do_center_crop __lowerCAmelCase = crop_size __lowerCAmelCase = size __lowerCAmelCase = resample __lowerCAmelCase = rescale_factor __lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __lowerCAmelCase = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = PILImageResampling.BILINEAR , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: __lowerCAmelCase = get_size_dict(__UpperCamelCase ) if "shortest_edge" in size: __lowerCAmelCase = get_resize_output_image_size(__UpperCamelCase , size=size["shortest_edge"] , default_to_square=__UpperCamelCase ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: __lowerCAmelCase = (size["height"], size["width"]) else: raise ValueError(F"""Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}""" ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: __lowerCAmelCase = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(__UpperCamelCase , size=(size["height"], size["width"]) , data_format=__UpperCamelCase , **__UpperCamelCase ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase )-> np.ndarray: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , **__UpperCamelCase , )-> np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = ChannelDimension.FIRST , **__UpperCamelCase , )-> BatchFeature: __lowerCAmelCase = do_resize if do_resize is not None else self.do_resize __lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __lowerCAmelCase = crop_size if crop_size is not None else self.crop_size __lowerCAmelCase = get_size_dict(__UpperCamelCase , param_name="crop_size" , default_to_square=__UpperCamelCase ) __lowerCAmelCase = resample if resample is not None else self.resample __lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __lowerCAmelCase = image_mean if image_mean is not None else self.image_mean __lowerCAmelCase = image_std if image_std is not None else self.image_std __lowerCAmelCase = size if size is not None else self.size __lowerCAmelCase = get_size_dict(__UpperCamelCase ) if not is_batched(__UpperCamelCase ): __lowerCAmelCase = [images] if not valid_images(__UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. __lowerCAmelCase = [to_numpy_array(__UpperCamelCase ) for image in images] if do_resize: __lowerCAmelCase = [self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) for image in images] if do_center_crop: __lowerCAmelCase = [self.center_crop(image=__UpperCamelCase , size=__UpperCamelCase ) for image in images] if do_rescale: __lowerCAmelCase = [self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) for image in images] if do_normalize: __lowerCAmelCase = [self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) for image in images] __lowerCAmelCase = [to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) for image in images] __lowerCAmelCase = {"pixel_values": images} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
290
1
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def UpperCAmelCase_ ( ) -> Optional[Any]: __lowercase : List[Any] = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 20, '''a ''' * 30, '''b ''' * 7], } __lowercase : Dict = Dataset.from_dict(__lowerCAmelCase ) return dataset class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" def snake_case_ ( self : str ): __lowercase : Tuple = get_dataset() __lowercase : int = make_duplicate_clusters(_snake_case , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def snake_case_ ( self : Union[str, Any] ): __lowercase : Optional[int] = get_dataset() __lowercase , __lowercase : List[Any] = deduplicate_dataset(_snake_case ) self.assertEqual(len(_snake_case ) , 2 ) print(_snake_case ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , _snake_case )
509
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __lowerCAmelCase : List[str] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" A__ : Dict = XGLMTokenizer A__ : Optional[int] = XGLMTokenizerFast A__ : int = True A__ : Optional[Any] = True def snake_case_ ( self : List[Any] ): super().setUp() # We have a SentencePiece fixture for testing __lowercase : Optional[Any] = XGLMTokenizer(_snake_case , keep_accents=_snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self : List[Any] ): __lowercase : int = '''<pad>''' __lowercase : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ) , _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ) , _snake_case ) def snake_case_ ( self : Dict ): __lowercase : Tuple = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(_snake_case ) , 1008 ) def snake_case_ ( self : List[Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 1008 ) def snake_case_ ( self : Dict ): __lowercase : List[str] = XGLMTokenizer(_snake_case , keep_accents=_snake_case ) __lowercase : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_snake_case ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __lowercase : Optional[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __lowercase : Tuple = tokenizer.convert_tokens_to_ids(_snake_case ) self.assertListEqual( _snake_case , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __lowercase : Union[str, Any] = tokenizer.convert_ids_to_tokens(_snake_case ) self.assertListEqual( _snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def snake_case_ ( self : List[str] ): return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def snake_case_ ( self : Any ): with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_snake_case , f.name ) __lowercase : Union[str, Any] = XGLMTokenizer(f.name , keep_accents=_snake_case ) __lowercase : List[str] = pickle.dumps(_snake_case ) pickle.loads(_snake_case ) def snake_case_ ( self : str ): if not self.test_rust_tokenizer: return __lowercase : Tuple = self.get_tokenizer() __lowercase : Optional[int] = self.get_rust_tokenizer() __lowercase : Dict = '''I was born in 92000, and this is falsé.''' __lowercase : int = tokenizer.tokenize(_snake_case ) __lowercase : int = rust_tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) __lowercase : Dict = tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) __lowercase : Tuple = rust_tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) self.assertListEqual(_snake_case , _snake_case ) __lowercase : Any = self.get_rust_tokenizer() __lowercase : List[str] = tokenizer.encode(_snake_case ) __lowercase : Union[str, Any] = rust_tokenizer.encode(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) @slow def snake_case_ ( self : Union[str, Any] ): __lowercase : Optional[Any] = '''Hello World!''' __lowercase : int = [2, 3_1227, 4447, 35] self.assertListEqual(_snake_case , self.big_tokenizer.encode(_snake_case ) ) @slow def snake_case_ ( self : Union[str, Any] ): __lowercase : Optional[int] = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off __lowercase : Any = [2, 1018, 67, 11, 1988, 2617, 5631, 278, 11, 3407, 48, 7_1630, 2_8085, 4, 3234, 157, 13, 6, 5, 6, 4, 3526, 768, 15, 659, 57, 298, 3983, 864, 129, 21, 6, 5, 1_3675, 377, 652, 7580, 1_0341, 155, 2817, 422, 1666, 7, 1674, 53, 113, 20_2277, 1_7892, 33, 60, 87, 4, 3234, 157, 61, 2667, 5_2376, 19, 88, 23, 735] # fmt: on self.assertListEqual(_snake_case , self.big_tokenizer.encode(_snake_case ) ) @slow def snake_case_ ( self : Union[str, Any] ): # fmt: off __lowercase : Optional[Any] = { '''input_ids''': [[2, 10_8825, 1163, 15, 8_8010, 473, 1_5898, 157, 1_3672, 1857, 312, 8, 23_8021, 1163, 53, 1_3672, 1857, 312, 8, 5_3283, 18_2396, 8, 1_8566, 16, 3_6733, 4101, 8, 230, 24_4017, 12_2553, 7, 15, 13_2597, 4, 293, 1_2511, 7610, 4, 3414, 13_2597, 9, 4, 3_2361, 362, 4, 734, 2_8512, 3_2569, 18, 4, 3_2361, 2_6096, 1_4982, 73, 1_8715, 2_1433, 23_5261, 15, 492, 1_2427, 16, 53, 1_8715, 2_1433, 6_5454, 15, 2_3659, 563, 16, 278, 597, 2843, 595, 7931, 18_2396, 6_4186, 22, 886, 595, 13_2981, 53, 2_5540, 3449, 4_3982, 3_9901, 5951, 878, 330, 4, 2_7694, 8_0269, 312, 53, 6517, 1_1780, 611, 2_0408, 5], [2, 6, 13_2597, 67, 4_2897, 33, 592, 8, 16_3729, 2_5540, 361, 13_6997, 10_9514, 17_3230, 7, 501, 60, 10_2913, 196, 5631, 235, 6_3243, 473, 6, 23_1757, 74, 5277, 7905, 53, 3095, 3_7317, 22, 454, 18_3874, 5], [2, 268, 3_1298, 4_6530, 6, 13_2935, 4_3831, 7, 597, 32, 24, 3688, 9865, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case , model_name='''facebook/xglm-564M''' , padding=_snake_case , )
509
1
import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def snake_case_ ( self : Any ) -> List[Any]: _a : Union[str, Any] = pipeline( task='''zero-shot-audio-classification''' , model='''hf-internal-testing/tiny-clap-htsat-unfused''' ) _a : Any = load_dataset('''ashraq/esc50''' ) _a : str = dataset['''train''']['''audio'''][-1]['''array'''] _a : List[Any] = audio_classifier(__snake_case , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(__snake_case ) , [{'''score''': 0.501, '''label''': '''Sound of a dog'''}, {'''score''': 0.499, '''label''': '''Sound of vaccum cleaner'''}] , ) @unittest.skip('''No models are available in TF''' ) def snake_case_ ( self : str ) -> Dict: pass @slow @require_torch def snake_case_ ( self : Optional[int] ) -> List[Any]: _a : Optional[int] = pipeline( task='''zero-shot-audio-classification''' , model='''laion/clap-htsat-unfused''' , ) # This is an audio of a dog _a : str = load_dataset('''ashraq/esc50''' ) _a : Optional[Any] = dataset['''train''']['''audio'''][-1]['''array'''] _a : Optional[Any] = audio_classifier(__snake_case , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ] , ) _a : Union[str, Any] = audio_classifier([audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) _a : Dict = audio_classifier( [audio] * 5 , candidate_labels=['''Sound of a dog''', '''Sound of vaccum cleaner'''] , batch_size=5 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'''score''': 0.999, '''label''': '''Sound of a dog'''}, {'''score''': 0.001, '''label''': '''Sound of vaccum cleaner'''}, ], ] * 5 , ) @unittest.skip('''No models are available in TF''' ) def snake_case_ ( self : List[str] ) -> List[Any]: pass
249
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowerCamelCase : def __init__( self : Optional[Any] , __snake_case : Tuple , __snake_case : Tuple=2 , __snake_case : List[str]=32 , __snake_case : List[str]=16 , __snake_case : Optional[Any]=3 , __snake_case : List[str]=True , __snake_case : str=True , __snake_case : Optional[Any]=32 , __snake_case : Optional[int]=4 , __snake_case : str=[0, 1, 2, 3] , __snake_case : List[str]=4 , __snake_case : int=37 , __snake_case : int="gelu" , __snake_case : Tuple=0.1 , __snake_case : int=0.1 , __snake_case : List[str]=0.02 , __snake_case : Any=3 , __snake_case : Tuple=[1, 384, 24, 24] , __snake_case : List[Any]=True , __snake_case : List[Any]=None , ) -> str: _a : List[Any] = parent _a : str = batch_size _a : Dict = image_size _a : str = patch_size _a : Union[str, Any] = num_channels _a : Dict = is_training _a : Union[str, Any] = use_labels _a : List[str] = hidden_size _a : Dict = num_hidden_layers _a : List[str] = backbone_out_indices _a : Any = num_attention_heads _a : str = intermediate_size _a : List[Any] = hidden_act _a : Dict = hidden_dropout_prob _a : str = attention_probs_dropout_prob _a : Tuple = initializer_range _a : Dict = num_labels _a : Any = backbone_featmap_shape _a : List[Any] = scope _a : List[str] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _a : str = (image_size // patch_size) ** 2 _a : Union[str, Any] = num_patches + 1 def snake_case_ ( self : Any ) -> Optional[int]: _a : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Any = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _a : Optional[int] = self.get_config() return config, pixel_values, labels def snake_case_ ( self : Union[str, Any] ) -> List[str]: _a : Optional[Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__snake_case , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__snake_case , backbone_featmap_shape=self.backbone_featmap_shape , ) def snake_case_ ( self : List[Any] , __snake_case : Tuple , __snake_case : Tuple , __snake_case : Dict ) -> int: _a : Optional[int] = DPTModel(config=__snake_case ) model.to(__snake_case ) model.eval() _a : List[Any] = model(__snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case_ ( self : List[str] , __snake_case : Optional[int] , __snake_case : int , __snake_case : Optional[Any] ) -> Any: _a : Any = self.num_labels _a : int = DPTForDepthEstimation(__snake_case ) model.to(__snake_case ) model.eval() _a : Optional[int] = model(__snake_case ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def snake_case_ ( self : Any , __snake_case : Tuple , __snake_case : Union[str, Any] , __snake_case : Dict ) -> Optional[Any]: _a : Optional[Any] = self.num_labels _a : Any = DPTForSemanticSegmentation(__snake_case ) model.to(__snake_case ) model.eval() _a : Optional[int] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def snake_case_ ( self : Union[str, Any] ) -> List[Any]: _a : int = self.prepare_config_and_inputs() _a , _a , _a : Any = config_and_inputs _a : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCAmelCase : List[str] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () UpperCAmelCase : Tuple = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase : int = False UpperCAmelCase : str = False UpperCAmelCase : Dict = False def snake_case_ ( self : Union[str, Any] ) -> List[Any]: _a : Union[str, Any] = DPTModelTester(self ) _a : Optional[int] = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=37 ) def snake_case_ ( self : List[Any] ) -> Any: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def snake_case_ ( self : str ) -> str: pass def snake_case_ ( self : int ) -> Optional[int]: _a , _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(__snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__snake_case , nn.Linear ) ) def snake_case_ ( self : int ) -> Any: _a , _a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[int] = model_class(__snake_case ) _a : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : Tuple = [*signature.parameters.keys()] _a : Optional[Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __snake_case ) def snake_case_ ( self : int ) -> Any: _a : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def snake_case_ ( self : List[Any] ) -> Optional[int]: _a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__snake_case ) def snake_case_ ( self : int ) -> Any: _a : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__snake_case ) def snake_case_ ( self : Union[str, Any] ) -> List[str]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : Tuple = True if model_class in get_values(__snake_case ): continue _a : List[str] = model_class(__snake_case ) model.to(__snake_case ) model.train() _a : Tuple = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) _a : Tuple = model(**__snake_case ).loss loss.backward() def snake_case_ ( self : Any ) -> Union[str, Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _a , _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _a : str = False _a : int = True if model_class in get_values(__snake_case ) or not model_class.supports_gradient_checkpointing: continue _a : Tuple = model_class(__snake_case ) model.to(__snake_case ) model.gradient_checkpointing_enable() model.train() _a : str = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) _a : Tuple = model(**__snake_case ).loss loss.backward() def snake_case_ ( self : Tuple ) -> Optional[Any]: _a , _a : Any = self.model_tester.prepare_config_and_inputs_for_common() _a : Optional[int] = _config_zero_init(__snake_case ) for model_class in self.all_model_classes: _a : Tuple = model_class(config=__snake_case ) # Skip the check for the backbone _a : List[str] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _a : str = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def snake_case_ ( self : Dict ) -> Optional[Any]: pass @slow def snake_case_ ( self : str ) -> str: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _a : Optional[int] = DPTModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def snake_case_ ( self : Any ) -> Union[str, Any]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type _a , _a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _a : Tuple = '''add''' with self.assertRaises(__snake_case ): _a : List[str] = DPTForDepthEstimation(__snake_case ) def lowerCamelCase_ ( ): _a : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class lowerCamelCase ( unittest.TestCase ): def snake_case_ ( self : Any ) -> Optional[Any]: _a : Any = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) _a : Union[str, Any] = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(__snake_case ) _a : Optional[int] = prepare_img() _a : Any = image_processor(images=__snake_case , return_tensors='''pt''' ).to(__snake_case ) # forward pass with torch.no_grad(): _a : List[str] = model(**__snake_case ) _a : Optional[Any] = outputs.predicted_depth # verify the predicted depth _a : Optional[Any] = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __snake_case ) _a : int = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __snake_case , atol=1E-4 ) )
249
1
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class lowerCamelCase (_snake_case ): '''simple docstring''' def __init__( self , *_UpperCamelCase , **_UpperCamelCase ) -> Optional[int]: warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
406
import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=5 ): '''simple docstring''' assert masked_input.count("<mask>" ) == 1 _lowerCAmelCase : str = torch.tensor(tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) ).unsqueeze(0 ) # Batch size 1 _lowerCAmelCase : Union[str, Any] = model(_lowerCamelCase )[0] # The last hidden-state is the first element of the output tuple _lowerCAmelCase : Optional[Any] = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() _lowerCAmelCase : List[Any] = logits[0, masked_index, :] _lowerCAmelCase : int = logits.softmax(dim=0 ) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = prob.topk(k=_lowerCamelCase , dim=0 ) _lowerCAmelCase : Dict = " ".join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_lowerCamelCase ) )] ) _lowerCAmelCase : List[str] = tokenizer.mask_token _lowerCAmelCase : Optional[Any] = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(" " ) ): _lowerCAmelCase : Dict = predicted_token_bpe.replace("\u2581" , " " ) if " {0}".format(_lowerCamelCase ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(" {0}".format(_lowerCamelCase ) , _lowerCamelCase ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(_lowerCamelCase , _lowerCamelCase ), values[index].item(), predicted_token, ) ) return topk_filled_outputs _snake_case = CamembertTokenizer.from_pretrained("camembert-base") _snake_case = CamembertForMaskedLM.from_pretrained("camembert-base") model.eval() _snake_case = "Le camembert est <mask> :)" print(fill_mask(masked_input, model, tokenizer, topk=3))
500
0
'''simple docstring''' from urllib.parse import quote import pytest from datasets.utils.hub import hf_hub_url @pytest.mark.parametrize("""repo_id""" , ["""canonical_dataset_name""", """org-name/dataset-name"""] ) @pytest.mark.parametrize("""path""" , ["""filename.csv""", """filename with blanks.csv"""] ) @pytest.mark.parametrize("""revision""" , [None, """v2"""] ) def SCREAMING_SNAKE_CASE ( lowercase_ : Optional[Any] , lowercase_ : Any , lowercase_ : str ): lowercase = hf_hub_url(repo_id=lowercase_ , path=lowercase_ , revision=lowercase_ ) assert url == F"""https://huggingface.co/datasets/{repo_id}/resolve/{revision or 'main'}/{quote(lowercase_ )}"""
710
'''simple docstring''' from random import shuffle import tensorflow as tf from numpy import array def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] , lowercase_ : Optional[int] ): lowercase = int(lowercase_ ) assert noofclusters < len(lowercase_ ) # Find out the dimensionality lowercase = len(vectors[0] ) # Will help select random centroids from among the available vectors lowercase = list(range(len(lowercase_ ) ) ) shuffle(lowercase_ ) # GRAPH OF COMPUTATION # We initialize a new graph and set it as the default during each run # of this algorithm. This ensures that as this function is called # multiple times, the default graph doesn't keep getting crowded with # unused ops and Variables from previous function calls. lowercase = tf.Graph() with graph.as_default(): # SESSION OF COMPUTATION lowercase = tf.Session() ##CONSTRUCTING THE ELEMENTS OF COMPUTATION ##First lets ensure we have a Variable vector for each centroid, ##initialized to one of the vectors from the available data points lowercase = [ tf.Variable(vectors[vector_indices[i]] ) for i in range(lowercase_ ) ] ##These nodes will assign the centroid Variables the appropriate ##values lowercase = tf.placeholder("""float64""" , [dim] ) lowercase = [] for centroid in centroids: cent_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Variables for cluster assignments of individual vectors(initialized ##to 0 at first) lowercase = [tf.Variable(0 ) for i in range(len(lowercase_ ) )] ##These nodes will assign an assignment Variable the appropriate ##value lowercase = tf.placeholder("""int32""" ) lowercase = [] for assignment in assignments: cluster_assigns.append(tf.assign(lowercase_ , lowercase_ ) ) ##Now lets construct the node that will compute the mean # The placeholder for the input lowercase = tf.placeholder("""float""" , [None, dim] ) # The Node/op takes the input and computes a mean along the 0th # dimension, i.e. the list of input vectors lowercase = tf.reduce_mean(lowercase_ , 0 ) ##Node for computing Euclidean distances # Placeholders for input lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.placeholder("""float""" , [dim] ) lowercase = tf.sqrt(tf.reduce_sum(tf.pow(tf.sub(lowercase_ , lowercase_ ) , 2 ) ) ) ##This node will figure out which cluster to assign a vector to, ##based on Euclidean distances of the vector from the centroids. # Placeholder for input lowercase = tf.placeholder("""float""" , [noofclusters] ) lowercase = tf.argmin(lowercase_ , 0 ) ##INITIALIZING STATE VARIABLES ##This will help initialization of all Variables defined with respect ##to the graph. The Variable-initializer should be defined after ##all the Variables have been constructed, so that each of them ##will be included in the initialization. lowercase = tf.initialize_all_variables() # Initialize all variables sess.run(lowercase_ ) ##CLUSTERING ITERATIONS # Now perform the Expectation-Maximization steps of K-Means clustering # iterations. To keep things simple, we will only do a set number of # iterations, instead of using a Stopping Criterion. lowercase = 100 for _ in range(lowercase_ ): ##EXPECTATION STEP ##Based on the centroid locations till last iteration, compute ##the _expected_ centroid assignments. # Iterate over each vector for vector_n in range(len(lowercase_ ) ): lowercase = vectors[vector_n] # Compute Euclidean distance between this vector and each # centroid. Remember that this list cannot be named #'centroid_distances', since that is the input to the # cluster assignment node. lowercase = [ sess.run(lowercase_ , feed_dict={va: vect, va: sess.run(lowercase_ )} ) for centroid in centroids ] # Now use the cluster assignment node, with the distances # as the input lowercase = sess.run( lowercase_ , feed_dict={centroid_distances: distances} ) # Now assign the value to the appropriate state variable sess.run( cluster_assigns[vector_n] , feed_dict={assignment_value: assignment} ) ##MAXIMIZATION STEP # Based on the expected state computed from the Expectation Step, # compute the locations of the centroids so as to maximize the # overall objective of minimizing within-cluster Sum-of-Squares for cluster_n in range(lowercase_ ): # Collect all the vectors assigned to this cluster lowercase = [ vectors[i] for i in range(len(lowercase_ ) ) if sess.run(assignments[i] ) == cluster_n ] # Compute new centroid location lowercase = sess.run( lowercase_ , feed_dict={mean_input: array(lowercase_ )} ) # Assign value to appropriate variable sess.run( cent_assigns[cluster_n] , feed_dict={centroid_value: new_location} ) # Return centroids and assignments lowercase = sess.run(lowercase_ ) lowercase = sess.run(lowercase_ ) return centroids, assignments
653
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _snake_case : Union[str, Any] = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Dict = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys _snake_case : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
53
from __future__ import annotations def _A ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int ): UpperCamelCase :list[list[int]] = [] UpperCamelCase :list[int] = [] UpperCamelCase :List[str] = 0 UpperCamelCase :Any = sum(SCREAMING_SNAKE_CASE__ ) create_state_space_tree(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return result def _A ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[list[int]] , SCREAMING_SNAKE_CASE__ : int , ): if sum(SCREAMING_SNAKE_CASE__ ) > max_sum or (remaining_nums_sum + sum(SCREAMING_SNAKE_CASE__ )) < max_sum: return if sum(SCREAMING_SNAKE_CASE__ ) == max_sum: result.append(SCREAMING_SNAKE_CASE__ ) return for index in range(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): create_state_space_tree( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , index + 1 , [*path, nums[index]] , SCREAMING_SNAKE_CASE__ , remaining_nums_sum - nums[index] , ) __snake_case = [3, 34, 4, 12, 5, 2] __snake_case = 9 __snake_case = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
658
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ : int = { '''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Tuple = [ '''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GraphormerForGraphClassification''', '''GraphormerModel''', '''GraphormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys __magic_name__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
705
__magic_name__ : List[str] = tuple[float, float, float] __magic_name__ : Optional[int] = tuple[float, float, float] def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> Vectorad: """simple docstring""" UpperCamelCase = end_pointa[0] - end_pointa[0] UpperCamelCase = end_pointa[1] - end_pointa[1] UpperCamelCase = end_pointa[2] - end_pointa[2] return (x, y, z) def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> Vectorad: """simple docstring""" UpperCamelCase = ab[1] * ac[2] - ab[2] * ac[1] # *i UpperCamelCase = (ab[0] * ac[2] - ab[2] * ac[0]) * -1 # *j UpperCamelCase = ab[0] * ac[1] - ab[1] * ac[0] # *k return (x, y, z) def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> bool: """simple docstring""" return tuple(round(_UpperCamelCase , _UpperCamelCase) for x in vector) == (0, 0, 0) def lowercase__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = 10) -> bool: """simple docstring""" UpperCamelCase = create_vector(_UpperCamelCase , _UpperCamelCase) UpperCamelCase = create_vector(_UpperCamelCase , _UpperCamelCase) return is_zero_vector(get_ad_vectors_cross(_UpperCamelCase , _UpperCamelCase) , _UpperCamelCase)
410
0
def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: if n == 0: return 1 elif n % 2 == 1: return (binary_exponentiation(lowerCamelCase_ , n - 1 , lowerCamelCase_ ) * a) % mod else: _lowercase : str = binary_exponentiation(lowerCamelCase_ , n / 2 , lowerCamelCase_ ) return (b * b) % mod # a prime number SCREAMING_SNAKE_CASE : str = 701 SCREAMING_SNAKE_CASE : Optional[int] = 1000000000 SCREAMING_SNAKE_CASE : Optional[int] = 10 # using binary exponentiation function, O(log(p)): print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p) print((a / b) % p == (a * b ** (p - 2)) % p)
89
"""simple docstring""" from __future__ import annotations import math from collections.abc import Callable def __A ( a_ : Callable[[int | float], int | float] , a_ : int | float , a_ : int | float , a_ : int = 1_00 , )-> float: '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = x_start SCREAMING_SNAKE_CASE : Union[str, Any] = fnc(a_ ) SCREAMING_SNAKE_CASE : Optional[int] = 0.0 for _ in range(a_ ): # Approximates curve as a sequence of linear lines and sums their length SCREAMING_SNAKE_CASE : int = (x_end - x_start) / steps + xa SCREAMING_SNAKE_CASE : Optional[int] = fnc(a_ ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step SCREAMING_SNAKE_CASE : str = xa SCREAMING_SNAKE_CASE : Any = fxa return length if __name__ == "__main__": def __A ( a_ : Optional[Any] )-> List[Any]: '''simple docstring''' return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") lowerCamelCase__ : str = 10 while i <= 100000: print(f'''With {i} steps: {line_length(f, -10, 10, i)}''') i *= 10
698
0
"""simple docstring""" import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py a : Optional[int] = '''src/transformers''' a : List[str] = '''docs/source/en/tasks''' def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[Any] , _lowercase : int , _lowercase : int ) ->List[Any]: '''simple docstring''' with open(_lowercase , "r" , encoding="utf-8" , newline="\n" ) as f: a : int = f.readlines() # Find the start prompt. a : Dict = 0 while not lines[start_index].startswith(_lowercase ): start_index += 1 start_index += 1 a : int = start_index while not lines[end_index].startswith(_lowercase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. a : Any = direct_transformers_import(TRANSFORMERS_PATH) a : List[Any] = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). a : Optional[Any] = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def _SCREAMING_SNAKE_CASE ( _lowercase : Tuple ) ->Optional[Any]: '''simple docstring''' a : str = TASK_GUIDE_TO_MODELS[task_guide] a : int = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(_lowercase , set() ) a : Optional[Any] = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[int] , _lowercase : int=False ) ->Union[str, Any]: '''simple docstring''' a : str = _find_text_in_file( filename=os.path.join(_lowercase , _lowercase ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) a : Union[str, Any] = get_model_list_for_task(_lowercase ) if current_list != new_list: if overwrite: with open(os.path.join(_lowercase , _lowercase ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" " to fix this." ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a : Dict = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
705
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __UpperCamelCase ( a__ ): lowerCamelCase : torch.FloatTensor lowerCamelCase : torch.FloatTensor lowerCamelCase : Optional[torch.FloatTensor] =None class __UpperCamelCase ( a__ , a__ ): lowerCamelCase : Tuple =2 @register_to_config def __init__( self , lowerCAmelCase__ = 0.02 , lowerCAmelCase__ = 100 , lowerCAmelCase__ = 1.007 , lowerCAmelCase__ = 80 , lowerCAmelCase__ = 0.05 , lowerCAmelCase__ = 50 , ) -> Union[str, Any]: # standard deviation of the initial noise distribution a : Tuple = sigma_max # setable values a : int = None a : np.IntTensor = None a : torch.FloatTensor = None # sigma(t_i) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> torch.FloatTensor: return sample def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> List[str]: a : List[Any] = num_inference_steps a : List[str] = np.arange(0 , self.num_inference_steps )[::-1].copy() a : int = torch.from_numpy(lowerCAmelCase__ ).to(lowerCAmelCase__ ) a : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] a : Any = torch.tensor(lowerCAmelCase__ , dtype=torch.floataa , device=lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = None ) -> Tuple[torch.FloatTensor, float]: if self.config.s_min <= sigma <= self.config.s_max: a : str = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: a : Dict = 0 # sample eps ~ N(0, S_noise^2 * I) a : Union[str, Any] = self.config.s_noise * randn_tensor(sample.shape , generator=lowerCAmelCase__ ).to(sample.device ) a : Any = sigma + gamma * sigma a : Tuple = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = True , ) -> Union[KarrasVeOutput, Tuple]: a : Union[str, Any] = sample_hat + sigma_hat * model_output a : Tuple = (sample_hat - pred_original_sample) / sigma_hat a : List[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCAmelCase__ , derivative=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = True , ) -> Union[KarrasVeOutput, Tuple]: a : Optional[int] = sample_prev + sigma_prev * model_output a : str = (sample_prev - pred_original_sample) / sigma_prev a : Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCAmelCase__ , derivative=lowerCAmelCase__ , pred_original_sample=lowerCAmelCase__ ) def __a ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: raise NotImplementedError()
31
0
from __future__ import annotations import math def lowerCamelCase_ ( _lowercase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True UpperCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)] def lowerCamelCase_ ( _lowercase ) -> list[int]: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise ValueError("n must be an integer" ) if n <= 0: raise ValueError("n must be >= 0" ) __A : int = [] for num in range(len(__UpperCAmelCase ) ): __A : Dict = 0 while 2 * i * i <= odd_composites[num]: __A : Dict = odd_composites[num] - 2 * i * i if is_prime(__UpperCAmelCase ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(__UpperCAmelCase ) == n: return list_nums return [] def lowerCamelCase_ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(F'''{solution() = }''')
520
'''simple docstring''' import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": a : List[str] = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) a : str = parser.parse_args() a : List[Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
640
0
"""simple docstring""" import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a_ = abspath(join(dirname(dirname(__file__)), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def a__ ( __lowercase ) -> str: from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(__lowercase ) def a__ ( __lowercase ) -> Optional[int]: from diffusers.utils.testing_utils import pytest_terminal_summary_main _A = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(__lowercase , id=__lowercase )
717
"""simple docstring""" import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def a__ ( __lowercase ) -> Optional[int]: _A = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "_float_tensor", "decoder.output_projection.weight", ] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def a__ ( __lowercase ) -> List[Any]: _A , _A = emb.weight.shape _A = nn.Linear(__lowercase , __lowercase , bias=__lowercase ) _A = emb.weight.data return lin_layer def a__ ( __lowercase , __lowercase="facebook/mbart-large-en-ro" , __lowercase=False , __lowercase=False ) -> List[str]: _A = torch.load(__lowercase , map_location="cpu" )["model"] remove_ignore_keys_(__lowercase ) _A = state_dict["encoder.embed_tokens.weight"].shape[0] _A = MBartConfig.from_pretrained(__lowercase , vocab_size=__lowercase ) if mbart_aa and finetuned: _A = "relu" _A = state_dict["decoder.embed_tokens.weight"] _A = MBartForConditionalGeneration(__lowercase ) model.model.load_state_dict(__lowercase ) if finetuned: _A = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." ) parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--hf_config", default="facebook/mbart-large-cc25", type=str, help="Which huggingface architecture to use: mbart-large", ) parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") a_ = parser.parse_args() a_ = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
621
0
import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ : int = logging.get_logger(__name__) UpperCamelCase__ : int = {"""vocab_file""": """vocab.txt""", """emoji_file""": """emoji.json"""} UpperCamelCase__ : Tuple = { """vocab_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt""", }, """emoji_file""": { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json""", }, } UpperCamelCase__ : Union[str, Any] = { """abeja/gpt-neox-japanese-2.7b""": 2_048, } def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_ ) -> int: """simple docstring""" with open(snake_case_, '''r''', encoding='''utf-8''' ) as f: a = json.loads(f.read() ) a = collections.OrderedDict() a = collections.OrderedDict() a = collections.OrderedDict() with open(snake_case_, '''r''', encoding='''utf-8''' ) as f: a = f.readlines() a = [[t.rstrip('''\n''' )] if (t == ''',''' or ''',''' not in t) else t.rstrip('''\n''' ).split(''',''' ) for t in token] for idx, b in enumerate(snake_case_ ): a = b a = idx for wd in b: a = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCamelCase_ ( a_ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ['input_ids', 'attention_mask'] def __init__( self : Tuple ,__lowerCamelCase : Dict ,__lowerCamelCase : Tuple ,__lowerCamelCase : Optional[int]="<|endoftext|>" ,__lowerCamelCase : Any="<|endoftext|>" ,__lowerCamelCase : int="<|startoftext|>" ,__lowerCamelCase : List[Any]="<|endoftext|>" ,__lowerCamelCase : Tuple=False ,**__lowerCamelCase : List[Any] ,): '''simple docstring''' super().__init__( unk_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,bos_token=__lowerCamelCase ,eos_token=__lowerCamelCase ,do_clean_text=__lowerCamelCase ,**__lowerCamelCase ,) if not os.path.isfile(__lowerCamelCase ): raise ValueError( F"""Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained""" ''' model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) if not os.path.isfile(__lowerCamelCase ): raise ValueError( F"""Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google""" ''' pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`''' ) a = do_clean_text a , a , a , a = load_vocab_and_emoji(__lowerCamelCase ,__lowerCamelCase ) a = SubWordJapaneseTokenizer( vocab=self.vocab ,ids_to_tokens=self.ids_to_tokens ,emoji=self.emoji ) @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ): '''simple docstring''' return len(self.raw_vocab ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ): '''simple docstring''' return dict(self.raw_vocab ,**self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : int ): '''simple docstring''' return self.subword_tokenizer.tokenize(__lowerCamelCase ,clean=self.do_clean_text ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : Dict ): '''simple docstring''' return self.vocab.get(__lowerCamelCase ,self.vocab.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : List[Any] ): '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self : int ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' a = ''''''.join(__lowerCamelCase ).strip() return out_string def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : "Conversation" ): '''simple docstring''' a = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowerCamelCase ,add_special_tokens=__lowerCamelCase ) + [self.eos_token_id] ) if len(__lowerCamelCase ) > self.model_max_length: a = input_ids[-self.model_max_length :] return input_ids def SCREAMING_SNAKE_CASE_ ( self : str ,__lowerCamelCase : str ,__lowerCamelCase : Optional[str] = None ): '''simple docstring''' a = 0 if os.path.isdir(__lowerCamelCase ): a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) a = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''emoji_file'''] ) else: a = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''vocab_file'''] ) a = ( (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory + VOCAB_FILES_NAMES['''emoji_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" ''' Please check that the vocabulary is not corrupted!''' ) a = token_index writer.write(''','''.join(__lowerCamelCase ) + '''\n''' ) index += 1 with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as writer: json.dump(self.emoji ,__lowerCamelCase ) return vocab_file, emoji_file class lowerCamelCase_ ( a_ ): def __init__( self : List[Any] ,__lowerCamelCase : str ,__lowerCamelCase : str ,__lowerCamelCase : Optional[Any] ): '''simple docstring''' a = vocab # same as swe a = ids_to_tokens # same as bpe a = emoji a = np.max([len(__lowerCamelCase ) for w in self.vocab.keys()] ) a = re.compile(r'''(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)''' ) a = re.compile(r'''[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*''' ) a = re.compile(r'''[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}''' ) a = re.compile( r'''([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) a = re.compile( r'''(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*''' ) a = re.compile( r'''((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*''' ) a = '''─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿''' a = '''▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟''' a = str.maketrans({k: '''<BLOCK>''' for k in keisen + blocks} ) def __len__( self : Optional[int] ): '''simple docstring''' return len(self.ids_to_tokens ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ,__lowerCamelCase : int ): '''simple docstring''' a = self.content_repattera.sub('''<URL>''' ,__lowerCamelCase ) a = self.content_repattera.sub('''<EMAIL>''' ,__lowerCamelCase ) a = self.content_repattera.sub('''<TEL>''' ,__lowerCamelCase ) a = self.content_repattera.sub('''<DATE>''' ,__lowerCamelCase ) a = self.content_repattera.sub('''<DATE>''' ,__lowerCamelCase ) a = self.content_repattera.sub('''<PRICE>''' ,__lowerCamelCase ) a = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: a = content.replace('''<BLOCK><BLOCK>''' ,'''<BLOCK>''' ) return content def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ,__lowerCamelCase : List[Any] ,__lowerCamelCase : List[str]=False ): '''simple docstring''' a = text.replace(''' ''' ,'''<SP>''' ) a = text.replace(''' ''' ,'''<SP>''' ) a = text.replace('''\r\n''' ,'''<BR>''' ) a = text.replace('''\n''' ,'''<BR>''' ) a = text.replace('''\r''' ,'''<BR>''' ) a = text.replace('''\t''' ,'''<TAB>''' ) a = text.replace('''—''' ,'''ー''' ) a = text.replace('''−''' ,'''ー''' ) for k, v in self.emoji["emoji"].items(): if k in text: a = text.replace(__lowerCamelCase ,__lowerCamelCase ) if clean: a = self.clean_text(__lowerCamelCase ) def check_simbol(__lowerCamelCase : Dict ): a = x.encode() if len(__lowerCamelCase ) == 1 and len(__lowerCamelCase ) == 2: a = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0Xc_2a1 and c <= 0Xc_2bf) or (c >= 0Xc_780 and c <= 0Xc_783) or (c >= 0Xc_ab9 and c <= 0Xc_bbf) or (c >= 0Xc_c80 and c <= 0Xc_da2) ): return True return False def checkuae(__lowerCamelCase : Any ): a = x.encode() if len(__lowerCamelCase ) == 1 and len(__lowerCamelCase ) == 3: a = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0Xe28_080 and c <= 0Xe2b_07f: return True return False a = 0 a = [] while pos < len(__lowerCamelCase ): a = min(len(__lowerCamelCase ) ,pos + self.maxlen + 1 ) if text[pos] == '''<''' else pos + 3 a = [] # (token_id, token, pos) for e in range(__lowerCamelCase ,__lowerCamelCase ,-1 ): a = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__lowerCamelCase ) > 2: a = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__lowerCamelCase ) > 0: # the smallest token_id is adopted a , a , a = sorted(__lowerCamelCase ,key=lambda __lowerCamelCase : x[0] )[0] result.append(__lowerCamelCase ) a = e else: a = pos + 1 a = text[pos:end] if check_simbol(__lowerCamelCase ): result.append('''<KIGOU>''' ) elif checkuae(__lowerCamelCase ): result.append('''<U2000U2BFF>''' ) else: for i in wd.encode('''utf-8''' ): result.append('''<|byte%d|>''' % i ) a = end return result def SCREAMING_SNAKE_CASE_ ( self : List[str] ,__lowerCamelCase : str ,__lowerCamelCase : Any="\n" ): '''simple docstring''' a = [] a = [] a = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__lowerCamelCase ) > 0: words.append(bytearray(__lowerCamelCase ).decode('''utf-8''' ,errors='''replace''' ) ) a = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji['''emoji_inv'''][word] ) elif word == "<SP>": words.append(''' ''' ) elif word == "<BR>": words.append(__lowerCamelCase ) elif word == "<TAB>": words.append('''\t''' ) elif word == "<BLOCK>": words.append('''▀''' ) elif word == "<KIGOU>": words.append('''ǀ''' ) elif word == "<U2000U2BFF>": words.append('''‖''' ) else: words.append(__lowerCamelCase ) if len(__lowerCamelCase ) > 0: words.append(bytearray(__lowerCamelCase ).decode('''utf-8''' ,errors='''replace''' ) ) a = ''''''.join(__lowerCamelCase ) return text
