code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def a (lowerCAmelCase__ ): if not head: return True # split the list to two parts __a , __a = head.next, head while fast and fast.next: __a = fast.next.next __a = slow.next __a = slow.next __a = None # Don't forget here! But forget still works! # reverse the second part __a = None while second: __a = second.next __a = node __a = second __a = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False __a = node.next __a = head.next return True def a (lowerCAmelCase__ ): if not head or not head.next: return True # 1. Get the midpoint (slow) __a = __a = __a = head while fast and fast.next: __a , __a = fast.next.next, slow.next # 2. Push the second half into the stack __a = [slow.val] while slow.next: __a = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False __a = cur.next return True def a (lowerCAmelCase__ ): if not head or not head.next: return True __a = {} __a = 0 while head: if head.val in d: d[head.val].append(lowerCAmelCase__ ) else: __a = [pos] __a = head.next pos += 1 __a = pos - 1 __a = 0 for v in d.values(): if len(lowerCAmelCase__ ) % 2 != 0: middle += 1 else: __a = 0 for i in range(0 , len(lowerCAmelCase__ ) ): if v[i] + v[len(lowerCAmelCase__ ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
99
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__: List[Any] = { 'configuration_x_clip': [ 'XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XCLIPConfig', 'XCLIPTextConfig', 'XCLIPVisionConfig', ], 'processing_x_clip': ['XCLIPProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__: Any = [ 'XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'XCLIPModel', 'XCLIPPreTrainedModel', 'XCLIPTextModel', 'XCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_x_clip import ( XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, XCLIPConfig, XCLIPTextConfig, XCLIPVisionConfig, ) from .processing_x_clip import XCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_x_clip import ( XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, XCLIPModel, XCLIPPreTrainedModel, XCLIPTextModel, XCLIPVisionModel, ) else: import sys a__: Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
190
0
"""simple docstring""" import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def lowerCamelCase__ ( _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Optional[int] = torch.load(_lowerCamelCase , map_location='cpu' ) if "model" in sd.keys(): _lowerCAmelCase : Union[str, Any] = torch.load(_lowerCamelCase , map_location='cpu' )['model'] # pop unnecessary weights _lowerCAmelCase : List[Any] = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(_lowerCamelCase ) _lowerCAmelCase : Any = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _lowerCAmelCase : Tuple = sd.pop(_lowerCamelCase ) _lowerCAmelCase : Optional[Any] = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: _lowerCAmelCase : int = sd[key] # We split QKV in separate Q,K,V _lowerCAmelCase : List[Any] = key.replace('.qkv_proj.' , '.q_proj.' ) _lowerCAmelCase : Optional[int] = key.replace('.qkv_proj.' , '.k_proj.' ) _lowerCAmelCase : Any = key.replace('.qkv_proj.' , '.v_proj.' ) _lowerCAmelCase : Optional[Any] = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _lowerCAmelCase : int = torch.split(_lowerCamelCase , depth // 3 , dim=0 ) _lowerCAmelCase : int = q _lowerCAmelCase : List[Any] = k _lowerCAmelCase : Optional[int] = v del sd[key] return sd @torch.no_grad() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = load_checkpoint(_lowerCamelCase ) if config is not None: _lowerCAmelCase : str = OPTConfig.from_pretrained(_lowerCamelCase ) else: _lowerCAmelCase : Tuple = OPTConfig() _lowerCAmelCase : Dict = OPTModel(_lowerCamelCase ).half().eval() model.load_state_dict(_lowerCamelCase ) # Check results Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--fairseq_path""", type=str, help=( """path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:""" """ https://huggingface.co/models?other=opt_metasq""" ), ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--hf_config""", default=None, type=str, help="""Define HF config.""") _lowerCAmelCase = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
711
"""simple docstring""" import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): @staticmethod def __lowerCamelCase ( _A ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def __lowerCamelCase ( self ,_A ,_A ,*_A ,**_A ): '''simple docstring''' if PartialState._shared_state == {}: raise RuntimeError( 'You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.' ) _lowerCAmelCase : Tuple = kwargs.pop('main_process_only' ,_A ) _lowerCAmelCase : Any = kwargs.pop('in_order' ,_A ) if self.isEnabledFor(_A ): if self._should_log(_A ): _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) elif in_order: _lowerCAmelCase : str = PartialState() for i in range(state.num_processes ): if i == state.process_index: _lowerCAmelCase, _lowerCAmelCase : Optional[int] = self.process(_A ,_A ) self.logger.log(_A ,_A ,*_A ,**_A ) state.wait_for_everyone() def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase = None ): '''simple docstring''' if log_level is None: _lowerCAmelCase : Union[str, Any] = os.environ.get('ACCELERATE_LOG_LEVEL' , _lowerCamelCase ) _lowerCAmelCase : int = logging.getLogger(_lowerCamelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(_lowerCamelCase , {} )
16
0
from statistics import mean import numpy as np def __UpperCamelCase (lowerCAmelCase : list, lowerCAmelCase : list, lowerCAmelCase : list, lowerCAmelCase : int ) -> list: A = 0 # Number of processes finished A = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. A = [0] * no_of_process # List to include calculation results A = [0] * no_of_process # Sort by arrival time. A = [burst_time[i] for i in np.argsort(lowercase_ )] A = [process_name[i] for i in np.argsort(lowercase_ )] arrival_time.sort() while no_of_process > finished_process_count: A = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: A = arrival_time[i] A = 0 # Index showing the location of the process being performed A = 0 # Saves the current response ratio. A = 0 for i in range(0, lowercase_ ): if finished_process[i] == 0 and arrival_time[i] <= current_time: A = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: A = temp A = i # Calculate the turn around time A = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. A = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def __UpperCamelCase (lowerCAmelCase : list, lowerCAmelCase : list, lowerCAmelCase : list, lowerCAmelCase : int ) -> list: A = [0] * no_of_process for i in range(0, lowercase_ ): A = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": _UpperCAmelCase = 5 _UpperCAmelCase = ['''A''', '''B''', '''C''', '''D''', '''E'''] _UpperCAmelCase = [1, 2, 3, 4, 5] _UpperCAmelCase = [1, 2, 3, 4, 5] _UpperCAmelCase = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) _UpperCAmelCase = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time") for i in range(0, no_of_process): print( F'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' F'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(F'''average waiting time : {mean(waiting_time):.5f}''') print(F'''average turn around time : {mean(turn_around_time):.5f}''')
699
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class lowerCamelCase_: '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__=1_3 , lowerCamelCase__=2 , lowerCamelCase__=2_4 , lowerCamelCase__=1_6 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=3_2 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=3_7 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=1_0 , lowerCamelCase__=0.0_2 , lowerCamelCase__=None , lowerCamelCase__=2 , lowerCamelCase__=2 , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = patch_size _lowerCamelCase = max_length _lowerCamelCase = num_mel_bins _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = scope _lowerCamelCase = frequency_stride _lowerCamelCase = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) _lowerCamelCase = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 _lowerCamelCase = (self.max_length - self.patch_size) // self.time_stride + 1 _lowerCamelCase = frequency_out_dimension * time_out_dimension _lowerCamelCase = num_patches + 2 def snake_case__ ( self ): _lowerCamelCase = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase = self.get_config() return config, input_values, labels def snake_case__ ( self ): return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): _lowerCamelCase = ASTModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() _lowerCamelCase = model(lowerCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self ): _lowerCamelCase = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) = config_and_inputs _lowerCamelCase = {'''input_values''': input_values} return config, inputs_dict @require_torch class lowerCamelCase_( A__, A__, unittest.TestCase ): '''simple docstring''' lowercase__ : Any = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowercase__ : List[str] = ( {'audio-classification': ASTForAudioClassification, 'feature-extraction': ASTModel} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : str = False lowercase__ : Union[str, Any] = False lowercase__ : List[str] = False def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def snake_case__ ( self ): _lowerCamelCase = ASTModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=3_7 ) def snake_case__ ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''AST does not use inputs_embeds''' ) def snake_case__ ( self ): pass def snake_case__ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(lowerCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase__ , nn.Linear ) ) def snake_case__ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(lowerCamelCase__ ) _lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['''input_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def snake_case__ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) @slow def snake_case__ ( self ): for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = ASTModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def lowerCAmelCase_( ) -> str: _lowerCamelCase = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' ) _lowerCamelCase , _lowerCamelCase = torchaudio.load(lowercase_ ) return audio, sampling_rate @require_torch @require_torchaudio class lowerCamelCase_( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__ ( self ): return ( ASTFeatureExtractor.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ) if is_torchaudio_available() else None ) @slow def snake_case__ ( self ): _lowerCamelCase = self.default_feature_extractor _lowerCamelCase = ASTForAudioClassification.from_pretrained('''MIT/ast-finetuned-audioset-10-10-0.4593''' ).to(lowerCamelCase__ ) _lowerCamelCase = self.default_feature_extractor _lowerCamelCase , _lowerCamelCase = prepare_audio() _lowerCamelCase = audio.squeeze().numpy() _lowerCamelCase = feature_extractor(lowerCamelCase__ , sampling_rate=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): _lowerCamelCase = model(**lowerCamelCase__ ) # verify the logits _lowerCamelCase = torch.Size((1, 5_2_7) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) _lowerCamelCase = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1e-4 ) )
661
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ :Dict = { "configuration_lilt": ["LILT_PRETRAINED_CONFIG_ARCHIVE_MAP", "LiltConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :int = [ "LILT_PRETRAINED_MODEL_ARCHIVE_LIST", "LiltForQuestionAnswering", "LiltForSequenceClassification", "LiltForTokenClassification", "LiltModel", "LiltPreTrainedModel", ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys lowercase__ :int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
706
import argparse from collections import defaultdict import yaml lowercase__ :Optional[int] = "docs/source/en/_toctree.yml" def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = defaultdict(lowerCAmelCase__ ) for doc in model_doc: counts[doc["local"]] += 1 lowercase = [key for key, value in counts.items() if value > 1] lowercase = [] for duplicate_key in duplicates: lowercase = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(lowerCAmelCase__ ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : s["title"].lower() ) def UpperCamelCase ( lowerCAmelCase__=False ): '''simple docstring''' with open(lowerCAmelCase__ , encoding='''utf-8''' ) as f: lowercase = yaml.safe_load(f.read() ) # Get to the API doc lowercase = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase = content[api_idx]['''sections'''] # Then to the model doc lowercase = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 lowercase = api_doc[model_idx]['''sections'''] lowercase = [(idx, section) for idx, section in enumerate(lowerCAmelCase__ ) if '''sections''' in section] lowercase = False for idx, modality_doc in modalities_docs: lowercase = modality_doc['''sections'''] lowercase = clean_model_doc_toc(lowerCAmelCase__ ) if old_modality_doc != new_modality_doc: lowercase = True if overwrite: lowercase = new_modality_doc if diff: if overwrite: lowercase = model_doc lowercase = api_doc with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(lowerCAmelCase__ , allow_unicode=lowerCAmelCase__ ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": lowercase__ :Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") lowercase__ :int = parser.parse_args() check_model_doc(args.fix_and_overwrite)
633
0
from __future__ import annotations def UpperCamelCase__ ( lowerCAmelCase__ ): if len(lowerCAmelCase__ ) == 0: return array lowercase , lowercase = min(lowerCAmelCase__ ), max(lowerCAmelCase__ ) # Compute the variables lowercase = _max - _min + 1 lowercase , lowercase = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: lowercase = i - _min lowercase = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. lowercase = 0 for i in range(lowerCAmelCase__ ): while holes_repeat[i] > 0: lowercase = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE : Optional[Any] =input('''Enter numbers separated by comma:\n''') __SCREAMING_SNAKE_CASE : int =[int(x) for x in user_input.split(''',''')] print(pigeon_sort(unsorted))
428
from __future__ import annotations import math def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if depth < 0: raise ValueError('''Depth cannot be less than 0''' ) if len(SCREAMING_SNAKE_CASE ) == 0: raise ValueError('''Scores cannot be empty''' ) if depth == height: return scores[node_index] if is_max: return max( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) return min( minimax(depth + 1 , node_index * 2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , minimax(depth + 1 , node_index * 2 + 1 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , ) def _a ( ): """simple docstring""" lowercase__ = [90, 23, 6, 33, 21, 65, 1_23, 3_44_23] lowercase__ = math.log(len(SCREAMING_SNAKE_CASE ) , 2 ) print('''Optimal value : ''' , end='''''' ) print(minimax(0 , 0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
43
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: a = None a = logging.get_logger(__name__) a = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} a = { "vocab_file": { "google/bigbird-roberta-base": "https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model", "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model" ), }, "tokenizer_file": { "google/bigbird-roberta-base": ( "https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json" ), "google/bigbird-roberta-large": ( "https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json" ), "google/bigbird-base-trivia-itc": ( "https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json" ), }, } a = { "google/bigbird-roberta-base": 4096, "google/bigbird-roberta-large": 4096, "google/bigbird-base-trivia-itc": 4096, } a = "▁" class __a ( __SCREAMING_SNAKE_CASE ): __UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES __UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase : List[Any] = BigBirdTokenizer __UpperCamelCase : Tuple = ['input_ids', 'attention_mask'] __UpperCamelCase : List[Any] = [] def __init__( self : str ,lowerCamelCase : Any=None ,lowerCamelCase : Optional[Any]=None ,lowerCamelCase : str="<unk>" ,lowerCamelCase : Union[str, Any]="<s>" ,lowerCamelCase : Optional[Any]="</s>" ,lowerCamelCase : Any="<pad>" ,lowerCamelCase : str="[SEP]" ,lowerCamelCase : Dict="[MASK]" ,lowerCamelCase : int="[CLS]" ,**lowerCamelCase : List[Any] ,): '''simple docstring''' __SCREAMING_SNAKE_CASE = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else bos_token __SCREAMING_SNAKE_CASE = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else eos_token __SCREAMING_SNAKE_CASE = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else unk_token __SCREAMING_SNAKE_CASE = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else pad_token __SCREAMING_SNAKE_CASE = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else cls_token __SCREAMING_SNAKE_CASE = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else sep_token # Mask token behave like a normal word, i.e. include the space before it __SCREAMING_SNAKE_CASE = AddedToken(_a ,lstrip=_a ,rstrip=_a ) if isinstance(_a ,_a ) else mask_token super().__init__( _a ,tokenizer_file=_a ,bos_token=_a ,eos_token=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,**_a ,) __SCREAMING_SNAKE_CASE = vocab_file __SCREAMING_SNAKE_CASE = False if not self.vocab_file else True def UpperCAmelCase__ ( self : Any ,lowerCamelCase : List[int] ,lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ ( self : Tuple ,lowerCamelCase : List[int] ,lowerCamelCase : Optional[List[int]] = None ,lowerCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(_a )) + [1] return [1] + ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1] def UpperCAmelCase__ ( self : str ,lowerCamelCase : List[int] ,lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ ( self : Union[str, Any] ,lowerCamelCase : str ,lowerCamelCase : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(_a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __SCREAMING_SNAKE_CASE = os.path.join( _a ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ): copyfile(self.vocab_file ,_a ) return (out_vocab_file,)
704
'''simple docstring''' import math from enum import Enum from typing import Optional, Union from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR from .utils import logging a = logging.get_logger(__name__) class __a ( _snake_case ): __UpperCamelCase : int = 'linear' __UpperCamelCase : Tuple = 'cosine' __UpperCamelCase : Tuple = 'cosine_with_restarts' __UpperCamelCase : List[Any] = 'polynomial' __UpperCamelCase : Optional[Any] = 'constant' __UpperCamelCase : Optional[int] = 'constant_with_warmup' __UpperCamelCase : List[Any] = 'piecewise_constant' def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' return LambdaLR(__UpperCAmelCase , lambda __UpperCAmelCase : 1 , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> List[Any]: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1.0 , __UpperCAmelCase ) ) return 1.0 return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = -1 ) -> int: '''simple docstring''' __SCREAMING_SNAKE_CASE = {} __SCREAMING_SNAKE_CASE = step_rules.split(""",""" ) for rule_str in rule_list[:-1]: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rule_str.split(""":""" ) __SCREAMING_SNAKE_CASE = int(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = float(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = value __SCREAMING_SNAKE_CASE = float(rule_list[-1] ) def create_rules_function(__UpperCAmelCase , __UpperCAmelCase ): def rule_func(__UpperCAmelCase ) -> float: __SCREAMING_SNAKE_CASE = sorted(rules_dict.keys() ) for i, sorted_step in enumerate(__UpperCAmelCase ): if steps < sorted_step: return rules_dict[sorted_steps[i]] return last_lr_multiple return rule_func __SCREAMING_SNAKE_CASE = create_rules_function(__UpperCAmelCase , __UpperCAmelCase ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , last_epoch=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=-1 ) -> int: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) return max( 0.0 , float(num_training_steps - current_step ) / float(max(1 , num_training_steps - num_warmup_steps ) ) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 0.5 , __UpperCAmelCase = -1 ) -> Dict: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * float(__UpperCAmelCase ) * 2.0 * progress )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = -1 ) -> Tuple: '''simple docstring''' def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) __SCREAMING_SNAKE_CASE = float(current_step - num_warmup_steps ) / float(max(1 , num_training_steps - num_warmup_steps ) ) if progress >= 1.0: return 0.0 return max(0.0 , 0.5 * (1.0 + math.cos(math.pi * ((float(__UpperCAmelCase ) * progress) % 1.0) )) ) return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1e-7 , __UpperCAmelCase=1.0 , __UpperCAmelCase=-1 ) -> Tuple: '''simple docstring''' __SCREAMING_SNAKE_CASE = optimizer.defaults["""lr"""] if not (lr_init > lr_end): raise ValueError(f"""lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})""" ) def lr_lambda(__UpperCAmelCase ): if current_step < num_warmup_steps: return float(__UpperCAmelCase ) / float(max(1 , __UpperCAmelCase ) ) elif current_step > num_training_steps: return lr_end / lr_init # as LambdaLR multiplies by lr_init else: __SCREAMING_SNAKE_CASE = lr_init - lr_end __SCREAMING_SNAKE_CASE = num_training_steps - num_warmup_steps __SCREAMING_SNAKE_CASE = 1 - (current_step - num_warmup_steps) / decay_steps __SCREAMING_SNAKE_CASE = lr_range * pct_remaining**power + lr_end return decay / lr_init # as LambdaLR multiplies by lr_init return LambdaLR(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) a = { SchedulerType.LINEAR: get_linear_schedule_with_warmup, SchedulerType.COSINE: get_cosine_schedule_with_warmup, SchedulerType.COSINE_WITH_RESTARTS: get_cosine_with_hard_restarts_schedule_with_warmup, SchedulerType.POLYNOMIAL: get_polynomial_decay_schedule_with_warmup, SchedulerType.CONSTANT: get_constant_schedule, SchedulerType.CONSTANT_WITH_WARMUP: get_constant_schedule_with_warmup, SchedulerType.PIECEWISE_CONSTANT: get_piecewise_constant_schedule, } def __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = 1 , __UpperCAmelCase = 1.0 , __UpperCAmelCase = -1 , ) -> str: '''simple docstring''' __SCREAMING_SNAKE_CASE = SchedulerType(__UpperCAmelCase ) __SCREAMING_SNAKE_CASE = TYPE_TO_SCHEDULER_FUNCTION[name] if name == SchedulerType.CONSTANT: return schedule_func(__UpperCAmelCase , last_epoch=__UpperCAmelCase ) if name == SchedulerType.PIECEWISE_CONSTANT: return schedule_func(__UpperCAmelCase , step_rules=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_warmup_steps` if num_warmup_steps is None: raise ValueError(f"""{name} requires `num_warmup_steps`, please provide that argument.""" ) if name == SchedulerType.CONSTANT_WITH_WARMUP: return schedule_func(__UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase ) # All other schedulers require `num_training_steps` if num_training_steps is None: raise ValueError(f"""{name} requires `num_training_steps`, please provide that argument.""" ) if name == SchedulerType.COSINE_WITH_RESTARTS: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , num_cycles=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) if name == SchedulerType.POLYNOMIAL: return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , power=__UpperCAmelCase , last_epoch=__UpperCAmelCase , ) return schedule_func( __UpperCAmelCase , num_warmup_steps=__UpperCAmelCase , num_training_steps=__UpperCAmelCase , last_epoch=__UpperCAmelCase )
13
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ = logging.get_logger() @dataclass class SCREAMING_SNAKE_CASE : __lowerCamelCase : nn.Module __lowerCamelCase : List[nn.Module] =field(default_factory=lowerCamelCase_ ) __lowerCamelCase : list =field(default_factory=lowerCamelCase_ ) def UpperCamelCase_ ( self : Optional[Any] , __lowercase : str , __lowercase : Optional[Any] , __lowercase : int ): '''simple docstring''' __a = len(list(m.modules() ) ) == 1 or isinstance(__lowercase , nn.Convad ) or isinstance(__lowercase , nn.BatchNormad ) if has_not_submodules: self.traced.append(__lowercase ) def __call__( self : Any , __lowercase : Union[str, Any] ): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(__lowercase ) [x.remove() for x in self.handles] return self @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return list(filter(lambda __lowercase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class SCREAMING_SNAKE_CASE : __lowerCamelCase : nn.Module __lowerCamelCase : nn.Module __lowerCamelCase : int =1 __lowerCamelCase : List =field(default_factory=lowerCamelCase_ ) __lowerCamelCase : List =field(default_factory=lowerCamelCase_ ) __lowerCamelCase : bool =True def __call__( self : Tuple , __lowercase : Dict ): '''simple docstring''' __a = Tracker(self.dest )(__lowercase ).parametrized __a = Tracker(self.src )(__lowercase ).parametrized __a = list(filter(lambda __lowercase : type(__lowercase ) not in self.src_skip , __lowercase ) ) __a = list(filter(lambda __lowercase : type(__lowercase ) not in self.dest_skip , __lowercase ) ) if len(__lowercase ) != len(__lowercase ) and self.raise_if_mismatch: raise Exception( F"Numbers of operations are different. Source module has {len(__lowercase )} operations while" F" destination module has {len(__lowercase )}." ) for dest_m, src_m in zip(__lowercase , __lowercase ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F"Transfered from={src_m} to={dest_m}" ) class SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : int , __lowercase : List[Any] ): '''simple docstring''' super().__init__() __a = [] # - get the stem feature_blocks.append(("""conv1""", model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("""block""" ), F"Unexpected layer name {k}" __a = len(__lowercase ) + 1 feature_blocks.append((F"res{block_index}", v) ) __a = nn.ModuleDict(__lowercase ) def UpperCamelCase_ ( self : Tuple , __lowercase : Tuple ): '''simple docstring''' return get_trunk_forward_outputs( __lowercase , out_feat_keys=__lowercase , feature_blocks=self._feature_blocks , ) class SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): def UpperCamelCase_ ( self : Tuple , __lowercase : str ): '''simple docstring''' __a = x.split("""-""" ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self : Optional[int] , __lowercase : List[Any] ): '''simple docstring''' if x not in self: __a = self.convert_name_to_timm(__lowercase ) __a = partial(lambda: (timm.create_model(__lowercase , pretrained=__lowercase ).eval(), None) ) else: __a = super().__getitem__(__lowercase ) return val class SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): def __getitem__( self : Dict , __lowercase : Union[str, Any] ): '''simple docstring''' if "seer" in x and "in1k" not in x: __a = RegNetModel else: __a = RegNetForImageClassification return val def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[Tuple[str, str]] ): """simple docstring""" for from_key, to_key in keys: __a = from_state_dict[from_key].clone() print(f"Copied key={from_key} to={to_key}" ) return to_state_dict def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Callable[[], nn.Module] , _SCREAMING_SNAKE_CASE : Callable[[], nn.Module] , _SCREAMING_SNAKE_CASE : RegNetConfig , _SCREAMING_SNAKE_CASE : Path , _SCREAMING_SNAKE_CASE : bool = True , ): """simple docstring""" print(f"Converting {name}..." ) with torch.no_grad(): __a = from_model_func() __a = our_model_func(lowercase__ ).eval() __a = ModuleTransfer(src=lowercase__ , dest=lowercase__ , raise_if_mismatch=lowercase__ ) __a = torch.randn((1, 3, 224, 224) ) module_transfer(lowercase__ ) if from_state_dict is not None: __a = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __a = [("0.clf.0.weight", "classifier.1.weight"), ("0.clf.0.bias", "classifier.1.bias")] __a = manually_copy_vissl_head(lowercase__ , our_model.state_dict() , lowercase__ ) our_model.load_state_dict(lowercase__ ) __a = our_model(lowercase__ , output_hidden_states=lowercase__ ) __a = ( our_outputs.logits if isinstance(lowercase__ , lowercase__ ) else our_outputs.last_hidden_state ) __a = from_model(lowercase__ ) __a = from_output[-1] if type(lowercase__ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __a = our_outputs.hidden_states[-1] assert torch.allclose(lowercase__ , lowercase__ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add model""" , use_temp_dir=lowercase__ , ) __a = 224 if "seer" not in name else 384 # we can use the convnext one __a = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" , size=lowercase__ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="""Add image processor""" , use_temp_dir=lowercase__ , ) print(f"Pushed {name}" ) def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Path , _SCREAMING_SNAKE_CASE : str = None , _SCREAMING_SNAKE_CASE : bool = True ): """simple docstring""" __a = "imagenet-1k-id2label.json" __a = 1000 __a = (1, num_labels) __a = "huggingface/label-files" __a = num_labels __a = json.load(open(cached_download(hf_hub_url(lowercase__ , lowercase__ , repo_type="""dataset""" ) ) , """r""" ) ) __a = {int(lowercase__ ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = partial(lowercase__ , num_labels=lowercase__ , idalabel=lowercase__ , labelaid=lowercase__ ) __a = { "regnet-x-002": ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type="""x""" ), "regnet-x-004": ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type="""x""" ), "regnet-x-006": ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type="""x""" ), "regnet-x-008": ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type="""x""" ), "regnet-x-016": ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type="""x""" ), "regnet-x-032": ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type="""x""" ), "regnet-x-040": ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type="""x""" ), "regnet-x-064": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type="""x""" ), "regnet-x-080": ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type="""x""" ), "regnet-x-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type="""x""" ), "regnet-x-160": ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type="""x""" ), "regnet-x-320": ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type="""x""" ), # y variant "regnet-y-002": ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), "regnet-y-004": ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), "regnet-y-006": ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), "regnet-y-008": ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), "regnet-y-016": ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), "regnet-y-032": ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), "regnet-y-040": ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), "regnet-y-064": ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), "regnet-y-080": ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), "regnet-y-120": ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), "regnet-y-160": ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), "regnet-y-320": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 "regnet-y-320-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer": RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer": RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer": RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), # finetuned on imagenet "regnet-y-320-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), "regnet-y-640-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), "regnet-y-1280-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), "regnet-y-2560-seer-in1k": ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), "regnet-y-10b-seer-in1k": ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 1_1110, 2_8280] , groups_width=1010 ), } __a = NameToOurModelFuncMap() __a = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Callable[[], nn.Module] ) -> Tuple[nn.Module, Dict]: __a = torch.hub.load_state_dict_from_url(lowercase__ , model_dir=str(lowercase__ ) , map_location="""cpu""" ) __a = model_func() # check if we have a head, if yes add it __a = files["classy_state_dict"]["base_model"]["model"] __a = model_state_dict["trunk"] model.load_state_dict(lowercase__ ) return model.eval(), model_state_dict["heads"] # pretrained __a = partial( lowercase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __a = partial( lowercase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __a = partial( lowercase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __a = partial( lowercase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned __a = partial( lowercase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __a = partial( lowercase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __a = partial( lowercase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch""" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __a = partial( lowercase__ , """https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch""" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( lowercase__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , lowercase__ , lowercase__ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowercase__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , lowercase__ , lowercase__ , lowercase__ , ) return config, expected_shape if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported regnet* architecture,""" """ currently: regnetx-*, regnety-*. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
225
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/git-base": "https://huggingface.co/microsoft/git-base/resolve/main/config.json", } class lowerCamelCase__ ( lowerCamelCase_ ): a__ : Optional[Any] = """git_vision_model""" def __init__( self , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=3_072 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=224 , SCREAMING_SNAKE_CASE=16 , SCREAMING_SNAKE_CASE="quick_gelu" , SCREAMING_SNAKE_CASE=1E-5 , SCREAMING_SNAKE_CASE=0.0 , SCREAMING_SNAKE_CASE=0.02 , **SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE ) snake_case : Tuple = hidden_size snake_case : Dict = intermediate_size snake_case : Tuple = num_hidden_layers snake_case : Any = num_attention_heads snake_case : Optional[int] = num_channels snake_case : str = patch_size snake_case : str = image_size snake_case : List[Any] = initializer_range snake_case : Union[str, Any] = attention_dropout snake_case : str = layer_norm_eps snake_case : List[Any] = hidden_act @classmethod def lowerCamelCase_ ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" cls._set_token_in_kwargs(SCREAMING_SNAKE_CASE ) snake_case , snake_case : Optional[int] = cls.get_config_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": snake_case : Union[str, Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) class lowerCamelCase__ ( lowerCamelCase_ ): a__ : Union[str, Any] = """git""" def __init__( self , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=30_522 , SCREAMING_SNAKE_CASE=768 , SCREAMING_SNAKE_CASE=6 , SCREAMING_SNAKE_CASE=12 , SCREAMING_SNAKE_CASE=3_072 , SCREAMING_SNAKE_CASE="gelu" , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=0.1 , SCREAMING_SNAKE_CASE=1_024 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1E-12 , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE="absolute" , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=101 , SCREAMING_SNAKE_CASE=102 , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , pad_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if vision_config is None: snake_case : Union[str, Any] = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) snake_case : int = GitVisionConfig(**SCREAMING_SNAKE_CASE ) snake_case : Optional[int] = vocab_size snake_case : str = hidden_size snake_case : Dict = num_hidden_layers snake_case : Tuple = num_attention_heads snake_case : Tuple = hidden_act snake_case : Optional[int] = intermediate_size snake_case : Any = hidden_dropout_prob snake_case : int = attention_probs_dropout_prob snake_case : str = max_position_embeddings snake_case : Optional[int] = initializer_range snake_case : Union[str, Any] = layer_norm_eps snake_case : List[str] = position_embedding_type snake_case : Tuple = use_cache snake_case : Optional[Any] = tie_word_embeddings snake_case : Tuple = num_image_with_embedding snake_case : Tuple = bos_token_id snake_case : Union[str, Any] = eos_token_id def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[str] = copy.deepcopy(self.__dict__ ) snake_case : List[str] = self.vision_config.to_dict() snake_case : Any = self.__class__.model_type return output
134
0
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { 'configuration_cpmant': ['CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CpmAntConfig'], 'tokenization_cpmant': ['CpmAntTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST', 'CpmAntForCausalLM', 'CpmAntModel', 'CpmAntPreTrainedModel', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
714
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class lowercase__( UpperCAmelCase , unittest.TestCase ): """simple docstring""" a :List[Any] = RoFormerTokenizer a :Any = RoFormerTokenizerFast a :List[str] = True a :List[Any] = True def _lowercase ( self : str ) -> Any: super().setUp() def _lowercase ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[str]: return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Tuple , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Union[str, Any]: return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Union[str, Any] ) -> List[str]: lowercase_ = '''永和服装饰品有限公司,今天天气非常好''' lowercase_ = '''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def _lowercase ( self : Any ) -> Any: lowercase_ = self.get_tokenizer() lowercase_ , lowercase_ = self.get_chinese_input_output_texts() lowercase_ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , output_text.split() ) lowercase_ = tokens + [tokenizer.unk_token] lowercase_ = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : int ) -> Dict: lowercase_ = self.get_rust_tokenizer() lowercase_ , lowercase_ = self.get_chinese_input_output_texts() lowercase_ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , output_text.split() ) lowercase_ = tokens + [tokenizer.unk_token] lowercase_ = [2_2_9_4_3, 2_1_3_3_2, 3_4_4_3_1, 4_5_9_0_4, 1_1_7, 3_0_6, 1_2_3_1, 1_2_3_1, 2_6_5_3, 3_3_9_9_4, 1_2_6_6, 1_0_0] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Tuple ) -> Union[str, Any]: pass def _lowercase ( self : Dict ) -> Optional[int]: pass def _lowercase ( self : Tuple ) -> str: pass
409
0
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" def _a ( self ): UpperCamelCase_: Union[str, Any] = 'ylacombe/bark-small' UpperCamelCase_: Optional[int] = tempfile.mkdtemp() UpperCamelCase_: Dict = 'en_speaker_1' UpperCamelCase_: List[Any] = 'This is a test string' UpperCamelCase_: Tuple = 'speaker_embeddings_path.json' UpperCamelCase_: Tuple = 'speaker_embeddings' def _a ( self , **_lowerCamelCase ): return AutoTokenizer.from_pretrained(self.checkpoint , **_lowerCamelCase ) def _a ( self ): shutil.rmtree(self.tmpdirname ) def _a ( self ): UpperCamelCase_: int = self.get_tokenizer() UpperCamelCase_: Dict = BarkProcessor(tokenizer=_lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase_: Optional[Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def _a ( self ): UpperCamelCase_: Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCamelCase_: Optional[int] = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCamelCase_: Optional[int] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def _a ( self ): UpperCamelCase_: Union[str, Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCamelCase_: int = 3_5 UpperCamelCase_: Optional[int] = 2 UpperCamelCase_: int = 8 UpperCamelCase_: Union[str, Any] = { 'semantic_prompt': np.ones(_lowerCamelCase ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCamelCase_: Dict = processor(text=self.input_string , voice_preset=_lowerCamelCase ) UpperCamelCase_: str = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowerCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCamelCase_: Tuple = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(_lowerCamelCase , **_lowerCamelCase ) UpperCamelCase_: List[Any] = processor(text=self.input_string , voice_preset=_lowerCamelCase ) UpperCamelCase_: Tuple = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_lowerCamelCase , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCamelCase_: int = processor(text=self.input_string , voice_preset=self.voice_preset ) def _a ( self ): UpperCamelCase_: Tuple = self.get_tokenizer() UpperCamelCase_: str = BarkProcessor(tokenizer=_lowerCamelCase ) UpperCamelCase_: List[str] = processor(text=self.input_string ) UpperCamelCase_: List[Any] = tokenizer( self.input_string , padding='max_length' , max_length=2_5_6 , add_special_tokens=_lowerCamelCase , return_attention_mask=_lowerCamelCase , return_token_type_ids=_lowerCamelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
57
'''simple docstring''' from __future__ import annotations from functools import lru_cache from math import ceil UpperCAmelCase__ = 1_0_0 UpperCAmelCase__ = set(range(3, NUM_PRIMES, 2)) primes.add(2) UpperCAmelCase__ = 42 for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : int ): """simple docstring""" if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} __A= set() __A= 42 __A= 42 for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCAmelCase__( _SCREAMING_SNAKE_CASE : int = 5000 ): """simple docstring""" for number_to_partition in range(1,_SCREAMING_SNAKE_CASE ): if len(partition(_SCREAMING_SNAKE_CASE ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F"""{solution() = }""")
186
0
import argparse import os import re _A = 'src/diffusers' # Pattern that looks at the indentation in a line. _A = re.compile(r'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. _A = re.compile(r'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _A = re.compile(r'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. _A = re.compile(r'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _A = re.compile(r'\[([^\]]+)\]') def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Any ) -> List[Any]: """simple docstring""" a_ = _re_indent.search(UpperCamelCase ) return "" if search is None else search.groups()[0] def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Optional[Any] , UpperCamelCase : List[Any]="" , UpperCamelCase : int=None , UpperCamelCase : Dict=None ) -> List[str]: """simple docstring""" a_ = 0 a_ = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(UpperCamelCase ): index += 1 a_ = ["""\n""".join(lines[:index] )] else: a_ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). a_ = [lines[index]] index += 1 while index < len(UpperCamelCase ) and (end_prompt is None or not lines[index].startswith(UpperCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(UpperCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(UpperCamelCase ) ) if index < len(UpperCamelCase ) - 1: a_ = [lines[index + 1]] index += 1 else: a_ = [] else: blocks.append("""\n""".join(UpperCamelCase ) ) a_ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(UpperCamelCase ) > 0: blocks.append("""\n""".join(UpperCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(UpperCamelCase ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" def _inner(UpperCamelCase : Optional[int] ): return key(UpperCamelCase ).lower().replace("""_""" , """""" ) return _inner def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any]=None ) -> Union[str, Any]: """simple docstring""" def noop(UpperCamelCase : Tuple ): return x if key is None: a_ = noop # Constants are all uppercase, they go first. a_ = [obj for obj in objects if key(UpperCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. a_ = [obj for obj in objects if key(UpperCamelCase )[0].isupper() and not key(UpperCamelCase ).isupper()] # Functions begin with a lowercase, they go last. a_ = [obj for obj in objects if not key(UpperCamelCase )[0].isupper()] a_ = ignore_underscore(UpperCamelCase ) return sorted(UpperCamelCase , key=UpperCamelCase ) + sorted(UpperCamelCase , key=UpperCamelCase ) + sorted(UpperCamelCase , key=UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : List[str] ) -> List[str]: """simple docstring""" def _replace(UpperCamelCase : Tuple ): a_ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" a_ = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: a_ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(UpperCamelCase )] ) + "]" a_ = import_statement.split("""\n""" ) if len(UpperCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. a_ = 2 if lines[1].strip() == """[""" else 1 a_ = [(i, _re_strip_line.search(UpperCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] a_ = sort_objects(UpperCamelCase , key=lambda UpperCamelCase : x[1] ) a_ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(UpperCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: a_ = _re_bracket_content.sub(_replace , lines[1] ) else: a_ = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: a_ = keys[:-1] a_ = get_indent(lines[1] ) + """, """.join([F"""\"{k}\"""" for k in sort_objects(UpperCamelCase )] ) return "\n".join(UpperCamelCase ) else: # Finally we have to deal with imports fitting on one line a_ = _re_bracket_content.sub(_replace , UpperCamelCase ) return import_statement def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Union[str, Any] , UpperCamelCase : str=True ) -> Tuple: """simple docstring""" with open(UpperCamelCase , """r""" ) as f: a_ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 a_ = split_code_in_indented_blocks( UpperCamelCase , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(UpperCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. a_ = main_blocks[block_idx] a_ = block.split("""\n""" ) # Get to the start of the imports. a_ = 0 while line_idx < len(UpperCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: a_ = len(UpperCamelCase ) else: line_idx += 1 if line_idx >= len(UpperCamelCase ): continue # Ignore beginning and last line: they don't contain anything. a_ = """\n""".join(block_lines[line_idx:-1] ) a_ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. a_ = split_code_in_indented_blocks(UpperCamelCase , indent_level=UpperCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend a_ = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. a_ = [(pattern.search(UpperCamelCase ).groups()[0] if pattern.search(UpperCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. a_ = [(i, key) for i, key in enumerate(UpperCamelCase ) if key is not None] a_ = [x[0] for x in sorted(UpperCamelCase , key=lambda UpperCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. a_ = 0 a_ = [] for i in range(len(UpperCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: a_ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(UpperCamelCase ) count += 1 # And we put our main block back together with its first and last line. a_ = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(UpperCamelCase ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(UpperCamelCase , """w""" ) as f: f.write("""\n""".join(UpperCamelCase ) ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : List[Any]=True ) -> List[str]: """simple docstring""" a_ = [] for root, _, files in os.walk(UpperCamelCase ): if "__init__.py" in files: a_ = sort_imports(os.path.join(UpperCamelCase , """__init__.py""" ) , check_only=UpperCamelCase ) if result: a_ = [os.path.join(UpperCamelCase , """__init__.py""" )] if len(UpperCamelCase ) > 0: raise ValueError(F"""Would overwrite {len(UpperCamelCase )} files, run `make style`.""" ) if __name__ == "__main__": _A = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') _A = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
403
from typing import Any def __SCREAMING_SNAKE_CASE ( UpperCamelCase : list ) -> list[Any]: """simple docstring""" if not input_list: return [] a_ = [input_list.count(UpperCamelCase ) for value in input_list] a_ = max(UpperCamelCase ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(UpperCamelCase ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
403
1
'''simple docstring''' import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowercase_ ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = "hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline" def __UpperCAmelCase ( self : Any, UpperCamelCase__ : str=0 ) -> int: _A = floats_tensor((1, 3, 1_28, 1_28), rng=random.Random(UpperCamelCase__ ) ) _A = np.random.RandomState(UpperCamelCase__ ) _A = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'strength': 0.75, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: _A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _A = self.get_dummy_inputs() _A = pipe(**UpperCamelCase__ ).images _A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 1_28, 1_28, 3) _A = np.array([0.69_643, 0.58_484, 0.50_314, 0.58_760, 0.55_368, 0.59_643, 0.51_529, 0.41_217, 0.49_087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def __UpperCAmelCase ( self : int ) -> List[Any]: _A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider' ) _A = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _A = self.get_dummy_inputs() _A = pipe(**UpperCamelCase__ ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _A = np.array([0.61_737, 0.54_642, 0.53_183, 0.54_465, 0.52_742, 0.60_525, 0.49_969, 0.40_655, 0.48_154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __UpperCAmelCase ( self : Optional[int] ) -> int: _A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider' ) _A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) # warmup pass to apply optimizations _A = pipe(**self.get_dummy_inputs() ) _A = self.get_dummy_inputs() _A = pipe(**UpperCamelCase__ ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _A = np.array([0.52_761, 0.59_977, 0.49_033, 0.49_619, 0.54_282, 0.50_311, 0.47_600, 0.40_918, 0.45_203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __UpperCAmelCase ( self : str ) -> Tuple: _A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider' ) _A = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _A = self.get_dummy_inputs() _A = pipe(**UpperCamelCase__ ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _A = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: _A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider' ) _A = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _A = self.get_dummy_inputs() _A = pipe(**UpperCamelCase__ ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _A = np.array([0.52_911, 0.60_004, 0.49_229, 0.49_805, 0.54_502, 0.50_680, 0.47_777, 0.41_028, 0.45_304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: _A = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider' ) _A = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _A = self.get_dummy_inputs() _A = pipe(**UpperCamelCase__ ).images _A = image[0, -3:, -3:, -1] assert image.shape == (1, 1_28, 1_28, 3) _A = np.array([0.65_331, 0.58_277, 0.48_204, 0.56_059, 0.53_665, 0.56_235, 0.50_969, 0.40_009, 0.46_552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowercase_ ( unittest.TestCase ): """simple docstring""" @property def __UpperCAmelCase ( self : str ) -> Dict: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCAmelCase ( self : Any ) -> Tuple: _A = ort.SessionOptions() _A = False return options def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) _A = init_image.resize((7_68, 5_12) ) # using the PNDM scheduler by default _A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4', revision='onnx', safety_checker=UpperCamelCase__, feature_extractor=UpperCamelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _A = 'A fantasy landscape, trending on artstation' _A = np.random.RandomState(0 ) _A = pipe( prompt=UpperCamelCase__, image=UpperCamelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=10, generator=UpperCamelCase__, output_type='np', ) _A = output.images _A = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) _A = np.array([0.4_909, 0.5_059, 0.5_372, 0.4_623, 0.4_876, 0.5_049, 0.4_820, 0.4_956, 0.5_019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def __UpperCAmelCase ( self : Optional[int] ) -> Dict: _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) _A = init_image.resize((7_68, 5_12) ) _A = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-v1-5', subfolder='scheduler', revision='onnx' ) _A = OnnxStableDiffusionImgaImgPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5', revision='onnx', scheduler=UpperCamelCase__, safety_checker=UpperCamelCase__, feature_extractor=UpperCamelCase__, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) _A = 'A fantasy landscape, trending on artstation' _A = np.random.RandomState(0 ) _A = pipe( prompt=UpperCamelCase__, image=UpperCamelCase__, strength=0.75, guidance_scale=7.5, num_inference_steps=20, generator=UpperCamelCase__, output_type='np', ) _A = output.images _A = images[0, 2_55:2_58, 3_83:3_86, -1] assert images.shape == (1, 5_12, 7_68, 3) _A = np.array([0.8_043, 0.926, 0.9_581, 0.8_119, 0.8_954, 0.913, 0.7_209, 0.7_463, 0.7_431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
107
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCAmelCase = { '''configuration_gpt_neo''': ['''GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoConfig''', '''GPTNeoOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoForCausalLM''', '''GPTNeoForQuestionAnswering''', '''GPTNeoForSequenceClassification''', '''GPTNeoForTokenClassification''', '''GPTNeoModel''', '''GPTNeoPreTrainedModel''', '''load_tf_weights_in_gpt_neo''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''FlaxGPTNeoForCausalLM''', '''FlaxGPTNeoModel''', '''FlaxGPTNeoPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
84
0
from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Tuple =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[Any] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : int =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[str] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[Any] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : int =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Tuple =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[Any] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Tuple =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[Any] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : int =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[Any] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[Any] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Tuple =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[int] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Optional[int] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] ) class _UpperCamelCase ( metaclass=lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : List[Any] =["""sentencepiece"""] def __init__( self , *__a , **__a ): requires_backends(self , ["sentencepiece"] )
717
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A : Optional[int] = logging.get_logger(__name__) A : List[str] = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class _UpperCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any ="""bit""" __UpperCAmelCase : Optional[int] =["""preactivation""", """bottleneck"""] __UpperCAmelCase : List[str] =["""SAME""", """VALID"""] def __init__( self , __a=3 , __a=64 , __a=[2_56, 5_12, 10_24, 20_48] , __a=[3, 4, 6, 3] , __a="preactivation" , __a="relu" , __a=None , __a=32 , __a=0.0 , __a=False , __a=32 , __a=1 , __a=None , __a=None , **__a , ): super().__init__(**__a ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: __lowerCAmelCase = global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) __lowerCAmelCase = num_channels __lowerCAmelCase = embedding_size __lowerCAmelCase = hidden_sizes __lowerCAmelCase = depths __lowerCAmelCase = layer_type __lowerCAmelCase = hidden_act __lowerCAmelCase = global_padding __lowerCAmelCase = num_groups __lowerCAmelCase = drop_path_rate __lowerCAmelCase = embedding_dynamic_padding __lowerCAmelCase = output_stride __lowerCAmelCase = width_factor __lowerCAmelCase = ["stem"] + [f"stage{idx}" for idx in range(1 , len(__a ) + 1 )] __lowerCAmelCase , __lowerCAmelCase = get_aligned_output_features_output_indices( out_features=__a , out_indices=__a , stage_names=self.stage_names )
282
0
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class A ( UpperCAmelCase__ ): '''simple docstring''' @slow @require_torch def lowerCamelCase__ (self : int ) -> Tuple: """simple docstring""" lowercase__ = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) lowercase__ = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowercase__ = bertabert.config.encoder.vocab_size lowercase__ = tokenizer.sep_token_id lowercase__ = tokenizer.cls_token_id lowercase__ = 128 lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) lowercase__ = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) lowercase__ = train_dataset.select(range(32 ) ) lowercase__ = val_dataset.select(range(16 ) ) lowercase__ = 4 def _map_to_encoder_decoder_inputs(_UpperCAmelCase : Any ): # Tokenizer will automatically set [BOS] <text> [EOS] lowercase__ = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=512 ) lowercase__ = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=_UpperCAmelCase , max_length=128 ) lowercase__ = inputs.input_ids lowercase__ = inputs.attention_mask lowercase__ = outputs.input_ids lowercase__ = outputs.input_ids.copy() lowercase__ = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] lowercase__ = outputs.attention_mask assert all(len(_UpperCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(_UpperCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_UpperCAmelCase : List[Any] ): lowercase__ = pred.label_ids lowercase__ = pred.predictions # all unnecessary tokens are removed lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase ) lowercase__ = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_UpperCAmelCase ) )] ) / len(_UpperCAmelCase ) return {"accuracy": accuracy} # map train dataset lowercase__ = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset lowercase__ = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_UpperCAmelCase , batch_size=_UpperCAmelCase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = SeqaSeqTrainingArguments( output_dir=_UpperCAmelCase , per_device_train_batch_size=_UpperCAmelCase , per_device_eval_batch_size=_UpperCAmelCase , predict_with_generate=_UpperCAmelCase , evaluation_strategy="""steps""" , do_train=_UpperCAmelCase , do_eval=_UpperCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer lowercase__ = SeqaSeqTrainer( model=_UpperCAmelCase , args=_UpperCAmelCase , compute_metrics=_compute_metrics , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , tokenizer=_UpperCAmelCase , ) # start training trainer.train()
15
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer A : Optional[Any] = logging.get_logger(__name__) A : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A : Any = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Dict = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A : Optional[int] = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A : int = { 'facebook/dpr-ctx_encoder-single-nq-base': 5_1_2, 'facebook/dpr-ctx_encoder-multiset-base': 5_1_2, } A : Optional[Any] = { 'facebook/dpr-question_encoder-single-nq-base': 5_1_2, 'facebook/dpr-question_encoder-multiset-base': 5_1_2, } A : Any = { 'facebook/dpr-reader-single-nq-base': 5_1_2, 'facebook/dpr-reader-multiset-base': 5_1_2, } A : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A : Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRContextEncoderTokenizer class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP A__ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ = DPRQuestionEncoderTokenizer A : Any = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) A : Optional[Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) A : int = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(UpperCAmelCase__ ) class A : '''simple docstring''' def __call__(self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Union[bool, str] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[bool] = None , **_UpperCAmelCase : Any , ) -> BatchEncoding: """simple docstring""" if titles is None and texts is None: return super().__call__( _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) elif titles is None or texts is None: lowercase__ = titles if texts is None else texts return super().__call__( _UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = titles if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [titles] lowercase__ = texts if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [texts] lowercase__ = len(_UpperCAmelCase ) lowercase__ = questions if not isinstance(_UpperCAmelCase , _UpperCAmelCase ) else [questions] * n_passages assert len(_UpperCAmelCase ) == len( _UpperCAmelCase ), f'''There should be as many titles than texts but got {len(_UpperCAmelCase )} titles and {len(_UpperCAmelCase )} texts.''' lowercase__ = super().__call__(_UpperCAmelCase , _UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = super().__call__(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase )["""input_ids"""] lowercase__ = { """input_ids""": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_UpperCAmelCase , _UpperCAmelCase ) ] } if return_attention_mask is not False: lowercase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowercase__ = attention_mask return self.pad(_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : BatchEncoding , _UpperCAmelCase : DPRReaderOutput , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 4 , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = reader_input["""input_ids"""] lowercase__ , lowercase__ , lowercase__ = reader_output[:3] lowercase__ = len(_UpperCAmelCase ) lowercase__ = sorted(range(_UpperCAmelCase ) , reverse=_UpperCAmelCase , key=relevance_logits.__getitem__ ) lowercase__ = [] for doc_id in sorted_docs: lowercase__ = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowercase__ = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowercase__ = sequence_ids.index(self.pad_token_id ) else: lowercase__ = len(_UpperCAmelCase ) lowercase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_UpperCAmelCase , top_spans=_UpperCAmelCase , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_UpperCAmelCase , start_index=_UpperCAmelCase , end_index=_UpperCAmelCase , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_UpperCAmelCase ) >= num_spans: break return nbest_spans_predictions[:num_spans] def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : int , _UpperCAmelCase : int , ) -> List[DPRSpanPrediction]: """simple docstring""" lowercase__ = [] for start_index, start_score in enumerate(_UpperCAmelCase ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowercase__ = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) lowercase__ = [] for (start_index, end_index), score in scores: assert start_index <= end_index, f'''Wrong span indices: [{start_index}:{end_index}]''' lowercase__ = end_index - start_index + 1 assert length <= max_answer_length, f'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_UpperCAmelCase ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCAmelCase__ ) class A ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = READER_PRETRAINED_VOCAB_FILES_MAP A__ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = READER_PRETRAINED_INIT_CONFIGURATION A__ = ['''input_ids''', '''attention_mask'''] A__ = DPRReaderTokenizer