387
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class lowerCamelCase_ ( a_ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ = CpmAntTokenizer SCREAMING_SNAKE_CASE_ = False def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' super().setUp() a = [ '''<d>''', '''</d>''', '''<s>''', '''</s>''', '''</_>''', '''<unk>''', '''<pad>''', '''</n>''', '''我''', '''是''', '''C''', '''P''', '''M''', '''A''', '''n''', '''t''', ] a = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file ,'''w''' ,encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) @tooslow def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' a = CpmAntTokenizer.from_pretrained('''openbmb/cpm-ant-10b''' ) a = '''今天天气真好!''' a = ['''今天''', '''天气''', '''真''', '''好''', '''!'''] a = tokenizer.tokenize(__lowerCamelCase ) self.assertListEqual(__lowerCamelCase ,__lowerCamelCase ) a = '''今天天气真好!''' a = [tokenizer.bos_token] + tokens a = [6, 98_02, 1_49_62, 20_82, 8_31, 2_44] self.assertListEqual(tokenizer.convert_tokens_to_ids(__lowerCamelCase ) ,__lowerCamelCase ) a = tokenizer.decode(__lowerCamelCase ) self.assertEqual(__lowerCamelCase ,__lowerCamelCase )
387
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. __SCREAMING_SNAKE_CASE : Optional[int] = 10 def snake_case_ ( lowercase__ : int , lowercase__ : int , lowercase__ : list[int] , lowercase__ : int ): '''simple docstring''' for i in range(lowercase__ , lowercase__ ): if array[i] == target: return i return -1 def snake_case_ ( lowercase__ : list[int] , lowercase__ : int ): '''simple docstring''' _lowerCAmelCase =0 _lowerCAmelCase =len(lowercase__ ) while left <= right: if right - left < precision: return lin_search(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) _lowerCAmelCase =(left + right) // 3 + 1 _lowerCAmelCase =2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: _lowerCAmelCase =one_third - 1 elif array[two_third] < target: _lowerCAmelCase =two_third + 1 else: _lowerCAmelCase =one_third + 1 _lowerCAmelCase =two_third - 1 else: return -1 def snake_case_ ( lowercase__ : int , lowercase__ : int , lowercase__ : list[int] , lowercase__ : int ): '''simple docstring''' if left < right: if right - left < precision: return lin_search(lowercase__ , lowercase__ , lowercase__ , lowercase__ ) _lowerCAmelCase =(left + right) // 3 + 1 _lowerCAmelCase =2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(lowercase__ , one_third - 1 , lowercase__ , lowercase__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 , lowercase__ , lowercase__ , lowercase__ ) else: return rec_ternary_search(one_third + 1 , two_third - 1 , lowercase__ , lowercase__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE : Dict = input('''Enter numbers separated by comma:\n''').strip() __SCREAMING_SNAKE_CASE : List[Any] = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." __SCREAMING_SNAKE_CASE : Optional[int] = int(input('''Enter the number to be found in the list:\n''').strip()) __SCREAMING_SNAKE_CASE : Optional[int] = ite_ternary_search(collection, target) __SCREAMING_SNAKE_CASE : Optional[int] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'Iterative search: {target} found at positions: {resulta}') print(F'Recursive search: {target} found at positions: {resulta}') else: print('''Not found''')
149
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __lowerCamelCase : """simple docstring""" def __init__( self : int , lowerCamelCase_ : str , ): _lowerCAmelCase =parent _lowerCAmelCase =13 _lowerCAmelCase =7 _lowerCAmelCase =True _lowerCAmelCase =True _lowerCAmelCase =True _lowerCAmelCase =99 _lowerCAmelCase =32 _lowerCAmelCase =2 _lowerCAmelCase =4 _lowerCAmelCase =37 _lowerCAmelCase ="""gelu""" _lowerCAmelCase =0.1 _lowerCAmelCase =0.1 _lowerCAmelCase =512 _lowerCAmelCase =16 _lowerCAmelCase =2 _lowerCAmelCase =0.02 _lowerCAmelCase =3 _lowerCAmelCase =4 _lowerCAmelCase =None def lowerCAmelCase__ ( self : str ): _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase =None if self.use_input_mask: _lowerCAmelCase =random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase =None _lowerCAmelCase =None _lowerCAmelCase =None if self.use_labels: _lowerCAmelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase =ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase =EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase__ ( self : Any ): ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =self.prepare_config_and_inputs() _lowerCAmelCase =True _lowerCAmelCase =floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : str , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[int] ): _lowerCAmelCase =TFEsmModel(config=lowerCamelCase_ ) _lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCAmelCase =model(lowerCamelCase_ ) _lowerCAmelCase =[input_ids, input_mask] _lowerCAmelCase =model(lowerCamelCase_ ) _lowerCAmelCase =model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : int , lowerCamelCase_ : Dict , lowerCamelCase_ : List[str] , ): _lowerCAmelCase =True _lowerCAmelCase =TFEsmModel(config=lowerCamelCase_ ) _lowerCAmelCase ={ """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } _lowerCAmelCase =model(lowerCamelCase_ ) _lowerCAmelCase =[input_ids, input_mask] _lowerCAmelCase =model(lowerCamelCase_ , encoder_hidden_states=lowerCamelCase_ ) # Also check the case where encoder outputs are not passed _lowerCAmelCase =model(lowerCamelCase_ , attention_mask=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase__ ( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : Any ): _lowerCAmelCase =TFEsmForMaskedLM(config=lowerCamelCase_ ) _lowerCAmelCase =model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Any , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] ): _lowerCAmelCase =self.num_labels _lowerCAmelCase =TFEsmForTokenClassification(config=lowerCamelCase_ ) _lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": input_mask} _lowerCAmelCase =model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase__ ( self : Tuple ): _lowerCAmelCase =self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) =config_and_inputs _lowerCAmelCase ={"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __lowerCamelCase ( lowerCamelCase_ , lowerCamelCase_ , unittest.TestCase ): """simple docstring""" a_: int = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) a_: Union[str, Any] = ( { """feature-extraction""": TFEsmModel, """fill-mask""": TFEsmForMaskedLM, """text-classification""": TFEsmForSequenceClassification, """token-classification""": TFEsmForTokenClassification, """zero-shot""": TFEsmForSequenceClassification, } if is_tf_available() else {} ) a_: List[str] = False a_: List[Any] = False def lowerCAmelCase__ ( self : Tuple ): _lowerCAmelCase =TFEsmModelTester(self ) _lowerCAmelCase =ConfigTester(self , config_class=lowerCamelCase_ , hidden_size=37 ) def lowerCAmelCase__ ( self : Tuple ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self : Dict ): _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCAmelCase__ ( self : List[Any] ): _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowerCamelCase_ ) def lowerCAmelCase__ ( self : List[str] ): _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase_ ) def lowerCAmelCase__ ( self : Any ): _lowerCAmelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCamelCase_ ) @slow def lowerCAmelCase__ ( self : Optional[int] ): for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase =TFEsmModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def lowerCAmelCase__ ( self : List[Any] ): pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def lowerCAmelCase__ ( self : Dict ): pass def lowerCAmelCase__ ( self : int ): _lowerCAmelCase , _lowerCAmelCase =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase =model_class(lowerCamelCase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _lowerCAmelCase =model.get_bias() assert isinstance(lowerCamelCase_ , lowerCamelCase_ ) for k, v in name.items(): assert isinstance(lowerCamelCase_ , tf.Variable ) else: _lowerCAmelCase =model.get_output_embeddings() assert x is None _lowerCAmelCase =model.get_bias() assert name is None @require_tf class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase__ ( self : Any ): _lowerCAmelCase =TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _lowerCAmelCase =tf.constant([[0, 1, 2, 3, 4, 5]] ) _lowerCAmelCase =model(lowerCamelCase_ )[0] _lowerCAmelCase =[1, 6, 33] self.assertEqual(list(output.numpy().shape ) , lowerCamelCase_ ) # compare the actual values for a slice. _lowerCAmelCase =tf.constant( [ [ [8.92_1518, -10.58_9814, -6.467_1307], [-6.396_7156, -13.91_1377, -1.121_1915], [-7.78_1247, -13.95_1557, -3.74_0592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def lowerCAmelCase__ ( self : Tuple ): _lowerCAmelCase =TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _lowerCAmelCase =tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _lowerCAmelCase =model(lowerCamelCase_ )[0] # compare the actual values for a slice. _lowerCAmelCase =tf.constant( [ [ [0.1444_3092, 0.5412_5327, 0.324_7739], [0.3034_0484, 0.0052_6676, 0.3107_7722], [0.3227_8043, -0.2498_7096, 0.341_4628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
149
1
'''simple docstring''' import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" __magic_name__ : Tuple = {} __magic_name__ : str = tokenizer(example["content"] , truncation=UpperCamelCase__ )["input_ids"] __magic_name__ : str = len(example["content"] ) / len(output["input_ids"] ) return output _SCREAMING_SNAKE_CASE : List[str] = HfArgumentParser(PretokenizationArguments) _SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() if args.num_workers is None: _SCREAMING_SNAKE_CASE : Optional[Any] = multiprocessing.cpu_count() _SCREAMING_SNAKE_CASE : int = AutoTokenizer.from_pretrained(args.tokenizer_dir) _SCREAMING_SNAKE_CASE : Dict = time.time() _SCREAMING_SNAKE_CASE : Tuple = load_dataset(args.dataset_name, split="train") print(f"Dataset loaded in {time.time()-t_start:.2f}s") _SCREAMING_SNAKE_CASE : Tuple = time.time() _SCREAMING_SNAKE_CASE : List[Any] = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ "repo_name", "path", "copies", "size", "content", "license", "hash", "line_mean", "line_max", "alpha_frac", "autogenerated", ], ) print(f"Dataset tokenized in {time.time()-t_start:.2f}s") _SCREAMING_SNAKE_CASE : int = time.time() ds.push_to_hub(args.tokenized_data_repo) print(f"Data pushed to the hub in {time.time()-t_start:.2f}s")
436
'''simple docstring''' from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False ): """simple docstring""" if radian_mode: return [magnitude * cos(UpperCamelCase__ ), magnitude * sin(UpperCamelCase__ )] return [magnitude * cos(radians(UpperCamelCase__ ) ), magnitude * sin(radians(UpperCamelCase__ ) )] def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 10**-1 ): """simple docstring""" __magic_name__ : NDArray[floataa] = cross(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ : float = sum(UpperCamelCase__ ) return abs(UpperCamelCase__ ) < eps if __name__ == "__main__": # Test to check if it works _SCREAMING_SNAKE_CASE : List[str] = array( [ polar_force(718.4, 1_80 - 30), polar_force(879.54, 45), polar_force(1_00, -90), ] ) _SCREAMING_SNAKE_CASE : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg _SCREAMING_SNAKE_CASE : int = array( [ polar_force(30 * 9.81, 15), polar_force(2_15, 1_80 - 45), polar_force(2_64, 90 - 30), ] ) _SCREAMING_SNAKE_CASE : int = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg _SCREAMING_SNAKE_CASE : str = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]]) _SCREAMING_SNAKE_CASE : Optional[Any] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
436
1
"""simple docstring""" from math import pi def __lowercase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): return 2 * pi * radius * (angle / 360) if __name__ == "__main__": print(arc_length(90, 10))
112
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 650, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 600, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="utf-8" , check=UpperCAmelCase__ , ) assert hasattr(self , "env" ) def lowerCAmelCase__ ( self , UpperCAmelCase__=1 ): # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'''{self.env.base_job_name}-single''' , instance_count=UpperCAmelCase__ , instance_type=self.instance_type , debugger_hook_config=UpperCAmelCase__ , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def lowerCAmelCase__ ( self , UpperCAmelCase__ ): TrainingJobAnalytics(UpperCAmelCase__ ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) def lowerCAmelCase__ ( self ): # create estimator SCREAMING_SNAKE_CASE__ = self.create_estimator() # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE__ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) SCREAMING_SNAKE_CASE__ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE__ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , UpperCAmelCase__ )
112
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) _lowercase : List[str] ={ "configuration_speech_to_text": ["SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Speech2TextConfig"], "processing_speech_to_text": ["Speech2TextProcessor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str =["Speech2TextTokenizer"] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] =["Speech2TextFeatureExtractor"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[Any] =[ "TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFSpeech2TextForConditionalGeneration", "TFSpeech2TextModel", "TFSpeech2TextPreTrainedModel", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : str =[ "SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "Speech2TextForConditionalGeneration", "Speech2TextModel", "Speech2TextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys _lowercase : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
305
'''simple docstring''' from __future__ import annotations def __lowerCamelCase ( A__ , A__ ) -> list[tuple[int, int]]: """simple docstring""" UpperCamelCase , UpperCamelCase = position UpperCamelCase = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCamelCase = [] for position in positions: UpperCamelCase , UpperCamelCase = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(A__ ) return permissible_positions def __lowerCamelCase ( A__ ) -> bool: """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def __lowerCamelCase ( A__ , A__ , A__ ) -> bool: """simple docstring""" if is_complete(A__ ): return True for position in get_valid_pos(A__ , len(A__ ) ): UpperCamelCase , UpperCamelCase = position if board[y][x] == 0: UpperCamelCase = curr + 1 if open_knight_tour_helper(A__ , A__ , curr + 1 ): return True UpperCamelCase = 0 return False def __lowerCamelCase ( A__ ) -> list[list[int]]: """simple docstring""" UpperCamelCase = [[0 for i in range(A__ )] for j in range(A__ )] for i in range(A__ ): for j in range(A__ ): UpperCamelCase = 1 if open_knight_tour_helper(A__ , (i, j) , 1 ): return board UpperCamelCase = 0 UpperCamelCase = F"""Open Kight Tour cannot be performed on a board of size {n}""" raise ValueError(A__ ) if __name__ == "__main__": import doctest doctest.testmod()
430
0
import numpy as np def a_ ( _A , _A , _A , _A , _A ) -> Optional[Any]: """simple docstring""" snake_case__ = int(np.ceil((x_end - xa) / h ) ) snake_case__ = np.zeros((n + 1,) ) snake_case__ = ya snake_case__ = xa for k in range(_A ): snake_case__ = f(_A , y[k] ) snake_case__ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) snake_case__ = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) snake_case__ = f(x + h , y[k] + h * ka ) snake_case__ = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
717
from collections.abc import Sequence def a_ ( _A , _A ) -> float: """simple docstring""" return sum(c * (x**i) for i, c in enumerate(_A ) ) def a_ ( _A , _A ) -> float: """simple docstring""" snake_case__ = 0.0 for coeff in reversed(_A ): snake_case__ = result * x + coeff return result if __name__ == "__main__": __UpperCamelCase : str = (0.0, 0.0, 5.0, 9.3, 7.0) __UpperCamelCase : Dict = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
372
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu _lowerCAmelCase : int =[ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE=None ,SCREAMING_SNAKE_CASE=None ,SCREAMING_SNAKE_CASE=None ): UpperCAmelCase__: Optional[Any] = True while ask_again: UpperCAmelCase__: str = input(_a ) try: if default is not None and len(_a ) == 0: return default return convert_value(_a ) if convert_value is not None else result except Exception: if error_message is not None: print(_a ) def _A ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE=[] ,SCREAMING_SNAKE_CASE=None ,SCREAMING_SNAKE_CASE=0 ): UpperCAmelCase__: List[Any] = BulletMenu(_a ,_a ) UpperCAmelCase__: Union[str, Any] = menu.run(default_choice=_a ) return convert_value(_a ) if convert_value is not None else result def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__: str = int(_a ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__: str = int(_a ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__: int = int(_a ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__: str = int(_a ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _A ( SCREAMING_SNAKE_CASE ): UpperCAmelCase__: Optional[int] = int(_a ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _A ( SCREAMING_SNAKE_CASE ): return {"yes": True, "no": False}[value.lower()] class __UpperCamelCase ( argparse.RawDescriptionHelpFormatter ): '''simple docstring''' def _UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): UpperCAmelCase__: Tuple = super()._format_usage(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCAmelCase__: Any = usage.replace("<command> [<args>] " , "" ) return usage
113
def lowerCAmelCase__ ( _a : str ): snake_case_ : List[Any] = "" for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def lowerCAmelCase__ ( _a : str ): snake_case_ : Optional[int] = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key snake_case_ : Optional[Any] = remove_duplicates(key.upper() ) snake_case_ : Union[str, Any] = len(_a ) # First fill cipher with key characters snake_case_ : Union[str, Any] = {alphabet[i]: char for i, char in enumerate(_a )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(_a ) , 26 ): snake_case_ : Any = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 snake_case_ : Dict = alphabet[i - offset] snake_case_ : Optional[Any] = char return cipher_alphabet def lowerCAmelCase__ ( _a : str , _a : dict[str, str] ): return "".join(cipher_map.get(_a , _a ) for ch in message.upper() ) def lowerCAmelCase__ ( _a : str , _a : dict[str, str] ): snake_case_ : Optional[int] = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(_a , _a ) for ch in message.upper() ) def lowerCAmelCase__ ( ): snake_case_ : Optional[Any] = input("Enter message to encode or decode: " ).strip() snake_case_ : Dict = input("Enter keyword: " ).strip() snake_case_ : Optional[Any] = input("Encipher or decipher? E/D:" ).strip()[0].lower() try: snake_case_ : int = {"e": encipher, "d": decipher}[option] except KeyError: raise KeyError("invalid input option" ) snake_case_ : Any = create_cipher_map(_a ) print(func(_a , _a ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
568
0
"""simple docstring""" import numpy as np class _UpperCAmelCase : def __init__( self : List[str] , _lowercase : Dict=None , _lowercase : str=None , _lowercase : str=None , _lowercase : List[str]=None , _lowercase : Optional[Any]=None ): self.set_matricies(red=__UpperCamelCase , green=__UpperCamelCase , blue=__UpperCamelCase , red_edge=__UpperCamelCase , nir=__UpperCamelCase ) def a ( self : str , _lowercase : Dict=None , _lowercase : List[Any]=None , _lowercase : List[Any]=None , _lowercase : str=None , _lowercase : int=None ): if red is not None: __UpperCAmelCase = red if green is not None: __UpperCAmelCase = green if blue is not None: __UpperCAmelCase = blue if red_edge is not None: __UpperCAmelCase = red_edge if nir is not None: __UpperCAmelCase = nir return True def a ( self : Tuple , _lowercase : List[str]="" , _lowercase : Union[str, Any]=None , _lowercase : List[Any]=None , _lowercase : Optional[int]=None , _lowercase : Optional[int]=None , _lowercase : Dict=None ): self.set_matricies(red=__UpperCamelCase , green=__UpperCamelCase , blue=__UpperCamelCase , red_edge=__UpperCamelCase , nir=__UpperCamelCase ) __UpperCAmelCase = { '''ARVI2''': self.arvaa, '''CCCI''': self.ccci, '''CVI''': self.cvi, '''GLI''': self.gli, '''NDVI''': self.ndvi, '''BNDVI''': self.bndvi, '''redEdgeNDVI''': self.red_edge_ndvi, '''GNDVI''': self.gndvi, '''GBNDVI''': self.gbndvi, '''GRNDVI''': self.grndvi, '''RBNDVI''': self.rbndvi, '''PNDVI''': self.pndvi, '''ATSAVI''': self.atsavi, '''BWDRVI''': self.bwdrvi, '''CIgreen''': self.ci_green, '''CIrededge''': self.ci_rededge, '''CI''': self.ci, '''CTVI''': self.ctvi, '''GDVI''': self.gdvi, '''EVI''': self.evi, '''GEMI''': self.gemi, '''GOSAVI''': self.gosavi, '''GSAVI''': self.gsavi, '''Hue''': self.hue, '''IVI''': self.ivi, '''IPVI''': self.ipvi, '''I''': self.i, '''RVI''': self.rvi, '''MRVI''': self.mrvi, '''MSAVI''': self.m_savi, '''NormG''': self.norm_g, '''NormNIR''': self.norm_nir, '''NormR''': self.norm_r, '''NGRDI''': self.ngrdi, '''RI''': self.ri, '''S''': self.s, '''IF''': self._if, '''DVI''': self.dvi, '''TVI''': self.tvi, '''NDRE''': self.ndre, } try: return funcs[index]() except KeyError: print('''Index not in the list!''' ) return False def a ( self : Any ): return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def a ( self : Optional[Any] ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def a ( self : Optional[int] ): return self.nir * (self.red / (self.green**2)) def a ( self : int ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def a ( self : Dict ): return (self.nir - self.red) / (self.nir + self.red) def a ( self : Optional[Any] ): return (self.nir - self.blue) / (self.nir + self.blue) def a ( self : Dict ): return (self.redEdge - self.red) / (self.redEdge + self.red) def a ( self : Optional[Any] ): return (self.nir - self.green) / (self.nir + self.green) def a ( self : Tuple ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def a ( self : Optional[Any] ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def a ( self : Union[str, Any] ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def a ( self : Optional[int] ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def a ( self : Optional[Any] , _lowercase : List[str]=0.08 , _lowercase : Any=1.22 , _lowercase : Optional[int]=0.03 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def a ( self : List[Any] ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def a ( self : List[Any] ): return (self.nir / self.green) - 1 def a ( self : Any ): return (self.nir / self.redEdge) - 1 def a ( self : Union[str, Any] ): return (self.red - self.blue) / self.red def a ( self : Tuple ): __UpperCAmelCase = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def a ( self : Dict ): return self.nir - self.green def a ( self : Optional[int] ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def a ( self : int ): __UpperCAmelCase = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def a ( self : Dict , _lowercase : Union[str, Any]=0.16 ): return (self.nir - self.green) / (self.nir + self.green + y) def a ( self : Optional[Any] , _lowercase : Optional[int]=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def a ( self : List[Any] ): return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def a ( self : Dict , _lowercase : int=None , _lowercase : Dict=None ): return (self.nir - b) / (a * self.red) def a ( self : List[Any] ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def a ( self : Optional[Any] ): return (self.red + self.green + self.blue) / 30.5 def a ( self : int ): return self.nir / self.red def a ( self : Union[str, Any] ): return (self.rvi() - 1) / (self.rvi() + 1) def a ( self : Dict ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def a ( self : str ): return self.green / (self.nir + self.red + self.green) def a ( self : List[str] ): return self.nir / (self.nir + self.red + self.green) def a ( self : Optional[int] ): return self.red / (self.nir + self.red + self.green) def a ( self : List[Any] ): return (self.green - self.red) / (self.green + self.red) def a ( self : str ): return (self.red - self.green) / (self.red + self.green) def a ( self : int ): __UpperCAmelCase = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __UpperCAmelCase = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def a ( self : List[str] ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def a ( self : Dict ): return self.nir / self.red def a ( self : Dict ): return (self.ndvi() + 0.5) ** (1 / 2) def a ( self : Tuple ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
719
"""simple docstring""" import unittest from transformers import DonutProcessor _lowercase : List[str] = 'naver-clova-ix/donut-base' class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Union[str, Any] ): __UpperCAmelCase = DonutProcessor.from_pretrained(_lowercase ) def a ( self : Optional[int] ): __UpperCAmelCase = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } __UpperCAmelCase = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) __UpperCAmelCase = self.processor.tokenajson(_lowercase ) self.assertDictEqual(_lowercase , _lowercase )
397
0
"""simple docstring""" from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def _A( lowerCAmelCase ): if isinstance(lowerCAmelCase , collections.abc.Iterable ): return x return (x, x) @require_tf class __UpperCAmelCase : '''simple docstring''' def lowerCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self ): '''simple docstring''' pass def lowerCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=None , **snake_case_ ): '''simple docstring''' A__ : Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(snake_case_ , snake_case_ ) A__ : Dict = TFVisionTextDualEncoderModel(snake_case_ ) A__ : Optional[int] = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], config.projection_dim) ) def lowerCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=None , **snake_case_ ): '''simple docstring''' A__ , A__ : Optional[int] = self.get_vision_text_model(snake_case_ , snake_case_ ) A__ : int = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ ) A__ : Tuple = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=None , **snake_case_ ): '''simple docstring''' A__ , A__ : List[str] = self.get_vision_text_model(snake_case_ , snake_case_ ) A__ : Dict = {"""vision_model""": vision_model, """text_model""": text_model} A__ : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**snake_case_ ) A__ : List[Any] = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) self.assertEqual(output["""text_embeds"""].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output["""image_embeds"""].shape , (pixel_values.shape[0], model.config.projection_dim) ) def lowerCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=None , **snake_case_ ): '''simple docstring''' A__ , A__ : List[Any] = self.get_vision_text_model(snake_case_ , snake_case_ ) A__ : Tuple = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ ) A__ : List[Any] = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) A__ : Optional[Any] = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case_ ) A__ : Dict = TFVisionTextDualEncoderModel.from_pretrained(snake_case_ ) A__ : Dict = model(input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ ) A__ : List[Any] = after_output[0].numpy() A__ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1E-5 ) def lowerCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=None , **snake_case_ ): '''simple docstring''' A__ , A__ : Any = self.get_vision_text_model(snake_case_ , snake_case_ ) A__ : Any = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ ) A__ : Optional[int] = model( input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , output_attentions=snake_case_ ) A__ : Tuple = output.vision_model_output.attentions self.assertEqual(len(snake_case_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) A__ : Union[str, Any] = to_atuple(vision_model.config.image_size ) A__ : Optional[int] = to_atuple(vision_model.config.patch_size ) A__ : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A__ : List[str] = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A__ : Any = output.text_model_output.attentions self.assertEqual(len(snake_case_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' A__ : List[Any] = np.abs((a - b) ).max() self.assertLessEqual(snake_case_ , snake_case_ , F'''Difference between torch and flax is {diff} (>= {tol}).''' ) def lowerCamelCase ( self ): '''simple docstring''' A__ : List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**snake_case_ ) def lowerCamelCase ( self ): '''simple docstring''' A__ : Optional[int] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**snake_case_ ) def lowerCamelCase ( self ): '''simple docstring''' A__ : Optional[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**snake_case_ ) def lowerCamelCase ( self ): '''simple docstring''' A__ : int = self.prepare_config_and_inputs() self.check_save_load(**snake_case_ ) def lowerCamelCase ( self ): '''simple docstring''' A__ : str = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**snake_case_ ) @slow def lowerCamelCase ( self ): '''simple docstring''' A__ , A__ : int = self.get_pretrained_model_and_inputs() A__ : Union[str, Any] = model_a(**snake_case_ ) A__ : Union[str, Any] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(snake_case_ ) A__ : Optional[int] = TFVisionTextDualEncoderModel.from_pretrained(snake_case_ ) A__ : int = model_a(**snake_case_ ) A__ : List[str] = after_outputs[0].numpy() A__ : Any = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(snake_case_ , 1E-5 ) @require_tf class __UpperCAmelCase (__A , unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self ): '''simple docstring''' A__ : str = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """hf-internal-testing/tiny-random-vit""" , """hf-internal-testing/tiny-random-bert""" ) A__ : str = 13 A__ : str = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A__ : Any = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A__ : int = random_attention_mask([batch_size, 4] ) A__ : Union[str, Any] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' A__ : Tuple = TFViTModel(snake_case_ , name="""vision_model""" ) A__ : Dict = TFBertModel(snake_case_ , name="""text_model""" ) return vision_model, text_model def lowerCamelCase ( self ): '''simple docstring''' A__ : List[str] = TFViTModelTester(self ) A__ : Any = TFBertModelTester(self ) A__ : Dict = vit_model_tester.prepare_config_and_inputs() A__ : Dict = bert_model_tester.prepare_config_and_inputs() A__ , A__ , A__ : Tuple = vision_config_and_inputs ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : List[str] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCAmelCase (__A , unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self ): '''simple docstring''' A__ : List[str] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-deit-tf""" , """hf-internal-testing/tiny-random-roberta""" ) A__ : List[Any] = 13 A__ : List[Any] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A__ : Any = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A__ : Tuple = random_attention_mask([batch_size, 4] ) A__ : str = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=None , **snake_case_ ): '''simple docstring''' A__ , A__ : List[str] = self.get_vision_text_model(snake_case_ , snake_case_ ) A__ : List[str] = TFVisionTextDualEncoderModel(vision_model=snake_case_ , text_model=snake_case_ ) A__ : Any = model( input_ids=snake_case_ , pixel_values=snake_case_ , attention_mask=snake_case_ , output_attentions=snake_case_ ) A__ : Any = output.vision_model_output.attentions self.assertEqual(len(snake_case_ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) A__ : List[str] = to_atuple(vision_model.config.image_size ) A__ : str = to_atuple(vision_model.config.patch_size ) A__ : Union[str, Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) A__ : int = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) A__ : List[str] = output.text_model_output.attentions self.assertEqual(len(snake_case_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def lowerCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' A__ : Dict = TFDeiTModel(snake_case_ , name="""vision_model""" ) A__ : Any = TFRobertaModel(snake_case_ , name="""text_model""" ) return vision_model, text_model def lowerCamelCase ( self ): '''simple docstring''' A__ : Union[str, Any] = TFDeiTModelTester(self ) A__ : Optional[int] = TFRobertaModelTester(self ) A__ : Tuple = vit_model_tester.prepare_config_and_inputs() A__ : int = bert_model_tester.prepare_config_and_inputs() A__ , A__ , A__ : Union[str, Any] = vision_config_and_inputs ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : List[str] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class __UpperCAmelCase (__A , unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self ): '''simple docstring''' A__ : Dict = TFVisionTextDualEncoderModel.from_vision_text_pretrained( """Rocketknight1/tiny-random-clip-tf""" , """hf-internal-testing/tiny-random-bert""" ) A__ : Dict = 13 A__ : List[str] = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) A__ : int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) A__ : List[str] = random_attention_mask([batch_size, 4] ) A__ : List[str] = {"""pixel_values""": pixel_values, """input_ids""": input_ids, """attention_mask""": attention_mask} return model, inputs def lowerCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' A__ : str = TFCLIPVisionModel(snake_case_ , name="""vision_model""" ) A__ : Any = TFBertModel(snake_case_ , name="""text_model""" ) return vision_model, text_model def lowerCamelCase ( self ): '''simple docstring''' A__ : List[Any] = TFCLIPVisionModelTester(self ) A__ : int = TFBertModelTester(self ) A__ : Optional[Any] = clip_model_tester.prepare_config_and_inputs() A__ : Optional[int] = bert_model_tester.prepare_config_and_inputs() A__ , A__ : Union[str, Any] = vision_config_and_inputs ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) : List[str] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class __UpperCAmelCase (unittest.TestCase ): '''simple docstring''' @slow def lowerCamelCase ( self ): '''simple docstring''' A__ : Tuple = TFVisionTextDualEncoderModel.from_pretrained( """clip-italian/clip-italian""" , logit_scale_init_value=1.0 , from_pt=snake_case_ ) A__ : List[str] = VisionTextDualEncoderProcessor.from_pretrained("""clip-italian/clip-italian""" ) A__ : Optional[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) A__ : List[str] = processor( text=["""una foto di un gatto""", """una foto di un cane"""] , images=snake_case_ , padding=snake_case_ , return_tensors="""np""" ) A__ : Any = model(**snake_case_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) A__ : Optional[Any] = np.array([[1.2_28_47_27, 0.3_10_41_22]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , snake_case_ , atol=1E-3 ) )
363
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { "asapp/sew-tiny-100k": "https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json", # See all SEW models at https://huggingface.co/models?filter=sew } class __UpperCAmelCase (__A ): '''simple docstring''' _UpperCamelCase : Dict = 'sew' def __init__( self , snake_case_=32 , snake_case_=768 , snake_case_=12 , snake_case_=12 , snake_case_=3_072 , snake_case_=2 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.0 , snake_case_=0.1 , snake_case_=0.1 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_="group" , snake_case_="gelu" , snake_case_=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , snake_case_=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , snake_case_=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , snake_case_=False , snake_case_=128 , snake_case_=16 , snake_case_=True , snake_case_=0.05 , snake_case_=10 , snake_case_=2 , snake_case_=0.0 , snake_case_=10 , snake_case_=0 , snake_case_="mean" , snake_case_=False , snake_case_=False , snake_case_=256 , snake_case_=0 , snake_case_=1 , snake_case_=2 , **snake_case_ , ): '''simple docstring''' super().__init__(**snake_case_ , pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ ) A__ : Dict = hidden_size A__ : Dict = feat_extract_norm A__ : str = feat_extract_activation A__ : Optional[Any] = list(snake_case_ ) A__ : str = list(snake_case_ ) A__ : Any = list(snake_case_ ) A__ : Any = conv_bias A__ : Any = num_conv_pos_embeddings A__ : Any = num_conv_pos_embedding_groups A__ : str = len(self.conv_dim ) A__ : Tuple = num_hidden_layers A__ : int = intermediate_size A__ : Union[str, Any] = squeeze_factor A__ : Union[str, Any] = hidden_act A__ : List[str] = num_attention_heads A__ : List[str] = hidden_dropout A__ : Dict = attention_dropout A__ : Tuple = activation_dropout A__ : Optional[int] = feat_proj_dropout A__ : Optional[Any] = final_dropout A__ : int = layerdrop A__ : List[Any] = layer_norm_eps A__ : int = initializer_range A__ : Dict = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 A__ : Optional[Any] = apply_spec_augment A__ : int = mask_time_prob A__ : Tuple = mask_time_length A__ : Optional[Any] = mask_time_min_masks A__ : Any = mask_feature_prob A__ : List[Any] = mask_feature_length A__ : Any = mask_feature_min_masks # ctc loss A__ : str = ctc_loss_reduction A__ : List[Any] = ctc_zero_infinity # sequence classification A__ : Union[str, Any] = use_weighted_layer_sum A__ : str = classifier_proj_size @property def lowerCamelCase ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
363
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable UpperCAmelCase : List[str] ={"""configuration_gpt_neox""": ["""GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXConfig"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] =["""GPTNeoXTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict =[ """GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXForCausalLM""", """GPTNeoXForQuestionAnswering""", """GPTNeoXForSequenceClassification""", """GPTNeoXForTokenClassification""", """GPTNeoXLayer""", """GPTNeoXModel""", """GPTNeoXPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys UpperCAmelCase : List[Any] =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
504
import functools import logging import os import sys import threading from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional import huggingface_hub.utils as hf_hub_utils from tqdm import auto as tqdm_lib UpperCAmelCase : int =threading.Lock() UpperCAmelCase : Optional[logging.Handler] =None UpperCAmelCase : List[Any] ={ """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } UpperCAmelCase : Any =logging.WARNING UpperCAmelCase : List[Any] =True def _lowerCAmelCase (): UpperCamelCase_ = os.getenv("TRANSFORMERS_VERBOSITY" , _lowerCAmelCase) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys()) }""") return _default_log_level def _lowerCAmelCase (): return __name__.split(".")[0] def _lowerCAmelCase (): return logging.getLogger(_get_library_name()) def _lowerCAmelCase (): global _default_handler with _lock: if _default_handler: # This library has already configured the library root logger. return UpperCamelCase_ = logging.StreamHandler() # Set sys.stderr as stream. UpperCamelCase_ = sys.stderr.flush # Apply our default configuration to the library root logger. UpperCamelCase_ = _get_library_root_logger() library_root_logger.addHandler(_default_handler) library_root_logger.setLevel(_get_default_logging_level()) UpperCamelCase_ = False def _lowerCAmelCase (): global _default_handler with _lock: if not _default_handler: return UpperCamelCase_ = _get_library_root_logger() library_root_logger.removeHandler(_default_handler) library_root_logger.setLevel(logging.NOTSET) UpperCamelCase_ = None def _lowerCAmelCase (): return log_levels def _lowerCAmelCase (_lowerCAmelCase = None): if name is None: UpperCamelCase_ = _get_library_name() _configure_library_root_logger() return logging.getLogger(_lowerCAmelCase) def _lowerCAmelCase (): _configure_library_root_logger() return _get_library_root_logger().getEffectiveLevel() def _lowerCAmelCase (_lowerCAmelCase): _configure_library_root_logger() _get_library_root_logger().setLevel(_lowerCAmelCase) def _lowerCAmelCase (): return set_verbosity(_lowerCAmelCase) def _lowerCAmelCase (): return set_verbosity(_lowerCAmelCase) def _lowerCAmelCase (): return set_verbosity(_lowerCAmelCase) def _lowerCAmelCase (): return set_verbosity(_lowerCAmelCase) def _lowerCAmelCase (): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().removeHandler(_default_handler) def _lowerCAmelCase (): _configure_library_root_logger() assert _default_handler is not None _get_library_root_logger().addHandler(_default_handler) def _lowerCAmelCase (_lowerCAmelCase): _configure_library_root_logger() assert handler is not None _get_library_root_logger().addHandler(_lowerCAmelCase) def _lowerCAmelCase (_lowerCAmelCase): _configure_library_root_logger() assert handler is not None and handler not in _get_library_root_logger().handlers _get_library_root_logger().removeHandler(_lowerCAmelCase) def _lowerCAmelCase (): _configure_library_root_logger() UpperCamelCase_ = False def _lowerCAmelCase (): _configure_library_root_logger() UpperCamelCase_ = True def _lowerCAmelCase (): UpperCamelCase_ = _get_library_root_logger().handlers for handler in handlers: UpperCamelCase_ = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s") handler.setFormatter(_lowerCAmelCase) def _lowerCAmelCase (): UpperCamelCase_ = _get_library_root_logger().handlers for handler in handlers: handler.setFormatter(_lowerCAmelCase) def _lowerCAmelCase (self , *_lowerCAmelCase , **_lowerCAmelCase): UpperCamelCase_ = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , _lowerCAmelCase) if no_advisory_warnings: return self.warning(*_lowerCAmelCase , **_lowerCAmelCase) UpperCAmelCase : Dict =warning_advice @functools.lru_cache(_lowerCAmelCase) def _lowerCAmelCase (self , *_lowerCAmelCase , **_lowerCAmelCase): self.warning(*_lowerCAmelCase , **_lowerCAmelCase) UpperCAmelCase : Optional[Any] =warning_once class _lowercase : '''simple docstring''' def __init__( self , *snake_case__ , **snake_case__ ): # pylint: disable=unused-argument '''simple docstring''' UpperCamelCase_ = args[0] if args else None def __iter__( self ): '''simple docstring''' return iter(self._iterator ) def __getattr__( self , snake_case__ ): '''simple docstring''' def empty_fn(*snake_case__ , **snake_case__ ): # pylint: disable=unused-argument return return empty_fn def __enter__( self ): '''simple docstring''' return self def __exit__( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' return class _lowercase : '''simple docstring''' def __call__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm(*snake_case__ , **snake_case__ ) else: return EmptyTqdm(*snake_case__ , **snake_case__ ) def _lowerCamelCase ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' UpperCamelCase_ = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*snake_case__ , **snake_case__ ) def _lowerCamelCase ( self ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() UpperCAmelCase : Tuple =_tqdm_cls() def _lowerCAmelCase (): global _tqdm_active return bool(_tqdm_active) def _lowerCAmelCase (): global _tqdm_active UpperCamelCase_ = True hf_hub_utils.enable_progress_bars() def _lowerCAmelCase (): global _tqdm_active UpperCamelCase_ = False hf_hub_utils.disable_progress_bars()
504
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available snake_case__ : Dict = { """configuration_megatron_bert""": ["""MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegatronBertConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : str = [ """MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MegatronBertForCausalLM""", """MegatronBertForMaskedLM""", """MegatronBertForMultipleChoice""", """MegatronBertForNextSentencePrediction""", """MegatronBertForPreTraining""", """MegatronBertForQuestionAnswering""", """MegatronBertForSequenceClassification""", """MegatronBertForTokenClassification""", """MegatronBertModel""", """MegatronBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys snake_case__ : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
23
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Tuple ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights SCREAMING_SNAKE_CASE = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=snake_case__ , cache_dir=snake_case__ ) SCREAMING_SNAKE_CASE = [t[-1] for t in os.walk(os.path.join(snake_case__ , os.listdir(snake_case__ )[0] , 'snapshots' ) )] SCREAMING_SNAKE_CASE = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin' ) for f in files ) @slow @require_flax class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=snake_case__ ) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(snake_case__ ) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(snake_case__ ) SCREAMING_SNAKE_CASE = jax.random.split(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = shard(snake_case__ ) SCREAMING_SNAKE_CASE = pipeline(snake_case__ , snake_case__ , snake_case__ , snake_case__ , jit=snake_case__ ).images assert images.shape == (num_samples, 1, 6_4, 6_4, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 4.1_514_745 ) < 1E-3 assert np.abs(np.abs(snake_case__ , dtype=np.floataa ).sum() - 49_947.875 ) < 5E-1 SCREAMING_SNAKE_CASE = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:] ) ) ) assert len(snake_case__ ) == num_samples def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=snake_case__ ) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE = 5_0 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(snake_case__ ) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(snake_case__ ) SCREAMING_SNAKE_CASE = jax.random.split(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = shard(snake_case__ ) SCREAMING_SNAKE_CASE = pipeline(snake_case__ , snake_case__ , snake_case__ , snake_case__ , jit=snake_case__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.05_652_401) ) < 1E-3 assert np.abs((np.abs(snake_case__ , dtype=np.floataa ).sum() - 2_383_808.2) ) < 5E-1 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=snake_case__ ) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE = 5_0 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(snake_case__ ) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(snake_case__ ) SCREAMING_SNAKE_CASE = jax.random.split(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = shard(snake_case__ ) SCREAMING_SNAKE_CASE = pipeline(snake_case__ , snake_case__ , snake_case__ , snake_case__ , jit=snake_case__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(snake_case__ , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1 def UpperCamelCase ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa ) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE = 5_0 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(snake_case__ ) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(snake_case__ ) SCREAMING_SNAKE_CASE = jax.random.split(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = shard(snake_case__ ) SCREAMING_SNAKE_CASE = pipeline(snake_case__ , snake_case__ , snake_case__ , snake_case__ , jit=snake_case__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.04_003_906) ) < 1E-3 assert np.abs((np.abs(snake_case__ , dtype=np.floataa ).sum() - 2_373_516.75) ) < 5E-1 def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = FlaxDDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , set_alpha_to_one=snake_case__ , steps_offset=1 , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=snake_case__ , safety_checker=snake_case__ , ) SCREAMING_SNAKE_CASE = scheduler.create_state() SCREAMING_SNAKE_CASE = scheduler_state SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE = 5_0 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(snake_case__ ) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(snake_case__ ) SCREAMING_SNAKE_CASE = jax.random.split(snake_case__ , snake_case__ ) SCREAMING_SNAKE_CASE = shard(snake_case__ ) SCREAMING_SNAKE_CASE = pipeline(snake_case__ , snake_case__ , snake_case__ , snake_case__ , jit=snake_case__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa ).sum() - 0.045_043_945) ) < 1E-3 assert np.abs((np.abs(snake_case__ , dtype=np.floataa ).sum() - 2_347_693.5) ) < 5E-1 def UpperCamelCase ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = jax.random.split(jax.random.PRNGKey(0 ) , snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=snake_case__ , ) SCREAMING_SNAKE_CASE = replicate(snake_case__ ) SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = shard(snake_case__ ) SCREAMING_SNAKE_CASE = pipeline(snake_case__ , snake_case__ , snake_case__ , jit=snake_case__ ).images assert images.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) SCREAMING_SNAKE_CASE = images[2, 0, 2_5_6, 1_0:1_7, 1] # With memory efficient attention SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=snake_case__ , use_memory_efficient_attention=snake_case__ , ) SCREAMING_SNAKE_CASE = replicate(snake_case__ ) SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = shard(snake_case__ ) SCREAMING_SNAKE_CASE = pipeline(snake_case__ , snake_case__ , snake_case__ , jit=snake_case__ ).images assert images_eff.shape == (num_samples, 1, 5_1_2, 5_1_2, 3) SCREAMING_SNAKE_CASE = images[2, 0, 2_5_6, 1_0:1_7, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice ).max() < 1E-2
439
0
"""simple docstring""" import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class a ( lowercase ): def __snake_case ( self ): UpperCAmelCase__ : List[Any] = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def __snake_case ( self ): with self.assertRaises(UpperCamelCase_ ): UpperCAmelCase__ : Any = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def __snake_case ( self ): with self.assertRaises(UpperCamelCase_ ): UpperCAmelCase__ : int = pa.array(TypedSequence([1, 2, 3] , try_type=Value('bool' ) , type=Value('int64' ) ) ) def __snake_case ( self ): UpperCAmelCase__ : Union[str, Any] = pa.array(TypedSequence([1, 2, 3] , type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __snake_case ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCAmelCase__ : List[Any] = pa.array(TypedSequence(['foo', 'bar'] , type=Value('int64' ) ) ) def __snake_case ( self ): UpperCAmelCase__ : Any = pa.array(TypedSequence([1, 2, 3] , try_type=Value('int32' ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __snake_case ( self ): UpperCAmelCase__ : List[str] = pa.array(TypedSequence(['foo', 'bar'] , try_type=Value('int64' ) ) ) self.assertEqual(arr.type , pa.string() ) def __snake_case ( self ): UpperCAmelCase__ : Any = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def __snake_case ( self ): with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): UpperCAmelCase__ : Dict = pa.array(TypedSequence(['foo', 'bar'] , type=ArrayaD((1, 3) , 'int64' ) ) ) def __snake_case ( self ): UpperCAmelCase__ : Tuple = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , 'int64' ) ) def __snake_case ( self ): UpperCAmelCase__ : List[Any] = pa.array(TypedSequence(['foo', 'bar'] , try_type=ArrayaD((1, 3) , 'int64' ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def __snake_case ( self ): import PIL.Image UpperCAmelCase__ : str = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( 'datasets.arrow_writer.cast_to_python_objects' , side_effect=UpperCamelCase_ ) as mock_cast_to_python_objects: UpperCAmelCase__ : Optional[Any] = pa.array(TypedSequence([{'path': None, 'bytes': b'image_bytes'}, pil_image] , type=Image() ) ) UpperCAmelCase__ : Any = mock_cast_to_python_objects.call_args_list[-1] self.assertIn('optimize_list_casting' , UpperCamelCase_ ) self.assertFalse(kwargs['optimize_list_casting'] ) def lowerCamelCase ( _snake_case : int ,_snake_case : Dict ): UpperCAmelCase__ : Optional[int] = pa.BufferReader(_snake_case ) if isinstance(_snake_case ,pa.Buffer ) else pa.memory_map(_snake_case ) UpperCAmelCase__ : int = pa.ipc.open_stream(_snake_case ) UpperCAmelCase__ : pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize('writer_batch_size' ,[None, 1, 10] ) @pytest.mark.parametrize( 'fields' ,[None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def lowerCamelCase ( _snake_case : List[str] ,_snake_case : Optional[Any] ): UpperCAmelCase__ : List[Any] = pa.BufferOutputStream() UpperCAmelCase__ : Tuple = pa.schema(_snake_case ) if fields else None with ArrowWriter(stream=_snake_case ,schema=_snake_case ,writer_batch_size=_snake_case ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) UpperCAmelCase__ : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__ : Union[str, Any] = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_snake_case ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowerCamelCase ( ): UpperCAmelCase__ : List[str] = pa.BufferOutputStream() UpperCAmelCase__ : Optional[int] = Features({'labels': ClassLabel(names=['neg', 'pos'] )} ) with ArrowWriter(stream=_snake_case ,features=_snake_case ) as writer: writer.write({'labels': 0} ) writer.write({'labels': 1} ) UpperCAmelCase__ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata UpperCAmelCase__ : Dict = pa.BufferReader(output.getvalue() ) UpperCAmelCase__ : List[Any] = pa.ipc.open_stream(_snake_case ) UpperCAmelCase__ : pa.Table = f.read_all() UpperCAmelCase__ : Optional[Any] = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(_snake_case ) @pytest.mark.parametrize('writer_batch_size' ,[None, 1, 10] ) def lowerCamelCase ( _snake_case : int ): UpperCAmelCase__ : Union[str, Any] = pa.BufferOutputStream() with ArrowWriter( stream=_snake_case ,writer_batch_size=_snake_case ,hash_salt='split_name' ,check_duplicates=_snake_case ,) as writer: with pytest.raises(_snake_case ): writer.write({'col_1': 'foo', 'col_2': 1} ,key=[1, 2] ) UpperCAmelCase__ : List[str] = writer.finalize() @pytest.mark.parametrize('writer_batch_size' ,[None, 2, 10] ) def lowerCamelCase ( _snake_case : List[Any] ): UpperCAmelCase__ : List[Any] = pa.BufferOutputStream() with ArrowWriter( stream=_snake_case ,writer_batch_size=_snake_case ,hash_salt='split_name' ,check_duplicates=_snake_case ,) as writer: with pytest.raises(_snake_case ): writer.write({'col_1': 'foo', 'col_2': 1} ,key=10 ) writer.write({'col_1': 'bar', 'col_2': 2} ,key=10 ) UpperCAmelCase__ : Dict = writer.finalize() @pytest.mark.parametrize('writer_batch_size' ,[None, 2, 10] ) def lowerCamelCase ( _snake_case : Union[str, Any] ): UpperCAmelCase__ : str = pa.BufferOutputStream() with ArrowWriter( stream=_snake_case ,writer_batch_size=_snake_case ,hash_salt='split_name' ,check_duplicates=_snake_case ,) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ,key=1 ) writer.write({'col_1': 'bar', 'col_2': 2} ,key=2 ) UpperCAmelCase__ : str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' ,[None, 1, 10] ) @pytest.mark.parametrize( 'fields' ,[None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def lowerCamelCase ( _snake_case : List[Any] ,_snake_case : Union[str, Any] ): UpperCAmelCase__ : str = pa.BufferOutputStream() UpperCAmelCase__ : List[Any] = pa.schema(_snake_case ) if fields else None with ArrowWriter(stream=_snake_case ,schema=_snake_case ,writer_batch_size=_snake_case ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) writer.write_batch({'col_1': [], 'col_2': []} ) UpperCAmelCase__ : Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__ : Any = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_snake_case ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' ,[None, 1, 10] ) @pytest.mark.parametrize( 'fields' ,[None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def lowerCamelCase ( _snake_case : Union[str, Any] ,_snake_case : Any ): UpperCAmelCase__ : Optional[Any] = pa.BufferOutputStream() UpperCAmelCase__ : int = pa.schema(_snake_case ) if fields else None with ArrowWriter(stream=_snake_case ,schema=_snake_case ,writer_batch_size=_snake_case ) as writer: writer.write_table(pa.Table.from_pydict({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) ) UpperCAmelCase__ : Dict = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__ : Any = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_snake_case ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize('writer_batch_size' ,[None, 1, 10] ) @pytest.mark.parametrize( 'fields' ,[None, {'col_1': pa.string(), 'col_2': pa.intaa()}, {'col_1': pa.string(), 'col_2': pa.intaa()}] ) def lowerCamelCase ( _snake_case : Dict ,_snake_case : List[str] ): UpperCAmelCase__ : str = pa.BufferOutputStream() UpperCAmelCase__ : List[str] = pa.schema(_snake_case ) if fields else None with ArrowWriter(stream=_snake_case ,schema=_snake_case ,writer_batch_size=_snake_case ) as writer: writer.write_row(pa.Table.from_pydict({'col_1': ['foo'], 'col_2': [1]} ) ) writer.write_row(pa.Table.from_pydict({'col_1': ['bar'], 'col_2': [2]} ) ) UpperCAmelCase__ : Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: UpperCAmelCase__ : str = {'col_1': pa.string(), 'col_2': pa.intaa()} assert writer._schema == pa.schema(_snake_case ,metadata=writer._schema.metadata ) _check_output(output.getvalue() ,expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowerCamelCase ( ): with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : str = {'col_1': pa.string(), 'col_2': pa.intaa()} UpperCAmelCase__ : int = os.path.join(_snake_case ,'test.arrow' ) with ArrowWriter(path=_snake_case ,schema=pa.schema(_snake_case ) ) as writer: writer.write_batch({'col_1': ['foo', 'bar'], 'col_2': [1, 2]} ) UpperCAmelCase__ : Any = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(_snake_case ,metadata=writer._schema.metadata ) _check_output(_snake_case ,1 ) def lowerCamelCase ( _snake_case : List[Any] ): if pa.types.is_list(_snake_case ): return get_base_dtype(arr_type.value_type ) else: return arr_type def lowerCamelCase ( _snake_case : Union[str, Any] ,_snake_case : str ): if isinstance(lst[0] ,_snake_case ): change_first_primitive_element_in_list(lst[0] ,_snake_case ) else: UpperCAmelCase__ : Union[str, Any] = value @pytest.mark.parametrize('optimized_int_type, expected_dtype' ,[(None, pa.intaa()), (Value('int32' ), pa.intaa())] ) @pytest.mark.parametrize('sequence' ,[[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowerCamelCase ( _snake_case : Any ,_snake_case : List[Any] ,_snake_case : Optional[int] ): UpperCAmelCase__ : int = pa.array(TypedSequence(_snake_case ,optimized_int_type=_snake_case ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( 'col, expected_dtype' ,[ ('attention_mask', pa.inta()), ('special_tokens_mask', pa.inta()), ('token_type_ids', pa.inta()), ('input_ids', pa.intaa()), ('other', pa.intaa()), ] ,) @pytest.mark.parametrize('sequence' ,[[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowerCamelCase ( _snake_case : Union[str, Any] ,_snake_case : Optional[int] ,_snake_case : Union[str, Any] ): # in range UpperCAmelCase__ : int = pa.array(OptimizedTypedSequence(_snake_case ,col=_snake_case ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications UpperCAmelCase__ : Union[str, Any] = copy.deepcopy(_snake_case ) UpperCAmelCase__ : Any = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(_snake_case ,_snake_case ) UpperCAmelCase__ : str = pa.array(OptimizedTypedSequence(_snake_case ,col=_snake_case ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize('raise_exception' ,[False, True] ) def lowerCamelCase ( _snake_case : Optional[Any] ,_snake_case : Optional[Any] ): UpperCAmelCase__ : Dict = str(tmp_path / 'dataset-train.arrow' ) try: with ArrowWriter(path=_snake_case ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def lowerCamelCase ( _snake_case : int ): UpperCAmelCase__ : List[Any] = 'mock://dataset-train.arrow' with ArrowWriter(path=_snake_case ,storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs ,type(_snake_case ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) UpperCAmelCase__ : int = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(_snake_case ) def lowerCamelCase ( ): UpperCAmelCase__ : Any = pa.BufferOutputStream() with ParquetWriter(stream=_snake_case ) as writer: writer.write({'col_1': 'foo', 'col_2': 1} ) writer.write({'col_1': 'bar', 'col_2': 2} ) UpperCAmelCase__ : Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 UpperCAmelCase__ : Optional[Any] = pa.BufferReader(output.getvalue() ) UpperCAmelCase__ : pa.Table = pq.read_table(_snake_case ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize('embed_local_files' ,[False, True] ) def lowerCamelCase ( _snake_case : Optional[Any] ,_snake_case : int ): import PIL.Image UpperCAmelCase__ : List[Any] = str(tmp_path / 'test_image_rgb.jpg' ) PIL.Image.fromarray(np.zeros((5, 5) ,dtype=np.uinta ) ).save(_snake_case ,format='png' ) UpperCAmelCase__ : Any = pa.BufferOutputStream() with ParquetWriter( stream=_snake_case ,features=Features({'image': Image()} ) ,embed_local_files=_snake_case ) as writer: writer.write({'image': image_path} ) writer.finalize() UpperCAmelCase__ : Tuple = pa.BufferReader(output.getvalue() ) UpperCAmelCase__ : pa.Table = pq.read_table(_snake_case ) UpperCAmelCase__ : int = pa_table.to_pydict() if embed_local_files: assert isinstance(out['image'][0]['path'] ,_snake_case ) with open(_snake_case ,'rb' ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def lowerCamelCase ( ): UpperCAmelCase__ : List[str] = pa.schema([pa.field('col_1' ,pa.string() ,nullable=_snake_case )] ) UpperCAmelCase__ : str = pa.BufferOutputStream() with ArrowWriter(stream=_snake_case ) as writer: writer._build_writer(inferred_schema=_snake_case ) assert writer._schema == pa.schema([pa.field('col_1' ,pa.string() )] )
706
"""simple docstring""" from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class a ( lowercase , lowercase , lowercase ): UpperCamelCase : Any = [r"""h\.\d+\.attn\.bias""", r"""h\.\d+\.attn\.masked_bias"""] @register_to_config def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = 50_257 , UpperCamelCase_ = 1_024 , UpperCamelCase_ = 768 , UpperCamelCase_ = 12 , UpperCamelCase_ = 12 , UpperCamelCase_ = None , UpperCamelCase_ = "gelu_new" , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 0.1 , UpperCamelCase_ = 1E-5 , UpperCamelCase_ = 0.02 , UpperCamelCase_ = True , UpperCamelCase_ = True , UpperCamelCase_ = False , UpperCamelCase_ = False , ): super().__init__() UpperCAmelCase__ : List[Any] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( F'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' F''' `n_embd`: {n_embd} are not equal.''' ) UpperCAmelCase__ : Dict = prefix_inner_dim UpperCAmelCase__ : List[Any] = prefix_hidden_dim UpperCAmelCase__ : List[Any] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCAmelCase__ : Any = ( nn.Linear(self.prefix_hidden_dim , UpperCamelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) UpperCAmelCase__ : Union[str, Any] = GPTaConfig( vocab_size=UpperCamelCase_ , n_positions=UpperCamelCase_ , n_embd=UpperCamelCase_ , n_layer=UpperCamelCase_ , n_head=UpperCamelCase_ , n_inner=UpperCamelCase_ , activation_function=UpperCamelCase_ , resid_pdrop=UpperCamelCase_ , embd_pdrop=UpperCamelCase_ , attn_pdrop=UpperCamelCase_ , layer_norm_epsilon=UpperCamelCase_ , initializer_range=UpperCamelCase_ , scale_attn_weights=UpperCamelCase_ , use_cache=UpperCamelCase_ , scale_attn_by_inverse_layer_idx=UpperCamelCase_ , reorder_and_upcast_attn=UpperCamelCase_ , ) UpperCAmelCase__ : List[str] = GPTaLMHeadModel(UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = None , UpperCamelCase_ = None , ): UpperCAmelCase__ : Optional[Any] = self.transformer.transformer.wte(UpperCamelCase_ ) UpperCAmelCase__ : str = self.encode_prefix(UpperCamelCase_ ) UpperCAmelCase__ : Tuple = self.decode_prefix(UpperCamelCase_ ) UpperCAmelCase__ : List[str] = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: UpperCAmelCase__ : List[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) UpperCAmelCase__ : List[Any] = torch.cat((dummy_token, input_ids) , dim=1 ) UpperCAmelCase__ : List[str] = self.transformer(inputs_embeds=UpperCamelCase_ , labels=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ ): return torch.zeros(UpperCamelCase_ , self.prefix_length , dtype=torch.intaa , device=UpperCamelCase_ ) def __snake_case ( self , UpperCamelCase_ ): return self.encode_prefix(UpperCamelCase_ ) @torch.no_grad() def __snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): UpperCAmelCase__ : List[str] = torch.split(UpperCamelCase_ , 1 , dim=0 ) UpperCAmelCase__ : Any = [] UpperCAmelCase__ : Optional[Any] = [] for feature in features: UpperCAmelCase__ : List[str] = self.decode_prefix(feature.to(UpperCamelCase_ ) ) # back to the clip feature # Only support beam search for now UpperCAmelCase__ , UpperCAmelCase__ : int = self.generate_beam( input_embeds=UpperCamelCase_ , device=UpperCamelCase_ , eos_token_id=UpperCamelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) UpperCAmelCase__ : Optional[int] = torch.stack(UpperCamelCase_ ) UpperCAmelCase__ : Any = torch.stack(UpperCamelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def __snake_case ( self , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_=None , UpperCamelCase_ = 5 , UpperCamelCase_ = 67 , UpperCamelCase_ = 1.0 , UpperCamelCase_ = None , ): UpperCAmelCase__ : Optional[int] = eos_token_id UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Union[str, Any] = None UpperCAmelCase__ : List[str] = torch.ones(UpperCamelCase_ , device=UpperCamelCase_ , dtype=torch.int ) UpperCAmelCase__ : str = torch.zeros(UpperCamelCase_ , device=UpperCamelCase_ , dtype=torch.bool ) if input_embeds is not None: UpperCAmelCase__ : List[Any] = input_embeds else: UpperCAmelCase__ : Union[str, Any] = self.transformer.transformer.wte(UpperCamelCase_ ) for i in range(UpperCamelCase_ ): UpperCAmelCase__ : Tuple = self.transformer(inputs_embeds=UpperCamelCase_ ) UpperCAmelCase__ : Dict = outputs.logits UpperCAmelCase__ : List[Any] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) UpperCAmelCase__ : int = logits.softmax(-1 ).log() if scores is None: UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = logits.topk(UpperCamelCase_ , -1 ) UpperCAmelCase__ : List[Any] = generated.expand(UpperCamelCase_ , *generated.shape[1:] ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: UpperCAmelCase__ : Dict = next_tokens else: UpperCAmelCase__ : Optional[int] = tokens.expand(UpperCamelCase_ , *tokens.shape[1:] ) UpperCAmelCase__ : List[Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: UpperCAmelCase__ : str = -float(np.inf ) UpperCAmelCase__ : Any = 0 UpperCAmelCase__ : int = scores[:, None] + logits seq_lengths[~is_stopped] += 1 UpperCAmelCase__ : Optional[int] = scores_sum / seq_lengths[:, None] UpperCAmelCase__ , UpperCAmelCase__ : Union[str, Any] = scores_sum_average.view(-1 ).topk(UpperCamelCase_ , -1 ) UpperCAmelCase__ : List[Any] = next_tokens // scores_sum.shape[1] UpperCAmelCase__ : str = seq_lengths[next_tokens_source] UpperCAmelCase__ : str = next_tokens % scores_sum.shape[1] UpperCAmelCase__ : Optional[Any] = next_tokens.unsqueeze(1 ) UpperCAmelCase__ : List[str] = tokens[next_tokens_source] UpperCAmelCase__ : List[str] = torch.cat((tokens, next_tokens) , dim=1 ) UpperCAmelCase__ : Any = generated[next_tokens_source] UpperCAmelCase__ : Tuple = scores_sum_average * seq_lengths UpperCAmelCase__ : Tuple = is_stopped[next_tokens_source] UpperCAmelCase__ : List[Any] = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) UpperCAmelCase__ : Optional[int] = torch.cat((generated, next_token_embed) , dim=1 ) UpperCAmelCase__ : List[Any] = is_stopped + next_tokens.eq(UpperCamelCase_ ).squeeze() if is_stopped.all(): break UpperCAmelCase__ : Dict = scores / seq_lengths UpperCAmelCase__ : Optional[Any] = scores.argsort(descending=UpperCamelCase_ ) # tokens tensors are already padded to max_seq_length UpperCAmelCase__ : Dict = [tokens[i] for i in order] UpperCAmelCase__ : Optional[Any] = torch.stack(UpperCamelCase_ , dim=0 ) UpperCAmelCase__ : List[str] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
254
0
"""simple docstring""" import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def snake_case__ ( _snake_case : str ): """simple docstring""" if hor == 1_28: UpperCamelCase__ = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") UpperCamelCase__ = (32, 1_28, 2_56) UpperCamelCase__ = ("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: UpperCamelCase__ = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") UpperCamelCase__ = (32, 64, 1_28, 2_56) UpperCamelCase__ = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") UpperCamelCase__ = torch.load(F'/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch' ) UpperCamelCase__ = model.state_dict() UpperCamelCase__ = { "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 6_55_36, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } UpperCamelCase__ = UNetaDModel(**_snake_case ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) UpperCamelCase__ = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): UpperCamelCase__ = state_dict.pop(_snake_case ) hf_value_function.load_state_dict(_snake_case ) torch.save(hf_value_function.state_dict() , F'hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin' ) with open(F'hub/hopper-medium-v2/unet/hor{hor}/config.json' , "w" ) as f: json.dump(_snake_case , _snake_case ) def snake_case__ ( ): """simple docstring""" UpperCamelCase__ = { "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 1_28, 2_56), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 6_55_36, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } UpperCamelCase__ = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" ) UpperCamelCase__ = model UpperCamelCase__ = UNetaDModel(**_snake_case ) print(F'length of state dict: {len(state_dict.keys() )}' ) print(F'length of value function dict: {len(hf_value_function.state_dict().keys() )}' ) UpperCamelCase__ = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): UpperCamelCase__ = state_dict.pop(_snake_case ) hf_value_function.load_state_dict(_snake_case ) torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" ) with open("hub/hopper-medium-v2/value_function/config.json" , "w" ) as f: json.dump(_snake_case , _snake_case ) if __name__ == "__main__": unet(32) # unet(128) value_function()
516
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SegformerConfig, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A : Tuple = logging.get_logger(__name__) def snake_case__ ( _snake_case : Union[str, Any] , _snake_case : Dict=False ): """simple docstring""" UpperCamelCase__ = OrderedDict() for key, value in state_dict.items(): if encoder_only and not key.startswith("head" ): UpperCamelCase__ = "segformer.encoder." + key if key.startswith("backbone" ): UpperCamelCase__ = key.replace("backbone" , "segformer.encoder" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 UpperCamelCase__ = key[key.find("patch_embed" ) + len("patch_embed" )] UpperCamelCase__ = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(_snake_case )-1}' ) if "norm" in key: UpperCamelCase__ = key.replace("norm" , "layer_norm" ) if "segformer.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 UpperCamelCase__ = key[key.find("segformer.encoder.layer_norm" ) + len("segformer.encoder.layer_norm" )] UpperCamelCase__ = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(_snake_case )-1}' ) if "layer_norm1" in key: UpperCamelCase__ = key.replace("layer_norm1" , "layer_norm_1" ) if "layer_norm2" in key: UpperCamelCase__ = key.replace("layer_norm2" , "layer_norm_2" ) if "block" in key: # replace for example block1 by block.0 UpperCamelCase__ = key[key.find("block" ) + len("block" )] UpperCamelCase__ = key.replace(F'block{idx}' , F'block.{int(_snake_case )-1}' ) if "attn.q" in key: UpperCamelCase__ = key.replace("attn.q" , "attention.self.query" ) if "attn.proj" in key: UpperCamelCase__ = key.replace("attn.proj" , "attention.output.dense" ) if "attn" in key: UpperCamelCase__ = key.replace("attn" , "attention.self" ) if "fc1" in key: UpperCamelCase__ = key.replace("fc1" , "dense1" ) if "fc2" in key: UpperCamelCase__ = key.replace("fc2" , "dense2" ) if "linear_pred" in key: UpperCamelCase__ = key.replace("linear_pred" , "classifier" ) if "linear_fuse" in key: UpperCamelCase__ = key.replace("linear_fuse.conv" , "linear_fuse" ) UpperCamelCase__ = key.replace("linear_fuse.bn" , "batch_norm" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 UpperCamelCase__ = key[key.find("linear_c" ) + len("linear_c" )] UpperCamelCase__ = key.replace(F'linear_c{idx}' , F'linear_c.{int(_snake_case )-1}' ) if key.startswith("head" ): UpperCamelCase__ = key.replace("head" , "classifier" ) UpperCamelCase__ = value return new_state_dict def snake_case__ ( _snake_case : str , _snake_case : List[Any] ): """simple docstring""" for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) UpperCamelCase__ = state_dict.pop(F'segformer.encoder.block.{i}.{j}.attention.self.kv.weight' ) UpperCamelCase__ = state_dict.pop(F'segformer.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict UpperCamelCase__ = kv_weight[ : config.hidden_sizes[i], : ] UpperCamelCase__ = kv_bias[: config.hidden_sizes[i]] UpperCamelCase__ = kv_weight[ config.hidden_sizes[i] :, : ] UpperCamelCase__ = kv_bias[ config.hidden_sizes[i] : ] def snake_case__ ( ): """simple docstring""" UpperCamelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCamelCase__ = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return image @torch.no_grad() def snake_case__ ( _snake_case : Tuple , _snake_case : Optional[int] , _snake_case : List[Any] ): """simple docstring""" UpperCamelCase__ = SegformerConfig() UpperCamelCase__ = False # set attributes based on model_name UpperCamelCase__ = "huggingface/label-files" if "segformer" in model_name: UpperCamelCase__ = model_name[len("segformer." ) : len("segformer." ) + 2] if "ade" in model_name: UpperCamelCase__ = 1_50 UpperCamelCase__ = "ade20k-id2label.json" UpperCamelCase__ = (1, 1_50, 1_28, 1_28) elif "city" in model_name: UpperCamelCase__ = 19 UpperCamelCase__ = "cityscapes-id2label.json" UpperCamelCase__ = (1, 19, 1_28, 1_28) else: raise ValueError(F'Model {model_name} not supported' ) elif "mit" in model_name: UpperCamelCase__ = True UpperCamelCase__ = model_name[4:6] UpperCamelCase__ = 10_00 UpperCamelCase__ = "imagenet-1k-id2label.json" UpperCamelCase__ = (1, 10_00) else: raise ValueError(F'Model {model_name} not supported' ) # set config attributes UpperCamelCase__ = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type="dataset" ) , "r" ) ) UpperCamelCase__ = {int(_snake_case ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} if size == "b0": pass elif size == "b1": UpperCamelCase__ = [64, 1_28, 3_20, 5_12] UpperCamelCase__ = 2_56 elif size == "b2": UpperCamelCase__ = [64, 1_28, 3_20, 5_12] UpperCamelCase__ = 7_68 UpperCamelCase__ = [3, 4, 6, 3] elif size == "b3": UpperCamelCase__ = [64, 1_28, 3_20, 5_12] UpperCamelCase__ = 7_68 UpperCamelCase__ = [3, 4, 18, 3] elif size == "b4": UpperCamelCase__ = [64, 1_28, 3_20, 5_12] UpperCamelCase__ = 7_68 UpperCamelCase__ = [3, 8, 27, 3] elif size == "b5": UpperCamelCase__ = [64, 1_28, 3_20, 5_12] UpperCamelCase__ = 7_68 UpperCamelCase__ = [3, 6, 40, 3] else: raise ValueError(F'Size {size} not supported' ) # load image processor (only resize + normalize) UpperCamelCase__ = SegformerImageProcessor( image_scale=(5_12, 5_12) , keep_ratio=_snake_case , align=_snake_case , do_random_crop=_snake_case ) # prepare image UpperCamelCase__ = prepare_img() UpperCamelCase__ = image_processor(images=_snake_case , return_tensors="pt" ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict if encoder_only: UpperCamelCase__ = torch.load(_snake_case , map_location=torch.device("cpu" ) ) else: UpperCamelCase__ = torch.load(_snake_case , map_location=torch.device("cpu" ) )["state_dict"] # rename keys UpperCamelCase__ = rename_keys(_snake_case , encoder_only=_snake_case ) if not encoder_only: del state_dict["decode_head.conv_seg.weight"] del state_dict["decode_head.conv_seg.bias"] # key and value matrices need special treatment read_in_k_v(_snake_case , _snake_case ) # create HuggingFace model and load state dict if encoder_only: UpperCamelCase__ = False UpperCamelCase__ = SegformerForImageClassification(_snake_case ) else: UpperCamelCase__ = SegformerForSemanticSegmentation(_snake_case ) model.load_state_dict(_snake_case ) model.eval() # forward pass UpperCamelCase__ = model(_snake_case ) UpperCamelCase__ = outputs.logits # set expected_slice based on model name # ADE20k checkpoints if model_name == "segformer.b0.512x512.ade.160k": UpperCamelCase__ = torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ) elif model_name == "segformer.b1.512x512.ade.160k": UpperCamelCase__ = torch.tensor( [ [[-7.5820, -8.7231, -8.3215], [-8.0600, -10.3529, -10.0304], [-7.5208, -9.4103, -9.6239]], [[-12.6918, -13.8994, -13.7137], [-13.3196, -15.7523, -15.4789], [-12.9343, -14.8757, -14.9689]], [[-11.1911, -11.9421, -11.3243], [-11.3342, -13.6839, -13.3581], [-10.3909, -12.1832, -12.4858]], ] ) elif model_name == "segformer.b2.512x512.ade.160k": UpperCamelCase__ = torch.tensor( [ [[-11.8173, -14.3850, -16.3128], [-14.5648, -16.5804, -18.6568], [-14.7223, -15.7387, -18.4218]], [[-15.7290, -17.9171, -19.4423], [-18.3105, -19.9448, -21.4661], [-17.9296, -18.6497, -20.7910]], [[-15.0783, -17.0336, -18.2789], [-16.8771, -18.6870, -20.1612], [-16.2454, -17.1426, -19.5055]], ] ) elif model_name == "segformer.b3.512x512.ade.160k": UpperCamelCase__ = torch.tensor( [ [[-9.0878, -10.2081, -10.1891], [-9.3144, -10.7941, -10.9843], [-9.2294, -10.3855, -10.5704]], [[-12.2316, -13.9068, -13.6102], [-12.9161, -14.3702, -14.3235], [-12.5233, -13.7174, -13.7932]], [[-14.6275, -15.2490, -14.9727], [-14.3400, -15.9687, -16.2827], [-14.1484, -15.4033, -15.8937]], ] ) elif model_name == "segformer.b4.512x512.ade.160k": UpperCamelCase__ = torch.tensor( [ [[-12.3144, -13.2447, -14.0802], [-13.3614, -14.5816, -15.6117], [-13.3340, -14.4433, -16.2219]], [[-19.2781, -20.4128, -20.7506], [-20.6153, -21.6566, -22.0998], [-19.9800, -21.0430, -22.1494]], [[-18.8739, -19.7804, -21.1834], [-20.1233, -21.6765, -23.2944], [-20.0315, -21.2641, -23.6944]], ] ) elif model_name == "segformer.b5.640x640.ade.160k": UpperCamelCase__ = torch.tensor( [ [[-9.5524, -12.0835, -11.7348], [-10.5229, -13.6446, -14.5662], [-9.5842, -12.8851, -13.9414]], [[-15.3432, -17.5323, -17.0818], [-16.3330, -18.9255, -19.2101], [-15.1340, -17.7848, -18.3971]], [[-12.6072, -14.9486, -14.6631], [-13.7629, -17.0907, -17.7745], [-12.7899, -16.1695, -17.1671]], ] ) # Cityscapes checkpoints elif model_name == "segformer.b0.1024x1024.city.160k": UpperCamelCase__ = torch.tensor( [ [[-11.9295, -13.4057, -14.8106], [-13.3431, -14.8179, -15.3781], [-14.2836, -15.5942, -16.1588]], [[-11.4906, -12.8067, -13.6564], [-13.1189, -14.0500, -14.1543], [-13.8748, -14.5136, -14.8789]], [[0.5374, 0.1067, -0.4742], [0.1141, -0.2255, -0.7099], [-0.3000, -0.5924, -1.3105]], ] ) elif model_name == "segformer.b0.512x1024.city.160k": UpperCamelCase__ = torch.tensor( [ [[-7.8217, -9.8767, -10.1717], [-9.4438, -10.9058, -11.4047], [-9.7939, -12.3495, -12.1079]], [[-7.1514, -9.5336, -10.0860], [-9.7776, -11.6822, -11.8439], [-10.1411, -12.7655, -12.8972]], [[0.3021, 0.0805, -0.2310], [-0.0328, -0.1605, -0.2714], [-0.1408, -0.5477, -0.6976]], ] ) elif model_name == "segformer.b0.640x1280.city.160k": UpperCamelCase__ = torch.tensor( [ [ [-1.1_372E01, -1.2_787E01, -1.3_477E01], [-1.2_536E01, -1.4_194E01, -1.4_409E01], [-1.3_217E01, -1.4_888E01, -1.5_327E01], ], [ [-1.4_791E01, -1.7_122E01, -1.8_277E01], [-1.7_163E01, -1.9_192E01, -1.9_533E01], [-1.7_897E01, -1.9_991E01, -2.0_315E01], ], [ [7.6_723E-01, 4.1_921E-01, -7.7_878E-02], [4.7_772E-01, 9.5_557E-03, -2.8_082E-01], [3.6_032E-01, -2.4_826E-01, -5.1_168E-01], ], ] ) elif model_name == "segformer.b0.768x768.city.160k": UpperCamelCase__ = torch.tensor( [ [[-9.4959, -11.3087, -11.7479], [-11.0025, -12.6540, -12.3319], [-11.4064, -13.0487, -12.9905]], [[-9.8905, -11.3084, -12.0854], [-11.1726, -12.7698, -12.9583], [-11.5985, -13.3278, -14.1774]], [[0.2213, 0.0192, -0.2466], [-0.1731, -0.4213, -0.4874], [-0.3126, -0.6541, -1.1389]], ] ) elif model_name == "segformer.b1.1024x1024.city.160k": UpperCamelCase__ = torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ) elif model_name == "segformer.b2.1024x1024.city.160k": UpperCamelCase__ = torch.tensor( [ [[-16.0976, -16.4856, -17.3962], [-16.6234, -19.0342, -19.7685], [-16.0900, -18.0661, -19.1180]], [[-18.4750, -18.8488, -19.5074], [-19.4030, -22.1570, -22.5977], [-19.1191, -20.8486, -22.3783]], [[-4.5178, -5.5037, -6.5109], [-5.0884, -7.2174, -8.0334], [-4.4156, -5.8117, -7.2970]], ] ) elif model_name == "segformer.b3.1024x1024.city.160k": UpperCamelCase__ = torch.tensor( [ [[-14.2081, -14.4732, -14.1977], [-14.5867, -16.4423, -16.6356], [-13.4441, -14.9685, -16.8696]], [[-14.4576, -14.7073, -15.0451], [-15.0816, -17.6237, -17.9873], [-14.4213, -16.0199, -18.5992]], [[-4.7349, -4.9588, -5.0966], [-4.3210, -6.9325, -7.2591], [-3.4312, -4.7484, -7.1917]], ] ) elif model_name == "segformer.b4.1024x1024.city.160k": UpperCamelCase__ = torch.tensor( [ [[-11.7737, -11.9526, -11.3273], [-13.6692, -14.4574, -13.8878], [-13.8937, -14.6924, -15.9345]], [[-14.6706, -14.5330, -14.1306], [-16.1502, -16.8180, -16.4269], [-16.8338, -17.8939, -20.1746]], [[1.0491, 0.8289, 1.0310], [1.1044, 0.5219, 0.8055], [1.0899, 0.6926, 0.5590]], ] ) elif model_name == "segformer.b5.1024x1024.city.160k": UpperCamelCase__ = torch.tensor( [ [[-12.5641, -13.4777, -13.0684], [-13.9587, -15.8983, -16.6557], [-13.3109, -15.7350, -16.3141]], [[-14.7074, -15.4352, -14.5944], [-16.6353, -18.1663, -18.6120], [-15.1702, -18.0329, -18.1547]], [[-1.7990, -2.0951, -1.7784], [-2.6397, -3.8245, -3.9686], [-1.5264, -2.8126, -2.9316]], ] ) else: UpperCamelCase__ = logits.argmax(-1 ).item() print("Predicted class:" , model.config.idalabel[predicted_class_idx] ) # verify logits if not encoder_only: assert logits.shape == expected_shape assert torch.allclose(logits[0, :3, :3, :3] , _snake_case , atol=1E-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) model.save_pretrained(_snake_case ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": A : Dict = argparse.ArgumentParser() parser.add_argument( '--model_name', default='segformer.b0.512x512.ade.160k', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) A : Dict = parser.parse_args() convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
516
1
'''simple docstring''' def UpperCAmelCase ( A : int , A : int ): while second != 0: SCREAMING_SNAKE_CASE : List[str] = first & second first ^= second SCREAMING_SNAKE_CASE : Any = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase_ : Optional[int] = int(input('Enter the first number: ').strip()) lowerCAmelCase_ : List[str] = int(input('Enter the second number: ').strip()) print(f'{add(first, second) = }')
464
'''simple docstring''' import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowerCamelCase_ ( snake_case_ ): _lowerCAmelCase : int = ['image_processor', 'tokenizer'] _lowerCAmelCase : Union[str, Any] = 'LayoutLMv3ImageProcessor' _lowerCAmelCase : List[Any] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self : str , lowerCAmelCase__ : int=None , lowerCAmelCase__ : str=None , **lowerCAmelCase__ : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCAmelCase__ , ) SCREAMING_SNAKE_CASE : List[str] = kwargs.pop('''feature_extractor''' ) SCREAMING_SNAKE_CASE : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __call__( self : Dict , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase__ : Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None , lowerCAmelCase__ : Union[List[List[int]], List[List[List[int]]]] = None , lowerCAmelCase__ : Optional[Union[List[int], List[List[int]]]] = None , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase__ : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : int = 0 , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : Optional[bool] = None , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = True , lowerCAmelCase__ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase__ : Any , ): """simple docstring""" # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor SCREAMING_SNAKE_CASE : List[Any] = self.image_processor(images=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE : List[Any] = [text] # add batch dimension (as the image processor always adds a batch dimension) SCREAMING_SNAKE_CASE : Optional[Any] = features['''words'''] SCREAMING_SNAKE_CASE : Tuple = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , stride=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_overflowing_tokens=lowerCAmelCase__ , return_special_tokens_mask=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , return_length=lowerCAmelCase__ , verbose=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ , ) # add pixel values SCREAMING_SNAKE_CASE : List[Any] = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: SCREAMING_SNAKE_CASE : Any = self.get_overflowing_images(lowerCAmelCase__ , encoded_inputs['''overflow_to_sample_mapping'''] ) SCREAMING_SNAKE_CASE : Any = images return encoded_inputs def __lowercase ( self : str , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ): """simple docstring""" # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image SCREAMING_SNAKE_CASE : Dict = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' F""" {len(lowerCAmelCase__ )} and {len(lowerCAmelCase__ )}""" ) return images_with_overflow def __lowercase ( self : Any , *lowerCAmelCase__ : Union[str, Any] , **lowerCAmelCase__ : List[Any] ): """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) def __lowercase ( self : Optional[int] , *lowerCAmelCase__ : Optional[Any] , **lowerCAmelCase__ : Tuple ): """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase__ , **lowerCAmelCase__ ) @property def __lowercase ( self : Union[str, Any] ): """simple docstring""" return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __lowercase ( self : Union[str, Any] ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , lowerCAmelCase__ , ) return self.image_processor_class @property def __lowercase ( self : List[Any] ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , lowerCAmelCase__ , ) return self.image_processor
464