15
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class lowercase__ : a_ =PegasusConfig a_ ={} a_ ="""gelu""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=40 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = eos_token_id lowerCAmelCase__ = pad_token_id lowerCAmelCase__ = bos_token_id def UpperCAmelCase ( self )-> Tuple: '''simple docstring''' lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCAmelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCAmelCase__ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowerCAmelCase__ = prepare_pegasus_inputs_dict(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase )-> List[Any]: '''simple docstring''' lowerCAmelCase__ = TFPegasusModel(config=__UpperCAmelCase ).get_decoder() lowerCAmelCase__ = inputs_dict["input_ids"] lowerCAmelCase__ = input_ids[:1, :] lowerCAmelCase__ = inputs_dict["attention_mask"][:1, :] lowerCAmelCase__ = inputs_dict["head_mask"] lowerCAmelCase__ = 1 # first forward pass lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , head_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCAmelCase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCAmelCase__ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCAmelCase__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )[0] lowerCAmelCase__ = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCAmelCase__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCAmelCase__ = output_from_no_past[:, -3:, random_slice_idx] lowerCAmelCase__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCAmelCase , __UpperCAmelCase , rtol=1E-3 ) def _a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any=None , UpperCamelCase_ : int=None , UpperCamelCase_ : str=None , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : int=None , ) -> int: """simple docstring""" if attention_mask is None: lowerCAmelCase__ = tf.cast(tf.math.not_equal(UpperCamelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: lowerCAmelCase__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: lowerCAmelCase__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: lowerCAmelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: lowerCAmelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase__ ( _UpperCAmelCase, _UpperCAmelCase, unittest.TestCase ): a_ =(TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () a_ =(TFPegasusForConditionalGeneration,) if is_tf_available() else () a_ =( { """conversational""": TFPegasusForConditionalGeneration, """feature-extraction""": TFPegasusModel, """summarization""": TFPegasusForConditionalGeneration, """text2text-generation""": TFPegasusForConditionalGeneration, """translation""": TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) a_ =True a_ =False a_ =False def UpperCAmelCase ( self )-> Any: '''simple docstring''' lowerCAmelCase__ = TFPegasusModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase ) def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self )-> Optional[int]: '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCAmelCase ) @require_sentencepiece @require_tokenizers @require_tf class lowercase__ ( unittest.TestCase ): a_ =[ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] a_ =[ """California's largest electricity provider has cut power to hundreds of thousands of customers in an effort to""" """ reduce the risk of wildfires.""", """N-Dubz have revealed they\'re \"grateful\" to have been nominated for four Mobo Awards.""", ] # differs slightly from pytorch, likely due to numerical differences in linear layers a_ ="""google/pegasus-xsum""" @cached_property def UpperCAmelCase ( self )-> Any: '''simple docstring''' return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase ( self )-> Dict: '''simple docstring''' lowerCAmelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def UpperCAmelCase ( self , **__UpperCAmelCase )-> int: '''simple docstring''' lowerCAmelCase__ = self.translate_src_text(**__UpperCAmelCase ) assert self.expected_text == generated_words def UpperCAmelCase ( self , **__UpperCAmelCase )-> Dict: '''simple docstring''' lowerCAmelCase__ = self.tokenizer(self.src_text , **__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors="tf" ) lowerCAmelCase__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__UpperCAmelCase , ) lowerCAmelCase__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__UpperCAmelCase ) return generated_words @slow def UpperCAmelCase ( self )-> Dict: '''simple docstring''' self._assert_generated_batch_equal_expected()
714
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor a_ = logging.getLogger(__name__) a_ = 50 # max width of layer names a_ = 70 # max width of quantizer names def _a ( UpperCamelCase_ : str ) -> List[str]: """simple docstring""" lowerCAmelCase__ = parser.add_argument_group("quant_trainer arguments" ) group.add_argument("--wprec" , type=UpperCamelCase_ , default=8 , help="weight precision" ) group.add_argument("--aprec" , type=UpperCamelCase_ , default=8 , help="activation precision" ) group.add_argument("--quant-per-tensor" , action="store_true" , help="per tensor weight scaling" ) group.add_argument("--quant-disable" , action="store_true" , help="disable all quantizers" ) group.add_argument("--quant-disable-embeddings" , action="store_true" , help="disable all embeddings quantizers" ) group.add_argument("--quant-disable-keyword" , type=UpperCamelCase_ , nargs="+" , help="disable quantizers by keyword" ) group.add_argument("--quant-disable-layer-module" , type=UpperCamelCase_ , help="disable quantizers by keyword under layer." ) group.add_argument("--quant-enable-layer-module" , type=UpperCamelCase_ , help="enable quantizers by keyword under layer" ) group.add_argument("--calibrator" , default="max" , help="which quantization range calibrator to use" ) group.add_argument("--percentile" , default=UpperCamelCase_ , type=UpperCamelCase_ , help="percentile for PercentileCalibrator" ) group.add_argument("--fuse-qkv" , action="store_true" , help="use the same scale factor for qkv" ) group.add_argument("--clip-gelu" , metavar="N" , type=UpperCamelCase_ , help="clip gelu output maximum value to N" ) group.add_argument( "--recalibrate-weights" , action="store_true" , help=( "recalibrate weight amaxes by taking the max of the weights." " amaxes will be computed with the current quantization granularity (axis)." ) , ) def _a ( UpperCamelCase_ : int ) -> List[Any]: """simple docstring""" if args.calibrator == "max": lowerCAmelCase__ = "max" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("Specify --percentile when using percentile calibrator" ) lowerCAmelCase__ = "histogram" elif args.calibrator == "mse": lowerCAmelCase__ = "histogram" else: raise ValueError(F"Invalid calibrator {args.calibrator}" ) lowerCAmelCase__ = QuantDescriptor(num_bits=args.aprec , calib_method=UpperCamelCase_ ) lowerCAmelCase__ = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(UpperCamelCase_ ) quant_nn.QuantLinear.set_default_quant_desc_weight(UpperCamelCase_ ) def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any=False , UpperCamelCase_ : List[Any]=False ) -> Any: """simple docstring""" logger.info("Configuring Model for Quantization" ) logger.info(F"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(UpperCamelCase_ , ["embeddings"] , which="weight" , _disabled=UpperCamelCase_ ) if args.quant_disable: set_quantizer_by_name(UpperCamelCase_ , [""] , _disabled=UpperCamelCase_ ) if args.quant_disable_keyword: set_quantizer_by_name(UpperCamelCase_ , args.quant_disable_keyword , _disabled=UpperCamelCase_ ) if args.quant_disable_layer_module: set_quantizer_by_name(UpperCamelCase_ , [R"layer.\d+." + args.quant_disable_layer_module] , _disabled=UpperCamelCase_ ) if args.quant_enable_layer_module: set_quantizer_by_name(UpperCamelCase_ , [R"layer.\d+." + args.quant_enable_layer_module] , _disabled=UpperCamelCase_ ) if args.recalibrate_weights: recalibrate_weights(UpperCamelCase_ ) if args.fuse_qkv: fuse_qkv(UpperCamelCase_ , UpperCamelCase_ ) if args.clip_gelu: clip_gelu(UpperCamelCase_ , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(UpperCamelCase_ ) def _a ( UpperCamelCase_ : Union[str, Any] ) -> Tuple: """simple docstring""" logger.info("Enabling Calibration" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:80}: {module}" ) def _a ( UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple ) -> str: """simple docstring""" logger.info("Loading calibrated amax" ) for name, module in model.named_modules(): if name.endswith("_quantizer" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("percentile" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(UpperCamelCase_ ) def _a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int ) -> int: """simple docstring""" def fusea(UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] ): for mod in [qq, qk, qv]: if not hasattr(UpperCamelCase_ , "_amax" ): print(" WARNING: NO AMAX BUFFER" ) return lowerCAmelCase__ = qq._amax.detach().item() lowerCAmelCase__ = qk._amax.detach().item() lowerCAmelCase__ = qv._amax.detach().item() lowerCAmelCase__ = max(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) qq._amax.fill_(UpperCamelCase_ ) qk._amax.fill_(UpperCamelCase_ ) qv._amax.fill_(UpperCamelCase_ ) logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith(".attention.self" ): logger.info(F"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _a ( UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" for name, mod in model.named_modules(): if name.endswith(".output.dense" ) and not name.endswith("attention.output.dense" ): lowerCAmelCase__ = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=UpperCamelCase_ ) lowerCAmelCase__ = mod._input_quantizer._amax.data.detach().item() logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def _a ( UpperCamelCase_ : str ) -> int: """simple docstring""" for name, mod in model.named_modules(): if hasattr(UpperCamelCase_ , "_weight_quantizer" ) and mod._weight_quantizer.axis is not None: lowerCAmelCase__ = mod.weight.shape[0] lowerCAmelCase__ = mod._weight_quantizer._amax.detach() lowerCAmelCase__ = torch.ones(UpperCamelCase_ , dtype=amax.dtype , device=amax.device ) * amax print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def _a ( UpperCamelCase_ : Any ) -> Optional[int]: """simple docstring""" for name, mod in model.named_modules(): if hasattr(UpperCamelCase_ , "_weight_quantizer" ): if not hasattr(mod.weight_quantizer , "_amax" ): print("RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) lowerCAmelCase__ = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) lowerCAmelCase__ = set(range(len(mod.weight.size() ) ) ) - axis_set lowerCAmelCase__ = pytorch_quantization.utils.reduce_amax(mod.weight , axis=UpperCamelCase_ , keepdims=UpperCamelCase_ ).detach() logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) lowerCAmelCase__ = amax def _a ( UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any]=25 , UpperCamelCase_ : str=180 , UpperCamelCase_ : Optional[int]=None ) -> Tuple: """simple docstring""" if ignore is None: lowerCAmelCase__ = [] elif not isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase__ = [ignore] lowerCAmelCase__ = 0 for name, mod in model.named_modules(): if not hasattr(UpperCamelCase_ , "weight" ): continue lowerCAmelCase__ = max(UpperCamelCase_ , len(UpperCamelCase_ ) ) for name, mod in model.named_modules(): lowerCAmelCase__ = getattr(UpperCamelCase_ , "_input_quantizer" , UpperCamelCase_ ) lowerCAmelCase__ = getattr(UpperCamelCase_ , "_weight_quantizer" , UpperCamelCase_ ) if not hasattr(UpperCamelCase_ , "weight" ): continue if type(UpperCamelCase_ ) in ignore: continue if [True for s in ignore if type(UpperCamelCase_ ) is str and s in name]: continue lowerCAmelCase__ = F"Act:{input_q.extra_repr()}" lowerCAmelCase__ = F"Wgt:{weight_q.extra_repr()}" lowerCAmelCase__ = F"{name:{name_width}} {act_str} {wgt_str}" if len(UpperCamelCase_ ) <= line_width: logger.info(UpperCamelCase_ ) else: logger.info(F"{name:{name_width}} {act_str}" ) logger.info(F"{' ':{name_width}} {wgt_str}" ) def _a ( UpperCamelCase_ : str ) -> Dict: """simple docstring""" lowerCAmelCase__ = 0 for name, mod in model.named_modules(): if isinstance(UpperCamelCase_ , pytorch_quantization.nn.TensorQuantizer ): print(F"{name:80} {mod}" ) count += 1 print(F"{count} TensorQuantizers found in model" ) def _a ( UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : int ) -> Tuple: """simple docstring""" lowerCAmelCase__ = getattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if quantizer_mod is not None: assert hasattr(UpperCamelCase_ , UpperCamelCase_ ) setattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: logger.warning(F"{name} has no {quantizer}" ) def _a ( UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Union[str, Any]="both" , **UpperCamelCase_ : Dict ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = F"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += F" {k}={v}" if which in ["input", "both"]: set_quantizer(UpperCamelCase_ , UpperCamelCase_ , "_input_quantizer" , UpperCamelCase_ , UpperCamelCase_ ) if which in ["weight", "both"]: set_quantizer(UpperCamelCase_ , UpperCamelCase_ , "_weight_quantizer" , UpperCamelCase_ , UpperCamelCase_ ) logger.info(UpperCamelCase_ ) def _a ( UpperCamelCase_ : str , UpperCamelCase_ : List[Any] , **UpperCamelCase_ : Any ) -> Any: """simple docstring""" for name, mod in model.named_modules(): if hasattr(UpperCamelCase_ , "_input_quantizer" ) or hasattr(UpperCamelCase_ , "_weight_quantizer" ): for n in names: if re.search(UpperCamelCase_ , UpperCamelCase_ ): set_quantizers(UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) elif name.endswith("_quantizer" ): for n in names: if re.search(UpperCamelCase_ , UpperCamelCase_ ): lowerCAmelCase__ = F"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += F" {k}={v}" setattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) logger.info(UpperCamelCase_ )
115
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase_ ( a_ , unittest.TestCase ): _lowercase : Union[str, Any] = OpenAIGPTTokenizer _lowercase : Union[str, Any] = OpenAIGPTTokenizerFast _lowercase : Tuple = True _lowercase : Optional[Any] = False def lowerCAmelCase_ ( self : Any ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __A : List[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'w</w>', 'r</w>', 't</w>', 'lo', 'low', 'er</w>', 'low</w>', 'lowest</w>', 'newer</w>', 'wider</w>', '<unk>', ] __A : int = dict(zip(__A , range(len(__A ) ) ) ) __A : Dict = ['#version: 0.2', 'l o', 'lo w', 'e r</w>', ''] __A : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __A : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(__A ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(__A ) ) def lowerCAmelCase_ ( self : Any , __A : Optional[Any] ): return "lower newer", "lower newer" def lowerCAmelCase_ ( self : Optional[int] ): __A : Tuple = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) __A : int = 'lower' __A : Any = ['low', 'er</w>'] __A : Optional[Any] = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) __A : Optional[Any] = tokens + ['<unk>'] __A : Optional[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__A ) , __A ) def lowerCAmelCase_ ( self : Any , __A : Tuple=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): __A : Optional[Any] = self.rust_tokenizer_class.from_pretrained(__A , **__A ) # Simple input __A : Dict = 'This is a simple input' __A : Dict = ['This is a simple input 1', 'This is a simple input 2'] __A : Any = ('This is a simple input', 'This is a pair') __A : int = [ ('This is a simple input 1', 'This is a simple input 2'), ('This is a simple pair 1', 'This is a simple pair 2'), ] # Simple input tests self.assertRaises(__A , tokenizer_r.encode , __A , max_length=__A , padding="""max_length""" ) # Simple input self.assertRaises(__A , tokenizer_r.encode_plus , __A , max_length=__A , padding="""max_length""" ) # Simple input self.assertRaises( __A , tokenizer_r.batch_encode_plus , __A , max_length=__A , padding="""max_length""" , ) # Pair input self.assertRaises(__A , tokenizer_r.encode , __A , max_length=__A , padding="""max_length""" ) # Pair input self.assertRaises(__A , tokenizer_r.encode_plus , __A , max_length=__A , padding="""max_length""" ) # Pair input self.assertRaises( __A , tokenizer_r.batch_encode_plus , __A , max_length=__A , padding="""max_length""" , ) def lowerCAmelCase_ ( self : Any ): pass @require_ftfy @require_spacy @require_tokenizers class lowerCamelCase_ ( a_ ): pass
17
'''simple docstring''' from math import factorial def lowerCAmelCase__ ( lowerCamelCase : int ,lowerCamelCase : int ,lowerCamelCase : float ): if successes > trials: raise ValueError('successes must be lower or equal to trials' ) if trials < 0 or successes < 0: raise ValueError('the function is defined for non-negative integers' ) if not isinstance(lowerCamelCase ,lowerCamelCase ) or not isinstance(lowerCamelCase ,lowerCamelCase ): raise ValueError('the function is defined for non-negative integers' ) if not 0 < prob < 1: raise ValueError('prob has to be in range of 1 - 0' ) _A : str = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _A : Any = float(factorial(lowerCamelCase ) ) coefficient /= factorial(lowerCamelCase ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
128
0
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss UpperCamelCase__ : List[Any] = pytest.mark.integration @require_faiss class _UpperCamelCase ( __lowercase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' UpperCAmelCase_ = Dataset.from_dict({"""filename""": ["""my_name-train""" + """_""" + str(__lowercase ) for x in np.arange(30 ).tolist()]} ) return dset def SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' import faiss UpperCAmelCase_ = self._create_dummy_dataset() UpperCAmelCase_ = dset.map( lambda __lowercase , __lowercase : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=__lowercase , keep_in_memory=__lowercase ) UpperCAmelCase_ = dset.add_faiss_index("""vecs""" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCAmelCase_ = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) dset.drop_index("""vecs""" ) def SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' import faiss UpperCAmelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , batch_size=1_00 , metric_type=faiss.METRIC_INNER_PRODUCT , ) UpperCAmelCase_ = dset.get_nearest_examples("""vecs""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' import faiss UpperCAmelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowercase ) as tmp_file: dset.save_faiss_index("""vecs""" , tmp_file.name ) dset.load_faiss_index("""vecs2""" , tmp_file.name ) os.unlink(tmp_file.name ) UpperCAmelCase_ = dset.get_nearest_examples("""vecs2""" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="""vecs""" ) dset.drop_index("""vecs""" ) self.assertRaises(__lowercase , partial(dset.get_nearest_examples , """vecs2""" , np.ones(5 , dtype=np.floataa ) ) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' from elasticsearch import Elasticsearch UpperCAmelCase_ = self._create_dummy_dataset() with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: UpperCAmelCase_ = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) UpperCAmelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} UpperCAmelCase_ = Elasticsearch() dset.add_elasticsearch_index("""filename""" , es_client=__lowercase ) UpperCAmelCase_ = dset.get_nearest_examples("""filename""" , """my_name-train_29""" ) self.assertEqual(examples["""filename"""][0] , """my_name-train_29""" ) @require_faiss class _UpperCamelCase ( __lowercase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' import faiss UpperCAmelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query UpperCAmelCase_ = np.zeros(5 , dtype=np.floataa ) UpperCAmelCase_ = 1 UpperCAmelCase_ = index.search(__lowercase ) self.assertRaises(__lowercase , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries UpperCAmelCase_ = np.eye(5 , dtype=np.floataa )[::-1] UpperCAmelCase_ = index.search_batch(__lowercase ) self.assertRaises(__lowercase , index.search_batch , queries[0] ) UpperCAmelCase_ = [scores[0] for scores in total_scores] UpperCAmelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowercase ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , __lowercase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' import faiss UpperCAmelCase_ = FaissIndex(string_factory="""Flat""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) UpperCAmelCase_ = FaissIndex(string_factory="""LSH""" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(__lowercase ): UpperCAmelCase_ = FaissIndex(string_factory="""Flat""" , custom_index=faiss.IndexFlat(5 ) ) def SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' import faiss UpperCAmelCase_ = faiss.IndexFlat(5 ) UpperCAmelCase_ = FaissIndex(custom_index=__lowercase ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' import faiss UpperCAmelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=__lowercase ) as tmp_file: index.save(tmp_file.name ) UpperCAmelCase_ = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) UpperCAmelCase_ = np.zeros(5 , dtype=np.floataa ) UpperCAmelCase_ = 1 UpperCAmelCase_ = index.search(__lowercase ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def A_( A ): import faiss UpperCAmelCase_ = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) UpperCAmelCase_ = "index.faiss" UpperCAmelCase_ = f"""mock://{index_name}""" index.save(_lowerCamelCase , storage_options=mockfs.storage_options ) UpperCAmelCase_ = FaissIndex.load(_lowerCamelCase , storage_options=mockfs.storage_options ) UpperCAmelCase_ = np.zeros(5 , dtype=np.floataa ) UpperCAmelCase_ = 1 UpperCAmelCase_ = index.search(_lowerCamelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _UpperCamelCase ( __lowercase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' from elasticsearch import Elasticsearch with patch("""elasticsearch.Elasticsearch.search""" ) as mocked_search, patch( """elasticsearch.client.IndicesClient.create""" ) as mocked_index_create, patch("""elasticsearch.helpers.streaming_bulk""" ) as mocked_bulk: UpperCAmelCase_ = Elasticsearch() UpperCAmelCase_ = {"acknowledged": True} UpperCAmelCase_ = ElasticSearchIndex(es_client=__lowercase ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["""foo""", """bar""", """foobar"""] ) # single query UpperCAmelCase_ = "foo" UpperCAmelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} UpperCAmelCase_ = index.search(__lowercase ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout UpperCAmelCase_ = "foo" UpperCAmelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} UpperCAmelCase_ = index.search(__lowercase , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries UpperCAmelCase_ = ["foo", "bar", "foobar"] UpperCAmelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} UpperCAmelCase_ = index.search_batch(__lowercase ) UpperCAmelCase_ = [scores[0] for scores in total_scores] UpperCAmelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowercase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowercase ) # batched queries with timeout UpperCAmelCase_ = ["foo", "bar", "foobar"] UpperCAmelCase_ = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} UpperCAmelCase_ = index.search_batch(__lowercase , request_timeout=30 ) UpperCAmelCase_ = [scores[0] for scores in total_scores] UpperCAmelCase_ = [indices[0] for indices in total_indices] self.assertGreater(np.min(__lowercase ) , 0 ) self.assertListEqual([1, 1, 1] , __lowercase )
706
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class _UpperCamelCase ( A_ ): '''simple docstring''' lowerCamelCase : Union[List[PIL.Image.Image], np.ndarray] lowerCamelCase : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class _UpperCamelCase ( A_ ): '''simple docstring''' lowerCamelCase : np.ndarray lowerCamelCase : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
486
0
"""simple docstring""" from math import ceil def _snake_case ( __snake_case : int = 1001 ): """simple docstring""" _lowerCamelCase : Dict = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): _lowerCamelCase : List[str] = 2 * i + 1 _lowerCamelCase : Optional[Any] = 2 * i _lowerCamelCase : int = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print("""Invalid entry - please enter a number""")
88
def _lowerCAmelCase ( _lowerCAmelCase = 100 ) -> int: '''simple docstring''' __snake_case = n * (n + 1) * (2 * n + 1) / 6 __snake_case = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(f'''{solution() = }''')
371
0
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[int] = 10 def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = [1, 2, 3, 4] __a : Union[str, Any] = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__UpperCamelCase , self.block_size , 0 ) , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] __a : Dict = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__UpperCamelCase , self.block_size , 0 ) , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] __a : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__UpperCamelCase , self.block_size , 0 ) , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = """It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.""" __a , __a : str = process_story(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , [] ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Tuple = """""" __a , __a : List[Any] = process_story(__UpperCamelCase ) self.assertEqual(__UpperCamelCase , [] ) self.assertEqual(__UpperCamelCase , [] ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = ( """It was the year of Our Lord one thousand seven hundred and """ """seventy-five\n\nSpiritual revelations were conceded to England """ """at that favoured period, as at this.\n@highlight\n\nIt was the best of times""" ) __a , __a : Optional[int] = process_story(__UpperCamelCase ) __a : Any = [ """It was the year of Our Lord one thousand seven hundred and seventy-five.""", """Spiritual revelations were conceded to England at that favoured period, as at this.""", ] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) __a : Dict = ["""It was the best of times."""] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Dict = torch.tensor([1, 2, 3, 4] ) __a : Union[str, Any] = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__UpperCamelCase , 0 ).numpy() , expected.numpy() ) def __lowerCamelCase ( self ): '''simple docstring''' __a : str = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) __a : int = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCamelCase , 23 ).numpy() , expected.numpy() ) def __lowerCamelCase ( self ): '''simple docstring''' __a : Union[str, Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __a : List[Any] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__UpperCamelCase , 1 ).numpy() , expected.numpy() ) def __lowerCamelCase ( self ): '''simple docstring''' __a : List[Any] = 101 __a : str = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) __a : Optional[Any] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __a : Union[str, Any] = compute_token_type_ids(__UpperCamelCase , __UpperCamelCase ) np.testing.assert_array_equal(__UpperCamelCase , __UpperCamelCase )
697
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __SCREAMING_SNAKE_CASE : List[str] = { 'configuration_blenderbot_small': [ 'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BlenderbotSmallConfig', 'BlenderbotSmallOnnxConfig', ], 'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Union[str, Any] = ['BlenderbotSmallTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : List[str] = [ 'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST', 'BlenderbotSmallForCausalLM', 'BlenderbotSmallForConditionalGeneration', 'BlenderbotSmallModel', 'BlenderbotSmallPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[int] = [ 'TFBlenderbotSmallForConditionalGeneration', 'TFBlenderbotSmallModel', 'TFBlenderbotSmallPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE : Optional[Any] = [ 'FlaxBlenderbotSmallForConditionalGeneration', 'FlaxBlenderbotSmallModel', 'FlaxBlenderbotSmallPreTrainedModel', ] if TYPE_CHECKING: from .configuration_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotSmallConfig, BlenderbotSmallOnnxConfig, ) from .tokenization_blenderbot_small import BlenderbotSmallTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot_small import ( BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotSmallForCausalLM, BlenderbotSmallForConditionalGeneration, BlenderbotSmallModel, BlenderbotSmallPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot_small import ( TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel, TFBlenderbotSmallPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, FlaxBlenderbotSmallPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
697
1
def _A ( SCREAMING_SNAKE_CASE ): return str(lowercase__ ) == str(lowercase__ )[::-1] def _A ( SCREAMING_SNAKE_CASE ): return int(lowercase__ ) + int(str(lowercase__ )[::-1] ) def _A ( SCREAMING_SNAKE_CASE = 1_0_0_0_0 ): UpperCAmelCase__: List[str] = [] for num in range(1 ,lowercase__ ): UpperCAmelCase__: Optional[int] = 0 UpperCAmelCase__: str = num while iterations < 5_0: UpperCAmelCase__: Tuple = sum_reverse(lowercase__ ) iterations += 1 if is_palindrome(lowercase__ ): break else: lychrel_nums.append(lowercase__ ) return len(lowercase__ ) if __name__ == "__main__": print(F"{solution() = }")
113
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __a ( __UpperCamelCase ): __snake_case : Union[str, Any] = ComputeEnvironment.AMAZON_SAGEMAKER __snake_case : Tuple = True __snake_case : List[str] = """ml.p3.2xlarge""" __snake_case : Optional[int] = """accelerate_sagemaker_execution_role""" __snake_case : List[Any] = """hf-sm""" __snake_case : str = """us-east-1""" __snake_case : int = 1 __snake_case : int = """accelerate-sagemaker-1""" __snake_case : Union[str, Any] = """1.6""" __snake_case : Tuple = """4.4""" __snake_case : List[str] = """train.py""" __snake_case : str = [ """--model_name_or_path""", """bert""", """--do_train""", """False""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] __snake_case : List[Any] = [ """--model_name_or_path""", """bert""", """--do_train""", """--do_test""", """False""", """--do_predict""", """--epochs""", """3""", """--learning_rate""", """5e-5""", """--max_steps""", """50.5""", ] class __a ( unittest.TestCase ): def A ( self : int ): # If no defaults are changed, `to_kwargs` returns an empty dict. lowerCAmelCase_ : Dict = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] , UpperCAmelCase ) assert isinstance(converted_args["""do_train"""] , UpperCAmelCase ) assert isinstance(converted_args["""epochs"""] , UpperCAmelCase ) assert isinstance(converted_args["""learning_rate"""] , UpperCAmelCase ) assert isinstance(converted_args["""max_steps"""] , UpperCAmelCase ) with pytest.raises(UpperCAmelCase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
600
0
'''simple docstring''' import io import json import fsspec import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.json import JsonDatasetReader, JsonDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def __lowerCAmelCase ( lowerCamelCase : str , lowerCamelCase : Union[str, Any] ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __lowerCAmelCase ( lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = JsonDatasetReader(lowerCamelCase , cache_dir=lowerCamelCase , keep_in_memory=lowerCamelCase ).read() _check_json_dataset(lowerCamelCase , lowerCamelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __lowerCAmelCase ( lowerCamelCase : List[Any] , lowerCamelCase : int , lowerCamelCase : Dict ): '''simple docstring''' __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = JsonDatasetReader(lowerCamelCase , features=lowerCamelCase , cache_dir=lowerCamelCase ).read() _check_json_dataset(lowerCamelCase , lowerCamelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_3": "float64", "col_1": "string", "col_2": "int64"}, ] , ) def __lowerCAmelCase ( lowerCamelCase : List[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Any ): '''simple docstring''' __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = {"col_3": "float64", "col_1": "string", "col_2": "int64"} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = JsonDatasetReader(lowerCamelCase , features=lowerCamelCase , cache_dir=lowerCamelCase ).read() assert isinstance(lowerCamelCase , lowerCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_3", "col_1", "col_2"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype def __lowerCAmelCase ( lowerCamelCase : Any , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowerCAmelCase = {"col_2": "int64", "col_3": "float64", "col_1": "string"} __lowerCAmelCase = features.copy() __lowerCAmelCase = ( Features({feature: Value(lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = JsonDatasetReader(lowerCamelCase , features=lowerCamelCase , cache_dir=lowerCamelCase ).read() assert isinstance(lowerCamelCase , lowerCamelCase ) assert dataset.num_rows == 2 assert dataset.num_columns == 3 assert dataset.column_names == ["col_2", "col_3", "col_1"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __lowerCAmelCase ( lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] ): '''simple docstring''' __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase = JsonDatasetReader(lowerCamelCase , cache_dir=lowerCamelCase , split=lowerCamelCase ).read() _check_json_dataset(lowerCamelCase , lowerCamelCase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def __lowerCAmelCase ( lowerCamelCase : Any , lowerCamelCase : List[str] , lowerCamelCase : Optional[int] ): '''simple docstring''' if issubclass(lowerCamelCase , lowerCamelCase ): __lowerCAmelCase = jsonl_path elif issubclass(lowerCamelCase , lowerCamelCase ): __lowerCAmelCase = [jsonl_path] __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase = JsonDatasetReader(lowerCamelCase , cache_dir=lowerCamelCase ).read() _check_json_dataset(lowerCamelCase , lowerCamelCase ) def __lowerCAmelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : int , lowerCamelCase : str=("train",) ): '''simple docstring''' assert isinstance(lowerCamelCase , lowerCamelCase ) for split in splits: __lowerCAmelCase = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def __lowerCAmelCase ( lowerCamelCase : Dict , lowerCamelCase : int , lowerCamelCase : List[str] ): '''simple docstring''' __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCAmelCase = JsonDatasetReader({"train": jsonl_path} , cache_dir=lowerCamelCase , keep_in_memory=lowerCamelCase ).read() _check_json_datasetdict(lowerCamelCase , lowerCamelCase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def __lowerCAmelCase ( lowerCamelCase : int , lowerCamelCase : Any , lowerCamelCase : Dict ): '''simple docstring''' __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase = features.copy() if features else default_expected_features __lowerCAmelCase = ( Features({feature: Value(lowerCamelCase ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCAmelCase = JsonDatasetReader({"train": jsonl_path} , features=lowerCamelCase , cache_dir=lowerCamelCase ).read() _check_json_datasetdict(lowerCamelCase , lowerCamelCase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def __lowerCAmelCase ( lowerCamelCase : int , lowerCamelCase : Optional[int] , lowerCamelCase : int ): '''simple docstring''' if split: __lowerCAmelCase = {split: jsonl_path} else: __lowerCAmelCase = "train" __lowerCAmelCase = {"train": jsonl_path, "test": jsonl_path} __lowerCAmelCase = tmp_path / "cache" __lowerCAmelCase = {"col_1": "string", "col_2": "int64", "col_3": "float64"} __lowerCAmelCase = JsonDatasetReader(lowerCamelCase , cache_dir=lowerCamelCase ).read() _check_json_datasetdict(lowerCamelCase , lowerCamelCase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def __lowerCAmelCase ( lowerCamelCase : Optional[Any] ): '''simple docstring''' return json.load(lowerCamelCase ) def __lowerCAmelCase ( lowerCamelCase : Tuple ): '''simple docstring''' return [json.loads(lowerCamelCase ) for line in buffer] class UpperCAmelCase__ : @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase , UpperCamelCase , lines=UpperCamelCase ).write() buffer.seek(0 ) __lowerCAmelCase = load_json_function(UpperCamelCase ) assert isinstance(UpperCamelCase , UpperCamelCase ) assert isinstance(exported_content[0] , UpperCamelCase ) assert len(UpperCamelCase ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase , UpperCamelCase , lines=UpperCamelCase , orient=UpperCamelCase ).write() buffer.seek(0 ) __lowerCAmelCase = load_json(UpperCamelCase ) assert isinstance(UpperCamelCase , UpperCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase ) == 10 @pytest.mark.parametrize("lines, load_json_function" , [(True, load_json_lines), (False, load_json)] ) def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> str: with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase , UpperCamelCase , lines=UpperCamelCase , num_proc=2 ).write() buffer.seek(0 ) __lowerCAmelCase = load_json_function(UpperCamelCase ) assert isinstance(UpperCamelCase , UpperCamelCase ) assert isinstance(exported_content[0] , UpperCamelCase ) assert len(UpperCamelCase ) == 10 @pytest.mark.parametrize( "orient, container, keys, len_at" , [ ("records", list, {"tokens", "labels", "answers", "id"}, None), ("split", dict, {"columns", "data"}, "data"), ("index", dict, set("0123456789" ), None), ("columns", dict, {"tokens", "labels", "answers", "id"}, "tokens"), ("values", list, None, None), ("table", dict, {"schema", "data"}, "data"), ] , ) def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Union[str, Any]: with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase , UpperCamelCase , lines=UpperCamelCase , orient=UpperCamelCase , num_proc=2 ).write() buffer.seek(0 ) __lowerCAmelCase = load_json(UpperCamelCase ) assert isinstance(UpperCamelCase , UpperCamelCase ) if keys: if container is dict: assert exported_content.keys() == keys else: assert exported_content[0].keys() == keys else: assert not hasattr(UpperCamelCase , "keys" ) and not hasattr(exported_content[0] , "keys" ) if len_at: assert len(exported_content[len_at] ) == 10 else: assert len(UpperCamelCase ) == 10 def UpperCAmelCase_ ( self , UpperCamelCase ) -> Any: with pytest.raises(UpperCamelCase ): with io.BytesIO() as buffer: JsonDatasetWriter(UpperCamelCase , UpperCamelCase , num_proc=0 ) @pytest.mark.parametrize("compression, extension" , [("gzip", "gz"), ("bz2", "bz2"), ("xz", "xz")] ) def UpperCAmelCase_ ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Tuple: __lowerCAmelCase = tmp_path_factory.mktemp("data" ) / F'''test.json.{extension}''' __lowerCAmelCase = str(shared_datadir / F'''test_file.json.{extension}''' ) JsonDatasetWriter(UpperCamelCase , UpperCamelCase , compression=UpperCamelCase ).write() with fsspec.open(UpperCamelCase , "rb" , compression="infer" ) as f: __lowerCAmelCase = f.read() with fsspec.open(UpperCamelCase , "rb" , compression="infer" ) as f: __lowerCAmelCase = f.read() assert exported_content == original_content
39
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def __lowerCAmelCase ( lowerCamelCase : bytes , lowerCamelCase : int ): '''simple docstring''' __lowerCAmelCase = f'''{sampling_rate}''' __lowerCAmelCase = "1" __lowerCAmelCase = "f32le" __lowerCAmelCase = [ "ffmpeg", "-i", "pipe:0", "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-hide_banner", "-loglevel", "quiet", "pipe:1", ] try: with subprocess.Popen(lowerCamelCase , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: __lowerCAmelCase = ffmpeg_process.communicate(lowerCamelCase ) except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to load audio files from filename" ) from error __lowerCAmelCase = output_stream[0] __lowerCAmelCase = np.frombuffer(lowerCamelCase , np.floataa ) if audio.shape[0] == 0: raise ValueError("Malformed soundfile" ) return audio def __lowerCAmelCase ( lowerCamelCase : int , lowerCamelCase : float , lowerCamelCase : str = "f32le" , ): '''simple docstring''' __lowerCAmelCase = f'''{sampling_rate}''' __lowerCAmelCase = "1" if format_for_conversion == "s16le": __lowerCAmelCase = 2 elif format_for_conversion == "f32le": __lowerCAmelCase = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) __lowerCAmelCase = platform.system() if system == "Linux": __lowerCAmelCase = "alsa" __lowerCAmelCase = "default" elif system == "Darwin": __lowerCAmelCase = "avfoundation" __lowerCAmelCase = ":0" elif system == "Windows": __lowerCAmelCase = "dshow" __lowerCAmelCase = "default" __lowerCAmelCase = [ "ffmpeg", "-f", format_, "-i", input_, "-ac", ac, "-ar", ar, "-f", format_for_conversion, "-fflags", "nobuffer", "-hide_banner", "-loglevel", "quiet", "pipe:1", ] __lowerCAmelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample __lowerCAmelCase = _ffmpeg_stream(lowerCamelCase , lowerCamelCase ) for item in iterator: yield item def __lowerCAmelCase ( lowerCamelCase : int , lowerCamelCase : float , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[Union[Tuple[float, float], float]] = None , lowerCamelCase : str = "f32le" , ): '''simple docstring''' if stream_chunk_s is not None: __lowerCAmelCase = stream_chunk_s else: __lowerCAmelCase = chunk_length_s __lowerCAmelCase = ffmpeg_microphone(lowerCamelCase , lowerCamelCase , format_for_conversion=lowerCamelCase ) if format_for_conversion == "s16le": __lowerCAmelCase = np.intaa __lowerCAmelCase = 2 elif format_for_conversion == "f32le": __lowerCAmelCase = np.floataa __lowerCAmelCase = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: __lowerCAmelCase = chunk_length_s / 6 __lowerCAmelCase = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(lowerCamelCase , (int, float) ): __lowerCAmelCase = [stride_length_s, stride_length_s] __lowerCAmelCase = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample __lowerCAmelCase = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample __lowerCAmelCase = datetime.datetime.now() __lowerCAmelCase = datetime.timedelta(seconds=lowerCamelCase ) for item in chunk_bytes_iter(lowerCamelCase , lowerCamelCase , stride=(stride_left, stride_right) , stream=lowerCamelCase ): # Put everything back in numpy scale __lowerCAmelCase = np.frombuffer(item["raw"] , dtype=lowerCamelCase ) __lowerCAmelCase = ( item["stride"][0] // size_of_sample, item["stride"][1] // size_of_sample, ) __lowerCAmelCase = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def __lowerCAmelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Tuple[int, int] , lowerCamelCase : bool = False ): '''simple docstring''' __lowerCAmelCase = B"" __lowerCAmelCase , __lowerCAmelCase = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) __lowerCAmelCase = 0 for raw in iterator: acc += raw if stream and len(lowerCamelCase ) < chunk_len: __lowerCAmelCase = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(lowerCamelCase ) >= chunk_len: # We are flushing the accumulator __lowerCAmelCase = (_stride_left, stride_right) __lowerCAmelCase = {"raw": acc[:chunk_len], "stride": stride} if stream: __lowerCAmelCase = False yield item __lowerCAmelCase = stride_left __lowerCAmelCase = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(lowerCamelCase ) > stride_left: __lowerCAmelCase = {"raw": acc, "stride": (_stride_left, 0)} if stream: __lowerCAmelCase = False yield item def __lowerCAmelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : int ): '''simple docstring''' __lowerCAmelCase = 2**24 # 16Mo try: with subprocess.Popen(lowerCamelCase , stdout=subprocess.PIPE , bufsize=lowerCamelCase ) as ffmpeg_process: while True: __lowerCAmelCase = ffmpeg_process.stdout.read(lowerCamelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError("ffmpeg was not found but is required to stream audio files from filename" ) from error
39
1
"""simple docstring""" from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=lowerCAmelCase ): a__: Optional[Any] = ['keras_nlp'] def __init__( self , *UpperCAmelCase , **UpperCAmelCase ): requires_backends(self , ['''keras_nlp'''] )
29
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class __lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase__ ( self ): lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) lowerCamelCase_ = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } lowerCamelCase_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self , **UpperCAmelCase ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def UpperCAmelCase__ ( self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = self.get_rust_tokenizer() lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase_ = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) lowerCamelCase_ = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = image_processor(UpperCAmelCase , return_tensors='''np''' ) lowerCamelCase_ = processor(images=UpperCAmelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = processor(text=UpperCAmelCase ) lowerCamelCase_ = tokenizer(UpperCAmelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ = processor.batch_decode(UpperCAmelCase ) lowerCamelCase_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase__ ( self ): lowerCamelCase_ = self.get_image_processor() lowerCamelCase_ = self.get_tokenizer() lowerCamelCase_ = AlignProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) lowerCamelCase_ = '''lower newer''' lowerCamelCase_ = self.prepare_image_inputs() lowerCamelCase_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
29
1
"""simple docstring""" import itertools import math def lowercase ( lowerCAmelCase__ : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowerCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase ( ) -> int: __a = 2 while True: if is_prime(lowerCAmelCase__ ): yield num num += 1 def lowercase ( lowerCAmelCase__ : int = 10001 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , lowerCAmelCase__ ) ) if __name__ == "__main__": print(F'''{solution() = }''')
65
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/test_sentencepiece_bpe_char.model") @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int = SpeechTaTokenizer __UpperCAmelCase : Tuple = False __UpperCAmelCase : Dict = True def __UpperCAmelCase ( self ): super().setUp() # We have a SentencePiece fixture for testing __a = SpeechTaTokenizer(_a ) __a = AddedToken('''<mask>''' , lstrip=_a , rstrip=_a ) __a = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) tokenizer.save_pretrained(self.tmpdirname ) def __UpperCAmelCase ( self , _a ): __a = '''this is a test''' __a = '''this is a test''' return input_text, output_text def __UpperCAmelCase ( self , _a , _a=False , _a=20 , _a=5 ): __a , __a = self.get_input_output_texts(_a ) __a = tokenizer.encode(_a , add_special_tokens=_a ) __a = tokenizer.decode(_a , clean_up_tokenization_spaces=_a ) return text, ids def __UpperCAmelCase ( self ): __a = '''<pad>''' __a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ) , _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ) , _a ) def __UpperCAmelCase ( self ): __a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-4] , '''œ''' ) self.assertEqual(vocab_keys[-2] , '''<mask>''' ) self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''' ) self.assertEqual(len(_a ) , 81 ) def __UpperCAmelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def __UpperCAmelCase ( self ): __a = self.get_tokenizers(do_lower_case=_a ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): __a = tokenizer.vocab_size __a = len(_a ) self.assertNotEqual(_a , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __a = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] __a = tokenizer.add_tokens(_a ) __a = tokenizer.vocab_size __a = len(_a ) self.assertNotEqual(_a , 0 ) self.assertEqual(_a , _a ) self.assertEqual(_a , len(_a ) ) self.assertEqual(_a , all_size + len(_a ) ) __a = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=_a ) self.assertGreaterEqual(len(_a ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) __a = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} __a = tokenizer.add_special_tokens(_a ) __a = tokenizer.vocab_size __a = len(_a ) self.assertNotEqual(_a , 0 ) self.assertEqual(_a , _a ) self.assertEqual(_a , len(_a ) ) self.assertEqual(_a , all_size_a + len(_a ) ) __a = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=_a ) self.assertGreaterEqual(len(_a ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): pass def __UpperCAmelCase ( self ): __a = self.get_tokenizer() __a = tokenizer.tokenize('''This is a test''' ) # fmt: off self.assertListEqual(_a , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(_a ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) __a = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _a , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) __a = tokenizer.convert_tokens_to_ids(_a ) # fmt: off self.assertListEqual(_a , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on __a = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) @slow def __UpperCAmelCase ( self ): # Use custom sequence because this tokenizer does not handle numbers. __a = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off __a = { '''input_ids''': [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=_a , )
65
1
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def lowercase__(A ) ->Dict: """simple docstring""" lowercase__ : Optional[Any]= filter(lambda A : p.requires_grad , model.parameters() ) lowercase__ : List[Any]= sum([np.prod(p.size() ) for p in model_parameters] ) return params a : List[Any] = logging.getLogger(__name__) def lowercase__(A , A ) ->Optional[Any]: """simple docstring""" if metric == "rouge2": lowercase__ : Optional[Any]= "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": lowercase__ : Optional[Any]= "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": lowercase__ : Optional[int]= "{val_avg_em:.4f}-{step_count}" else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' " function." ) lowercase__ : Tuple= ModelCheckpoint( dirpath=A , filename=A , monitor=f'''val_{metric}''' , mode="max" , save_top_k=3 , every_n_epochs=1 , ) return checkpoint_callback def lowercase__(A , A ) ->List[str]: """simple docstring""" return EarlyStopping( monitor=f'''val_{metric}''' , mode="min" if "loss" in metric else "max" , patience=A , verbose=A , ) class __UpperCAmelCase( pl.Callback ): """simple docstring""" def UpperCAmelCase_ ( self , snake_case__ , snake_case__ ): '''simple docstring''' lowercase__ : Optional[int]= {F'''lr_group_{i}''': param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(snake_case__ ) @rank_zero_only def UpperCAmelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__=True ): '''simple docstring''' logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) lowercase__ : List[Any]= trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results lowercase__ : Tuple= Path(pl_module.hparams.output_dir ) if type_path == "test": lowercase__ : str= od / "test_results.txt" lowercase__ : Any= od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. lowercase__ : Dict= od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' lowercase__ : Optional[int]= od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=snake_case__ ) generations_file.parent.mkdir(exist_ok=snake_case__ ) with open(snake_case__ , "a+" ) as writer: for key in sorted(snake_case__ ): if key in ["log", "progress_bar", "preds"]: continue lowercase__ : int= metrics[key] if isinstance(snake_case__ , torch.Tensor ): lowercase__ : Optional[Any]= val.item() lowercase__ : int= F'''{key}: {val:.6f}\n''' writer.write(snake_case__ ) if not save_generations: return if "preds" in metrics: lowercase__ : Dict= "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(snake_case__ ) @rank_zero_only def UpperCAmelCase_ ( self , snake_case__ , snake_case__ ): '''simple docstring''' try: lowercase__ : Tuple= pl_module.model.model.num_parameters() except AttributeError: lowercase__ : List[str]= pl_module.model.num_parameters() lowercase__ : int= count_trainable_parameters(snake_case__ ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1e6, "grad_mp": n_trainable_pars / 1e6} ) @rank_zero_only def UpperCAmelCase_ ( self , snake_case__ , snake_case__ ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(snake_case__ , snake_case__ , "test" ) @rank_zero_only def UpperCAmelCase_ ( self , snake_case__ , snake_case__ ): '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
218
"""simple docstring""" from ...processing_utils import ProcessorMixin class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = "WhisperFeatureExtractor" __lowerCamelCase = "WhisperTokenizer" def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' super().__init__(snake_case__ , snake_case__ ) lowercase__ : List[Any]= self.feature_extractor lowercase__ : Dict= False def UpperCAmelCase_ ( self , snake_case__=None , snake_case__=None , snake_case__=True ): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=snake_case__ , language=snake_case__ , no_timestamps=snake_case__ ) def __call__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' # For backward compatibility if self._in_target_context_manager: return self.current_processor(*snake_case__ , **snake_case__ ) lowercase__ : Tuple= kwargs.pop("audio" , snake_case__ ) lowercase__ : Optional[int]= kwargs.pop("sampling_rate" , snake_case__ ) lowercase__ : Union[str, Any]= kwargs.pop("text" , snake_case__ ) if len(snake_case__ ) > 0: lowercase__ : List[Any]= args[0] lowercase__ : str= args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowercase__ : Tuple= self.feature_extractor(snake_case__ , *snake_case__ , sampling_rate=snake_case__ , **snake_case__ ) if text is not None: lowercase__ : Optional[Any]= self.tokenizer(snake_case__ , **snake_case__ ) if text is None: return inputs elif audio is None: return encodings else: lowercase__ : str= encodings["input_ids"] return inputs def UpperCAmelCase_ ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def UpperCAmelCase_ ( self , *snake_case__ , **snake_case__ ): '''simple docstring''' return self.tokenizer.decode(*snake_case__ , **snake_case__ ) def UpperCAmelCase_ ( self , snake_case__ , snake_case__="np" ): '''simple docstring''' return self.tokenizer.get_prompt_ids(snake_case__ , return_tensors=snake_case__ )
218
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __a : Tuple = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Tuple = ['DeiTFeatureExtractor'] __a : Optional[Any] = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Optional[int] = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a : Dict = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys __a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
701
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class _SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =0.0 _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =jnp.floataa def lowercase ( self: Union[str, Any] ): '''simple docstring''' a__ = [] a__ = [] for i in range(self.num_layers ): a__ = self.in_channels if i == 0 else self.out_channels a__ = FlaxResnetBlockaD( in_channels=__A , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) a__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__A ) a__ = resnets a__ = attentions if self.add_downsample: a__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: Optional[int] , __A: Union[str, Any] , __A: str , __A: Optional[Any] , __A: Any=True ): '''simple docstring''' a__ = () for resnet, attn in zip(self.resnets , self.attentions ): a__ = resnet(__A , __A , deterministic=__A ) a__ = attn(__A , __A , deterministic=__A ) output_states += (hidden_states,) if self.add_downsample: a__ = self.downsamplers_a(__A ) output_states += (hidden_states,) return hidden_states, output_states class _SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =0.0 _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =jnp.floataa def lowercase ( self: Union[str, Any] ): '''simple docstring''' a__ = [] for i in range(self.num_layers ): a__ = self.in_channels if i == 0 else self.out_channels a__ = FlaxResnetBlockaD( in_channels=__A , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) a__ = resnets if self.add_downsample: a__ = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: Dict , __A: int , __A: Dict , __A: Optional[Any]=True ): '''simple docstring''' a__ = () for resnet in self.resnets: a__ = resnet(__A , __A , deterministic=__A ) output_states += (hidden_states,) if self.add_downsample: a__ = self.downsamplers_a(__A ) output_states += (hidden_states,) return hidden_states, output_states class _SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =0.0 _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =jnp.floataa def lowercase ( self: Optional[int] ): '''simple docstring''' a__ = [] a__ = [] for i in range(self.num_layers ): a__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels a__ = self.prev_output_channel if i == 0 else self.out_channels a__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) a__ = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__A ) a__ = resnets a__ = attentions if self.add_upsample: a__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: Any , __A: Optional[int] , __A: List[Any] , __A: List[str] , __A: Optional[Any] , __A: Any=True ): '''simple docstring''' for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states a__ = res_hidden_states_tuple[-1] a__ = res_hidden_states_tuple[:-1] a__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) a__ = resnet(__A , __A , deterministic=__A ) a__ = attn(__A , __A , deterministic=__A ) if self.add_upsample: a__ = self.upsamplers_a(__A ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =0.0 _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =jnp.floataa def lowercase ( self: str ): '''simple docstring''' a__ = [] for i in range(self.num_layers ): a__ = self.in_channels if (i == self.num_layers - 1) else self.out_channels a__ = self.prev_output_channel if i == 0 else self.out_channels a__ = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) a__ = resnets if self.add_upsample: a__ = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: Tuple , __A: Optional[Any] , __A: Optional[Any] , __A: Union[str, Any] , __A: Dict=True ): '''simple docstring''' for resnet in self.resnets: # pop res hidden states a__ = res_hidden_states_tuple[-1] a__ = res_hidden_states_tuple[:-1] a__ = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) a__ = resnet(__A , __A , deterministic=__A ) if self.add_upsample: a__ = self.upsamplers_a(__A ) return hidden_states class _SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE =42 _SCREAMING_SNAKE_CASE =0.0 _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =1 _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =jnp.floataa def lowercase ( self: Tuple ): '''simple docstring''' a__ = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] a__ = [] for _ in range(self.num_layers ): a__ = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(__A ) a__ = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(__A ) a__ = resnets a__ = attentions def __call__( self: Any , __A: Optional[int] , __A: int , __A: Tuple , __A: str=True ): '''simple docstring''' a__ = self.resnets[0](__A , __A ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): a__ = attn(__A , __A , deterministic=__A ) a__ = resnet(__A , __A , deterministic=__A ) return hidden_states
200
0