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def SCREAMING_SNAKE_CASE ( a_ : List[Any] , a_ : List[str]=False ): __a = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ('module.cls_token', 'vit.embeddings.cls_token'), ('module.patch_embed.proj.weight', 'vit.embeddings.patch_embeddings.projection.weight'), ('module.patch_embed.proj.bias', 'vit.embeddings.patch_embeddings.projection.bias'), ('module.pos_embed', 'vit.embeddings.position_embeddings'), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('module.norm.weight', 'layernorm.weight'), ('module.norm.bias', 'layernorm.bias'), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" __a = [(pair[0], pair[1][4:]) if pair[1].startswith('vit' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('norm.weight', 'vit.layernorm.weight'), ('norm.bias', 'vit.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def SCREAMING_SNAKE_CASE ( a_ : Any , a_ : List[Any] , a_ : Dict=False ): for i in range(config.num_hidden_layers ): if base_model: __a = '' else: __a = 'vit.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __a = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) __a = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict __a = in_proj_weight[ : config.hidden_size, : ] __a = in_proj_bias[: config.hidden_size] __a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __a = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __a = in_proj_weight[ -config.hidden_size :, : ] __a = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( a_ : Optional[int] ): __a = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(a_ , a_ ) def SCREAMING_SNAKE_CASE ( a_ : Tuple ): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. __a = [ 'module.fc.fc1.weight', 'module.fc.fc1.bias', 'module.fc.bn1.weight', 'module.fc.bn1.bias', 'module.fc.bn1.running_mean', 'module.fc.bn1.running_var', 'module.fc.bn1.num_batches_tracked', 'module.fc.fc2.weight', 'module.fc.fc2.bias', 'module.fc.bn2.weight', 'module.fc.bn2.bias', 'module.fc.bn2.running_mean', 'module.fc.bn2.running_var', 'module.fc.bn2.num_batches_tracked', 'module.fc.fc3.weight', 'module.fc.fc3.bias', ] for k in ignore_keys: state_dict.pop(a_ , a_ ) def SCREAMING_SNAKE_CASE ( a_ : Union[str, Any] , a_ : str , a_ : List[Any] ): __a = dct.pop(a_ ) __a = val def SCREAMING_SNAKE_CASE ( a_ : Union[str, Any] , a_ : List[str] ): __a = ViTMSNConfig() __a = 1000 __a = 'datasets/huggingface/label-files' __a = 'imagenet-1k-id2label.json' __a = json.load(open(hf_hub_download(a_ , a_ ) , 'r' ) ) __a = {int(a_ ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: __a = 384 __a = 1536 __a = 6 elif "l16" in checkpoint_url: __a = 1024 __a = 4096 __a = 24 __a = 16 __a = 0.1 elif "b4" in checkpoint_url: __a = 4 elif "l7" in checkpoint_url: __a = 7 __a = 1024 __a = 4096 __a = 24 __a = 16 __a = 0.1 __a = ViTMSNModel(a_ ) __a = torch.hub.load_state_dict_from_url(a_ , map_location='cpu' )['target_encoder'] __a = ViTImageProcessor(size=config.image_size ) remove_projection_head(a_ ) __a = create_rename_keys(a_ , base_model=a_ ) for src, dest in rename_keys: rename_key(a_ , a_ , a_ ) read_in_q_k_v(a_ , a_ , base_model=a_ ) model.load_state_dict(a_ ) model.eval() __a = 'http://images.cocodataset.org/val2017/000000039769.jpg' __a = Image.open(requests.get(a_ , stream=a_ ).raw ) __a = ViTImageProcessor( size=config.image_size , image_mean=a_ , image_std=a_ ) __a = image_processor(images=a_ , return_tensors='pt' ) # forward pass torch.manual_seed(2 ) __a = model(**a_ ) __a = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: __a = torch.tensor([[-1.09_15, -1.48_76, -1.18_09]] ) elif "b16" in checkpoint_url: __a = torch.tensor([[14.28_89, -18.90_45, 11.72_81]] ) elif "l16" in checkpoint_url: __a = torch.tensor([[41.50_28, -22.86_81, 45.64_75]] ) elif "b4" in checkpoint_url: __a = torch.tensor([[-4.38_68, 5.29_32, -0.41_37]] ) else: __a = torch.tensor([[-0.17_92, -0.64_65, 2.42_63]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , a_ , atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(a_ ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCAmelCase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
539
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { "configuration_clap": [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapAudioConfig", "ClapConfig", "ClapTextConfig", ], "processing_clap": ["ClapProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "CLAP_PRETRAINED_MODEL_ARCHIVE_LIST", "ClapModel", "ClapPreTrainedModel", "ClapTextModel", "ClapTextModelWithProjection", "ClapAudioModel", "ClapAudioModelWithProjection", ] UpperCAmelCase_ = ["ClapFeatureExtractor"] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
539
1
'''simple docstring''' import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =[ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: _UpperCamelCase =s_dict.pop(__SCREAMING_SNAKE_CASE ) elif "subsample" in key: _UpperCamelCase =s_dict.pop(__SCREAMING_SNAKE_CASE ) def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase , _UpperCamelCase =emb.weight.shape _UpperCamelCase =nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE ) _UpperCamelCase =emb.weight.data return lin_layer def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =torch.load(__SCREAMING_SNAKE_CASE , map_location='''cpu''' ) _UpperCamelCase =mam_aaa['''args'''] _UpperCamelCase =mam_aaa['''model'''] _UpperCamelCase =state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(__SCREAMING_SNAKE_CASE ) rename_keys(__SCREAMING_SNAKE_CASE ) _UpperCamelCase =state_dict['''decoder.embed_tokens.weight'''].shape[0] _UpperCamelCase =args.share_decoder_input_output_embed _UpperCamelCase =[int(__SCREAMING_SNAKE_CASE ) for i in args.conv_kernel_sizes.split(''',''' )] _UpperCamelCase =SpeechaTextConfig( vocab_size=__SCREAMING_SNAKE_CASE , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(__SCREAMING_SNAKE_CASE ) , conv_channels=args.conv_channels , conv_kernel_sizes=__SCREAMING_SNAKE_CASE , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=__SCREAMING_SNAKE_CASE , num_beams=5 , max_length=200 , use_cache=__SCREAMING_SNAKE_CASE , decoder_start_token_id=2 , early_stopping=__SCREAMING_SNAKE_CASE , ) _UpperCamelCase =SpeechaTextForConditionalGeneration(__SCREAMING_SNAKE_CASE ) _UpperCamelCase , _UpperCamelCase =model.model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0 and not set(__SCREAMING_SNAKE_CASE ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f''' but all the following weights are missing {missing}''' ) if tie_embeds: _UpperCamelCase =make_linear_from_emb(model.model.decoder.embed_tokens ) else: _UpperCamelCase =lm_head_weights model.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowerCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') __lowerCamelCase : int = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
712
'''simple docstring''' import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) __lowerCamelCase : List[Any] = 'bert-base-cased' __lowerCamelCase : str = 'fp16' __lowerCamelCase : Optional[int] = 'bf16' __lowerCamelCase : List[Any] = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCAmelCase ( lowercase_): """simple docstring""" def UpperCamelCase__ ( self : Tuple ) -> Union[str, Any]: super().setUp() _UpperCamelCase =dict( ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , ) def UpperCamelCase__ ( self : int ) -> List[Any]: from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(UpperCamelCase__ ): _UpperCamelCase =self.dist_env.copy() _UpperCamelCase =F'''{i + 1}''' _UpperCamelCase =strategy with mockenv_context(**UpperCamelCase__ ): _UpperCamelCase =FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def UpperCamelCase__ ( self : Union[str, Any] ) -> Any: from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(UpperCamelCase__ ): _UpperCamelCase =self.dist_env.copy() _UpperCamelCase =prefetch_policy with mockenv_context(**UpperCamelCase__ ): _UpperCamelCase =FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def UpperCamelCase__ ( self : Optional[Any] ) -> Tuple: from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(UpperCamelCase__ ): _UpperCamelCase =self.dist_env.copy() _UpperCamelCase =state_dict_type with mockenv_context(**UpperCamelCase__ ): _UpperCamelCase =FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def UpperCamelCase__ ( self : Any ) -> List[Any]: _UpperCamelCase =AutoModel.from_pretrained(UpperCamelCase__ ) for policy in FSDP_AUTO_WRAP_POLICY: _UpperCamelCase =self.dist_env.copy() _UpperCamelCase =policy if policy == "TRANSFORMER_BASED_WRAP": _UpperCamelCase ='''BertLayer''' elif policy == "SIZE_BASED_WRAP": _UpperCamelCase ='''2000''' with mockenv_context(**UpperCamelCase__ ): _UpperCamelCase =FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(UpperCamelCase__ ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) _UpperCamelCase =self.dist_env.copy() _UpperCamelCase ='''TRANSFORMER_BASED_WRAP''' _UpperCamelCase ='''T5Layer''' with mockenv_context(**UpperCamelCase__ ): _UpperCamelCase =FullyShardedDataParallelPlugin() with self.assertRaises(UpperCamelCase__ ) as cm: fsdp_plugin.set_auto_wrap_policy(UpperCamelCase__ ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) _UpperCamelCase =self.dist_env.copy() _UpperCamelCase ='''SIZE_BASED_WRAP''' _UpperCamelCase ='''0''' with mockenv_context(**UpperCamelCase__ ): _UpperCamelCase =FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(UpperCamelCase__ ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def UpperCamelCase__ ( self : Any ) -> List[Any]: from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: _UpperCamelCase =self.dist_env.copy() _UpperCamelCase =mp_dtype with mockenv_context(**UpperCamelCase__ ): _UpperCamelCase =Accelerator() if mp_dtype == "fp16": _UpperCamelCase =torch.floataa elif mp_dtype == "bf16": _UpperCamelCase =torch.bfloataa _UpperCamelCase =MixedPrecision(param_dtype=UpperCamelCase__ , reduce_dtype=UpperCamelCase__ , buffer_dtype=UpperCamelCase__ ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , UpperCamelCase__ ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , UpperCamelCase__ ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(UpperCamelCase__ ) def UpperCamelCase__ ( self : Dict ) -> Tuple: from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: _UpperCamelCase =self.dist_env.copy() _UpperCamelCase =str(UpperCamelCase__ ).lower() with mockenv_context(**UpperCamelCase__ ): _UpperCamelCase =FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=UpperCamelCase__ ) ) @require_fsdp @require_multi_gpu @slow class UpperCAmelCase ( lowercase_): """simple docstring""" def UpperCamelCase__ ( self : Union[str, Any] ) -> List[str]: super().setUp() _UpperCamelCase =0.82 _UpperCamelCase =[ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] _UpperCamelCase ={ '''multi_gpu_fp16''': 3200, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2000, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } _UpperCamelCase =160 _UpperCamelCase =160 _UpperCamelCase =inspect.getfile(accelerate.test_utils ) _UpperCamelCase =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def UpperCamelCase__ ( self : int ) -> str: _UpperCamelCase =os.path.join(self.test_scripts_folder , '''test_performance.py''' ) _UpperCamelCase =['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: _UpperCamelCase =cmd.copy() for i, strategy in enumerate(UpperCamelCase__ ): if strategy.lower() in config: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() ) def UpperCamelCase__ ( self : Optional[Any] ) -> Any: _UpperCamelCase =os.path.join(self.test_scripts_folder , '''test_checkpointing.py''' ) _UpperCamelCase =[ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(UpperCamelCase__ ): _UpperCamelCase =cmd.copy() cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue _UpperCamelCase =len(UpperCamelCase__ ) for state_dict_type in FSDP_STATE_DICT_TYPE: _UpperCamelCase =cmd_config[:state_dict_config_index] cmd_config.append(F'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() ) _UpperCamelCase =cmd_config[:-1] _UpperCamelCase =os.path.join(self.tmpdir , '''epoch_0''' ) cmd_config.extend( [ F'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() ) def UpperCamelCase__ ( self : Dict ) -> int: _UpperCamelCase =os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''' ) _UpperCamelCase =[ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): _UpperCamelCase =cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(UpperCamelCase__ ): if strategy.lower() in spec: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--peak_memory_upper_bound={peak_mem_upper_bound}''', F'''--n_train={self.n_train}''', F'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
271
0
from __future__ import annotations import math def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(SCREAMING_SNAKE_CASE ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True UpperCamelCase = [num for num in range(3, 100_001, 2) if not is_prime(num)] def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> list[int]: if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError('n must be an integer' ) if n <= 0: raise ValueError('n must be >= 0' ) _lowercase : int = [] for num in range(len(SCREAMING_SNAKE_CASE ) ): _lowercase : int = 0 while 2 * i * i <= odd_composites[num]: _lowercase : Union[str, Any] = odd_composites[num] - 2 * i * i if is_prime(SCREAMING_SNAKE_CASE ): break i += 1 else: list_nums.append(odd_composites[num] ) if len(SCREAMING_SNAKE_CASE ) == n: return list_nums return [] def __magic_name__ ( ) -> int: return compute_nums(1 )[0] if __name__ == "__main__": print(f'''{solution() = }''')
66
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets __UpperCAmelCase = ''' Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] ''' __UpperCAmelCase = ''' Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results[\'matthews_correlation\'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric("matthews_correlation") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results[\'matthews_correlation\'], 2)) -0.25 ''' __UpperCAmelCase = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCAmelCase ( datasets.Metric ): def UpperCAmelCase ( self : Optional[int] ) -> str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=[ "https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html" ] , ) def UpperCAmelCase ( self : Tuple , a_ : Optional[Any] , a_ : Optional[Any] , a_ : Any=None ) -> Union[str, Any]: '''simple docstring''' return { "matthews_correlation": float(matthews_corrcoef(a_ , a_ , sample_weight=a_ ) ), }
642
0
'''simple docstring''' import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging UpperCamelCase__ : List[str] = logging.get_logger(__name__) UpperCamelCase__ : Dict = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED UpperCamelCase__ : Dict = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } UpperCamelCase__ : Any = { 'allenai/led-base-16384': 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __UpperCamelCase( ): '''simple docstring''' UpperCAmelCase__ : List[Any] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) UpperCAmelCase__ : Dict = bs[:] UpperCAmelCase__ : Tuple = 0 for b in range(2**8 ): if b not in bs: bs.append(_A ) cs.append(2**8 + n ) n += 1 UpperCAmelCase__ : Optional[int] = [chr(_A ) for n in cs] return dict(zip(_A , _A ) ) def __UpperCamelCase( _A : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : List[str] = set() UpperCAmelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : int = char return pairs class _lowercase ( lowerCAmelCase ): '''simple docstring''' UpperCAmelCase_ : int = VOCAB_FILES_NAMES UpperCAmelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ : int = ['''input_ids''', '''attention_mask'''] def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_="replace" ,lowerCamelCase_="<s>" ,lowerCamelCase_="</s>" ,lowerCamelCase_="</s>" ,lowerCamelCase_="<s>" ,lowerCamelCase_="<unk>" ,lowerCamelCase_="<pad>" ,lowerCamelCase_="<mask>" ,lowerCamelCase_=False ,**lowerCamelCase_ ,) -> List[Any]: '''simple docstring''' UpperCAmelCase__ : Tuple = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else bos_token UpperCAmelCase__ : List[str] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else eos_token UpperCAmelCase__ : Any = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else sep_token UpperCAmelCase__ : Union[str, Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else cls_token UpperCAmelCase__ : Union[str, Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else unk_token UpperCAmelCase__ : List[Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ : Union[str, Any] = AddedToken(lowerCamelCase_ ,lstrip=lowerCamelCase_ ,rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ ,lowerCamelCase_ ) else mask_token super().__init__( errors=lowerCamelCase_ ,bos_token=lowerCamelCase_ ,eos_token=lowerCamelCase_ ,unk_token=lowerCamelCase_ ,sep_token=lowerCamelCase_ ,cls_token=lowerCamelCase_ ,pad_token=lowerCamelCase_ ,mask_token=lowerCamelCase_ ,add_prefix_space=lowerCamelCase_ ,**lowerCamelCase_ ,) with open(lowerCamelCase_ ,encoding='''utf-8''' ) as vocab_handle: UpperCAmelCase__ : List[str] = json.load(lowerCamelCase_ ) UpperCAmelCase__ : Union[str, Any] = {v: k for k, v in self.encoder.items()} UpperCAmelCase__ : Any = errors # how to handle errors in decoding UpperCAmelCase__ : Optional[int] = bytes_to_unicode() UpperCAmelCase__ : List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(lowerCamelCase_ ,encoding='''utf-8''' ) as merges_handle: UpperCAmelCase__ : Any = merges_handle.read().split('''\n''' )[1:-1] UpperCAmelCase__ : List[Any] = [tuple(merge.split() ) for merge in bpe_merges] UpperCAmelCase__ : Any = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) UpperCAmelCase__ : Union[str, Any] = {} UpperCAmelCase__ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCAmelCase__ : Optional[Any] = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' return len(self.encoder ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' return dict(self.encoder ,**self.added_tokens_encoder ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> str: '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase__ : Any = tuple(lowerCamelCase_ ) UpperCAmelCase__ : Optional[Any] = get_pairs(lowerCamelCase_ ) if not pairs: return token while True: UpperCAmelCase__ : List[Any] = min(lowerCamelCase_ ,key=lambda lowerCamelCase_ : self.bpe_ranks.get(lowerCamelCase_ ,float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ : Any = bigram UpperCAmelCase__ : Union[str, Any] = [] UpperCAmelCase__ : str = 0 while i < len(lowerCamelCase_ ): try: UpperCAmelCase__ : Optional[Any] = word.index(lowerCamelCase_ ,lowerCamelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : Any = j if word[i] == first and i < len(lowerCamelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : List[Any] = tuple(lowerCamelCase_ ) UpperCAmelCase__ : Dict = new_word if len(lowerCamelCase_ ) == 1: break else: UpperCAmelCase__ : Union[str, Any] = get_pairs(lowerCamelCase_ ) UpperCAmelCase__ : Optional[Any] = ''' '''.join(lowerCamelCase_ ) UpperCAmelCase__ : Optional[Any] = word return word def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : List[Any] = [] for token in re.findall(self.pat ,lowerCamelCase_ ): UpperCAmelCase__ : Dict = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCamelCase_ ).split(''' ''' ) ) return bpe_tokens def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> Optional[Any]: '''simple docstring''' return self.encoder.get(lowerCamelCase_ ,self.encoder.get(self.unk_token ) ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> str: '''simple docstring''' return self.decoder.get(lowerCamelCase_ ) def lowerCAmelCase__ ( self ,lowerCamelCase_ ) -> Tuple: '''simple docstring''' UpperCAmelCase__ : List[Any] = ''''''.join(lowerCamelCase_ ) UpperCAmelCase__ : Any = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' ,errors=self.errors ) return text def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase__ : Optional[int] = os.path.join( lowerCamelCase_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase__ : Optional[Any] = os.path.join( lowerCamelCase_ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(lowerCamelCase_ ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCamelCase_ ,ensure_ascii=lowerCamelCase_ ) + '''\n''' ) UpperCAmelCase__ : str = 0 with open(lowerCamelCase_ ,'''w''' ,encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCamelCase_ : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) UpperCAmelCase__ : str = token_index writer.write(''' '''.join(lowerCamelCase_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : Optional[Any] = [self.cls_token_id] UpperCAmelCase__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ,lowerCamelCase_ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ ,token_ids_a=lowerCamelCase_ ,already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ) -> List[int]: '''simple docstring''' UpperCAmelCase__ : Dict = [self.sep_token_id] UpperCAmelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_=False ,**lowerCamelCase_ ) -> Any: '''simple docstring''' UpperCAmelCase__ : int = kwargs.pop('''add_prefix_space''' ,self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(lowerCamelCase_ ) > 0 and not text[0].isspace()): UpperCAmelCase__ : Any = ''' ''' + text return (text, kwargs) def lowerCAmelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ = None ,lowerCamelCase_ = PaddingStrategy.DO_NOT_PAD ,lowerCamelCase_ = None ,lowerCamelCase_ = None ,) -> dict: '''simple docstring''' UpperCAmelCase__ : str = super()._pad( encoded_inputs=lowerCamelCase_ ,max_length=lowerCamelCase_ ,padding_strategy=lowerCamelCase_ ,pad_to_multiple_of=lowerCamelCase_ ,return_attention_mask=lowerCamelCase_ ,) # Load from model defaults if return_attention_mask is None: UpperCAmelCase__ : Dict = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase__ : Any = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase__ : List[str] = len(encoded_inputs['''global_attention_mask'''] ) != len(lowerCamelCase_ ) if needs_to_be_padded: UpperCAmelCase__ : List[str] = len(lowerCamelCase_ ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase__ : Union[str, Any] = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase__ : Optional[int] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
496
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCamelCase( _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[str] = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __UpperCamelCase( _A : Union[str, Any] , _A : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __UpperCamelCase( _A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', '''stage2.cls_token''') ) return token def __UpperCamelCase( ): '''simple docstring''' UpperCAmelCase__ : List[Any] = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCamelCase( _A : List[Any] , _A : Dict , _A : str , _A : Tuple ): '''simple docstring''' UpperCAmelCase__ : List[str] = '''imagenet-1k-id2label.json''' UpperCAmelCase__ : str = 10_00 UpperCAmelCase__ : str = '''huggingface/label-files''' UpperCAmelCase__ : List[Any] = num_labels UpperCAmelCase__ : Tuple = json.load(open(cached_download(hf_hub_url(_A , _A , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase__ : Any = {int(_A ): v for k, v in idalabel.items()} UpperCAmelCase__ : List[str] = idalabel UpperCAmelCase__ : Any = {v: k for k, v in idalabel.items()} UpperCAmelCase__ : int = CvtConfig(num_labels=_A , idalabel=_A , labelaid=_A ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "13": UpperCAmelCase__ : Tuple = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' , 1 )[-1][4:6] == "21": UpperCAmelCase__ : List[str] = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: UpperCAmelCase__ : Optional[int] = [2, 2, 20] UpperCAmelCase__ : str = [3, 12, 16] UpperCAmelCase__ : Union[str, Any] = [1_92, 7_68, 10_24] UpperCAmelCase__ : Optional[int] = CvtForImageClassification(_A ) UpperCAmelCase__ : Any = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) UpperCAmelCase__ : Dict = image_size UpperCAmelCase__ : Union[str, Any] = torch.load(_A , map_location=torch.device('''cpu''' ) ) UpperCAmelCase__ : Union[str, Any] = OrderedDict() UpperCAmelCase__ : str = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: UpperCAmelCase__ : Optional[int] = list_of_state_dict + cls_token(_A ) UpperCAmelCase__ : Union[str, Any] = list_of_state_dict + embeddings(_A ) for cnt in range(config.depth[idx] ): UpperCAmelCase__ : str = list_of_state_dict + attention(_A , _A ) UpperCAmelCase__ : int = list_of_state_dict + final() for gg in list_of_state_dict: print(_A ) for i in range(len(_A ) ): UpperCAmelCase__ : List[Any] = original_weights[list_of_state_dict[i][1]] model.load_state_dict(_A ) model.save_pretrained(_A ) image_processor.save_pretrained(_A ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": UpperCamelCase__ : Tuple = argparse.ArgumentParser() parser.add_argument( '--cvt_model', default='cvt-w24', type=str, help='Name of the cvt model you\'d like to convert.', ) parser.add_argument( '--image_size', default=384, type=int, help='Input Image Size', ) parser.add_argument( '--cvt_file_name', default=r'cvtmodels\CvT-w24-384x384-IN-22k.pth', type=str, help='Input Image Size', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCamelCase__ : Dict = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
496
1
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class _UpperCAmelCase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] ): '''simple docstring''' super().__init__() lowercase__ = nn.Linear(3, 4 ) lowercase__ = nn.BatchNormad(4 ) lowercase__ = nn.Linear(4, 5 ) def lowercase__ ( self : List[str], lowerCamelCase : List[Any] ): '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(lowerCamelCase ) ) ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCamelCase, model.state_dict() ) lowercase__ = os.path.join(lowerCamelCase, '''index.json''' ) self.assertTrue(os.path.isfile(lowerCamelCase ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: lowercase__ = os.path.join(lowerCamelCase, F"""{key}.dat""" ) self.assertTrue(os.path.isfile(lowerCamelCase ) ) # TODO: add tests on the fact weights are properly loaded def lowercase__ ( self : Tuple ): '''simple docstring''' lowercase__ = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: lowercase__ = torch.randn(2, 3, dtype=lowerCamelCase ) with TemporaryDirectory() as tmp_dir: lowercase__ = offload_weight(lowerCamelCase, '''weight''', lowerCamelCase, {} ) lowercase__ = os.path.join(lowerCamelCase, '''weight.dat''' ) self.assertTrue(os.path.isfile(lowerCamelCase ) ) self.assertDictEqual(lowerCamelCase, {'''weight''': {'''shape''': [2, 3], '''dtype''': str(lowerCamelCase ).split('''.''' )[1]}} ) lowercase__ = load_offloaded_weight(lowerCamelCase, index['''weight'''] ) self.assertTrue(torch.equal(lowerCamelCase, lowerCamelCase ) ) def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = ModelForTest() lowercase__ = model.state_dict() lowercase__ = {k: v for k, v in state_dict.items() if '''linear2''' not in k} lowercase__ = {k: v for k, v in state_dict.items() if '''linear2''' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCamelCase, lowerCamelCase ) lowercase__ = OffloadedWeightsLoader(state_dict=lowerCamelCase, save_folder=lowerCamelCase ) # Every key is there with the right value self.assertEqual(sorted(lowerCamelCase ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCamelCase, weight_map[key] ) ) lowercase__ = {k: v for k, v in state_dict.items() if '''weight''' in k} lowercase__ = {k: v for k, v in state_dict.items() if '''weight''' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCamelCase, lowerCamelCase ) lowercase__ = OffloadedWeightsLoader(state_dict=lowerCamelCase, save_folder=lowerCamelCase ) # Every key is there with the right value self.assertEqual(sorted(lowerCamelCase ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCamelCase, weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(lowerCamelCase, lowerCamelCase ) # Duplicates are removed lowercase__ = OffloadedWeightsLoader(state_dict=lowerCamelCase, save_folder=lowerCamelCase ) # Every key is there with the right value self.assertEqual(sorted(lowerCamelCase ), sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowerCamelCase, weight_map[key] ) ) def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = {'''a.1''': 0, '''a.10''': 1, '''a.2''': 2} lowercase__ = extract_submodules_state_dict(lowerCamelCase, ['''a.1''', '''a.2'''] ) self.assertDictEqual(lowerCamelCase, {'''a.1''': 0, '''a.2''': 2} ) lowercase__ = {'''a.1.a''': 0, '''a.10.a''': 1, '''a.2.a''': 2} lowercase__ = extract_submodules_state_dict(lowerCamelCase, ['''a.1''', '''a.2'''] ) self.assertDictEqual(lowerCamelCase, {'''a.1.a''': 0, '''a.2.a''': 2} )
183
def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] for data in source_data: for i, el in enumerate(lowerCamelCase_ ): if len(lowerCamelCase_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(lowerCamelCase_ ) ) return data_lists def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = [] for dlist, weight in zip(lowerCamelCase_ , lowerCamelCase_ ): lowercase__ = min(lowerCamelCase_ ) lowercase__ = max(lowerCamelCase_ ) lowercase__ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: lowercase__ = F"""Invalid weight of {weight:f} provided""" raise ValueError(lowerCamelCase_ ) score_lists.append(lowerCamelCase_ ) return score_lists def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(lowerCamelCase_ ): lowercase__ = final_scores[j] + ele return final_scores def a ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowercase__ = get_data(lowerCamelCase_ ) lowercase__ = calculate_each_score(lowerCamelCase_ , lowerCamelCase_ ) lowercase__ = generate_final_scores(lowerCamelCase_ ) # append scores to source data for i, ele in enumerate(lowerCamelCase_ ): source_data[i].append(lowerCamelCase_ ) return source_data
183
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowerCAmelCase__: List[str] = None lowerCAmelCase__: List[Any] = logging.get_logger(__name__) lowerCAmelCase__: str = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} lowerCAmelCase__: Dict = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", }, "tokenizer_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json", }, } lowerCAmelCase__: List[str] = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } lowerCAmelCase__: Dict = "▁" class snake_case_ ( lowerCAmelCase ): __lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES __lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Optional[int] = AlbertTokenizer def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase="[CLS]" , __lowerCAmelCase="[SEP]" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="[SEP]" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="[CLS]" , __lowerCAmelCase="[MASK]" , **__lowerCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE_ : List[str] = ( AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase , normalized=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token ) super().__init__( __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , **__lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ : Dict = do_lower_case SCREAMING_SNAKE_CASE_ : Optional[Any] = remove_space SCREAMING_SNAKE_CASE_ : Dict = keep_accents SCREAMING_SNAKE_CASE_ : int = vocab_file SCREAMING_SNAKE_CASE_ : Union[str, Any] = False if not self.vocab_file else True def __A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): SCREAMING_SNAKE_CASE_ : str = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(__lowerCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Tuple = os.path.join( __lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ): copyfile(self.vocab_file , __lowerCAmelCase ) return (out_vocab_file,)
311
def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool: SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): SCREAMING_SNAKE_CASE_ : str = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): SCREAMING_SNAKE_CASE_ : Dict = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: SCREAMING_SNAKE_CASE_ : Optional[int] = subset[i - 1][j] if arr[i - 1] <= j: SCREAMING_SNAKE_CASE_ : int = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
311
1
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __UpperCAmelCase ( __a : Any ) -> Dict: """simple docstring""" _a : Tuple = [] embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight""", F"""stage{idx}.patch_embed.proj.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias""", F"""stage{idx}.patch_embed.proj.bias""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight""", F"""stage{idx}.patch_embed.norm.weight""", ) ) embed.append( ( F"""cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias""", F"""stage{idx}.patch_embed.norm.bias""", ) ) return embed def __UpperCAmelCase ( __a : List[str] ,__a : List[Any] ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = [] attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked""", F"""stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_q.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_k.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj_v.bias""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.attn.proj.weight""", ) ) attention_weights.append( ( F"""cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.attn.proj.bias""", ) ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias""", F"""stage{idx}.blocks.{cnt}.mlp.fc2.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight""", F"""stage{idx}.blocks.{cnt}.norm1.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias""", F"""stage{idx}.blocks.{cnt}.norm1.bias""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight""", F"""stage{idx}.blocks.{cnt}.norm2.weight""") ) attention_weights.append( (F"""cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias""", F"""stage{idx}.blocks.{cnt}.norm2.bias""") ) return attention_weights def __UpperCAmelCase ( __a : Union[str, Any] ) -> str: """simple docstring""" _a : Tuple = [] token.append((F"""cvt.encoder.stages.{idx}.cls_token""", '''stage2.cls_token''') ) return token def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" _a : Any = [] head.append(('''layernorm.weight''', '''norm.weight''') ) head.append(('''layernorm.bias''', '''norm.bias''') ) head.append(('''classifier.weight''', '''head.weight''') ) head.append(('''classifier.bias''', '''head.bias''') ) return head def __UpperCAmelCase ( __a : List[Any] ,__a : int ,__a : Any ,__a : List[str] ) -> Union[str, Any]: """simple docstring""" _a : Union[str, Any] = '''imagenet-1k-id2label.json''' _a : Union[str, Any] = 1_000 _a : str = '''huggingface/label-files''' _a : Union[str, Any] = num_labels _a : Optional[Any] = json.load(open(cached_download(hf_hub_url(__a ,__a ,repo_type='''dataset''' ) ) ,'''r''' ) ) _a : int = {int(__a ): v for k, v in idalabel.items()} _a : Tuple = idalabel _a : Union[str, Any] = {v: k for k, v in idalabel.items()} _a : Any = CvtConfig(num_labels=__a ,idalabel=__a ,labelaid=__a ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit('''/''' ,1 )[-1][4:6] == "13": _a : Optional[Any] = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit('''/''' ,1 )[-1][4:6] == "21": _a : Any = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: _a : Dict = [2, 2, 20] _a : List[Any] = [3, 12, 16] _a : List[str] = [192, 768, 1_024] _a : List[str] = CvtForImageClassification(__a ) _a : str = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' ) _a : List[Any] = image_size _a : str = torch.load(__a ,map_location=torch.device('''cpu''' ) ) _a : List[Any] = OrderedDict() _a : Tuple = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: _a : Any = list_of_state_dict + cls_token(__a ) _a : List[str] = list_of_state_dict + embeddings(__a ) for cnt in range(config.depth[idx] ): _a : str = list_of_state_dict + attention(__a ,__a ) _a : Union[str, Any] = list_of_state_dict + final() for gg in list_of_state_dict: print(__a ) for i in range(len(__a ) ): _a : Dict = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__a ) model.save_pretrained(__a ) image_processor.save_pretrained(__a ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument( '''--cvt_model''', default='''cvt-w24''', type=str, help='''Name of the cvt model you\'d like to convert.''', ) parser.add_argument( '''--image_size''', default=384, type=int, help='''Input Image Size''', ) parser.add_argument( '''--cvt_file_name''', default=R'''cvtmodels\CvT-w24-384x384-IN-22k.pth''', type=str, help='''Input Image Size''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) a__ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
14
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. __a = abspath(join(dirname(dirname(dirname(__file__))), 'src')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='ignore', category=FutureWarning) def __UpperCAmelCase ( a_: str ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(a_ ) def __UpperCAmelCase ( a_: str ): from transformers.testing_utils import pytest_terminal_summary_main _UpperCAmelCase : Any = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(a_, id=a_ )
494
0
from random import randint, random def __lowerCamelCase ( A__ : int , A__ : int , A__ : int , A__ : bool = False , A__ : bool = False , A__ : int = 5 , ) -> list: lowerCamelCase_ : int = [[-1] * number_of_cells] # Create a highway without any car lowerCamelCase_ : List[Any] = 0 lowerCamelCase_ : int = max(A__ , 0 ) while i < number_of_cells: lowerCamelCase_ : Union[str, Any] = ( randint(0 , A__ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def __lowerCamelCase ( A__ : list , A__ : int ) -> int: lowerCamelCase_ : Dict = 0 lowerCamelCase_ : Optional[Any] = highway_now[car_index + 1 :] for cell in range(len(A__ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(A__ , -1 ) def __lowerCamelCase ( A__ : list , A__ : float , A__ : int ) -> list: lowerCamelCase_ : Dict = len(A__ ) # Beforce calculations, the highway is empty lowerCamelCase_ : int = [-1] * number_of_cells for car_index in range(A__ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed lowerCamelCase_ : List[Any] = min(highway_now[car_index] + 1 , A__ ) # Number of empty cell before the next car lowerCamelCase_ : Optional[Any] = get_distance(A__ , A__ ) - 1 # We can't have the car causing an accident lowerCamelCase_ : Any = min(next_highway[car_index] , A__ ) if random() < probability: # Randomly, a driver will slow down lowerCamelCase_ : Tuple = max(next_highway[car_index] - 1 , 0 ) return next_highway def __lowerCamelCase ( A__ : list , A__ : int , A__ : float , A__ : int ) -> list: lowerCamelCase_ : List[Any] = len(highway[0] ) for i in range(A__ ): lowerCamelCase_ : List[Any] = update(highway[i] , A__ , A__ ) lowerCamelCase_ : Optional[Any] = [-1] * number_of_cells for car_index in range(A__ ): lowerCamelCase_ : Union[str, Any] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) lowerCamelCase_ : Dict = (car_index + speed) % number_of_cells # Commit the change of position lowerCamelCase_ : Tuple = speed highway.append(A__ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
721
class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self : int ) ->None: lowerCamelCase_ : dict[str, TrieNode] = {} # Mapping from char to TrieNode lowerCamelCase_ : str = False def _lowerCAmelCase ( self : List[Any] , __a : list[str] ) ->None: for word in words: self.insert(__a ) def _lowerCAmelCase ( self : Tuple , __a : str ) ->None: lowerCamelCase_ : int = self for char in word: if char not in curr.nodes: lowerCamelCase_ : Optional[Any] = TrieNode() lowerCamelCase_ : Union[str, Any] = curr.nodes[char] lowerCamelCase_ : int = True def _lowerCAmelCase ( self : Tuple , __a : str ) ->bool: lowerCamelCase_ : Any = self for char in word: if char not in curr.nodes: return False lowerCamelCase_ : Any = curr.nodes[char] return curr.is_leaf def _lowerCAmelCase ( self : Tuple , __a : str ) ->None: def _delete(__a : TrieNode , __a : str , __a : int ) -> bool: if index == len(__a ): # If word does not exist if not curr.is_leaf: return False lowerCamelCase_ : Tuple = False return len(curr.nodes ) == 0 lowerCamelCase_ : Dict = word[index] lowerCamelCase_ : Dict = curr.nodes.get(__a ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted lowerCamelCase_ : Any = _delete(__a , __a , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , __a , 0 ) def __lowerCamelCase ( A__ : TrieNode , A__ : str ) -> None: if node.is_leaf: print(A__ , end=""" """ ) for key, value in node.nodes.items(): print_words(A__ , word + key ) def __lowerCamelCase ( ) -> bool: lowerCamelCase_ : List[Any] = """banana bananas bandana band apple all beast""".split() lowerCamelCase_ : Optional[int] = TrieNode() root.insert_many(A__ ) # print_words(root, "") assert all(root.find(A__ ) for word in words ) assert root.find("""banana""" ) assert not root.find("""bandanas""" ) assert not root.find("""apps""" ) assert root.find("""apple""" ) assert root.find("""all""" ) root.delete("""all""" ) assert not root.find("""all""" ) root.delete("""banana""" ) assert not root.find("""banana""" ) assert root.find("""bananas""" ) return True def __lowerCamelCase ( A__ : str , A__ : bool ) -> None: print(str(A__ ) , """works!""" if passes else """doesn't work :(""" ) def __lowerCamelCase ( ) -> None: assert test_trie() def __lowerCamelCase ( ) -> None: print_results("""Testing trie functionality""" , test_trie() ) if __name__ == "__main__": main()
171
0
'''simple docstring''' def UpperCAmelCase ( A : bytes ): return "".join([hex(A )[2:].zfill(2 ).upper() for byte in list(A )] ) def UpperCAmelCase ( A : str ): # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(A ) % 2) != 0: raise ValueError( '''Base16 encoded data is invalid: Data does not have an even number of hex digits.''' ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(A ) <= set('''0123456789ABCDEF''' ): raise ValueError( '''Base16 encoded data is invalid: Data is not uppercase hex or it contains invalid characters.''' ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(A ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
527
'''simple docstring''' from math import pow def UpperCAmelCase ( A : int , A : int , A : int , A : int , A : int , ): if current_sum == needed_sum: # If the sum of the powers is equal to needed_sum, then we have a solution. solutions_count += 1 return current_sum, solutions_count SCREAMING_SNAKE_CASE : Tuple = int(pow(A , A ) ) if current_sum + i_to_n <= needed_sum: # If the sum of the powers is less than needed_sum, then continue adding powers. current_sum += i_to_n SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Dict = backtrack( A , A , current_number + 1 , A , A ) current_sum -= i_to_n if i_to_n < needed_sum: # If the power of i is less than needed_sum, then try with the next power. SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = backtrack( A , A , current_number + 1 , A , A ) return current_sum, solutions_count def UpperCAmelCase ( A : int , A : int ): if not (1 <= needed_sum <= 1000 and 2 <= power <= 10): raise ValueError( '''Invalid input\n''' '''needed_sum must be between 1 and 1000, power between 2 and 10.''' ) return backtrack(A , A , 1 , 0 , 0 )[1] # Return the solutions_count if __name__ == "__main__": import doctest doctest.testmod()
527
1
'''simple docstring''' from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class A ( _a ): def __init__( self : Any , lowerCAmelCase_ : Callable , lowerCAmelCase_ : Optional[Features] = None , lowerCAmelCase_ : str = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[dict] = None , lowerCAmelCase_ : Optional[int] = None , **lowerCAmelCase_ : Union[str, Any] , ) -> List[Any]: """simple docstring""" super().__init__( features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ , streaming=lowerCAmelCase_ , num_proc=lowerCAmelCase_ , **lowerCAmelCase_ , ) _a = Generator( cache_dir=lowerCAmelCase_ , features=lowerCAmelCase_ , generator=lowerCAmelCase_ , gen_kwargs=lowerCAmelCase_ , **lowerCAmelCase_ , ) def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" if self.streaming: _a = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: _a = None _a = None _a = None _a = None self.builder.download_and_prepare( download_config=lowerCAmelCase_ , download_mode=lowerCAmelCase_ , verification_mode=lowerCAmelCase_ , base_path=lowerCAmelCase_ , num_proc=self.num_proc , ) _a = self.builder.as_dataset( split='''train''' , verification_mode=lowerCAmelCase_ , in_memory=self.keep_in_memory ) return dataset
377