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __A : Optional[int] = logging.get_logger(__name__) __A : Optional[int] = {"vocab_file": "spiece.model"} __A : List[Any] = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any]=False , UpperCamelCase__ : Dict=True , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Dict="<s>" , UpperCamelCase__ : str="</s>" , UpperCamelCase__ : Union[str, Any]="<unk>" , UpperCamelCase__ : Optional[int]="<sep>" , UpperCamelCase__ : Optional[int]="<pad>" , UpperCamelCase__ : Optional[int]="<cls>" , UpperCamelCase__ : List[str]="<mask>" , UpperCamelCase__ : Optional[Any]=["<eop>", "<eod>"] , UpperCamelCase__ : Optional[Dict[str, Any]] = None , **UpperCamelCase__ : Dict , ): A__ : List[str] =AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token A__ : Tuple ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCamelCase__ , remove_space=UpperCamelCase__ , keep_accents=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase__ , ) A__ : Dict =3 A__ : int =do_lower_case A__ : str =remove_space A__ : Optional[Any] =keep_accents A__ : int =vocab_file A__ : Dict =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCamelCase__ ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( "You need to install jieba to use CpmTokenizer or CpmTokenizerFast. " "See https://pypi.org/project/jieba/ for installation." ) A__ : Union[str, Any] =jieba A__ : List[str] =str.maketrans(" \n" , "\u2582\u2583" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def _UpperCAmelCase ( self : Union[str, Any] ): return len(self.sp_model ) def _UpperCAmelCase ( self : Optional[int] ): A__ : Any ={self.convert_ids_to_tokens(UpperCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[str] ): A__ : Union[str, Any] =self.__dict__.copy() A__ : Tuple =None return state def __setstate__( self : Tuple , UpperCamelCase__ : int ): A__ : Union[str, Any] =d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A__ : Optional[int] ={} A__ : Union[str, Any] =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : Dict ): if self.remove_space: A__ : Optional[int] =" ".join(inputs.strip().split() ) else: A__ : Optional[Any] =inputs A__ : Any =outputs.replace("``" , "\"" ).replace("''" , "\"" ) if not self.keep_accents: A__ : Optional[Any] =unicodedata.normalize("NFKD" , UpperCamelCase__ ) A__ : Tuple ="".join([c for c in outputs if not unicodedata.combining(UpperCamelCase__ )] ) if self.do_lower_case: A__ : str =outputs.lower() return outputs def _UpperCAmelCase ( self : Optional[int] , UpperCamelCase__ : str ): A__ : Optional[int] =self.preprocess_text(UpperCamelCase__ ) A__ : Dict =self.sp_model.encode(UpperCamelCase__ , out_type=UpperCamelCase__ ) A__ : List[str] =[] for piece in pieces: if len(UpperCamelCase__ ) > 1 and piece[-1] == str("," ) and piece[-2].isdigit(): A__ : str =self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCamelCase__ , "" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A__ : Union[str, Any] =cur_pieces[1:] else: A__ : List[str] =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCamelCase__ ) else: new_pieces.append(UpperCamelCase__ ) return new_pieces def _UpperCAmelCase ( self : int , UpperCamelCase__ : str ): return self.sp_model.PieceToId(UpperCamelCase__ ) def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : List[Any] ): return self.sp_model.IdToPiece(UpperCamelCase__ ) def _UpperCAmelCase ( self : Union[str, Any] , UpperCamelCase__ : str ): A__ : Optional[int] ="".join(UpperCamelCase__ ).replace(UpperCamelCase__ , " " ).strip() return out_string def _UpperCAmelCase ( self : Optional[int] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): A__ : List[str] =[self.sep_token_id] A__ : str =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _UpperCAmelCase ( self : Optional[int] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None , UpperCamelCase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is not None: return ([0] * len(UpperCamelCase__ )) + [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] return ([0] * len(UpperCamelCase__ )) + [1, 1] def _UpperCAmelCase ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): A__ : List[str] =[self.sep_token_id] A__ : Optional[Any] =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _UpperCAmelCase ( self : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return A__ : Tuple =os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase__ , "wb" ) as fi: A__ : Optional[Any] =self.sp_model.serialized_model_proto() fi.write(UpperCamelCase__ ) return (out_vocab_file,) def _UpperCAmelCase ( self : str , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : int ): A__ : List[Any] =super()._decode(*UpperCamelCase__ , **UpperCamelCase__ ) A__ : Union[str, Any] =text.replace(" " , "" ).replace("\u2582" , " " ).replace("\u2583" , "\n" ) return text
656
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' def _UpperCAmelCase ( self : Dict ): A__ : Optional[Any] =self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__ , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(UpperCamelCase__ , "num_attention_heads" ) ) self.parent.assertTrue(hasattr(UpperCamelCase__ , "num_encoder_blocks" ) ) class __lowerCAmelCase : '''simple docstring''' def __init__( self : int , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any]=13 , UpperCamelCase__ : Tuple=64 , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : Union[str, Any]=4 , UpperCamelCase__ : Dict=[2, 2, 2, 2] , UpperCamelCase__ : Union[str, Any]=[8, 4, 2, 1] , UpperCamelCase__ : Tuple=[16, 32, 64, 128] , UpperCamelCase__ : Optional[int]=[1, 4, 8, 16] , UpperCamelCase__ : Any=[1, 2, 4, 8] , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : str=True , UpperCamelCase__ : Dict="gelu" , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : List[Any]=0.1 , UpperCamelCase__ : List[str]=0.02 , UpperCamelCase__ : int=3 , UpperCamelCase__ : Optional[Any]=None , ): A__ : Tuple =parent A__ : List[Any] =batch_size A__ : List[Any] =image_size A__ : Union[str, Any] =num_channels A__ : Optional[int] =num_encoder_blocks A__ : Any =sr_ratios A__ : Any =depths A__ : List[Any] =hidden_sizes A__ : List[Any] =downsampling_rates A__ : List[str] =num_attention_heads A__ : int =is_training A__ : List[Any] =use_labels A__ : Any =hidden_act A__ : Dict =hidden_dropout_prob A__ : int =attention_probs_dropout_prob A__ : List[Any] =initializer_range A__ : Tuple =num_labels A__ : List[Any] =scope def _UpperCAmelCase ( self : Optional[int] ): A__ : List[str] =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ : Any =None if self.use_labels: A__ : Tuple =ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A__ : List[Any] =self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self : Tuple ): return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int ): A__ : Any =SegformerModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Dict =model(UpperCamelCase__ ) A__ : Optional[int] =self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def _UpperCAmelCase ( self : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ): A__ : str =self.num_labels A__ : Optional[Any] =SegformerForSemanticSegmentation(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : Optional[Any] =model(UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) A__ : List[Any] =model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def _UpperCAmelCase ( self : int , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str ): A__ : Tuple =1 A__ : Tuple =SegformerForSemanticSegmentation(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ : List[str] =torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(UpperCamelCase__ ) A__ : Dict =model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertGreater(result.loss , 0.0 ) def _UpperCAmelCase ( self : str ): A__ : Union[str, Any] =self.prepare_config_and_inputs() A__ , A__ , A__ : Tuple =config_and_inputs A__ : Tuple ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase): '''simple docstring''' __magic_name__ : Dict = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __magic_name__ : Optional[int] = ( { """feature-extraction""": SegformerModel, """image-classification""": SegformerForImageClassification, """image-segmentation""": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __magic_name__ : Dict = True __magic_name__ : List[str] = False __magic_name__ : Optional[Any] = False __magic_name__ : str = False def _UpperCAmelCase ( self : Union[str, Any] ): A__ : Union[str, Any] =SegformerModelTester(self ) A__ : Tuple =SegformerConfigTester(self , config_class=UpperCamelCase__ ) def _UpperCAmelCase ( self : str ): self.config_tester.run_common_tests() def _UpperCAmelCase ( self : Dict ): A__ : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _UpperCAmelCase ( self : Tuple ): A__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*UpperCamelCase__ ) def _UpperCAmelCase ( self : Union[str, Any] ): A__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*UpperCamelCase__ ) @unittest.skip("SegFormer does not use inputs_embeds" ) def _UpperCAmelCase ( self : Dict ): pass @unittest.skip("SegFormer does not have get_input_embeddings method and get_output_embeddings methods" ) def _UpperCAmelCase ( self : Tuple ): pass def _UpperCAmelCase ( self : List[str] ): A__ , A__ : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : int =model_class(UpperCamelCase__ ) A__ : Optional[int] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ : Optional[int] =[*signature.parameters.keys()] A__ : List[str] =["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def _UpperCAmelCase ( self : str ): A__ , A__ : Tuple =self.model_tester.prepare_config_and_inputs_for_common() A__ : Union[str, Any] =True for model_class in self.all_model_classes: A__ : Optional[Any] =True A__ : Union[str, Any] =False A__ : str =True A__ : Optional[int] =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : str =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Any =outputs.attentions A__ : List[str] =sum(self.model_tester.depths ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A__ : Dict =True A__ : str =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Any =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Union[str, Any] =outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # verify the first attentions (first block, first layer) A__ : List[Any] =(self.model_tester.image_size // 4) ** 2 A__ : Tuple =(self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) A__ : Tuple =(self.model_tester.image_size // 32) ** 2 A__ : Optional[Any] =(self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) A__ : int =len(UpperCamelCase__ ) # Check attention is always last and order is fine A__ : Optional[Any] =True A__ : Any =True A__ : Union[str, Any] =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : Optional[Any] =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + 1 , len(UpperCamelCase__ ) ) A__ : Optional[Any] =outputs.attentions self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # verify the first attentions (first block, first layer) A__ : Union[str, Any] =(self.model_tester.image_size // 4) ** 2 A__ : Tuple =(self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _UpperCAmelCase ( self : List[Any] ): def check_hidden_states_output(UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : Tuple ): A__ : Optional[Any] =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ : List[Any] =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ : Optional[Any] =outputs.hidden_states A__ : int =self.model_tester.num_encoder_blocks self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) A__ , A__ : List[str] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ : Optional[Any] =True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ : str =True check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def _UpperCAmelCase ( self : Optional[int] ): if not self.model_tester.is_training: return A__ , A__ : int =self.model_tester.prepare_config_and_inputs_for_common() A__ : List[Any] =True for model_class in self.all_model_classes: if model_class in get_values(UpperCamelCase__ ): continue A__ : List[Any] =model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() A__ : int =self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) A__ : Union[str, Any] =model(**UpperCamelCase__ ).loss loss.backward() @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _UpperCAmelCase ( self : Tuple ): pass @slow def _UpperCAmelCase ( self : Tuple ): for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ : Tuple =SegformerModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowercase ( ): """simple docstring""" A__ : List[Any] =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class __lowerCAmelCase ( unittest.TestCase): '''simple docstring''' @slow def _UpperCAmelCase ( self : Tuple ): # only resize + normalize A__ : List[Any] =SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCamelCase__ , align=UpperCamelCase__ , do_random_crop=UpperCamelCase__ ) A__ : Union[str, Any] =SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( UpperCamelCase__ ) A__ : Union[str, Any] =prepare_img() A__ : Union[str, Any] =image_processor(images=UpperCamelCase__ , return_tensors="pt" ) A__ : int =encoded_inputs.pixel_values.to(UpperCamelCase__ ) with torch.no_grad(): A__ : int =model(UpperCamelCase__ ) A__ : Dict =torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : Optional[int] =torch.tensor( [ [[-4.6310, -5.5232, -6.2356], [-5.1921, -6.1444, -6.5996], [-5.4424, -6.2790, -6.7574]], [[-12.1391, -13.3122, -13.9554], [-12.8732, -13.9352, -14.3563], [-12.9438, -13.8226, -14.2513]], [[-12.5134, -13.4686, -14.4915], [-12.8669, -14.4343, -14.7758], [-13.2523, -14.5819, -15.0694]], ] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1E-4 ) ) @slow def _UpperCAmelCase ( self : Union[str, Any] ): # only resize + normalize A__ : Dict =SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCamelCase__ , align=UpperCamelCase__ , do_random_crop=UpperCamelCase__ ) A__ : int =SegformerForSemanticSegmentation.from_pretrained( "nvidia/segformer-b1-finetuned-cityscapes-1024-1024" ).to(UpperCamelCase__ ) A__ : Tuple =prepare_img() A__ : str =image_processor(images=UpperCamelCase__ , return_tensors="pt" ) A__ : Optional[int] =encoded_inputs.pixel_values.to(UpperCamelCase__ ) with torch.no_grad(): A__ : int =model(UpperCamelCase__ ) A__ : List[str] =torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ : List[Any] =torch.tensor( [ [[-13.5748, -13.9111, -12.6500], [-14.3500, -15.3683, -14.2328], [-14.7532, -16.0424, -15.6087]], [[-17.1651, -15.8725, -12.9653], [-17.2580, -17.3718, -14.8223], [-16.6058, -16.8783, -16.7452]], [[-3.6456, -3.0209, -1.4203], [-3.0797, -3.1959, -2.0000], [-1.8757, -1.9217, -1.6997]], ] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1E-1 ) ) @slow def _UpperCAmelCase ( self : int ): # only resize + normalize A__ : Optional[Any] =SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=UpperCamelCase__ , align=UpperCamelCase__ , do_random_crop=UpperCamelCase__ ) A__ : List[Any] =SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512" ).to( UpperCamelCase__ ) A__ : str =prepare_img() A__ : Dict =image_processor(images=UpperCamelCase__ , return_tensors="pt" ) A__ : Any =encoded_inputs.pixel_values.to(UpperCamelCase__ ) with torch.no_grad(): A__ : Dict =model(UpperCamelCase__ ) A__ : Any =outputs.logits.detach().cpu() A__ : Union[str, Any] =image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ , target_sizes=[(500, 300)] ) A__ : List[str] =torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ ) A__ : int =image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ ) A__ : Tuple =torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ )
656
1
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __A: @staticmethod def lowercase__ ( *__UpperCamelCase : Dict , **__UpperCamelCase : str ): pass def __lowerCAmelCase ( UpperCAmelCase__ : Tuple ) -> Optional[int]: lowerCamelCase_ = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __A( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowercase__ ( self : List[Any] , __UpperCamelCase : List[Any] , __UpperCamelCase : int , __UpperCamelCase : int ): lowerCamelCase_ = DepthEstimationPipeline(model=_A , image_processor=_A ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowercase__ ( self : str , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str ): lowerCamelCase_ = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , _A ) import datasets lowerCamelCase_ = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) lowerCamelCase_ = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] ) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, ] , _A , ) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""" ) def lowercase__ ( self : List[Any] ): pass @slow @require_torch def lowercase__ ( self : List[Any] ): lowerCamelCase_ = """Intel/dpt-large""" lowerCamelCase_ = pipeline("""depth-estimation""" , model=_A ) lowerCamelCase_ = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) lowerCamelCase_ = hashimage(outputs["""depth"""] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 ) @require_torch def lowercase__ ( self : Optional[int] ): # This is highly irregular to have no small tests. self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
714
from __future__ import annotations import inspect import unittest from typing import List, Tuple from transformers import RegNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFRegNetForImageClassification, TFRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A: def __init__( self : int , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Union[str, Any]=3 , __UpperCamelCase : int=3_2 , __UpperCamelCase : Any=3 , __UpperCamelCase : List[str]=1_0 , __UpperCamelCase : int=[1_0, 2_0, 3_0, 4_0] , __UpperCamelCase : List[str]=[1, 1, 2, 1] , __UpperCamelCase : str=True , __UpperCamelCase : List[str]=True , __UpperCamelCase : Dict="relu" , __UpperCamelCase : int=3 , __UpperCamelCase : Dict=None , ): lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = embeddings_size lowerCamelCase_ = hidden_sizes lowerCamelCase_ = depths lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_act lowerCamelCase_ = num_labels lowerCamelCase_ = scope lowerCamelCase_ = len(__UpperCamelCase ) def lowercase__ ( self : Any ): lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def lowercase__ ( self : str ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def lowercase__ ( self : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Union[str, Any] ): lowerCamelCase_ = TFRegNetModel(config=__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , training=__UpperCamelCase ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : List[Any] , __UpperCamelCase : List[str] ): lowerCamelCase_ = self.num_labels lowerCamelCase_ = TFRegNetForImageClassification(__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , labels=__UpperCamelCase , training=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase__ ( self : int ): lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __A( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE = (TFRegNetModel, TFRegNetForImageClassification) if is_tf_available() else () SCREAMING_SNAKE_CASE = ( {'''feature-extraction''': TFRegNetModel, '''image-classification''': TFRegNetForImageClassification} if is_tf_available() else {} ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = False def lowercase__ ( self : Tuple ): lowerCamelCase_ = TFRegNetModelTester(self ) lowerCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase ) def lowercase__ ( self : Union[str, Any] ): return @unittest.skip(reason="""RegNet does not use inputs_embeds""" ) def lowercase__ ( self : Optional[int] ): pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def lowercase__ ( self : Tuple ): super().test_keras_fit() @unittest.skip(reason="""RegNet does not support input and output embeddings""" ) def lowercase__ ( self : Optional[Any] ): pass def lowercase__ ( self : Dict ): lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(__UpperCamelCase ) lowerCamelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def lowercase__ ( self : Any ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : int ): def check_hidden_states_output(__UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Any ): lowerCamelCase_ = model_class(__UpperCamelCase ) lowerCamelCase_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) , training=__UpperCamelCase ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = self.model_tester.num_stages self.assertEqual(len(__UpperCamelCase ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = ["""basic""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: lowerCamelCase_ = layer_type lowerCamelCase_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) def lowercase__ ( self : Optional[Any] ): lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() def check_equivalence(__UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any]={} ): lowerCamelCase_ = model(__UpperCamelCase , return_dict=__UpperCamelCase , **__UpperCamelCase ) lowerCamelCase_ = model(__UpperCamelCase , return_dict=__UpperCamelCase , **__UpperCamelCase ).to_tuple() def recursive_check(__UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict ): if isinstance(__UpperCamelCase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(__UpperCamelCase , __UpperCamelCase ): recursive_check(__UpperCamelCase , __UpperCamelCase ) elif tuple_object is None: return else: self.assertTrue( all(tf.equal(__UpperCamelCase , __UpperCamelCase ) ) , msg=( """Tuple and dict output are not equal. Difference:""" F''' {tf.math.reduce_max(tf.abs(tuple_object - dict_object ) )}''' ) , ) recursive_check(__UpperCamelCase , __UpperCamelCase ) for model_class in self.all_model_classes: lowerCamelCase_ = model_class(__UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) check_equivalence(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) check_equivalence(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) check_equivalence(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , {"""output_hidden_states""": True} ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) lowerCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) check_equivalence(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , {"""output_hidden_states""": True} ) def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase ) @slow def lowercase__ ( self : List[Any] ): for model_name in TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFRegNetModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def __lowerCAmelCase ( ) -> Optional[int]: lowerCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __A( unittest.TestCase ): @cached_property def lowercase__ ( self : Union[str, Any] ): return ( AutoImageProcessor.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowercase__ ( self : List[str] ): lowerCamelCase_ = TFRegNetForImageClassification.from_pretrained(TF_REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=__UpperCamelCase , return_tensors="""tf""" ) # forward pass lowerCamelCase_ = model(**__UpperCamelCase , training=__UpperCamelCase ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __UpperCamelCase ) lowerCamelCase_ = tf.constant([-0.4180, -1.5051, -3.4836] ) tf.debugging.assert_near(outputs.logits[0, :3] , __UpperCamelCase , atol=1E-4 )
103
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """s-JoL/Open-Llama-V1""": """https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json""", } class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = '''open-llama''' def __init__( self : List[str] , _A : int=10_0000 , _A : Dict=4096 , _A : int=1_1008 , _A : str=32 , _A : str=32 , _A : Dict="silu" , _A : List[str]=2048 , _A : Optional[Any]=0.02 , _A : Union[str, Any]=1e-6 , _A : Optional[Any]=True , _A : Tuple=0 , _A : List[Any]=1 , _A : str=2 , _A : str=False , _A : Any=True , _A : List[Any]=0.1 , _A : Optional[int]=0.1 , _A : Any=True , _A : Any=True , _A : Optional[int]=None , **_A : Optional[int] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = vocab_size __SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings __SCREAMING_SNAKE_CASE : Dict = hidden_size __SCREAMING_SNAKE_CASE : Tuple = intermediate_size __SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE : str = hidden_act __SCREAMING_SNAKE_CASE : Any = initializer_range __SCREAMING_SNAKE_CASE : Dict = rms_norm_eps __SCREAMING_SNAKE_CASE : int = use_cache __SCREAMING_SNAKE_CASE : List[str] = kwargs.pop( '''use_memorry_efficient_attention''' , _A ) __SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE : str = attention_dropout_prob __SCREAMING_SNAKE_CASE : List[str] = use_stable_embedding __SCREAMING_SNAKE_CASE : Dict = shared_input_output_embedding __SCREAMING_SNAKE_CASE : int = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , tie_word_embeddings=_A , **_A , ) def UpperCAmelCase__ ( self : List[str] ): """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling , _A ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F'''got {self.rope_scaling}''' ) __SCREAMING_SNAKE_CASE : List[str] = self.rope_scaling.get('''type''' , _A ) __SCREAMING_SNAKE_CASE : Any = self.rope_scaling.get('''factor''' , _A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(_A , _A ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
74
__lowerCamelCase = { 0: """0""", 1: """1""", 2: """2""", 3: """3""", 4: """4""", 5: """5""", 6: """6""", 7: """7""", 8: """8""", 9: """9""", 10: """a""", 11: """b""", 12: """c""", 13: """d""", 14: """e""", 15: """f""", } def UpperCamelCase ( __lowerCamelCase : float ): assert type(__lowerCamelCase ) in (int, float) and decimal == int(__lowerCamelCase ) snake_case : str = int(__lowerCamelCase ) snake_case : str = "" snake_case : str = False if decimal < 0: snake_case : Optional[Any] = True decimal *= -1 while decimal > 0: snake_case , snake_case : Union[str, Any] = divmod(__lowerCamelCase , 16 ) snake_case : Tuple = values[remainder] + hexadecimal snake_case : Tuple = "0x" + hexadecimal if negative: snake_case : Any = "-" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
204
0
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCAmelCase_ : str = logging.get_logger(__name__) class __A ( UpperCamelCase__ ): UpperCamelCase = ["""input_values""", """attention_mask"""] def __init__( self :str , __snake_case :int = 1 , __snake_case :int = 1_60_00 , __snake_case :float = 0.0 , __snake_case :bool = False , __snake_case :int = 80 , __snake_case :int = 16 , __snake_case :int = 64 , __snake_case :str = "hann_window" , __snake_case :float = 1.0 , __snake_case :float = 80 , __snake_case :float = 76_00 , __snake_case :float = 1E-10 , __snake_case :int = 2 , __snake_case :bool = True , **__snake_case :List[Any] , ): '''simple docstring''' super().__init__(feature_size=__snake_case , sampling_rate=__snake_case , padding_value=__snake_case , **__snake_case ) __magic_name__ : Optional[int] =do_normalize __magic_name__ : Any =return_attention_mask __magic_name__ : List[Any] =num_mel_bins __magic_name__ : str =hop_length __magic_name__ : str =win_length __magic_name__ : List[Any] =win_function __magic_name__ : Optional[int] =frame_signal_scale __magic_name__ : List[str] =fmin __magic_name__ : int =fmax __magic_name__ : Optional[int] =mel_floor __magic_name__ : Any =reduction_factor __magic_name__ : int =win_length * sampling_rate // 10_00 __magic_name__ : List[str] =hop_length * sampling_rate // 10_00 __magic_name__ : Tuple =optimal_fft_length(self.sample_size ) __magic_name__ : List[Any] =(self.n_fft // 2) + 1 __magic_name__ : int =window_function(window_length=self.sample_size , name=self.win_function , periodic=__snake_case ) __magic_name__ : Union[str, Any] =mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="""slaney""" , mel_scale="""slaney""" , ) if frame_signal_scale != 1.0: warnings.warn( """The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" , __snake_case , ) if reduction_factor != 2.0: warnings.warn( """The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" , __snake_case , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def A__ ( __snake_case :List[np.ndarray] , __snake_case :List[np.ndarray] , __snake_case :float = 0.0 ): '''simple docstring''' if attention_mask is not None: __magic_name__ : Tuple =np.array(__snake_case , np.intaa ) __magic_name__ : Optional[int] =[] for vector, length in zip(__snake_case , attention_mask.sum(-1 ) ): __magic_name__ : Union[str, Any] =(vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: __magic_name__ : str =padding_value normed_input_values.append(__snake_case ) else: __magic_name__ : Any =[(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def A__ ( self :Dict , __snake_case :np.ndarray , ): '''simple docstring''' __magic_name__ : Union[str, Any] =spectrogram( __snake_case , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="""log10""" , ) return log_mel_spec.T def __call__( self :int , __snake_case :Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , __snake_case :Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , __snake_case :Union[bool, str, PaddingStrategy] = False , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , __snake_case :Optional[int] = None , **__snake_case :Any , ): '''simple docstring''' if audio is None and audio_target is None: raise ValueError("""You must provide either `audio` or `audio_target` values.""" ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if audio is not None: __magic_name__ : Union[str, Any] =self._process_audio( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , **__snake_case , ) else: __magic_name__ : List[str] =None if audio_target is not None: __magic_name__ : Any =self._process_audio( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , **__snake_case , ) if inputs is None: return inputs_target else: __magic_name__ : List[str] =inputs_target["""input_values"""] __magic_name__ : List[str] =inputs_target.get("""attention_mask""" ) if decoder_attention_mask is not None: __magic_name__ : str =decoder_attention_mask return inputs def A__ ( self :List[str] , __snake_case :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __snake_case :bool = False , __snake_case :Union[bool, str, PaddingStrategy] = False , __snake_case :Optional[int] = None , __snake_case :bool = False , __snake_case :Optional[int] = None , __snake_case :Optional[bool] = None , __snake_case :Optional[Union[str, TensorType]] = None , **__snake_case :Union[str, Any] , ): '''simple docstring''' __magic_name__ : Optional[Any] =isinstance(__snake_case , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) __magic_name__ : Optional[int] =is_batched_numpy or ( isinstance(__snake_case , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __magic_name__ : Any =[np.asarray(__snake_case , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(__snake_case , np.ndarray ): __magic_name__ : Dict =np.asarray(__snake_case , dtype=np.floataa ) elif isinstance(__snake_case , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): __magic_name__ : List[str] =speech.astype(np.floataa ) # always return batch if not is_batched: __magic_name__ : int =[speech] # needed to make pad() work on spectrogram inputs __magic_name__ : List[str] =self.feature_size # convert into correct format for padding if is_target: __magic_name__ : Optional[int] =[self._extract_mel_features(__snake_case ) for waveform in speech] __magic_name__ : Optional[int] =BatchFeature({"""input_values""": features} ) __magic_name__ : List[str] =self.num_mel_bins else: __magic_name__ : int =BatchFeature({"""input_values""": speech} ) __magic_name__ : List[str] =self.pad( __snake_case , padding=__snake_case , max_length=__snake_case , truncation=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , **__snake_case , ) __magic_name__ : Optional[int] =feature_size_hack # convert input values to correct format __magic_name__ : Tuple =padded_inputs["""input_values"""] if not isinstance(input_values[0] , np.ndarray ): __magic_name__ : Optional[Any] =[np.asarray(__snake_case , dtype=np.floataa ) for array in input_values] elif ( not isinstance(__snake_case , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): __magic_name__ : Union[str, Any] =[array.astype(np.floataa ) for array in input_values] elif isinstance(__snake_case , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): __magic_name__ : Any =input_values.astype(np.floataa ) # convert attention_mask to correct format __magic_name__ : Optional[Any] =padded_inputs.get("""attention_mask""" ) if attention_mask is not None: __magic_name__ : str =[np.asarray(__snake_case , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: __magic_name__ : Optional[Any] =( attention_mask if self._get_padding_strategies(__snake_case , max_length=__snake_case ) is not PaddingStrategy.DO_NOT_PAD else None ) __magic_name__ : Dict =self.zero_mean_unit_var_norm( padded_inputs["""input_values"""] , attention_mask=__snake_case , padding_value=self.padding_value ) if return_tensors is not None: __magic_name__ : Any =padded_inputs.convert_to_tensors(__snake_case ) return padded_inputs def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Dict =super().to_dict() # Don't serialize these as they are derived from the other properties. __magic_name__ : Optional[Any] =["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""] for name in names: if name in output: del output[name] return output
367
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __A : def __init__( self :Optional[int] , __snake_case :Optional[Any] , __snake_case :List[Any]=13 , __snake_case :str=7 , __snake_case :Tuple=True , __snake_case :Dict=True , __snake_case :Optional[Any]=True , __snake_case :str=True , __snake_case :int=99 , __snake_case :int=32 , __snake_case :Dict=2 , __snake_case :Optional[Any]=4 , __snake_case :Dict=37 , __snake_case :Optional[int]="gelu" , __snake_case :Tuple=0.1 , __snake_case :Tuple=0.1 , __snake_case :int=5_12 , __snake_case :int=16 , __snake_case :int=2 , __snake_case :Optional[int]=0.02 , __snake_case :Union[str, Any]=3 , __snake_case :Any=4 , __snake_case :str=None , __snake_case :str=0 , ): '''simple docstring''' __magic_name__ : Optional[int] =parent __magic_name__ : int =batch_size __magic_name__ : Any =seq_length __magic_name__ : List[str] =is_training __magic_name__ : Any =use_input_mask __magic_name__ : Union[str, Any] =use_token_type_ids __magic_name__ : Union[str, Any] =use_labels __magic_name__ : Optional[Any] =vocab_size __magic_name__ : Optional[Any] =hidden_size __magic_name__ : Optional[Any] =num_hidden_layers __magic_name__ : Optional[Any] =num_attention_heads __magic_name__ : Tuple =intermediate_size __magic_name__ : Tuple =hidden_act __magic_name__ : Tuple =hidden_dropout_prob __magic_name__ : Any =attention_probs_dropout_prob __magic_name__ : Union[str, Any] =max_position_embeddings __magic_name__ : int =type_vocab_size __magic_name__ : Optional[Any] =type_sequence_label_size __magic_name__ : Union[str, Any] =initializer_range __magic_name__ : Optional[Any] =num_labels __magic_name__ : Any =num_choices __magic_name__ : Optional[Any] =scope __magic_name__ : str =projection_dim def A__ ( self :Dict ): '''simple docstring''' __magic_name__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ : Union[str, Any] =None if self.use_input_mask: # follow test_modeling_tf_ctrl.py __magic_name__ : List[Any] =random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ : Optional[int] =None if self.use_token_type_ids: __magic_name__ : str =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __magic_name__ : List[str] =None __magic_name__ : List[Any] =None __magic_name__ : List[str] =None if self.use_labels: __magic_name__ : str =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ : Union[str, Any] =ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ : Optional[int] =BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) __magic_name__ : Dict =DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self :List[Any] , __snake_case :List[Any] , __snake_case :List[str] , __snake_case :Any , __snake_case :Any , __snake_case :Optional[Any] , __snake_case :Optional[Any] , __snake_case :List[str] ): '''simple docstring''' __magic_name__ : List[Any] =TFDPRContextEncoder(config=__snake_case ) __magic_name__ : Union[str, Any] =model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) __magic_name__ : str =model(__snake_case , token_type_ids=__snake_case ) __magic_name__ : Optional[int] =model(__snake_case ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def A__ ( self :int , __snake_case :str , __snake_case :Tuple , __snake_case :Optional[Any] , __snake_case :Optional[Any] , __snake_case :Tuple , __snake_case :List[Any] , __snake_case :int ): '''simple docstring''' __magic_name__ : int =TFDPRQuestionEncoder(config=__snake_case ) __magic_name__ : Union[str, Any] =model(__snake_case , attention_mask=__snake_case , token_type_ids=__snake_case ) __magic_name__ : List[str] =model(__snake_case , token_type_ids=__snake_case ) __magic_name__ : Union[str, Any] =model(__snake_case ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def A__ ( self :List[Any] , __snake_case :List[str] , __snake_case :Optional[int] , __snake_case :str , __snake_case :Any , __snake_case :str , __snake_case :Optional[Any] , __snake_case :Dict ): '''simple docstring''' __magic_name__ : Optional[int] =TFDPRReader(config=__snake_case ) __magic_name__ : List[str] =model(__snake_case , attention_mask=__snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : str =self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) : Union[str, Any] =config_and_inputs __magic_name__ : List[str] ={"""input_ids""": input_ids} return config, inputs_dict @require_tf class __A ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): UpperCamelCase = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) UpperCamelCase = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False UpperCamelCase = False def A__ ( self :Union[str, Any] ): '''simple docstring''' __magic_name__ : Union[str, Any] =TFDPRModelTester(self ) __magic_name__ : Optional[Any] =ConfigTester(self , config_class=__snake_case , hidden_size=37 ) def A__ ( self :Dict ): '''simple docstring''' self.config_tester.run_common_tests() def A__ ( self :Tuple ): '''simple docstring''' __magic_name__ : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__snake_case ) def A__ ( self :List[Any] ): '''simple docstring''' __magic_name__ : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__snake_case ) def A__ ( self :Any ): '''simple docstring''' __magic_name__ : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__snake_case ) @slow def A__ ( self :Tuple ): '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Dict =TFDPRContextEncoder.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Dict =TFDPRContextEncoder.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : Union[str, Any] =TFDPRQuestionEncoder.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ : List[str] =TFDPRReader.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) @require_tf class __A ( unittest.TestCase ): @slow def A__ ( self :Optional[Any] ): '''simple docstring''' __magic_name__ : int =TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) __magic_name__ : int =tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP] __magic_name__ : Optional[Any] =model(__snake_case )[0] # embedding shape = (1, 768) # compare the actual values for a slice. __magic_name__ : Tuple =tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
367
1
__A = 256 # Modulus to hash a string __A = 1000003 def __A ( _lowercase , _lowercase ): '''simple docstring''' _A = len(_lowercase ) _A = len(_lowercase ) if p_len > t_len: return False _A = 0 _A = 0 _A = 1 # Calculating the hash of pattern and substring of text for i in range(_lowercase ): _A = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus _A = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _A = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _A = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def __A ( ): '''simple docstring''' _A = "abc1abc12" _A = "alskfjaldsabc1abc1abc12k23adsfabcabc" _A = "alskfjaldsk23adsfabcabc" assert rabin_karp(_lowercase , _lowercase ) and not rabin_karp(_lowercase , _lowercase ) # Test 2) _A = "ABABX" _A = "ABABZABABYABABX" assert rabin_karp(_lowercase , _lowercase ) # Test 3) _A = "AAAB" _A = "ABAAAAAB" assert rabin_karp(_lowercase , _lowercase ) # Test 4) _A = "abcdabcy" _A = "abcxabcdabxabcdabcdabcy" assert rabin_karp(_lowercase , _lowercase ) # Test 5) _A = "Lü" _A = "Lüsai" assert rabin_karp(_lowercase , _lowercase ) _A = "Lue" assert not rabin_karp(_lowercase , _lowercase ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
484
from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[Any] = logging.get_logger(__name__) a : Any = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE: int = 'openai-gpt' SCREAMING_SNAKE_CASE: List[str] = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , lowerCamelCase__=40_478 , lowerCamelCase__=512 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=1E-5 , lowerCamelCase__=0.0_2 , lowerCamelCase__="cls_index" , lowerCamelCase__=True , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=0.1 , **lowerCamelCase__ , ): lowerCAmelCase_: Union[str, Any] = vocab_size lowerCAmelCase_: List[Any] = n_positions lowerCAmelCase_: Tuple = n_embd lowerCAmelCase_: Optional[int] = n_layer lowerCAmelCase_: Optional[int] = n_head lowerCAmelCase_: int = afn lowerCAmelCase_: str = resid_pdrop lowerCAmelCase_: Optional[int] = embd_pdrop lowerCAmelCase_: Optional[int] = attn_pdrop lowerCAmelCase_: Dict = layer_norm_epsilon lowerCAmelCase_: List[Any] = initializer_range lowerCAmelCase_: Union[str, Any] = summary_type lowerCAmelCase_: Any = summary_use_proj lowerCAmelCase_: Dict = summary_activation lowerCAmelCase_: Dict = summary_first_dropout lowerCAmelCase_: List[Any] = summary_proj_to_labels super().__init__(**lowerCamelCase__ )
613
0
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin A_ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right A_ = 2_5_0_0_0_4 A_ = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( lowercase_ , unittest.TestCase ): """simple docstring""" A__ = MBartaaTokenizer A__ = MBartaaTokenizerFast A__ = True A__ = True def __magic_name__ ( self ): super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ = MBartaaTokenizer(_lowerCAmelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ ( self ): lowerCamelCase__ = "<s>" lowerCamelCase__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def __magic_name__ ( self ): lowerCamelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(_lowerCAmelCase ) , 1054 ) def __magic_name__ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1054 ) def __magic_name__ ( self ): lowerCamelCase__ = MBartaaTokenizer(_lowerCAmelCase , src_lang="en_XX" , tgt_lang="ro_RO" , keep_accents=_lowerCAmelCase ) lowerCamelCase__ = tokenizer.tokenize("This is a test" ) self.assertListEqual(_lowerCAmelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase__ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _lowerCAmelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", "."] , ) lowerCamelCase__ = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCamelCase__ = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", "."] , ) @slow def __magic_name__ ( self ): # fmt: off lowerCamelCase__ = {"input_ids": [[25_0004, 1_1062, 8_2772, 7, 15, 8_2772, 538, 5_1529, 237, 1_7198, 1290, 206, 9, 21_5175, 1314, 136, 1_7198, 1290, 206, 9, 5_6359, 42, 12_2009, 9, 1_6466, 16, 8_7344, 4537, 9, 4717, 7_8381, 6, 15_9958, 7, 15, 2_4480, 618, 4, 527, 2_2693, 5428, 4, 2777, 2_4480, 9874, 4, 4_3523, 594, 4, 803, 1_8392, 3_3189, 18, 4, 4_3523, 2_4447, 1_2399, 100, 2_4955, 8_3658, 9626, 14_4057, 15, 839, 2_2335, 16, 136, 2_4955, 8_3658, 8_3479, 15, 3_9102, 724, 16, 678, 645, 2789, 1328, 4589, 42, 12_2009, 11_5774, 23, 805, 1328, 4_6876, 7, 136, 5_3894, 1940, 4_2227, 4_1159, 1_7721, 823, 425, 4, 2_7512, 9_8722, 206, 136, 5531, 4970, 919, 1_7336, 5, 2], [25_0004, 2_0080, 618, 83, 8_2775, 47, 479, 9, 1517, 73, 5_3894, 333, 8_0581, 11_0117, 1_8811, 5256, 1295, 51, 15_2526, 297, 7986, 390, 12_4416, 538, 3_5431, 214, 98, 1_5044, 2_5737, 136, 7108, 4_3701, 23, 756, 13_5355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_0004, 581, 6_3773, 11_9455, 6, 14_7797, 8_8203, 7, 645, 70, 21, 3285, 1_0269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name="facebook/mbart-large-50" , revision="d3913889c59cd5c9e456b269c376325eabad57e2" , ) def __magic_name__ ( self ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCamelCase__ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart50", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): lowerCamelCase__ = self.rust_tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) lowerCamelCase__ = self.tokenizer_class.from_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = tokenizer_r.save_pretrained(_lowerCAmelCase ) lowerCamelCase__ = tokenizer_p.save_pretrained(_lowerCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) lowerCamelCase__ = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(_lowerCAmelCase , _lowerCAmelCase ) # Checks everything loads correctly in the same way lowerCamelCase__ = tokenizer_r.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = tokenizer_p.from_pretrained(_lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_lowerCAmelCase ) # Save tokenizer rust, legacy_format=True lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = tokenizer_r.save_pretrained(_lowerCAmelCase , legacy_format=_lowerCAmelCase ) lowerCamelCase__ = tokenizer_p.save_pretrained(_lowerCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(_lowerCAmelCase , _lowerCAmelCase ) # Checks everything loads correctly in the same way lowerCamelCase__ = tokenizer_r.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = tokenizer_p.from_pretrained(_lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) ) shutil.rmtree(_lowerCAmelCase ) # Save tokenizer rust, legacy_format=False lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = tokenizer_r.save_pretrained(_lowerCAmelCase , legacy_format=_lowerCAmelCase ) lowerCamelCase__ = tokenizer_p.save_pretrained(_lowerCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCamelCase__ = tokenizer_r.from_pretrained(_lowerCAmelCase ) lowerCamelCase__ = tokenizer_p.from_pretrained(_lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_lowerCAmelCase , _lowerCAmelCase ) ) shutil.rmtree(_lowerCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" A__ = "facebook/mbart-large-50-one-to-many-mmt" A__ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] A__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] A__ = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def __magic_name__ ( cls ): lowerCamelCase__ = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="en_XX" , tgt_lang="ro_RO" ) lowerCamelCase__ = 1 return cls def __magic_name__ ( self ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ar_AR"] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["en_EN"] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ro_RO"] , 25_0020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["mr_IN"] , 25_0038 ) def __magic_name__ ( self ): lowerCamelCase__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , _lowerCAmelCase ) def __magic_name__ ( self ): self.assertIn(_lowerCAmelCase , self.tokenizer.all_special_ids ) lowerCamelCase__ = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] lowerCamelCase__ = self.tokenizer.decode(_lowerCAmelCase , skip_special_tokens=_lowerCAmelCase ) lowerCamelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowerCAmelCase ) self.assertEqual(_lowerCAmelCase , _lowerCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , _lowerCAmelCase ) def __magic_name__ ( self ): lowerCamelCase__ = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , _lowerCAmelCase ) lowerCamelCase__ = 10 lowerCamelCase__ = self.tokenizer(_lowerCAmelCase , max_length=_lowerCAmelCase , truncation=_lowerCAmelCase ).input_ids[0] self.assertEqual(ids[0] , _lowerCAmelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) def __magic_name__ ( self ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [25_0053, 25_0001] ) def __magic_name__ ( self ): lowerCamelCase__ = tempfile.mkdtemp() lowerCamelCase__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(_lowerCAmelCase ) lowerCamelCase__ = MBartaaTokenizer.from_pretrained(_lowerCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , _lowerCAmelCase ) @require_torch def __magic_name__ ( self ): lowerCamelCase__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=_lowerCAmelCase , return_tensors="pt" ) lowerCamelCase__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __magic_name__ ( self ): lowerCamelCase__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) lowerCamelCase__ = shift_tokens_right(batch["labels"] , self.tokenizer.pad_token_id ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) lowerCamelCase__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , _lowerCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ ( self ): lowerCamelCase__ = self.tokenizer(self.src_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=3 , return_tensors="pt" ) lowerCamelCase__ = self.tokenizer( text_target=self.tgt_text , padding=_lowerCAmelCase , truncation=_lowerCAmelCase , max_length=10 , return_tensors="pt" ) lowerCamelCase__ = targets["input_ids"] lowerCamelCase__ = shift_tokens_right(_lowerCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ ( self ): lowerCamelCase__ = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="en_XX" , tgt_lang="ar_AR" ) self.assertEqual( nested_simplify(_lowerCAmelCase ) , { # en_XX, A, test, EOS "input_ids": [[25_0004, 62, 3034, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_0001, } , )
712
from __future__ import annotations class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , _lowerCAmelCase , _lowerCAmelCase ): lowerCamelCase__ , lowerCamelCase__ = text, pattern lowerCamelCase__ , lowerCamelCase__ = len(_lowerCAmelCase ), len(_lowerCAmelCase ) def __magic_name__ ( self , _lowerCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def __magic_name__ ( self , _lowerCAmelCase ): for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def __magic_name__ ( self ): # searches pattern in text and returns index positions lowerCamelCase__ = [] for i in range(self.textLen - self.patLen + 1 ): lowerCamelCase__ = self.mismatch_in_text(_lowerCAmelCase ) if mismatch_index == -1: positions.append(_lowerCAmelCase ) else: lowerCamelCase__ = self.match_in_pattern(self.text[mismatch_index] ) lowerCamelCase__ = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions A_ = "ABAABA" A_ = "AB" A_ = BoyerMooreSearch(text, pattern) A_ = bms.bad_character_heuristic() if len(positions) == 0: print("No match found") else: print("Pattern found in following positions: ") print(positions)
360
0
"""simple docstring""" from functools import lru_cache @lru_cache def __snake_case ( _lowercase ): """simple docstring""" if num < 0: raise ValueError('''Number should not be negative.''' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
34
from __future__ import annotations def _A ( SCREAMING_SNAKE_CASE__ : tuple[int, int] , SCREAMING_SNAKE_CASE__ : int ): UpperCamelCase , UpperCamelCase :List[Any] = position UpperCamelCase :Any = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCamelCase :Dict = [] for position in positions: UpperCamelCase , UpperCamelCase :str = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE__ ) return permissible_positions def _A ( SCREAMING_SNAKE_CASE__ : list[list[int]] ): return not any(elem == 0 for row in board for elem in row ) def _A ( SCREAMING_SNAKE_CASE__ : list[list[int]] , SCREAMING_SNAKE_CASE__ : tuple[int, int] , SCREAMING_SNAKE_CASE__ : int ): if is_complete(SCREAMING_SNAKE_CASE__ ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE__ , len(SCREAMING_SNAKE_CASE__ ) ): UpperCamelCase , UpperCamelCase :Optional[int] = position if board[y][x] == 0: UpperCamelCase :Any = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , curr + 1 ): return True UpperCamelCase :Union[str, Any] = 0 return False def _A ( SCREAMING_SNAKE_CASE__ : int ): UpperCamelCase :List[Any] = [[0 for i in range(SCREAMING_SNAKE_CASE__ )] for j in range(SCREAMING_SNAKE_CASE__ )] for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :Tuple = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE__ , (i, j) , 1 ): return board UpperCamelCase :str = 0 UpperCamelCase :List[Any] = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
658
0
import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def lowerCamelCase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : str , **lowerCAmelCase__ : Any ) -> Any: '''simple docstring''' A = AutoConfig.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) A = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) AutoTokenizer.from_pretrained(lowerCAmelCase__ ).save_pretrained(lowerCAmelCase__ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
717
from __future__ import annotations def lowerCamelCase_ ( lowerCAmelCase__ : list[float] ) -> bool: '''simple docstring''' if len(lowerCAmelCase__ ) < 2: raise ValueError('Monogons and Digons are not polygons in the Euclidean space' ) if any(i <= 0 for i in nums ): raise ValueError('All values must be greater than 0' ) A = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
224
0
def A__ ( snake_case_ : int = 1_000_000 ): SCREAMING_SNAKE_CASE__: List[str]= set(range(3 , snake_case_ , 2 ) ) primes.add(2 ) for p in range(3 , snake_case_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , snake_case_ , snake_case_ ) ) ) SCREAMING_SNAKE_CASE__: Optional[int]= [float(snake_case_ ) for n in range(limit + 1 )] for p in primes: for n in range(snake_case_ , limit + 1 , snake_case_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
64
"""simple docstring""" # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _A : List[str] = get_logger(__name__) class a__ : __lowerCAmelCase = """dummy_data""" __lowerCAmelCase = """datasets""" __lowerCAmelCase = False def __init__( self , _a , _a , _a , _a = None , _a = False , _a = True , _a = None , ): lowercase : int = 0 lowercase : Optional[Any] = dataset_name lowercase : List[str] = cache_dir lowercase : Union[str, Any] = use_local_dummy_data lowercase : str = config # download_callbacks take a single url as input lowercase : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowercase : List[Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowercase : Tuple = str(_a ) # to be downloaded lowercase : Tuple = None lowercase : List[Any] = None @property def __magic_name__ ( self ): if self._dummy_file is None: lowercase : Optional[int] = self.download_dummy_data() return self._dummy_file @property def __magic_name__ ( self ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("dummy" , self.version_name ) @property def __magic_name__ ( self ): return os.path.join(self.dummy_data_folder , "dummy_data.zip" ) def __magic_name__ ( self ): lowercase : Optional[Any] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowercase : str = cached_path( _a , cache_dir=self.cache_dir , extract_compressed_file=_a , force_extract=_a ) return os.path.join(_a , self.dummy_file_name ) @property def __magic_name__ ( self ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def __magic_name__ ( self ): if self._bucket_url is None: lowercase : Dict = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) ) return self._bucket_url @property def __magic_name__ ( self ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] ) def __magic_name__ ( self , _a , *_a ): if self.load_existing_dummy_data: # dummy data is downloaded and tested lowercase : Optional[int] = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowercase : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(_a , _a ): return self.create_dummy_data_dict(_a , _a ) elif isinstance(_a , (list, tuple) ): return self.create_dummy_data_list(_a , _a ) else: return self.create_dummy_data_single(_a , _a ) def __magic_name__ ( self , _a , *_a ): return self.download_and_extract(_a ) def __magic_name__ ( self , _a , _a ): return self.download_and_extract(_a ) def __magic_name__ ( self , _a , *_a , **_a ): return path def __magic_name__ ( self ): return {} def __magic_name__ ( self , _a , _a ): lowercase : List[str] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(_a , _a ): for single_url in single_urls: download_callback(_a ) else: lowercase : Union[str, Any] = single_urls download_callback(_a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(_a , _a ): lowercase : Any = [os.path.join(_a , urllib.parse.quote_plus(Path(_a ).name ) ) for x in single_urls] else: lowercase : int = single_urls lowercase : Tuple = os.path.join(_a , urllib.parse.quote_plus(Path(_a ).name ) ) lowercase : List[str] = value # make sure that values are unique if all(isinstance(_a , _a ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowercase : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def __magic_name__ ( self , _a , _a ): lowercase : Union[str, Any] = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowercase : Any = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , _a ) ) for url in data_url ) lowercase : List[Any] = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowercase : Tuple = [data_url[0]] * len(_a ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(_a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Union[str, Any] = os.path.join(_a , urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(_a ) return dummy_data_list def __magic_name__ ( self , _a , _a ): for download_callback in self.download_callbacks: download_callback(_a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowercase : Tuple = os.path.join(_a , urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(_a ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def __magic_name__ ( self ): pass def __magic_name__ ( self ): pass def __magic_name__ ( self , _a ): def _iter_archive_members(_a ): # this preserves the order of the members inside the ZIP archive lowercase : Optional[int] = Path(self.dummy_file ).parent lowercase : List[str] = path.relative_to(_a ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowercase : List[str] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(_a ) lowercase : Union[str, Any] = Path(_a ) lowercase : List[Any] = _iter_archive_members(_a ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(_a ).as_posix(), file_path.open("rb" ) def __magic_name__ ( self , _a ): if not isinstance(_a , _a ): lowercase : Any = [paths] for path in paths: if os.path.isfile(_a ): if os.path.basename(_a ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(_a ): if os.path.basename(_a ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(_a ): if filename.startswith((".", "__") ): continue yield os.path.join(_a , _a )
361
0
'''simple docstring''' from __future__ import annotations from dataclasses import dataclass @dataclass class __SCREAMING_SNAKE_CASE : lowerCamelCase_ = 42 lowerCamelCase_ = None lowerCamelCase_ = None def _lowerCAmelCase ( __magic_name__ : TreeNode | None ) -> bool: # Validation def is_valid_tree(__magic_name__ : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__magic_name__ , __magic_name__ ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__magic_name__ ): raise ValueError( '''Each node should be type of TreeNode and data should be float.''' ) def is_binary_search_tree_recursive_check( __magic_name__ : TreeNode | None , __magic_name__ : float , __magic_name__ : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , __magic_name__ , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , __magic_name__ ) ) return is_binary_search_tree_recursive_check(__magic_name__ , -float('''inf''' ) , float('''inf''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
88
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( lowercase__ , unittest.TestCase ): lowerCamelCase_ = None lowerCamelCase_ = BloomTokenizerFast lowerCamelCase_ = BloomTokenizerFast lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = 'tokenizer_file' lowerCamelCase_ = {'bos_token': '<s>', 'eos_token': '</s>', 'unk_token': '<unk>', 'pad_token': '<pad>'} def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' super().setUp() lowercase : Union[str, Any] =BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : Union[str, Any] , **UpperCAmelCase__ : Any ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase__ ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : str =self.get_rust_tokenizer() lowercase : List[str] =['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] lowercase : Any =[[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] lowercase : Any =tokenizer.batch_encode_plus(UpperCAmelCase__ )['''input_ids'''] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase : int =tokenizer.batch_decode(UpperCAmelCase__ ) self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase_ ( self : Tuple , UpperCAmelCase__ : Any=6 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): lowercase : Optional[int] =self.rust_tokenizer_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase : Tuple ='''This is a simple input''' lowercase : int =['''This is a simple input 1''', '''This is a simple input 2'''] lowercase : Optional[Any] =('''This is a simple input''', '''This is a pair''') lowercase : int =[ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(UpperCAmelCase__ , max_length=UpperCAmelCase__ ) tokenizer_r.encode_plus(UpperCAmelCase__ , max_length=UpperCAmelCase__ ) tokenizer_r.batch_encode_plus(UpperCAmelCase__ , max_length=UpperCAmelCase__ ) tokenizer_r.encode(UpperCAmelCase__ , max_length=UpperCAmelCase__ ) tokenizer_r.batch_encode_plus(UpperCAmelCase__ , max_length=UpperCAmelCase__ ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) lowercase : Optional[int] =None # Hotfixing padding = None self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' ) # Simple input self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' ) # Simple input self.assertRaises( UpperCAmelCase__ , tokenizer_r.batch_encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' , ) # Pair input self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' ) # Pair input self.assertRaises(UpperCAmelCase__ , tokenizer_r.encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' ) # Pair input self.assertRaises( UpperCAmelCase__ , tokenizer_r.batch_encode_plus , UpperCAmelCase__ , max_length=UpperCAmelCase__ , padding='''max_length''' , ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowercase : Union[str, Any] =self.get_rust_tokenizer() lowercase : Dict =load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=UpperCAmelCase__ ) lowercase : Union[str, Any] =next(iter(UpperCAmelCase__ ) )['''premise'''] # pick up one data lowercase : int =list(sample_data.values() ) lowercase : Any =list(map(tokenizer.encode , UpperCAmelCase__ ) ) lowercase : List[str] =[tokenizer.decode(UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ ) for x in output_tokens] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
88
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"""tokenizer_file""": """tokenizer.json"""} UpperCamelCase_ = { """tokenizer_file""": { """bigscience/tokenizer""": """https://huggingface.co/bigscience/tokenizer/blob/main/tokenizer.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/tokenizer.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/tokenizer.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/tokenizer.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/tokenizer.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/tokenizer.json""", """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/blob/main/tokenizer.json""", }, } class __SCREAMING_SNAKE_CASE ( lowercase__ ): lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = ['input_ids', 'attention_mask'] lowerCamelCase_ = None def __init__( self : List[str] , UpperCAmelCase__ : Dict=None , UpperCAmelCase__ : List[str]=None , UpperCAmelCase__ : Union[str, Any]=None , UpperCAmelCase__ : Union[str, Any]="<unk>" , UpperCAmelCase__ : Optional[Any]="<s>" , UpperCAmelCase__ : List[Any]="</s>" , UpperCAmelCase__ : Optional[Any]="<pad>" , UpperCAmelCase__ : Dict=False , UpperCAmelCase__ : int=False , **UpperCAmelCase__ : int , ): '''simple docstring''' super().__init__( UpperCAmelCase__ , UpperCAmelCase__ , tokenizer_file=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , add_prefix_space=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ , **UpperCAmelCase__ , ) lowercase : str =json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , UpperCAmelCase__ ) != add_prefix_space: lowercase : int =getattr(UpperCAmelCase__ , pre_tok_state.pop('''type''' ) ) lowercase : int =add_prefix_space lowercase : Optional[Any] =pre_tok_class(**UpperCAmelCase__ ) lowercase : Optional[Any] =add_prefix_space def lowerCamelCase_ ( self : Optional[Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : Union[str, Any] ): '''simple docstring''' lowercase : Optional[Any] =kwargs.get('''is_split_into_words''' , UpperCAmelCase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._batch_encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[str] , *UpperCAmelCase__ : Optional[Any] , **UpperCAmelCase__ : Optional[int] ): '''simple docstring''' lowercase : Dict =kwargs.get('''is_split_into_words''' , UpperCAmelCase__ ) if not (self.add_prefix_space or not is_split_into_words): raise Exception( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with''' ''' pretokenized inputs.''' ) return super()._encode_plus(*UpperCAmelCase__ , **UpperCAmelCase__ ) def lowerCamelCase_ ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[str] = None ): '''simple docstring''' lowercase : Dict =self._tokenizer.model.save(UpperCAmelCase__ , name=UpperCAmelCase__ ) return tuple(UpperCAmelCase__ ) def lowerCamelCase_ ( self : List[str] , UpperCAmelCase__ : "Conversation" ): '''simple docstring''' lowercase : Any =[] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase__ , add_special_tokens=UpperCAmelCase__ ) + [self.eos_token_id] ) if len(UpperCAmelCase__ ) > self.model_max_length: lowercase : Any =input_ids[-self.model_max_length :] return input_ids
92
"""simple docstring""" __A : Optional[int] = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' __A : str = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] __A : str = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
499
0
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __magic_name__ ( unittest.TestCase): def _UpperCAmelCase ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() def _UpperCAmelCase ( self : List[str] ): UpperCAmelCase , UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( "stabilityai/stable-diffusion-2" ,revision="bf16" ,dtype=jnp.bfloataa ,) UpperCAmelCase = "A painting of a squirrel eating a burger" UpperCAmelCase = jax.device_count() UpperCAmelCase = num_samples * [prompt] UpperCAmelCase = sd_pipe.prepare_inputs(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = replicate(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = shard(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = jax.random.PRNGKey(0 ) UpperCAmelCase = jax.random.split(__SCREAMING_SNAKE_CASE ,jax.device_count() ) UpperCAmelCase = sd_pipe(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,num_inference_steps=2_5 ,jit=__SCREAMING_SNAKE_CASE )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) UpperCAmelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCAmelCase = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] UpperCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.4_5508, 0.4512] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self : Any ): UpperCAmelCase = "stabilityai/stable-diffusion-2" UpperCAmelCase , UpperCAmelCase = FlaxDPMSolverMultistepScheduler.from_pretrained(__SCREAMING_SNAKE_CASE ,subfolder="scheduler" ) UpperCAmelCase , UpperCAmelCase = FlaxStableDiffusionPipeline.from_pretrained( __SCREAMING_SNAKE_CASE ,scheduler=__SCREAMING_SNAKE_CASE ,revision="bf16" ,dtype=jnp.bfloataa ,) UpperCAmelCase = scheduler_params UpperCAmelCase = "A painting of a squirrel eating a burger" UpperCAmelCase = jax.device_count() UpperCAmelCase = num_samples * [prompt] UpperCAmelCase = sd_pipe.prepare_inputs(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = replicate(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = shard(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = jax.random.PRNGKey(0 ) UpperCAmelCase = jax.random.split(__SCREAMING_SNAKE_CASE ,jax.device_count() ) UpperCAmelCase = sd_pipe(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,num_inference_steps=2_5 ,jit=__SCREAMING_SNAKE_CASE )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) UpperCAmelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) UpperCAmelCase = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] UpperCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase = jnp.array([0.4336, 0.4_2969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] ) print(f'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
706
from __future__ import annotations def __UpperCamelCase ( _lowerCAmelCase ): # This function is recursive """simple docstring""" UpperCAmelCase = len(_lowerCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else UpperCAmelCase = array[0] UpperCAmelCase = False UpperCAmelCase = 1 UpperCAmelCase = [] while not is_found and i < array_length: if array[i] < pivot: UpperCAmelCase = True UpperCAmelCase = [element for element in array[i:] if element >= array[i]] UpperCAmelCase = longest_subsequence(_lowerCAmelCase ) if len(_lowerCAmelCase ) > len(_lowerCAmelCase ): UpperCAmelCase = temp_array else: i += 1 UpperCAmelCase = [element for element in array[1:] if element >= pivot] UpperCAmelCase = [pivot, *longest_subsequence(_lowerCAmelCase )] if len(_lowerCAmelCase ) > len(_lowerCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
405
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: a_ = None a_ = logging.get_logger(__name__) a_ = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} a_ = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''', }, } a_ = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } a_ = '''▁''' # Segments (not really needed) a_ = 0 a_ = 1 a_ = 2 a_ = 3 a_ = 4 class lowercase__ ( _UpperCAmelCase ): a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ ="""left""" a_ =XLNetTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , **__UpperCAmelCase , )-> Any: '''simple docstring''' lowerCAmelCase__ = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( vocab_file=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) lowerCAmelCase__ = 3 lowerCAmelCase__ = do_lower_case lowerCAmelCase__ = remove_space lowerCAmelCase__ = keep_accents lowerCAmelCase__ = vocab_file lowerCAmelCase__ = False if not self.vocab_file else True def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]: '''simple docstring''' lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]: '''simple docstring''' lowerCAmelCase__ = [self.sep_token_id] lowerCAmelCase__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(__UpperCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return lowerCAmelCase__ = os.path.join( __UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
339
from __future__ import annotations def _a ( UpperCamelCase_ : list[float] ) -> float: """simple docstring""" lowerCAmelCase__ = 0.00 lowerCAmelCase__ = 0 for resistor in resistors: if resistor <= 0: lowerCAmelCase__ = F"Resistor at index {index} has a negative or zero value!" raise ValueError(UpperCamelCase_ ) first_sum += 1 / float(UpperCamelCase_ ) index += 1 return 1 / first_sum def _a ( UpperCamelCase_ : list[float] ) -> float: """simple docstring""" lowerCAmelCase__ = 0.00 lowerCAmelCase__ = 0 for resistor in resistors: sum_r += resistor if resistor < 0: lowerCAmelCase__ = F"Resistor at index {index} has a negative value!" raise ValueError(UpperCamelCase_ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
339
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a : Union[str, Any]= { "configuration_jukebox": [ "JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "JukeboxConfig", "JukeboxPriorConfig", "JukeboxVQVAEConfig", ], "tokenization_jukebox": ["JukeboxTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Any= [ "JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST", "JukeboxModel", "JukeboxPreTrainedModel", "JukeboxVQVAE", "JukeboxPrior", ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys _a : Any= _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
192
"""simple docstring""" import string import numpy def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' return b if a == 0 else greatest_common_divisor(b % a , UpperCAmelCase_ ) class UpperCamelCase : UpperCAmelCase : Any = string.ascii_uppercase + string.digits # This cipher takes alphanumerics into account # i.e. a total of 36 characters # take x and return x % len(key_string) UpperCAmelCase : List[Any] = numpy.vectorize(lambda lowercase : x % 36 ) UpperCAmelCase : Dict = numpy.vectorize(lowercase ) def __init__(self : str , _A : numpy.ndarray) -> None: __snake_case : str = self.modulus(_A) # mod36 calc's on the encrypt key self.check_determinant() # validate the determinant of the encryption key __snake_case : Optional[Any] = encrypt_key.shape[0] def _lowercase (self : Any , _A : str) -> int: return self.key_string.index(_A) def _lowercase (self : Union[str, Any] , _A : int) -> str: return self.key_string[round(_A)] def _lowercase (self : Optional[int]) -> None: __snake_case : Any = round(numpy.linalg.det(self.encrypt_key)) if det < 0: __snake_case : Any = det % len(self.key_string) __snake_case : Tuple = len(self.key_string) if greatest_common_divisor(_A , len(self.key_string)) != 1: __snake_case : List[str] = ( f"determinant modular {req_l} of encryption key({det}) " f"is not co prime w.r.t {req_l}.\nTry another key." ) raise ValueError(_A) def _lowercase (self : Dict , _A : str) -> str: __snake_case : str = [char for char in text.upper() if char in self.key_string] __snake_case : int = chars[-1] while len(_A) % self.break_key != 0: chars.append(_A) return "".join(_A) def _lowercase (self : Union[str, Any] , _A : str) -> str: __snake_case : Any = self.process_text(text.upper()) __snake_case : Dict = '' for i in range(0 , len(_A) - self.break_key + 1 , self.break_key): __snake_case : Dict = text[i : i + self.break_key] __snake_case : List[str] = [self.replace_letters(_A) for char in batch] __snake_case : str = numpy.array([vec]).T __snake_case : List[Any] = self.modulus(self.encrypt_key.dot(_A)).T.tolist()[ 0 ] __snake_case : str = ''.join( self.replace_digits(_A) for num in batch_encrypted) encrypted += encrypted_batch return encrypted def _lowercase (self : Optional[int]) -> numpy.ndarray: __snake_case : List[Any] = round(numpy.linalg.det(self.encrypt_key)) if det < 0: __snake_case : int = det % len(self.key_string) __snake_case : Optional[Any] = None for i in range(len(self.key_string)): if (det * i) % len(self.key_string) == 1: __snake_case : Dict = i break __snake_case : List[str] = ( det_inv * numpy.linalg.det(self.encrypt_key) * numpy.linalg.inv(self.encrypt_key) ) return self.to_int(self.modulus(_A)) def _lowercase (self : int , _A : str) -> str: __snake_case : int = self.make_decrypt_key() __snake_case : List[str] = self.process_text(text.upper()) __snake_case : str = '' for i in range(0 , len(_A) - self.break_key + 1 , self.break_key): __snake_case : Optional[Any] = text[i : i + self.break_key] __snake_case : Union[str, Any] = [self.replace_letters(_A) for char in batch] __snake_case : Tuple = numpy.array([vec]).T __snake_case : List[str] = self.modulus(decrypt_key.dot(_A)).T.tolist()[0] __snake_case : str = ''.join( self.replace_digits(_A) for num in batch_decrypted) decrypted += decrypted_batch return decrypted def __UpperCAmelCase ( ) -> None: '''simple docstring''' __snake_case : List[str] = int(input('Enter the order of the encryption key: ' ) ) __snake_case : str = [] print('Enter each row of the encryption key with space separated integers' ) for _ in range(UpperCAmelCase_ ): __snake_case : Union[str, Any] = [int(UpperCAmelCase_ ) for x in input().split()] hill_matrix.append(UpperCAmelCase_ ) __snake_case : Dict = HillCipher(numpy.array(UpperCAmelCase_ ) ) print('Would you like to encrypt or decrypt some text? (1 or 2)' ) __snake_case : Optional[Any] = input('\n1. Encrypt\n2. Decrypt\n' ) if option == "1": __snake_case : int = input('What text would you like to encrypt?: ' ) print('Your encrypted text is:' ) print(hc.encrypt(UpperCAmelCase_ ) ) elif option == "2": __snake_case : Tuple = input('What text would you like to decrypt?: ' ) print('Your decrypted text is:' ) print(hc.decrypt(UpperCAmelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
192
1
'''simple docstring''' from typing import List import numpy as np def A_( A : dict): UpperCamelCase = {key: len(A) for key, value in gen_kwargs.items() if isinstance(A , A)} if len(set(lists_lengths.values())) > 1: raise RuntimeError( ( 'Sharding is ambiguous for this dataset: ' + 'we found several data sources lists of different lengths, and we don\'t know over which list we should parallelize:\n' + '\n'.join(f'''\t- key {key} has length {length}''' for key, length in lists_lengths.items()) + '\nTo fix this, check the \'gen_kwargs\' and make sure to use lists only for data sources, ' + 'and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.' )) UpperCamelCase = max(lists_lengths.values() , default=0) return max(1 , A) def A_( A : int , A : int): UpperCamelCase = [] for group_idx in range(A): UpperCamelCase = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break UpperCamelCase = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 UpperCamelCase = range(A , start + num_shards_to_add) shards_indices_per_group.append(A) return shards_indices_per_group def A_( A : dict , A : int): UpperCamelCase = _number_of_shards_in_gen_kwargs(A) if num_shards == 1: return [dict(A)] else: UpperCamelCase = _distribute_shards(num_shards=A , max_num_jobs=A) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(A , A) else value for key, value in gen_kwargs.items() } for group_idx in range(len(A)) ] def A_( A : List[dict]): return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , A) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def A_( A : np.random.Generator , A : dict): UpperCamelCase = {len(A) for value in gen_kwargs.values() if isinstance(A , A)} UpperCamelCase = {} for size in list_sizes: UpperCamelCase = list(range(A)) rng.shuffle(indices_per_size[size]) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes UpperCamelCase = dict(A) for key, value in shuffled_kwargs.items(): if isinstance(A , A): UpperCamelCase = [value[i] for i in indices_per_size[len(A)]] return shuffled_kwargs
3
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer lowercase : Tuple = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} lowercase : Dict = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } lowercase : List[Any] = { """unc-nlp/lxmert-base-uncased""": 512, } lowercase : Tuple = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class _a (a__ ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = VOCAB_FILES_NAMES lowerCAmelCase_ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ : Any = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ : Optional[int] = LxmertTokenizer def __init__( self ,__a=None ,__a=None ,__a=True ,__a="[UNK]" ,__a="[SEP]" ,__a="[PAD]" ,__a="[CLS]" ,__a="[MASK]" ,__a=True ,__a=None ,**__a ,) -> str: super().__init__( __a ,tokenizer_file=__a ,do_lower_case=__a ,unk_token=__a ,sep_token=__a ,pad_token=__a ,cls_token=__a ,mask_token=__a ,tokenize_chinese_chars=__a ,strip_accents=__a ,**__a ,) snake_case : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" ,__a ) != do_lower_case or normalizer_state.get("""strip_accents""" ,__a ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" ,__a ) != tokenize_chinese_chars ): snake_case : Union[str, Any] = getattr(__a ,normalizer_state.pop("""type""" ) ) snake_case : Optional[int] = do_lower_case snake_case : Optional[int] = strip_accents snake_case : List[Any] = tokenize_chinese_chars snake_case : Union[str, Any] = normalizer_class(**__a ) snake_case : str = do_lower_case def snake_case_ ( self ,__a ,__a=None ) -> Optional[int]: snake_case : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self ,__a ,__a = None ) -> List[int]: snake_case : int = [self.sep_token_id] snake_case : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self ,__a ,__a = None ) -> Tuple[str]: snake_case : Optional[int] = self._tokenizer.model.save(__a ,name=__a ) return tuple(__a )
116
0
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate A = trt.Logger(trt.Logger.WARNING) A = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) A = logging.getLogger(__name__) A = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) A = parser.parse_args() if args.tokenizer_name: A = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) A = args.per_device_eval_batch_size A = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties A = True A = 'temp_engine/bert-fp32.engine' if args.fpaa: A = 'temp_engine/bert-fp16.engine' if args.inta: A = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') A = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network A = [network.get_input(i) for i in range(network.num_inputs)] A = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: A = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) A = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) A = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def _lowerCamelCase( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = np.asarray(inputs['input_ids'] , dtype=np.intaa ) SCREAMING_SNAKE_CASE_ : Dict = np.asarray(inputs['attention_mask'] , dtype=np.intaa ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.asarray(inputs['token_type_ids'] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCAmelCase__ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCAmelCase__ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCAmelCase__ ) # start time SCREAMING_SNAKE_CASE_ : str = time.time() # Run inference context.execute_async( bindings=[int(lowerCAmelCase__ ) for d_inp in d_inputs] + [int(lowerCAmelCase__ ), int(lowerCAmelCase__ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) cuda.memcpy_dtoh_async(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Synchronize the stream and take time stream.synchronize() # end time SCREAMING_SNAKE_CASE_ : Any = time.time() SCREAMING_SNAKE_CASE_ : List[Any] = end_time - start_time SCREAMING_SNAKE_CASE_ : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. A = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. A = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. A = raw_datasets['validation'].column_names A = 'question' if 'question' in column_names else column_names[0] A = 'context' if 'context' in column_names else column_names[1] A = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). A = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) A = min(args.max_seq_length, tokenizer.model_max_length) def _lowerCamelCase( lowerCAmelCase__ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='only_second' if pad_on_right else 'only_first' , max_length=lowerCAmelCase__ , stride=args.doc_stride , return_overflowing_tokens=lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , padding='max_length' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. SCREAMING_SNAKE_CASE_ : Dict = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). SCREAMING_SNAKE_CASE_ : Optional[Any] = tokenized_examples.sequence_ids(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. SCREAMING_SNAKE_CASE_ : Optional[int] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. SCREAMING_SNAKE_CASE_ : Tuple = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples A = raw_datasets['validation'] # Validation Feature Creation A = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) A = default_data_collator A = eval_dataset.remove_columns(['example_id', 'offset_mapping']) A = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _lowerCamelCase( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict="eval" ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = postprocess_qa_predictions( examples=lowerCAmelCase__ , features=lowerCAmelCase__ , predictions=lowerCAmelCase__ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCAmelCase__ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: SCREAMING_SNAKE_CASE_ : Optional[Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: SCREAMING_SNAKE_CASE_ : str = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] SCREAMING_SNAKE_CASE_ : List[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCAmelCase__ , label_ids=lowerCAmelCase__ ) A = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _lowerCamelCase( lowerCAmelCase__ : Any ): '''simple docstring''' return trt.volume(engine.get_binding_shape(lowerCAmelCase__ ) ) * engine.get_binding_dtype(lowerCAmelCase__ ).itemsize # Allocate device memory for inputs and outputs. A = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer A = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) A = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) A = cuda.mem_alloc(h_outputa.nbytes) A = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. A = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f""" Num examples = {len(eval_dataset)}""") logger.info(f""" Batch size = {args.per_device_eval_batch_size}""") A = 0.0 A = 0 A = timeit.default_timer() A = None for step, batch in enumerate(eval_dataloader): A , A = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 A , A = outputs A = torch.tensor(start_logits) A = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered A = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) A = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) A = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) A = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: A = nested_truncate(all_preds, len(eval_dataset)) A = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1000)) logger.info('Total Number of Inference = %d', niter) A = post_processing_function(eval_examples, eval_dataset, all_preds) A = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"""Evaluation metrics: {eval_metric}""")
97
from __future__ import annotations from collections import Counter from random import random class __a : '''simple docstring''' def __init__( self ): SCREAMING_SNAKE_CASE_ : List[str] = {} def __snake_case ( self , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : int = {} def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): if nodea not in self.connections: self.add_node(UpperCamelCase__ ) if nodea not in self.connections: self.add_node(UpperCamelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = probability def __snake_case ( self ): return list(self.connections ) def __snake_case ( self , UpperCamelCase__ ): SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : List[Any] = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def _lowerCamelCase( lowerCAmelCase__ : str , lowerCAmelCase__ : list[tuple[str, str, float]] , lowerCAmelCase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[str] = Counter(graph.get_nodes() ) SCREAMING_SNAKE_CASE_ : Optional[Any] = start for _ in range(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : Dict = graph.transition(lowerCAmelCase__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
97
1
'''simple docstring''' from __future__ import annotations from collections import Counter from random import random class __UpperCAmelCase : def __init__( self ): lowerCAmelCase_ = {} def UpperCAmelCase_ ( self , _lowerCamelCase ): lowerCAmelCase_ = {} def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if nodea not in self.connections: self.add_node(_A ) if nodea not in self.connections: self.add_node(_A ) lowerCAmelCase_ = probability def UpperCAmelCase_ ( self ): return list(self.connections ) def UpperCAmelCase_ ( self , _lowerCamelCase ): lowerCAmelCase_ = 0 lowerCAmelCase_ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def snake_case_ ( __snake_case : str , __snake_case : List[str] , __snake_case : Dict) -> Union[str, Any]: lowerCAmelCase_ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__snake_case , __snake_case , __snake_case) lowerCAmelCase_ = Counter(graph.get_nodes()) lowerCAmelCase_ = start for _ in range(__snake_case): lowerCAmelCase_ = graph.transition(__snake_case) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
274
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( __lowercase, __lowercase, __lowercase, unittest.TestCase ): UpperCAmelCase = StableUnCLIPPipeline UpperCAmelCase = TEXT_TO_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false UpperCAmelCase = False def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = 32 _UpperCamelCase = embedder_hidden_size # prior components torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=_A , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=_A , num_layers=1 , ) torch.manual_seed(0 ) _UpperCamelCase = DDPMScheduler( variance_type='''fixed_small_log''' , prediction_type='''sample''' , num_train_timesteps=1000 , clip_sample=_A , clip_sample_range=5.0 , beta_schedule='''squaredcos_cap_v2''' , ) # regular denoising components torch.manual_seed(0 ) _UpperCamelCase = StableUnCLIPImageNormalizer(embedding_dim=_A ) _UpperCamelCase = DDPMScheduler(beta_schedule='''squaredcos_cap_v2''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=_A , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) ) torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock2D''', '''DownBlock2D''') , up_block_types=('''UpBlock2D''', '''CrossAttnUpBlock2D''') , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type='''projection''' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=_A , layers_per_block=1 , upcast_attention=_A , use_linear_projection=_A , ) torch.manual_seed(0 ) _UpperCamelCase = DDIMScheduler( beta_schedule='''scaled_linear''' , beta_start=0.0_0085 , beta_end=0.012 , prediction_type='''v_prediction''' , set_alpha_to_one=_A , steps_offset=1 , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL() _UpperCamelCase = { # prior components '''prior_tokenizer''': prior_tokenizer, '''prior_text_encoder''': prior_text_encoder, '''prior''': prior, '''prior_scheduler''': prior_scheduler, # image noising components '''image_normalizer''': image_normalizer, '''image_noising_scheduler''': image_noising_scheduler, # regular denoising components '''tokenizer''': tokenizer, '''text_encoder''': text_encoder, '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, } return components def UpperCamelCase_ ( self : Dict , _A : Tuple , _A : Dict=0 ): if str(_A ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(_A ) else: _UpperCamelCase = torch.Generator(device=_A ).manual_seed(_A ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''prior_num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = torch_device == '''cpu''' self._test_attention_slicing_forward_pass(test_max_difference=_A ) def UpperCamelCase_ ( self : List[Any] ): _UpperCamelCase = torch_device in ['''cpu''', '''mps'''] self._test_inference_batch_single_identical(test_max_difference=_A ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Optional[Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy''' ) _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) _UpperCamelCase = pipe('''anime turle''' , generator=_A , output_type='''np''' ) _UpperCamelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A ) def UpperCamelCase_ ( self : Optional[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = StableUnCLIPPipeline.from_pretrained('''fusing/stable-unclip-2-1-l''' , torch_dtype=torch.floataa ) _UpperCamelCase = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() _UpperCamelCase = pipe( '''anime turtle''' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='''np''' , ) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
10
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class __UpperCAmelCase : def __init__( self , _lowerCamelCase , ): lowerCamelCase__ =parent lowerCamelCase__ =13 lowerCamelCase__ =7 lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =False lowerCamelCase__ =True lowerCamelCase__ =99 lowerCamelCase__ =32 lowerCamelCase__ =2 lowerCamelCase__ =4 lowerCamelCase__ =37 lowerCamelCase__ ="gelu" lowerCamelCase__ =0.1 lowerCamelCase__ =0.1 lowerCamelCase__ =512 lowerCamelCase__ =16 lowerCamelCase__ =2 lowerCamelCase__ =0.0_2 lowerCamelCase__ =3 lowerCamelCase__ =4 lowerCamelCase__ =None def _a ( self ): lowerCamelCase__ =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ =None if self.use_input_mask: lowerCamelCase__ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ =None lowerCamelCase__ =None lowerCamelCase__ =None if self.use_labels: lowerCamelCase__ =ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ =ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ =TFDistilBertModel(config=_lowerCamelCase ) lowerCamelCase__ ={"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase__ =model(_lowerCamelCase ) lowerCamelCase__ =[input_ids, input_mask] lowerCamelCase__ =model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ =TFDistilBertForMaskedLM(config=_lowerCamelCase ) lowerCamelCase__ ={"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase__ =model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ =TFDistilBertForQuestionAnswering(config=_lowerCamelCase ) lowerCamelCase__ ={ "input_ids": input_ids, "attention_mask": input_mask, } lowerCamelCase__ =model(_lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ =self.num_labels lowerCamelCase__ =TFDistilBertForSequenceClassification(_lowerCamelCase ) lowerCamelCase__ ={"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase__ =model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ =self.num_choices lowerCamelCase__ =TFDistilBertForMultipleChoice(_lowerCamelCase ) lowerCamelCase__ =tf.tile(tf.expand_dims(_lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase__ =tf.tile(tf.expand_dims(_lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase__ ={ "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } lowerCamelCase__ =model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ =self.num_labels lowerCamelCase__ =TFDistilBertForTokenClassification(_lowerCamelCase ) lowerCamelCase__ ={"input_ids": input_ids, "attention_mask": input_mask} lowerCamelCase__ =model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a ( self ): lowerCamelCase__ =self.prepare_config_and_inputs() ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) =config_and_inputs lowerCamelCase__ ={"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): A__ : str = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) A__ : Optional[Any] = ( { '''feature-extraction''': TFDistilBertModel, '''fill-mask''': TFDistilBertForMaskedLM, '''question-answering''': TFDistilBertForQuestionAnswering, '''text-classification''': TFDistilBertForSequenceClassification, '''token-classification''': TFDistilBertForTokenClassification, '''zero-shot''': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) A__ : Optional[int] = False A__ : Any = False def _a ( self ): lowerCamelCase__ =TFDistilBertModelTester(self ) lowerCamelCase__ =ConfigTester(self , config_class=_lowerCamelCase , dim=37 ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): lowerCamelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_lowerCamelCase ) def _a ( self ): lowerCamelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_lowerCamelCase ) def _a ( self ): lowerCamelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_lowerCamelCase ) def _a ( self ): lowerCamelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_lowerCamelCase ) def _a ( self ): lowerCamelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_lowerCamelCase ) def _a ( self ): lowerCamelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_lowerCamelCase ) @slow def _a ( self ): for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowerCamelCase__ =TFDistilBertModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @require_tf class __UpperCAmelCase ( unittest.TestCase ): @slow def _a ( self ): lowerCamelCase__ =TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) lowerCamelCase__ =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase__ =model(_lowerCamelCase )[0] lowerCamelCase__ =[1, 6, 768] self.assertEqual(output.shape , _lowerCamelCase ) lowerCamelCase__ =tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _lowerCamelCase , atol=1E-4 )
711
"""simple docstring""" import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin a =1E-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __UpperCAmelCase : def __init__( self , _lowerCamelCase , _lowerCamelCase=16 , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=14 , _lowerCamelCase=10 , _lowerCamelCase=19 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=True , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=[1, 2, 3, 4, 5] , _lowerCamelCase=25 , _lowerCamelCase=5 , ): lowerCamelCase__ =d_model lowerCamelCase__ =parent lowerCamelCase__ =batch_size lowerCamelCase__ =prediction_length lowerCamelCase__ =context_length lowerCamelCase__ =cardinality lowerCamelCase__ =num_time_features lowerCamelCase__ =lags_sequence lowerCamelCase__ =embedding_dimension lowerCamelCase__ =is_training lowerCamelCase__ =hidden_size lowerCamelCase__ =num_hidden_layers lowerCamelCase__ =num_attention_heads lowerCamelCase__ =intermediate_size lowerCamelCase__ =hidden_act lowerCamelCase__ =hidden_dropout_prob lowerCamelCase__ =attention_probs_dropout_prob lowerCamelCase__ =context_length lowerCamelCase__ =prediction_length + label_length lowerCamelCase__ =label_length lowerCamelCase__ =moving_average lowerCamelCase__ =autocorrelation_factor def _a ( self ): return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def _a ( self , _lowerCamelCase ): lowerCamelCase__ =config.context_length + max(config.lags_sequence ) lowerCamelCase__ =ids_tensor([self.batch_size, 1] , config.cardinality[0] ) lowerCamelCase__ =floats_tensor([self.batch_size, _past_length, config.num_time_features] ) lowerCamelCase__ =floats_tensor([self.batch_size, _past_length] ) lowerCamelCase__ =floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs lowerCamelCase__ =floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) lowerCamelCase__ =floats_tensor([self.batch_size, config.prediction_length] ) lowerCamelCase__ ={ "past_values": past_values, "static_categorical_features": static_categorical_features, "past_time_features": past_time_features, "past_observed_mask": past_observed_mask, "future_time_features": future_time_features, "future_values": future_values, } return inputs_dict def _a ( self ): lowerCamelCase__ =self.get_config() lowerCamelCase__ =self.prepare_autoformer_inputs_dict(_lowerCamelCase ) return config, inputs_dict def _a ( self ): lowerCamelCase__ , lowerCamelCase__ =self.prepare_config_and_inputs() return config, inputs_dict def _a ( self , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ =AutoformerModel(config=_lowerCamelCase ).to(_lowerCamelCase ).eval() lowerCamelCase__ =model(**_lowerCamelCase ) lowerCamelCase__ =outputs.encoder_last_hidden_state lowerCamelCase__ =outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ =model.get_encoder() encoder.save_pretrained(_lowerCamelCase ) lowerCamelCase__ =AutoformerEncoder.from_pretrained(_lowerCamelCase ).to(_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ =model.create_network_inputs(**_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) lowerCamelCase__ =torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) lowerCamelCase__ =encoder(inputs_embeds=_lowerCamelCase )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) lowerCamelCase__ =( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) lowerCamelCase__ =torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) lowerCamelCase__ =torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) lowerCamelCase__ =torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCamelCase__ =model.get_decoder() decoder.save_pretrained(_lowerCamelCase ) lowerCamelCase__ =AutoformerDecoder.from_pretrained(_lowerCamelCase ).to(_lowerCamelCase ) lowerCamelCase__ =decoder( trend=_lowerCamelCase , inputs_embeds=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __UpperCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): A__ : Any = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () A__ : Union[str, Any] = (AutoformerForPrediction,) if is_torch_available() else () A__ : List[Any] = {'''feature-extraction''': AutoformerModel} if is_torch_available() else {} A__ : Optional[Any] = False A__ : Optional[Any] = False A__ : Any = False A__ : List[Any] = False A__ : Union[str, Any] = False A__ : Tuple = False def _a ( self ): lowerCamelCase__ =AutoformerModelTester(self ) lowerCamelCase__ =ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): lowerCamelCase__ , lowerCamelCase__ =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: lowerCamelCase__ =model_class(_lowerCamelCase ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ =model_class.from_pretrained(_lowerCamelCase , output_loading_info=_lowerCamelCase ) self.assertEqual(info["missing_keys"] , [] ) def _a ( self ): lowerCamelCase__ =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_lowerCamelCase ) @unittest.skip(reason="Model has no tokens embeddings" ) def _a ( self ): pass def _a ( self ): lowerCamelCase__ =inspect.signature(getattr(_lowerCamelCase , "forward" ) ) # The main input is the name of the argument after `self` lowerCamelCase__ =list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , _lowerCamelCase ) def _a ( self ): lowerCamelCase__ , lowerCamelCase__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ =model_class(_lowerCamelCase ) lowerCamelCase__ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ =[*signature.parameters.keys()] lowerCamelCase__ =[ "past_values", "past_time_features", "past_observed_mask", "static_categorical_features", "static_real_features", "future_values", "future_time_features", ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append("future_observed_mask" ) expected_arg_names.extend( [ "decoder_attention_mask", "head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs", "past_key_values", "output_hidden_states", "output_attentions", "use_cache", "return_dict", ] ) self.assertListEqual(arg_names[: len(_lowerCamelCase )] , _lowerCamelCase ) def _a ( self ): lowerCamelCase__ , lowerCamelCase__ =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ =True lowerCamelCase__ =getattr(self.model_tester , "seq_length" , _lowerCamelCase ) lowerCamelCase__ =getattr(self.model_tester , "decoder_seq_length" , _lowerCamelCase ) lowerCamelCase__ =getattr(self.model_tester , "encoder_seq_length" , _lowerCamelCase ) lowerCamelCase__ =getattr(self.model_tester , "d_model" , _lowerCamelCase ) lowerCamelCase__ =getattr(self.model_tester , "num_attention_heads" , _lowerCamelCase ) lowerCamelCase__ =d_model // num_attention_heads for model_class in self.all_model_classes: lowerCamelCase__ =True lowerCamelCase__ =False lowerCamelCase__ =True lowerCamelCase__ =model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ =model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) lowerCamelCase__ =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase__ =True lowerCamelCase__ =model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ =model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) lowerCamelCase__ =outputs.encoder_attentions self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) lowerCamelCase__ =len(_lowerCamelCase ) lowerCamelCase__ =7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(_lowerCamelCase , _lowerCamelCase ) # decoder attentions lowerCamelCase__ =outputs.decoder_attentions self.assertIsInstance(_lowerCamelCase , (list, tuple) ) self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions lowerCamelCase__ =outputs.cross_attentions self.assertIsInstance(_lowerCamelCase , (list, tuple) ) self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine lowerCamelCase__ =True lowerCamelCase__ =True lowerCamelCase__ =model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): lowerCamelCase__ =model(**self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) ) self.assertEqual(out_len + 2 , len(_lowerCamelCase ) ) lowerCamelCase__ =outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(_lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def _a ( self ): super().test_retain_grad_hidden_states_attentions() def lowerCamelCase_ ( __lowerCAmelCase="train-batch.pt" ) -> Tuple: '''simple docstring''' lowerCamelCase__ =hf_hub_download(repo_id="hf-internal-testing/tourism-monthly-batch" , filename=__lowerCAmelCase , repo_type="dataset" ) lowerCamelCase__ =torch.load(__lowerCAmelCase , map_location=__lowerCAmelCase ) return batch @require_torch @slow class __UpperCAmelCase ( unittest.TestCase ): def _a ( self ): lowerCamelCase__ =AutoformerModel.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(_lowerCamelCase ) lowerCamelCase__ =prepare_batch() with torch.no_grad(): lowerCamelCase__ =model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , future_values=batch["future_values"] , future_time_features=batch["future_time_features"] , )[0] lowerCamelCase__ =torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , _lowerCamelCase ) lowerCamelCase__ =torch.tensor( [[0.3_5_9_3, -1.3_3_9_8, 0.6_3_3_0], [0.2_2_7_9, 1.5_3_9_6, -0.1_7_9_2], [0.0_4_5_0, 1.3_2_2_5, -0.2_3_3_5]] , device=_lowerCamelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def _a ( self ): lowerCamelCase__ =AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(_lowerCamelCase ) lowerCamelCase__ =prepare_batch("val-batch.pt" ) with torch.no_grad(): lowerCamelCase__ =model( past_values=batch["past_values"] , past_time_features=batch["past_time_features"] , past_observed_mask=batch["past_observed_mask"] , static_categorical_features=batch["static_categorical_features"] , ).encoder_last_hidden_state lowerCamelCase__ =torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , _lowerCamelCase ) lowerCamelCase__ =torch.tensor( [[-0.0_7_3_4, -0.9_0_3_6, 0.8_3_5_8], [4.7_1_8_6, 2.4_1_1_3, 1.9_5_8_1], [1.7_9_5_3, 2.3_5_5_8, 1.2_9_7_0]] , device=_lowerCamelCase ) self.assertTrue(torch.allclose(output[0, :3, :3] , _lowerCamelCase , atol=_lowerCamelCase ) ) def _a ( self ): lowerCamelCase__ =AutoformerForPrediction.from_pretrained("huggingface/autoformer-tourism-monthly" ).to(_lowerCamelCase ) lowerCamelCase__ =prepare_batch("val-batch.pt" ) with torch.no_grad(): lowerCamelCase__ =model.generate( static_categorical_features=batch["static_categorical_features"] , past_time_features=batch["past_time_features"] , past_values=batch["past_values"] , future_time_features=batch["future_time_features"] , past_observed_mask=batch["past_observed_mask"] , ) lowerCamelCase__ =torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , _lowerCamelCase ) lowerCamelCase__ =torch.tensor([3_1_3_0.6_7_6_3, 4_0_5_6.5_2_9_3, 7_0_5_3.0_7_8_6] , device=_lowerCamelCase ) lowerCamelCase__ =outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , _lowerCamelCase , rtol=1E-1 ) )
132
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "google/canine-s": "https://huggingface.co/google/canine-s/resolve/main/config.json", # See all CANINE models at https://huggingface.co/models?filter=canine } class UpperCAmelCase_ (lowerCamelCase_ ): """simple docstring""" UpperCamelCase_ : Optional[int] = """canine""" def __init__( self : int , a_ : str=7_68 , a_ : Dict=12 , a_ : Union[str, Any]=12 , a_ : Tuple=30_72 , a_ : Union[str, Any]="gelu" , a_ : Tuple=0.1 , a_ : Dict=0.1 , a_ : List[str]=1_63_84 , a_ : Optional[int]=16 , a_ : Optional[Any]=0.02 , a_ : Union[str, Any]=1E-12 , a_ : Union[str, Any]=0 , a_ : Optional[Any]=0XE000 , a_ : Dict=0XE001 , a_ : str=4 , a_ : Dict=4 , a_ : Optional[int]=8 , a_ : List[Any]=1_63_84 , a_ : Any=1_28 , **a_ : Optional[Any] , )-> List[str]: """simple docstring""" super().__init__(pad_token_id=a_ , bos_token_id=a_ , eos_token_id=a_ , **a_ ) UpperCAmelCase_ : Tuple = max_position_embeddings UpperCAmelCase_ : List[str] = hidden_size UpperCAmelCase_ : Any = num_hidden_layers UpperCAmelCase_ : Any = num_attention_heads UpperCAmelCase_ : Optional[int] = intermediate_size UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : Optional[int] = hidden_dropout_prob UpperCAmelCase_ : Optional[int] = attention_probs_dropout_prob UpperCAmelCase_ : str = initializer_range UpperCAmelCase_ : str = type_vocab_size UpperCAmelCase_ : int = layer_norm_eps # Character config: UpperCAmelCase_ : str = downsampling_rate UpperCAmelCase_ : List[Any] = upsampling_kernel_size UpperCAmelCase_ : Dict = num_hash_functions UpperCAmelCase_ : Union[str, Any] = num_hash_buckets UpperCAmelCase_ : int = local_transformer_stride
470
"""simple docstring""" import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="""session""" ) def A_ ( ) -> str: """simple docstring""" UpperCAmelCase_ : int = 10 UpperCAmelCase_ : Optional[Any] = datasets.Features( { """tokens""": datasets.Sequence(datasets.Value("""string""" ) ), """labels""": datasets.Sequence(datasets.ClassLabel(names=["""negative""", """positive"""] ) ), """answers""": datasets.Sequence( { """text""": datasets.Value("""string""" ), """answer_start""": datasets.Value("""int32""" ), } ), """id""": datasets.Value("""int64""" ), } ) UpperCAmelCase_ : List[Any] = datasets.Dataset.from_dict( { """tokens""": [["""foo"""] * 5] * n, """labels""": [[1] * 5] * n, """answers""": [{"""answer_start""": [97], """text""": ["""1976"""]}] * 10, """id""": list(range(lowercase ) ), } , features=lowercase , ) return dataset @pytest.fixture(scope="""session""" ) def A_ ( lowercase , lowercase ) -> int: """simple docstring""" UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """file.arrow""" ) dataset.map(cache_file_name=lowercase ) return filename # FILE_CONTENT + files lowercase_ = "\\n Text data.\n Second line of data." @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : int = tmp_path_factory.mktemp("""data""" ) / """file.txt""" UpperCAmelCase_ : Tuple = FILE_CONTENT with open(lowercase , """w""" ) as f: f.write(lowercase ) return filename @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> Dict: """simple docstring""" import bza UpperCAmelCase_ : int = tmp_path_factory.mktemp("""data""" ) / """file.txt.bz2""" UpperCAmelCase_ : List[str] = bytes(lowercase , """utf-8""" ) with bza.open(lowercase , """wb""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> List[str]: """simple docstring""" import gzip UpperCAmelCase_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """file.txt.gz""" ) UpperCAmelCase_ : Optional[Any] = bytes(lowercase , """utf-8""" ) with gzip.open(lowercase , """wb""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> Union[str, Any]: """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame UpperCAmelCase_ : Dict = tmp_path_factory.mktemp("""data""" ) / """file.txt.lz4""" UpperCAmelCase_ : str = bytes(lowercase , """utf-8""" ) with lza.frame.open(lowercase , """wb""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase , lowercase ) -> Optional[Any]: """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.txt.7z""" with pyazr.SevenZipFile(lowercase , """w""" ) as archive: archive.write(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase , lowercase ) -> Union[str, Any]: """simple docstring""" import tarfile UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """file.txt.tar""" with tarfile.TarFile(lowercase , """w""" ) as f: f.add(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> int: """simple docstring""" import lzma UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """file.txt.xz""" UpperCAmelCase_ : List[str] = bytes(lowercase , """utf-8""" ) with lzma.open(lowercase , """wb""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase , lowercase ) -> Any: """simple docstring""" import zipfile UpperCAmelCase_ : Any = tmp_path_factory.mktemp("""data""" ) / """file.txt.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> Dict: """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd UpperCAmelCase_ : List[str] = tmp_path_factory.mktemp("""data""" ) / """file.txt.zst""" UpperCAmelCase_ : Optional[int] = bytes(lowercase , """utf-8""" ) with zstd.open(lowercase , """wb""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> Dict: """simple docstring""" UpperCAmelCase_ : int = tmp_path_factory.mktemp("""data""" ) / """file.xml""" UpperCAmelCase_ : int = textwrap.dedent( """\ <?xml version=\"1.0\" encoding=\"UTF-8\" ?> <tmx version=\"1.4\"> <header segtype=\"sentence\" srclang=\"ca\" /> <body> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv> <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv> </tu> </body> </tmx>""" ) with open(lowercase , """w""" ) as f: f.write(lowercase ) return filename lowercase_ = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] lowercase_ = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] lowercase_ = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } lowercase_ = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] lowercase_ = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope="""session""" ) def A_ ( ) -> Union[str, Any]: """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> int: """simple docstring""" UpperCAmelCase_ : str = datasets.Dataset.from_dict(lowercase ) UpperCAmelCase_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.arrow""" ) dataset.map(cache_file_name=lowercase ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.sqlite""" ) with contextlib.closing(sqlitea.connect(lowercase ) ) as con: UpperCAmelCase_ : Tuple = con.cursor() cur.execute("""CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)""" ) for item in DATA: cur.execute("""INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)""" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.csv""" ) with open(lowercase , """w""" , newline="""""" ) as f: UpperCAmelCase_ : Tuple = csv.DictWriter(lowercase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowercase ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> str: """simple docstring""" UpperCAmelCase_ : Tuple = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.csv""" ) with open(lowercase , """w""" , newline="""""" ) as f: UpperCAmelCase_ : List[Any] = csv.DictWriter(lowercase , fieldnames=["""col_1""", """col_2""", """col_3"""] ) writer.writeheader() for item in DATA: writer.writerow(lowercase ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase , lowercase ) -> Optional[Any]: """simple docstring""" import bza UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.bz2""" with open(lowercase , """rb""" ) as f: UpperCAmelCase_ : Dict = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowercase , """wb""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase , lowercase , lowercase ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Optional[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename(lowercase ) ) f.write(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase , lowercase , lowercase ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename(csv_path.replace(""".csv""" , """.CSV""" ) ) ) f.write(lowercase , arcname=os.path.basename(csva_path.replace(""".csv""" , """.CSV""" ) ) ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase , lowercase , lowercase ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase ) ) ) f.write(lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> Any: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.parquet""" ) UpperCAmelCase_ : Dict = pa.schema( { """col_1""": pa.string(), """col_2""": pa.intaa(), """col_3""": pa.floataa(), } ) with open(lowercase , """wb""" ) as f: UpperCAmelCase_ : List[str] = pq.ParquetWriter(lowercase , schema=lowercase ) UpperCAmelCase_ : Any = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowercase ) )] for k in DATA[0]} , schema=lowercase ) writer.write_table(lowercase ) writer.close() return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) UpperCAmelCase_ : Union[str, Any] = {"""data""": DATA} with open(lowercase , """w""" ) as f: json.dump(lowercase , lowercase ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.json""" ) UpperCAmelCase_ : Optional[int] = {"""data""": DATA_DICT_OF_LISTS} with open(lowercase , """w""" ) as f: json.dump(lowercase , lowercase ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> str: """simple docstring""" UpperCAmelCase_ : List[str] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl""" ) with open(lowercase , """w""" ) as f: for item in DATA: f.write(json.dumps(lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.jsonl""" ) with open(lowercase , """w""" ) as f: for item in DATA: f.write(json.dumps(lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset_312.jsonl""" ) with open(lowercase , """w""" ) as f: for item in DATA_312: f.write(json.dumps(lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset-str.jsonl""" ) with open(lowercase , """w""" ) as f: for item in DATA_STR: f.write(json.dumps(lowercase ) + """\n""" ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase , lowercase ) -> Dict: """simple docstring""" import gzip UpperCAmelCase_ : Dict = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt.gz""" ) with open(lowercase , """rb""" ) as orig_file: with gzip.open(lowercase , """wb""" ) as zipped_file: zipped_file.writelines(lowercase ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase , lowercase ) -> str: """simple docstring""" import gzip UpperCAmelCase_ : Optional[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.gz""" ) with open(lowercase , """rb""" ) as orig_file: with gzip.open(lowercase , """wb""" ) as zipped_file: zipped_file.writelines(lowercase ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase , lowercase , lowercase ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename(lowercase ) ) f.write(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase , lowercase , lowercase , lowercase ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.join("""nested""" , os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase , lowercase , lowercase ) -> Optional[Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase ) ) ) f.write(lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase , lowercase , lowercase ) -> int: """simple docstring""" UpperCAmelCase_ : int = tmp_path_factory.mktemp("""data""" ) / """dataset.jsonl.tar""" with tarfile.TarFile(lowercase , """w""" ) as f: f.add(lowercase , arcname=os.path.basename(lowercase ) ) f.add(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase , lowercase , lowercase , lowercase ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(lowercase , """w""" ) as f: f.add(lowercase , arcname=os.path.join("""nested""" , os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> Tuple: """simple docstring""" UpperCAmelCase_ : Tuple = ["""0""", """1""", """2""", """3"""] UpperCAmelCase_ : str = str(tmp_path_factory.mktemp("""data""" ) / """dataset.txt""" ) with open(lowercase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> str: """simple docstring""" UpperCAmelCase_ : Tuple = ["""0""", """1""", """2""", """3"""] UpperCAmelCase_ : int = str(tmp_path_factory.mktemp("""data""" ) / """dataset2.txt""" ) with open(lowercase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = ["""0""", """1""", """2""", """3"""] UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp("""data""" ) / """dataset.abc""" with open(lowercase , """w""" ) as f: for item in data: f.write(item + """\n""" ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase , lowercase , lowercase ) -> int: """simple docstring""" UpperCAmelCase_ : Any = tmp_path_factory.mktemp("""data""" ) / """dataset.text.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename(lowercase ) ) f.write(lowercase , arcname=os.path.basename(lowercase ) ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase , lowercase , lowercase ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : Tuple = tmp_path_factory.mktemp("""data""" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase ) ) ) f.write(lowercase , arcname=os.path.join("""main_dir""" , os.path.basename(lowercase ) ) ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase , lowercase , lowercase ) -> str: """simple docstring""" UpperCAmelCase_ : List[Any] = tmp_path_factory.mktemp("""data""" ) / """dataset.ext.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename("""unsupported.ext""" ) ) f.write(lowercase , arcname=os.path.basename("""unsupported_2.ext""" ) ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : Tuple = """\n""".join(["""First""", """Second\u2029with Unicode new line""", """Third"""] ) UpperCAmelCase_ : List[Any] = str(tmp_path_factory.mktemp("""data""" ) / """dataset_with_unicode_new_lines.txt""" ) with open(lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(lowercase ) return path @pytest.fixture(scope="""session""" ) def A_ ( ) -> Optional[int]: """simple docstring""" return os.path.join("""tests""" , """features""" , """data""" , """test_image_rgb.jpg""" ) @pytest.fixture(scope="""session""" ) def A_ ( ) -> Tuple: """simple docstring""" return os.path.join("""tests""" , """features""" , """data""" , """test_audio_44100.wav""" ) @pytest.fixture(scope="""session""" ) def A_ ( lowercase , lowercase ) -> int: """simple docstring""" UpperCAmelCase_ : Dict = tmp_path_factory.mktemp("""data""" ) / """dataset.img.zip""" with zipfile.ZipFile(lowercase , """w""" ) as f: f.write(lowercase , arcname=os.path.basename(lowercase ) ) f.write(lowercase , arcname=os.path.basename(lowercase ).replace(""".jpg""" , """2.jpg""" ) ) return path @pytest.fixture(scope="""session""" ) def A_ ( lowercase ) -> Dict: """simple docstring""" UpperCAmelCase_ : Optional[int] = tmp_path_factory.mktemp("""data_dir""" ) (data_dir / "subdir").mkdir() with open(data_dir / """subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden file with open(data_dir / """subdir""" / """.test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / """.subdir""" / """train.txt""" , """w""" ) as f: f.write("""foo\n""" * 10 ) with open(data_dir / """.subdir""" / """test.txt""" , """w""" ) as f: f.write("""bar\n""" * 10 ) return data_dir
470