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _snake_case : Tuple = get_tests_dir('fixtures/test_sentencepiece_no_bos.model') @require_sentencepiece @require_tokenizers class A ( _a ,unittest.TestCase ): lowercase_ = PegasusTokenizer lowercase_ = PegasusTokenizerFast lowercase_ = True lowercase_ = True def __lowerCAmelCase ( self : str ) -> Any: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _a = PegasusTokenizer(lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def __lowerCAmelCase ( self : Optional[int] , **lowerCAmelCase_ : List[str] ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[str] ) -> Any: """simple docstring""" return ("This is a test", "This is a test") def __lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" _a = '''</s>''' _a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" _a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(lowerCAmelCase_ ) , 11_03 ) def __lowerCAmelCase ( self : List[Any] ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 11_03 ) def __lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" _a = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _a = self.tokenizer_class.from_pretrained(self.tmpdirname ) _a = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) _a = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ).input_ids[0] _a = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ).input_ids[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" _a = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _a = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' _a = [2, 4_13, 6_15, 1_14, 3, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] _a = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ ).input_ids[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" _a = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_61_03 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 1_03 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 1_05 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 10_24 _a = '''To ensure a smooth flow of bank resolutions.''' _a = [4_13, 6_15, 1_14, 22_91, 19_71, 1_13, 16_79, 1_07_10, 1_07, 1] _a = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ ).input_ids[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _a = ['''This is going to be way too long.''' * 1_50, '''short example'''] _a = ['''not super long but more than 5 tokens''', '''tiny'''] _a = self._large_tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' ) _a = self._large_tokenizer( text_target=lowerCAmelCase_ , max_length=5 , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 10_24) assert batch.attention_mask.shape == (2, 10_24) assert targets["input_ids"].shape == (2, 5) assert len(lowerCAmelCase_ ) == 2 # input_ids, attention_mask. @slow def __lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" _a = {'''input_ids''': [[3_89_79, 1_43, 1_84_85, 6_06, 1_30, 2_66_69, 8_76_86, 1_21, 5_41_89, 11_29, 1_11, 2_66_69, 8_76_86, 1_21, 91_14, 1_47_87, 1_21, 1_32_49, 1_58, 5_92, 9_56, 1_21, 1_46_21, 3_15_76, 1_43, 6_26_13, 1_08, 96_88, 9_30, 4_34_30, 1_15_62, 6_26_13, 3_04, 1_08, 1_14_43, 8_97, 1_08, 93_14, 1_74_15, 6_33_99, 1_08, 1_14_43, 76_14, 1_83_16, 1_18, 42_84, 71_48, 1_24_30, 1_43, 14_00, 2_57_03, 1_58, 1_11, 42_84, 71_48, 1_17_72, 1_43, 2_12_97, 10_64, 1_58, 1_22, 2_04, 35_06, 17_54, 11_33, 1_47_87, 15_81, 1_15, 3_32_24, 44_82, 1_11, 13_55, 1_10, 2_91_73, 3_17, 5_08_33, 1_08, 2_01_47, 9_46_65, 1_11, 7_71_98, 1_07, 1], [1_10, 6_26_13, 1_17, 6_38, 1_12, 11_33, 1_21, 2_00_98, 13_55, 7_90_50, 1_38_72, 1_35, 15_96, 5_35_41, 13_52, 1_41, 1_30_39, 55_42, 1_24, 3_02, 5_18, 1_11, 2_68, 29_56, 1_15, 1_49, 44_27, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1_39, 12_35, 27_99, 1_82_89, 1_77_80, 2_04, 1_09, 94_74, 12_96, 1_07, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase_ , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class A ( _a ,unittest.TestCase ): lowercase_ = PegasusTokenizer lowercase_ = PegasusTokenizerFast lowercase_ = True lowercase_ = True def __lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _a = PegasusTokenizer(lowerCAmelCase_ , offset=0 , mask_token_sent=lowerCAmelCase_ , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def __lowerCAmelCase ( self : Optional[int] , **lowerCAmelCase_ : Tuple ) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Optional[int] ) -> Optional[Any]: """simple docstring""" return ("This is a test", "This is a test") def __lowerCAmelCase ( self : List[Any] ) -> str: """simple docstring""" _a = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) _a = self.tokenizer_class.from_pretrained(self.tmpdirname ) _a = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) _a = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ).input_ids[0] _a = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ).input_ids[0] self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) @require_torch def __lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" _a = ['''This is going to be way too long.''' * 10_00, '''short example'''] _a = ['''not super long but more than 5 tokens''', '''tiny'''] _a = self._large_tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' ) _a = self._large_tokenizer( text_target=lowerCAmelCase_ , max_length=5 , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 40_96) assert batch.attention_mask.shape == (2, 40_96) assert targets["input_ids"].shape == (2, 5) assert len(lowerCAmelCase_ ) == 2 # input_ids, attention_mask. def __lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" _a = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) _a = self._large_tokenizer(lowerCAmelCase_ ).input_ids self.assertListEqual( lowerCAmelCase_ , [1_82, 1_17, 1_42, 5_87, 42_11, 1_20, 1_17, 2_63, 1_12, 8_04, 1_09, 8_56, 2_50_16, 31_37, 4_64, 1_09, 2_69_55, 31_37, 1] , )
377
1
def A__ ( SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int ) -> list[str]: """simple docstring""" return [sentence[i : i + ngram_size] for i in range(len(SCREAMING_SNAKE_CASE_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
32
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='session' ) def UpperCamelCase_( ) -> Any: _lowercase : str = 10 _lowercase : List[str] = datasets.Features( { 'tokens': datasets.Sequence(datasets.Value('string' ) ), 'labels': datasets.Sequence(datasets.ClassLabel(names=['negative', 'positive'] ) ), 'answers': datasets.Sequence( { 'text': datasets.Value('string' ), 'answer_start': datasets.Value('int32' ), } ), 'id': datasets.Value('int64' ), } ) _lowercase : Union[str, Any] = datasets.Dataset.from_dict( { 'tokens': [['foo'] * 5] * n, 'labels': [[1] * 5] * n, 'answers': [{'answer_start': [97], 'text': ['1976']}] * 10, 'id': list(range(lowerCamelCase_ ) ), } , features=lowerCamelCase_ , ) return dataset @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> int: _lowercase : int = str(tmp_path_factory.mktemp('data' ) / 'file.arrow' ) dataset.map(cache_file_name=lowerCamelCase_ ) return filename # FILE_CONTENT + files SCREAMING_SNAKE_CASE : str = "\\n Text data.\n Second line of data." @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> List[Any]: _lowercase : str = tmp_path_factory.mktemp('data' ) / 'file.txt' _lowercase : List[str] = FILE_CONTENT with open(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ ) return filename @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Tuple: import bza _lowercase : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.bz2' _lowercase : Optional[Any] = bytes(lowerCamelCase_ , 'utf-8' ) with bza.open(lowerCamelCase_ , 'wb' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> List[Any]: import gzip _lowercase : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'file.txt.gz' ) _lowercase : Optional[int] = bytes(lowerCamelCase_ , 'utf-8' ) with gzip.open(lowerCamelCase_ , 'wb' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> str: if datasets.config.LZ4_AVAILABLE: import lza.frame _lowercase : Any = tmp_path_factory.mktemp('data' ) / 'file.txt.lz4' _lowercase : Optional[Any] = bytes(lowerCamelCase_ , 'utf-8' ) with lza.frame.open(lowerCamelCase_ , 'wb' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> str: if datasets.config.PY7ZR_AVAILABLE: import pyazr _lowercase : int = tmp_path_factory.mktemp('data' ) / 'file.txt.7z' with pyazr.SevenZipFile(lowerCamelCase_ , 'w' ) as archive: archive.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: import tarfile _lowercase : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.tar' with tarfile.TarFile(lowerCamelCase_ , 'w' ) as f: f.add(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> str: import lzma _lowercase : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.xz' _lowercase : int = bytes(lowerCamelCase_ , 'utf-8' ) with lzma.open(lowerCamelCase_ , 'wb' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> str: import zipfile _lowercase : Dict = tmp_path_factory.mktemp('data' ) / 'file.txt.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Optional[Any]: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd _lowercase : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'file.txt.zst' _lowercase : Dict = bytes(lowerCamelCase_ , 'utf-8' ) with zstd.open(lowerCamelCase_ , 'wb' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> str: _lowercase : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'file.xml' _lowercase : Optional[Any] = textwrap.dedent( '\\n <?xml version="1.0" encoding="UTF-8" ?>\n <tmx version="1.4">\n <header segtype="sentence" srclang="ca" />\n <body>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang="en"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang="en"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang="en"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang="en"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang="en"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>' ) with open(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ ) return filename SCREAMING_SNAKE_CASE : Dict = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] SCREAMING_SNAKE_CASE : Dict = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] SCREAMING_SNAKE_CASE : Optional[Any] = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } SCREAMING_SNAKE_CASE : Tuple = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] SCREAMING_SNAKE_CASE : Any = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='session' ) def UpperCamelCase_( ) -> List[str]: return DATA_DICT_OF_LISTS @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Dict: _lowercase : Optional[int] = datasets.Dataset.from_dict(lowerCamelCase_ ) _lowercase : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.arrow' ) dataset.map(cache_file_name=lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> str: _lowercase : List[str] = str(tmp_path_factory.mktemp('data' ) / 'dataset.sqlite' ) with contextlib.closing(sqlitea.connect(lowerCamelCase_ ) ) as con: _lowercase : Union[str, Any] = con.cursor() cur.execute('CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)' ) for item in DATA: cur.execute('INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Dict: _lowercase : List[str] = str(tmp_path_factory.mktemp('data' ) / 'dataset.csv' ) with open(lowerCamelCase_ , 'w' , newline='' ) as f: _lowercase : Tuple = csv.DictWriter(lowerCamelCase_ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> List[Any]: _lowercase : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset2.csv' ) with open(lowerCamelCase_ , 'w' , newline='' ) as f: _lowercase : str = csv.DictWriter(lowerCamelCase_ , fieldnames=['col_1', 'col_2', 'col_3'] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Any: import bza _lowercase : int = tmp_path_factory.mktemp('data' ) / 'dataset.csv.bz2' with open(lowerCamelCase_ , 'rb' ) as f: _lowercase : int = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowerCamelCase_ , 'wb' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: _lowercase : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: _lowercase : str = tmp_path_factory.mktemp('data' ) / 'dataset.csv.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(csv_path.replace('.csv' , '.CSV' ) ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(csva_path.replace('.csv' , '.CSV' ) ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Union[str, Any]: _lowercase : Union[str, Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.csv.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase_ ) ) ) f.write(lowerCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> int: _lowercase : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.parquet' ) _lowercase : Optional[Any] = pa.schema( { 'col_1': pa.string(), 'col_2': pa.intaa(), 'col_3': pa.floataa(), } ) with open(lowerCamelCase_ , 'wb' ) as f: _lowercase : List[str] = pq.ParquetWriter(lowerCamelCase_ , schema=lowerCamelCase_ ) _lowercase : Any = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCamelCase_ ) )] for k in DATA[0]} , schema=lowerCamelCase_ ) writer.write_table(lowerCamelCase_ ) writer.close() return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Optional[Any]: _lowercase : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _lowercase : List[Any] = {'data': DATA} with open(lowerCamelCase_ , 'w' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Any: _lowercase : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.json' ) _lowercase : Optional[Any] = {'data': DATA_DICT_OF_LISTS} with open(lowerCamelCase_ , 'w' ) as f: json.dump(lowerCamelCase_ , lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]: _lowercase : Any = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl' ) with open(lowerCamelCase_ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Dict: _lowercase : Dict = str(tmp_path_factory.mktemp('data' ) / 'dataset2.jsonl' ) with open(lowerCamelCase_ , 'w' ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> List[str]: _lowercase : Optional[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset_312.jsonl' ) with open(lowerCamelCase_ , 'w' ) as f: for item in DATA_312: f.write(json.dumps(lowerCamelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> List[Any]: _lowercase : str = str(tmp_path_factory.mktemp('data' ) / 'dataset-str.jsonl' ) with open(lowerCamelCase_ , 'w' ) as f: for item in DATA_STR: f.write(json.dumps(lowerCamelCase_ ) + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: import gzip _lowercase : Tuple = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt.gz' ) with open(lowerCamelCase_ , 'rb' ) as orig_file: with gzip.open(lowerCamelCase_ , 'wb' ) as zipped_file: zipped_file.writelines(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Dict: import gzip _lowercase : Optional[int] = str(tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.gz' ) with open(lowerCamelCase_ , 'rb' ) as orig_file: with gzip.open(lowerCamelCase_ , 'wb' ) as zipped_file: zipped_file.writelines(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> List[str]: _lowercase : Any = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str: _lowercase : str = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.join('nested' , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> int: _lowercase : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.jsonl.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase_ ) ) ) f.write(lowerCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[int]: _lowercase : Tuple = tmp_path_factory.mktemp('data' ) / 'dataset.jsonl.tar' with tarfile.TarFile(lowerCamelCase_ , 'w' ) as f: f.add(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.add(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Any: _lowercase : str = tmp_path_factory.mktemp('data' ) / 'dataset_nested.jsonl.tar' with tarfile.TarFile(lowerCamelCase_ , 'w' ) as f: f.add(lowerCamelCase_ , arcname=os.path.join('nested' , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Any: _lowercase : Optional[int] = ['0', '1', '2', '3'] _lowercase : str = str(tmp_path_factory.mktemp('data' ) / 'dataset.txt' ) with open(lowerCamelCase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Union[str, Any]: _lowercase : str = ['0', '1', '2', '3'] _lowercase : List[Any] = str(tmp_path_factory.mktemp('data' ) / 'dataset2.txt' ) with open(lowerCamelCase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> List[str]: _lowercase : List[Any] = ['0', '1', '2', '3'] _lowercase : Optional[int] = tmp_path_factory.mktemp('data' ) / 'dataset.abc' with open(lowerCamelCase_ , 'w' ) as f: for item in data: f.write(item + '\n' ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Any: _lowercase : Optional[Any] = tmp_path_factory.mktemp('data' ) / 'dataset.text.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: _lowercase : List[Any] = tmp_path_factory.mktemp('data' ) / 'dataset_with_dir.text.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase_ ) ) ) f.write(lowerCamelCase_ , arcname=os.path.join('main_dir' , os.path.basename(lowerCamelCase_ ) ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> str: _lowercase : Any = tmp_path_factory.mktemp('data' ) / 'dataset.ext.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename('unsupported.ext' ) ) f.write(lowerCamelCase_ , arcname=os.path.basename('unsupported_2.ext' ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> int: _lowercase : List[str] = '\n'.join(['First', 'Second\u2029with Unicode new line', 'Third'] ) _lowercase : Any = str(tmp_path_factory.mktemp('data' ) / 'dataset_with_unicode_new_lines.txt' ) with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as f: f.write(lowerCamelCase_ ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( ) -> Dict: return os.path.join('tests' , 'features' , 'data' , 'test_image_rgb.jpg' ) @pytest.fixture(scope='session' ) def UpperCamelCase_( ) -> int: return os.path.join('tests' , 'features' , 'data' , 'test_audio_44100.wav' ) @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ ) -> Any: _lowercase : Dict = tmp_path_factory.mktemp('data' ) / 'dataset.img.zip' with zipfile.ZipFile(lowerCamelCase_ , 'w' ) as f: f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ) ) f.write(lowerCamelCase_ , arcname=os.path.basename(lowerCamelCase_ ).replace('.jpg' , '2.jpg' ) ) return path @pytest.fixture(scope='session' ) def UpperCamelCase_( lowerCamelCase_ ) -> Optional[Any]: _lowercase : str = tmp_path_factory.mktemp('data_dir' ) (data_dir / "subdir").mkdir() with open(data_dir / 'subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / 'subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden file with open(data_dir / 'subdir' / '.test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '.subdir' / 'train.txt' , 'w' ) as f: f.write('foo\n' * 10 ) with open(data_dir / '.subdir' / 'test.txt' , 'w' ) as f: f.write('bar\n' * 10 ) return data_dir
89
0
'''simple docstring''' from __future__ import annotations def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> str: # noqa: E741 while r - l > 1: UpperCamelCase__ : List[str] = (l + r) // 2 if v[m] >= key: UpperCamelCase__ : Dict = m else: UpperCamelCase__ : Any = m # noqa: E741 return r def __UpperCAmelCase ( lowerCamelCase_) -> List[str]: if len(lowerCamelCase_) == 0: return 0 UpperCamelCase__ : Optional[int] = [0] * len(lowerCamelCase_) UpperCamelCase__ : Dict = 1 UpperCamelCase__ : Dict = v[0] for i in range(1 , len(lowerCamelCase_)): if v[i] < tail[0]: UpperCamelCase__ : Tuple = v[i] elif v[i] > tail[length - 1]: UpperCamelCase__ : Dict = v[i] length += 1 else: UpperCamelCase__ : Optional[int] = v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
700
'''simple docstring''' from typing import Union import fire import torch from tqdm import tqdm def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = "cpu" , lowerCamelCase_ = None) -> None: UpperCamelCase__ : List[Any] = torch.load(lowerCamelCase_ , map_location=lowerCamelCase_) for k, v in tqdm(state_dict.items()): if not isinstance(lowerCamelCase_ , torch.Tensor): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin') UpperCamelCase__ : int = v.half() if save_path is None: # overwrite src_path UpperCamelCase__ : List[Any] = src_path torch.save(lowerCamelCase_ , lowerCamelCase_) if __name__ == "__main__": fire.Fire(convert)
6
0
UpperCamelCase_ = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} UpperCamelCase_ = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def _UpperCAmelCase ( UpperCamelCase: dict[int, list[int]] , UpperCamelCase: int , UpperCamelCase: list[bool] ): """simple docstring""" __lowerCAmelCase = True __lowerCAmelCase = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(UpperCamelCase , UpperCamelCase , UpperCamelCase ) order.append(UpperCamelCase ) return order def _UpperCAmelCase ( UpperCamelCase: dict[int, list[int]] , UpperCamelCase: int , UpperCamelCase: list[bool] ): """simple docstring""" __lowerCAmelCase = True __lowerCAmelCase = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(UpperCamelCase , UpperCamelCase , UpperCamelCase ) return component def _UpperCAmelCase ( UpperCamelCase: dict[int, list[int]] ): """simple docstring""" __lowerCAmelCase = len(UpperCamelCase ) * [False] __lowerCAmelCase = {vert: [] for vert in range(len(UpperCamelCase ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(UpperCamelCase ) __lowerCAmelCase = [] for i, was_visited in enumerate(UpperCamelCase ): if not was_visited: order += topology_sort(UpperCamelCase , UpperCamelCase , UpperCamelCase ) __lowerCAmelCase = [] __lowerCAmelCase = len(UpperCamelCase ) * [False] for i in range(len(UpperCamelCase ) ): __lowerCAmelCase = order[len(UpperCamelCase ) - i - 1] if not visited[vert]: __lowerCAmelCase = find_components(UpperCamelCase , UpperCamelCase , UpperCamelCase ) components_list.append(UpperCamelCase ) return components_list
611
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { "andreasmadsen/efficient_mlm_m0.40": ( "https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json" ), } class a ( __UpperCAmelCase ): lowercase_ : Any = 'roberta-prelayernorm' def __init__( self : Any , snake_case__ : Any=50_265 , snake_case__ : Any=768 , snake_case__ : Optional[Any]=12 , snake_case__ : Tuple=12 , snake_case__ : Union[str, Any]=3_072 , snake_case__ : Optional[Any]="gelu" , snake_case__ : List[str]=0.1 , snake_case__ : str=0.1 , snake_case__ : List[str]=512 , snake_case__ : Any=2 , snake_case__ : List[Any]=0.0_2 , snake_case__ : Tuple=1E-12 , snake_case__ : List[str]=1 , snake_case__ : Optional[int]=0 , snake_case__ : Optional[Any]=2 , snake_case__ : List[Any]="absolute" , snake_case__ : List[Any]=True , snake_case__ : Union[str, Any]=None , **snake_case__ : List[str] , ): """simple docstring""" super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class a ( __UpperCAmelCase ): @property def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" if self.task == "multiple-choice": __lowerCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: __lowerCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
611
1
import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class _UpperCamelCase ( A,A,A ): '''simple docstring''' @register_to_config def __init__( self : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : float , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : bool = False , ): '''simple docstring''' super().__init__() __lowerCamelCase : int = nn.Embedding(_lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : str = nn.Embedding(_lowerCamelCase , _lowerCamelCase ) __lowerCamelCase : str = False __lowerCamelCase : int = nn.Dropout(p=_lowerCamelCase ) __lowerCamelCase : Any = TaConfig( vocab_size=_lowerCamelCase , d_model=_lowerCamelCase , num_heads=_lowerCamelCase , d_kv=_lowerCamelCase , d_ff=_lowerCamelCase , dropout_rate=_lowerCamelCase , feed_forward_proj=_lowerCamelCase , is_decoder=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , ) __lowerCamelCase : Optional[Any] = nn.ModuleList() for lyr_num in range(_lowerCamelCase ): __lowerCamelCase : Union[str, Any] = TaBlock(_lowerCamelCase ) self.encoders.append(_lowerCamelCase ) __lowerCamelCase : str = TaLayerNorm(_lowerCamelCase ) __lowerCamelCase : List[str] = nn.Dropout(p=_lowerCamelCase ) def _snake_case ( self : Dict , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int ): '''simple docstring''' __lowerCamelCase : List[str] = self.token_embedder(_lowerCamelCase ) __lowerCamelCase : Tuple = encoder_input_tokens.shape[1] __lowerCamelCase : Dict = torch.arange(_lowerCamelCase , device=encoder_input_tokens.device ) x += self.position_encoding(_lowerCamelCase ) __lowerCamelCase : List[str] = self.dropout_pre(_lowerCamelCase ) # inverted the attention mask __lowerCamelCase : Dict = encoder_input_tokens.size() __lowerCamelCase : Dict = self.get_extended_attention_mask(_lowerCamelCase , _lowerCamelCase ) for lyr in self.encoders: __lowerCamelCase : List[Any] = lyr(_lowerCamelCase , _lowerCamelCase )[0] __lowerCamelCase : str = self.layer_norm(_lowerCamelCase ) return self.dropout_post(_lowerCamelCase ), encoder_inputs_mask
458
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Tuple = logging.get_logger(__name__) __UpperCamelCase : Any = { 'facebook/nllb-moe-54B': 'https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json', } class _UpperCamelCase ( A ): '''simple docstring''' a_ : int = "nllb-moe" a_ : Optional[int] = ["past_key_values"] a_ : Optional[Any] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : int , _lowerCamelCase : Union[str, Any]=1_2_8_1_1_2 , _lowerCamelCase : List[str]=1_0_2_4 , _lowerCamelCase : Optional[int]=1_2 , _lowerCamelCase : int=4_0_9_6 , _lowerCamelCase : Union[str, Any]=1_6 , _lowerCamelCase : int=1_2 , _lowerCamelCase : Optional[int]=4_0_9_6 , _lowerCamelCase : Any=1_6 , _lowerCamelCase : Any=0.05 , _lowerCamelCase : List[Any]=0.05 , _lowerCamelCase : Tuple=True , _lowerCamelCase : Any=True , _lowerCamelCase : Optional[int]="relu" , _lowerCamelCase : Dict=1_0_2_4 , _lowerCamelCase : Optional[int]=0.1 , _lowerCamelCase : Optional[int]=0.1 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : List[Any]=0.02 , _lowerCamelCase : List[str]=2 , _lowerCamelCase : List[str]=True , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : Optional[Any]="float32" , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : Tuple=1_2_8 , _lowerCamelCase : Dict=6_4 , _lowerCamelCase : Any=4 , _lowerCamelCase : List[Any]=4 , _lowerCamelCase : str=0.001 , _lowerCamelCase : Dict=0.001 , _lowerCamelCase : Any="all" , _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : List[Any]=False , _lowerCamelCase : Optional[Any]=1.0 , _lowerCamelCase : List[str]=0.2 , _lowerCamelCase : List[Any]=1 , _lowerCamelCase : str=0 , _lowerCamelCase : int=2 , _lowerCamelCase : int=False , **_lowerCamelCase : List[str] , ): '''simple docstring''' __lowerCamelCase : Optional[Any] = vocab_size __lowerCamelCase : str = max_position_embeddings __lowerCamelCase : int = d_model __lowerCamelCase : Optional[Any] = encoder_ffn_dim __lowerCamelCase : str = encoder_layers __lowerCamelCase : Tuple = encoder_attention_heads __lowerCamelCase : Union[str, Any] = decoder_ffn_dim __lowerCamelCase : Dict = decoder_layers __lowerCamelCase : Any = decoder_attention_heads __lowerCamelCase : Union[str, Any] = dropout __lowerCamelCase : Dict = attention_dropout __lowerCamelCase : int = activation_dropout __lowerCamelCase : Union[str, Any] = activation_function __lowerCamelCase : Optional[int] = init_std __lowerCamelCase : Union[str, Any] = encoder_layerdrop __lowerCamelCase : Dict = decoder_layerdrop __lowerCamelCase : List[str] = use_cache __lowerCamelCase : Any = encoder_layers __lowerCamelCase : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCamelCase : Optional[Any] = router_z_loss_coef __lowerCamelCase : Union[str, Any] = router_aux_loss_coef __lowerCamelCase : Dict = decoder_sparse_step __lowerCamelCase : Optional[int] = encoder_sparse_step __lowerCamelCase : Any = num_experts __lowerCamelCase : int = expert_capacity __lowerCamelCase : Dict = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) __lowerCamelCase : Tuple = router_dtype __lowerCamelCase : Dict = router_ignore_padding_tokens __lowerCamelCase : str = batch_prioritized_routing __lowerCamelCase : List[str] = second_expert_policy __lowerCamelCase : Tuple = normalize_router_prob_before_dropping __lowerCamelCase : Dict = moe_eval_capacity_token_fraction __lowerCamelCase : Optional[int] = moe_token_dropout __lowerCamelCase : Dict = output_router_logits super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , )
458
1
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowerCamelCase( _a, unittest.TestCase ): lowercase_ : Optional[int] = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def UpperCamelCase ( self, lowerCamelCase=0) -> str: """simple docstring""" _lowercase : Optional[int] = np.random.RandomState(lowerCamelCase) _lowercase : Union[str, Any] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[str] = self.get_dummy_inputs() _lowercase : Tuple = pipe(**lowerCamelCase).images _lowercase : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : List[Any] = np.array([0.6_5_0_7_2, 0.5_8_4_9_2, 0.4_8_2_1_9, 0.5_5_5_2_1, 0.5_3_1_8_0, 0.5_5_9_3_9, 0.5_0_6_9_7, 0.3_9_8_0_0, 0.4_6_4_5_5]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : List[Any] = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Optional[int] = pipe(**lowerCamelCase).images _lowercase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : List[Any] = np.array([0.6_5_8_6_3, 0.5_9_4_2_5, 0.4_9_3_2_6, 0.5_6_3_1_3, 0.5_3_8_7_5, 0.5_6_6_2_7, 0.5_1_0_6_5, 0.3_9_7_7_7, 0.4_6_3_3_0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Optional[int] = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Dict = self.get_dummy_inputs() _lowercase : Union[str, Any] = pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : Union[str, Any] = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Any = EulerDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_dummy_inputs() _lowercase : Any = pipe(**lowerCamelCase).images _lowercase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : Union[str, Any] = np.array([0.5_3_7_5_5, 0.6_0_7_8_6, 0.4_7_4_0_2, 0.4_9_4_8_8, 0.5_1_8_6_9, 0.4_9_8_1_9, 0.4_7_9_8_5, 0.3_8_9_5_7, 0.4_4_2_7_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = self.get_dummy_inputs() _lowercase : Optional[int] = pipe(**lowerCamelCase).images _lowercase : str = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : List[str] = np.array([0.5_3_8_1_7, 0.6_0_8_1_2, 0.4_7_3_8_4, 0.4_9_5_3_0, 0.5_1_8_9_4, 0.4_9_8_1_4, 0.4_7_9_8_4, 0.3_8_9_5_8, 0.4_4_2_7_1]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') _lowercase : Any = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Union[str, Any] = self.get_dummy_inputs() _lowercase : Any = pipe(**lowerCamelCase).images _lowercase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _lowercase : Any = np.array([0.5_3_8_9_5, 0.6_0_8_0_8, 0.4_7_9_3_3, 0.4_9_6_0_8, 0.5_1_8_8_6, 0.4_9_9_5_0, 0.4_8_0_5_3, 0.3_8_9_5_7, 0.4_4_2_0_0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : str = self.get_dummy_inputs() _lowercase : Any = 3 * [inputs['prompt']] # forward _lowercase : int = pipe(**lowerCamelCase) _lowercase : Optional[int] = output.images[0, -3:, -3:, -1] _lowercase : int = self.get_dummy_inputs() _lowercase : Union[str, Any] = 3 * [inputs.pop('prompt')] _lowercase : Union[str, Any] = pipe.tokenizer( lowerCamelCase, padding='max_length', max_length=pipe.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='np', ) _lowercase : Tuple = text_inputs['input_ids'] _lowercase : Any = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa))[0] _lowercase : List[Any] = prompt_embeds # forward _lowercase : Union[str, Any] = pipe(**lowerCamelCase) _lowercase : Union[str, Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1E-4 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider') pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[Any] = self.get_dummy_inputs() _lowercase : Any = 3 * ['this is a negative prompt'] _lowercase : str = negative_prompt _lowercase : Optional[int] = 3 * [inputs['prompt']] # forward _lowercase : int = pipe(**lowerCamelCase) _lowercase : str = output.images[0, -3:, -3:, -1] _lowercase : Union[str, Any] = self.get_dummy_inputs() _lowercase : str = 3 * [inputs.pop('prompt')] _lowercase : Optional[int] = [] for p in [prompt, negative_prompt]: _lowercase : Tuple = pipe.tokenizer( lowerCamelCase, padding='max_length', max_length=pipe.tokenizer.model_max_length, truncation=lowerCamelCase, return_tensors='np', ) _lowercase : Dict = text_inputs['input_ids'] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa))[0]) _lowercase , _lowercase : str = embeds # forward _lowercase : Dict = pipe(**lowerCamelCase) _lowercase : Tuple = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten()).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): @property def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : int = ort.SessionOptions() _lowercase : str = False return options def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='onnx', safety_checker=lowerCamelCase, feature_extractor=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = 'A painting of a squirrel eating a burger' np.random.seed(0) _lowercase : Union[str, Any] = sd_pipe([prompt], guidance_scale=6.0, num_inference_steps=10, output_type='np') _lowercase : Optional[Any] = output.images _lowercase : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Union[str, Any] = np.array([0.0_4_5_2, 0.0_3_9_0, 0.0_0_8_7, 0.0_3_5_0, 0.0_6_1_7, 0.0_3_6_4, 0.0_5_4_4, 0.0_5_2_3, 0.0_7_2_0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : str = DDIMScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx') _lowercase : str = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : List[Any] = 'open neural network exchange' _lowercase : List[Any] = np.random.RandomState(0) _lowercase : Optional[Any] = sd_pipe([prompt], guidance_scale=7.5, num_inference_steps=10, generator=lowerCamelCase, output_type='np') _lowercase : Optional[Any] = output.images _lowercase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Optional[int] = np.array([0.2_8_6_7, 0.1_9_7_4, 0.1_4_8_1, 0.7_2_9_4, 0.7_2_5_1, 0.6_6_6_7, 0.4_1_9_4, 0.5_6_4_2, 0.6_4_8_6]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Dict = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx') _lowercase : Dict = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Tuple = 'open neural network exchange' _lowercase : str = np.random.RandomState(0) _lowercase : Dict = sd_pipe([prompt], guidance_scale=7.5, num_inference_steps=10, generator=lowerCamelCase, output_type='np') _lowercase : Optional[Any] = output.images _lowercase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) _lowercase : Optional[Any] = np.array([0.2_3_0_6, 0.1_9_5_9, 0.1_5_9_3, 0.6_5_4_9, 0.6_3_9_4, 0.5_4_0_8, 0.5_0_6_5, 0.6_0_1_0, 0.6_1_6_1]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def UpperCamelCase ( self) -> int: """simple docstring""" _lowercase : List[Any] = 0 def test_callback_fn(lowerCamelCase, lowerCamelCase, lowerCamelCase) -> None: _lowercase : List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) _lowercase : Any = latents[0, -3:, -3:, -1] _lowercase : Tuple = np.array( [-0.6_7_7_2, -0.3_8_3_5, -1.2_4_5_6, 0.1_9_0_5, -1.0_9_7_4, 0.6_9_6_7, -1.9_3_5_3, 0.0_1_7_8, 1.0_1_6_7]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) _lowercase : List[Any] = latents[0, -3:, -3:, -1] _lowercase : str = np.array( [-0.3_3_5_1, 0.2_2_4_1, -0.1_8_3_7, -0.2_3_2_5, -0.6_5_7_7, 0.3_3_9_3, -0.0_2_4_1, 0.5_8_9_9, 1.3_8_7_5]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 1E-3 _lowercase : Any = False _lowercase : int = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', safety_checker=lowerCamelCase, feature_extractor=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Any = 'Andromeda galaxy in a bottle' _lowercase : str = np.random.RandomState(0) pipe( prompt=lowerCamelCase, num_inference_steps=5, guidance_scale=7.5, generator=lowerCamelCase, callback=lowerCamelCase, callback_steps=1, ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = OnnxStableDiffusionPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', safety_checker=lowerCamelCase, feature_extractor=lowerCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) assert isinstance(lowerCamelCase, lowerCamelCase) assert pipe.safety_checker is None _lowercase : Optional[int] = pipe('example prompt', num_inference_steps=2).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase) _lowercase : Any = OnnxStableDiffusionPipeline.from_pretrained(lowerCamelCase) # sanity check that the pipeline still works assert pipe.safety_checker is None _lowercase : List[str] = pipe('example prompt', num_inference_steps=2).images[0] assert image is not None
89
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE : str = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
89
1
'''simple docstring''' import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __A : def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=3 , UpperCamelCase_=True , UpperCamelCase_=True , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=2_24 , UpperCamelCase_=10_00 , UpperCamelCase_=[3, 3, 6, 4] , UpperCamelCase_=[48, 56, 1_12, 2_20] , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : str = batch_size __UpperCAmelCase : int = num_channels __UpperCAmelCase : Union[str, Any] = is_training __UpperCAmelCase : Tuple = use_labels __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : Any = attention_probs_dropout_prob __UpperCAmelCase : Dict = num_labels __UpperCAmelCase : List[Any] = image_size __UpperCAmelCase : List[Any] = layer_depths __UpperCAmelCase : str = embed_dims def _snake_case ( self ): __UpperCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : int = None if self.use_labels: __UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_labels ) __UpperCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def _snake_case ( self ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="gelu" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=A__ , layer_scale_init_value=1E-5 , ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : List[Any] = SwiftFormerModel(config=A__ ) model.to(A__ ) model.eval() __UpperCAmelCase : List[Any] = model(A__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def _snake_case ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : Tuple = SwiftFormerForImageClassification(A__ ) model.to(A__ ) model.eval() __UpperCAmelCase : int = model(A__ , labels=A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __UpperCAmelCase : List[str] = SwiftFormerForImageClassification(A__ ) model.to(A__ ) model.eval() __UpperCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase : Optional[int] = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self ): (__UpperCAmelCase) : Tuple = self.prepare_config_and_inputs() __UpperCAmelCase : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __A (__magic_name__ , __magic_name__ , unittest.TestCase ): snake_case :Dict = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () snake_case :List[Any] = ( {'''feature-extraction''': SwiftFormerModel, '''image-classification''': SwiftFormerForImageClassification} if is_torch_available() else {} ) snake_case :Dict = False snake_case :Union[str, Any] = False snake_case :Any = False snake_case :int = False snake_case :Any = False def _snake_case ( self ): __UpperCAmelCase : List[str] = SwiftFormerModelTester(self ) __UpperCAmelCase : int = ConfigTester( self , config_class=A__ , has_text_modality=A__ , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def _snake_case ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="SwiftFormer does not use inputs_embeds" ) def _snake_case ( self ): pass def _snake_case ( self ): __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : List[str] = model_class(A__ ) __UpperCAmelCase : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A__ , nn.Linear ) ) def _snake_case ( self ): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Any = model_class(A__ ) __UpperCAmelCase : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase : Dict = [*signature.parameters.keys()] __UpperCAmelCase : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , A__ ) def _snake_case ( self ): __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def _snake_case ( self ): __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A__ ) @slow def _snake_case ( self ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = SwiftFormerModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) @unittest.skip(reason="SwiftFormer does not output attentions" ) def _snake_case ( self ): pass def _snake_case ( self ): def check_hidden_states_output(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __UpperCAmelCase : Any = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): __UpperCAmelCase : Any = model(**self._prepare_for_class(A__ , A__ ) ) __UpperCAmelCase : str = outputs.hidden_states __UpperCAmelCase : Tuple = 8 self.assertEqual(len(A__ ) , A__ ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(A__ ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase : Any = True check_hidden_states_output(A__ , A__ , A__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase : List[Any] = True check_hidden_states_output(A__ , A__ , A__ ) def _snake_case ( self ): def _config_zero_init(UpperCamelCase_ ): __UpperCAmelCase : str = copy.deepcopy(A__ ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(A__ , A__ , 1E-10 ) if isinstance(getattr(A__ , A__ , A__ ) , A__ ): __UpperCAmelCase : Optional[Any] = _config_zero_init(getattr(A__ , A__ ) ) setattr(A__ , A__ , A__ ) return configs_no_init __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = _config_zero_init(A__ ) for model_class in self.all_model_classes: __UpperCAmelCase : str = model_class(config=A__ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9) / 1E9).round().item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _snake_case ( self ): pass def _lowercase ( ) -> Optional[Any]: """simple docstring""" __UpperCAmelCase : Union[str, Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __A (unittest.TestCase ): @cached_property def _snake_case ( self ): return ViTImageProcessor.from_pretrained("MBZUAI/swiftformer-xs" ) if is_vision_available() else None @slow def _snake_case ( self ): __UpperCAmelCase : List[Any] = SwiftFormerForImageClassification.from_pretrained("MBZUAI/swiftformer-xs" ).to(A__ ) __UpperCAmelCase : Any = self.default_image_processor __UpperCAmelCase : List[Any] = prepare_img() __UpperCAmelCase : Optional[Any] = image_processor(images=A__ , return_tensors="pt" ).to(A__ ) # forward pass with torch.no_grad(): __UpperCAmelCase : Dict = model(**A__ ) # verify the logits __UpperCAmelCase : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , A__ ) __UpperCAmelCase : Any = torch.tensor([[-2.1703E00, 2.1107E00, -2.0811E00]] ).to(A__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A__ , atol=1E-4 ) )
719
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __A (TensorFormatter[Mapping, "torch.Tensor", Mapping] ): def __init__( self , UpperCamelCase_=None , **UpperCamelCase_ ): super().__init__(features=UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = torch_tensor_kwargs import torch # noqa import torch at initialization def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , UpperCamelCase_ ) and column: if all( isinstance(UpperCamelCase_ , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): import torch if isinstance(UpperCamelCase_ , (str, bytes, type(UpperCamelCase_ )) ): return value elif isinstance(UpperCamelCase_ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() __UpperCAmelCase : int = {} if isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): __UpperCAmelCase : Optional[int] = {"dtype": torch.intaa} elif isinstance(UpperCamelCase_ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): __UpperCAmelCase : str = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(UpperCamelCase_ , PIL.Image.Image ): __UpperCAmelCase : str = np.asarray(UpperCamelCase_ ) return torch.tensor(UpperCamelCase_ , **{**default_dtype, **self.torch_tensor_kwargs} ) def _snake_case ( self , UpperCamelCase_ ): import torch # support for torch, tf, jax etc. if hasattr(UpperCamelCase_ , "__array__" ) and not isinstance(UpperCamelCase_ , torch.Tensor ): __UpperCAmelCase : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(UpperCamelCase_ , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) elif isinstance(UpperCamelCase_ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(UpperCamelCase_ ) for substruct in data_struct] ) return self._tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): return map_nested(self._recursive_tensorize , UpperCamelCase_ , map_list=UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : List[str] = self.numpy_arrow_extractor().extract_row(UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = self.python_features_decoder.decode_row(UpperCamelCase_ ) return self.recursive_tensorize(UpperCamelCase_ ) def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : Union[str, Any] = self.numpy_arrow_extractor().extract_column(UpperCamelCase_ ) __UpperCAmelCase : Optional[Any] = self.python_features_decoder.decode_column(UpperCamelCase_ , pa_table.column_names[0] ) __UpperCAmelCase : List[Any] = self.recursive_tensorize(UpperCamelCase_ ) __UpperCAmelCase : List[str] = self._consolidate(UpperCamelCase_ ) return column def _snake_case ( self , UpperCamelCase_ ): __UpperCAmelCase : int = self.numpy_arrow_extractor().extract_batch(UpperCamelCase_ ) __UpperCAmelCase : Any = self.python_features_decoder.decode_batch(UpperCamelCase_ ) __UpperCAmelCase : Optional[int] = self.recursive_tensorize(UpperCamelCase_ ) for column_name in batch: __UpperCAmelCase : Tuple = self._consolidate(batch[column_name] ) return batch