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) class lowerCAmelCase ( snake_case ): lowerCAmelCase__ = ["""pixel_values"""] def __init__( self , a__ = True , a__ = None , a__ = PIL.Image.BICUBIC , a__ = True , a__ = None , a__ = 1 / 2_55 , a__ = True , a__ = True , a__ = None , a__ = None , **a__ , ): super().__init__(**a__ ) _UpperCAmelCase = size if size is not None else {'height': 2_56, 'width': 2_56} _UpperCAmelCase = get_size_dict(a__ ) _UpperCAmelCase = crop_size if crop_size is not None else {'height': 2_24, 'width': 2_24} _UpperCAmelCase = get_size_dict(a__ , param_name='crop_size' ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self , a__ , a__ , a__ = PIL.Image.BICUBIC , a__ = None , **a__ , ): _UpperCAmelCase = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return resize( a__ , size=(size['height'], size['width']) , resample=a__ , data_format=a__ , **a__ ) def __A ( self , a__ , a__ , a__ = None , **a__ , ): _UpperCAmelCase = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(a__ , size=(size['height'], size['width']) , data_format=a__ , **a__ ) def __A ( self , a__ , a__ , a__ = None , **a__ , ): return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def __A ( self , a__ , a__ , a__ , a__ = None , **a__ , ): return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def __A ( self , a__ , a__ = None , a__ = None , a__=None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = ChannelDimension.FIRST , **a__ , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(a__ ) _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(a__ , param_name='crop_size' ) _UpperCAmelCase = make_list_of_images(a__ ) if not valid_images(a__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(a__ ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=a__ , size=a__ , resample=a__ ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=a__ , size=a__ ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=a__ , scale=a__ ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=a__ , mean=a__ , std=a__ ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(a__ , a__ ) for image in images] _UpperCAmelCase = {'pixel_values': images} return BatchFeature(data=a__ , tensor_type=a__ )
494
"""simple docstring""" def __lowerCamelCase ( SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return number | (1 << position) def __lowerCamelCase ( SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return number & ~(1 << position) def __lowerCamelCase ( SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return number ^ (1 << position) def __lowerCamelCase ( SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" return ((number >> position) & 1) == 1 def __lowerCamelCase ( SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
494
1
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : str = logging.get_logger(__name__) _UpperCamelCase : Union[str, Any] = [ ('bert.bert', 'visual_bert'), ('bert.cls', 'cls'), ('bert.classifier', 'cls'), ('token_type_embeddings_visual', 'visual_token_type_embeddings'), ('position_embeddings_visual', 'visual_position_embeddings'), ('projection', 'visual_projection'), ] _UpperCamelCase : Tuple = [ 'nlvr2_coco_pre_trained.th', 'nlvr2_fine_tuned.th', 'nlvr2_pre_trained.th', 'vcr_coco_pre_train.th', 'vcr_fine_tune.th', 'vcr_pre_train.th', 'vqa_coco_pre_trained.th', 'vqa_fine_tuned.th', 'vqa_pre_trained.th', ] def __snake_case ( lowerCAmelCase : Any ): __UpperCAmelCase = torch.load(lowerCAmelCase , map_location='cpu' ) return sd def __snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : List[Any]=rename_keys_prefix ): __UpperCAmelCase = OrderedDict() __UpperCAmelCase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __UpperCAmelCase = key for name_pair in rename_keys_prefix: __UpperCAmelCase = new_key.replace(name_pair[0] , name_pair[1] ) __UpperCAmelCase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __UpperCAmelCase = new_d['cls.predictions.bias'] return new_d @torch.no_grad() def __snake_case ( lowerCAmelCase : Any , lowerCAmelCase : Dict ): assert ( checkpoint_path.split('/' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: __UpperCAmelCase = 'pretraining' if "vcr" in checkpoint_path: __UpperCAmelCase = {'visual_embedding_dim': 512} elif "vqa_advanced" in checkpoint_path: __UpperCAmelCase = {'visual_embedding_dim': 2048} elif "vqa" in checkpoint_path: __UpperCAmelCase = {'visual_embedding_dim': 2048} elif "nlvr" in checkpoint_path: __UpperCAmelCase = {'visual_embedding_dim': 1024} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: __UpperCAmelCase = {'visual_embedding_dim': 512} __UpperCAmelCase = 'multichoice' elif "vqa_advanced" in checkpoint_path: __UpperCAmelCase = {'visual_embedding_dim': 2048} __UpperCAmelCase = 'vqa_advanced' elif "vqa" in checkpoint_path: __UpperCAmelCase = {'visual_embedding_dim': 2048, 'num_labels': 3129} __UpperCAmelCase = 'vqa' elif "nlvr" in checkpoint_path: __UpperCAmelCase = { 'visual_embedding_dim': 1024, 'num_labels': 2, } __UpperCAmelCase = 'nlvr' __UpperCAmelCase = VisualBertConfig(**lowerCAmelCase ) # Load State Dict __UpperCAmelCase = load_state_dict(lowerCAmelCase ) __UpperCAmelCase = get_new_dict(lowerCAmelCase , lowerCAmelCase ) if model_type == "pretraining": __UpperCAmelCase = VisualBertForPreTraining(lowerCAmelCase ) elif model_type == "vqa": __UpperCAmelCase = VisualBertForQuestionAnswering(lowerCAmelCase ) elif model_type == "nlvr": __UpperCAmelCase = VisualBertForVisualReasoning(lowerCAmelCase ) elif model_type == "multichoice": __UpperCAmelCase = VisualBertForMultipleChoice(lowerCAmelCase ) model.load_state_dict(lowerCAmelCase ) # Save Checkpoints Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) model.save_pretrained(lowerCAmelCase ) if __name__ == "__main__": _UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('orig_checkpoint_path', type=str, help='A path to .th on local filesystem.') parser.add_argument('pytorch_dump_folder_path', type=str, help='Path to the output PyTorch model.') _UpperCamelCase : Tuple = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
396
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A : '''simple docstring''' A__ = 42 A__ = None A__ = None def UpperCamelCase ( ) -> Node | None: """simple docstring""" lowercase__ = Node(1 ) lowercase__ = Node(2 ) lowercase__ = Node(3 ) lowercase__ = Node(4 ) lowercase__ = Node(5 ) return tree def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCamelCase ( __magic_name__ : Node | None ) -> int: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] if root is None: return output lowercase__ = deque([root] ) while process_queue: lowercase__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None , __magic_name__ : int ) -> Sequence[Node | None]: """simple docstring""" lowercase__ = [] def populate_output(__magic_name__ : Node | None , __magic_name__ : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(__magic_name__ , __magic_name__ ) return output def UpperCamelCase ( __magic_name__ : Node | None ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] lowercase__ = [] lowercase__ = 0 lowercase__ = height(__magic_name__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(__magic_name__ , __magic_name__ ) ) lowercase__ = 1 else: output.append(get_nodes_from_right_to_left(__magic_name__ , __magic_name__ ) ) lowercase__ = 0 return output def UpperCamelCase ( ) -> None: # Main function for testing. """simple docstring""" lowercase__ = make_tree() print(f'''In-order Traversal: {inorder(__magic_name__ )}''' ) print(f'''Pre-order Traversal: {preorder(__magic_name__ )}''' ) print(f'''Post-order Traversal: {postorder(__magic_name__ )}''' , """\n""" ) print(f'''Height of Tree: {height(__magic_name__ )}''' , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(__magic_name__ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(__magic_name__ ) + 1 ): print(f'''Level {level}:''' , get_nodes_from_left_to_right(__magic_name__ , level=__magic_name__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(__magic_name__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
15
0
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowerCamelCase_ = HUGGINGFACE_HUB_CACHE lowerCamelCase_ = '''config.json''' lowerCamelCase_ = '''diffusion_pytorch_model.bin''' lowerCamelCase_ = '''diffusion_flax_model.msgpack''' lowerCamelCase_ = '''model.onnx''' lowerCamelCase_ = '''diffusion_pytorch_model.safetensors''' lowerCamelCase_ = '''weights.pb''' lowerCamelCase_ = '''https://huggingface.co''' lowerCamelCase_ = default_cache_path lowerCamelCase_ = '''diffusers_modules''' lowerCamelCase_ = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules''')) lowerCamelCase_ = ['''fp16''', '''non-ema'''] lowerCamelCase_ = '''.self_attn'''
161
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase_ = { '''configuration_transfo_xl''': ['''TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TransfoXLConfig'''], '''tokenization_transfo_xl''': ['''TransfoXLCorpus''', '''TransfoXLTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AdaptiveEmbedding''', '''TransfoXLForSequenceClassification''', '''TransfoXLLMHeadModel''', '''TransfoXLModel''', '''TransfoXLPreTrainedModel''', '''load_tf_weights_in_transfo_xl''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAdaptiveEmbedding''', '''TFTransfoXLForSequenceClassification''', '''TFTransfoXLLMHeadModel''', '''TFTransfoXLMainLayer''', '''TFTransfoXLModel''', '''TFTransfoXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
161
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() A = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any=False , lowerCAmelCase__ : Any=False) -> Tuple: '''simple docstring''' _lowercase : Tuple = 'backbone.' if is_semantic else '' _lowercase : List[Any] = [] for i in range(config.num_hidden_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''{prefix}blocks.{i}.norm1.weight''', F'''beit.encoder.layer.{i}.layernorm_before.weight''')) rename_keys.append((F'''{prefix}blocks.{i}.norm1.bias''', F'''beit.encoder.layer.{i}.layernorm_before.bias''')) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.weight''', F'''beit.encoder.layer.{i}.attention.output.dense.weight''')) rename_keys.append( (F'''{prefix}blocks.{i}.attn.proj.bias''', F'''beit.encoder.layer.{i}.attention.output.dense.bias''')) rename_keys.append((F'''{prefix}blocks.{i}.norm2.weight''', F'''beit.encoder.layer.{i}.layernorm_after.weight''')) rename_keys.append((F'''{prefix}blocks.{i}.norm2.bias''', F'''beit.encoder.layer.{i}.layernorm_after.bias''')) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.weight''', F'''beit.encoder.layer.{i}.intermediate.dense.weight''')) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc1.bias''', F'''beit.encoder.layer.{i}.intermediate.dense.bias''')) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.weight''', F'''beit.encoder.layer.{i}.output.dense.weight''')) rename_keys.append((F'''{prefix}blocks.{i}.mlp.fc2.bias''', F'''beit.encoder.layer.{i}.output.dense.bias''')) # projection layer + position embeddings rename_keys.extend( [ (F'''{prefix}cls_token''', 'beit.embeddings.cls_token'), (F'''{prefix}patch_embed.proj.weight''', 'beit.embeddings.patch_embeddings.projection.weight'), (F'''{prefix}patch_embed.proj.bias''', 'beit.embeddings.patch_embeddings.projection.bias'), (F'''{prefix}pos_embed''', 'beit.embeddings.position_embeddings'), ]) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ]) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ]) return rename_keys def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple=False , lowerCAmelCase__ : Optional[int]=False) -> int: '''simple docstring''' for i in range(config.num_hidden_layers): _lowercase : Any = 'backbone.' if is_semantic else '' # queries, keys and values _lowercase : List[Any] = state_dict.pop(F'''{prefix}blocks.{i}.attn.qkv.weight''') _lowercase : Any = state_dict.pop(F'''{prefix}blocks.{i}.attn.q_bias''') _lowercase : List[str] = state_dict.pop(F'''{prefix}blocks.{i}.attn.v_bias''') _lowercase : Any = in_proj_weight[ : config.hidden_size, : ] _lowercase : Optional[Any] = q_bias _lowercase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowercase : Optional[Any] = in_proj_weight[ -config.hidden_size :, : ] _lowercase : List[Any] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained _lowercase : List[str] = state_dict.pop(F'''{prefix}blocks.{i}.gamma_1''') _lowercase : str = state_dict.pop(F'''{prefix}blocks.{i}.gamma_2''') _lowercase : Optional[Any] = gamma_a _lowercase : Dict = gamma_a def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : str , lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any]) -> Optional[Any]: '''simple docstring''' _lowercase : Dict = dct.pop(lowerCAmelCase__) _lowercase : str = val def SCREAMING_SNAKE_CASE ( ) -> List[Any]: '''simple docstring''' _lowercase : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowercase : Tuple = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__).raw) return im @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : str=False) -> Optional[int]: '''simple docstring''' _lowercase : List[str] = False if 'rvlcdip' in checkpoint_url else True _lowercase : List[str] = BeitConfig(use_absolute_position_embeddings=lowerCAmelCase__ , use_mask_token=lowerCAmelCase__) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: _lowercase : Any = 10_24 _lowercase : List[str] = 40_96 _lowercase : Tuple = 24 _lowercase : Optional[Any] = 16 # labels if "rvlcdip" in checkpoint_url: _lowercase : List[str] = 16 _lowercase : Optional[Any] = 'huggingface/label-files' _lowercase : Tuple = 'rvlcdip-id2label.json' _lowercase : List[Any] = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type='dataset') , 'r')) _lowercase : Optional[Any] = {int(lowerCAmelCase__): v for k, v in idalabel.items()} _lowercase : Dict = idalabel _lowercase : Optional[Any] = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys _lowercase : Dict = torch.hub.load_state_dict_from_url(lowerCAmelCase__ , map_location='cpu')['model'] _lowercase : List[str] = create_rename_keys(lowerCAmelCase__ , has_lm_head=lowerCAmelCase__) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) read_in_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ , has_lm_head=lowerCAmelCase__) # load HuggingFace model _lowercase : Any = BeitForMaskedImageModeling(lowerCAmelCase__) if has_lm_head else BeitForImageClassification(lowerCAmelCase__) model.eval() model.load_state_dict(lowerCAmelCase__) # Check outputs on an image _lowercase : Union[str, Any] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCAmelCase__) _lowercase : Dict = prepare_img() _lowercase : Optional[int] = image_processor(images=lowerCAmelCase__ , return_tensors='pt') _lowercase : Any = encoding['pixel_values'] _lowercase : str = model(lowerCAmelCase__) _lowercase : Dict = outputs.logits # verify logits _lowercase : str = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 1_96, 81_92] assert logits.shape == torch.Size(lowerCAmelCase__), "Shape of logits not as expected" Path(lowerCAmelCase__).mkdir(exist_ok=lowerCAmelCase__) print(F'''Saving model to {pytorch_dump_folder_path}''') model.save_pretrained(lowerCAmelCase__) print(F'''Saving image processor to {pytorch_dump_folder_path}''') image_processor.save_pretrained(lowerCAmelCase__) if push_to_hub: if has_lm_head: _lowercase : Union[str, Any] = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: _lowercase : Tuple = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=lowerCAmelCase__ , ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__) , organization='nielsr' , commit_message='Add model' , use_temp_dir=lowerCAmelCase__ , ) if __name__ == "__main__": A = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_url''', default='''https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth''', type=str, help='''URL to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) A = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
125
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = RobertaTokenizer lowerCAmelCase__ : Tuple = RobertaTokenizerFast lowerCAmelCase__ : Tuple = True lowerCAmelCase__ : Optional[int] = {"cls_token": "<s>"} def _lowerCamelCase ( self : Any ) -> str: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase : List[Any] = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] _lowercase : Tuple = dict(zip(UpperCamelCase ,range(len(UpperCamelCase ) ) ) ) _lowercase : str = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] _lowercase : List[str] = {'unk_token': '<unk>'} _lowercase : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _lowercase : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(UpperCamelCase ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(UpperCamelCase ) ) def _lowerCamelCase ( self : Dict ,**UpperCamelCase : Any ) -> int: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**UpperCamelCase ) def _lowerCamelCase ( self : int ,**UpperCamelCase : List[Any] ) -> Any: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname ,**UpperCamelCase ) def _lowerCamelCase ( self : Union[str, Any] ,UpperCamelCase : Tuple ) -> Union[str, Any]: _lowercase : int = 'lower newer' _lowercase : Tuple = 'lower newer' return input_text, output_text def _lowerCamelCase ( self : Union[str, Any] ) -> Tuple: _lowercase : Union[str, Any] = self.tokenizer_class(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _lowercase : Optional[Any] = 'lower newer' _lowercase : Any = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] _lowercase : Optional[int] = tokenizer.tokenize(UpperCamelCase ) # , add_prefix_space=True) self.assertListEqual(UpperCamelCase ,UpperCamelCase ) _lowercase : Union[str, Any] = tokens + [tokenizer.unk_token] _lowercase : Tuple = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase ) ,UpperCamelCase ) def _lowerCamelCase ( self : Any ) -> Union[str, Any]: _lowercase : str = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' ,add_special_tokens=UpperCamelCase ) ,[0, 3_1414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' ,add_special_tokens=UpperCamelCase ) ,[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2] ,) @slow def _lowerCamelCase ( self : Any ) -> Any: _lowercase : Union[str, Any] = self.tokenizer_class.from_pretrained('roberta-base' ) _lowercase : List[str] = tokenizer.encode('sequence builders' ,add_special_tokens=UpperCamelCase ) _lowercase : Any = tokenizer.encode('multi-sequence build' ,add_special_tokens=UpperCamelCase ) _lowercase : Optional[Any] = tokenizer.encode( 'sequence builders' ,add_special_tokens=UpperCamelCase ,add_prefix_space=UpperCamelCase ) _lowercase : List[Any] = tokenizer.encode( 'sequence builders' ,'multi-sequence build' ,add_special_tokens=UpperCamelCase ,add_prefix_space=UpperCamelCase ) _lowercase : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ) _lowercase : List[str] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase ,UpperCamelCase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def _lowerCamelCase ( self : int ) -> str: _lowercase : Any = self.get_tokenizer() _lowercase : Optional[Any] = 'Encode this sequence.' _lowercase : Union[str, Any] = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments _lowercase : Dict = tokenizer.encode(UpperCamelCase ,add_special_tokens=UpperCamelCase ,add_prefix_space=UpperCamelCase ) _lowercase : str = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(UpperCamelCase ,UpperCamelCase ) _lowercase : List[str] = tokenizer.encode(UpperCamelCase ,add_special_tokens=UpperCamelCase ,add_prefix_space=UpperCamelCase ) _lowercase : List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(UpperCamelCase ,UpperCamelCase ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) _lowercase : Optional[Any] = tokenizer.encode(UpperCamelCase ,add_special_tokens=UpperCamelCase ) _lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(UpperCamelCase ,UpperCamelCase ) # Testing spaces after special tokens _lowercase : str = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(UpperCamelCase ,lstrip=UpperCamelCase ,rstrip=UpperCamelCase )} ) # mask token has a left space _lowercase : int = tokenizer.convert_tokens_to_ids(UpperCamelCase ) _lowercase : Any = 'Encode <mask> sequence' _lowercase : Dict = 'Encode <mask>sequence' _lowercase : int = tokenizer.encode(UpperCamelCase ) _lowercase : Optional[int] = encoded.index(UpperCamelCase ) _lowercase : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(UpperCamelCase ,UpperCamelCase ) _lowercase : Dict = tokenizer.encode(UpperCamelCase ) _lowercase : Optional[Any] = encoded.index(UpperCamelCase ) _lowercase : Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(UpperCamelCase ,UpperCamelCase ) def _lowerCamelCase ( self : int ) -> Optional[Any]: pass def _lowerCamelCase ( self : Tuple ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowercase : Any = self.rust_tokenizer_class.from_pretrained(UpperCamelCase ,**UpperCamelCase ) _lowercase : Any = self.tokenizer_class.from_pretrained(UpperCamelCase ,**UpperCamelCase ) _lowercase : Any = 'A, <mask> AllenNLP sentence.' _lowercase : Optional[int] = tokenizer_r.encode_plus(UpperCamelCase ,add_special_tokens=UpperCamelCase ,return_token_type_ids=UpperCamelCase ) _lowercase : Any = tokenizer_p.encode_plus(UpperCamelCase ,add_special_tokens=UpperCamelCase ,return_token_type_ids=UpperCamelCase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) ,sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) ,sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) ,) _lowercase : List[Any] = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) _lowercase : Any = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] ,[0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] ,[0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( UpperCamelCase ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( UpperCamelCase ,['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def _lowerCamelCase ( self : Tuple ) -> List[str]: for trim_offsets, add_prefix_space in itertools.product([True, False] ,repeat=2 ): _lowercase : str = self.rust_tokenizer_class.from_pretrained( self.tmpdirname ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : Tuple = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) _lowercase : int = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] ,UpperCamelCase ) self.assertEqual(post_processor_state['add_prefix_space'] ,UpperCamelCase ) self.assertEqual(post_processor_state['trim_offsets'] ,UpperCamelCase ) def _lowerCamelCase ( self : List[Any] ) -> str: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowercase : List[Any] = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` _lowercase : Optional[int] = F'''{text_of_1_token} {text_of_1_token}''' _lowercase : Tuple = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : Dict = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(UpperCamelCase ) + 1, len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,) _lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : int = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(UpperCamelCase ) + 1, len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,) _lowercase : Any = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : int = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(UpperCamelCase ), len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,) _lowercase : List[str] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : Optional[int] = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(len(UpperCamelCase ), len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,) _lowercase : Optional[int] = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) _lowercase : Any = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : int = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(1, 1 + len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(UpperCamelCase ) + 1, 1 + len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,) _lowercase : str = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : List[str] = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(UpperCamelCase ), 1 + len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,) _lowercase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( UpperCamelCase ,use_fast=UpperCamelCase ,add_prefix_space=UpperCamelCase ,trim_offsets=UpperCamelCase ) _lowercase : Union[str, Any] = tokenizer_r(UpperCamelCase ,return_offsets_mapping=UpperCamelCase ,add_special_tokens=UpperCamelCase ) self.assertEqual(encoding.offset_mapping[0] ,(0, 1 + len(UpperCamelCase )) ) self.assertEqual( encoding.offset_mapping[1] ,(1 + len(UpperCamelCase ), 1 + len(UpperCamelCase ) + 1 + len(UpperCamelCase )) ,)
125
1
def __UpperCAmelCase ( __magic_name__ ,__magic_name__ )-> int: """simple docstring""" return int(input_a == input_a == 0 ) def __UpperCAmelCase ( )-> None: """simple docstring""" print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(F'''| 0 | 0 | {nor_gate(0 ,0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 ,1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 ,0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 ,1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
719
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Any ) -> str: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _A ( self :List[Any] ) -> List[str]: '''simple docstring''' snake_case_ : Any = 1 snake_case_ : Dict = 3 snake_case_ : Union[str, Any] = (32, 32) snake_case_ : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowerCAmelCase__ ) return image @property def _A ( self :Optional[int] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def _A ( self :Dict ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def _A ( self :Dict ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) snake_case_ : str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(lowerCAmelCase__ ) @property def _A ( self :Any ) -> str: '''simple docstring''' def extract(*lowerCAmelCase__ :Any , **lowerCAmelCase__ :List[str] ): class A_ : """simple docstring""" def __init__( self :Optional[int] ) -> List[str]: '''simple docstring''' snake_case_ : str = torch.ones([0] ) def _A ( self :int , lowerCAmelCase__ :List[Any] ) -> Tuple: '''simple docstring''' self.pixel_values.to(lowerCAmelCase__ ) return self return Out() return extract def _A ( self :int ) -> Dict: '''simple docstring''' snake_case_ : str = "cpu" # ensure determinism for the device-dependent torch.Generator snake_case_ : str = self.dummy_cond_unet snake_case_ : Optional[int] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : Dict = self.dummy_vae snake_case_ : Dict = self.dummy_text_encoder snake_case_ : Optional[int] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : str = 77 snake_case_ : Any = self.dummy_image.to(lowerCAmelCase__ ) snake_case_ : Tuple = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk snake_case_ : Optional[Any] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : Union[str, Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : Dict = "A painting of a squirrel eating a burger" snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Dict = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ) snake_case_ : Any = output.images snake_case_ : List[str] = torch.Generator(device=lowerCAmelCase__ ).manual_seed(0 ) snake_case_ : Optional[Any] = alt_pipe( [prompt] , generator=lowerCAmelCase__ , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0] snake_case_ : Tuple = image[0, -3:, -3:, -1] snake_case_ : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case_ : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :int ) -> List[str]: '''simple docstring''' snake_case_ : Union[str, Any] = self.dummy_cond_unet snake_case_ : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) snake_case_ : int = self.dummy_vae snake_case_ : List[Any] = self.dummy_text_encoder snake_case_ : int = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) snake_case_ : int = 77 snake_case_ : Dict = self.dummy_image.to(lowerCAmelCase__ ) # put models in fp16 snake_case_ : Optional[Any] = unet.half() snake_case_ : Tuple = vae.half() snake_case_ : List[str] = bert.half() # make sure here that pndm scheduler skips prk snake_case_ : Optional[int] = AltDiffusionImgaImgPipeline( unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , vae=lowerCAmelCase__ , text_encoder=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , feature_extractor=self.dummy_extractor , ) snake_case_ : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowerCAmelCase__ ) snake_case_ : Optional[Any] = alt_pipe.to(lowerCAmelCase__ ) alt_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) snake_case_ : List[Any] = "A painting of a squirrel eating a burger" snake_case_ : str = torch.manual_seed(0 ) snake_case_ : Any = alt_pipe( [prompt] , generator=lowerCAmelCase__ , num_inference_steps=2 , output_type="np" , image=lowerCAmelCase__ , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def _A ( self :Optional[int] ) -> Any: '''simple docstring''' snake_case_ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 snake_case_ : str = init_image.resize((760, 504) ) snake_case_ : Optional[Any] = "BAAI/AltDiffusion" snake_case_ : int = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : int = torch.manual_seed(0 ) snake_case_ : List[str] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : str = output.images[0] snake_case_ : List[Any] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) snake_case_ : Tuple = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _A ( self :str ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) snake_case_ : List[Any] = init_image.resize((768, 512) ) snake_case_ : Tuple = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) snake_case_ : Any = "BAAI/AltDiffusion" snake_case_ : List[str] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCAmelCase__ , safety_checker=lowerCAmelCase__ , ) pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) pipe.enable_attention_slicing() snake_case_ : Tuple = "A fantasy landscape, trending on artstation" snake_case_ : Tuple = torch.manual_seed(0 ) snake_case_ : List[Any] = pipe( prompt=lowerCAmelCase__ , image=lowerCAmelCase__ , strength=0.7_5 , guidance_scale=7.5 , generator=lowerCAmelCase__ , output_type="np" , ) snake_case_ : Optional[int] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
656
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { """bigcode/gpt_bigcode-santacoder""": """https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json""", } class UpperCamelCase__ ( _lowerCAmelCase ): """simple docstring""" A__ : Union[str, Any] = "gpt_bigcode" A__ : Any = ["past_key_values"] A__ : Dict = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , SCREAMING_SNAKE_CASE__=50257 , SCREAMING_SNAKE_CASE__=1024 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="gelu_pytorch_tanh" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=1e-5 , SCREAMING_SNAKE_CASE__=0.0_2 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=50256 , SCREAMING_SNAKE_CASE__=50256 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , **SCREAMING_SNAKE_CASE__ , ) -> Optional[int]: A__ = vocab_size A__ = n_positions A__ = n_embd A__ = n_layer A__ = n_head A__ = n_inner A__ = activation_function A__ = resid_pdrop A__ = embd_pdrop A__ = attn_pdrop A__ = layer_norm_epsilon A__ = initializer_range A__ = scale_attn_weights A__ = use_cache A__ = attention_softmax_in_fpaa A__ = scale_attention_softmax_in_fpaa A__ = multi_query A__ = bos_token_id A__ = eos_token_id super().__init__(bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
104
from __future__ import annotations import unittest import numpy as np from transformers import BlipTextConfig from transformers.testing_utils import require_tf, slow from transformers.utils import is_tf_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask if is_tf_available(): import tensorflow as tf from transformers import TFBlipTextModel from transformers.models.blip.modeling_tf_blip import TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase_ : def __init__( self : Any , _A : int , _A : int=12 , _A : int=7 , _A : Tuple=True , _A : Optional[int]=True , _A : Union[str, Any]=True , _A : str=99 , _A : str=32 , _A : int=32 , _A : Optional[Any]=2 , _A : Dict=4 , _A : int=37 , _A : List[Any]=0.1 , _A : str=0.1 , _A : Any=512 , _A : int=0.02 , _A : Optional[Any]=0 , _A : Dict=None , ): _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = hidden_size _UpperCamelCase = projection_dim _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = max_position_embeddings _UpperCamelCase = initializer_range _UpperCamelCase = scope _UpperCamelCase = bos_token_id def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) if input_mask is not None: _UpperCamelCase = input_mask.numpy() _UpperCamelCase , _UpperCamelCase = input_mask.shape _UpperCamelCase = np.random.randint(1 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(_A ): _UpperCamelCase = 1 _UpperCamelCase = 0 _UpperCamelCase = self.get_config() return config, input_ids, tf.convert_to_tensor(_A ) def UpperCamelCase_ ( self : str ): return BlipTextConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , projection_dim=self.projection_dim , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , dropout=self.dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , bos_token_id=self.bos_token_id , ) def UpperCamelCase_ ( self : List[str] , _A : Tuple , _A : str , _A : Optional[Any] ): _UpperCamelCase = TFBlipTextModel(config=_A ) _UpperCamelCase = model(_A , attention_mask=_A , training=_A ) _UpperCamelCase = model(_A , training=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self : Tuple ): _UpperCamelCase = self.prepare_config_and_inputs() _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase_ ( __lowercase, unittest.TestCase ): UpperCAmelCase = (TFBlipTextModel,) if is_tf_available() else () UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False def UpperCamelCase_ ( self : Dict ): _UpperCamelCase = BlipTextModelTester(self ) _UpperCamelCase = ConfigTester(self , config_class=_A , hidden_size=37 ) def UpperCamelCase_ ( self : Dict ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : int ): _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def UpperCamelCase_ ( self : List[Any] ): pass def UpperCamelCase_ ( self : Tuple ): pass @unittest.skip(reason='''Blip does not use inputs_embeds''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : Dict ): pass @unittest.skip(reason='''BlipTextModel has no base class and is not available in MODEL_MAPPING''' ) def UpperCamelCase_ ( self : List[str] ): pass @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = TFBlipTextModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def UpperCamelCase_ ( self : int , _A : Optional[int]=True ): super().test_pt_tf_model_equivalence(allow_missing_keys=_A )
10
0
import argparse from typing import List import evaluate import numpy as np import torch from datasets import DatasetDict, load_dataset # New Code # # We'll be using StratifiedKFold for this example from sklearn.model_selection import StratifiedKFold from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to perform Cross Validation, # and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowerCamelCase__ = 16 lowerCamelCase__ = 32 def lowercase_ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Dict = 16 ): """simple docstring""" snake_case__ : Union[str, Any] =AutoTokenizer.from_pretrained('''bert-base-cased''' ) snake_case__ : int =DatasetDict( { '''train''': dataset['''train'''].select(__SCREAMING_SNAKE_CASE ), '''validation''': dataset['''train'''].select(__SCREAMING_SNAKE_CASE ), '''test''': dataset['''validation'''], } ) def tokenize_function(SCREAMING_SNAKE_CASE : Any ): # max_length=None => use the model max length (it's actually the default) snake_case__ : str =tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case__ : List[Any] =datasets.map( __SCREAMING_SNAKE_CASE , batched=__SCREAMING_SNAKE_CASE , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : Dict =tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(SCREAMING_SNAKE_CASE : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case__ : Dict =1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case__ : Optional[int] =16 elif accelerator.mixed_precision != "no": snake_case__ : Tuple =8 else: snake_case__ : Union[str, Any] =None return tokenizer.pad( __SCREAMING_SNAKE_CASE , padding='''longest''' , max_length=__SCREAMING_SNAKE_CASE , pad_to_multiple_of=__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , ) # Instantiate dataloaders. snake_case__ : Optional[int] =DataLoader( tokenized_datasets['''train'''] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) snake_case__ : int =DataLoader( tokenized_datasets['''validation'''] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple =DataLoader( tokenized_datasets['''test'''] , shuffle=__SCREAMING_SNAKE_CASE , collate_fn=__SCREAMING_SNAKE_CASE , batch_size=__SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader, test_dataloader def lowercase_ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" snake_case__ : Optional[Any] =[] # Download the dataset snake_case__ : Tuple =load_dataset('''glue''' , '''mrpc''' ) # Create our splits snake_case__ : Union[str, Any] =StratifiedKFold(n_splits=int(args.num_folds ) ) # Initialize accelerator snake_case__ : Optional[Any] =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : Optional[Any] =config["lr"] snake_case__ : str =int(config['''num_epochs'''] ) snake_case__ : Tuple =int(config['''seed'''] ) snake_case__ : Optional[Any] =int(config['''batch_size'''] ) snake_case__ : List[Any] =evaluate.load('''glue''' , '''mrpc''' ) # If the batch size is too big we use gradient accumulation snake_case__ : List[str] =1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case__ : Union[str, Any] =batch_size // MAX_GPU_BATCH_SIZE snake_case__ : Union[str, Any] =MAX_GPU_BATCH_SIZE set_seed(__SCREAMING_SNAKE_CASE ) # New Code # # Create our folds: snake_case__ : int =kfold.split(np.zeros(datasets['''train'''].num_rows ) , datasets['''train''']['''label'''] ) snake_case__ : Optional[int] =[] # Iterate over them for i, (train_idxs, valid_idxs) in enumerate(__SCREAMING_SNAKE_CASE ): snake_case__ : Tuple =get_fold_dataloaders( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : Optional[int] =AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__SCREAMING_SNAKE_CASE ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case__ : Union[str, Any] =model.to(accelerator.device ) # Instantiate optimizer snake_case__ : Any =AdamW(params=model.parameters() , lr=__SCREAMING_SNAKE_CASE ) # Instantiate scheduler snake_case__ : List[str] =get_linear_schedule_with_warmup( optimizer=__SCREAMING_SNAKE_CASE , num_warmup_steps=1_00 , num_training_steps=(len(__SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ : str =accelerator.prepare( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Now we train the model for epoch in range(__SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case__ : List[Any] =model(**__SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] =outputs.loss snake_case__ : Union[str, Any] =loss / gradient_accumulation_steps accelerator.backward(__SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : Dict =model(**__SCREAMING_SNAKE_CASE ) snake_case__ : str =outputs.logits.argmax(dim=-1 ) snake_case__ : Dict =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE , ) snake_case__ : str =metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , __SCREAMING_SNAKE_CASE ) # New Code # # We also run predictions on the test set at the very end snake_case__ : Any =[] for step, batch in enumerate(__SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : int =model(**__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple =outputs.logits snake_case__ : List[Any] =accelerator.gather_for_metrics((predictions, batch['''labels''']) ) fold_predictions.append(predictions.cpu() ) if i == 0: # We need all of the test predictions test_references.append(references.cpu() ) # Use accelerator.print to print only on the main process. test_predictions.append(torch.cat(__SCREAMING_SNAKE_CASE , dim=0 ) ) # We now need to release all our memory and get rid of the current model, optimizer, etc accelerator.free_memory() # New Code # # Finally we check the accuracy of our folded results: snake_case__ : List[Any] =torch.cat(__SCREAMING_SNAKE_CASE , dim=0 ) snake_case__ : Any =torch.stack(__SCREAMING_SNAKE_CASE , dim=0 ).sum(dim=0 ).div(int(args.num_folds ) ).argmax(dim=-1 ) snake_case__ : Tuple =metric.compute(predictions=__SCREAMING_SNAKE_CASE , references=__SCREAMING_SNAKE_CASE ) accelerator.print('''Average test metrics from all folds:''' , __SCREAMING_SNAKE_CASE ) def lowercase_ ( ): """simple docstring""" snake_case__ : Tuple =argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__SCREAMING_SNAKE_CASE , default=__SCREAMING_SNAKE_CASE , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) # New Code # parser.add_argument('''--num_folds''' , type=__SCREAMING_SNAKE_CASE , default=3 , help='''The number of splits to perform across the dataset''' ) snake_case__ : List[Any] =parser.parse_args() snake_case__ : Optional[Any] ={"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
704
import inspect import re from hashlib import shaaaa from typing import Dict, List from .arrow import arrow from .audiofolder import audiofolder from .csv import csv from .imagefolder import imagefolder from .json import json from .pandas import pandas from .parquet import parquet from .sql import sql # noqa F401 from .text import text def lowercase_ ( SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" snake_case__ : Optional[Any] =[] for line in lines: snake_case__ : Optional[Any] =re.sub(R'''#.*''' , '''''' , SCREAMING_SNAKE_CASE ) # remove comments if line: filtered_lines.append(SCREAMING_SNAKE_CASE ) snake_case__ : List[Any] ='''\n'''.join(SCREAMING_SNAKE_CASE ) # Make a hash from all this code snake_case__ : str =full_str.encode('''utf-8''' ) return shaaaa(SCREAMING_SNAKE_CASE ).hexdigest() # get importable module names and hash for caching lowerCamelCase__ = { '''csv''': (csv.__name__, _hash_python_lines(inspect.getsource(csv).splitlines())), '''json''': (json.__name__, _hash_python_lines(inspect.getsource(json).splitlines())), '''pandas''': (pandas.__name__, _hash_python_lines(inspect.getsource(pandas).splitlines())), '''parquet''': (parquet.__name__, _hash_python_lines(inspect.getsource(parquet).splitlines())), '''arrow''': (arrow.__name__, _hash_python_lines(inspect.getsource(arrow).splitlines())), '''text''': (text.__name__, _hash_python_lines(inspect.getsource(text).splitlines())), '''imagefolder''': (imagefolder.__name__, _hash_python_lines(inspect.getsource(imagefolder).splitlines())), '''audiofolder''': (audiofolder.__name__, _hash_python_lines(inspect.getsource(audiofolder).splitlines())), } # Used to infer the module to use based on the data files extensions lowerCamelCase__ = { '''.csv''': ('''csv''', {}), '''.tsv''': ('''csv''', {'''sep''': '''\t'''}), '''.json''': ('''json''', {}), '''.jsonl''': ('''json''', {}), '''.parquet''': ('''parquet''', {}), '''.arrow''': ('''arrow''', {}), '''.txt''': ('''text''', {}), } _EXTENSION_TO_MODULE.update({ext: ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''imagefolder''', {}) for ext in imagefolder.ImageFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext: ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) _EXTENSION_TO_MODULE.update({ext.upper(): ('''audiofolder''', {}) for ext in audiofolder.AudioFolder.EXTENSIONS}) lowerCamelCase__ = {'''imagefolder''', '''audiofolder'''} # Used to filter data files based on extensions given a module name lowerCamelCase__ = {} for _ext, (_module, _) in _EXTENSION_TO_MODULE.items(): _MODULE_TO_EXTENSIONS.setdefault(_module, []).append(_ext) _MODULE_TO_EXTENSIONS["imagefolder"].append('''.zip''') _MODULE_TO_EXTENSIONS["audiofolder"].append('''.zip''')
408
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase :Any = { 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase :List[str] = [ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys _lowerCAmelCase :Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
506
"""simple docstring""" import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( a ,unittest.TestCase ): '''simple docstring''' a__ =CodeGenTokenizer a__ =CodeGenTokenizerFast a__ =True a__ ={'''add_prefix_space''': True} a__ =False def __lowerCAmelCase ( self ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCAmelCase : List[str] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] _UpperCAmelCase : str = dict(zip(A , range(len(A ) ) ) ) _UpperCAmelCase : Dict = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] _UpperCAmelCase : Union[str, Any] = {'''unk_token''': '''<unk>'''} _UpperCAmelCase : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _UpperCAmelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A ) ) def __lowerCAmelCase ( self , **A ) -> Tuple: kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **A ) def __lowerCAmelCase ( self , **A ) -> List[Any]: kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **A ) def __lowerCAmelCase ( self , A ) -> Dict: _UpperCAmelCase : List[Any] = '''lower newer''' _UpperCAmelCase : Dict = '''lower newer''' return input_text, output_text def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : int = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) _UpperCAmelCase : Optional[int] = '''lower newer''' _UpperCAmelCase : Tuple = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] _UpperCAmelCase : List[Any] = tokenizer.tokenize(A , add_prefix_space=A ) self.assertListEqual(A , A ) _UpperCAmelCase : Dict = tokens + [tokenizer.unk_token] _UpperCAmelCase : Dict = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def __lowerCAmelCase ( self ) -> List[Any]: if not self.test_rust_tokenizer: return _UpperCAmelCase : Optional[int] = self.get_tokenizer() _UpperCAmelCase : Optional[int] = self.get_rust_tokenizer(add_prefix_space=A ) _UpperCAmelCase : Dict = '''lower newer''' # Testing tokenization _UpperCAmelCase : Optional[Any] = tokenizer.tokenize(A , add_prefix_space=A ) _UpperCAmelCase : Any = rust_tokenizer.tokenize(A ) self.assertListEqual(A , A ) # Testing conversion to ids without special tokens _UpperCAmelCase : Dict = tokenizer.encode(A , add_special_tokens=A , add_prefix_space=A ) _UpperCAmelCase : List[str] = rust_tokenizer.encode(A , add_special_tokens=A ) self.assertListEqual(A , A ) # Testing conversion to ids with special tokens _UpperCAmelCase : List[Any] = self.get_rust_tokenizer(add_prefix_space=A ) _UpperCAmelCase : List[str] = tokenizer.encode(A , add_prefix_space=A ) _UpperCAmelCase : Tuple = rust_tokenizer.encode(A ) self.assertListEqual(A , A ) # Testing the unknown token _UpperCAmelCase : List[str] = tokens + [rust_tokenizer.unk_token] _UpperCAmelCase : int = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(A ) , A ) def __lowerCAmelCase ( self , *A , **A ) -> List[str]: # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def __lowerCAmelCase ( self , A=1_5 ) -> List[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): _UpperCAmelCase : List[Any] = self.rust_tokenizer_class.from_pretrained(A , **A ) # Simple input _UpperCAmelCase : str = '''This is a simple input''' _UpperCAmelCase : Tuple = ['''This is a simple input 1''', '''This is a simple input 2'''] _UpperCAmelCase : Optional[Any] = ('''This is a simple input''', '''This is a pair''') _UpperCAmelCase : str = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(A , tokenizer_r.encode , A , max_length=A , padding='''max_length''' ) # Simple input self.assertRaises(A , tokenizer_r.encode_plus , A , max_length=A , padding='''max_length''' ) # Simple input self.assertRaises( A , tokenizer_r.batch_encode_plus , A , max_length=A , padding='''max_length''' , ) # Pair input self.assertRaises(A , tokenizer_r.encode , A , max_length=A , padding='''max_length''' ) # Pair input self.assertRaises(A , tokenizer_r.encode_plus , A , max_length=A , padding='''max_length''' ) # Pair input self.assertRaises( A , tokenizer_r.batch_encode_plus , A , max_length=A , padding='''max_length''' , ) def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : Optional[Any] = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input _UpperCAmelCase : Optional[int] = '''This is a simple input''' _UpperCAmelCase : Dict = ['''This is a simple input looooooooong''', '''This is a simple input'''] _UpperCAmelCase : Union[str, Any] = ('''This is a simple input''', '''This is a pair''') _UpperCAmelCase : Optional[Any] = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] _UpperCAmelCase : List[str] = tokenizer.pad_token_id _UpperCAmelCase : Tuple = tokenizer(A , padding='''max_length''' , max_length=3_0 , return_tensors='''np''' ) _UpperCAmelCase : Optional[Any] = tokenizer(A , padding=A , truncate=A , return_tensors='''np''' ) _UpperCAmelCase : int = tokenizer(*A , padding='''max_length''' , max_length=6_0 , return_tensors='''np''' ) _UpperCAmelCase : List[str] = tokenizer(A , padding=A , truncate=A , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : Optional[int] = '''$$$''' _UpperCAmelCase : Optional[int] = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=A , add_bos_token=A ) _UpperCAmelCase : Tuple = '''This is a simple input''' _UpperCAmelCase : int = ['''This is a simple input 1''', '''This is a simple input 2'''] _UpperCAmelCase : List[str] = tokenizer.bos_token_id _UpperCAmelCase : str = tokenizer(A ) _UpperCAmelCase : Optional[Any] = tokenizer(A ) self.assertEqual(out_s.input_ids[0] , A ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) _UpperCAmelCase : Tuple = tokenizer.decode(out_s.input_ids ) _UpperCAmelCase : List[str] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , A ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def __lowerCAmelCase ( self ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = CodeGenTokenizer.from_pretrained('''Salesforce/codegen-350M-mono''' ) _UpperCAmelCase : Any = '''\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#''' _UpperCAmelCase : Union[str, Any] = '''\nif len_a > len_b: result = a\nelse: result = b''' _UpperCAmelCase : Any = tokenizer.encode(A ) _UpperCAmelCase : Tuple = ['''^#''', re.escape('''<|endoftext|>''' ), '''^\'\'\'''', '''^"""''', '''\n\n\n'''] _UpperCAmelCase : List[str] = tokenizer.decode(A , truncate_before_pattern=A ) self.assertEqual(A , A ) def __lowerCAmelCase ( self ) -> Optional[Any]: pass
506
1
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '''--original_config_file''', default=None, type=str, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--scheduler_type''', default='''pndm''', type=str, help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''', ) parser.add_argument( '''--pipeline_type''', default=None, type=str, help=( '''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'''' '''. If `None` pipeline will be automatically inferred.''' ), ) parser.add_argument( '''--image_size''', default=None, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--prediction_type''', default=None, type=str, help=( '''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable''' ''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') parser.add_argument( '''--stable_unclip''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''', ) parser.add_argument( '''--stable_unclip_prior''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''', ) parser.add_argument( '''--clip_stats_path''', type=str, help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''', required=False, ) parser.add_argument( '''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.''' ) parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--vae_path''', type=str, default=None, required=False, help='''Set to a path, hub id to an already converted vae to not convert it again.''', ) __lowerCamelCase : Any = parser.parse_args() __lowerCamelCase : List[str] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
714
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : list ) -> float: """simple docstring""" if not nums: raise ValueError("""List is empty""" ) return sum(__UpperCamelCase ) / len(__UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
379
0
"""simple docstring""" import random from typing import Any def lowercase ( lowerCAmelCase__ ): for _ in range(len(lowerCAmelCase__ ) ): lowerCamelCase_ = random.randint(0 ,len(lowerCAmelCase__ ) - 1 ) lowerCamelCase_ = random.randint(0 ,len(lowerCAmelCase__ ) - 1 ) lowerCamelCase_ , lowerCamelCase_ = data[b], data[a] return data if __name__ == "__main__": A_ = [0, 1, 2, 3, 4, 5, 6, 7] A_ = ["""python""", """says""", """hello""", """!"""] print("""Fisher-Yates Shuffle:""") print("""List""", integers, strings) print("""FY Shuffle""", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
29
def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) lowerCamelCase : List[str] = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" lowerCamelCase : Any = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" lowerCamelCase : Optional[int] = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
340
0
'''simple docstring''' from __future__ import annotations import requests def _UpperCamelCase ( lowerCAmelCase_ ) ->dict: UpperCAmelCase = F"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(lowerCAmelCase_ ).json() def _UpperCamelCase ( lowerCAmelCase_ = 1_0 ) ->list[dict]: UpperCAmelCase = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" UpperCAmelCase = requests.get(lowerCAmelCase_ ).json()[:max_stories] return [get_hackernews_story(lowerCAmelCase_ ) for story_id in story_ids] def _UpperCamelCase ( lowerCAmelCase_ = 1_0 ) ->str: UpperCAmelCase = hackernews_top_stories(lowerCAmelCase_ ) return "\n".join("""* [{title}]({url})""".format(**lowerCAmelCase_ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
719
from ...configuration_utils import PretrainedConfig from ...utils import logging __a = logging.get_logger(__name__) __a = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class __lowercase ( __snake_case ): UpperCamelCase = '''nllb-moe''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , __lowerCamelCase : Optional[Any]=1_2_8_1_1_2 , __lowerCamelCase : Dict=1_0_2_4 , __lowerCamelCase : Optional[int]=1_2 , __lowerCamelCase : Union[str, Any]=4_0_9_6 , __lowerCamelCase : List[str]=1_6 , __lowerCamelCase : List[str]=1_2 , __lowerCamelCase : int=4_0_9_6 , __lowerCamelCase : Tuple=1_6 , __lowerCamelCase : str=0.05 , __lowerCamelCase : List[str]=0.05 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : str="relu" , __lowerCamelCase : Dict=1_0_2_4 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Dict=2 , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : Any=False , __lowerCamelCase : Tuple="float32" , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[int]=1_2_8 , __lowerCamelCase : List[str]=6_4 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Tuple=4 , __lowerCamelCase : str=0.001 , __lowerCamelCase : Optional[int]=0.001 , __lowerCamelCase : Tuple="all" , __lowerCamelCase : Any=False , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : List[str]=1.0 , __lowerCamelCase : Dict=0.2 , __lowerCamelCase : Union[str, Any]=1 , __lowerCamelCase : int=0 , __lowerCamelCase : Dict=2 , __lowerCamelCase : int=False , **__lowerCamelCase : str , ) -> int: """simple docstring""" UpperCAmelCase = vocab_size UpperCAmelCase = max_position_embeddings UpperCAmelCase = d_model UpperCAmelCase = encoder_ffn_dim UpperCAmelCase = encoder_layers UpperCAmelCase = encoder_attention_heads UpperCAmelCase = decoder_ffn_dim UpperCAmelCase = decoder_layers UpperCAmelCase = decoder_attention_heads UpperCAmelCase = dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = activation_function UpperCAmelCase = init_std UpperCAmelCase = encoder_layerdrop UpperCAmelCase = decoder_layerdrop UpperCAmelCase = use_cache UpperCAmelCase = encoder_layers UpperCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True UpperCAmelCase = router_z_loss_coef UpperCAmelCase = router_aux_loss_coef UpperCAmelCase = decoder_sparse_step UpperCAmelCase = encoder_sparse_step UpperCAmelCase = num_experts UpperCAmelCase = expert_capacity UpperCAmelCase = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) UpperCAmelCase = router_dtype UpperCAmelCase = router_ignore_padding_tokens UpperCAmelCase = batch_prioritized_routing UpperCAmelCase = second_expert_policy UpperCAmelCase = normalize_router_prob_before_dropping UpperCAmelCase = moe_eval_capacity_token_fraction UpperCAmelCase = moe_token_dropout UpperCAmelCase = output_router_logits super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , is_encoder_decoder=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , )
627
0
"""simple docstring""" from functools import lru_cache def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : str = 2 __lowercase : int = set() while i * i <= n: if n % i: i += 1 else: n //= i factors.add(__UpperCamelCase ) if n > 1: factors.add(__UpperCamelCase ) return factors @lru_cache def __UpperCAmelCase ( __UpperCamelCase ): return len(unique_prime_factors(__UpperCamelCase ) ) def __UpperCAmelCase ( __UpperCamelCase ): return len(set(__UpperCamelCase ) ) in (0, 1) def __UpperCAmelCase ( __UpperCamelCase ): __lowercase : Optional[Any] = 2 while True: # Increment each value of a generated range __lowercase : Dict = [base + i for i in range(__UpperCamelCase )] # Run elements through out unique_prime_factors function # Append our target number to the end. __lowercase : Optional[int] = [upf_len(__UpperCamelCase ) for x in group] checker.append(__UpperCamelCase ) # If all numbers in the list are equal, return the group variable. if equality(__UpperCamelCase ): return group # Increment our base variable by 1 base += 1 def __UpperCAmelCase ( __UpperCamelCase = 4 ): __lowercase : int = run(__UpperCamelCase ) return results[0] if len(__UpperCamelCase ) else None if __name__ == "__main__": print(solution())
76
"""simple docstring""" import gc import threading import time import psutil import torch class UpperCAmelCase_ : def __init__( self ) -> str: __lowercase : List[Any] = psutil.Process() __lowercase : Any = False def _lowerCamelCase ( self ) -> Union[str, Any]: __lowercase : Optional[Any] = -1 while True: __lowercase : List[str] = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : List[Any] = True __lowercase : List[Any] = threading.Thread(target=self.peak_monitor ) __lowercase : Optional[int] = True self.thread.start() def _lowerCamelCase ( self ) -> Optional[Any]: __lowercase : Union[str, Any] = False self.thread.join() return self.cpu_memory_peak a_ = PeakCPUMemory() def __UpperCAmelCase ( ): # Time __lowercase : Union[str, Any] = {'''time''': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem __lowercase : List[Any] = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): __lowercase : List[str] = torch.cuda.memory_allocated(__UpperCamelCase ) torch.cuda.reset_peak_memory_stats() return measures def __UpperCAmelCase ( __UpperCamelCase ): # Time __lowercase : List[Any] = {'''time''': time.time() - start_measures['''time''']} gc.collect() torch.cuda.empty_cache() # CPU mem __lowercase : Union[str, Any] = (psutil.Process().memory_info().rss - start_measures['''cpu''']) / 2**20 __lowercase : Dict = (cpu_peak_tracker.stop() - start_measures['''cpu''']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): __lowercase : str = (torch.cuda.memory_allocated(__UpperCamelCase ) - start_measures[str(__UpperCamelCase )]) / 2**20 __lowercase : Optional[int] = (torch.cuda.max_memory_allocated(__UpperCamelCase ) - start_measures[str(__UpperCamelCase )]) / 2**20 return measures def __UpperCAmelCase ( __UpperCamelCase , __UpperCamelCase ): print(f"""{description}:""" ) print(f"""- Time: {measures["time"]:.2f}s""" ) for i in range(torch.cuda.device_count() ): print(f"""- GPU {i} allocated: {measures[str(__UpperCamelCase )]:.2f}MiB""" ) __lowercase : Dict = measures[f"""{i}-peak"""] print(f"""- GPU {i} peak: {peak:.2f}MiB""" ) print(f"""- CPU RAM allocated: {measures["cpu"]:.2f}MiB""" ) print(f"""- CPU RAM peak: {measures["cpu-peak"]:.2f}MiB""" )
76
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available A__: Optional[int] = { '''configuration_gpt_neo''': ['''GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoConfig''', '''GPTNeoOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: str = [ '''GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoForCausalLM''', '''GPTNeoForQuestionAnswering''', '''GPTNeoForSequenceClassification''', '''GPTNeoForTokenClassification''', '''GPTNeoModel''', '''GPTNeoPreTrainedModel''', '''load_tf_weights_in_gpt_neo''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Any = [ '''FlaxGPTNeoForCausalLM''', '''FlaxGPTNeoModel''', '''FlaxGPTNeoPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neo import GPT_NEO_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoConfig, GPTNeoOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neo import ( GPT_NEO_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoForCausalLM, GPTNeoForQuestionAnswering, GPTNeoForSequenceClassification, GPTNeoForTokenClassification, GPTNeoModel, GPTNeoPreTrainedModel, load_tf_weights_in_gpt_neo, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_gpt_neo import FlaxGPTNeoForCausalLM, FlaxGPTNeoModel, FlaxGPTNeoPreTrainedModel else: import sys A__: int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
221
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _a : """simple docstring""" def __init__( self: Tuple , __lowerCamelCase: str = "cpu" , __lowerCamelCase: str = "openai/clip-vit-large-patch14" ): '''simple docstring''' UpperCamelCase__: Dict = device UpperCamelCase__: Any = CLIPTokenizerFast.from_pretrained(__lowerCamelCase ) UpperCamelCase__: Optional[int] = [0.48_145_466, 0.4_578_275, 0.40_821_073] UpperCamelCase__: int = [0.26_862_954, 0.26_130_258, 0.27_577_711] UpperCamelCase__: Optional[Any] = torchvision.transforms.Normalize(self.image_mean , self.image_std ) UpperCamelCase__: int = torchvision.transforms.Resize(224 ) UpperCamelCase__: int = torchvision.transforms.CenterCrop(224 ) def UpperCAmelCase_ ( self: Optional[Any] , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: Tuple = self.resize(__lowerCamelCase ) UpperCamelCase__: List[str] = self.center_crop(__lowerCamelCase ) UpperCamelCase__: int = self.normalize(__lowerCamelCase ) return images def __call__( self: List[Any] , __lowerCamelCase: int=None , __lowerCamelCase: List[Any]=None , **__lowerCamelCase: Tuple ): '''simple docstring''' UpperCamelCase__: Optional[Any] = self.tokenizer(text=__lowerCamelCase , **__lowerCamelCase ) UpperCamelCase__: int = self.preprocess_img(__lowerCamelCase ) UpperCamelCase__: int = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _a ( nn.Module): """simple docstring""" def __init__( self: Tuple , __lowerCamelCase: Union[str, Any]=10 , __lowerCamelCase: Dict=0.01 , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: Dict=None , __lowerCamelCase: List[Any]=None , __lowerCamelCase: str=None , __lowerCamelCase: Optional[Any]=None , __lowerCamelCase: List[str]=False , __lowerCamelCase: Tuple=True , __lowerCamelCase: Tuple="image" , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Dict=False , __lowerCamelCase: List[str]=False , __lowerCamelCase: str=False , ): '''simple docstring''' super().__init__() UpperCamelCase__: List[str] = None UpperCamelCase__: int = device if device else get_device() if vqgan: UpperCamelCase__: int = vqgan else: UpperCamelCase__: Union[str, Any] = load_vqgan(self.device , conf_path=__lowerCamelCase , ckpt_path=__lowerCamelCase ) self.vqgan.eval() if clip: UpperCamelCase__: int = clip else: UpperCamelCase__: str = CLIPModel.from_pretrained("openai/clip-vit-base-patch32" ) self.clip.to(self.device ) UpperCamelCase__: Optional[Any] = ProcessorGradientFlow(device=self.device ) UpperCamelCase__: Optional[Any] = iterations UpperCamelCase__: Tuple = lr UpperCamelCase__: Union[str, Any] = log UpperCamelCase__: Dict = make_grid UpperCamelCase__: Any = return_val UpperCamelCase__: Tuple = quantize UpperCamelCase__: Dict = self.vqgan.decoder.z_shape def UpperCAmelCase_ ( self: List[Any] , __lowerCamelCase: List[Any]=None , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Optional[int]=5 , __lowerCamelCase: List[Any]=True ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = [] if output_path is None: UpperCamelCase__: Optional[Any] = "./animation.gif" if input_path is None: UpperCamelCase__: Tuple = self.save_path UpperCamelCase__: str = sorted(glob(input_path + "/*" ) ) if not len(__lowerCamelCase ): raise ValueError( "No images found in save path, aborting (did you pass save_intermediate=True to the generate" " function?)" ) if len(__lowerCamelCase ) == 1: print("Only one image found in save path, (did you pass save_intermediate=True to the generate function?)" ) UpperCamelCase__: str = total_duration / len(__lowerCamelCase ) UpperCamelCase__: Tuple = [frame_duration] * len(__lowerCamelCase ) if extend_frames: UpperCamelCase__: Any = 1.5 UpperCamelCase__: Optional[int] = 3 for file_name in paths: if file_name.endswith(".png" ): images.append(imageio.imread(__lowerCamelCase ) ) imageio.mimsave(__lowerCamelCase , __lowerCamelCase , duration=__lowerCamelCase ) print(F"gif saved to {output_path}" ) def UpperCAmelCase_ ( self: List[str] , __lowerCamelCase: int=None , __lowerCamelCase: List[Any]=None ): '''simple docstring''' if not (path or img): raise ValueError("Input either path or tensor" ) if img is not None: raise NotImplementedError UpperCamelCase__: str = preprocess(Image.open(__lowerCamelCase ) , target_image_size=256 ).to(self.device ) UpperCamelCase__: List[str] = preprocess_vqgan(__lowerCamelCase ) UpperCamelCase__ , *UpperCamelCase__: List[Any] = self.vqgan.encode(__lowerCamelCase ) return z def UpperCAmelCase_ ( self: Optional[Any] , __lowerCamelCase: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: Optional[Any] = self.latent.detach().requires_grad_() UpperCamelCase__: Tuple = base_latent + transform_vector if self.quantize: UpperCamelCase__ , *UpperCamelCase__: Union[str, Any] = self.vqgan.quantize(__lowerCamelCase ) else: UpperCamelCase__: str = trans_latent return self.vqgan.decode(__lowerCamelCase ) def UpperCAmelCase_ ( self: Dict , __lowerCamelCase: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: Dict=None ): '''simple docstring''' UpperCamelCase__: Dict = self.clip_preprocessor(text=__lowerCamelCase , images=__lowerCamelCase , return_tensors="pt" , padding=__lowerCamelCase ) UpperCamelCase__: str = self.clip(**__lowerCamelCase ) UpperCamelCase__: int = clip_outputs.logits_per_image if weights is not None: UpperCamelCase__: Any = similarity_logits * weights return similarity_logits.sum() def UpperCAmelCase_ ( self: int , __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: str = self._get_clip_similarity(pos_prompts["prompts"] , __lowerCamelCase , weights=(1 / pos_prompts["weights"]) ) if neg_prompts: UpperCamelCase__: Any = self._get_clip_similarity(neg_prompts["prompts"] , __lowerCamelCase , weights=neg_prompts["weights"] ) else: UpperCamelCase__: Any = torch.tensor([1] , device=self.device ) UpperCamelCase__: int = -torch.log(__lowerCamelCase ) + torch.log(__lowerCamelCase ) return loss def UpperCAmelCase_ ( self: List[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] ): '''simple docstring''' UpperCamelCase__: Optional[Any] = torch.randn_like(self.latent , requires_grad=__lowerCamelCase , device=self.device ) UpperCamelCase__: Union[str, Any] = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() UpperCamelCase__: int = self._add_vector(__lowerCamelCase ) UpperCamelCase__: Optional[Any] = loop_post_process(__lowerCamelCase ) UpperCamelCase__: List[Any] = self._get_CLIP_loss(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) print("CLIP loss" , __lowerCamelCase ) if self.log: wandb.log({"CLIP Loss": clip_loss} ) clip_loss.backward(retain_graph=__lowerCamelCase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCAmelCase_ ( self: str , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Dict ): '''simple docstring''' wandb.init(reinit=__lowerCamelCase , project="face-editor" ) wandb.config.update({"Positive Prompts": positive_prompts} ) wandb.config.update({"Negative Prompts": negative_prompts} ) wandb.config.update({"lr": self.lr, "iterations": self.iterations} ) if image_path: UpperCamelCase__: Tuple = Image.open(__lowerCamelCase ) UpperCamelCase__: Optional[Any] = image.resize((256, 256) ) wandb.log("Original Image" , wandb.Image(__lowerCamelCase ) ) def UpperCAmelCase_ ( self: str , __lowerCamelCase: List[Any] ): '''simple docstring''' if not prompts: return [] UpperCamelCase__: List[Any] = [] UpperCamelCase__: Union[str, Any] = [] if isinstance(__lowerCamelCase , __lowerCamelCase ): UpperCamelCase__: List[str] = [prompt.strip() for prompt in prompts.split("|" )] for prompt in prompts: if isinstance(__lowerCamelCase , (tuple, list) ): UpperCamelCase__: Dict = prompt[0] UpperCamelCase__: Union[str, Any] = float(prompt[1] ) elif ":" in prompt: UpperCamelCase__ , UpperCamelCase__: List[Any] = prompt.split(":" ) UpperCamelCase__: List[str] = float(__lowerCamelCase ) else: UpperCamelCase__: List[Any] = prompt UpperCamelCase__: Any = 1.0 processed_prompts.append(__lowerCamelCase ) weights.append(__lowerCamelCase ) return { "prompts": processed_prompts, "weights": torch.tensor(__lowerCamelCase , device=self.device ), } def UpperCAmelCase_ ( self: Any , __lowerCamelCase: Optional[int] , __lowerCamelCase: Optional[int]=None , __lowerCamelCase: Dict=None , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=False , __lowerCamelCase: int=True , __lowerCamelCase: List[Any]=True , __lowerCamelCase: Optional[int]=None , ): '''simple docstring''' if image_path: UpperCamelCase__: Tuple = self._get_latent(__lowerCamelCase ) else: UpperCamelCase__: Optional[Any] = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) assert pos_prompts, "You must provide at least one positive prompt." UpperCamelCase__: Union[str, Any] = self.process_prompts(__lowerCamelCase ) UpperCamelCase__: Tuple = self.process_prompts(__lowerCamelCase ) if save_final and save_path is None: UpperCamelCase__: Union[str, Any] = os.path.join("./outputs/" , "_".join(pos_prompts["prompts"] ) ) if not os.path.exists(__lowerCamelCase ): os.makedirs(__lowerCamelCase ) else: UpperCamelCase__: List[str] = save_path + "_" + get_timestamp() os.makedirs(__lowerCamelCase ) UpperCamelCase__: str = save_path UpperCamelCase__: int = self.vqgan.decode(self.latent )[0] if show_intermediate: print("Original Image" ) show_pil(custom_to_pil(__lowerCamelCase ) ) UpperCamelCase__: Optional[int] = loop_post_process(__lowerCamelCase ) for iter, transformed_img in enumerate(self._optimize_CLIP(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) ): if show_intermediate: show_pil(__lowerCamelCase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F"iter_{iter:03d}.png" ) ) if self.log: wandb.log({"Image": wandb.Image(__lowerCamelCase )} ) if show_final: show_pil(__lowerCamelCase ) if save_final: transformed_img.save(os.path.join(self.save_path , F"iter_{iter:03d}_final.png" ) )
221
1
"""simple docstring""" import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def _lowerCamelCase ( UpperCAmelCase__ ) -> List[str]: '''simple docstring''' return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__ ) -> Optional[int]: '''simple docstring''' a__ = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue a__ = key.replace('heads.cmd.mim_head.cls.predictions','mmm_image_head' ) a__ = key.replace('heads.cmd.mlm_head.cls.predictions','mmm_text_head' ) a__ = key.replace('heads.cmd.itm_head.cls','itm_head' ) a__ = key.replace('heads.cmd.itm_head.pooler','itm_head.pooler' ) a__ = key.replace('heads.cmd.clip_head.logit_scale','flava.logit_scale' ) a__ = key.replace('heads.fairseq_mlm.cls.predictions','mlm_head' ) a__ = key.replace('heads.imagenet.mim_head.cls.predictions','mim_head' ) a__ = key.replace('mm_text_projection','flava.text_to_mm_projection' ) a__ = key.replace('mm_image_projection','flava.image_to_mm_projection' ) a__ = key.replace('image_encoder.module','flava.image_model' ) a__ = key.replace('text_encoder.module','flava.text_model' ) a__ = key.replace('mm_encoder.module.encoder.cls_token','flava.multimodal_model.cls_token' ) a__ = key.replace('mm_encoder.module','flava.multimodal_model' ) a__ = key.replace('text_projection','flava.text_projection' ) a__ = key.replace('image_projection','flava.image_projection' ) a__ = value.float() for key, value in codebook_state_dict.items(): a__ = value return upgrade @torch.no_grad() def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__=None ) -> Optional[int]: '''simple docstring''' if config_path is not None: a__ = FlavaConfig.from_pretrained(lowerCAmelCase__ ) else: a__ = FlavaConfig() a__ = FlavaForPreTraining(lowerCAmelCase__ ).eval() a__ = convert_dalle_checkpoint(lowerCAmelCase__,lowerCAmelCase__,save_checkpoint=lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): a__ = torch.load(lowerCAmelCase__,map_location='cpu' ) else: a__ = torch.hub.load_state_dict_from_url(lowerCAmelCase__,map_location='cpu' ) a__ = upgrade_state_dict(lowerCAmelCase__,lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) a__ = hf_model.state_dict() a__ = count_parameters(lowerCAmelCase__ ) a__ = count_parameters(lowerCAmelCase__ ) + count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__,lowerCAmelCase__,atol=1e-3 ) hf_model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--codebook_path", default=None, type=str, help="Path to flava codebook checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") __magic_name__ = parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
232
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType _lowercase : Tuple =logging.get_logger(__name__) _lowercase : Any ={ """microsoft/deberta-v2-xlarge""": """https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json""", """microsoft/deberta-v2-xxlarge""": """https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json""", """microsoft/deberta-v2-xlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json""" ), """microsoft/deberta-v2-xxlarge-mnli""": ( """https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json""" ), } class UpperCamelCase_ ( snake_case__ ): _a : int = 'deberta-v2' def __init__( self : Any , lowerCamelCase : Dict=12_81_00 , lowerCamelCase : List[Any]=15_36 , lowerCamelCase : Union[str, Any]=24 , lowerCamelCase : Union[str, Any]=24 , lowerCamelCase : Optional[int]=61_44 , lowerCamelCase : Any="gelu" , lowerCamelCase : int=0.1 , lowerCamelCase : str=0.1 , lowerCamelCase : Optional[int]=5_12 , lowerCamelCase : str=0 , lowerCamelCase : Union[str, Any]=0.02 , lowerCamelCase : List[str]=1E-7 , lowerCamelCase : Dict=False , lowerCamelCase : List[Any]=-1 , lowerCamelCase : Union[str, Any]=0 , lowerCamelCase : Optional[int]=True , lowerCamelCase : Optional[int]=None , lowerCamelCase : Tuple=0 , lowerCamelCase : Tuple="gelu" , **lowerCamelCase : Optional[int] , ): super().__init__(**lowerCamelCase ) lowerCamelCase_ : Any = hidden_size lowerCamelCase_ : Dict = num_hidden_layers lowerCamelCase_ : Optional[int] = num_attention_heads lowerCamelCase_ : Optional[int] = intermediate_size lowerCamelCase_ : str = hidden_act lowerCamelCase_ : int = hidden_dropout_prob lowerCamelCase_ : Tuple = attention_probs_dropout_prob lowerCamelCase_ : Union[str, Any] = max_position_embeddings lowerCamelCase_ : Union[str, Any] = type_vocab_size lowerCamelCase_ : List[Any] = initializer_range lowerCamelCase_ : Optional[Any] = relative_attention lowerCamelCase_ : List[Any] = max_relative_positions lowerCamelCase_ : Optional[int] = pad_token_id lowerCamelCase_ : int = position_biased_input # Backwards compatibility if type(lowerCamelCase ) == str: lowerCamelCase_ : Dict = [x.strip() for x in pos_att_type.lower().split('|' )] lowerCamelCase_ : Optional[Any] = pos_att_type lowerCamelCase_ : List[Any] = vocab_size lowerCamelCase_ : Any = layer_norm_eps lowerCamelCase_ : int = kwargs.get('pooler_hidden_size' , lowerCamelCase ) lowerCamelCase_ : Dict = pooler_dropout lowerCamelCase_ : Tuple = pooler_hidden_act class UpperCamelCase_ ( snake_case__ ): @property def __a ( self : Optional[int] ): if self.task == "multiple-choice": lowerCamelCase_ : Optional[Any] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: lowerCamelCase_ : Any = {0: 'batch', 1: 'sequence'} if self._config.type_vocab_size > 0: return OrderedDict( [('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis)] ) else: return OrderedDict([('input_ids', dynamic_axis), ('attention_mask', dynamic_axis)] ) @property def __a ( self : List[Any] ): return 12 def __a ( self : Tuple , lowerCamelCase : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , lowerCamelCase : int = -1 , lowerCamelCase : int = -1 , lowerCamelCase : int = -1 , lowerCamelCase : bool = False , lowerCamelCase : Optional["TensorType"] = None , lowerCamelCase : int = 3 , lowerCamelCase : int = 40 , lowerCamelCase : int = 40 , lowerCamelCase : "PreTrainedTokenizerBase" = None , ): lowerCamelCase_ : Union[str, Any] = super().generate_dummy_inputs(preprocessor=lowerCamelCase , framework=lowerCamelCase ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
364
0
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Dict =logging.get_logger(__name__) def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: _lowerCamelCase : Dict = 128 elif "12-12" in model_name: _lowerCamelCase : Optional[int] = 12 _lowerCamelCase : Optional[int] = 12 elif "14-14" in model_name: _lowerCamelCase : Any = 14 _lowerCamelCase : Dict = 14 elif "16-16" in model_name: _lowerCamelCase : List[str] = 16 _lowerCamelCase : List[Any] = 16 else: raise ValueError("""Model not supported""" ) _lowerCamelCase : Dict = """huggingface/label-files""" if "speech-commands" in model_name: _lowerCamelCase : str = 35 _lowerCamelCase : Union[str, Any] = """speech-commands-v2-id2label.json""" else: _lowerCamelCase : List[Any] = 527 _lowerCamelCase : Union[str, Any] = """audioset-id2label.json""" _lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(__A , __A , repo_type="""dataset""" ) , """r""" ) ) _lowerCamelCase : int = {int(__A ): v for k, v in idalabel.items()} _lowerCamelCase : Any = idalabel _lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()} return config def A__ ( __A ): '''simple docstring''' if "module.v" in name: _lowerCamelCase : Dict = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: _lowerCamelCase : List[str] = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: _lowerCamelCase : int = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: _lowerCamelCase : str = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: _lowerCamelCase : int = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: _lowerCamelCase : Any = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: _lowerCamelCase : Union[str, Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: _lowerCamelCase : List[str] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: _lowerCamelCase : Optional[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: _lowerCamelCase : Any = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: _lowerCamelCase : int = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: _lowerCamelCase : List[Any] = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: _lowerCamelCase : str = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: _lowerCamelCase : List[str] = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: _lowerCamelCase : Optional[Any] = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def A__ ( __A , __A ): '''simple docstring''' for key in orig_state_dict.copy().keys(): _lowerCamelCase : Dict = orig_state_dict.pop(__A ) if "qkv" in key: _lowerCamelCase : Tuple = key.split(""".""" ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : Any = config.hidden_size if "weight" in key: _lowerCamelCase : Union[str, Any] = val[:dim, :] _lowerCamelCase : Union[str, Any] = val[dim : dim * 2, :] _lowerCamelCase : List[Any] = val[-dim:, :] else: _lowerCamelCase : Any = val[:dim] _lowerCamelCase : List[Any] = val[dim : dim * 2] _lowerCamelCase : Optional[Any] = val[-dim:] else: _lowerCamelCase : Dict = val return orig_state_dict def A__ ( __A ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(__A , __A ) @torch.no_grad() def A__ ( __A , __A , __A=False ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = get_audio_spectrogram_transformer_config(__A ) _lowerCamelCase : List[str] = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict _lowerCamelCase : List[Any] = model_name_to_url[model_name] _lowerCamelCase : Union[str, Any] = torch.hub.load_state_dict_from_url(__A , map_location="""cpu""" ) # remove some keys remove_keys(__A ) # rename some keys _lowerCamelCase : str = convert_state_dict(__A , __A ) # load 🤗 model _lowerCamelCase : Tuple = ASTForAudioClassification(__A ) model.eval() model.load_state_dict(__A ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 _lowerCamelCase : Optional[int] = -4.2_677_393 if """speech-commands""" not in model_name else -6.845_978 _lowerCamelCase : Dict = 4.5_689_974 if """speech-commands""" not in model_name else 5.5_654_526 _lowerCamelCase : int = 1_024 if """speech-commands""" not in model_name else 128 _lowerCamelCase : List[Any] = ASTFeatureExtractor(mean=__A , std=__A , max_length=__A ) if "speech-commands" in model_name: _lowerCamelCase : str = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) _lowerCamelCase : List[str] = dataset[0]["""audio"""]["""array"""] else: _lowerCamelCase : Tuple = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = torchaudio.load(__A ) _lowerCamelCase : int = waveform.squeeze().numpy() _lowerCamelCase : Optional[Any] = feature_extractor(__A , sampling_rate=16_000 , return_tensors="""pt""" ) # forward pass _lowerCamelCase : Optional[int] = model(**__A ) _lowerCamelCase : Union[str, Any] = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": _lowerCamelCase : Optional[Any] = torch.tensor([-0.8_760, -7.0_042, -8.6_602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": _lowerCamelCase : Any = torch.tensor([-1.1_986, -7.0_903, -8.2_718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": _lowerCamelCase : Tuple = torch.tensor([-2.6_128, -8.0_080, -9.4_344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": _lowerCamelCase : Any = torch.tensor([-1.5_080, -7.4_534, -8.8_917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": _lowerCamelCase : Optional[Any] = torch.tensor([-0.5_050, -6.5_833, -8.0_843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": _lowerCamelCase : Any = torch.tensor([-0.3_826, -7.0_336, -8.2_413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": _lowerCamelCase : int = torch.tensor([-1.2_113, -6.9_101, -8.3_470] ) elif model_name == "ast-finetuned-speech-commands-v2": _lowerCamelCase : Optional[Any] = torch.tensor([6.1_589, -8.0_566, -8.7_984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , __A , atol=1E-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(__A ).mkdir(exist_ok=__A ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(F"""Saving feature extractor to {pytorch_dump_folder_path}""" ) feature_extractor.save_pretrained(__A ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(F"""MIT/{model_name}""" ) feature_extractor.push_to_hub(F"""MIT/{model_name}""" ) if __name__ == "__main__": lowerCAmelCase : int =argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCAmelCase : Tuple =parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING lowerCAmelCase : Optional[Any] =logging.get_logger(__name__) @add_end_docstrings(__lowerCAmelCase ) class __snake_case ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : str , *_UpperCamelCase : int , **_UpperCamelCase : List[str]) ->Tuple: """simple docstring""" super().__init__(*_UpperCamelCase , **_UpperCamelCase) requires_backends(self , """vision""") self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def _SCREAMING_SNAKE_CASE ( self : Dict , _UpperCamelCase : List[str]=None) ->Optional[int]: """simple docstring""" _lowerCamelCase : Optional[int] = {} if top_k is not None: _lowerCamelCase : str = top_k return {}, {}, postprocess_params def __call__( self : Optional[int] , _UpperCamelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_UpperCamelCase : Optional[int]) ->Dict: """simple docstring""" return super().__call__(_UpperCamelCase , **_UpperCamelCase) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCamelCase : Optional[int]) ->str: """simple docstring""" _lowerCamelCase : Tuple = load_image(_UpperCamelCase) _lowerCamelCase : Any = self.image_processor(images=_UpperCamelCase , return_tensors=self.framework) return model_inputs def _SCREAMING_SNAKE_CASE ( self : str , _UpperCamelCase : Union[str, Any]) ->List[str]: """simple docstring""" _lowerCamelCase : Any = self.model(**_UpperCamelCase) return model_outputs def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : List[str]=5) ->str: """simple docstring""" if top_k > self.model.config.num_labels: _lowerCamelCase : Union[str, Any] = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase : Optional[Any] = model_outputs.logits.softmax(-1)[0] _lowerCamelCase , _lowerCamelCase : Dict = probs.topk(_UpperCamelCase) elif self.framework == "tf": _lowerCamelCase : List[Any] = stable_softmax(model_outputs.logits , axis=-1)[0] _lowerCamelCase : List[Any] = tf.math.top_k(_UpperCamelCase , k=_UpperCamelCase) _lowerCamelCase , _lowerCamelCase : str = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(F"""Unsupported framework: {self.framework}""") _lowerCamelCase : str = scores.tolist() _lowerCamelCase : str = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(_UpperCamelCase , _UpperCamelCase)]
15
1
'''simple docstring''' import mpmath # for roots of unity import numpy as np class SCREAMING_SNAKE_CASE__ : def __init__( self : Tuple , a_ : Optional[int]=None , a_ : int=None ): """simple docstring""" __snake_case = list(poly_a or [0] )[:] __snake_case = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() __snake_case = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() __snake_case = len(self.polyB ) # Add 0 to make lengths equal a power of 2 __snake_case = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform __snake_case = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product __snake_case = self.__multiply() def A ( self : Any , a_ : Optional[Any] ): """simple docstring""" __snake_case = [[x] for x in self.polyA] if which == "A" else [[x] for x in self.polyB] # Corner case if len(a_ ) <= 1: return dft[0] # __snake_case = self.c_max_length // 2 while next_ncol > 0: __snake_case = [[] for i in range(a_ )] __snake_case = self.root**next_ncol # First half of next step __snake_case = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(a_ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step __snake_case = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(a_ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update __snake_case = new_dft __snake_case = next_ncol // 2 return dft[0] def A ( self : Union[str, Any] ): """simple docstring""" __snake_case = self.__dft("A" ) __snake_case = self.__dft("B" ) __snake_case = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT __snake_case = 2 while next_ncol <= self.c_max_length: __snake_case = [[] for i in range(a_ )] __snake_case = self.root ** (next_ncol // 2) __snake_case = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update __snake_case = new_inverse_c next_ncol *= 2 # Unpack __snake_case = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Optional[int] ): """simple docstring""" __snake_case = "A = " + " + ".join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) __snake_case = "B = " + " + ".join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) __snake_case = "A*B = " + " + ".join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
69
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') A = logging.getLogger(__name__) @dataclass class __lowercase : '''simple docstring''' __lowerCAmelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of prediction examples to this ''' '''value if set.''' ) } , ) @dataclass class __lowercase : '''simple docstring''' __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Evaluation language. Also train language if `train_language` is set to None.'''} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Train language if it is different from the evaluation language.'''} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'''} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) __lowerCAmelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) __lowerCAmelCase = field( default=_UpperCamelCase , metadata={'''help''': '''Will enable to load a pretrained model whose head dimensions are different.'''} , ) def __A ( ) -> Optional[int]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __a : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) __a , __a , __a : Union[str, Any] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_xnli''' , a_) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout)] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __a : Union[str, Any] = training_args.get_process_log_level() logger.setLevel(a_) datasets.utils.logging.set_verbosity(a_) transformers.utils.logging.set_verbosity(a_) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fpaa}""") logger.info(F"""Training/evaluation parameters {training_args}""") # Detecting last checkpoint. __a : str = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: __a : Union[str, Any] = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''') elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''') # Set seed before initializing model. set_seed(training_args.seed) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: __a : List[Any] = load_dataset( '''xnli''' , model_args.language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: __a : Union[str, Any] = load_dataset( '''xnli''' , model_args.train_language , split='''train''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __a : Tuple = train_dataset.features['''label'''].names if training_args.do_eval: __a : Optional[int] = load_dataset( '''xnli''' , model_args.language , split='''validation''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __a : Tuple = eval_dataset.features['''label'''].names if training_args.do_predict: __a : List[str] = load_dataset( '''xnli''' , model_args.language , split='''test''' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) __a : int = predict_dataset.features['''label'''].names # Labels __a : Dict = len(a_) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __a : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=a_ , idalabel={str(a_): label for i, label in enumerate(a_)} , labelaid={label: i for i, label in enumerate(a_)} , finetuning_task='''xnli''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __a : Union[str, Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __a : Optional[Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path) , config=a_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: __a : int = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch __a : List[Any] = False def preprocess_function(a_ :Tuple): # Tokenize the texts return tokenizer( examples['''premise'''] , examples['''hypothesis'''] , padding=a_ , max_length=data_args.max_seq_length , truncation=a_ , ) if training_args.do_train: if data_args.max_train_samples is not None: __a : Optional[int] = min(len(a_) , data_args.max_train_samples) __a : List[Any] = train_dataset.select(range(a_)) with training_args.main_process_first(desc='''train dataset map pre-processing'''): __a : Optional[int] = train_dataset.map( a_ , batched=a_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on train dataset''' , ) # Log a few random samples from the training set: for index in random.sample(range(len(a_)) , 3): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""") if training_args.do_eval: if data_args.max_eval_samples is not None: __a : int = min(len(a_) , data_args.max_eval_samples) __a : List[str] = eval_dataset.select(range(a_)) with training_args.main_process_first(desc='''validation dataset map pre-processing'''): __a : List[str] = eval_dataset.map( a_ , batched=a_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on validation dataset''' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: __a : Tuple = min(len(a_) , data_args.max_predict_samples) __a : int = predict_dataset.select(range(a_)) with training_args.main_process_first(desc='''prediction dataset map pre-processing'''): __a : List[Any] = predict_dataset.map( a_ , batched=a_ , load_from_cache_file=not data_args.overwrite_cache , desc='''Running tokenizer on prediction dataset''' , ) # Get the metric function __a : List[str] = evaluate.load('''xnli''') # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(a_ :EvalPrediction): __a : str = p.predictions[0] if isinstance(p.predictions , a_) else p.predictions __a : List[Any] = np.argmax(a_ , axis=1) return metric.compute(predictions=a_ , references=p.label_ids) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: __a : Optional[Any] = default_data_collator elif training_args.fpaa: __a : int = DataCollatorWithPadding(a_ , pad_to_multiple_of=8) else: __a : Any = None # Initialize our Trainer __a : Any = Trainer( model=a_ , args=a_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=a_ , tokenizer=a_ , data_collator=a_ , ) # Training if training_args.do_train: __a : List[Any] = None if training_args.resume_from_checkpoint is not None: __a : List[str] = training_args.resume_from_checkpoint elif last_checkpoint is not None: __a : Optional[Any] = last_checkpoint __a : Tuple = trainer.train(resume_from_checkpoint=a_) __a : List[Any] = train_result.metrics __a : int = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_) ) __a : int = min(a_ , len(a_)) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''' , a_) trainer.save_metrics('''train''' , a_) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''') __a : Any = trainer.evaluate(eval_dataset=a_) __a : Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_) __a : Optional[int] = min(a_ , len(a_)) trainer.log_metrics('''eval''' , a_) trainer.save_metrics('''eval''' , a_) # Prediction if training_args.do_predict: logger.info('''*** Predict ***''') __a , __a , __a : Optional[Any] = trainer.predict(a_ , metric_key_prefix='''predict''') __a : List[str] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(a_) ) __a : str = min(a_ , len(a_)) trainer.log_metrics('''predict''' , a_) trainer.save_metrics('''predict''' , a_) __a : List[str] = np.argmax(a_ , axis=1) __a : int = os.path.join(training_args.output_dir , '''predictions.txt''') if trainer.is_world_process_zero(): with open(a_ , '''w''') as writer: writer.write('''index\tprediction\n''') for index, item in enumerate(a_): __a : Union[str, Any] = label_list[item] writer.write(F"""{index}\t{item}\n""") if __name__ == "__main__": main()
101
"""simple docstring""" from math import isqrt, loga def __A ( a_ :int) -> list[int]: __a : int = [True] * max_number for i in range(2 , isqrt(max_number - 1) + 1): if is_prime[i]: for j in range(i**2 , a_ , a_): __a : int = False return [i for i in range(2 , a_) if is_prime[i]] def __A ( a_ :int = 80_08_00 , a_ :int = 80_08_00) -> int: __a : str = degree * loga(a_) __a : Tuple = int(a_) __a : int = calculate_prime_numbers(a_) __a : List[Any] = 0 __a : Optional[Any] = 0 __a : Dict = len(a_) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left]) + prime_numbers[left] * loga(prime_numbers[right]) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'{solution() = }')
101
1
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase ( __a ): def __init__(self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Tuple: super().__init__() self.register_modules(vqvae=__UpperCamelCase , unet=__UpperCamelCase , scheduler=__UpperCamelCase ) @torch.no_grad() def __call__(self , __UpperCamelCase = 1 , __UpperCamelCase = None , __UpperCamelCase = 0.0 , __UpperCamelCase = 50 , __UpperCamelCase = "pil" , __UpperCamelCase = True , **__UpperCamelCase , ) -> Union[Tuple, ImagePipelineOutput]: UpperCamelCase_ : Optional[Any] = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__UpperCamelCase , ) UpperCamelCase_ : Dict = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase_ : List[str] = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__UpperCamelCase ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCamelCase_ : int = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase_ : Optional[Any] = {} if accepts_eta: UpperCamelCase_ : List[str] = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCamelCase_ : Union[str, Any] = self.scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) # predict the noise residual UpperCamelCase_ : List[Any] = self.unet(__UpperCamelCase , __UpperCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase_ : List[str] = self.scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ).prev_sample # decode the image latents with the VAE UpperCamelCase_ : str = self.vqvae.decode(__UpperCamelCase ).sample UpperCamelCase_ : Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase_ : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase_ : Tuple = self.numpy_to_pil(__UpperCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCamelCase )
635
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent SCREAMING_SNAKE_CASE : Union[str, Any] = {"UserAgent": UserAgent().random} def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Dict ): UpperCamelCase_ : Tuple = script.contents[0] UpperCamelCase_ : List[Any] = json.loads(data[data.find("""{\"config\"""" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class UpperCamelCase : def __init__(self , __UpperCamelCase ) -> List[str]: UpperCamelCase_ : Union[str, Any] = f'''https://www.instagram.com/{username}/''' UpperCamelCase_ : Optional[int] = self.get_json() def A_ (self ) -> dict: UpperCamelCase_ : Optional[Any] = requests.get(self.url , headers=__UpperCamelCase ).text UpperCamelCase_ : Any = BeautifulSoup(__UpperCamelCase , """html.parser""" ).find_all("""script""" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__(self ) -> str: return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__(self ) -> str: return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def A_ (self ) -> str: return self.user_data["username"] @property def A_ (self ) -> str: return self.user_data["full_name"] @property def A_ (self ) -> str: return self.user_data["biography"] @property def A_ (self ) -> str: return self.user_data["business_email"] @property def A_ (self ) -> str: return self.user_data["external_url"] @property def A_ (self ) -> int: return self.user_data["edge_followed_by"]["count"] @property def A_ (self ) -> int: return self.user_data["edge_follow"]["count"] @property def A_ (self ) -> int: return self.user_data["edge_owner_to_timeline_media"]["count"] @property def A_ (self ) -> str: return self.user_data["profile_pic_url_hd"] @property def A_ (self ) -> bool: return self.user_data["is_verified"] @property def A_ (self ) -> bool: return self.user_data["is_private"] def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : str = "github" ): import os if os.environ.get("""CI""" ): return # test failing on GitHub Actions UpperCamelCase_ : Any = InstagramUser(_SCREAMING_SNAKE_CASE ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _SCREAMING_SNAKE_CASE ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 12_0000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("""https://instagram.""" ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE : Dict = InstagramUser("github") print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
635
1
import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowerCAmelCase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase : AutoencoderKL , UpperCamelCase : CLIPTextModel , UpperCamelCase : CLIPTokenizer , UpperCamelCase : UNetaDConditionModel , UpperCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCamelCase : StableDiffusionSafetyChecker , UpperCamelCase : CLIPImageProcessor , ): '''simple docstring''' super().__init__() self.register_modules( vae=UpperCamelCase , text_encoder=UpperCamelCase , tokenizer=UpperCamelCase , unet=UpperCamelCase , scheduler=UpperCamelCase , safety_checker=UpperCamelCase , feature_extractor=UpperCamelCase , ) def UpperCamelCase_ ( self : List[Any] , UpperCamelCase : Optional[Union[str, int]] = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _snake_case : int = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCamelCase ) def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' self.enable_attention_slicing(UpperCamelCase ) @torch.no_grad() def __call__( self : Optional[int] , UpperCamelCase : Union[str, List[str]] , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 5_12 , UpperCamelCase : int = 50 , UpperCamelCase : float = 7.5 , UpperCamelCase : Optional[Union[str, List[str]]] = None , UpperCamelCase : Optional[int] = 1 , UpperCamelCase : float = 0.0 , UpperCamelCase : Optional[torch.Generator] = None , UpperCamelCase : Optional[torch.FloatTensor] = None , UpperCamelCase : Optional[str] = "pil" , UpperCamelCase : bool = True , UpperCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCamelCase : int = 1 , UpperCamelCase : Optional[torch.FloatTensor] = None , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' if isinstance(UpperCamelCase , UpperCamelCase ): _snake_case : int = 1 elif isinstance(UpperCamelCase , UpperCamelCase ): _snake_case : str = len(UpperCamelCase ) else: raise ValueError(f"""`prompt` has to be of type `str` or `list` but is {type(UpperCamelCase )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCamelCase , UpperCamelCase ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(UpperCamelCase )}.""" ) # get prompt text embeddings _snake_case : List[Any] = self.tokenizer( UpperCamelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) _snake_case : Tuple = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _snake_case : List[Any] = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) _snake_case : str = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: _snake_case : Tuple = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method _snake_case , _snake_case , _snake_case : str = text_embeddings.shape _snake_case : List[Any] = text_embeddings.repeat(1 , UpperCamelCase , 1 ) _snake_case : int = text_embeddings.view(bs_embed * num_images_per_prompt , UpperCamelCase , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. _snake_case : Dict = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: _snake_case : List[str] if negative_prompt is None: _snake_case : str = [''] elif type(UpperCamelCase ) is not type(UpperCamelCase ): raise TypeError( f"""`negative_prompt` should be the same type to `prompt`, but got {type(UpperCamelCase )} !=""" f""" {type(UpperCamelCase )}.""" ) elif isinstance(UpperCamelCase , UpperCamelCase ): _snake_case : Optional[int] = [negative_prompt] elif batch_size != len(UpperCamelCase ): raise ValueError( f"""`negative_prompt`: {negative_prompt} has batch size {len(UpperCamelCase )}, but `prompt`:""" f""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" ' the batch size of `prompt`.' ) else: _snake_case : str = negative_prompt _snake_case : List[Any] = text_input_ids.shape[-1] _snake_case : List[Any] = self.tokenizer( UpperCamelCase , padding='max_length' , max_length=UpperCamelCase , truncation=UpperCamelCase , return_tensors='pt' , ) _snake_case : Optional[int] = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _snake_case : Optional[Any] = uncond_embeddings.shape[1] _snake_case : List[str] = uncond_embeddings.repeat(UpperCamelCase , UpperCamelCase , 1 ) _snake_case : str = uncond_embeddings.view(batch_size * num_images_per_prompt , UpperCamelCase , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _snake_case : Any = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. _snake_case : Optional[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) _snake_case : List[Any] = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) _snake_case : List[Any] = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps _snake_case : Any = torch.randn( UpperCamelCase , generator=UpperCamelCase , device='cpu' , dtype=UpperCamelCase ).to(self.device ) _snake_case : List[str] = torch.randn(UpperCamelCase , generator=UpperCamelCase , device='cpu' , dtype=UpperCamelCase ).to( self.device ) else: _snake_case : str = torch.randn( UpperCamelCase , generator=UpperCamelCase , device=self.device , dtype=UpperCamelCase ) _snake_case : List[str] = torch.randn(UpperCamelCase , generator=UpperCamelCase , device=self.device , dtype=UpperCamelCase ) else: if latents_reference.shape != latents_shape: raise ValueError(f"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) _snake_case : Optional[Any] = latents_reference.to(self.device ) _snake_case : Optional[Any] = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images _snake_case : int = (latents_shape[3] - latents_shape_reference[3]) // 2 _snake_case : List[str] = (latents_shape[2] - latents_shape_reference[2]) // 2 _snake_case : List[Any] = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx _snake_case : Tuple = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy _snake_case : Tuple = 0 if dx < 0 else dx _snake_case : Optional[int] = 0 if dy < 0 else dy _snake_case : Union[str, Any] = max(-dx , 0 ) _snake_case : List[str] = max(-dy , 0 ) # import pdb # pdb.set_trace() _snake_case : Tuple = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(UpperCamelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand _snake_case : Union[str, Any] = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _snake_case : Optional[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] _snake_case : List[str] = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _snake_case : str = {} if accepts_eta: _snake_case : List[str] = eta for i, t in enumerate(self.progress_bar(UpperCamelCase ) ): # expand the latents if we are doing classifier free guidance _snake_case : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _snake_case : Union[str, Any] = self.scheduler.scale_model_input(UpperCamelCase , UpperCamelCase ) # predict the noise residual _snake_case : Optional[int] = self.unet(UpperCamelCase , UpperCamelCase , encoder_hidden_states=UpperCamelCase ).sample # perform guidance if do_classifier_free_guidance: _snake_case , _snake_case : Union[str, Any] = noise_pred.chunk(2 ) _snake_case : str = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 _snake_case : Optional[int] = self.scheduler.step(UpperCamelCase , UpperCamelCase , UpperCamelCase , **UpperCamelCase ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCamelCase , UpperCamelCase , UpperCamelCase ) _snake_case : List[Any] = 1 / 0.1_82_15 * latents _snake_case : Any = self.vae.decode(UpperCamelCase ).sample _snake_case : Any = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 _snake_case : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: _snake_case : Tuple = self.feature_extractor(self.numpy_to_pil(UpperCamelCase ) , return_tensors='pt' ).to( self.device ) _snake_case , _snake_case : Optional[int] = self.safety_checker( images=UpperCamelCase , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: _snake_case : Union[str, Any] = None if output_type == "pil": _snake_case : Any = self.numpy_to_pil(UpperCamelCase ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=UpperCamelCase , nsfw_content_detected=UpperCamelCase )
669
# Function to print upper half of diamond (pyramid) def lowerCamelCase_ ( lowerCAmelCase: Optional[Any] )-> List[str]: for i in range(0 , lowerCAmelCase ): for _ in range(0 , n - i - 1 ): # printing spaces print(' ' , end='' ) for _ in range(0 , i + 1 ): # printing stars print('* ' , end='' ) print() def lowerCamelCase_ ( lowerCAmelCase: Optional[int] )-> List[Any]: for i in range(lowerCAmelCase , 0 , -1 ): for _ in range(lowerCAmelCase , 0 , -1 ): # printing stars print('* ' , end='' ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(' ' , end='' ) def lowerCamelCase_ ( lowerCAmelCase: Tuple )-> int: if n <= 0: print(' ... .... nothing printing :(' ) return floyd(lowerCAmelCase ) # upper half reverse_floyd(lowerCAmelCase ) # lower half if __name__ == "__main__": print(r"""| /\ | |- | |- |--| |\ /| |-""") print(r"""|/ \| |- |_ |_ |__| | \/ | |_""") lowerCAmelCase_ = 1 while K: lowerCAmelCase_ = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) lowerCAmelCase_ = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
669
1
def __lowerCamelCase ( lowerCamelCase__ : list[int] , lowerCamelCase__ : list[int] ): '''simple docstring''' if not len(lowerCamelCase__ ) == len(lowerCamelCase__ ) == 3: raise ValueError("""Please enter a valid equation.""" ) if equationa[0] == equationa[1] == equationa[0] == equationa[1] == 0: raise ValueError("""Both a & b of two equations can't be zero.""" ) # Extract the coefficients lowerCamelCase , lowerCamelCase , lowerCamelCase = equationa lowerCamelCase , lowerCamelCase , lowerCamelCase = equationa # Calculate the determinants of the matrices lowerCamelCase = aa * ba - aa * ba lowerCamelCase = ca * ba - ca * ba lowerCamelCase = aa * ca - aa * ca # Check if the system of linear equations has a solution (using Cramer's rule) if determinant == 0: if determinant_x == determinant_y == 0: raise ValueError("""Infinite solutions. (Consistent system)""" ) else: raise ValueError("""No solution. (Inconsistent system)""" ) else: if determinant_x == determinant_y == 0: # Trivial solution (Inconsistent system) return (0.0, 0.0) else: lowerCamelCase = determinant_x / determinant lowerCamelCase = determinant_y / determinant # Non-Trivial Solution (Consistent system) return (x, y)
457
from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging UpperCAmelCase : Any = logging.get_logger(__name__) class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : List[Any] = ["audio_values", "audio_mask"] def __init__( self , A=20_48 , A=1 , A=[16, 16] , A=1_28 , A=4_41_00 , A=86 , A=20_48 , A=0.0 , **A , ) -> Dict: '''simple docstring''' super().__init__( feature_size=A , sampling_rate=A , padding_value=A , **A , ) lowerCamelCase = spectrogram_length lowerCamelCase = num_channels lowerCamelCase = patch_size lowerCamelCase = feature_size // self.patch_size[1] lowerCamelCase = n_fft lowerCamelCase = sampling_rate // hop_length_to_sampling_rate lowerCamelCase = sampling_rate lowerCamelCase = padding_value lowerCamelCase = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=A , min_frequency=0.0 , max_frequency=22050.0 , sampling_rate=A , norm="""slaney""" , mel_scale="""slaney""" , ).T def __A ( self , A ) -> np.ndarray: '''simple docstring''' lowerCamelCase = spectrogram( A , window_function(self.n_fft , """hann""" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters.T , log_mel="""dB""" , db_range=80.0 , ) lowerCamelCase = log_spec[:, :-1] lowerCamelCase = log_spec - 20.0 lowerCamelCase = np.clip(log_spec / 40.0 , -2.0 , 0.0 ) + 1.0 return log_spec def __call__( self , A , A = None , A = True , A = None , A = False , A = False , **A , ) -> BatchFeature: '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( """This feature extractor is set to support sampling rate""" F' of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled' F' with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) lowerCamelCase = isinstance(A , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowerCamelCase = is_batched_numpy or ( isinstance(A , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCamelCase = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(A , np.ndarray ): lowerCamelCase = np.asarray(A , dtype=np.floataa ) elif isinstance(A , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCamelCase = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCamelCase = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis lowerCamelCase = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] , A ): lowerCamelCase = [np.asarray(A , dtype=np.floataa ) for feature in audio_features] # Create audio attention mask lowerCamelCase = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: lowerCamelCase = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] lowerCamelCase = np.array(A ).astype(np.floataa ) # convert into correct format for padding lowerCamelCase = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch lowerCamelCase = np.ones([len(A ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) lowerCamelCase = padded_audio_features * self.padding_value for i in range(len(A ) ): lowerCamelCase = audio_features[i] lowerCamelCase = feature # return as BatchFeature if return_attention_mask: lowerCamelCase = {"""audio_values""": padded_audio_features, """audio_mask""": audio_mask} else: lowerCamelCase = {"""audio_values""": padded_audio_features} lowerCamelCase = BatchFeature(data=A , tensor_type=A ) return encoded_inputs
457
1
'''simple docstring''' import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class _a ( __a ): """simple docstring""" def lowerCamelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowercase_ , """tf_padding""" ) ) self.parent.assertTrue(hasattr(lowercase_ , """depth_multiplier""" ) ) class _a : """simple docstring""" def __init__( self : str , lowercase_ : Union[str, Any] , lowercase_ : List[str]=13 , lowercase_ : int=3 , lowercase_ : Optional[Any]=32 , lowercase_ : Optional[int]=0.2_5 , lowercase_ : str=8 , lowercase_ : str=8 , lowercase_ : Tuple=6 , lowercase_ : str=32 , lowercase_ : Optional[Any]=True , lowercase_ : Any=True , lowercase_ : Tuple=True , lowercase_ : str="relu6" , lowercase_ : Any=1_280 , lowercase_ : Optional[Any]=0.1 , lowercase_ : Any=0.0_2 , lowercase_ : str=True , lowercase_ : Optional[Any]=True , lowercase_ : str=10 , lowercase_ : Union[str, Any]=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = num_channels lowercase_ = image_size lowercase_ = depth_multiplier lowercase_ = depth_divisible_by lowercase_ = min_depth lowercase_ = expand_ratio lowercase_ = tf_padding lowercase_ = output_stride lowercase_ = first_layer_is_expansion lowercase_ = finegrained_output lowercase_ = hidden_act lowercase_ = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) lowercase_ = classifier_dropout_prob lowercase_ = use_labels lowercase_ = is_training lowercase_ = num_labels lowercase_ = initializer_range lowercase_ = scope def lowerCamelCase__ ( self : int ): '''simple docstring''' lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase_ = self.get_config() return config, pixel_values, labels, pixel_labels def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : Any , lowercase_ : List[str] , lowercase_ : int , lowercase_ : Any , lowercase_ : Optional[Any] ): '''simple docstring''' lowercase_ = MobileNetVaModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ = model(lowercase_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def lowerCamelCase__ ( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] ): '''simple docstring''' lowercase_ = self.num_labels lowercase_ = MobileNetVaForImageClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : int , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : Union[str, Any] ): '''simple docstring''' lowercase_ = self.num_labels lowercase_ = MobileNetVaForSemanticSegmentation(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ = model(lowercase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowercase_ = model(lowercase_ , labels=lowercase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _a ( __a , __a , unittest.TestCase ): """simple docstring""" A_ = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) A_ = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) A_ = False A_ = False A_ = False A_ = False def lowerCamelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = MobileNetVaModelTester(self ) lowercase_ = MobileNetVaConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def lowerCamelCase__ ( self : str ): '''simple docstring''' pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' pass def lowerCamelCase__ ( self : Dict ): '''simple docstring''' lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(lowercase_ ) lowercase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowercase_ ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Tuple ): lowercase_ = model_class(lowercase_ ) model.to(lowercase_ ) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(lowercase_ , lowercase_ ) ) lowercase_ = outputs.hidden_states lowercase_ = 16 self.assertEqual(len(lowercase_ ) , lowercase_ ) lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True check_hidden_states_output(lowercase_ , lowercase_ , lowercase_ ) def lowerCamelCase__ ( self : Tuple ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_ ) def lowerCamelCase__ ( self : int ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowercase_ ) @slow def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = MobileNetVaModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def A_ ( ) ->List[Any]: lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class _a ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(lowercase_ ) lowercase_ = self.default_image_processor lowercase_ = prepare_img() lowercase_ = image_processor(images=lowercase_ , return_tensors="""pt""" ).to(lowercase_ ) # forward pass with torch.no_grad(): lowercase_ = model(**lowercase_ ) # verify the logits lowercase_ = torch.Size((1, 1_001) ) self.assertEqual(outputs.logits.shape , lowercase_ ) lowercase_ = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4 ) ) @slow def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) lowercase_ = model.to(lowercase_ ) lowercase_ = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) lowercase_ = prepare_img() lowercase_ = image_processor(images=lowercase_ , return_tensors="""pt""" ).to(lowercase_ ) # forward pass with torch.no_grad(): lowercase_ = model(**lowercase_ ) lowercase_ = outputs.logits # verify the logits lowercase_ = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , lowercase_ ) lowercase_ = torch.tensor( [ [[17.5_790, 17.7_581, 18.3_355], [18.3_257, 18.4_230, 18.8_973], [18.6_169, 18.8_650, 19.2_187]], [[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]], [[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]], ] , device=lowercase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , lowercase_ , atol=1e-4 ) )
703
'''simple docstring''' import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class _a : """simple docstring""" def __init__( self : Dict , lowercase_ : List[Any] , lowercase_ : Dict=13 , lowercase_ : int=7 , lowercase_ : Optional[Any]=True , lowercase_ : str=True , lowercase_ : List[str]=False , lowercase_ : List[str]=True , lowercase_ : Optional[Any]=99 , lowercase_ : int=64 , lowercase_ : Union[str, Any]=5 , lowercase_ : str=4 , lowercase_ : Any=64 , lowercase_ : str="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : List[str]=0.1 , lowercase_ : Dict=512 , lowercase_ : Any=16 , lowercase_ : List[str]=2 , lowercase_ : int=0.0_2 , lowercase_ : List[str]=3 , lowercase_ : Tuple=4 , lowercase_ : Union[str, Any]=None , ): '''simple docstring''' lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_input_mask lowercase_ = use_token_type_ids lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope def lowerCamelCase__ ( self : Any ): '''simple docstring''' return MPNetConfig.from_pretrained("""microsoft/mpnet-base""" ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Tuple , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : List[str] ): '''simple docstring''' lowercase_ = MPNetModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ = model(lowercase_ , lowercase_ ) lowercase_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCamelCase__ ( self : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Optional[int] , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any] ): '''simple docstring''' lowercase_ = MPNetForQuestionAnswering(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ = model( lowercase_ , attention_mask=lowercase_ , start_positions=lowercase_ , end_positions=lowercase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Any , lowercase_ : int , lowercase_ : Optional[int] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Union[str, Any] ): '''simple docstring''' lowercase_ = self.num_labels lowercase_ = MPNetForSequenceClassification(lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : Union[str, Any] , lowercase_ : Any , lowercase_ : Any , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : Optional[Any] ): '''simple docstring''' lowercase_ = self.num_choices lowercase_ = MPNetForMultipleChoice(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase_ = model( lowercase_ , attention_mask=lowercase_ , labels=lowercase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : Tuple , lowercase_ : Optional[int] , lowercase_ : Any , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] ): '''simple docstring''' lowercase_ = self.num_labels lowercase_ = MPNetForTokenClassification(config=lowercase_ ) model.to(lowercase_ ) model.eval() lowercase_ = model(lowercase_ , attention_mask=lowercase_ , labels=lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ = self.prepare_config_and_inputs() ((lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_) , (lowercase_)) = config_and_inputs lowercase_ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _a ( __a , __a , unittest.TestCase ): """simple docstring""" A_ = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) A_ = ( { '''feature-extraction''': MPNetModel, '''fill-mask''': MPNetForMaskedLM, '''question-answering''': MPNetForQuestionAnswering, '''text-classification''': MPNetForSequenceClassification, '''token-classification''': MPNetForTokenClassification, '''zero-shot''': MPNetForSequenceClassification, } if is_torch_available() else {} ) A_ = False A_ = True def lowerCamelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ = MPNetModelTester(self ) lowercase_ = ConfigTester(self , config_class=lowercase_ , hidden_size=37 ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*lowercase_ ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*lowercase_ ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*lowercase_ ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*lowercase_ ) def lowerCamelCase__ ( self : str ): '''simple docstring''' lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*lowercase_ ) @require_torch class _a ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self : str ): '''simple docstring''' lowercase_ = MPNetModel.from_pretrained("""microsoft/mpnet-base""" ) lowercase_ = torch.tensor([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) lowercase_ = model(lowercase_ )[0] lowercase_ = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , lowercase_ ) lowercase_ = torch.tensor( [[[-0.0_5_5_0, 0.1_9_4_3, -0.0_7_4_0], [-0.0_5_6_2, 0.2_2_1_1, -0.0_5_7_9], [-0.0_4_3_7, 0.3_3_3_7, -0.0_6_4_1]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase_ , atol=1e-4 ) )
603
0
def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ) -> Any: SCREAMING_SNAKE_CASE_ = [1] for i in range(2 , __UpperCAmelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = list(range(__UpperCAmelCase ) ) # Find permutation while factorials: SCREAMING_SNAKE_CASE_ = factorials.pop() SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = divmod(__UpperCAmelCase , __UpperCAmelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
31