10
0
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase__ : List[Any] = logging.get_logger(__name__) UpperCAmelCase__ : List[str] = {"vocab_file": "vocab.json"} UpperCAmelCase__ : Optional[Any] = { "vocab_file": { "mgp-str": "https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json", } } UpperCAmelCase__ : Union[str, Any] = {"mgp-str": 27} class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Any = VOCAB_FILES_NAMES snake_case__ :Dict = PRETRAINED_VOCAB_FILES_MAP snake_case__ :Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , __magic_name__ : List[str] , __magic_name__ : int="[GO]" , __magic_name__ : Optional[Any]="[GO]" , __magic_name__ : List[str]="[s]" , __magic_name__ : str="[GO]" , **__magic_name__ : List[Any] ): """simple docstring""" super().__init__( unk_token=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , pad_token=__magic_name__ , **__magic_name__ , ) with open(__magic_name__ , encoding="utf-8" ) as vocab_handle: lowerCAmelCase__ = json.load(__magic_name__ ) lowerCAmelCase__ = {v: k for k, v in self.vocab.items()} @property def __SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return len(self.vocab ) def __SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def __SCREAMING_SNAKE_CASE ( self : Any , __magic_name__ : Dict ): """simple docstring""" lowerCAmelCase__ = [] for s in text: char_tokens.extend(__magic_name__ ) return char_tokens def __SCREAMING_SNAKE_CASE ( self : Dict , __magic_name__ : str ): """simple docstring""" return self.vocab.get(__magic_name__ , self.vocab.get(self.unk_token ) ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Tuple ): """simple docstring""" return self.decoder.get(__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : str , __magic_name__ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error("Vocabulary path ({}) should be a directory".format(__magic_name__ ) ) return lowerCAmelCase__ = os.path.join( __magic_name__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(__magic_name__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=__magic_name__ , ensure_ascii=__magic_name__ ) + "\n" ) return (vocab_file,)
48
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Tuple = 'Salesforce/blip-image-captioning-base' snake_case__ :List[Any] = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) snake_case__ :List[Any] = 'image_captioner' snake_case__ :Optional[int] = AutoModelForVisionaSeq snake_case__ :Optional[int] = ['image'] snake_case__ :Any = ['text'] def __init__( self : str , *__magic_name__ : List[str] , **__magic_name__ : Tuple ): """simple docstring""" requires_backends(self , ["vision"] ) super().__init__(*__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __magic_name__ : "Image" ): """simple docstring""" return self.pre_processor(images=__magic_name__ , return_tensors="pt" ) def __SCREAMING_SNAKE_CASE ( self : Optional[Any] , __magic_name__ : Tuple ): """simple docstring""" return self.model.generate(**__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : str , __magic_name__ : Optional[int] ): """simple docstring""" return self.pre_processor.batch_decode(__magic_name__ , skip_special_tokens=__magic_name__ )[0].strip()
48
1
"""simple docstring""" import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() UpperCamelCase = { """bart""": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), """bert""": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-base-cased-finetuned-mrpc""": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """dpr""": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), """gpt2""": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlnet""": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm""": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm-roberta""": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """transfo-xl""": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """openai-gpt""": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """roberta""": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """layoutlm""": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), """roberta-large-mnli""": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """camembert""": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """flaubert""": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert""": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert-base-distilled-squad""": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert""": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert-visual-feature-encoder""": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """ctrl""": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """albert""": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """t5""": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """electra""": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """wav2vec2""": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def lowerCAmelCase ( UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: int=False , UpperCamelCase_: Optional[Any]=True ) -> Optional[int]: '''simple docstring''' if model_type not in MODEL_CLASSES: raise ValueError(f'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) _a , _a , _a , _a = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: _a = cached_file(UpperCamelCase_ , UpperCamelCase_ , force_download=not use_cached_models ) _a = config_class.from_json_file(UpperCamelCase_ ) _a = True _a = True print(f'''Building TensorFlow model from configuration: {config}''' ) _a = model_class(UpperCamelCase_ ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): _a = cached_file( UpperCamelCase_ , UpperCamelCase_ , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: _a = load_pytorch_checkpoint_in_tfa_model(UpperCamelCase_ , UpperCamelCase_ ) if compare_with_pt_model: _a = tf_model(tf_model.dummy_inputs , training=UpperCamelCase_ ) # build the network _a = torch.load(UpperCamelCase_ , map_location="cpu" ) _a = pt_model_class.from_pretrained( pretrained_model_name_or_path=UpperCamelCase_ , config=UpperCamelCase_ , state_dict=UpperCamelCase_ ) with torch.no_grad(): _a = pt_model(**pt_model.dummy_inputs ) _a = pto[0].numpy() _a = tfo[0].numpy() _a = np.amax(np.abs(np_pt - np_tf ) ) print(f'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2E-2, f'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(f'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(UpperCamelCase_ , save_format="h5" ) def lowerCAmelCase ( UpperCamelCase_: Union[str, Any] , UpperCamelCase_: List[str] , UpperCamelCase_: Any=None , UpperCamelCase_: List[Any]=None , UpperCamelCase_: str=False , UpperCamelCase_: List[str]=False , UpperCamelCase_: Optional[int]=False , UpperCamelCase_: Optional[int]=False , ) -> List[str]: '''simple docstring''' if args_model_type is None: _a = list(MODEL_CLASSES.keys() ) else: _a = [args_model_type] for j, model_type in enumerate(UpperCamelCase_ , start=1 ): print("=" * 100 ) print(f''' Converting model type {j}/{len(UpperCamelCase_ )}: {model_type}''' ) print("=" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(f'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) _a , _a , _a , _a , _a = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: _a = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: _a = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(UpperCamelCase_ , UpperCamelCase_ ) , start=1 ): print("-" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue _a = model_shortcut_name elif only_convert_finetuned_models: print(f''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( f''' Converting checkpoint {i}/{len(UpperCamelCase_ )}: {model_shortcut_name} - model_type {model_type}''' ) print("-" * 100 ) if config_shortcut_name in aws_config_map: _a = cached_file(UpperCamelCase_ , UpperCamelCase_ , force_download=not use_cached_models ) else: _a = config_shortcut_name if model_shortcut_name in aws_model_maps: _a = cached_file(UpperCamelCase_ , UpperCamelCase_ , force_download=not use_cached_models ) else: _a = model_shortcut_name if os.path.isfile(UpperCamelCase_ ): _a = "converted_model" convert_pt_checkpoint_to_tf( model_type=UpperCamelCase_ , pytorch_checkpoint_path=UpperCamelCase_ , config_file=UpperCamelCase_ , tf_dump_path=os.path.join(UpperCamelCase_ , model_shortcut_name + "-tf_model.h5" ) , compare_with_pt_model=UpperCamelCase_ , ) if remove_cached_files: os.remove(UpperCamelCase_ ) os.remove(UpperCamelCase_ ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_dump_path""", default=None, type=str, required=True, help="""Path to the output Tensorflow dump file.""" ) parser.add_argument( """--model_type""", default=None, type=str, help=( f"Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and " """convert all the models from AWS.""" ), ) parser.add_argument( """--pytorch_checkpoint_path""", default=None, type=str, help=( """Path to the PyTorch checkpoint path or shortcut name to download from AWS. """ """If not given, will download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--config_file""", default=None, type=str, help=( """The config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture. If not given and """ """--pytorch_checkpoint_path is not given or is a shortcut name """ """use the configuration associated to the shortcut name on the AWS""" ), ) parser.add_argument( """--compare_with_pt_model""", action="""store_true""", help="""Compare Tensorflow and PyTorch model predictions.""" ) parser.add_argument( """--use_cached_models""", action="""store_true""", help="""Use cached models if possible instead of updating to latest checkpoint versions.""", ) parser.add_argument( """--remove_cached_files""", action="""store_true""", help="""Remove pytorch models after conversion (save memory when converting in batches).""", ) parser.add_argument("""--only_convert_finetuned_models""", action="""store_true""", help="""Only convert finetuned models.""") UpperCamelCase = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
612
"""simple docstring""" import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def lowerCAmelCase ( UpperCamelCase_: Dict ) -> Any: '''simple docstring''' _a = os.path.join(args.tf_model_dir , "parameters.json" ) _a = json.loads(open(UpperCamelCase_ ).read() ) if not params: raise ValueError( f'''It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.''' ) if not args.output.endswith(".pt" ): _a = args.output + ".pt" _a = OrderedDict() with tf.device("/CPU:0" ): _a = tf.train.load_checkpoint(args.tf_model_dir ) _a = reader.get_variable_to_shape_map() for key_name in shapes.keys(): _a = reader.get_tensor(UpperCamelCase_ ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): _a = int(key_name[9] ) elif key_name.startswith("pasts/out" ): _a = 8 _a = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name.startswith("model/moe" ): _a = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): _a = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/softmlp/kernel" ): _a = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): _a = key_name[-9:-7] for i in range(16 ): _a = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) _a = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _a = torch.tensor(UpperCamelCase_ ) elif key_name.startswith("model/mlp" ): _a = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): _a = "model.blocks.%d.feed_forward.mlp.wi.weight" % player _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/p1/bias" ): _a = "model.blocks.%d.feed_forward.mlp.wi.bias" % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/p2/kernel" ): _a = "model.blocks.%d.feed_forward.mlp.wo.weight" % player _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/p2/bias" ): _a = "model.blocks.%d.feed_forward.mlp.wo.bias" % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) elif key_name.startswith("model/ln" ): _a = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): _a = "model.blocks.%d.feed_forward.norm.bias" % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/g" ): _a = "model.blocks.%d.feed_forward.norm.weight" % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) elif key_name.startswith("model/att" ): _a = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): _a = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _a = state[:, 0, :, :] _a = state[:, 1, :, :] _a = state[:, 2, :, :] _a = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _a = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _a = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _a = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player _a = torch.tensor(UpperCamelCase_ ) _a = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player _a = torch.tensor(UpperCamelCase_ ) _a = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/o/kernel" ): _a = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player _a = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name.startswith("model/an" ): _a = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): _a = "model.blocks.%d.self_attn.norm.bias" % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) elif key_name.endswith("/g" ): _a = "model.blocks.%d.self_attn.norm.weight" % player _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): _a = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] _a = "model.%s.weight" % nlayer _a = vnp.copy() # same in embedded _a = torch.tensor(UpperCamelCase_ ) if key_name.startswith("model/wte" ): _a = "lm_head.weight" _a = vnp.copy() # same in embedded _a = torch.tensor(UpperCamelCase_ ) elif key_name.startswith("model/wob" ): _a = "final_logits_bias" _a = vnp.copy() # same in embedded _a = state.reshape((1, -1) ) _a = torch.tensor(UpperCamelCase_ ) elif key_name == "model/dense/kernel": _a = "model.last_project.weight" _a = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _a = torch.tensor(UpperCamelCase_ ) elif key_name == "model/dense_1/bias": _a = "model.last_project.bias" _a = vnp.copy() # same because it is one dimensional _a = torch.tensor(UpperCamelCase_ ) torch.save(UpperCamelCase_ , args.output ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser( description="""model converter.""", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("""--tf_model_dir""", metavar="""PATH""", type=str, required=True, help="""import model""") parser.add_argument("""--output""", metavar="""PATH""", type=str, required=True, help="""output model""") UpperCamelCase = parser.parse_args() convert_tf_gptsan_to_pt(args)
612
1
'''simple docstring''' from __future__ import annotations _a : Optional[int] = list[tuple[int, int]] _a : Union[str, Any] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _a : Optional[int] = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = pos_x __lowerCAmelCase = pos_y __lowerCAmelCase = (pos_y, pos_x) __lowerCAmelCase = goal_x __lowerCAmelCase = goal_y __lowerCAmelCase = g_cost __lowerCAmelCase = parent __lowerCAmelCase = self.calculate_heuristic() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = abs(self.pos_x - self.goal_x ) __lowerCAmelCase = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.f_cost < other.f_cost class _UpperCAmelCase : def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = Node(start[1],start[0],goal[1],goal[0],0,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = Node(goal[1],goal[0],goal[1],goal[0],9_99_99,__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [self.start] __lowerCAmelCase = [] __lowerCAmelCase = False def lowerCamelCase__ ( self ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowerCAmelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __lowerCAmelCase = True return self.retrace_path(__SCREAMING_SNAKE_CASE ) self.closed_nodes.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.get_successors(__SCREAMING_SNAKE_CASE ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__SCREAMING_SNAKE_CASE ) else: # retrieve the best current path __lowerCAmelCase = self.open_nodes.pop(self.open_nodes.index(__SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__SCREAMING_SNAKE_CASE ) else: self.open_nodes.append(__SCREAMING_SNAKE_CASE ) if not self.reached: return [self.start.pos] return None def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [] for action in delta: __lowerCAmelCase = parent.pos_x + action[1] __lowerCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,self.target.pos_y,self.target.pos_x,parent.g_cost + 1,__SCREAMING_SNAKE_CASE,) ) return successors def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = node __lowerCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowerCAmelCase = current_node.parent path.reverse() return path if __name__ == "__main__": _a : List[Any] = (0, 0) _a : Dict = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") _a : int = GreedyBestFirst(init, goal) _a : Optional[Any] = greedy_bf.search() if path: for pos_x, pos_y in path: _a : List[Any] = 2 for elem in grid: print(elem)
689
'''simple docstring''' import string from math import logaa def a_ ( UpperCamelCase_ , UpperCamelCase_ ): A_ = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) A_ = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def a_ ( UpperCamelCase_ , UpperCamelCase_ ): A_ = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' A_ = corpus_without_punctuation.split("\n" ) A_ = term.lower() return (len([doc for doc in docs if term in doc] ), len(UpperCamelCase_ )) def a_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def a_ ( UpperCamelCase_ , UpperCamelCase_ ): return round(tf * idf , 3 )
452
0
import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) __UpperCamelCase = '\\n Text data.\n Second line of data.' __UpperCamelCase = 'file' @pytest.fixture(scope="session" ) def UpperCamelCase_( _A :int )-> Optional[Any]: UpperCamelCase__ = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") UpperCamelCase__ = bytes(_A , "utf-8" ) with zstd.open(_A , "wb" ) as f: f.write(_A ) return path @pytest.fixture def UpperCamelCase_( _A :int )-> Optional[Any]: with open(os.path.join(tmpfs.local_root_dir , _A ) , "w" ) as f: f.write(_A ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def UpperCamelCase_( _A :List[str] , _A :Optional[int] , _A :Optional[Any] , _A :Dict , _A :Union[str, Any] , _A :str )-> Union[str, Any]: UpperCamelCase__ = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} UpperCamelCase__ = input_paths[compression_format] UpperCamelCase__ = tmp_path / "cache" UpperCamelCase__ = DownloadConfig(cache_dir=_A , extract_compressed_file=_A ) UpperCamelCase__ = cached_path(_A , download_config=_A ) with open(_A ) as f: UpperCamelCase__ = f.read() with open(_A ) as f: UpperCamelCase__ = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def UpperCamelCase_( _A :int , _A :Dict , _A :Tuple , _A :Dict , _A :Union[str, Any] )-> List[str]: UpperCamelCase__ = "custom_cache" UpperCamelCase__ = "custom_extracted_dir" UpperCamelCase__ = tmp_path / "custom_extracted_path" if default_extracted: UpperCamelCase__ = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , _A ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_A ) ) UpperCamelCase__ = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) UpperCamelCase__ = xz_file UpperCamelCase__ = ( DownloadConfig(extract_compressed_file=_A ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_A ) ) UpperCamelCase__ = cached_path(_A , download_config=_A ) assert Path(_A ).parent.parts[-2:] == expected def UpperCamelCase_( _A :Any )-> Optional[Any]: # absolute path UpperCamelCase__ = str(Path(_A ).resolve() ) assert cached_path(_A ) == text_file # relative path UpperCamelCase__ = str(Path(_A ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_A ) == text_file def UpperCamelCase_( _A :List[str] )-> Optional[Any]: # absolute path UpperCamelCase__ = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(_A ): cached_path(_A ) # relative path UpperCamelCase__ = "./__missing_file__.txt" with pytest.raises(_A ): cached_path(_A ) def UpperCamelCase_( _A :Optional[Any] )-> Any: UpperCamelCase__ = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(_A ) as f: UpperCamelCase__ = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , _A ) def UpperCamelCase_( )-> Optional[int]: with pytest.raises(_A ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _A ) def UpperCamelCase_( _A :List[Any] )-> Optional[int]: UpperCamelCase__ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_A ): http_get("https://huggingface.co" , temp_file=_A ) with pytest.raises(_A ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _A ) def UpperCamelCase_( _A :Optional[Any] )-> List[Any]: UpperCamelCase__ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_A ): ftp_get("ftp://huggingface.co" , temp_file=_A ) with pytest.raises(_A ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , _A ) def UpperCamelCase_( _A :str )-> Any: UpperCamelCase__ = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(_A ): fsspec_get("s3://huggingface.co" , temp_file=_A ) with pytest.raises(_A ): fsspec_head("s3://huggingface.co" )
185
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class lowerCamelCase__ : """simple docstring""" def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=99 , snake_case=64 , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=37 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=16 , snake_case=2 , snake_case=0.02 , snake_case=3 , snake_case=4 , snake_case=None , ): '''simple docstring''' UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_input_mask UpperCamelCase__ = use_token_type_ids UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = embedding_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_act UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = type_vocab_size UpperCamelCase__ = type_sequence_label_size UpperCamelCase__ = initializer_range UpperCamelCase__ = num_labels UpperCamelCase__ = num_choices UpperCamelCase__ = scope def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = None if self.use_input_mask: UpperCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__ = None if self.use_token_type_ids: UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None if self.use_labels: UpperCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self ): '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def snake_case__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCamelCase__ = MegatronBertModel(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase__ = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) UpperCamelCase__ = model(snake_case , token_type_ids=snake_case ) UpperCamelCase__ = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCamelCase__ = MegatronBertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase__ = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCamelCase__ = MegatronBertForCausalLM(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase__ = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCamelCase__ = MegatronBertForNextSentencePrediction(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase__ = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def snake_case__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCamelCase__ = MegatronBertForPreTraining(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase__ = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , next_sentence_label=snake_case , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def snake_case__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCamelCase__ = MegatronBertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase__ = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCamelCase__ = self.num_labels UpperCamelCase__ = MegatronBertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() UpperCamelCase__ = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCamelCase__ = self.num_labels UpperCamelCase__ = MegatronBertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase__ = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCamelCase__ = self.num_choices UpperCamelCase__ = MegatronBertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() UpperCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCamelCase__ = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ( UpperCamelCase__ ), ) = config_and_inputs UpperCamelCase__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): """simple docstring""" _UpperCamelCase : int = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _UpperCamelCase : int = ( { 'feature-extraction': MegatronBertModel, 'fill-mask': MegatronBertForMaskedLM, 'question-answering': MegatronBertForQuestionAnswering, 'text-classification': MegatronBertForSequenceClassification, 'text-generation': MegatronBertForCausalLM, 'token-classification': MegatronBertForTokenClassification, 'zero-shot': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCamelCase : Optional[Any] = True # test_resize_embeddings = False _UpperCamelCase : List[Any] = False def snake_case__ ( self , snake_case , snake_case , snake_case=False ): '''simple docstring''' UpperCamelCase__ = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) if return_labels: if model_class in get_values(snake_case ): UpperCamelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case ) UpperCamelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) return inputs_dict def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = MegatronBertModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def snake_case__ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*snake_case ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*snake_case ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*snake_case ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*snake_case ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*snake_case ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*snake_case ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*snake_case ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*snake_case ) def UpperCamelCase_( _A :List[Any] )-> Optional[Any]: return torch.tensor( _A , dtype=torch.long , device=_A , ) __UpperCamelCase = 1E-4 @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip("Model is not available." ) def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = "nvidia/megatron-bert-uncased-345m" if "MYDIR" in os.environ: UpperCamelCase__ = os.path.join(os.environ["MYDIR"] , snake_case ) UpperCamelCase__ = MegatronBertModel.from_pretrained(snake_case ) model.to(snake_case ) model.half() UpperCamelCase__ = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): UpperCamelCase__ = model(snake_case )[0] UpperCamelCase__ = torch.Size((1, 9, 1024) ) self.assertEqual(output.shape , snake_case ) UpperCamelCase__ = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): UpperCamelCase__ = output[0, ii, jj] UpperCamelCase__ = expected[3 * ii + jj] UpperCamelCase__ = "ii={} jj={} a={} b={}".format(snake_case , snake_case , snake_case , snake_case ) self.assertTrue(math.isclose(snake_case , snake_case , rel_tol=snake_case , abs_tol=snake_case ) , msg=snake_case )
185
1
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class lowerCamelCase__: def __init__( self , __UpperCAmelCase ): """simple docstring""" if isinstance(__A , __A ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden __lowercase = deepcopy(__A ) elif os.path.exists(__A ): with io.open(__A , """r""" , encoding="""utf-8""" ) as f: __lowercase = json.load(__A ) else: try: __lowercase = baseaa.urlsafe_baadecode(__A ).decode("""utf-8""" ) __lowercase = json.loads(__A ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) __lowercase = config self.set_stage_and_offload() def __magic_name__ ( self ): """simple docstring""" __lowercase = self.get_value("""zero_optimization.stage""" , -1 ) # offload __lowercase = False if self.is_zeroa() or self.is_zeroa(): __lowercase = set(["""cpu""", """nvme"""] ) __lowercase = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: __lowercase = True def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" __lowercase = self.config # find the config node of interest if it exists __lowercase = ds_key_long.split(""".""" ) __lowercase = nodes.pop() for node in nodes: __lowercase = config.get(__A ) if config is None: return None, ds_key return config, ds_key def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase=None ): """simple docstring""" __lowercase , __lowercase = self.find_config_node(__A ) if config is None: return default return config.get(__A , __A ) def __magic_name__ ( self , __UpperCAmelCase , __UpperCAmelCase=False ): """simple docstring""" __lowercase = self.config # find the config node of interest if it exists __lowercase = ds_key_long.split(""".""" ) for node in nodes: __lowercase = config __lowercase = config.get(__A ) if config is None: if must_exist: raise ValueError(F'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(__A ) def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" __lowercase = self.get_value(__A ) return False if value is None else bool(__A ) def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" __lowercase = self.get_value(__A ) return False if value is None else not bool(__A ) def __magic_name__ ( self ): """simple docstring""" return self._stage == 2 def __magic_name__ ( self ): """simple docstring""" return self._stage == 3 def __magic_name__ ( self ): """simple docstring""" return self._offload class lowerCamelCase__: def __init__( self , __UpperCAmelCase ): """simple docstring""" __lowercase = engine def __magic_name__ ( self , __UpperCAmelCase , **__UpperCAmelCase ): """simple docstring""" self.engine.backward(__A , **__A ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class lowerCamelCase__( lowerCamelCase__ ): def __init__( self , __UpperCAmelCase ): """simple docstring""" super().__init__(__A , device_placement=__A , scaler=__A ) __lowercase = hasattr(self.optimizer , """overflow""" ) def __magic_name__ ( self , __UpperCAmelCase=None ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def __magic_name__ ( self ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def __magic_name__ ( self ): """simple docstring""" if self.__has_overflow__: return self.optimizer.overflow return False class lowerCamelCase__( lowerCamelCase__ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" super().__init__(__A , __A ) def __magic_name__ ( self ): """simple docstring""" pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class lowerCamelCase__: def __init__( self , __UpperCAmelCase , __UpperCAmelCase=0.0_01 , __UpperCAmelCase=0 , **__UpperCAmelCase ): """simple docstring""" __lowercase = params __lowercase = lr __lowercase = weight_decay __lowercase = kwargs class lowerCamelCase__: def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=0 , **__UpperCAmelCase ): """simple docstring""" __lowercase = optimizer __lowercase = total_num_steps __lowercase = warmup_num_steps __lowercase = kwargs
566
'''simple docstring''' from typing import Any def A__ ( A_ ) -> list[Any]: if not input_list: return [] _lowercase = [input_list.count(A_ ) for value in input_list] _lowercase = max(A_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(A_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
497
0
def _lowercase ( SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(UpperCAmelCase__ ) ) def _lowercase ( SCREAMING_SNAKE_CASE_ : list[list[int]] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : list[int] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if index == len(UpperCAmelCase__ ): return True # Recursive Step for i in range(UpperCAmelCase__ ): if valid_coloring(graph[index] , UpperCAmelCase__ , UpperCAmelCase__ ): # Color current vertex UpperCamelCase = i # Validate coloring if util_color(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , index + 1 ): return True # Backtrack UpperCamelCase = -1 return False def _lowercase ( SCREAMING_SNAKE_CASE_ : list[list[int]] , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase = [-1] * len(UpperCAmelCase__ ) if util_color(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , 0 ): return colored_vertices return []
708
def _lowercase ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" assert ( isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and number_of_steps > 0 ), f'number_of_steps needs to be positive integer, your input {number_of_steps}' if number_of_steps == 1: return 1 UpperCamelCase , UpperCamelCase = 1, 1 for _ in range(number_of_steps - 1 ): UpperCamelCase , UpperCamelCase = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
181
0
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING __a: int = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class UpperCAmelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self , **__lowerCAmelCase ) -> Optional[Any]: super().__init__(**lowercase__ ) if self.framework == "tf": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , '''vision''' ) self.check_model_type(lowercase__ ) def __call__( self , __lowerCAmelCase , __lowerCAmelCase = None , **__lowerCAmelCase , ) -> str: if "text_queries" in kwargs: lowercase__ : Tuple = kwargs.pop('''text_queries''' ) if isinstance(lowercase__ , (str, Image.Image) ): lowercase__ : int = {'''image''': image, '''candidate_labels''': candidate_labels} else: lowercase__ : List[Any] = image lowercase__ : Optional[int] = super().__call__(lowercase__ , **lowercase__ ) return results def _lowerCAmelCase( self , **__lowerCAmelCase ) -> Optional[Any]: lowercase__ : str = {} if "threshold" in kwargs: lowercase__ : Optional[Any] = kwargs['''threshold'''] if "top_k" in kwargs: lowercase__ : List[Any] = kwargs['''top_k'''] return {}, {}, postprocess_params def _lowerCAmelCase( self , __lowerCAmelCase ) -> int: lowercase__ : Optional[int] = load_image(inputs['''image'''] ) lowercase__ : Optional[int] = inputs['''candidate_labels'''] if isinstance(lowercase__ , lowercase__ ): lowercase__ : int = candidate_labels.split(''',''' ) lowercase__ : List[Any] = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase__ ): lowercase__ : List[Any] = self.tokenizer(lowercase__ , return_tensors=self.framework ) lowercase__ : Optional[int] = self.image_processor(lowercase__ , return_tensors=self.framework ) yield { "is_last": i == len(lowercase__ ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _lowerCAmelCase( self , __lowerCAmelCase ) -> Dict: lowercase__ : Optional[Any] = model_inputs.pop('''target_size''' ) lowercase__ : Tuple = model_inputs.pop('''candidate_label''' ) lowercase__ : Any = model_inputs.pop('''is_last''' ) lowercase__ : str = self.model(**lowercase__ ) lowercase__ : List[str] = {'''target_size''': target_size, '''candidate_label''': candidate_label, '''is_last''': is_last, **outputs} return model_outputs def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0.1 , __lowerCAmelCase=None ) -> Union[str, Any]: lowercase__ : Union[str, Any] = [] for model_output in model_outputs: lowercase__ : Union[str, Any] = model_output['''candidate_label'''] lowercase__ : Union[str, Any] = BaseModelOutput(lowercase__ ) lowercase__ : Optional[Any] = self.image_processor.post_process_object_detection( outputs=lowercase__ , threshold=lowercase__ , target_sizes=model_output['''target_size'''] )[0] for index in outputs["scores"].nonzero(): lowercase__ : int = outputs['''scores'''][index].item() lowercase__ : str = self._get_bounding_box(outputs['''boxes'''][index][0] ) lowercase__ : Optional[Any] = {'''score''': score, '''label''': label, '''box''': box} results.append(lowercase__ ) lowercase__ : List[str] = sorted(lowercase__ , key=lambda __lowerCAmelCase : x["score"] , reverse=lowercase__ ) if top_k: lowercase__ : Union[str, Any] = results[:top_k] return results def _lowerCAmelCase( self , __lowerCAmelCase ) -> Union[str, Any]: if self.framework != "pt": raise ValueError('''The ZeroShotObjectDetectionPipeline is only available in PyTorch.''' ) lowercase__ , lowercase__ , lowercase__ , lowercase__ : Dict = box.int().tolist() lowercase__ : Union[str, Any] = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
152
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'blenderbot-small' SCREAMING_SNAKE_CASE : int = ['past_key_values'] SCREAMING_SNAKE_CASE : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Optional[int] ,lowercase__ : List[str]=5_0_2_6_5 ,lowercase__ : Optional[Any]=5_1_2 ,lowercase__ : Optional[int]=8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : List[str]=1_6 ,lowercase__ : str=8 ,lowercase__ : Any=2_0_4_8 ,lowercase__ : Tuple=1_6 ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Any=True ,lowercase__ : str=True ,lowercase__ : int="gelu" ,lowercase__ : Tuple=5_1_2 ,lowercase__ : List[Any]=0.1 ,lowercase__ : Tuple=0.0 ,lowercase__ : str=0.0 ,lowercase__ : Any=0.0_2 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : List[Any]=False ,lowercase__ : Optional[int]=0 ,lowercase__ : Optional[int]=1 ,lowercase__ : str=2 ,lowercase__ : int=2 ,**lowercase__ : List[str] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = encoder_layerdrop __lowercase = decoder_layerdrop __lowercase = use_cache __lowercase = encoder_layers __lowercase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,is_encoder_decoder=lowercase__ ,decoder_start_token_id=lowercase__ ,forced_eos_token_id=lowercase__ ,**lowercase__ ,) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : Dict ): if self.task in ["default", "seq2seq-lm"]: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase = {0: '''batch'''} __lowercase = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} __lowercase = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowercase = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super().outputs else: __lowercase = super(lowercase__ ,self ).outputs if self.use_past: __lowercase , __lowercase = self.num_layers for i in range(lowercase__ ): __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} __lowercase = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # Generate decoder inputs __lowercase = seq_length if not self.use_past else 1 __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) __lowercase = {F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} __lowercase = dict(**lowercase__ ,**lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape __lowercase = common_inputs['''decoder_input_ids'''].shape[1] __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = decoder_seq_length + 3 __lowercase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowercase = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(lowercase__ ,lowercase__ )] ,dim=1 ) __lowercase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowercase , __lowercase = self.num_layers __lowercase = min(lowercase__ ,lowercase__ ) __lowercase = max(lowercase__ ,lowercase__ ) - min_num_layers __lowercase = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(lowercase__ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), torch.zeros(lowercase__ ), ) ) # TODO: test this. __lowercase = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(lowercase__ ,lowercase__ ): common_inputs["past_key_values"].append((torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase , __lowercase = self.num_layers __lowercase , __lowercase = self.num_attention_heads __lowercase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowercase = common_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [common_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(lowercase__ ) ] return common_inputs def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_batch ,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowercase = tokenizer.num_special_tokens_to_add(lowercase__ ) __lowercase = compute_effective_axis_dimension( lowercase__ ,fixed_dimension=OnnxConfig.default_fixed_sequence ,num_token_to_add=lowercase__ ) # Generate dummy inputs according to compute batch and sequence __lowercase = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowercase = dict(tokenizer(lowercase__ ,return_tensors=lowercase__ ) ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): if self.task in ["default", "seq2seq-lm"]: __lowercase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) elif self.task == "causal-lm": __lowercase = self._generate_dummy_inputs_for_causal_lm( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) else: __lowercase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) return common_inputs def SCREAMING_SNAKE_CASE ( self : Tuple ,lowercase__ : List[Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Optional[Any] ): if self.task in ["default", "seq2seq-lm"]: __lowercase = super()._flatten_past_key_values_(lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) else: __lowercase = super(lowercase__ ,self )._flatten_past_key_values_( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ )
41
0
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow A = logging.getLogger() @unittest.skip('Temporarily disable the doc tests.' ) @require_torch @require_tf @slow class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self : Dict , snake_case : Path , snake_case : Union[str, None] = None , snake_case : Union[List[str], None] = None , snake_case : Union[str, List[str], None] = None , snake_case : bool = True , ) -> int: '''simple docstring''' __magic_name__ : List[str] = [file for file in os.listdir(snake_case ) if os.path.isfile(os.path.join(snake_case , snake_case ) )] if identifier is not None: __magic_name__ : Tuple = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(snake_case , snake_case ): for n_ in n_identifier: __magic_name__ : int = [file for file in files if n_ not in file] else: __magic_name__ : Tuple = [file for file in files if n_identifier not in file] __magic_name__ : Tuple = ignore_files or [] ignore_files.append('''__init__.py''' ) __magic_name__ : Any = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , snake_case ) if only_modules: __magic_name__ : List[Any] = file.split('''.''' )[0] try: __magic_name__ : Dict = getattr(snake_case , snake_case ) __magic_name__ : List[str] = doctest.DocTestSuite(snake_case ) __magic_name__ : Dict = unittest.TextTestRunner().run(snake_case ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f"""{module_identifier} is not a module.""" ) else: __magic_name__ : Tuple = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def _UpperCAmelCase ( self : str ) -> Optional[int]: '''simple docstring''' __magic_name__ : int = Path('''src/transformers''' ) __magic_name__ : str = '''modeling''' __magic_name__ : str = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(snake_case , identifier=snake_case , ignore_files=snake_case ) def _UpperCAmelCase ( self : Any ) -> Optional[Any]: '''simple docstring''' __magic_name__ : Dict = Path('''src/transformers''' ) __magic_name__ : Union[str, Any] = '''tokenization''' self.analyze_directory(snake_case , identifier=snake_case ) def _UpperCAmelCase ( self : Any ) -> Dict: '''simple docstring''' __magic_name__ : Any = Path('''src/transformers''' ) __magic_name__ : int = '''configuration''' self.analyze_directory(snake_case , identifier=snake_case ) def _UpperCAmelCase ( self : str ) -> List[str]: '''simple docstring''' __magic_name__ : List[str] = Path('''src/transformers''' ) __magic_name__ : str = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(snake_case , n_identifier=snake_case ) def _UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' __magic_name__ : Any = Path('''docs/source''' ) __magic_name__ : str = ['''favicon.ico'''] self.analyze_directory(snake_case , ignore_files=snake_case , only_modules=snake_case )