"""simple docstring""" from __future__ import annotations from statistics import mean def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes __lowerCAmelCase = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] __lowerCAmelCase = [] __lowerCAmelCase = 0 __lowerCAmelCase = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: __lowerCAmelCase = [] __lowerCAmelCase = -1 for i in range(_lowerCAmelCase ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: __lowerCAmelCase = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: __lowerCAmelCase = i total_time += burst_time[target_process] completed += 1 __lowerCAmelCase = 0 __lowerCAmelCase = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def lowercase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): __lowerCAmelCase = [0] * no_of_processes for i in range(_lowerCAmelCase ): __lowerCAmelCase = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print('''[TEST CASE 01]''') SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = [2, 5, 3, 7] SCREAMING_SNAKE_CASE_ = [0, 0, 0, 0] SCREAMING_SNAKE_CASE_ = calculate_waitingtime(arrival_time, burst_time, no_of_processes) SCREAMING_SNAKE_CASE_ = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print('''PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time''') for i, process_id in enumerate(list(range(1, 5))): print( F"{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t" F"{waiting_time[i]}\t\t\t\t{turn_around_time[i]}" ) print(F"\nAverage waiting time = {mean(waiting_time):.5f}") print(F"Average turnaround time = {mean(turn_around_time):.5f}")
465
0
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : int = 1_00 ): '''simple docstring''' lowerCAmelCase = (n * (n + 1) // 2) ** 2 lowerCAmelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
393
"""simple docstring""" import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) SCREAMING_SNAKE_CASE__ = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') SCREAMING_SNAKE_CASE__ = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) SCREAMING_SNAKE_CASE__ = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) SCREAMING_SNAKE_CASE__ = train_datagen.flow_from_directory( "dataset/training_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) SCREAMING_SNAKE_CASE__ = test_datagen.flow_from_directory( "dataset/test_set", target_size=(64, 64), batch_size=32, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions SCREAMING_SNAKE_CASE__ = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(64, 64) ) SCREAMING_SNAKE_CASE__ = tf.keras.preprocessing.image.img_to_array(test_image) SCREAMING_SNAKE_CASE__ = np.expand_dims(test_image, axis=0) SCREAMING_SNAKE_CASE__ = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: SCREAMING_SNAKE_CASE__ = "Normal" if result[0][0] == 1: SCREAMING_SNAKE_CASE__ = "Abnormality detected"
393
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''microsoft/speecht5_tts''' snake_case_ = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) snake_case_ = '''text_reader''' snake_case_ = SpeechTaProcessor snake_case_ = SpeechTaForTextToSpeech snake_case_ = SpeechTaHifiGan snake_case_ = ['''text'''] snake_case_ = ['''audio'''] def lowercase_ ( self ) -> Dict: '''simple docstring''' if self.post_processor is None: __lowerCamelCase = 'microsoft/speecht5_hifigan' super().setup() def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=None ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.pre_processor(text=lowerCamelCase__ , return_tensors='pt' , truncation=lowerCamelCase__ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError('Datasets needs to be installed if not passing speaker embeddings.' ) __lowerCamelCase = load_dataset('Matthijs/cmu-arctic-xvectors' , split='validation' ) __lowerCamelCase = torch.tensor(embeddings_dataset[7_305]['xvector'] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' with torch.no_grad(): return self.model.generate_speech(**lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' with torch.no_grad(): return self.post_processor(lowerCamelCase__ ).cpu().detach()
469
from string import ascii_uppercase __A = {str(ord(c) - 55): c for c in ascii_uppercase} def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> str: """simple docstring""" if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('int() can\'t convert non-string with explicit base' ) if num < 0: raise ValueError('parameter must be positive int' ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('\'str\' object cannot be interpreted as an integer' ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('\'float\' object cannot be interpreted as an integer' ) if base in (0, 1): raise ValueError('base must be >= 2' ) if base > 36: raise ValueError('base must be <= 36' ) __lowerCamelCase = '' __lowerCamelCase = 0 __lowerCamelCase = 0 while div != 1: __lowerCamelCase , __lowerCamelCase = divmod(UpperCamelCase__ , UpperCamelCase__ ) if base >= 11 and 9 < mod < 36: __lowerCamelCase = ALPHABET_VALUES[str(UpperCamelCase__ )] else: __lowerCamelCase = str(UpperCamelCase__ ) new_value += actual_value __lowerCamelCase = num // base __lowerCamelCase = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(UpperCamelCase__ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(10_00): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
469
1
def lowerCAmelCase_ ( __UpperCAmelCase: int ) -> bool: if p < 2: raise ValueError('''p should not be less than 2!''' ) elif p == 2: return True UpperCamelCase__ : List[str] = 4 UpperCamelCase__ : Optional[int] = (1 << p) - 1 for _ in range(p - 2 ): UpperCamelCase__ : List[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
713
def lowerCAmelCase_ ( __UpperCAmelCase: dict ) -> set: UpperCamelCase__ : int = set() # edges = list of graph's edges UpperCamelCase__ : str = get_edges(__UpperCAmelCase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: UpperCamelCase__ ,UpperCamelCase__ : List[Any] = edges.pop() chosen_vertices.add(__UpperCAmelCase ) chosen_vertices.add(__UpperCAmelCase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(__UpperCAmelCase ) return chosen_vertices def lowerCAmelCase_ ( __UpperCAmelCase: dict ) -> set: UpperCamelCase__ : Optional[int] = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
369
0
import logging from transformers import PretrainedConfig _snake_case : List[str] = logging.getLogger(__name__) _snake_case : Union[str, Any] = { 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """bertabs""" def __init__( self : List[str] , lowerCAmelCase_ : List[Any]=3_0_5_2_2 , lowerCAmelCase_ : List[Any]=5_1_2 , lowerCAmelCase_ : str=6 , lowerCAmelCase_ : Union[str, Any]=5_1_2 , lowerCAmelCase_ : int=8 , lowerCAmelCase_ : List[str]=5_1_2 , lowerCAmelCase_ : Tuple=0.2 , lowerCAmelCase_ : Dict=6 , lowerCAmelCase_ : Dict=7_6_8 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Optional[Any]=2_0_4_8 , lowerCAmelCase_ : int=0.2 , **lowerCAmelCase_ : Optional[Any] , ) -> Optional[Any]: super().__init__(**lowerCAmelCase_ ) __lowerCAmelCase = vocab_size __lowerCAmelCase = max_pos __lowerCAmelCase = enc_layers __lowerCAmelCase = enc_hidden_size __lowerCAmelCase = enc_heads __lowerCAmelCase = enc_ff_size __lowerCAmelCase = enc_dropout __lowerCAmelCase = dec_layers __lowerCAmelCase = dec_hidden_size __lowerCAmelCase = dec_heads __lowerCAmelCase = dec_ff_size __lowerCAmelCase = dec_dropout
53
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A : int = (DDPMScheduler,) def UpperCamelCase__ ( self : Union[str, Any] , **lowerCAmelCase__ : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = { """num_train_timesteps""": 1_0_0_0, """beta_start""": 0.00_01, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**lowerCAmelCase__ ) return config def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def UpperCamelCase__ ( self : int ): """simple docstring""" for beta_start, beta_end in zip([0.00_01, 0.0_01, 0.01, 0.1] , [0.0_02, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def UpperCamelCase__ ( self : Any ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=lowerCAmelCase__ ) def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase__ ) def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=lowerCAmelCase__ , prediction_type=lowerCAmelCase__ , sample_max_value=lowerCAmelCase__ , ) def UpperCamelCase__ ( self : int ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def UpperCamelCase__ ( self : Dict ): """simple docstring""" for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=lowerCAmelCase__ ) def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**lowerCAmelCase__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_09_79 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1E-5 def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = len(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_model() __SCREAMING_SNAKE_CASE : Dict = self.dummy_sample_deter __SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase__ ) ): # 1. predict noise residual __SCREAMING_SNAKE_CASE : Optional[int] = model(lowerCAmelCase__ , lowerCAmelCase__ ) # 2. predict previous mean of sample x_t-1 __SCREAMING_SNAKE_CASE : int = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __SCREAMING_SNAKE_CASE : List[Any] = pred_prev_sample __SCREAMING_SNAKE_CASE : Optional[int] = torch.sum(torch.abs(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 2_58.96_06 ) < 1E-2 assert abs(result_mean.item() - 0.33_72 ) < 1E-3 def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config(prediction_type="""v_prediction""" ) __SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = len(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = self.dummy_model() __SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_sample_deter __SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) for t in reversed(range(lowerCAmelCase__ ) ): # 1. predict noise residual __SCREAMING_SNAKE_CASE : Tuple = model(lowerCAmelCase__ , lowerCAmelCase__ ) # 2. predict previous mean of sample x_t-1 __SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance __SCREAMING_SNAKE_CASE : Optional[int] = pred_prev_sample __SCREAMING_SNAKE_CASE : str = torch.sum(torch.abs(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : List[str] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 2_02.02_96 ) < 1E-2 assert abs(result_mean.item() - 0.26_31 ) < 1E-3 def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : Optional[Any] = scheduler_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.timesteps for i, timestep in enumerate(lowerCAmelCase__ ): if i == len(lowerCAmelCase__ ) - 1: __SCREAMING_SNAKE_CASE : List[str] = -1 else: __SCREAMING_SNAKE_CASE : Dict = timesteps[i + 1] __SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler.previous_timestep(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = prev_t.item() self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def UpperCamelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : int = scheduler_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(lowerCAmelCase__ , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=lowerCAmelCase__ ) def UpperCamelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : Union[str, Any] = scheduler_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [1_0_0, 8_7, 5_0, 1, 0] __SCREAMING_SNAKE_CASE : Union[str, Any] = len(lowerCAmelCase__ ) with self.assertRaises(lowerCAmelCase__ , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=lowerCAmelCase__ , timesteps=lowerCAmelCase__ ) def UpperCamelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = self.scheduler_classes[0] __SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config() __SCREAMING_SNAKE_CASE : List[Any] = scheduler_class(**lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = [scheduler.config.num_train_timesteps] with self.assertRaises( lowerCAmelCase__ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=lowerCAmelCase__ )
578
0
import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. _lowercase : int = abspath(join(dirname(__file__), "src")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="ignore", category=FutureWarning) def lowerCamelCase ( UpperCAmelCase__ : Dict ) -> List[Any]: config.addinivalue_line( """markers""" , """is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested""" ) config.addinivalue_line( """markers""" , """is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested""" ) config.addinivalue_line("""markers""" , """is_pipeline_test: mark test to run only when pipelines are tested""" ) config.addinivalue_line("""markers""" , """is_staging_test: mark test to run only in the staging environment""" ) config.addinivalue_line("""markers""" , """accelerate_tests: mark test that require accelerate""" ) config.addinivalue_line("""markers""" , """tool_tests: mark the tool tests that are run on their specific schedule""" ) def lowerCamelCase ( UpperCAmelCase__ : Optional[Any] ) -> Optional[Any]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(SCREAMING_SNAKE_CASE__ ) def lowerCamelCase ( UpperCAmelCase__ : Optional[int] ) -> int: from transformers.testing_utils import pytest_terminal_summary_main lowercase_ : int = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(SCREAMING_SNAKE_CASE__ , id=SCREAMING_SNAKE_CASE__ ) def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Dict ) -> Any: if exitstatus == 5: lowercase_ : List[Any] = 0 # Doctest custom flag to ignore output. _lowercase : Any = doctest.register_optionflag("IGNORE_RESULT") _lowercase : int = doctest.OutputChecker class __magic_name__ ( _UpperCAmelCase): def SCREAMING_SNAKE_CASE_ ( self : Tuple , lowercase_ : Tuple , lowercase_ : str , lowercase_ : Optional[Any] ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowercase__ , lowercase__ , lowercase__ ) _lowercase : Union[str, Any] = CustomOutputChecker _lowercase : Tuple = HfDoctestModule _lowercase : Optional[int] = HfDocTestParser
703
'''simple docstring''' from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge _lowercase : Optional[Any] = [ "Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of the" " final seconds on board Flight 9525. The Germanwings co-pilot says he had a \"previous episode of severe" " depression\" German airline confirms it knew of Andreas Lubitz's depression years before he took control.", "The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal" " accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC's" " founding Rome Statute in January. Israel and the United States opposed the Palestinians' efforts to join the" " body.", "Amnesty International releases its annual report on the death penalty. The report catalogs the use of" " state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the" " world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital" " punishment.", ] _lowercase : List[Any] = [ "Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports ." " Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz" " had informed his Lufthansa training school of an episode of severe depression, airline says .", "Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June ." " Israel and the United States opposed the move, which could open the door to war crimes investigations against" " Israelis .", "Amnesty's annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to" " death . Organization claims that governments around the world are using the threat of terrorism to advance" " executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death" " sentences up by 28% .", ] def lowerCamelCase ( ) -> List[str]: lowercase_ : str = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , bootstrap_aggregation=UpperCAmelCase__ , rouge_keys=["""rouge2""", """rougeL"""] ) assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : int = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , bootstrap_aggregation=UpperCAmelCase__ , rouge_keys=["""rouge2"""] ) assert ( pd.DataFrame(no_aggregation["""rouge2"""] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra["""rouge2"""] ).fmeasure.mean() ) def lowerCamelCase ( ) -> Optional[Any]: lowercase_ : Tuple = """rougeLsum""" lowercase_ : Optional[Any] = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ , rouge_keys=[k] )[k] lowercase_ : Optional[Any] = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ , rouge_keys=[k] )[k] assert score > score_no_sep def lowerCamelCase ( ) -> List[Any]: lowercase_ : Optional[int] = ["""rouge1""", """rouge2""", """rougeL"""] lowercase_ : Tuple = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ , rouge_keys=UpperCAmelCase__ ) lowercase_ : Tuple = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ , rouge_keys=UpperCAmelCase__ ) assert score_sep == score_no_sep def lowerCamelCase ( ) -> Optional[Any]: lowercase_ : Union[str, Any] = [ """Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.""", """Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports .""", ] lowercase_ : List[str] = [ """Margot Frank, died in 1945, a month earlier than previously thought.""", """Prosecutor: \"No videos were used in the crash investigation\" German papers say they saw a cell phone video of""" """ the final seconds on board Flight 9525.""", ] assert calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ ) == calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , newline_sep=UpperCAmelCase__ ) def lowerCamelCase ( ) -> Union[str, Any]: lowercase_ : Optional[Any] = [ """\" \"a person who has such a video needs to immediately give it to the investigators,\" prosecutor says .<n> \"it is a very disturbing scene,\" editor-in-chief of bild online tells \"erin burnett: outfront\" """ ] lowercase_ : List[Any] = [ """ Marseille prosecutor says \"so far no videos were used in the crash investigation\" despite media reports . Journalists at Bild and Paris Match are \"very confident\" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .""" ] lowercase_ : Optional[int] = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , rouge_keys=["""rougeLsum"""] , newline_sep=UpperCAmelCase__ )["""rougeLsum"""] lowercase_ : List[str] = calculate_rouge(UpperCAmelCase__ , UpperCAmelCase__ , rouge_keys=["""rougeLsum"""] )["""rougeLsum"""] assert new_score > prev_score def lowerCamelCase ( ) -> Tuple: lowercase_ : Optional[int] = Path("""examples/seq2seq/test_data/wmt_en_ro""" ) lowercase_ : List[Any] = calculate_rouge_path(data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) ) assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) lowercase_ : Union[str, Any] = calculate_rouge_path( data_dir.joinpath("""test.source""" ) , data_dir.joinpath("""test.target""" ) , bootstrap_aggregation=UpperCAmelCase__ ) assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ )
30
0
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging SCREAMING_SNAKE_CASE__ : Optional[int] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ : int = { 't5-small': 'https://huggingface.co/t5-small/resolve/main/config.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/config.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/config.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/config.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/config.json', } class lowerCAmelCase__ ( UpperCamelCase_ ): a__ : int = """t5""" a__ : Union[str, Any] = ["""past_key_values"""] a__ : Optional[int] = {"""hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : str=3_21_28 , SCREAMING_SNAKE_CASE__ : List[Any]=5_12 , SCREAMING_SNAKE_CASE__ : Optional[int]=64 , SCREAMING_SNAKE_CASE__ : str=20_48 , SCREAMING_SNAKE_CASE__ : Optional[int]=6 , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Any=8 , SCREAMING_SNAKE_CASE__ : Any=32 , SCREAMING_SNAKE_CASE__ : List[Any]=1_28 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Any=1e-6 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1.0 , SCREAMING_SNAKE_CASE__ : Optional[Any]="relu" , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : List[Any]=0 , SCREAMING_SNAKE_CASE__ : str=1 , **SCREAMING_SNAKE_CASE__ : Any , ) -> Optional[Any]: __lowerCamelCase = vocab_size __lowerCamelCase = d_model __lowerCamelCase = d_kv __lowerCamelCase = d_ff __lowerCamelCase = num_layers __lowerCamelCase = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry __lowerCamelCase = num_heads __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = relative_attention_max_distance __lowerCamelCase = dropout_rate __lowerCamelCase = layer_norm_epsilon __lowerCamelCase = initializer_factor __lowerCamelCase = feed_forward_proj __lowerCamelCase = use_cache __lowerCamelCase = self.feed_forward_proj.split('''-''' ) __lowerCamelCase = act_info[-1] __lowerCamelCase = act_info[0] == 'gated' if len(_lowerCamelCase ) > 1 and act_info[0] != "gated" or len(_lowerCamelCase ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": __lowerCamelCase = 'gelu_new' super().__init__( pad_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase , ) class lowerCAmelCase__ ( UpperCamelCase_ ): @property def __A ( self : List[str] ) -> Union[str, Any]: __lowerCamelCase = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: __lowerCamelCase = 'past_encoder_sequence + sequence' __lowerCamelCase = {0: 'batch'} __lowerCamelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: __lowerCamelCase = {0: 'batch', 1: 'decoder_sequence'} __lowerCamelCase = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction='''inputs''' ) return common_inputs @property def __A ( self : str ) -> Optional[Any]: return 13
298
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) lowerCamelCase : List[str] = logging.getLogger(__name__) def lowercase__( A , A ): snake_case__ : int = np.argmax(A , axis=1 ) return np.sum(outputs == labels ) def lowercase__( A ): with open(A , encoding='utf_8' ) as f: snake_case__ : Dict = csv.reader(A ) snake_case__ : int = [] next(A ) # skip the first line for line in tqdm(A ): output.append((' '.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def lowercase__( A , A , A , A , A , A ): snake_case__ : int = [] for dataset in encoded_datasets: snake_case__ : str = len(A ) snake_case__ : Dict = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) snake_case__ : List[str] = np.zeros((n_batch, 2) , dtype=np.intaa ) snake_case__ : Dict = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) snake_case__ : Dict = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(A ): snake_case__ : Optional[Any] = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] snake_case__ : Dict = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] snake_case__ : Optional[int] = with_conta snake_case__ : int = with_conta snake_case__ : Optional[Any] = len(A ) - 1 snake_case__ : str = len(A ) - 1 snake_case__ : Any = with_conta snake_case__ : Any = with_conta snake_case__ : List[str] = mc_label snake_case__ : List[Any] = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(A ) for t in all_inputs ) ) return tensor_datasets def lowercase__( ): snake_case__ : Any = argparse.ArgumentParser() parser.add_argument('--model_name' , type=A , default='openai-gpt' , help='pretrained model name' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_eval' , action='store_true' , help='Whether to run eval on the dev set.' ) parser.add_argument( '--output_dir' , default=A , type=A , required=A , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument('--train_dataset' , type=A , default='' ) parser.add_argument('--eval_dataset' , type=A , default='' ) parser.add_argument('--seed' , type=A , default=4_2 ) parser.add_argument('--num_train_epochs' , type=A , default=3 ) parser.add_argument('--train_batch_size' , type=A , default=8 ) parser.add_argument('--eval_batch_size' , type=A , default=1_6 ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=A , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , type=A , default=1 ) parser.add_argument( '--max_steps' , default=-1 , type=A , help=( 'If > 0: set total number of training steps to perform. Override num_train_epochs.' ) , ) parser.add_argument( '--gradient_accumulation_steps' , type=A , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--learning_rate' , type=A , default=6.25e-5 ) parser.add_argument('--warmup_steps' , default=0 , type=A , help='Linear warmup over warmup_steps.' ) parser.add_argument('--lr_schedule' , type=A , default='warmup_linear' ) parser.add_argument('--weight_decay' , type=A , default=0.01 ) parser.add_argument('--lm_coef' , type=A , default=0.9 ) parser.add_argument('--n_valid' , type=A , default=3_7_4 ) parser.add_argument('--server_ip' , type=A , default='' , help='Can be used for distant debugging.' ) parser.add_argument('--server_port' , type=A , default='' , help='Can be used for distant debugging.' ) snake_case__ : Optional[int] = parser.parse_args() print(A ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print('Waiting for debugger attach' ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=A ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) snake_case__ : Union[str, Any] = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) snake_case__ : int = torch.cuda.device_count() logger.info('device: {}, n_gpu {}'.format(A , A ) ) if not args.do_train and not args.do_eval: raise ValueError('At least one of `do_train` or `do_eval` must be True.' ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset snake_case__ : Tuple = ['_start_', '_delimiter_', '_classify_'] snake_case__ : Any = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(A ) snake_case__ : Tuple = tokenizer.convert_tokens_to_ids(A ) snake_case__ : int = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(A ) ) model.to(A ) # Load and encode the datasets def tokenize_and_encode(A ): if isinstance(A , A ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(A ) ) elif isinstance(A , A ): return obj return [tokenize_and_encode(A ) for o in obj] logger.info('Encoding dataset...' ) snake_case__ : str = load_rocstories_dataset(args.train_dataset ) snake_case__ : List[str] = load_rocstories_dataset(args.eval_dataset ) snake_case__ : Optional[Any] = (train_dataset, eval_dataset) snake_case__ : Any = tokenize_and_encode(A ) # Compute the max input length for the Transformer snake_case__ : Any = model.config.n_positions // 2 - 2 snake_case__ : List[Any] = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) snake_case__ : int = min(A , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders snake_case__ : List[Any] = pre_process_datasets(A , A , A , *A ) snake_case__ , snake_case__ : Optional[Any] = tensor_datasets[0], tensor_datasets[1] snake_case__ : Tuple = TensorDataset(*A ) snake_case__ : List[str] = RandomSampler(A ) snake_case__ : int = DataLoader(A , sampler=A , batch_size=args.train_batch_size ) snake_case__ : str = TensorDataset(*A ) snake_case__ : Dict = SequentialSampler(A ) snake_case__ : List[str] = DataLoader(A , sampler=A , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: snake_case__ : Union[str, Any] = args.max_steps snake_case__ : Dict = args.max_steps // (len(A ) // args.gradient_accumulation_steps) + 1 else: snake_case__ : int = len(A ) // args.gradient_accumulation_steps * args.num_train_epochs snake_case__ : Tuple = list(model.named_parameters() ) snake_case__ : List[Any] = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] snake_case__ : Dict = [ { 'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], 'weight_decay': args.weight_decay, }, {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], 'weight_decay': 0.0}, ] snake_case__ : int = AdamW(A , lr=args.learning_rate , eps=args.adam_epsilon ) snake_case__ : Tuple = get_linear_schedule_with_warmup( A , num_warmup_steps=args.warmup_steps , num_training_steps=A ) if args.do_train: snake_case__ , snake_case__ , snake_case__ : Tuple = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc='Epoch' ): snake_case__ : str = 0 snake_case__ : Dict = 0 snake_case__ : Dict = tqdm(A , desc='Training' ) for step, batch in enumerate(A ): snake_case__ : List[str] = tuple(t.to(A ) for t in batch ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[int] = batch snake_case__ : int = model(A , mc_token_ids=A , lm_labels=A , mc_labels=A ) snake_case__ : Tuple = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() snake_case__ : Union[str, Any] = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 snake_case__ : Optional[int] = 'Training loss: {:.2e} lr: {:.2e}'.format(A , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer snake_case__ : List[Any] = model.module if hasattr(A , 'module' ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` snake_case__ : Union[str, Any] = os.path.join(args.output_dir , A ) snake_case__ : List[str] = os.path.join(args.output_dir , A ) torch.save(model_to_save.state_dict() , A ) model_to_save.config.to_json_file(A ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned snake_case__ : Optional[Any] = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) snake_case__ : Optional[Any] = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(A ) if args.do_eval: model.eval() snake_case__ , snake_case__ : int = 0, 0 snake_case__ , snake_case__ : List[Any] = 0, 0 for batch in tqdm(A , desc='Evaluating' ): snake_case__ : Tuple = tuple(t.to(A ) for t in batch ) snake_case__ , snake_case__ , snake_case__ , snake_case__ : List[Any] = batch with torch.no_grad(): snake_case__ , snake_case__ , snake_case__ , snake_case__ : Union[str, Any] = model( A , mc_token_ids=A , lm_labels=A , mc_labels=A ) snake_case__ : Union[str, Any] = mc_logits.detach().cpu().numpy() snake_case__ : List[Any] = mc_labels.to('cpu' ).numpy() snake_case__ : Optional[int] = accuracy(A , A ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 snake_case__ : str = eval_loss / nb_eval_steps snake_case__ : Any = eval_accuracy / nb_eval_examples snake_case__ : Tuple = tr_loss / nb_tr_steps if args.do_train else None snake_case__ : Optional[int] = {'eval_loss': eval_loss, 'eval_accuracy': eval_accuracy, 'train_loss': train_loss} snake_case__ : Optional[int] = os.path.join(args.output_dir , 'eval_results.txt' ) with open(A , 'w' ) as writer: logger.info('***** Eval results *****' ) for key in sorted(result.keys() ): logger.info(' %s = %s' , A , str(result[key] ) ) writer.write('%s = %s\n' % (key, str(result[key] )) ) if __name__ == "__main__": main()
170
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer _UpperCAmelCase : Optional[int] = logging.get_logger(__name__) _UpperCAmelCase : Any = {'''vocab_file''': '''vocab.txt'''} _UpperCAmelCase : Dict = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } _UpperCAmelCase : List[Any] = { '''YituTech/conv-bert-base''': 5_12, '''YituTech/conv-bert-medium-small''': 5_12, '''YituTech/conv-bert-small''': 5_12, } _UpperCAmelCase : Union[str, Any] = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = VOCAB_FILES_NAMES UpperCamelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ = PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ = ConvBertTokenizer def __init__( self , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_="[UNK]" , snake_case_="[SEP]" , snake_case_="[PAD]" , snake_case_="[CLS]" , snake_case_="[MASK]" , snake_case_=True , snake_case_=None , **snake_case_ , ): super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , **snake_case_ , ) lowercase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , snake_case_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , snake_case_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , snake_case_ ) != tokenize_chinese_chars ): lowercase =getattr(snake_case_ , normalizer_state.pop('''type''' ) ) lowercase =do_lower_case lowercase =strip_accents lowercase =tokenize_chinese_chars lowercase =normalizer_class(**snake_case_ ) lowercase =do_lower_case def _A( self , snake_case_ , snake_case_=None ): lowercase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _A( self , snake_case_ , snake_case_ = None ): lowercase =[self.sep_token_id] lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _A( self , snake_case_ , snake_case_ = None ): lowercase =self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
702
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCAmelCase : List[str] = logging.get_logger(__name__) _UpperCAmelCase : str = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'pix2struct_text_model' UpperCamelCase__ = ['past_key_values'] UpperCamelCase__ = { 'hidden_size': 'hidden_size', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , snake_case_=5_02_44 , snake_case_=7_68 , snake_case_=64 , snake_case_=20_48 , snake_case_=12 , snake_case_=12 , snake_case_=32 , snake_case_=1_28 , snake_case_=0.1 , snake_case_=1E-6 , snake_case_=1.0 , snake_case_="gelu_new" , snake_case_=0 , snake_case_=False , snake_case_=0 , snake_case_=1 , snake_case_=False , snake_case_=True , **snake_case_ , ): lowercase =vocab_size lowercase =hidden_size lowercase =d_kv lowercase =d_ff lowercase =num_layers lowercase =num_heads lowercase =relative_attention_num_buckets lowercase =relative_attention_max_distance lowercase =dropout_rate lowercase =layer_norm_epsilon lowercase =initializer_factor lowercase =use_cache lowercase =eos_token_id lowercase =decoder_start_token_id # for backwards compatibility lowercase =dense_act_fn super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , tie_word_embeddings=snake_case_ , is_decoder=snake_case_ , **snake_case_ , ) @classmethod def _A( cls , snake_case_ , **snake_case_ ): cls._set_token_in_kwargs(snake_case_ ) lowercase , lowercase =cls.get_config_dict(snake_case_ , **snake_case_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": lowercase =config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case_ , **snake_case_ ) class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'pix2struct_vision_model' def __init__( self , snake_case_=7_68 , snake_case_=7_68 , snake_case_=20_48 , snake_case_=64 , snake_case_=12 , snake_case_=12 , snake_case_="gelu_new" , snake_case_=1E-6 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=1E-10 , snake_case_=1.0 , snake_case_=40_96 , snake_case_=32 , snake_case_=1_28 , **snake_case_ , ): super().__init__(**snake_case_ ) lowercase =hidden_size lowercase =patch_embed_hidden_size lowercase =d_ff lowercase =dropout_rate lowercase =num_hidden_layers lowercase =num_attention_heads lowercase =initializer_range lowercase =initializer_factor lowercase =attention_dropout lowercase =layer_norm_eps lowercase =dense_act_fn lowercase =seq_len lowercase =relative_attention_num_buckets lowercase =relative_attention_max_distance lowercase =d_kv @classmethod def _A( cls , snake_case_ , **snake_case_ ): cls._set_token_in_kwargs(snake_case_ ) lowercase , lowercase =cls.get_config_dict(snake_case_ , **snake_case_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": lowercase =config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case_ , **snake_case_ ) class __magic_name__ ( __SCREAMING_SNAKE_CASE ): UpperCamelCase__ = 'pix2struct' UpperCamelCase__ = True def __init__( self , snake_case_=None , snake_case_=None , snake_case_=1.0 , snake_case_=0.02 , snake_case_=False , snake_case_=False , snake_case_=True , **snake_case_ , ): super().__init__(tie_word_embeddings=snake_case_ , is_encoder_decoder=snake_case_ , **snake_case_ ) if text_config is None: lowercase ={} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: lowercase ={} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) lowercase =PixaStructTextConfig(**snake_case_ ) lowercase =PixaStructVisionConfig(**snake_case_ ) lowercase =self.text_config.decoder_start_token_id lowercase =self.text_config.pad_token_id lowercase =self.text_config.eos_token_id lowercase =initializer_factor lowercase =initializer_range lowercase =self.initializer_range lowercase =self.initializer_range lowercase =is_vqa @classmethod def _A( cls , snake_case_ , snake_case_ , **snake_case_ ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case_ ) def _A( self ): lowercase =copy.deepcopy(self.__dict__ ) lowercase =self.text_config.to_dict() lowercase =self.vision_config.to_dict() lowercase =self.__class__.model_type return output
145
0
'''simple docstring''' import unittest import numpy as np def _snake_case ( _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : np.ndarray , _SCREAMING_SNAKE_CASE : np.ndarray | None = None , ) -> np.ndarray: """simple docstring""" lowerCAmelCase = np.shape(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.shape(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = np.shape(_SCREAMING_SNAKE_CASE ) if shape_a[0] != shape_b[0]: lowerCAmelCase = ( """Expected the same number of rows for A and B. """ f'Instead found A of size {shape_a} and B of size {shape_b}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) if shape_b[1] != shape_c[1]: lowerCAmelCase = ( """Expected the same number of columns for B and C. """ f'Instead found B of size {shape_b} and C of size {shape_c}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = pseudo_inv if a_inv is None: try: lowerCAmelCase = np.linalg.inv(_SCREAMING_SNAKE_CASE ) except np.linalg.LinAlgError: raise ValueError( """Input matrix A is not invertible. Cannot compute Schur complement.""" ) return mat_c - mat_b.T @ a_inv @ mat_b class __snake_case( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ) -> None: lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCAmelCase = np.array([[2, 1], [6, 3]] ) lowerCAmelCase = schur_complement(A_ , A_ , A_ ) lowerCAmelCase = np.block([[a, b], [b.T, c]] ) lowerCAmelCase = np.linalg.det(A_ ) lowerCAmelCase = np.linalg.det(A_ ) lowerCAmelCase = np.linalg.det(A_ ) self.assertAlmostEqual(A_ , det_a * det_s ) def __snake_case ( self ) -> None: lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCAmelCase = np.array([[2, 1], [6, 3]] ) with self.assertRaises(A_ ): schur_complement(A_ , A_ , A_ ) def __snake_case ( self ) -> None: lowerCAmelCase = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) lowerCAmelCase = np.array([[0, 3], [3, 0], [2, 3]] ) lowerCAmelCase = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(A_ ): schur_complement(A_ , A_ , A_ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
433
'''simple docstring''' import re def _snake_case ( _SCREAMING_SNAKE_CASE : str ) -> bool: """simple docstring""" lowerCAmelCase = re.compile( R"""^(?:0|94|\+94|0{2}94)""" R"""7(0|1|2|4|5|6|7|8)""" R"""(-| |)""" R"""\d{7}$""" ) return bool(re.search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": UpperCAmelCase = '0094702343221' print(is_sri_lankan_phone_number(phone))
433
1
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False, False, False @dataclass class __SCREAMING_SNAKE_CASE : snake_case : Optional[int] = None snake_case : bool = True snake_case : bool = True snake_case : Optional[str] = None # Automatically constructed snake_case : ClassVar[str] = "dict" snake_case : ClassVar[Any] = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) snake_case : str = field(default="""Audio""" , init=_a , repr=_a ) def __call__( self ): return self.pa_type def _lowerCamelCase ( self , __lowerCAmelCase ): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""" ) from err if isinstance(__lowerCAmelCase , __lowerCAmelCase ): return {"bytes": None, "path": value} elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCamelCase__ = BytesIO() sf.write(__lowerCAmelCase , value["""array"""] , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""" ) is not None and os.path.isfile(value["""path"""] ): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm""" ): # "PCM" only has raw audio bytes if value.get("""sampling_rate""" ) is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""" ) if value.get("""bytes""" ): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCamelCase__ = np.frombuffer(value["""bytes"""] , dtype=np.intaa ).astype(np.floataa ) / 32767 else: UpperCamelCase__ = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""" ).astype(np.floataa ) / 32767 UpperCamelCase__ = BytesIO(bytes() ) sf.write(__lowerCAmelCase , __lowerCAmelCase , value["""sampling_rate"""] , format="""wav""" ) return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""" )} elif value.get("""bytes""" ) is not None or value.get("""path""" ) is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes""" ), "path": value.get("""path""" )} else: raise ValueError( f"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""" ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase = None ): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""" ) UpperCamelCase__ , UpperCamelCase__ = (value["""path"""], BytesIO(value["""bytes"""] )) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""" ) try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""" ) from err UpperCamelCase__ = xsplitext(__lowerCAmelCase )[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """ ) if file is None: UpperCamelCase__ = token_per_repo_id or {} UpperCamelCase__ = path.split("""::""" )[-1] try: UpperCamelCase__ = string_to_dict(__lowerCAmelCase , config.HUB_DATASETS_URL )["""repo_id"""] UpperCamelCase__ = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCamelCase__ = None with xopen(__lowerCAmelCase , """rb""" , use_auth_token=__lowerCAmelCase ) as f: UpperCamelCase__ , UpperCamelCase__ = sf.read(__lowerCAmelCase ) else: UpperCamelCase__ , UpperCamelCase__ = sf.read(__lowerCAmelCase ) UpperCamelCase__ = array.T if self.mono: UpperCamelCase__ = librosa.to_mono(__lowerCAmelCase ) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCamelCase__ = librosa.resample(__lowerCAmelCase , orig_sr=__lowerCAmelCase , target_sr=self.sampling_rate ) UpperCamelCase__ = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def _lowerCamelCase ( self ): from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""" ) return { "bytes": Value("""binary""" ), "path": Value("""string""" ), } def _lowerCamelCase ( self , __lowerCAmelCase ): if pa.types.is_string(storage.type ): UpperCamelCase__ = pa.array([None] * len(__lowerCAmelCase ) , type=pa.binary() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase__ = pa.array([None] * len(__lowerCAmelCase ) , type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("""array""" ): UpperCamelCase__ = pa.array([Audio().encode_example(__lowerCAmelCase ) if x is not None else None for x in storage.to_pylist()] ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index("""bytes""" ) >= 0: UpperCamelCase__ = storage.field("""bytes""" ) else: UpperCamelCase__ = pa.array([None] * len(__lowerCAmelCase ) , type=pa.binary() ) if storage.type.get_field_index("""path""" ) >= 0: UpperCamelCase__ = storage.field("""path""" ) else: UpperCamelCase__ = pa.array([None] * len(__lowerCAmelCase ) , type=pa.string() ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null() ) return array_cast(__lowerCAmelCase , self.pa_type ) def _lowerCamelCase ( self , __lowerCAmelCase ): @no_op_if_value_is_null def path_to_bytes(__lowerCAmelCase ): with xopen(__lowerCAmelCase , """rb""" ) as f: UpperCamelCase__ = f.read() return bytes_ UpperCamelCase__ = pa.array( [ (path_to_bytes(x["""path"""] ) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCamelCase__ = pa.array( [os.path.basename(__lowerCAmelCase ) if path is not None else None for path in storage.field("""path""" ).to_pylist()] , type=pa.string() , ) UpperCamelCase__ = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null() ) return array_cast(__lowerCAmelCase , self.pa_type )
709
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): snake_case : Any = MODEL_FOR_MASKED_LM_MAPPING snake_case : Dict = TF_MODEL_FOR_MASKED_LM_MAPPING def _lowerCamelCase ( self ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def _lowerCamelCase ( self ): UpperCamelCase__ = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""" ) UpperCamelCase__ = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is grouped""", """score""": 2.1E-05, """token""": 38015, """token_str""": """ grouped"""}, {"""sequence""": """My name is accuser""", """score""": 2.1E-05, """token""": 25506, """token_str""": """ accuser"""}, ] , ) UpperCamelCase__ = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is grouped""", """score""": 2.1E-05, """token""": 38015, """token_str""": """ grouped""", }, { """sequence""": """The largest city in France is accuser""", """score""": 2.1E-05, """token""": 25506, """token_str""": """ accuser""", }, ] , ) UpperCamelCase__ = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Patrick""", """score""": 2E-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 1.9E-05, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def _lowerCamelCase ( self ): UpperCamelCase__ = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""" ) UpperCamelCase__ = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Maul""", """score""": 2.2E-05, """token""": 35676, """token_str""": """ Maul"""}, {"""sequence""": """My name isELS""", """score""": 2.2E-05, """token""": 16416, """token_str""": """ELS"""}, ] , ) UpperCamelCase__ = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=6 ) , [ { """sequence""": """The largest city in France is Maul""", """score""": 2.2E-05, """token""": 35676, """token_str""": """ Maul""", }, {"""sequence""": """The largest city in France isELS""", """score""": 2.2E-05, """token""": 16416, """token_str""": """ELS"""}, ] , ) UpperCamelCase__ = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=6 ) , [ {"""sequence""": """My name is Patrick""", """score""": 2.1E-05, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Te""", """score""": 2E-05, """token""": 2941, """token_str""": """ Te"""}, {"""sequence""": """My name is Clara""", """score""": 2E-05, """token""": 13606, """token_str""": """ Clara"""}, ] , ) UpperCamelCase__ = unmasker("""My name is <mask> <mask>""" , top_k=2 ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=6 ) , [ [ { """score""": 2.2E-05, """token""": 35676, """token_str""": """ Maul""", """sequence""": """<s>My name is Maul<mask></s>""", }, {"""score""": 2.2E-05, """token""": 16416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""}, ], [ { """score""": 2.2E-05, """token""": 35676, """token_str""": """ Maul""", """sequence""": """<s>My name is<mask> Maul</s>""", }, {"""score""": 2.2E-05, """token""": 16416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""}, ], ] , ) @require_torch_gpu def _lowerCamelCase ( self ): UpperCamelCase__ = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""" ) # convert model to fp16 pipe.model.half() UpperCamelCase__ = pipe("""Paris is the [MASK] of France.""" ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) @slow @require_torch def _lowerCamelCase ( self ): UpperCamelCase__ = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""" ) self.run_large_test(__lowerCAmelCase ) @slow @require_tf def _lowerCamelCase ( self ): UpperCamelCase__ = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""" ) self.run_large_test(__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = unmasker("""My name is <mask>""" ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""}, {"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1573, """token_str""": """ Chris"""}, ] , ) UpperCamelCase__ = unmasker("""The largest city in France is <mask>""" ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ { """sequence""": """The largest city in France is Paris""", """score""": 0.251, """token""": 2201, """token_str""": """ Paris""", }, { """sequence""": """The largest city in France is Lyon""", """score""": 0.214, """token""": 12790, """token_str""": """ Lyon""", }, ] , ) UpperCamelCase__ = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3 ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , [ {"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3499, """token_str""": """ Patrick"""}, {"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13606, """token_str""": """ Clara"""}, {"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2941, """token_str""": """ Te"""}, ] , ) @require_torch def _lowerCamelCase ( self ): UpperCamelCase__ = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""" ) UpperCamelCase__ = None UpperCamelCase__ = None self.run_pipeline_test(__lowerCAmelCase , [] ) @require_tf def _lowerCamelCase ( self ): UpperCamelCase__ = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""" ) UpperCamelCase__ = None UpperCamelCase__ = None self.run_pipeline_test(__lowerCAmelCase , [] ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""" ) UpperCamelCase__ = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) UpperCamelCase__ = [ f"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = fill_masker.tokenizer UpperCamelCase__ = fill_masker.model UpperCamelCase__ = fill_masker( f"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( __lowerCAmelCase , [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ] , ) UpperCamelCase__ = fill_masker([f"""This is a {tokenizer.mask_token}"""] ) self.assertEqual( __lowerCAmelCase , [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ] , ) UpperCamelCase__ = fill_masker([f"""This is a {tokenizer.mask_token}""", f"""Another {tokenizer.mask_token} great test."""] ) self.assertEqual( __lowerCAmelCase , [ [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ], [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ], ] , ) with self.assertRaises(__lowerCAmelCase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(__lowerCAmelCase ): fill_masker("""This is""" ) self.run_test_top_k(__lowerCAmelCase , __lowerCAmelCase ) self.run_test_targets(__lowerCAmelCase , __lowerCAmelCase ) self.run_test_top_k_targets(__lowerCAmelCase , __lowerCAmelCase ) self.fill_mask_with_duplicate_targets_and_top_k(__lowerCAmelCase , __lowerCAmelCase ) self.fill_mask_with_multiple_masks(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = tokenizer.get_vocab() UpperCamelCase__ = sorted(vocab.keys() )[:2] # Pipeline argument UpperCamelCase__ = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase , targets=__lowerCAmelCase ) UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( __lowerCAmelCase , [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ] , ) UpperCamelCase__ = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __lowerCAmelCase ) UpperCamelCase__ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__lowerCAmelCase ) ) # Call argument UpperCamelCase__ = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=__lowerCAmelCase ) self.assertEqual( __lowerCAmelCase , [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ] , ) UpperCamelCase__ = {vocab[el] for el in targets} self.assertEqual({el["""token"""] for el in outputs} , __lowerCAmelCase ) UpperCamelCase__ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el["""token_str"""] for el in outputs} , set(__lowerCAmelCase ) ) # Score equivalence UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=__lowerCAmelCase ) UpperCamelCase__ = [top_mask["""token_str"""] for top_mask in outputs] UpperCamelCase__ = [top_mask["""score"""] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__lowerCAmelCase ) == set(__lowerCAmelCase ): UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=__lowerCAmelCase ) UpperCamelCase__ = [top_mask["""score"""] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__lowerCAmelCase ) , nested_simplify(__lowerCAmelCase ) ) # Raises with invalid with self.assertRaises(__lowerCAmelCase ): UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__lowerCAmelCase ): UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets=[""""""] ) with self.assertRaises(__lowerCAmelCase ): UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , targets="""""" ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase , top_k=2 ) UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" ) self.assertEqual( __lowerCAmelCase , [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ] , ) UpperCamelCase__ = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( __lowerCAmelCase , [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ] , ) self.assertEqual(nested_simplify(__lowerCAmelCase ) , nested_simplify(__lowerCAmelCase ) ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = tokenizer.get_vocab() UpperCamelCase__ = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) # top_k=2, ntargets=3 UpperCamelCase__ = sorted(vocab.keys() )[:3] UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=__lowerCAmelCase ) # If we use the most probably targets, and filter differently, we should still # have the same results UpperCamelCase__ = [el["""token_str"""] for el in sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : x["score"] , reverse=__lowerCAmelCase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__lowerCAmelCase ).issubset(__lowerCAmelCase ): UpperCamelCase__ = fill_masker(f"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=__lowerCAmelCase ) # They should yield exactly the same result self.assertEqual(nested_simplify(__lowerCAmelCase ) , nested_simplify(__lowerCAmelCase ) ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) UpperCamelCase__ = tokenizer.get_vocab() # String duplicates + id duplicates UpperCamelCase__ = sorted(vocab.keys() )[:3] UpperCamelCase__ = [targets[0], targets[1], targets[0], targets[2], targets[1]] UpperCamelCase__ = fill_masker(f"""My name is {tokenizer.mask_token}""" , targets=__lowerCAmelCase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__lowerCAmelCase ) , 3 ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) UpperCamelCase__ = fill_masker( f"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 ) self.assertEqual( __lowerCAmelCase , [ [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ], [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ], [ {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, {"""sequence""": ANY(__lowerCAmelCase ), """score""": ANY(__lowerCAmelCase ), """token""": ANY(__lowerCAmelCase ), """token_str""": ANY(__lowerCAmelCase )}, ], ] , )
548
0
'''simple docstring''' from math import isclose, sqrt def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" __magic_name__ : int = point_y / 4 / point_x __magic_name__ : Dict = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) __magic_name__ : Dict = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __magic_name__ : Any = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __magic_name__ : Any = outgoing_gradient**2 + 4 __magic_name__ : List[Any] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __magic_name__ : Union[str, Any] = (point_y - outgoing_gradient * point_x) ** 2 - 100 __magic_name__ : str = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __magic_name__ : Optional[int] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __magic_name__ : Any = x_minus if isclose(UpperCamelCase__ , UpperCamelCase__ ) else x_plus __magic_name__ : Optional[Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _UpperCamelCase ( UpperCamelCase__ = 1.4 , UpperCamelCase__ = -9.6 ): """simple docstring""" __magic_name__ : int = 0 __magic_name__ : float = first_x_coord __magic_name__ : float = first_y_coord __magic_name__ : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): __magic_name__ , __magic_name__ , __magic_name__ : Union[str, Any] = next_point(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f"{solution() = }")
436
'''simple docstring''' import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" __magic_name__ : Optional[Any] = XCLIPTextConfig() # derive patch size from model name __magic_name__ : Tuple = model_name.find("patch" ) __magic_name__ : Dict = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] ) __magic_name__ : Any = XCLIPVisionConfig(patch_size=UpperCamelCase__ , num_frames=UpperCamelCase__ ) if "large" in model_name: __magic_name__ : List[str] = 768 __magic_name__ : Optional[Any] = 3072 __magic_name__ : str = 12 __magic_name__ : Optional[int] = 1024 __magic_name__ : int = 4096 __magic_name__ : Optional[Any] = 16 __magic_name__ : Union[str, Any] = 24 __magic_name__ : Union[str, Any] = 768 __magic_name__ : List[str] = 3072 if model_name == "xclip-large-patch14-16-frames": __magic_name__ : Optional[int] = 336 __magic_name__ : Optional[Any] = XCLIPConfig.from_text_vision_configs(UpperCamelCase__ , UpperCamelCase__ ) if "large" in model_name: __magic_name__ : Any = 768 return config def _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" if name == "token_embedding.weight": __magic_name__ : Any = name.replace("token_embedding.weight" , "text_model.embeddings.token_embedding.weight" ) if name == "positional_embedding": __magic_name__ : Union[str, Any] = name.replace("positional_embedding" , "text_model.embeddings.position_embedding.weight" ) if "ln_1" in name: __magic_name__ : Optional[Any] = name.replace("ln_1" , "layer_norm1" ) if "ln_2" in name: __magic_name__ : Dict = name.replace("ln_2" , "layer_norm2" ) if "c_fc" in name: __magic_name__ : List[Any] = name.replace("c_fc" , "fc1" ) if "c_proj" in name: __magic_name__ : Optional[int] = name.replace("c_proj" , "fc2" ) if name.startswith("transformer.resblocks" ): __magic_name__ : List[str] = name.replace("transformer.resblocks" , "text_model.encoder.layers" ) if "attn.out_proj" in name and "message" not in name: __magic_name__ : Tuple = name.replace("attn.out_proj" , "self_attn.out_proj" ) if "ln_final" in name: __magic_name__ : str = name.replace("ln_final" , "text_model.final_layer_norm" ) # visual encoder if name == "visual.class_embedding": __magic_name__ : Any = name.replace("visual.class_embedding" , "vision_model.embeddings.class_embedding" ) if name == "visual.positional_embedding": __magic_name__ : str = name.replace("visual.positional_embedding" , "vision_model.embeddings.position_embedding.weight" ) if name.startswith("visual.transformer.resblocks" ): __magic_name__ : Any = name.replace("visual.transformer.resblocks" , "vision_model.encoder.layers" ) if "visual.conv1" in name: __magic_name__ : int = name.replace("visual.conv1" , "vision_model.embeddings.patch_embedding" ) if "visual.ln_pre" in name: __magic_name__ : Optional[int] = name.replace("visual.ln_pre" , "vision_model.pre_layernorm" ) if "visual.ln_post" in name: __magic_name__ : Tuple = name.replace("visual.ln_post" , "vision_model.post_layernorm" ) if "visual.proj" in name: __magic_name__ : Optional[Any] = name.replace("visual.proj" , "visual_projection.weight" ) if "text_projection" in name: __magic_name__ : List[str] = name.replace("text_projection" , "text_projection.weight" ) # things on top if "prompts_visual_proj" in name: __magic_name__ : int = name.replace("prompts_visual_proj" , "prompts_visual_projection" ) if "prompts_visual_ln" in name: __magic_name__ : Tuple = name.replace("prompts_visual_ln" , "prompts_visual_layernorm" ) # mit if name == "mit.positional_embedding": __magic_name__ : Union[str, Any] = name.replace("positional" , "position" ) if name.startswith("mit.resblocks" ): __magic_name__ : Dict = name.replace("mit.resblocks" , "mit.encoder.layers" ) # prompts generator if name.startswith("prompts_generator.norm" ): __magic_name__ : Union[str, Any] = name.replace("prompts_generator.norm" , "prompts_generator.layernorm" ) return name def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): """simple docstring""" for key in orig_state_dict.copy().keys(): __magic_name__ : str = orig_state_dict.pop(UpperCamelCase__ ) if "attn.in_proj" in key: __magic_name__ : List[str] = key.split("." ) if key.startswith("visual" ): __magic_name__ : int = key_split[3] __magic_name__ : int = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: __magic_name__ : Union[str, Any] = val[ :dim, : ] __magic_name__ : Optional[Any] = val[ dim : dim * 2, : ] __magic_name__ : Optional[Any] = val[ -dim:, : ] else: __magic_name__ : Optional[int] = val[ :dim ] __magic_name__ : Union[str, Any] = val[ dim : dim * 2 ] __magic_name__ : Optional[Any] = val[ -dim: ] else: if "weight" in key: __magic_name__ : Tuple = val[ :dim, : ] __magic_name__ : Any = val[ dim : dim * 2, : ] __magic_name__ : List[str] = val[ -dim:, : ] else: __magic_name__ : Optional[int] = val[:dim] __magic_name__ : str = val[ dim : dim * 2 ] __magic_name__ : List[str] = val[-dim:] elif key.startswith("mit" ): __magic_name__ : Any = key_split[2] __magic_name__ : Tuple = config.vision_config.mit_hidden_size if "weight" in key: __magic_name__ : str = val[:dim, :] __magic_name__ : str = val[dim : dim * 2, :] __magic_name__ : Union[str, Any] = val[-dim:, :] else: __magic_name__ : Optional[Any] = val[:dim] __magic_name__ : str = val[dim : dim * 2] __magic_name__ : Tuple = val[-dim:] else: __magic_name__ : Union[str, Any] = key_split[2] __magic_name__ : List[str] = config.text_config.hidden_size if "weight" in key: __magic_name__ : Optional[Any] = val[:dim, :] __magic_name__ : Optional[int] = val[ dim : dim * 2, : ] __magic_name__ : Optional[Any] = val[-dim:, :] else: __magic_name__ : int = val[:dim] __magic_name__ : List[Any] = val[ dim : dim * 2 ] __magic_name__ : Union[str, Any] = val[-dim:] else: __magic_name__ : Tuple = rename_key(UpperCamelCase__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: __magic_name__ : Tuple = val.T __magic_name__ : int = val return orig_state_dict def _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" if num_frames == 8: __magic_name__ : Any = "eating_spaghetti_8_frames.npy" elif num_frames == 16: __magic_name__ : Tuple = "eating_spaghetti.npy" elif num_frames == 32: __magic_name__ : int = "eating_spaghetti_32_frames.npy" __magic_name__ : str = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename=UpperCamelCase__ , repo_type="dataset" , ) __magic_name__ : Dict = np.load(UpperCamelCase__ ) return list(UpperCamelCase__ ) def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=False ): """simple docstring""" __magic_name__ : List[str] = { # fully supervised kinetics-400 checkpoints "xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth", "xclip-base-patch32-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth" ), "xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth", "xclip-base-patch16-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth" ), "xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb", "xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f", # fully supervised kinetics-600 checkpoints "xclip-base-patch16-kinetics-600": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth" ), "xclip-base-patch16-kinetics-600-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth" ), "xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be", # few shot "xclip-base-patch16-hmdb-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth" ), "xclip-base-patch16-hmdb-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth" ), "xclip-base-patch16-hmdb-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth" ), "xclip-base-patch16-hmdb-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth" ), "xclip-base-patch16-ucf-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth" ), "xclip-base-patch16-ucf-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth" ), "xclip-base-patch16-ucf-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth" ), "xclip-base-patch16-ucf-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth" ), # zero shot "xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth", } __magic_name__ : List[Any] = model_to_url[model_name] __magic_name__ : Any = 8 if "16-frames" in model_name: __magic_name__ : Optional[int] = 16 elif "shot" in model_name: __magic_name__ : Optional[int] = 32 __magic_name__ : List[str] = get_xclip_config(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ : List[str] = XCLIPModel(UpperCamelCase__ ) model.eval() if "drive" in checkpoint_url: __magic_name__ : Dict = "pytorch_model.bin" gdown.cached_download(UpperCamelCase__ , UpperCamelCase__ , quiet=UpperCamelCase__ ) __magic_name__ : List[str] = torch.load(UpperCamelCase__ , map_location="cpu" )["model"] else: __magic_name__ : List[str] = torch.hub.load_state_dict_from_url(UpperCamelCase__ )["model"] __magic_name__ : Any = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ : Optional[Any] = XCLIPModel(UpperCamelCase__ ) __magic_name__ , __magic_name__ : Optional[Any] = model.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() __magic_name__ : List[str] = 336 if model_name == "xclip-large-patch14-16-frames" else 224 __magic_name__ : Optional[Any] = VideoMAEImageProcessor(size=UpperCamelCase__ ) __magic_name__ : int = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" ) __magic_name__ : Tuple = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" ) __magic_name__ : Dict = XCLIPProcessor(image_processor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) __magic_name__ : List[Any] = prepare_video(UpperCamelCase__ ) __magic_name__ : Union[str, Any] = processor( text=["playing sports", "eating spaghetti", "go shopping"] , videos=UpperCamelCase__ , return_tensors="pt" , padding=UpperCamelCase__ ) print("Shape of pixel values:" , inputs.pixel_values.shape ) with torch.no_grad(): __magic_name__ : List[str] = model(**UpperCamelCase__ ) # Verify outputs __magic_name__ : Optional[Any] = outputs.logits_per_video __magic_name__ : int = logits_per_video.softmax(dim=1 ) print("Probs:" , UpperCamelCase__ ) # kinetics-400 if model_name == "xclip-base-patch32": __magic_name__ : Any = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": __magic_name__ : List[str] = torch.tensor([[7.0_9_9_9E-0_4, 9.9_8_8_3E-0_1, 4.5_5_8_0E-0_4]] ) elif model_name == "xclip-base-patch16": __magic_name__ : Tuple = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": __magic_name__ : int = torch.tensor([[7.6_9_3_7E-0_4, 9.9_7_2_8E-0_1, 1.9_4_7_3E-0_3]] ) elif model_name == "xclip-large-patch14": __magic_name__ : Any = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": __magic_name__ : Any = torch.tensor([[3.3_8_7_7E-0_4, 9.9_9_3_7E-0_1, 2.8_8_8_8E-0_4]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": __magic_name__ : Union[str, Any] = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": __magic_name__ : Tuple = torch.tensor([[3.8_5_5_4E-0_4, 9.9_9_2_9E-0_1, 3.2_7_5_4E-0_4]] ) elif model_name == "xclip-large-patch14-kinetics-600": __magic_name__ : List[Any] = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": __magic_name__ : List[str] = torch.tensor([[7.1_8_9_0E-0_6, 9.9_9_9_4E-0_1, 5.6_5_5_9E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": __magic_name__ : Tuple = torch.tensor([[1.0_3_2_0E-0_5, 9.9_9_9_3E-0_1, 6.2_4_3_5E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": __magic_name__ : Tuple = torch.tensor([[4.1_3_7_7E-0_6, 9.9_9_9_0E-0_1, 9.8_3_8_6E-0_5]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": __magic_name__ : List[str] = torch.tensor([[4.1_3_4_7E-0_5, 9.9_9_6_2E-0_1, 3.3_4_1_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": __magic_name__ : List[str] = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": __magic_name__ : Tuple = torch.tensor([[8.5_8_5_7E-0_5, 9.9_9_2_8E-0_1, 6.3_2_9_1E-0_4]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": __magic_name__ : Dict = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": __magic_name__ : Dict = torch.tensor([[9.8_2_1_9E-0_4, 9.9_5_9_3E-0_1, 3.0_8_6_3E-0_3]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": __magic_name__ : List[str] = torch.tensor([[3.5_0_8_2E-0_4, 9.9_7_8_5E-0_1, 1.7_9_6_6E-0_3]] ) else: raise ValueError(F"""Model name {model_name} not supported""" ) assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(UpperCamelCase__ ) if push_to_hub: print("Pushing model, processor and slow tokenizer files to the hub..." ) model.push_to_hub(UpperCamelCase__ , organization="nielsr" ) processor.push_to_hub(UpperCamelCase__ , organization="nielsr" ) slow_tokenizer.push_to_hub(UpperCamelCase__ , organization="nielsr" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="xclip-base-patch32", type=str, help="Name of the model.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _SCREAMING_SNAKE_CASE : Any = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