147
"""simple docstring""" import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def UpperCamelCase_ ( lowerCamelCase : ndarray ) -> float: """simple docstring""" return np.dot(lowerCamelCase , lowerCamelCase ) class _UpperCamelCase : """simple docstring""" def __init__( self : Any , *, snake_case : float = np.inf , snake_case : str = "linear" , snake_case : float = 0.0 , ) -> None: '''simple docstring''' __magic_name__ : Optional[int] = regularization __magic_name__ : Dict = gamma if kernel == "linear": __magic_name__ : Dict = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError('''rbf kernel requires gamma''' ) if not isinstance(self.gamma , (float, int) ): raise ValueError('''gamma must be float or int''' ) if not self.gamma > 0: raise ValueError('''gamma must be > 0''' ) __magic_name__ : int = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: __magic_name__ : List[str] = f"""Unknown kernel: {kernel}""" raise ValueError(snake_case ) def _UpperCAmelCase ( self : str , snake_case : ndarray , snake_case : ndarray ) -> float: '''simple docstring''' return np.dot(snake_case , snake_case ) def _UpperCAmelCase ( self : List[str] , snake_case : ndarray , snake_case : ndarray ) -> float: '''simple docstring''' return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def _UpperCAmelCase ( self : Tuple , snake_case : list[ndarray] , snake_case : ndarray ) -> None: '''simple docstring''' __magic_name__ : List[str] = observations __magic_name__ : List[Any] = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((__magic_name__) , ) : Union[str, Any] = np.shape(snake_case ) def to_minimize(snake_case : ndarray ) -> float: __magic_name__ : Union[str, Any] = 0 ((__magic_name__) , ) : Tuple = np.shape(snake_case ) for i in range(snake_case ): for j in range(snake_case ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(snake_case ) __magic_name__ : Optional[Any] = LinearConstraint(snake_case , 0 , 0 ) __magic_name__ : Union[str, Any] = Bounds(0 , self.regularization ) __magic_name__ : Optional[Any] = minimize( snake_case , np.ones(snake_case ) , bounds=snake_case , constraints=[ly_contraint] ).x __magic_name__ : str = l_star # calculating mean offset of separation plane to points __magic_name__ : Any = 0 for i in range(snake_case ): for j in range(snake_case ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) __magic_name__ : str = s / n def _UpperCAmelCase ( self : str , snake_case : ndarray ) -> int: '''simple docstring''' __magic_name__ : str = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , snake_case ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
147
1
"""simple docstring""" import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint __A = { """169M""": 12, """430M""": 24, """1B5""": 24, """3B""": 32, """7B""": 32, """14B""": 40, } __A = { """169M""": 768, """430M""": 1024, """1B5""": 2048, """3B""": 2560, """7B""": 4096, """14B""": 5120, } def __A (_SCREAMING_SNAKE_CASE ) ->List[str]: """simple docstring""" lowerCAmelCase__ :Tuple = list(state_dict.keys() ) for name in state_dict_keys: lowerCAmelCase__ :List[str] = state_dict.pop(_SCREAMING_SNAKE_CASE ) # emb -> embedding if name.startswith('emb.' ): lowerCAmelCase__ :Dict = name.replace('emb.' , 'embeddings.' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('blocks.0.ln0' ): lowerCAmelCase__ :Optional[int] = name.replace('blocks.0.ln0' , 'blocks.0.pre_ln' ) # att -> attention lowerCAmelCase__ :Tuple = re.sub(r'blocks\.(\d+)\.att' , r'blocks.\1.attention' , _SCREAMING_SNAKE_CASE ) # ffn -> feed_forward lowerCAmelCase__ :List[Any] = re.sub(r'blocks\.(\d+)\.ffn' , r'blocks.\1.feed_forward' , _SCREAMING_SNAKE_CASE ) # time_mix_k -> time_mix_key and reshape if name.endswith('.time_mix_k' ): lowerCAmelCase__ :Union[str, Any] = name.replace('.time_mix_k' , '.time_mix_key' ) # time_mix_v -> time_mix_value and reshape if name.endswith('.time_mix_v' ): lowerCAmelCase__ :str = name.replace('.time_mix_v' , '.time_mix_value' ) # time_mix_r -> time_mix_key and reshape if name.endswith('.time_mix_r' ): lowerCAmelCase__ :List[str] = name.replace('.time_mix_r' , '.time_mix_receptance' ) if name != "head.weight": lowerCAmelCase__ :Union[str, Any] = 'rwkv.' + name lowerCAmelCase__ :Tuple = weight return state_dict def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=None ) ->Optional[int]: """simple docstring""" if tokenizer_file is None: print('No `--tokenizer_file` provided, we will use the default tokenizer.' ) lowerCAmelCase__ :Optional[int] = 5_0277 lowerCAmelCase__ :Union[str, Any] = AutoTokenizer.from_pretrained('EleutherAI/gpt-neox-20b' ) else: lowerCAmelCase__ :Union[str, Any] = PreTrainedTokenizerFast(tokenizer_file=_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :Optional[int] = len(_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(_SCREAMING_SNAKE_CASE ) # 2. Build the config lowerCAmelCase__ :Any = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: lowerCAmelCase__ :Any = candidate break if size is None: raise ValueError('Could not infer the size, please provide it with the `--size` argument.' ) if size not in possible_sizes: raise ValueError(F"`size` should be one of {possible_sizes}, got {size}." ) lowerCAmelCase__ :Dict = RwkvConfig( vocab_size=_SCREAMING_SNAKE_CASE , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_SCREAMING_SNAKE_CASE ) # 3. Download model file then convert state_dict lowerCAmelCase__ :Union[str, Any] = hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :str = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' ) lowerCAmelCase__ :Dict = convert_state_dict(_SCREAMING_SNAKE_CASE ) # 4. Split in shards and save lowerCAmelCase__ , lowerCAmelCase__ :Any = shard_checkpoint(_SCREAMING_SNAKE_CASE ) for shard_file, shard in shards.items(): torch.save(_SCREAMING_SNAKE_CASE , os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if index is not None: lowerCAmelCase__ :str = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save the index as well with open(_SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as f: lowerCAmelCase__ :Any = json.dumps(_SCREAMING_SNAKE_CASE , indent=2 , sort_keys=_SCREAMING_SNAKE_CASE ) + '\n' f.write(_SCREAMING_SNAKE_CASE ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( 'Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.' ) lowerCAmelCase__ :Dict = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: lowerCAmelCase__ :Union[str, Any] = torch.load(os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('Please provide a `model_name` to push the model to the Hub.' ) lowerCAmelCase__ :Optional[Any] = AutoModelForCausalLM.from_pretrained(_SCREAMING_SNAKE_CASE ) model.push_to_hub(_SCREAMING_SNAKE_CASE , max_shard_size='2GB' ) tokenizer.push_to_hub(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) __A = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
93
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class _lowerCAmelCase ( a , a , a , unittest.TestCase ): """simple docstring""" __magic_name__ :int = StableUnCLIPPipeline __magic_name__ :int = TEXT_TO_IMAGE_PARAMS __magic_name__ :List[str] = TEXT_TO_IMAGE_BATCH_PARAMS __magic_name__ :Optional[int] = TEXT_TO_IMAGE_IMAGE_PARAMS __magic_name__ :Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false __magic_name__ :List[str] = False def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Dict = 3_2 lowerCAmelCase__ :List[Any] = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCAmelCase__ :Any = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) lowerCAmelCase__ :Any = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__UpperCAmelCase , projection_dim=__UpperCAmelCase , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) lowerCAmelCase__ :int = PriorTransformer( num_attention_heads=2 , attention_head_dim=1_2 , embedding_dim=__UpperCAmelCase , num_layers=1 , ) torch.manual_seed(0 ) lowerCAmelCase__ :Optional[int] = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_0_0_0 , clip_sample=__UpperCAmelCase , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) lowerCAmelCase__ :Dict = StableUnCLIPImageNormalizer(embedding_dim=__UpperCAmelCase ) lowerCAmelCase__ :List[Any] = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) lowerCAmelCase__ :List[Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) lowerCAmelCase__ :str = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=__UpperCAmelCase , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) lowerCAmelCase__ :Optional[int] = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=__UpperCAmelCase , layers_per_block=1 , upcast_attention=__UpperCAmelCase , use_linear_projection=__UpperCAmelCase , ) torch.manual_seed(0 ) lowerCAmelCase__ :Tuple = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='v_prediction' , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , ) torch.manual_seed(0 ) lowerCAmelCase__ :Optional[int] = AutoencoderKL() lowerCAmelCase__ :Optional[int] = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): lowerCAmelCase__ :str = torch.manual_seed(__UpperCAmelCase ) else: lowerCAmelCase__ :Optional[int] = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) lowerCAmelCase__ :Tuple = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Optional[int] = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=__UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :str = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=__UpperCAmelCase ) @slow @require_torch_gpu class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): '''simple docstring''' lowerCAmelCase__ :Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) lowerCAmelCase__ :List[Any] = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase__ :List[str] = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase__ :List[str] = pipe('anime turle' , generator=__UpperCAmelCase , output_type='np' ) lowerCAmelCase__ :Union[str, Any] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase ) def snake_case ( self ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase__ :int = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) lowerCAmelCase__ :List[str] = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase__ :Tuple = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase__ :str = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
93
1
"""simple docstring""" import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A_ (__a , __a , __a , __a ): A_ = BigBirdConfig.from_json_file(__a ) print(f'Building PyTorch model from configuration: {config}' ) if is_trivia_qa: A_ = BigBirdForQuestionAnswering(__a ) else: A_ = BigBirdForPreTraining(__a ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(__a , __a , is_trivia_qa=__a ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(__a ) if __name__ == "__main__": UpperCamelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--big_bird_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained BERT model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--is_trivia_qa''', action='''store_true''', help='''Whether to convert a model with a trivia_qa head.''' ) UpperCamelCase_ : Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
705
"""simple docstring""" import baseaa def A_ (__a ): '''simple docstring''' return baseaa.aaaencode(string.encode("utf-8" ) ) def A_ (__a ): '''simple docstring''' return baseaa.aaadecode(__a ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
482
0
from ..utils import DummyObject, requires_backends class a__ ( metaclass=__snake_case ): A__ : Tuple = ['note_seq'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ) -> str: requires_backends(self , ['note_seq'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> str: requires_backends(cls , ['note_seq'] ) @classmethod def __SCREAMING_SNAKE_CASE ( cls , *UpperCAmelCase , **UpperCAmelCase ) -> Optional[int]: requires_backends(cls , ['note_seq'] )
559
from __future__ import annotations def lowerCAmelCase( __lowerCamelCase ): if len(__lowerCamelCase ) == 0: return array __a , __a = min(__lowerCamelCase ), max(__lowerCamelCase ) # Compute the variables __a = _max - _min + 1 __a , __a = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: __a = i - _min __a = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. __a = 0 for i in range(__lowerCamelCase ): while holes_repeat[i] > 0: __a = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : str = input("""Enter numbers separated by comma:\n""") lowerCamelCase_ : Tuple = [int(x) for x in user_input.split(""",""")] print(pigeon_sort(unsorted))
559
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = "yolos" def __init__(self , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.0 , __a=0.0 , __a=0.02 , __a=1e-1_2 , __a=[5_12, 8_64] , __a=16 , __a=3 , __a=True , __a=1_00 , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> Optional[int]: super().__init__(**__a ) UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = qkv_bias UpperCamelCase = num_detection_tokens UpperCamelCase = use_mid_position_embeddings UpperCamelCase = auxiliary_loss # Hungarian matcher UpperCamelCase = class_cost UpperCamelCase = bbox_cost UpperCamelCase = giou_cost # Loss coefficients UpperCamelCase = bbox_loss_coefficient UpperCamelCase = giou_loss_coefficient UpperCamelCase = eos_coefficient class _lowerCamelCase ( _lowercase ): UpperCAmelCase_ = version.parse("1.11" ) @property def snake_case_ (self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def snake_case_ (self ) -> float: return 1e-4 @property def snake_case_ (self ) -> int: return 12
702
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_blenderbot''': [ '''BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlenderbotConfig''', '''BlenderbotOnnxConfig''', ], '''tokenization_blenderbot''': ['''BlenderbotTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''BlenderbotTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlenderbotForCausalLM''', '''BlenderbotForConditionalGeneration''', '''BlenderbotModel''', '''BlenderbotPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TFBlenderbotForConditionalGeneration''', '''TFBlenderbotModel''', '''TFBlenderbotPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''FlaxBlenderbotForConditionalGeneration''', '''FlaxBlenderbotModel''', '''FlaxBlenderbotPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
544
0
import argparse from collections import defaultdict def lowerCAmelCase_ ( __a , __a , __a , __a , __a ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__: Union[str, Any] =F"""{file}_{class_name}_{test_name}""" done_test[_id] += 1 with open(lowerCAmelCase__ , "r" ) as f: lowerCamelCase__: List[str] =f.readlines() lowerCamelCase__: List[str] =F"""class {class_name}(""" lowerCamelCase__: Any =F"""{4 * " "}def {test_name}(""" lowerCamelCase__: Optional[Any] =F"""{8 * " "}{correct_line.split()[0]}""" lowerCamelCase__: Dict =F"""{16 * " "}{correct_line.split()[0]}""" lowerCamelCase__: Optional[Any] =False lowerCamelCase__: Dict =False lowerCamelCase__: List[str] =False lowerCamelCase__: Dict =False lowerCamelCase__: str =0 lowerCamelCase__: Optional[int] =0 lowerCamelCase__: List[str] =[] for line in lines: if line.startswith(lowerCAmelCase__ ): lowerCamelCase__: Any =True elif in_class and line.startswith(lowerCAmelCase__ ): lowerCamelCase__: Optional[Any] =True elif in_class and in_func and (line.startswith(lowerCAmelCase__ ) or line.startswith(lowerCAmelCase__ )): lowerCamelCase__: Dict =len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: lowerCamelCase__: int =True if in_class and in_func and in_line: if ")" not in line: continue else: lowerCamelCase__: Any =True if in_class and in_func and in_line and insert_line: new_lines.append(F"""{spaces * " "}{correct_line}""" ) lowerCamelCase__: Any =False else: new_lines.append(lowerCAmelCase__ ) with open(lowerCAmelCase__ , "w" ) as f: for line in new_lines: f.write(lowerCAmelCase__ ) def lowerCAmelCase_ ( __a , __a=None ) -> Union[str, Any]: """simple docstring""" if fail is not None: with open(lowerCAmelCase__ , "r" ) as f: lowerCamelCase__: Optional[Any] ={l.strip() for l in f.readlines()} else: lowerCamelCase__: Union[str, Any] =None with open(lowerCAmelCase__ , "r" ) as f: lowerCamelCase__: int =f.readlines() lowerCamelCase__: List[str] =defaultdict(lowerCAmelCase__ ) for line in correct_lines: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__: Tuple =line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--correct_filename", help="filename of tests with expected result") parser.add_argument("--fail_filename", help="filename of test failures", type=str, default=None) __A = parser.parse_args() main(args.correct_filename, args.fail_filename)
59
from typing import List import numpy as np def lowerCamelCase_ ( lowerCAmelCase__ : dict ) -> int: '''simple docstring''' A = {key: len(lowerCAmelCase__ ) for key, value in gen_kwargs.items() if isinstance(lowerCAmelCase__ , lowerCAmelCase__ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( 'Sharding is ambiguous for this dataset: ' + 'we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n' + '\n'.join(F'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + '\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ' + 'and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.' ) ) A = max(lists_lengths.values() , default=0 ) return max(1 , lowerCAmelCase__ ) def lowerCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> List[range]: '''simple docstring''' A = [] for group_idx in range(lowerCAmelCase__ ): A = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break A = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 A = range(lowerCAmelCase__ , start + num_shards_to_add ) shards_indices_per_group.append(lowerCAmelCase__ ) return shards_indices_per_group def lowerCamelCase_ ( lowerCAmelCase__ : dict , lowerCAmelCase__ : int ) -> List[dict]: '''simple docstring''' A = _number_of_shards_in_gen_kwargs(lowerCAmelCase__ ) if num_shards == 1: return [dict(lowerCAmelCase__ )] else: A = _distribute_shards(num_shards=lowerCAmelCase__ , max_num_jobs=lowerCAmelCase__ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(lowerCAmelCase__ ) ) ] def lowerCamelCase_ ( lowerCAmelCase__ : List[dict] ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , lowerCAmelCase__ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def lowerCamelCase_ ( lowerCAmelCase__ : np.random.Generator , lowerCAmelCase__ : dict ) -> dict: '''simple docstring''' A = {len(lowerCAmelCase__ ) for value in gen_kwargs.values() if isinstance(lowerCAmelCase__ , lowerCAmelCase__ )} A = {} for size in list_sizes: A = list(range(lowerCAmelCase__ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes A = dict(lowerCAmelCase__ ) for key, value in shuffled_kwargs.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): A = [value[i] for i in indices_per_size[len(lowerCAmelCase__ )]] return shuffled_kwargs
106
0
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCamelCase : Optional[int] = logging.get_logger(__name__) __UpperCamelCase : Optional[Any] = { """post_extract_proj""": """feature_projection.projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """feature_projection.layer_norm""", """quantizer.weight_proj""": """quantizer.weight_proj""", """quantizer.vars""": """quantizer.codevectors""", """project_q""": """project_q""", """final_proj""": """project_hid""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } __UpperCamelCase : Optional[Any] = [ """lm_head""", """quantizer.weight_proj""", """quantizer.codevectors""", """project_q""", """project_hid""", ] def a_ ( _A , _A , _A , _A , _A ) -> Dict: """simple docstring""" for attribute in key.split('.' ): snake_case__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if weight_type is not None: snake_case__ = getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).shape else: snake_case__ = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": snake_case__ = value elif weight_type == "weight_g": snake_case__ = value elif weight_type == "weight_v": snake_case__ = value elif weight_type == "bias": snake_case__ = value else: snake_case__ = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def a_ ( _A , _A ) -> Tuple: """simple docstring""" snake_case__ = [] snake_case__ = fairseq_model.state_dict() snake_case__ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight snake_case__ = None for name, value in fairseq_dict.items(): snake_case__ = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , hf_model.config.feat_extract_norm == 'group' , ) snake_case__ = True elif name.split('.' )[0] == "proj": snake_case__ = fairseq_model.proj snake_case__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: snake_case__ = True if "*" in mapped_key: snake_case__ = name.split(SCREAMING_SNAKE_CASE__ )[0].split('.' )[-2] snake_case__ = mapped_key.replace('*' , SCREAMING_SNAKE_CASE__ ) if "weight_g" in name: snake_case__ = """weight_g""" elif "weight_v" in name: snake_case__ = """weight_v""" elif "bias" in name: snake_case__ = """bias""" elif "weight" in name: snake_case__ = """weight""" else: snake_case__ = None set_recursively(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE__ ) logger.warning(f'''Unused weights: {unused_weights}''' ) return proj_weight def a_ ( _A , _A , _A , _A , _A ) -> Optional[Any]: """simple docstring""" snake_case__ = full_name.split('conv_layers.' )[-1] snake_case__ = name.split('.' ) snake_case__ = int(items[0] ) snake_case__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) snake_case__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) snake_case__ = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) snake_case__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) snake_case__ = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(SCREAMING_SNAKE_CASE__ ) def a_ ( _A ) -> Dict: """simple docstring""" snake_case__ = emb.weight.shape snake_case__ = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) snake_case__ = emb.weight.data return lin_layer def a_ ( _A ) -> Any: """simple docstring""" with open(SCREAMING_SNAKE_CASE__ , 'r' , encoding='utf-8' ) as f: snake_case__ = f.readlines() snake_case__ = [line.split(' ' )[0] for line in lines] snake_case__ = len(SCREAMING_SNAKE_CASE__ ) snake_case__ = { """<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3, } vocab_dict.update(dict(zip(SCREAMING_SNAKE_CASE__ , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def a_ ( _A , _A , _A , _A , _A , _A , _A , ) -> Tuple: """simple docstring""" snake_case__ = WavaVecaConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case__ = SpeechaTextaConfig.from_pretrained( SCREAMING_SNAKE_CASE__ , vocab_size=SCREAMING_SNAKE_CASE__ , decoder_layers=SCREAMING_SNAKE_CASE__ , do_stable_layer_norm=SCREAMING_SNAKE_CASE__ ) snake_case__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE__ , return_attention_mask=SCREAMING_SNAKE_CASE__ , ) snake_case__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) snake_case__ = model[0].eval() # set weights for wav2vec2 encoder snake_case__ = WavaVecaModel(SCREAMING_SNAKE_CASE__ ) snake_case__ = recursively_load_weights_wavaveca(model.encoder , SCREAMING_SNAKE_CASE__ ) snake_case__ = SpeechaTextaForCausalLM(SCREAMING_SNAKE_CASE__ ) snake_case__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=SCREAMING_SNAKE_CASE__ ) # set output linear layer unexpected_keys.remove('embed_out' ) snake_case__ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) snake_case__ = SpeechEncoderDecoderModel(encoder=SCREAMING_SNAKE_CASE__ , decoder=SCREAMING_SNAKE_CASE__ ) snake_case__ = False # add projection layer snake_case__ = nn.Parameter(projection_layer.weight ) snake_case__ = nn.Parameter(projection_layer.bias ) snake_case__ = create_vocab_dict(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , 'vocab.json' ) , 'w' ) as fp: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case__ = SpeechaTextaTokenizer(os.path.join(SCREAMING_SNAKE_CASE__ , 'vocab.json' ) ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case__ = hf_wavavec.config.to_dict() snake_case__ = tokenizer.pad_token_id snake_case__ = tokenizer.bos_token_id snake_case__ = tokenizer.eos_token_id snake_case__ = """speech_to_text_2""" snake_case__ = """wav2vec2""" snake_case__ = SpeechEncoderDecoderConfig.from_dict(SCREAMING_SNAKE_CASE__ ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE__ ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument( """--encoder_config_path""", default="""facebook/wav2vec2-large-lv60""", type=str, help="""Path to hf encoder wav2vec2 checkpoint config""", ) parser.add_argument( """--decoder_config_path""", default="""facebook/s2t-small-mustc-en-fr-st""", type=str, help="""Path to hf decoder s2t checkpoint config""", ) parser.add_argument("""--vocab_size""", default=10224, type=int, help="""Vocab size of decoder""") parser.add_argument("""--num_decoder_layers""", default=7, type=int, help="""Number of decoder layers""") __UpperCamelCase : List[str] = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
704
from argparse import ArgumentParser from .env import EnvironmentCommand def a_ ( ) -> Optional[Any]: """simple docstring""" snake_case__ = ArgumentParser('Diffusers CLI tool' , usage='diffusers-cli <command> [<args>]' ) snake_case__ = parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(_A ) # Let's go snake_case__ = parser.parse_args() if not hasattr(_A , 'func' ): parser.print_help() exit(1 ) # Run snake_case__ = args.func(_A ) service.run() if __name__ == "__main__": main()
372
0
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : int = 1000 ): '''simple docstring''' _lowerCAmelCase = 1 _lowerCAmelCase = 0 for divide_by_number in range(SCREAMING_SNAKE_CASE_ , digit + 1 ): _lowerCAmelCase = [] _lowerCAmelCase = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = divide_by_number else: has_been_divided.append(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = now_divide * 10 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
18
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
102
0
import argparse import os import re lowercase__ = '''src/diffusers''' # Pattern that looks at the indentation in a line. lowercase__ = re.compile(R'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. lowercase__ = re.compile(R'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. lowercase__ = re.compile(R'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. lowercase__ = re.compile(R'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. lowercase__ = re.compile(R'''\[([^\]]+)\]''') def __snake_case ( lowercase : Union[str, Any] ): snake_case_ = _re_indent.search(lowercase ) return "" if search is None else search.groups()[0] def __snake_case ( lowercase : str , lowercase : List[Any]="" , lowercase : str=None , lowercase : int=None ): snake_case_ = 0 snake_case_ = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(lowercase ): index += 1 snake_case_ = ["\n".join(lines[:index] )] else: snake_case_ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). snake_case_ = [lines[index]] index += 1 while index < len(lowercase ) and (end_prompt is None or not lines[index].startswith(lowercase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(lowercase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(lowercase ) ) if index < len(lowercase ) - 1: snake_case_ = [lines[index + 1]] index += 1 else: snake_case_ = [] else: blocks.append("\n".join(lowercase ) ) snake_case_ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(lowercase ) > 0: blocks.append("\n".join(lowercase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(lowercase ): blocks.append("\n".join(lines[index:] ) ) return blocks def __snake_case ( lowercase : Union[str, Any] ): def _inner(lowercase : List[str] ): return key(lowercase ).lower().replace("_" , "" ) return _inner def __snake_case ( lowercase : Union[str, Any] , lowercase : Any=None ): # If no key is provided, we use a noop. def noop(lowercase : int ): return x if key is None: snake_case_ = noop # Constants are all uppercase, they go first. snake_case_ = [obj for obj in objects if key(lowercase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. snake_case_ = [obj for obj in objects if key(lowercase )[0].isupper() and not key(lowercase ).isupper()] # Functions begin with a lowercase, they go last. snake_case_ = [obj for obj in objects if not key(lowercase )[0].isupper()] snake_case_ = ignore_underscore(lowercase ) return sorted(lowercase , key=lowercase ) + sorted(lowercase , key=lowercase ) + sorted(lowercase , key=lowercase ) def __snake_case ( lowercase : Tuple ): # This inner function sort imports between [ ]. def _replace(lowercase : Optional[int] ): snake_case_ = match.groups()[0] if "," not in imports: return f'''[{imports}]''' snake_case_ = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case_ = keys[:-1] return "[" + ", ".join([f'''"{k}"''' for k in sort_objects(lowercase )] ) + "]" snake_case_ = import_statement.split("\n" ) if len(lowercase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. snake_case_ = 2 if lines[1].strip() == "[" else 1 snake_case_ = [(i, _re_strip_line.search(lowercase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] snake_case_ = sort_objects(lowercase , key=lambda lowercase : x[1] ) snake_case_ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(lowercase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: snake_case_ = _re_bracket_content.sub(_replace , lines[1] ) else: snake_case_ = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: snake_case_ = keys[:-1] snake_case_ = get_indent(lines[1] ) + ", ".join([f'''"{k}"''' for k in sort_objects(lowercase )] ) return "\n".join(lowercase ) else: # Finally we have to deal with imports fitting on one line snake_case_ = _re_bracket_content.sub(_replace , lowercase ) return import_statement def __snake_case ( lowercase : List[str] , lowercase : str=True ): with open(lowercase , "r" ) as f: snake_case_ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 snake_case_ = split_code_in_indented_blocks( lowercase , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(lowercase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. snake_case_ = main_blocks[block_idx] snake_case_ = block.split("\n" ) # Get to the start of the imports. snake_case_ = 0 while line_idx < len(lowercase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: snake_case_ = len(lowercase ) else: line_idx += 1 if line_idx >= len(lowercase ): continue # Ignore beginning and last line: they don't contain anything. snake_case_ = "\n".join(block_lines[line_idx:-1] ) snake_case_ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. snake_case_ = split_code_in_indented_blocks(lowercase , indent_level=lowercase ) # We have two categories of import key: list or _import_structure[key].append/extend snake_case_ = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. snake_case_ = [(pattern.search(lowercase ).groups()[0] if pattern.search(lowercase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. snake_case_ = [(i, key) for i, key in enumerate(lowercase ) if key is not None] snake_case_ = [x[0] for x in sorted(lowercase , key=lambda lowercase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. snake_case_ = 0 snake_case_ = [] for i in range(len(lowercase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: snake_case_ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(lowercase ) count += 1 # And we put our main block back together with its first and last line. snake_case_ = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(lowercase ): if check_only: return True else: print(f'''Overwriting {file}.''' ) with open(lowercase , "w" ) as f: f.write("\n".join(lowercase ) ) def __snake_case ( lowercase : Dict=True ): snake_case_ = [] for root, _, files in os.walk(lowercase ): if "__init__.py" in files: snake_case_ = sort_imports(os.path.join(lowercase , "__init__.py" ) , check_only=lowercase ) if result: snake_case_ = [os.path.join(lowercase , "__init__.py" )] if len(lowercase ) > 0: raise ValueError(f'''Would overwrite {len(lowercase )} files, run `make style`.''' ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') lowercase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
701
'''simple docstring''' import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer lowercase__ = logging.get_logger(__name__) lowercase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowercase__ = { '''vocab_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json''', }, '''merges_file''': { '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''Salesforce/codegen-350M-mono''': ( '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json''' ), }, } lowercase__ = { '''Salesforce/codegen-350M-mono''': 20_48, } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = ["""input_ids""", """attention_mask"""] snake_case = CodeGenTokenizer def __init__( self , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_=None , UpperCAmelCase_="<|endoftext|>" , UpperCAmelCase_="<|endoftext|>" , UpperCAmelCase_="<|endoftext|>" , UpperCAmelCase_=False , **UpperCAmelCase_ , ): super().__init__( UpperCAmelCase_ , UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , add_prefix_space=UpperCAmelCase_ , **UpperCAmelCase_ , ) if kwargs.pop("add_bos_token" , UpperCAmelCase_ ): snake_case_ = kwargs.pop("name_or_path" , "" ) raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f'''`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n''' f'''`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n''' "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly." ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase_ ) != add_prefix_space: snake_case_ = getattr(UpperCAmelCase_ , pre_tok_state.pop("type" ) ) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**UpperCAmelCase_ ) snake_case_ = add_prefix_space def _lowercase ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): snake_case_ = kwargs.get("is_split_into_words" , UpperCAmelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _lowercase ( self , *UpperCAmelCase_ , **UpperCAmelCase_ ): snake_case_ = kwargs.get("is_split_into_words" , UpperCAmelCase_ ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ = None ): snake_case_ = self._tokenizer.model.save(UpperCAmelCase_ , name=UpperCAmelCase_ ) return tuple(UpperCAmelCase_ ) def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = None , **UpperCAmelCase_ , ): snake_case_ = super().decode( token_ids=UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ , clean_up_tokenization_spaces=UpperCAmelCase_ , **UpperCAmelCase_ , ) if truncate_before_pattern is not None and len(UpperCAmelCase_ ) > 0: snake_case_ = self.truncate(UpperCAmelCase_ , UpperCAmelCase_ ) return decoded_text def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ ): def find_re(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = pattern.search(UpperCAmelCase_ , UpperCAmelCase_ ) return m.start() if m else -1 snake_case_ = [re.compile(UpperCAmelCase_ , re.MULTILINE ) for pattern in truncate_before_pattern] snake_case_ = list(re.finditer("^print" , UpperCAmelCase_ , re.MULTILINE ) ) if len(UpperCAmelCase_ ) > 1: snake_case_ = completion[: prints[1].start()] snake_case_ = list(re.finditer("^def" , UpperCAmelCase_ , re.MULTILINE ) ) if len(UpperCAmelCase_ ) > 1: snake_case_ = completion[: defs[1].start()] snake_case_ = 0 snake_case_ = [ pos for pos in [find_re(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) for terminal in terminals] if pos != -1 ] if len(UpperCAmelCase_ ) > 0: return completion[: min(UpperCAmelCase_ )] else: return completion
420
0
def __lowerCAmelCase ( __snake_case ): def merge(__snake_case , __snake_case ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(__snake_case ) <= 1: return collection __lowerCAmelCase = len(__snake_case ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Optional[int] = input('''Enter numbers separated by a comma:\n''').strip() lowerCamelCase : Optional[Any] = [int(item) for item in user_input.split(''',''')] print(*merge_sort(unsorted), sep=''',''')
367
from __future__ import annotations import os from typing import Any import requests lowerCamelCase : Tuple = '''https://api.github.com''' # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowerCamelCase : int = BASE_URL + '''/user''' # https://github.com/settings/tokens lowerCamelCase : Any = os.environ.get('''USER_TOKEN''', '''''') def __lowerCAmelCase ( __snake_case ): __lowerCAmelCase = { "Authorization": F"""token {auth_token}""", "Accept": "application/vnd.github.v3+json", } return requests.get(__snake_case , headers=__snake_case ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(F'''{key}: {value}''') else: raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
367
1
import re import tempfile from pathlib import Path import pytest import yaml from datasets.utils.readme import ReadMe # @pytest.fixture # def example_yaml_structure(): _snake_case : Optional[Any] = yaml.safe_load( '\\nname: ""\nallow_empty: false\nallow_empty_text: true\nsubsections:\n - name: "Dataset Card for X" # First-level markdown heading\n allow_empty: false\n allow_empty_text: true\n subsections:\n - name: "Table of Contents"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Dataset Description"\n allow_empty: false\n allow_empty_text: false\n subsections:\n - name: "Dataset Summary"\n allow_empty: false\n allow_empty_text: false\n subsections: null\n - name: "Supported Tasks and Leaderboards"\n allow_empty: true\n allow_empty_text: true\n subsections: null\n - name: Languages\n allow_empty: false\n allow_empty_text: true\n subsections: null\n' ) _snake_case : List[str] = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } _snake_case : Optional[int] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' _snake_case : List[str] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n#### Extra Ignored Subsection\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' _snake_case : Union[str, Any] = { 'name': 'root', 'text': '', 'is_empty_text': True, 'subsections': [ { 'name': 'Dataset Card for My Dataset', 'text': '', 'is_empty_text': True, 'subsections': [ {'name': 'Table of Contents', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': []}, { 'name': 'Dataset Description', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Dataset Summary', 'text': 'Some text here.', 'is_empty_text': False, 'subsections': [ { 'name': 'Extra Ignored Subsection', 'text': '', 'is_empty_text': True, 'subsections': [], } ], }, { 'name': 'Supported Tasks and Leaderboards', 'text': '', 'is_empty_text': True, 'subsections': [], }, {'name': 'Languages', 'text': 'Language Text', 'is_empty_text': False, 'subsections': []}, ], }, ], } ], } _snake_case : Any = '\\n---\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' _snake_case : List[str] = ( 'The following issues were found for the README at `{path}`:\n-\tEmpty YAML markers are present in the README.' ) _snake_case : Optional[Any] = '\\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' _snake_case : Tuple = ( 'The following issues were found for the README at `{path}`:\n-\tNo YAML markers are present in the README.' ) _snake_case : Any = '\\n---\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' _snake_case : List[str] = 'The following issues were found for the README at `{path}`:\n-\tOnly the start of YAML tags present in the README.' _snake_case : Optional[Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' _snake_case : Optional[int] = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Summary` but it is empty.\n-\tExpected some text in section `Dataset Summary` but it is empty (text in subsections are ignored).' _snake_case : str = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n' _snake_case : Optional[Any] = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Dataset Card for My Dataset` but it is empty.\n-\tSection `Dataset Card for My Dataset` expected the following subsections: `Table of Contents`, `Dataset Description`. Found \'None\'.' _snake_case : int = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Languages\nLanguage Text\n' _snake_case : int = 'The following issues were found for the README at `{path}`:\n-\tSection `Dataset Description` is missing subsection: `Supported Tasks and Leaderboards`.' _snake_case : Optional[int] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\n' _snake_case : List[str] = 'The following issues were found for the README at `{path}`:\n-\tExpected some content in section `Languages` but it is empty.' _snake_case : str = '\\n---\nlanguage:\n- zh\n- en\n---\n\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' _snake_case : List[str] = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.' _snake_case : Union[str, Any] = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n# Dataset Card My Dataset\n' _snake_case : Optional[int] = 'The following issues were found for the README at `{path}`:\n-\tThe README has several first-level headings: `Dataset Card for My Dataset`, `Dataset Card My Dataset`. Only one heading is expected. Skipping further validation for this README.' _snake_case : int = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' _snake_case : List[Any] = 'The following issues were found for the README at `{path}`:\n-\tNo first-level heading starting with `Dataset Card for` found in README. Skipping further validation for this README.' _snake_case : str = '' _snake_case : Any = 'The following issues were found for the README at `{path}`:\n-\tThe README has no first-level headings. One heading is expected. Skipping further validation for this README.\n-\tNo YAML markers are present in the README.' _snake_case : str = '\\n---\nlanguage:\n- zh\n- en\n---\n\n# Dataset Card for My Dataset\n# Dataset Card for My Dataset\n## Table of Contents\nSome text here.\n## Dataset Description\nSome text here.\n### Dataset Summary\nSome text here.\n### Supported Tasks and Leaderboards\n### Languages\nLanguage Text\n' _snake_case : List[str] = 'The following issues were found while parsing the README at `{path}`:\n-\tMultiple sections with the same heading `Dataset Card for My Dataset` have been found. Please keep only one of these sections.' @pytest.mark.parametrize( 'readme_md, expected_dict', [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ], ) def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : List[Any] ): assert ReadMe.from_string(lowerCAmelCase_, lowerCAmelCase_ ).to_dict() == expected_dict @pytest.mark.parametrize( 'readme_md, expected_error', [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ], ) def a_ ( lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : str ): with pytest.raises(lowerCAmelCase_, match=re.escape(expected_error.format(path='root' ) ) ): __lowerCAmelCase = ReadMe.from_string(lowerCAmelCase_, lowerCAmelCase_ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error', [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ], ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : str ): with pytest.raises(lowerCAmelCase_, match=re.escape(expected_error.format(path='root' ) ) ): ReadMe.from_string(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'readme_md,', [ (README_MULTIPLE_SAME_HEADING_1), ], ) def a_ ( lowerCAmelCase_ : Tuple ): ReadMe.from_string(lowerCAmelCase_, lowerCAmelCase_, suppress_parsing_errors=lowerCAmelCase_ ) @pytest.mark.parametrize( 'readme_md, expected_dict', [ (README_CORRECT, CORRECT_DICT), (README_CORRECT_FOUR_LEVEL, CORRECT_DICT_FOUR_LEVEL), ], ) def a_ ( lowerCAmelCase_ : Optional[int], lowerCAmelCase_ : Tuple ): with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = Path(lowerCAmelCase_ ) / 'README.md' with open(lowerCAmelCase_, 'w+' ) as readme_file: readme_file.write(lowerCAmelCase_ ) __lowerCAmelCase = ReadMe.from_readme(lowerCAmelCase_, lowerCAmelCase_ ).to_dict() assert out["name"] == path assert out["text"] == "" assert out["is_empty_text"] assert out["subsections"] == expected_dict["subsections"] @pytest.mark.parametrize( 'readme_md, expected_error', [ (README_NO_YAML, EXPECTED_ERROR_README_NO_YAML), (README_EMPTY_YAML, EXPECTED_ERROR_README_EMPTY_YAML), (README_INCORRECT_YAML, EXPECTED_ERROR_README_INCORRECT_YAML), (README_EMPTY, EXPECTED_ERROR_README_EMPTY), (README_NONE_SUBSECTION, EXPECTED_ERROR_README_NONE_SUBSECTION), (README_MISSING_FIRST_LEVEL, EXPECTED_ERROR_README_MISSING_FIRST_LEVEL), (README_MISSING_SUBSECTION, EXPECTED_ERROR_README_MISSING_SUBSECTION), (README_MISSING_TEXT, EXPECTED_ERROR_README_MISSING_TEXT), (README_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_WRONG_FIRST_LEVEL), (README_MULTIPLE_WRONG_FIRST_LEVEL, EXPECTED_ERROR_README_MULTIPLE_WRONG_FIRST_LEVEL), (README_MISSING_CONTENT, EXPECTED_ERROR_README_MISSING_CONTENT), ], ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[int] ): with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = Path(lowerCAmelCase_ ) / 'README.md' with open(lowerCAmelCase_, 'w+' ) as readme_file: readme_file.write(lowerCAmelCase_ ) __lowerCAmelCase = expected_error.format(path=lowerCAmelCase_ ) with pytest.raises(lowerCAmelCase_, match=re.escape(lowerCAmelCase_ ) ): __lowerCAmelCase = ReadMe.from_readme(lowerCAmelCase_, lowerCAmelCase_ ) readme.validate() @pytest.mark.parametrize( 'readme_md, expected_error', [ (README_MULTIPLE_SAME_HEADING_1, EXPECTED_ERROR_README_MULTIPLE_SAME_HEADING_1), ], ) def a_ ( lowerCAmelCase_ : Tuple, lowerCAmelCase_ : List[Any] ): with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = Path(lowerCAmelCase_ ) / 'README.md' with open(lowerCAmelCase_, 'w+' ) as readme_file: readme_file.write(lowerCAmelCase_ ) __lowerCAmelCase = expected_error.format(path=lowerCAmelCase_ ) with pytest.raises(lowerCAmelCase_, match=re.escape(lowerCAmelCase_ ) ): ReadMe.from_readme(lowerCAmelCase_, lowerCAmelCase_ ) @pytest.mark.parametrize( 'readme_md,', [ (README_MULTIPLE_SAME_HEADING_1), ], ) def a_ ( lowerCAmelCase_ : Any ): with tempfile.TemporaryDirectory() as tmp_dir: __lowerCAmelCase = Path(lowerCAmelCase_ ) / 'README.md' with open(lowerCAmelCase_, 'w+' ) as readme_file: readme_file.write(lowerCAmelCase_ ) ReadMe.from_readme(lowerCAmelCase_, lowerCAmelCase_, suppress_parsing_errors=lowerCAmelCase_ )
421
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]=1_3 , lowerCAmelCase_ : List[str]=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[Any]=9_9 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : Dict=1_6 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : Optional[int]=4 , ) -> List[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_attention_mask __lowerCAmelCase = use_token_type_ids __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = num_choices def lowercase ( self : List[str] ) -> Optional[int]: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_attention_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase ( self : Dict ) -> Dict: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase ( self : Tuple ) -> int: __lowerCAmelCase = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs __lowerCAmelCase = True __lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = True a_ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase ( self : Any ) -> Dict: __lowerCAmelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase ( self : Tuple ) -> List[str]: for model_class_name in self.all_model_classes: __lowerCAmelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCAmelCase_ ) __lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCAmelCase_ ) @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : int ) -> int: __lowerCAmelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCAmelCase_ ) __lowerCAmelCase = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) __lowerCAmelCase = model(lowerCAmelCase_ )[0] __lowerCAmelCase = [1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape ) , lowerCAmelCase_ ) # compare the actual values for a slice. __lowerCAmelCase = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) ) @slow def lowercase ( self : Union[str, Any] ) -> Tuple: __lowerCAmelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCAmelCase_ ) __lowerCAmelCase = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa ) __lowerCAmelCase = model(lowerCAmelCase_ )[0] # compare the actual values for a slice. __lowerCAmelCase = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
421
1
import argparse from collections import defaultdict import yaml a__ = """docs/source/en/_toctree.yml""" def _UpperCAmelCase ( a : str ): snake_case__ = defaultdict(a ) for doc in model_doc: counts[doc["local"]] += 1 snake_case__ = [key for key, value in counts.items() if value > 1] snake_case__ = [] for duplicate_key in duplicates: snake_case__ = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(a ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(a , key=lambda a : s["title"].lower() ) def _UpperCAmelCase ( a : Optional[int]=False ): with open(a , encoding="""utf-8""" ) as f: snake_case__ = yaml.safe_load(f.read() ) # Get to the API doc snake_case__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case__ = content[api_idx]["""sections"""] # Then to the model doc snake_case__ = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 snake_case__ = api_doc[model_idx]["""sections"""] snake_case__ = [(idx, section) for idx, section in enumerate(a ) if """sections""" in section] snake_case__ = False for idx, modality_doc in modalities_docs: snake_case__ = modality_doc["""sections"""] snake_case__ = clean_model_doc_toc(a ) if old_modality_doc != new_modality_doc: snake_case__ = True if overwrite: snake_case__ = new_modality_doc if diff: if overwrite: snake_case__ = model_doc snake_case__ = api_doc with open(a , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(a , allow_unicode=a ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a__ = parser.parse_args() check_model_doc(args.fix_and_overwrite)
654
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : int = (IPNDMScheduler,) _lowercase : int = (('''num_inference_steps''', 50),) def __magic_name__ ( self : Any , **UpperCamelCase__ : Tuple): '''simple docstring''' snake_case__ = {"""num_train_timesteps""": 1_0_0_0} config.update(**UpperCamelCase__) return config def __magic_name__ ( self : int , UpperCamelCase__ : Dict=0 , **UpperCamelCase__ : int): '''simple docstring''' snake_case__ = dict(self.forward_default_kwargs) snake_case__ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__) snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case__ = self.get_scheduler_config(**UpperCamelCase__) snake_case__ = scheduler_class(**UpperCamelCase__) scheduler.set_timesteps(UpperCamelCase__) # copy over dummy past residuals snake_case__ = dummy_past_residuals[:] if time_step is None: snake_case__ = scheduler.timesteps[len(scheduler.timesteps) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__) snake_case__ = scheduler_class.from_pretrained(UpperCamelCase__) new_scheduler.set_timesteps(UpperCamelCase__) # copy over dummy past residuals snake_case__ = dummy_past_residuals[:] snake_case__ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample snake_case__ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" snake_case__ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample snake_case__ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __magic_name__ ( self : List[Any]): '''simple docstring''' pass def __magic_name__ ( self : Tuple , UpperCamelCase__ : Union[str, Any]=0 , **UpperCamelCase__ : Tuple): '''simple docstring''' snake_case__ = dict(self.forward_default_kwargs) snake_case__ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__) snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample snake_case__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**UpperCamelCase__) scheduler.set_timesteps(UpperCamelCase__) # copy over dummy past residuals (must be after setting timesteps) snake_case__ = dummy_past_residuals[:] if time_step is None: snake_case__ = scheduler.timesteps[len(scheduler.timesteps) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(UpperCamelCase__) snake_case__ = scheduler_class.from_pretrained(UpperCamelCase__) # copy over dummy past residuals new_scheduler.set_timesteps(UpperCamelCase__) # copy over dummy past residual (must be after setting timesteps) snake_case__ = dummy_past_residuals[:] snake_case__ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample snake_case__ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" snake_case__ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample snake_case__ = new_scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def __magic_name__ ( self : Union[str, Any] , **UpperCamelCase__ : Dict): '''simple docstring''' snake_case__ = self.scheduler_classes[0] snake_case__ = self.get_scheduler_config(**UpperCamelCase__) snake_case__ = scheduler_class(**UpperCamelCase__) snake_case__ = 1_0 snake_case__ = self.dummy_model() snake_case__ = self.dummy_sample_deter scheduler.set_timesteps(UpperCamelCase__) for i, t in enumerate(scheduler.timesteps): snake_case__ = model(UpperCamelCase__ , UpperCamelCase__) snake_case__ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__).prev_sample for i, t in enumerate(scheduler.timesteps): snake_case__ = model(UpperCamelCase__ , UpperCamelCase__) snake_case__ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__).prev_sample return sample def __magic_name__ ( self : Optional[int]): '''simple docstring''' snake_case__ = dict(self.forward_default_kwargs) snake_case__ = kwargs.pop("""num_inference_steps""" , UpperCamelCase__) for scheduler_class in self.scheduler_classes: snake_case__ = self.get_scheduler_config() snake_case__ = scheduler_class(**UpperCamelCase__) snake_case__ = self.dummy_sample snake_case__ = 0.1 * sample if num_inference_steps is not None and hasattr(UpperCamelCase__ , """set_timesteps"""): scheduler.set_timesteps(UpperCamelCase__) elif num_inference_steps is not None and not hasattr(UpperCamelCase__ , """set_timesteps"""): snake_case__ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case__ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] snake_case__ = dummy_past_residuals[:] snake_case__ = scheduler.timesteps[5] snake_case__ = scheduler.timesteps[6] snake_case__ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample snake_case__ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) snake_case__ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample snake_case__ = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def __magic_name__ ( self : Union[str, Any]): '''simple docstring''' for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ , time_step=UpperCamelCase__) def __magic_name__ ( self : Dict): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0]): self.check_over_forward(num_inference_steps=UpperCamelCase__ , time_step=UpperCamelCase__) def __magic_name__ ( self : List[str]): '''simple docstring''' snake_case__ = self.full_loop() snake_case__ = torch.mean(torch.abs(UpperCamelCase__)) assert abs(result_mean.item() - 2_5_4_0_5_2_9) < 1_0
654
1
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : int = 50 ) -> int: A_ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2, 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
703
'''simple docstring''' import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = OpenAIGPTTokenizer __lowercase : Union[str, Any] = OpenAIGPTTokenizerFast __lowercase : str = True __lowercase : List[Any] = False def __A ( self ) -> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A_ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] A_ = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) A_ = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(_SCREAMING_SNAKE_CASE ) ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: return "lower newer", "lower newer" def __A ( self ) -> Optional[Any]: A_ = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) A_ = '''lower''' A_ = ['''low''', '''er</w>'''] A_ = tokenizer.tokenize(_SCREAMING_SNAKE_CASE ) self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = tokens + ['''<unk>'''] A_ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE=15 ) -> List[str]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): A_ = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) # Simple input A_ = '''This is a simple input''' A_ = ['''This is a simple input 1''', '''This is a simple input 2'''] A_ = ('''This is a simple input''', '''This is a pair''') A_ = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Simple input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Simple input self.assertRaises( _SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='''max_length''' , ) # Pair input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Pair input self.assertRaises(_SCREAMING_SNAKE_CASE , tokenizer_r.encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='''max_length''' ) # Pair input self.assertRaises( _SCREAMING_SNAKE_CASE , tokenizer_r.batch_encode_plus , _SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , padding='''max_length''' , ) def __A ( self ) -> List[Any]: pass @require_ftfy @require_spacy @require_tokenizers class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' pass
174
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL _UpperCamelCase : List[str] = logging.get_logger(__name__) def __UpperCAmelCase ( A : Optional[Any] ) -> List[List[ImageInput]]: if isinstance(A , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(A , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(A ): return [[videos]] raise ValueError(F"Could not make batched video from {videos}" ) class snake_case__ ( UpperCamelCase): a_ = ["pixel_values"] def __init__( self : Union[str, Any] , _A : bool = True , _A : Dict[str, int] = None , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : bool = True , _A : Dict[str, int] = None , _A : bool = True , _A : Union[int, float] = 1 / 2_55 , _A : bool = True , _A : bool = True , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , **_A : Dict , ) -> None: super().__init__(**_A ) UpperCAmelCase_ : Dict = size if size is not None else {'''shortest_edge''': 2_56} UpperCAmelCase_ : Dict = get_size_dict(_A , default_to_square=_A ) UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} UpperCAmelCase_ : Dict = get_size_dict(_A , param_name='''crop_size''' ) UpperCAmelCase_ : Union[str, Any] = do_resize UpperCAmelCase_ : Union[str, Any] = size UpperCAmelCase_ : Optional[Any] = do_center_crop UpperCAmelCase_ : Dict = crop_size UpperCAmelCase_ : Any = resample UpperCAmelCase_ : Optional[int] = do_rescale UpperCAmelCase_ : Dict = rescale_factor UpperCAmelCase_ : Tuple = offset UpperCAmelCase_ : Dict = do_normalize UpperCAmelCase_ : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase_ : List[str] = image_std if image_std is not None else IMAGENET_STANDARD_STD def A ( self : int , _A : np.ndarray , _A : Dict[str, int] , _A : PILImageResampling = PILImageResampling.BILINEAR , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Optional[Any] , ) -> np.ndarray: UpperCAmelCase_ : Dict = get_size_dict(_A , default_to_square=_A ) if "shortest_edge" in size: UpperCAmelCase_ : List[Any] = get_resize_output_image_size(_A , size['''shortest_edge'''] , default_to_square=_A ) elif "height" in size and "width" in size: UpperCAmelCase_ : str = (size['''height'''], size['''width''']) else: raise ValueError(F"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(_A , size=_A , resample=_A , data_format=_A , **_A ) def A ( self : Dict , _A : np.ndarray , _A : Dict[str, int] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : List[str] , ) -> np.ndarray: UpperCAmelCase_ : int = get_size_dict(_A ) if "height" not in size or "width" not in size: raise ValueError(F"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(_A , size=(size['''height'''], size['''width''']) , data_format=_A , **_A ) def A ( self : Any , _A : np.ndarray , _A : Union[int, float] , _A : bool = True , _A : Optional[Union[str, ChannelDimension]] = None , **_A : int , ) -> Tuple: UpperCAmelCase_ : str = image.astype(np.floataa ) if offset: UpperCAmelCase_ : Optional[int] = image - (scale / 2) return rescale(_A , scale=_A , data_format=_A , **_A ) def A ( self : Union[str, Any] , _A : np.ndarray , _A : Union[float, List[float]] , _A : Union[float, List[float]] , _A : Optional[Union[str, ChannelDimension]] = None , **_A : Union[str, Any] , ) -> np.ndarray: return normalize(_A , mean=_A , std=_A , data_format=_A , **_A ) def A ( self : Dict , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) if offset and not do_rescale: raise ValueError('''For offset, do_rescale must also be set to True.''' ) # All transformations expect numpy arrays. UpperCAmelCase_ : List[Any] = to_numpy_array(_A ) if do_resize: UpperCAmelCase_ : Optional[Any] = self.resize(image=_A , size=_A , resample=_A ) if do_center_crop: UpperCAmelCase_ : int = self.center_crop(_A , size=_A ) if do_rescale: UpperCAmelCase_ : Any = self.rescale(image=_A , scale=_A , offset=_A ) if do_normalize: UpperCAmelCase_ : Dict = self.normalize(image=_A , mean=_A , std=_A ) UpperCAmelCase_ : Optional[Any] = to_channel_dimension_format(_A , _A ) return image def A ( self : str , _A : ImageInput , _A : bool = None , _A : Dict[str, int] = None , _A : PILImageResampling = None , _A : bool = None , _A : Dict[str, int] = None , _A : bool = None , _A : float = None , _A : bool = None , _A : bool = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[float, List[float]]] = None , _A : Optional[Union[str, TensorType]] = None , _A : ChannelDimension = ChannelDimension.FIRST , **_A : List[Any] , ) -> PIL.Image.Image: UpperCAmelCase_ : List[Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : List[Any] = resample if resample is not None else self.resample UpperCAmelCase_ : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_ : Dict = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_ : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_ : Union[str, Any] = offset if offset is not None else self.offset UpperCAmelCase_ : int = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : Optional[int] = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_ : Tuple = image_std if image_std is not None else self.image_std UpperCAmelCase_ : Dict = size if size is not None else self.size UpperCAmelCase_ : List[Any] = get_size_dict(_A , default_to_square=_A ) UpperCAmelCase_ : List[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_ : Optional[Any] = get_size_dict(_A , param_name='''crop_size''' ) if not valid_images(_A ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) UpperCAmelCase_ : Dict = make_batched(_A ) UpperCAmelCase_ : int = [ [ self._preprocess_image( image=_A , do_resize=_A , size=_A , resample=_A , do_center_crop=_A , crop_size=_A , do_rescale=_A , rescale_factor=_A , offset=_A , do_normalize=_A , image_mean=_A , image_std=_A , data_format=_A , ) for img in video ] for video in videos ] UpperCAmelCase_ : Optional[int] = {'''pixel_values''': videos} return BatchFeature(data=_A , tensor_type=_A )
541
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available _UpperCamelCase : Tuple = { 'configuration_audio_spectrogram_transformer': [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ASTConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[int] = [ 'AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ASTForAudioClassification', 'ASTModel', 'ASTPreTrainedModel', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : int = ['ASTFeatureExtractor'] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys _UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
541
1
'''simple docstring''' __snake_case : Dict = range(2, 20 + 1) __snake_case : Any = [10**k for k in range(ks[-1] + 1)] __snake_case : dict[int, dict[int, list[list[int]]]] = {} def _lowercase ( lowerCamelCase__ : int, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Optional[Any], lowerCamelCase__ : str ): _a = sum(a_i[j] for j in range(lowerCamelCase__, len(lowerCamelCase__ ) ) ) _a = sum(a_i[j] * base[j] for j in range(min(len(lowerCamelCase__ ), lowerCamelCase__ ) ) ) _a , _a = 0, 0 _a = n - i _a = memo.get(lowerCamelCase__ ) if sub_memo is not None: _a = sub_memo.get(lowerCamelCase__ ) if jumps is not None and len(lowerCamelCase__ ) > 0: # find and make the largest jump without going over _a = -1 for _k in range(len(lowerCamelCase__ ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _a = _k break if max_jump >= 0: _a , _a , _a = jumps[max_jump] # since the difference between jumps is cached, add c _a = diff + c for j in range(min(lowerCamelCase__, len(lowerCamelCase__ ) ) ): _a , _a = divmod(lowerCamelCase__, 10 ) if new_c > 0: add(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) else: _a = [] else: _a = {c: []} _a = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _a , _a = next_term(lowerCamelCase__, k - 1, i + dn, lowerCamelCase__ ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _a , _a = compute(lowerCamelCase__, lowerCamelCase__, i + dn, lowerCamelCase__ ) diff += _diff dn += terms_jumped _a = sub_memo[c] # keep jumps sorted by # of terms skipped _a = 0 while j < len(lowerCamelCase__ ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(lowerCamelCase__, (diff, dn, k) ) return (diff, dn) def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Any, lowerCamelCase__ : Optional[int], lowerCamelCase__ : Optional[int] ): if i >= n: return 0, i if k > len(lowerCamelCase__ ): a_i.extend([0 for _ in range(k - len(lowerCamelCase__ ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _a = i _a , _a , _a = 0, 0, 0 for j in range(len(lowerCamelCase__ ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _a = ds_c + ds_b diff += addend _a = 0 for j in range(lowerCamelCase__ ): _a = a_i[j] + addend _a , _a = divmod(lowerCamelCase__, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) return diff, i - start_i def _lowercase ( lowerCamelCase__ : Optional[int], lowerCamelCase__ : Tuple, lowerCamelCase__ : List[str] ): for j in range(lowerCamelCase__, len(lowerCamelCase__ ) ): _a = digits[j] + addend if s >= 10: _a , _a = divmod(lowerCamelCase__, 10 ) _a = addend // 10 + quotient else: _a = s _a = addend // 10 if addend == 0: break while addend > 0: _a , _a = divmod(lowerCamelCase__, 10 ) digits.append(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : int = 10**15 ): _a = [1] _a = 1 _a = 0 while True: _a , _a = next_term(lowerCamelCase__, 20, i + dn, lowerCamelCase__ ) dn += terms_jumped if dn == n - i: break _a = 0 for j in range(len(lowerCamelCase__ ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'''{solution() = }''')
718
'''simple docstring''' import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class A ( a , unittest.TestCase ): __UpperCAmelCase : List[Any] = ProphetNetTokenizer __UpperCAmelCase : Optional[Any] = False def __lowerCAmelCase ( self ) -> Tuple: super().setUp() _a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] _a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def __lowerCAmelCase ( self , snake_case_ ) -> Any: _a = "UNwant\u00E9d,running" _a = "unwanted, running" return input_text, output_text def __lowerCAmelCase ( self ) -> Any: _a = self.tokenizer_class(self.vocab_file ) _a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(snake_case_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case_ ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __lowerCAmelCase ( self ) -> List[str]: _a = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> Any: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def __lowerCAmelCase ( self ) -> List[Any]: _a = BasicTokenizer(do_lower_case=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> int: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Tuple: _a = BasicTokenizer(do_lower_case=snake_case_ , strip_accents=snake_case_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def __lowerCAmelCase ( self ) -> Union[str, Any]: _a = BasicTokenizer(do_lower_case=snake_case_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def __lowerCAmelCase ( self ) -> List[str]: _a = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] _a = {} for i, token in enumerate(snake_case_ ): _a = i _a = WordpieceTokenizer(vocab=snake_case_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) @require_torch def __lowerCAmelCase ( self ) -> Tuple: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = ["A long paragraph for summarization.", "Another paragraph for summarization."] _a = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] _a = tokenizer(snake_case_ , padding=snake_case_ , return_tensors="pt" ) self.assertIsInstance(snake_case_ , snake_case_ ) _a = list(batch.input_ids.numpy()[0] ) self.assertListEqual(snake_case_ , snake_case_ ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def __lowerCAmelCase ( self ) -> List[Any]: self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: _a = self.tokenizer_class.from_pretrained("microsoft/prophetnet-large-uncased" ) _a = tokenizer.encode("sequence builders" , add_special_tokens=snake_case_ ) _a = tokenizer.encode("multi-sequence build" , add_special_tokens=snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ ) _a = tokenizer.build_inputs_with_special_tokens(snake_case_ , snake_case_ ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
691
0
from __future__ import annotations from math import pow, sqrt def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any ) -> Union[str, Any]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(A__ , 2 ) - pow(A__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(A__ , 2 ) - pow(A__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(A__ , 2 ) + pow(A__ , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
443
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _lowerCAmelCase ( A__ ): lowercase__ = SwinConfig(image_size=192 ) if "base" in model_name: lowercase__ = 6 lowercase__ = 128 lowercase__ = (2, 2, 18, 2) lowercase__ = (4, 8, 16, 32) elif "large" in model_name: lowercase__ = 12 lowercase__ = 192 lowercase__ = (2, 2, 18, 2) lowercase__ = (6, 12, 24, 48) else: raise ValueError('Model not supported, only supports base and large variants' ) lowercase__ = window_size lowercase__ = embed_dim lowercase__ = depths lowercase__ = num_heads return config def _lowerCAmelCase ( A__ ): if "encoder.mask_token" in name: lowercase__ = name.replace('encoder.mask_token' , 'embeddings.mask_token' ) if "encoder.patch_embed.proj" in name: lowercase__ = name.replace('encoder.patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "encoder.patch_embed.norm" in name: lowercase__ = name.replace('encoder.patch_embed.norm' , 'embeddings.norm' ) if "attn.proj" in name: lowercase__ = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: lowercase__ = name.replace('attn' , 'attention.self' ) if "norm1" in name: lowercase__ = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: lowercase__ = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: lowercase__ = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: lowercase__ = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": lowercase__ = 'layernorm.weight' if name == "encoder.norm.bias": lowercase__ = 'layernorm.bias' if "decoder" in name: pass else: lowercase__ = 'swin.' + name return name def _lowerCAmelCase ( A__ , A__ ): for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(A__ ) if "attn_mask" in key: pass elif "qkv" in key: lowercase__ = key.split('.' ) lowercase__ = int(key_split[2] ) lowercase__ = int(key_split[4] ) lowercase__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[ dim : dim * 2, : ] lowercase__ = val[-dim:, :] else: lowercase__ = val[ :dim ] lowercase__ = val[ dim : dim * 2 ] lowercase__ = val[ -dim: ] else: lowercase__ = val return orig_state_dict def _lowerCAmelCase ( A__ , A__ , A__ , A__ ): lowercase__ = torch.load(A__ , map_location='cpu' )['model'] lowercase__ = get_swin_config(A__ ) lowercase__ = SwinForMaskedImageModeling(A__ ) model.eval() lowercase__ = convert_state_dict(A__ , A__ ) model.load_state_dict(A__ ) lowercase__ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowercase__ = ViTImageProcessor(size={'height': 192, 'width': 192} ) lowercase__ = Image.open(requests.get(A__ , stream=A__ ).raw ) lowercase__ = image_processor(images=A__ , return_tensors='pt' ) with torch.no_grad(): lowercase__ = model(**A__ ).logits print(outputs.keys() ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A__ ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(A__ ) if push_to_hub: print(F'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(F'''microsoft/{model_name}''' ) image_processor.push_to_hub(F'''microsoft/{model_name}''' ) if __name__ == "__main__": a__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) a__ : Optional[int] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
622
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCamelCase ="▁" UpperCamelCase ={"vocab_file": "spiece.model"} UpperCamelCase ={ "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"} } UpperCamelCase ={ "google/pegasus-xsum": 512, } UpperCamelCase =logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __a : List[Any] = VOCAB_FILES_NAMES __a : Dict = VOCAB_FILES_NAMES __a : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __a : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a : str = ['''input_ids''', '''attention_mask'''] def __init__( self , __lowerCAmelCase , __lowerCAmelCase="<pad>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<mask_2>" , __lowerCAmelCase="<mask_1>" , __lowerCAmelCase=None , __lowerCAmelCase=1_03 , __lowerCAmelCase = None , **__lowerCAmelCase , ): UpperCamelCase_ : Any = offset if additional_special_tokens is not None: if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise TypeError( F"additional_special_tokens should be of type {type(__lowerCAmelCase )}, but is" F" {type(__lowerCAmelCase )}" ) UpperCamelCase_ : List[Any] = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"<unk_{i}>" for i in range(len(__lowerCAmelCase ) , self.offset - 1 ) ] if len(set(__lowerCAmelCase ) ) != len(__lowerCAmelCase ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" F" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}." ) UpperCamelCase_ : Dict = additional_special_tokens_extended else: UpperCamelCase_ : str = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"<unk_{i}>" for i in range(2 , self.offset )] UpperCamelCase_ : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token_sent=__lowerCAmelCase , offset=__lowerCAmelCase , additional_special_tokens=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) UpperCamelCase_ : Optional[int] = mask_token_sent UpperCamelCase_ : Any = vocab_file UpperCamelCase_ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCAmelCase ) # add special tokens to encoder dict UpperCamelCase_ : Dict[int, str] = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) UpperCamelCase_ : Dict[str, int] = {v: k for k, v in self.encoder.items()} @property def _UpperCAmelCase ( self ): return len(self.sp_model ) + self.offset def _UpperCAmelCase ( self ): UpperCamelCase_ : List[str] = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): UpperCamelCase_ : Optional[int] = self.__dict__.copy() UpperCamelCase_ : Optional[int] = None return state def __setstate__( self , __lowerCAmelCase ): UpperCamelCase_ : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase_ : str = {} UpperCamelCase_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase ( self , __lowerCAmelCase ): return self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) def _UpperCAmelCase ( self , __lowerCAmelCase ): if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] UpperCamelCase_ : str = self.sp_model.piece_to_id(__lowerCAmelCase ) return sp_id + self.offset def _UpperCAmelCase ( self , __lowerCAmelCase ): if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: UpperCamelCase_ : str = self.sp_model.IdToPiece(index - self.offset ) return token def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : List[Any] = [] UpperCamelCase_ : List[Any] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowerCAmelCase ) + token UpperCamelCase_ : List[Any] = [] else: current_sub_tokens.append(__lowerCAmelCase ) out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def _UpperCAmelCase ( self , __lowerCAmelCase=False ): return 1 def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : int = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def _UpperCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ): if already_has_special_tokens: return self._special_token_mask(__lowerCAmelCase ) elif token_ids_a is None: return self._special_token_mask(__lowerCAmelCase ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _UpperCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): if not os.path.isdir(__lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase_ : Optional[int] = os.path.join( __lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , """wb""" ) as fi: UpperCamelCase_ : List[str] = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,)
543
'''simple docstring''' import warnings from .generation import TFGenerationMixin class A ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" warnings.warn( '''Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ''' '''be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.''', SCREAMING_SNAKE_CASE__, )
543
1
'''simple docstring''' import numpy as np from PIL import Image def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = np.array(UpperCAmelCase_ ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 0 # compute the shape of the output matrix __UpperCamelCase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __UpperCamelCase = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __UpperCamelCase = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __UpperCamelCase = 0 __UpperCamelCase = 0 return updated_arr def _lowercase ( __A ,__A ,__A ): '''simple docstring''' __UpperCamelCase = np.array(UpperCAmelCase_ ) if arr.shape[0] != arr.shape[1]: raise ValueError("""The input array is not a square matrix""" ) __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 0 # compute the shape of the output matrix __UpperCamelCase = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __UpperCamelCase = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __UpperCamelCase = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __UpperCamelCase = 0 __UpperCamelCase = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='avgpooling', verbose=True) # Loading the image a__ : Any = Image.open('path_to_image') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
601
import unittest from transformers import BertGenerationConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import BertGenerationDecoder, BertGenerationEncoder class lowercase__ : """simple docstring""" def __init__( self : Dict , __a : List[str] , __a : List[str]=1_3 , __a : List[str]=7 , __a : Dict=True , __a : str=True , __a : str=9_9 , __a : Dict=3_2 , __a : Optional[int]=5 , __a : List[Any]=4 , __a : Dict=3_7 , __a : List[Any]="gelu" , __a : str=0.1 , __a : Dict=0.1 , __a : Optional[Any]=5_0 , __a : Dict=0.02 , __a : List[Any]=True , __a : str=None , ): snake_case__ : int = parent snake_case__ : Any = batch_size snake_case__ : Any = seq_length snake_case__ : Dict = is_training snake_case__ : str = use_input_mask snake_case__ : Optional[Any] = vocab_size snake_case__ : List[Any] = hidden_size snake_case__ : Any = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : Optional[Any] = intermediate_size snake_case__ : str = hidden_act snake_case__ : Any = hidden_dropout_prob snake_case__ : List[str] = attention_probs_dropout_prob snake_case__ : Any = max_position_embeddings snake_case__ : Tuple = initializer_range snake_case__ : str = use_labels snake_case__ : List[str] = scope def lowercase ( self : Optional[Any] ): snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Any = None if self.use_input_mask: snake_case__ : int = random_attention_mask([self.batch_size, self.seq_length] ) if self.use_labels: snake_case__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Optional[int] = self.get_config() return config, input_ids, input_mask, token_labels def lowercase ( self : Optional[Any] ): return BertGenerationConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , is_decoder=__a , initializer_range=self.initializer_range , ) def lowercase ( self : List[str] ): ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Any = self.prepare_config_and_inputs() snake_case__ : Union[str, Any] = True snake_case__ : str = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, token_labels, encoder_hidden_states, encoder_attention_mask, ) def lowercase ( self : int , __a : List[Any] , __a : Optional[Any] , __a : Tuple , __a : Optional[int] , **__a : Union[str, Any] , ): snake_case__ : Optional[Any] = BertGenerationEncoder(config=__a ) model.to(__a ) model.eval() snake_case__ : Optional[int] = model(__a , attention_mask=__a ) snake_case__ : str = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : str , __a : Union[str, Any] , __a : Any , __a : int , __a : int , __a : List[Any] , __a : List[str] , **__a : List[Any] , ): snake_case__ : Union[str, Any] = True snake_case__ : int = BertGenerationEncoder(config=__a ) model.to(__a ) model.eval() snake_case__ : List[str] = model( __a , attention_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , ) snake_case__ : List[Any] = model( __a , attention_mask=__a , encoder_hidden_states=__a , ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase ( self : int , __a : Tuple , __a : Union[str, Any] , __a : Optional[Any] , __a : str , __a : Union[str, Any] , __a : str , **__a : List[Any] , ): snake_case__ : int = True snake_case__ : Optional[int] = True snake_case__ : List[str] = BertGenerationDecoder(config=__a ).to(__a ).eval() # first forward pass snake_case__ : Union[str, Any] = model( __a , attention_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , use_cache=__a , ) snake_case__ : List[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids snake_case__ : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case__ : int = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and snake_case__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case__ : Tuple = torch.cat([input_mask, next_mask] , dim=-1 ) snake_case__ : Any = model( __a , attention_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , output_hidden_states=__a , )["""hidden_states"""][0] snake_case__ : Any = model( __a , attention_mask=__a , encoder_hidden_states=__a , encoder_attention_mask=__a , past_key_values=__a , output_hidden_states=__a , )["""hidden_states"""][0] # select random slice snake_case__ : List[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case__ : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() snake_case__ : Any = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1e-3 ) ) def lowercase ( self : Union[str, Any] , __a : List[Any] , __a : int , __a : Union[str, Any] , __a : int , *__a : str , ): snake_case__ : Union[str, Any] = BertGenerationDecoder(__a ) model.to(__a ) model.eval() snake_case__ : List[Any] = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Any ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : str = self.prepare_config_and_inputs() snake_case__ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase__ (__snake_case , __snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = (BertGenerationEncoder, BertGenerationDecoder) if is_torch_available() else () __UpperCamelCase : str = (BertGenerationDecoder,) if is_torch_available() else () __UpperCamelCase : str = ( {'feature-extraction': BertGenerationEncoder, 'text-generation': BertGenerationDecoder} if is_torch_available() else {} ) def lowercase ( self : str ): snake_case__ : Dict = BertGenerationEncoderTester(self ) snake_case__ : Tuple = ConfigTester(self , config_class=__a , hidden_size=3_7 ) def lowercase ( self : Optional[int] ): self.config_tester.run_common_tests() def lowercase ( self : Optional[int] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def lowercase ( self : List[Any] ): snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() snake_case__ : Optional[int] = """bert""" self.model_tester.create_and_check_model(__a , __a , __a , __a ) def lowercase ( self : str ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__a ) def lowercase ( self : Any ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_decoder_model_past_large_inputs(*__a ) def lowercase ( self : Tuple ): # This regression test was failing with PyTorch < 1.3 ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : int = self.model_tester.prepare_config_and_inputs_for_decoder() snake_case__ : int = None self.model_tester.create_and_check_model_as_decoder( __a , __a , __a , __a , __a , __a , ) def lowercase ( self : int ): snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_for_causal_lm(*__a ) @slow def lowercase ( self : List[str] ): snake_case__ : int = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) self.assertIsNotNone(__a ) @require_torch class lowercase__ (unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Optional[int] ): snake_case__ : Dict = BertGenerationEncoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) snake_case__ : Optional[Any] = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): snake_case__ : Union[str, Any] = model(__a )[0] snake_case__ : Optional[Any] = torch.Size([1, 8, 1_0_2_4] ) self.assertEqual(output.shape , __a ) snake_case__ : List[Any] = torch.tensor( [[[0.1775, 0.0083, -0.0321], [1.6002, 0.1287, 0.3912], [2.1473, 0.5791, 0.6066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) ) @require_torch class lowercase__ (unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : Any ): snake_case__ : List[str] = BertGenerationDecoder.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) snake_case__ : Tuple = torch.tensor([[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_2_6, 3_8_9_9, 2_0_0_3, 1_0_1_4_0, 1_0_2]] ) with torch.no_grad(): snake_case__ : Any = model(__a )[0] snake_case__ : Optional[Any] = torch.Size([1, 8, 5_0_3_5_8] ) self.assertEqual(output.shape , __a ) snake_case__ : int = torch.tensor( [[[-0.5788, -2.5994, -3.7054], [0.0438, 4.7997, 1.8795], [1.5862, 6.6409, 4.4638]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __a , atol=1e-4 ) )
648
0
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A_ ( _lowerCAmelCase : str = "laptop" ): """simple docstring""" _lowerCamelCase : Dict = F'https://www.amazon.in/laptop/s?k={product}' _lowerCamelCase : Tuple = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } _lowerCamelCase : int = BeautifulSoup(requests.get(_lowerCAmelCase , headers=_lowerCAmelCase ).text ) # Initialize a Pandas dataframe with the column titles _lowerCamelCase : int = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: _lowerCamelCase : Dict = item.ha.text _lowerCamelCase : Optional[int] = "https://www.amazon.in/" + item.ha.a["href"] _lowerCamelCase : Optional[int] = item.find("span" , attrs={"class": "a-offscreen"} ).text try: _lowerCamelCase : Union[str, Any] = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: _lowerCamelCase : Optional[Any] = "Not available" try: _lowerCamelCase : Dict = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: _lowerCamelCase : Union[str, Any] = "" try: _lowerCamelCase : Union[str, Any] = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: _lowerCamelCase : List[str] = float("nan" ) except AttributeError: pass _lowerCamelCase : Dict = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _lowerCamelCase : List[str] = " " _lowerCamelCase : Tuple = " " data_frame.index += 1 return data_frame if __name__ == "__main__": UpperCAmelCase_ : str = 'headphones' get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
711
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging UpperCAmelCase_ : Union[str, Any] = logging.get_logger(__name__) class UpperCAmelCase__ ( A ): def __init__( self : int,__A : Any=None,**__A : Optional[Any] ): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead.",__A,) super().__init__(args=__A,**__A )
11
0