436
1
'''simple docstring''' import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures a = logging.get_logger(__name__) @dataclass class a_ : UpperCAmelCase : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) UpperCAmelCase : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) UpperCAmelCase : int = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) UpperCAmelCase : bool = field( default=snake_case , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def UpperCamelCase ( self : Optional[Any] ) -> Any: snake_case: Dict =self.task_name.lower() class a_ ( snake_case ): UpperCAmelCase : Optional[int] = """train""" UpperCAmelCase : int = """dev""" UpperCAmelCase : Optional[Any] = """test""" class a_ ( snake_case ): UpperCAmelCase : GlueDataTrainingArguments UpperCAmelCase : str UpperCAmelCase : List[InputFeatures] def __init__( self : int , a_ : GlueDataTrainingArguments , a_ : PreTrainedTokenizerBase , a_ : Optional[int] = None , a_ : Union[str, Split] = Split.train , a_ : Optional[str] = None , ) -> Union[str, Any]: warnings.warn( 'This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets ' 'library. You can have a look at this example script for pointers: ' 'https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py' , a_ , ) snake_case: Union[str, Any] =args snake_case: str =glue_processors[args.task_name]() snake_case: List[str] =glue_output_modes[args.task_name] if isinstance(a_ , a_ ): try: snake_case: List[str] =Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) # Load data features from cache or dataset file snake_case: Tuple =os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) snake_case: Optional[int] =self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) snake_case: Dict =label_list[2], label_list[1] snake_case: List[Any] =label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. snake_case: Dict =cached_features_file + '.lock' with FileLock(a_ ): if os.path.exists(a_ ) and not args.overwrite_cache: snake_case: int =time.time() snake_case: str =torch.load(a_ ) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start ) else: logger.info(F'''Creating features from dataset file at {args.data_dir}''' ) if mode == Split.dev: snake_case: Optional[int] =self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: snake_case: List[Any] =self.processor.get_test_examples(args.data_dir ) else: snake_case: str =self.processor.get_train_examples(args.data_dir ) if limit_length is not None: snake_case: List[str] =examples[:limit_length] snake_case: List[Any] =glue_convert_examples_to_features( a_ , a_ , max_length=args.max_seq_length , label_list=a_ , output_mode=self.output_mode , ) snake_case: Optional[Any] =time.time() torch.save(self.features , a_ ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''' ) def __len__( self : Tuple ) -> str: return len(self.features ) def __getitem__( self : Dict , a_ : int ) -> InputFeatures: return self.features[i] def UpperCamelCase ( self : Optional[Any] ) -> Union[str, Any]: return self.label_list
716
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin a = get_tests_dir('fixtures/test_sentencepiece.model') a = get_tests_dir('fixtures/test_sentencepiece_bpe.model') a = 'pt' if is_torch_available() else 'tf' @require_sentencepiece @require_tokenizers class a_ ( snake_case , unittest.TestCase ): UpperCAmelCase : List[str] = CamembertTokenizer UpperCAmelCase : Dict = CamembertTokenizerFast UpperCAmelCase : List[str] = True UpperCAmelCase : str = True def UpperCamelCase ( self : str ) -> int: super().setUp() # We have a SentencePiece fixture for testing snake_case: Dict =CamembertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase ( self : Tuple ) -> List[Any]: snake_case: Any ='<pad>' snake_case: Dict =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) , a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) , a_ ) def UpperCamelCase ( self : Optional[Any] ) -> List[str]: snake_case: List[str] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>NOTUSED' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(a_ ) , 1_0_0_4 ) def UpperCamelCase ( self : Dict ) -> Tuple: self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_5 ) def UpperCamelCase ( self : List[Any] ) -> Dict: snake_case: Tuple =CamembertTokenizer(a_ ) tokenizer.save_pretrained(self.tmpdirname ) snake_case: List[Any] =CamembertTokenizerFast.from_pretrained(self.tmpdirname ) snake_case: str ='I was born in 92000, and this is falsé.' snake_case: Optional[int] =tokenizer.encode(a_ ) snake_case: int =rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) snake_case: Any =tokenizer.encode(a_ , add_special_tokens=a_ ) snake_case: Union[str, Any] =rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) snake_case: Any =tokenizer.convert_ids_to_tokens(a_ ) snake_case: int =rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) def UpperCamelCase ( self : Dict ) -> int: if not self.test_rust_tokenizer: return snake_case: Tuple =self.get_tokenizer() snake_case: Union[str, Any] =self.get_rust_tokenizer() snake_case: Tuple ='I was born in 92000, and this is falsé.' snake_case: Dict =tokenizer.tokenize(a_ ) snake_case: Optional[int] =rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) snake_case: Optional[Any] =tokenizer.encode(a_ , add_special_tokens=a_ ) snake_case: Optional[Any] =rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) snake_case: Any =self.get_rust_tokenizer() snake_case: Union[str, Any] =tokenizer.encode(a_ ) snake_case: List[Any] =rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) @slow def UpperCamelCase ( self : Union[str, Any] ) -> List[str]: # fmt: off snake_case: List[Any] ={'input_ids': [[5, 5_4, 7_1_9_6, 2_9_7, 3_0, 2_3, 7_7_6, 1_8, 1_1, 3_2_1_5, 3_7_0_5, 8_2_5_2, 2_2, 3_1_6_4, 1_1_8_1, 2_1_1_6, 2_9, 1_6, 8_1_3, 2_5, 7_9_1, 3_3_1_4, 2_0, 3_4_4_6, 3_8, 2_7_5_7_5, 1_2_0, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_6_8, 1_7, 1_1, 9_0_8_8, 2_0, 1_5_1_7, 8, 2_2_8_0_4, 1_8_8_1_8, 1_0, 3_8, 6_2_9, 6_0_7, 6_0_7, 1_4_2, 1_9, 7_1_9_6, 8_6_7, 5_6, 1_0_3_2_6, 2_4, 2_2_6_7, 2_0, 4_1_6, 5_0_7_2, 1_5_6_1_2, 2_3_3, 7_3_4, 7, 2_3_9_9, 2_7, 1_6, 3_0_1_5, 1_6_4_9, 7, 2_4, 2_0, 4_3_3_8, 2_3_9_9, 2_7, 1_3, 3_4_0_0, 1_4, 1_3, 6_1_8_9, 8, 9_3_0, 9, 6]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. snake_case: Any =[ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=a_ , model_name='camembert-base' , revision='3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf' , sequences=a_ , )
347
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case = 16 snake_case = 32 def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ = 16 ): """simple docstring""" _lowerCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) _lowerCAmelCase : Any = load_dataset("glue" , "mrpc" ) def tokenize_function(lowerCAmelCase__ ): # max_length=None => use the model max length (it's actually the default) _lowerCAmelCase : Optional[Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _lowerCAmelCase : Tuple = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _lowerCAmelCase : Union[str, Any] = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowerCAmelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. _lowerCAmelCase : Optional[int] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _lowerCAmelCase : Optional[int] = 16 elif accelerator.mixed_precision != "no": _lowerCAmelCase : Any = 8 else: _lowerCAmelCase : int = None return tokenizer.pad( lowerCAmelCase__ , padding="longest" , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors="pt" , ) # Instantiate dataloaders. _lowerCAmelCase : Tuple = DataLoader( tokenized_datasets["train"] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) _lowerCAmelCase : str = DataLoader( tokenized_datasets["validation"] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case = mocked_dataloaders # noqa: F811 def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowerCAmelCase__ ) == "1": _lowerCAmelCase : Dict = 2 # New Code # _lowerCAmelCase : Union[str, Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator _lowerCAmelCase : int = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowerCAmelCase__ ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _lowerCAmelCase : Tuple = config["lr"] _lowerCAmelCase : Dict = int(config["num_epochs"] ) _lowerCAmelCase : Optional[Any] = int(config["seed"] ) _lowerCAmelCase : Tuple = int(config["batch_size"] ) _lowerCAmelCase : Union[str, Any] = evaluate.load("glue" , "mrpc" ) set_seed(lowerCAmelCase__ ) _lowerCAmelCase , _lowerCAmelCase : Tuple = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _lowerCAmelCase : Any = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _lowerCAmelCase : Dict = model.to(accelerator.device ) # Instantiate optimizer _lowerCAmelCase : Optional[int] = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) # Instantiate scheduler _lowerCAmelCase : Any = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=1_00 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowerCAmelCase__ ): _lowerCAmelCase : Any = model(**lowerCAmelCase__ ) _lowerCAmelCase : str = output.loss accelerator.backward(lowerCAmelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _lowerCAmelCase : Any = model(**lowerCAmelCase__ ) _lowerCAmelCase : Dict = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase , _lowerCAmelCase : str = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) _lowerCAmelCase : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , lowerCAmelCase__ ) def UpperCamelCase_ ( ): """simple docstring""" _lowerCAmelCase : List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=lowerCAmelCase__ , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) _lowerCAmelCase : int = parser.parse_args() _lowerCAmelCase : List[str] = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
424
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case = TypeVar("T") class __A ( Generic[T] ): '''simple docstring''' a_ = 42 # Cache store of keys a_ = 42 # References of the keys in cache a_ = 10 # Maximum capacity of cache def __init__( self , _snake_case ): _lowerCAmelCase : Tuple = deque() _lowerCAmelCase : List[Any] = set() if not n: _lowerCAmelCase : Any = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: _lowerCAmelCase : List[str] = n def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _lowerCAmelCase : Optional[int] = self.dq_store.pop() self.key_reference.remove(_snake_case ) else: self.dq_store.remove(_snake_case ) self.dq_store.appendleft(_snake_case ) self.key_reference.add(_snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): for k in self.dq_store: print(_snake_case ) def __repr__( self ): return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() snake_case = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
424
1
"""simple docstring""" # using dfs for finding eulerian path traversal def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple=None ): """simple docstring""" snake_case_ : Union[str, Any] = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: snake_case_ , snake_case_ : Optional[Any] = True, True snake_case_ : Optional[int] = dfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) return path def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" snake_case_ : Tuple = 0 snake_case_ : Union[str, Any] = -1 for i in range(lowerCAmelCase__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 snake_case_ : List[Any] = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[Any] ): """simple docstring""" snake_case_ : str = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] snake_case_ , snake_case_ : List[Any] = check_circuit_or_path(lowerCAmelCase__ , lowerCAmelCase__ ) if check == 3: print("""graph is not Eulerian""" ) print("""no path""" ) return snake_case_ : Dict = 1 if check == 2: snake_case_ : Optional[int] = odd_node print("""graph has a Euler path""" ) if check == 1: print("""graph has a Euler cycle""" ) snake_case_ : Dict = dfs(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) print(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( ): """simple docstring""" snake_case_ : Optional[int] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} snake_case_ : Dict = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} snake_case_ : int = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} snake_case_ : List[Any] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} snake_case_ : Any = { 1: [], 2: [] # all degree is zero } snake_case_ : int = 1_0 check_euler(lowerCAmelCase__ , lowerCAmelCase__ ) check_euler(lowerCAmelCase__ , lowerCAmelCase__ ) check_euler(lowerCAmelCase__ , lowerCAmelCase__ ) check_euler(lowerCAmelCase__ , lowerCAmelCase__ ) check_euler(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
705
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list ): """simple docstring""" snake_case_ : Optional[int] = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): snake_case_ : Tuple = collection[i] snake_case_ : Tuple = 0 snake_case_ : str = i - 1 while low <= high: snake_case_ : Optional[int] = (low + high) // 2 if val < collection[mid]: snake_case_ : List[str] = mid - 1 else: snake_case_ : str = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): snake_case_ : List[str] = collection[j - 1] snake_case_ : Any = val return collection if __name__ == "__main__": a_ = input('''Enter numbers separated by a comma:\n''').strip() a_ = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
48
0
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class __lowercase : def __init__( self : Dict , __lowerCamelCase : str , __lowerCamelCase : Union[str, Any]=13 , __lowerCamelCase : Any=7 , __lowerCamelCase : str=False , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : List[str]=False , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Union[str, Any]=19 , __lowerCamelCase : Optional[int]=32 , __lowerCamelCase : int=5 , __lowerCamelCase : Any=4 , __lowerCamelCase : Dict=37 , __lowerCamelCase : List[Any]="gelu" , __lowerCamelCase : Any=0.1 , __lowerCamelCase : str=0.1 , __lowerCamelCase : int=5_12 , __lowerCamelCase : List[str]=16 , __lowerCamelCase : int=2 , __lowerCamelCase : Tuple=0.02 , __lowerCamelCase : int=3 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Optional[int]=None , ) -> Any: '''simple docstring''' lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_labels lowercase = num_choices lowercase = scope def __a ( self : Union[str, Any] ) -> Dict: '''simple docstring''' lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase = ids_tensor([self.batch_size] , self.num_choices ) lowercase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self : List[Any] ) -> str: '''simple docstring''' lowercase = EsmConfig( vocab_size=33 , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , is_folding_model=_lowerCamelCase , esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} , ) return config def __a ( self : Union[str, Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Tuple ) -> Tuple: '''simple docstring''' lowercase = EsmForProteinFolding(config=_lowerCamelCase ).float() model.to(_lowerCamelCase ) model.eval() lowercase = model(_lowerCamelCase , attention_mask=_lowerCamelCase ) lowercase = model(_lowerCamelCase ) lowercase = model(_lowerCamelCase ) self.parent.assertEqual(result.positions.shape , (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape , (8, self.batch_size, self.seq_length, 7, 2) ) def __a ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' lowercase = self.prepare_config_and_inputs() ( ( lowercase ) ,( lowercase ) ,( lowercase ) ,( lowercase ) ,( lowercase ) ,( lowercase ) , ) = config_and_inputs lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __lowercase ( A_ , A_ , unittest.TestCase ): lowercase = False lowercase = (EsmForProteinFolding,) if is_torch_available() else () lowercase = () lowercase = {} if is_torch_available() else {} lowercase = False def __a ( self : Tuple ) -> List[str]: '''simple docstring''' lowercase = EsmFoldModelTester(self ) lowercase = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def __a ( self : Any ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __a ( self : Optional[int] ) -> str: '''simple docstring''' lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) @unittest.skip('''Does not support attention outputs''' ) def __a ( self : Dict ) -> str: '''simple docstring''' pass @unittest.skip def __a ( self : Dict ) -> Dict: '''simple docstring''' pass @unittest.skip('''Esm does not support embedding resizing''' ) def __a ( self : Tuple ) -> List[Any]: '''simple docstring''' pass @unittest.skip('''Esm does not support embedding resizing''' ) def __a ( self : int ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def __a ( self : int ) -> List[str]: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __a ( self : List[str] ) -> List[str]: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __a ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __a ( self : Any ) -> Tuple: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __a ( self : Union[str, Any] ) -> Dict: '''simple docstring''' pass @unittest.skip('''ESMFold does not support head pruning.''' ) def __a ( self : Optional[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def __a ( self : Dict ) -> str: '''simple docstring''' pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def __a ( self : int ) -> Dict: '''simple docstring''' pass @unittest.skip('''ESMFold only has one output format.''' ) def __a ( self : str ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def __a ( self : List[str] ) -> Any: '''simple docstring''' pass @unittest.skip('''ESMFold does not support input chunking.''' ) def __a ( self : Any ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def __a ( self : Any ) -> int: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __a ( self : Any ) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __a ( self : Dict ) -> List[str]: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def __a ( self : Union[str, Any] ) -> int: '''simple docstring''' pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def __a ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __a ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass @require_torch class __lowercase ( A_ ): @slow def __a ( self : str ) -> Optional[int]: '''simple docstring''' lowercase = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() lowercase = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase = model(_lowerCamelCase )['''positions'''] lowercase = torch.tensor([2.5828, 0.7993, -10.93_34] , dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] , _lowerCamelCase , atol=1E-4 ) )
604
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { 'alibaba-damo/mgp-str-base': 'https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json', } class lowerCAmelCase__ ( A_ ): __a = """mgp-str""" def __init__( self : int , _lowerCamelCase : str=[32, 128] , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Tuple=3 , _lowerCamelCase : Optional[Any]=27 , _lowerCamelCase : str=38 , _lowerCamelCase : int=50257 , _lowerCamelCase : Tuple=30522 , _lowerCamelCase : Any=768 , _lowerCamelCase : Dict=12 , _lowerCamelCase : Union[str, Any]=12 , _lowerCamelCase : Any=4.0 , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : int=1e-5 , _lowerCamelCase : Dict=0.0 , _lowerCamelCase : int=0.0 , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : Dict=False , _lowerCamelCase : str=0.0_2 , **_lowerCamelCase : Optional[Any] , ): super().__init__(**_lowerCamelCase ) _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = max_token_length _snake_case = num_character_labels _snake_case = num_bpe_labels _snake_case = num_wordpiece_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = mlp_ratio _snake_case = distilled _snake_case = layer_norm_eps _snake_case = drop_rate _snake_case = qkv_bias _snake_case = attn_drop_rate _snake_case = drop_path_rate _snake_case = output_aa_attentions _snake_case = initializer_range
224
0
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCAmelCase_( lowercase_ : Dict , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : str=True , lowercase_ : Tuple="pt" ) -> Union[str, Any]: _lowerCamelCase = {'''add_prefix_space''': True} if isinstance(lowercase_ , lowercase_ ) and not line.startswith(''' ''' ) else {} _lowerCamelCase = padding_side return tokenizer( [line] , max_length=lowercase_ , padding='''max_length''' if pad_to_max_length else None , truncation=lowercase_ , return_tensors=lowercase_ , add_special_tokens=lowercase_ , **lowercase_ , ) def lowerCAmelCase_( lowercase_ : Tuple , lowercase_ : Any , lowercase_ : List[Any]=None , ) -> Union[str, Any]: _lowerCamelCase = input_ids.ne(lowercase_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__="train" , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__="" , ): super().__init__() _lowerCamelCase = Path(lowerCamelCase__ ).joinpath(type_path + '''.source''' ) _lowerCamelCase = Path(lowerCamelCase__ ).joinpath(type_path + '''.target''' ) _lowerCamelCase = self.get_char_lens(self.src_file ) _lowerCamelCase = max_source_length _lowerCamelCase = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" _lowerCamelCase = tokenizer _lowerCamelCase = prefix if n_obs is not None: _lowerCamelCase = self.src_lens[:n_obs] _lowerCamelCase = src_lang _lowerCamelCase = tgt_lang def __len__( self ): return len(self.src_lens ) def __getitem__( self , lowerCamelCase__ ): _lowerCamelCase = index + 1 # linecache starts at 1 _lowerCamelCase = self.prefix + linecache.getline(str(self.src_file ) , lowerCamelCase__ ).rstrip('''\n''' ) _lowerCamelCase = linecache.getline(str(self.tgt_file ) , lowerCamelCase__ ).rstrip('''\n''' ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , lowerCamelCase__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _lowerCamelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , lowerCamelCase__ ) else self.tokenizer ) _lowerCamelCase = self.tokenizer.generator if isinstance(self.tokenizer , lowerCamelCase__ ) else self.tokenizer _lowerCamelCase = encode_line(lowerCamelCase__ , lowerCamelCase__ , self.max_source_length , '''right''' ) _lowerCamelCase = encode_line(lowerCamelCase__ , lowerCamelCase__ , self.max_target_length , '''right''' ) _lowerCamelCase = source_inputs['''input_ids'''].squeeze() _lowerCamelCase = target_inputs['''input_ids'''].squeeze() _lowerCamelCase = source_inputs['''attention_mask'''].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case__ ( lowerCamelCase__ ): return [len(lowerCamelCase__ ) for x in Path(lowerCamelCase__ ).open().readlines()] def snake_case__ ( self , lowerCamelCase__ ): _lowerCamelCase = torch.stack([x['''input_ids'''] for x in batch] ) _lowerCamelCase = torch.stack([x['''attention_mask'''] for x in batch] ) _lowerCamelCase = torch.stack([x['''decoder_input_ids'''] for x in batch] ) _lowerCamelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , lowerCamelCase__ ) else self.tokenizer.pad_token_id ) _lowerCamelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , lowerCamelCase__ ) else self.tokenizer.pad_token_id ) _lowerCamelCase = trim_batch(lowerCamelCase__ , lowerCamelCase__ ) _lowerCamelCase , _lowerCamelCase = trim_batch(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ ) _lowerCamelCase = { '''input_ids''': source_ids, '''attention_mask''': source_mask, '''decoder_input_ids''': y, } return batch __SCREAMING_SNAKE_CASE : Union[str, Any] = getLogger(__name__) def lowerCAmelCase_( lowercase_ : List[List] ) -> Any: return list(itertools.chain.from_iterable(lowercase_ ) ) def lowerCAmelCase_( lowercase_ : str ) -> None: _lowerCamelCase = get_git_info() save_json(lowercase_ , os.path.join(lowercase_ , '''git_log.json''' ) ) def lowerCAmelCase_( lowercase_ : int , lowercase_ : Union[str, Any] , lowercase_ : Any=4 , **lowercase_ : Union[str, Any] ) -> Union[str, Any]: with open(lowercase_ , '''w''' ) as f: json.dump(lowercase_ , lowercase_ , indent=lowercase_ , **lowercase_ ) def lowerCAmelCase_( lowercase_ : Union[str, Any] ) -> List[str]: with open(lowercase_ ) as f: return json.load(lowercase_ ) def lowerCAmelCase_( ) -> Tuple: _lowerCamelCase = git.Repo(search_parent_directories=lowercase_ ) _lowerCamelCase = { '''repo_id''': str(lowercase_ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), '''hostname''': str(socket.gethostname() ), } return repo_infos def lowerCAmelCase_( lowercase_ : Callable , lowercase_ : Iterable ) -> List: return list(map(lowercase_ , lowercase_ ) ) def lowerCAmelCase_( lowercase_ : List[Any] , lowercase_ : List[str] ) -> int: with open(lowercase_ , '''wb''' ) as f: return pickle.dump(lowercase_ , lowercase_ ) def lowerCAmelCase_( lowercase_ : List[Any] ) -> List[Any]: def remove_articles(lowercase_ : str ): return re.sub(r'''\b(a|an|the)\b''' , ''' ''' , lowercase_ ) def white_space_fix(lowercase_ : Dict ): return " ".join(text.split() ) def remove_punc(lowercase_ : Dict ): _lowerCamelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowercase_ : Union[str, Any] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowercase_ ) ) ) ) def lowerCAmelCase_( lowercase_ : Optional[int] , lowercase_ : List[str] ) -> List[str]: _lowerCamelCase = normalize_answer(lowercase_ ).split() _lowerCamelCase = normalize_answer(lowercase_ ).split() _lowerCamelCase = Counter(lowercase_ ) & Counter(lowercase_ ) _lowerCamelCase = sum(common.values() ) if num_same == 0: return 0 _lowerCamelCase = 1.0 * num_same / len(lowercase_ ) _lowerCamelCase = 1.0 * num_same / len(lowercase_ ) _lowerCamelCase = (2 * precision * recall) / (precision + recall) return fa def lowerCAmelCase_( lowercase_ : Optional[int] , lowercase_ : str ) -> List[Any]: return normalize_answer(lowercase_ ) == normalize_answer(lowercase_ ) def lowerCAmelCase_( lowercase_ : List[str] , lowercase_ : List[str] ) -> Dict: assert len(lowercase_ ) == len(lowercase_ ) _lowerCamelCase = 0 for hypo, pred in zip(lowercase_ , lowercase_ ): em += exact_match_score(lowercase_ , lowercase_ ) if len(lowercase_ ) > 0: em /= len(lowercase_ ) return {"em": em} def lowerCAmelCase_( lowercase_ : Union[str, Any] ) -> Optional[int]: return model_prefix.startswith('''rag''' ) def lowerCAmelCase_( lowercase_ : Tuple , lowercase_ : Any , lowercase_ : str ) -> Tuple: _lowerCamelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _lowerCamelCase = '''dropout_rate''' for p in extra_params: if getattr(lowercase_ , lowercase_ , lowercase_ ): if not hasattr(lowercase_ , lowercase_ ) and not hasattr(lowercase_ , equivalent_param[p] ): logger.info('''config doesn\'t have a `{}` attribute'''.format(lowercase_ ) ) delattr(lowercase_ , lowercase_ ) continue _lowerCamelCase = p if hasattr(lowercase_ , lowercase_ ) else equivalent_param[p] setattr(lowercase_ , lowercase_ , getattr(lowercase_ , lowercase_ ) ) delattr(lowercase_ , lowercase_ ) return hparams, config
705
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging __SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) class lowerCamelCase_( A__ ): '''simple docstring''' def __init__( self , lowerCamelCase__=None , **lowerCamelCase__ ): warnings.warn( '''`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ''' '''instead.''' , lowerCamelCase__ , ) super().__init__(args=lowerCamelCase__ , **lowerCamelCase__ )
623
0
import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = MobileBertConfig.from_json_file(_A ) print(f"Building PyTorch model from configuration: {config}" ) snake_case_ = MobileBertForPreTraining(_A ) # Load weights from tf checkpoint snake_case_ = load_tf_weights_in_mobilebert(_A , _A , _A ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--mobilebert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained MobileBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowercase__ : Tuple = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
376
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class UpperCAmelCase : '''simple docstring''' def snake_case__ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) snake_case_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) snake_case_ = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=__lowercase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) snake_case_ = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def snake_case__ ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) snake_case_ = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) snake_case_ = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) snake_case_ = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) snake_case_ = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=__lowercase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) snake_case_ = DDPMScheduler( num_train_timesteps=10_00 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) snake_case_ = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def snake_case__ ( self : List[str] ): """simple docstring""" snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**__lowercase ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) snake_case_ = self.get_dummy_inputs(__lowercase ) snake_case_ = inputs["prompt"] snake_case_ = inputs["generator"] snake_case_ = inputs["num_inference_steps"] snake_case_ = inputs["output_type"] if "image" in inputs: snake_case_ = inputs["image"] else: snake_case_ = None if "mask_image" in inputs: snake_case_ = inputs["mask_image"] else: snake_case_ = None if "original_image" in inputs: snake_case_ = inputs["original_image"] else: snake_case_ = None snake_case_ , snake_case_ = pipe.encode_prompt(__lowercase ) # inputs with prompt converted to embeddings snake_case_ = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: snake_case_ = image if mask_image is not None: snake_case_ = mask_image if original_image is not None: snake_case_ = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(__lowercase , __lowercase , __lowercase ) snake_case_ = pipe(**__lowercase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__lowercase ) snake_case_ = self.pipeline_class.from_pretrained(__lowercase ) pipe_loaded.to(__lowercase ) pipe_loaded.set_progress_bar_config(disable=__lowercase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(__lowercase , __lowercase ) is None , f"`{optional_component}` did not stay set to None after loading." , ) snake_case_ = self.get_dummy_inputs(__lowercase ) snake_case_ = inputs["generator"] snake_case_ = inputs["num_inference_steps"] snake_case_ = inputs["output_type"] # inputs with prompt converted to embeddings snake_case_ = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: snake_case_ = image if mask_image is not None: snake_case_ = mask_image if original_image is not None: snake_case_ = original_image snake_case_ = pipe_loaded(**__lowercase )[0] snake_case_ = np.abs(to_np(__lowercase ) - to_np(__lowercase ) ).max() self.assertLess(__lowercase , 1E-4 ) def snake_case__ ( self : Union[str, Any] ): """simple docstring""" snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**__lowercase ) pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) snake_case_ = self.get_dummy_inputs(__lowercase ) snake_case_ = pipe(**__lowercase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__lowercase ) snake_case_ = self.pipeline_class.from_pretrained(__lowercase ) pipe_loaded.to(__lowercase ) pipe_loaded.set_progress_bar_config(disable=__lowercase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests snake_case_ = self.get_dummy_inputs(__lowercase ) snake_case_ = pipe_loaded(**__lowercase )[0] snake_case_ = np.abs(to_np(__lowercase ) - to_np(__lowercase ) ).max() self.assertLess(__lowercase , 1E-4 )
376
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : Any = logging.get_logger(__name__) A__ : str = {'''ctrl''': '''https://huggingface.co/ctrl/resolve/main/config.json'''} class snake_case__ ( _UpperCAmelCase ): A__ = '''ctrl''' A__ = ['''past_key_values'''] A__ = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : int , __a : Dict=246534 , __a : Optional[Any]=256 , __a : List[Any]=1280 , __a : str=8192 , __a : Dict=48 , __a : str=16 , __a : Optional[Any]=0.1 , __a : Optional[int]=0.1 , __a : Optional[int]=1e-6 , __a : Optional[Any]=0.0_2 , __a : Union[str, Any]=True , **__a : Dict , ) -> Union[str, Any]: '''simple docstring''' __snake_case : Any = vocab_size __snake_case : Any = n_positions __snake_case : Any = n_embd __snake_case : Any = n_layer __snake_case : Optional[int] = n_head __snake_case : List[Any] = dff __snake_case : List[str] = resid_pdrop __snake_case : List[Any] = embd_pdrop __snake_case : str = layer_norm_epsilon __snake_case : str = initializer_range __snake_case : Optional[Any] = use_cache super().__init__(**lowercase__ )
702
'''simple docstring''' import argparse from collections import defaultdict import yaml A__ : List[str] = '''docs/source/en/_toctree.yml''' def a_ ( _UpperCAmelCase : List[Any] ) -> List[str]: __snake_case : str = defaultdict(_UpperCAmelCase ) for doc in model_doc: counts[doc["local"]] += 1 __snake_case : Any = [key for key, value in counts.items() if value > 1] __snake_case : Dict = [] for duplicate_key in duplicates: __snake_case : Optional[Any] = list({doc['title'] for doc in model_doc if doc['local'] == duplicate_key} ) if len(_UpperCAmelCase ) > 1: raise ValueError( f'''{duplicate_key} is present several times in the documentation table of content at ''' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['local']] == 1] ) # Sort return sorted(_UpperCAmelCase ,key=lambda _UpperCAmelCase : s["title"].lower() ) def a_ ( _UpperCAmelCase : Tuple=False ) -> List[str]: with open(_UpperCAmelCase ,encoding='utf-8' ) as f: __snake_case : int = yaml.safe_load(f.read() ) # Get to the API doc __snake_case : str = 0 while content[api_idx]["title"] != "API": api_idx += 1 __snake_case : Tuple = content[api_idx]['sections'] # Then to the model doc __snake_case : List[str] = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 __snake_case : Any = api_doc[model_idx]['sections'] __snake_case : int = [(idx, section) for idx, section in enumerate(_UpperCAmelCase ) if 'sections' in section] __snake_case : Tuple = False for idx, modality_doc in modalities_docs: __snake_case : Dict = modality_doc['sections'] __snake_case : Union[str, Any] = clean_model_doc_toc(_UpperCAmelCase ) if old_modality_doc != new_modality_doc: __snake_case : Optional[Any] = True if overwrite: __snake_case : Any = new_modality_doc if diff: if overwrite: __snake_case : int = model_doc __snake_case : List[Any] = api_doc with open(_UpperCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(yaml.dump(_UpperCAmelCase ,allow_unicode=_UpperCAmelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": A__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A__ : Optional[Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
124
0
from argparse import ArgumentParser from ..pipelines import Pipeline, PipelineDataFormat, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand __lowerCamelCase : List[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def A__ ( _a : Optional[Any] ): '''simple docstring''' if not path: return "pipe" for ext in PipelineDataFormat.SUPPORTED_FORMATS: if path.endswith(lowercase_ ): return ext raise Exception( f"Unable to determine file format from file extension {path}. " f"Please provide the format through --format {PipelineDataFormat.SUPPORTED_FORMATS}" ) def A__ ( _a : str ): '''simple docstring''' snake_case__ : Any =pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) snake_case__ : int =try_infer_format_from_ext(args.input ) if args.format == '''infer''' else args.format snake_case__ : Tuple =PipelineDataFormat.from_str( format=lowercase_ , output_path=args.output , input_path=args.input , column=args.column if args.column else nlp.default_input_names , overwrite=args.overwrite , ) return RunCommand(lowercase_ , lowercase_ ) class _lowercase ( _UpperCamelCase ): def __init__( self , a , a ): snake_case__ : Any =nlp snake_case__ : Any =reader @staticmethod def lowercase__ ( a ): snake_case__ : Optional[Any] =parser.add_parser("""run""" , help="""Run a pipeline through the CLI""" ) run_parser.add_argument("""--task""" , choices=get_supported_tasks() , help="""Task to run""" ) run_parser.add_argument("""--input""" , type=lowercase__ , help="""Path to the file to use for inference""" ) run_parser.add_argument("""--output""" , type=lowercase__ , help="""Path to the file that will be used post to write results.""" ) run_parser.add_argument("""--model""" , type=lowercase__ , help="""Name or path to the model to instantiate.""" ) run_parser.add_argument("""--config""" , type=lowercase__ , help="""Name or path to the model\'s config to instantiate.""" ) run_parser.add_argument( """--tokenizer""" , type=lowercase__ , help="""Name of the tokenizer to use. (default: same as the model name)""" ) run_parser.add_argument( """--column""" , type=lowercase__ , help="""Name of the column to use as input. (For multi columns input as QA use column1,columns2)""" , ) run_parser.add_argument( """--format""" , type=lowercase__ , default="""infer""" , choices=PipelineDataFormat.SUPPORTED_FORMATS , help="""Input format to read from""" , ) run_parser.add_argument( """--device""" , type=lowercase__ , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) run_parser.add_argument("""--overwrite""" , action="""store_true""" , help="""Allow overwriting the output file.""" ) run_parser.set_defaults(func=lowercase__ ) def lowercase__ ( self ): snake_case__ : List[str] =self._nlp, [] for entry in self._reader: snake_case__ : Union[str, Any] =nlp(**lowercase__ ) if self._reader.is_multi_columns else nlp(lowercase__ ) if isinstance(lowercase__ , lowercase__ ): outputs.append(lowercase__ ) else: outputs += output # Saving data if self._nlp.binary_output: snake_case__ : List[str] =self._reader.save_binary(lowercase__ ) logger.warning(F"Current pipeline requires output to be in binary format, saving at {binary_path}" ) else: self._reader.save(lowercase__ )
385
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging lowerCAmelCase = logging.get_logger(__name__) lowerCAmelCase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all LED models at https://huggingface.co/models?filter=LED lowerCAmelCase = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } lowerCAmelCase = { """allenai/led-base-16384""": 16_384, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def __SCREAMING_SNAKE_CASE ( ) -> Dict: '''simple docstring''' __UpperCAmelCase : Optional[int] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) __UpperCAmelCase : Tuple = bs[:] __UpperCAmelCase : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase_ ) cs.append(2**8 + n ) n += 1 __UpperCAmelCase : Union[str, Any] = [chr(lowercase_ ) for n in cs] return dict(zip(lowercase_ , lowercase_ ) ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = set() __UpperCAmelCase : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Tuple = char return pairs class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES _lowerCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : int = ['''input_ids''', '''attention_mask'''] def __init__( self , lowercase__ , lowercase__ , lowercase__="replace" , lowercase__="<s>" , lowercase__="</s>" , lowercase__="</s>" , lowercase__="<s>" , lowercase__="<unk>" , lowercase__="<pad>" , lowercase__="<mask>" , lowercase__=False , **lowercase__ , ): __UpperCAmelCase : List[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else bos_token __UpperCAmelCase : int = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else eos_token __UpperCAmelCase : Optional[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else sep_token __UpperCAmelCase : Any = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else cls_token __UpperCAmelCase : Any = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else unk_token __UpperCAmelCase : List[str] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else pad_token # Mask token behave like a normal word, i.e. include the space before it __UpperCAmelCase : Optional[Any] = AddedToken(lowercase__ , lstrip=lowercase__ , rstrip=lowercase__) if isinstance(lowercase__ , lowercase__) else mask_token super().__init__( errors=lowercase__ , bos_token=lowercase__ , eos_token=lowercase__ , unk_token=lowercase__ , sep_token=lowercase__ , cls_token=lowercase__ , pad_token=lowercase__ , mask_token=lowercase__ , add_prefix_space=lowercase__ , **lowercase__ , ) with open(lowercase__ , encoding='''utf-8''') as vocab_handle: __UpperCAmelCase : Optional[int] = json.load(lowercase__) __UpperCAmelCase : List[str] = {v: k for k, v in self.encoder.items()} __UpperCAmelCase : Optional[Any] = errors # how to handle errors in decoding __UpperCAmelCase : str = bytes_to_unicode() __UpperCAmelCase : List[str] = {v: k for k, v in self.byte_encoder.items()} with open(lowercase__ , encoding='''utf-8''') as merges_handle: __UpperCAmelCase : Optional[int] = merges_handle.read().split('''\n''')[1:-1] __UpperCAmelCase : int = [tuple(merge.split()) for merge in bpe_merges] __UpperCAmelCase : str = dict(zip(lowercase__ , range(len(lowercase__)))) __UpperCAmelCase : Optional[int] = {} __UpperCAmelCase : Optional[int] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __UpperCAmelCase : List[Any] = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''') @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def A( self): return len(self.encoder) def A( self): return dict(self.encoder , **self.added_tokens_encoder) def A( self , lowercase__): if token in self.cache: return self.cache[token] __UpperCAmelCase : int = tuple(lowercase__) __UpperCAmelCase : int = get_pairs(lowercase__) if not pairs: return token while True: __UpperCAmelCase : Union[str, Any] = min(lowercase__ , key=lambda lowercase__: self.bpe_ranks.get(lowercase__ , float('''inf'''))) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Tuple = bigram __UpperCAmelCase : List[str] = [] __UpperCAmelCase : List[str] = 0 while i < len(lowercase__): try: __UpperCAmelCase : List[Any] = word.index(lowercase__ , lowercase__) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) __UpperCAmelCase : str = j if word[i] == first and i < len(lowercase__) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 __UpperCAmelCase : Union[str, Any] = tuple(lowercase__) __UpperCAmelCase : Dict = new_word if len(lowercase__) == 1: break else: __UpperCAmelCase : Optional[int] = get_pairs(lowercase__) __UpperCAmelCase : List[Any] = ''' '''.join(lowercase__) __UpperCAmelCase : Tuple = word return word def A( self , lowercase__): __UpperCAmelCase : str = [] for token in re.findall(self.pat , lowercase__): __UpperCAmelCase : Dict = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''')) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowercase__).split(''' ''')) return bpe_tokens def A( self , lowercase__): return self.encoder.get(lowercase__ , self.encoder.get(self.unk_token)) def A( self , lowercase__): return self.decoder.get(lowercase__) def A( self , lowercase__): __UpperCAmelCase : str = ''''''.join(lowercase__) __UpperCAmelCase : Optional[int] = bytearray([self.byte_decoder[c] for c in text]).decode('''utf-8''' , errors=self.errors) return text def A( self , lowercase__ , lowercase__ = None): if not os.path.isdir(lowercase__): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return __UpperCAmelCase : List[Any] = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) __UpperCAmelCase : Optional[Any] = os.path.join( lowercase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file''']) with open(lowercase__ , '''w''' , encoding='''utf-8''') as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase__ , ensure_ascii=lowercase__) + '''\n''') __UpperCAmelCase : Tuple = 0 with open(lowercase__ , '''w''' , encoding='''utf-8''') as writer: writer.write('''#version: 0.2\n''') for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase__: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." ''' Please check that the tokenizer is not corrupted!''') __UpperCAmelCase : Optional[int] = token_index writer.write(''' '''.join(lowercase__) + '''\n''') index += 1 return vocab_file, merge_file def A( self , lowercase__ , lowercase__ = None): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __UpperCAmelCase : Optional[Any] = [self.cls_token_id] __UpperCAmelCase : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A( self , lowercase__ , lowercase__ = None , lowercase__ = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ , token_ids_a=lowercase__ , already_has_special_tokens=lowercase__) if token_ids_a is None: return [1] + ([0] * len(lowercase__)) + [1] return [1] + ([0] * len(lowercase__)) + [1, 1] + ([0] * len(lowercase__)) + [1] def A( self , lowercase__ , lowercase__ = None): __UpperCAmelCase : List[Any] = [self.sep_token_id] __UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def A( self , lowercase__ , lowercase__=False , **lowercase__): __UpperCAmelCase : List[Any] = kwargs.pop('''add_prefix_space''' , self.add_prefix_space) if (is_split_into_words or add_prefix_space) and (len(lowercase__) > 0 and not text[0].isspace()): __UpperCAmelCase : List[Any] = ''' ''' + text return (text, kwargs) def A( self , lowercase__ , lowercase__ = None , lowercase__ = PaddingStrategy.DO_NOT_PAD , lowercase__ = None , lowercase__ = None , ): __UpperCAmelCase : Optional[Any] = super()._pad( encoded_inputs=lowercase__ , max_length=lowercase__ , padding_strategy=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , ) # Load from model defaults if return_attention_mask is None: __UpperCAmelCase : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: __UpperCAmelCase : Dict = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. __UpperCAmelCase : int = len(encoded_inputs['''global_attention_mask''']) != len(lowercase__) if needs_to_be_padded: __UpperCAmelCase : Dict = len(lowercase__) - len(encoded_inputs['''global_attention_mask''']) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` __UpperCAmelCase : Optional[Any] = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": __UpperCAmelCase : int = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side)) return encoded_inputs
462
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ : Any = logging.get_logger(__name__) lowerCAmelCase_ : Dict = """▁""" lowerCAmelCase_ : Any = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", """tokenizer_config_file""": """tokenizer_config.json""", } lowerCAmelCase_ : int = { """vocab_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json""", }, """spm_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model""", }, """tokenizer_config_file""": { """facebook/m2m100_418M""": """https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json""", """facebook/m2m100_1.2B""": """https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json""", }, } lowerCAmelCase_ : Any = { """facebook/m2m100_418M""": 1024, } # fmt: off lowerCAmelCase_ : Union[str, Any] = { """m2m100""": ["""af""", """am""", """ar""", """ast""", """az""", """ba""", """be""", """bg""", """bn""", """br""", """bs""", """ca""", """ceb""", """cs""", """cy""", """da""", """de""", """el""", """en""", """es""", """et""", """fa""", """ff""", """fi""", """fr""", """fy""", """ga""", """gd""", """gl""", """gu""", """ha""", """he""", """hi""", """hr""", """ht""", """hu""", """hy""", """id""", """ig""", """ilo""", """is""", """it""", """ja""", """jv""", """ka""", """kk""", """km""", """kn""", """ko""", """lb""", """lg""", """ln""", """lo""", """lt""", """lv""", """mg""", """mk""", """ml""", """mn""", """mr""", """ms""", """my""", """ne""", """nl""", """no""", """ns""", """oc""", """or""", """pa""", """pl""", """ps""", """pt""", """ro""", """ru""", """sd""", """si""", """sk""", """sl""", """so""", """sq""", """sr""", """ss""", """su""", """sv""", """sw""", """ta""", """th""", """tl""", """tn""", """tr""", """uk""", """ur""", """uz""", """vi""", """wo""", """xh""", """yi""", """yo""", """zh""", """zu"""], """wmt21""": ["""en""", """ha""", """is""", """ja""", """cs""", """ru""", """zh""", """de"""] } class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__ = VOCAB_FILES_NAMES UpperCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ = ['''input_ids''', '''attention_mask'''] UpperCAmelCase__ = [] UpperCAmelCase__ = [] def __init__( self : Any , lowercase__ : Optional[int] , lowercase__ : Optional[int] , lowercase__ : Tuple=None , lowercase__ : Any=None , lowercase__ : int="<s>" , lowercase__ : Dict="</s>" , lowercase__ : int="</s>" , lowercase__ : int="<pad>" , lowercase__ : List[str]="<unk>" , lowercase__ : Union[str, Any]="m2m100" , lowercase__ : int = None , lowercase__ : List[Any]=8 , **lowercase__ : Union[str, Any] , ) ->None: '''simple docstring''' _UpperCamelCase : Union[str, Any] = {} if sp_model_kwargs is None else sp_model_kwargs _UpperCamelCase : List[Any] = language_codes _UpperCamelCase : Tuple = FAIRSEQ_LANGUAGE_CODES[language_codes] _UpperCamelCase : Tuple = {lang_code: f'''__{lang_code}__''' for lang_code in fairseq_language_code} _UpperCamelCase : str = kwargs.get("additional_special_tokens" , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__a ) for lang_code in fairseq_language_code if self.get_lang_token(__a ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__a , tgt_lang=__a , bos_token=__a , eos_token=__a , sep_token=__a , unk_token=__a , pad_token=__a , language_codes=__a , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__a , **__a , ) _UpperCamelCase : Union[str, Any] = vocab_file _UpperCamelCase : Any = load_json(__a ) _UpperCamelCase : Dict = {v: k for k, v in self.encoder.items()} _UpperCamelCase : int = spm_file _UpperCamelCase : str = load_spm(__a , self.sp_model_kwargs ) _UpperCamelCase : Optional[int] = len(self.encoder ) _UpperCamelCase : List[Any] = { self.get_lang_token(__a ): self.encoder_size + i for i, lang_code in enumerate(__a ) } _UpperCamelCase : Optional[Any] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__a )} _UpperCamelCase : int = {v: k for k, v in self.lang_token_to_id.items()} _UpperCamelCase : List[str] = src_lang if src_lang is not None else "en" _UpperCamelCase : Any = tgt_lang _UpperCamelCase : str = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _UpperCamelCase : Optional[int] = num_madeup_words @property def snake_case__ ( self : Union[str, Any] ) ->int: '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def snake_case__ ( self : Optional[int] ) ->str: '''simple docstring''' return self._src_lang @src_lang.setter def snake_case__ ( self : List[str] , lowercase__ : int ) ->None: '''simple docstring''' _UpperCamelCase : Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def snake_case__ ( self : Optional[Any] , lowercase__ : Dict ) ->List[str]: '''simple docstring''' return self.sp_model.encode(__a , out_type=__a ) def snake_case__ ( self : List[Any] , lowercase__ : List[str] ) ->Tuple: '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__a , self.encoder[self.unk_token] ) def snake_case__ ( self : str , lowercase__ : Optional[int] ) ->str: '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__a , self.unk_token ) def snake_case__ ( self : Union[str, Any] , lowercase__ : int ) ->Optional[int]: '''simple docstring''' _UpperCamelCase : Union[str, Any] = [] _UpperCamelCase : List[Any] = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__a ) + token _UpperCamelCase : List[str] = [] else: current_sub_tokens.append(__a ) out_string += self.sp_model.decode(__a ) return out_string.strip() def snake_case__ ( self : str , lowercase__ : Dict , lowercase__ : Tuple = None , lowercase__ : str = False ) ->List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__a , token_ids_a=__a , already_has_special_tokens=__a ) _UpperCamelCase : Optional[int] = [1] * len(self.prefix_tokens ) _UpperCamelCase : Tuple = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__a )) + suffix_ones return prefix_ones + ([0] * len(__a )) + ([0] * len(__a )) + suffix_ones def snake_case__ ( self : Optional[Any] , lowercase__ : Dict , lowercase__ : int = None ) ->List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case__ ( self : Union[str, Any] ) ->Dict: '''simple docstring''' _UpperCamelCase : Any = {self.convert_ids_to_tokens(__a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ) ->Dict: '''simple docstring''' _UpperCamelCase : int = self.__dict__.copy() _UpperCamelCase : Union[str, Any] = None return state def __setstate__( self : Union[str, Any] , lowercase__ : Optional[Any] ) ->None: '''simple docstring''' _UpperCamelCase : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _UpperCamelCase : int = {} _UpperCamelCase : Dict = load_spm(self.spm_file , self.sp_model_kwargs ) def snake_case__ ( self : Optional[int] , lowercase__ : Any , lowercase__ : int = None ) ->Tuple[str]: '''simple docstring''' _UpperCamelCase : List[str] = Path(__a ) if not save_dir.is_dir(): raise OSError(f'''{save_directory} should be a directory''' ) _UpperCamelCase : Any = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) _UpperCamelCase : Tuple = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , __a ) if os.path.abspath(self.spm_file ) != os.path.abspath(__a ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __a ) elif not os.path.isfile(self.spm_file ): with open(__a , "wb" ) as fi: _UpperCamelCase : Tuple = self.sp_model.serialized_model_proto() fi.write(__a ) return (str(__a ), str(__a )) def snake_case__ ( self : str , lowercase__ : Optional[int] , lowercase__ : Tuple = "en" , lowercase__ : List[str] = None , lowercase__ : Tuple = "ro" , **lowercase__ : List[Any] , ) ->BatchEncoding: '''simple docstring''' _UpperCamelCase : Optional[Any] = src_lang _UpperCamelCase : int = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__a , __a , **__a ) def snake_case__ ( self : Dict , lowercase__ : Any , lowercase__ : Dict , lowercase__ : Optional[int] , **lowercase__ : Any ) ->int: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" ) _UpperCamelCase : Union[str, Any] = src_lang _UpperCamelCase : Any = self(__a , add_special_tokens=__a , **__a ) _UpperCamelCase : List[str] = self.get_lang_id(__a ) _UpperCamelCase : str = tgt_lang_id return inputs def snake_case__ ( self : Optional[int] ) ->int: '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def snake_case__ ( self : str ) ->str: '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case__ ( self : List[str] , lowercase__ : Dict ) ->None: '''simple docstring''' _UpperCamelCase : Tuple = self.get_lang_token(__a ) _UpperCamelCase : List[str] = self.lang_token_to_id[lang_token] _UpperCamelCase : Dict = [self.cur_lang_id] _UpperCamelCase : List[Any] = [self.eos_token_id] def snake_case__ ( self : List[Any] , lowercase__ : Dict ) ->None: '''simple docstring''' _UpperCamelCase : List[Any] = self.get_lang_token(__a ) _UpperCamelCase : Dict = self.lang_token_to_id[lang_token] _UpperCamelCase : str = [self.cur_lang_id] _UpperCamelCase : str = [self.eos_token_id] def snake_case__ ( self : List[str] , lowercase__ : Tuple ) ->str: '''simple docstring''' return self.lang_code_to_token[lang] def snake_case__ ( self : List[str] , lowercase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCamelCase : List[Any] = self.get_lang_token(__a ) return self.lang_token_to_id[lang_token] def __A ( UpperCAmelCase ,UpperCAmelCase ) -> sentencepiece.SentencePieceProcessor: '''simple docstring''' _UpperCamelCase : str = sentencepiece.SentencePieceProcessor(**__snake_case ) spm.Load(str(__snake_case ) ) return spm def __A ( UpperCAmelCase ) -> Union[Dict, List]: '''simple docstring''' with open(__snake_case ,"r" ) as f: return json.load(__snake_case ) def __A ( UpperCAmelCase ,UpperCAmelCase ) -> None: '''simple docstring''' with open(__snake_case ,"w" ) as f: json.dump(__snake_case ,__snake_case ,indent=2 )
712
'''simple docstring''' import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging lowerCAmelCase_ : Optional[int] = logging.get_logger(__name__) lowerCAmelCase_ : int = r""" Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. """ class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @add_start_docstrings(lowercase__ ) def __call__( self : str , lowercase__ : torch.LongTensor , lowercase__ : torch.FloatTensor , **lowercase__ : Tuple ) ->bool: '''simple docstring''' raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase__ : int , lowercase__ : Optional[int] = None ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : Optional[Any] = max_length _UpperCamelCase : str = max_position_embeddings @add_start_docstrings(lowercase__ ) def __call__( self : Optional[int] , lowercase__ : torch.LongTensor , lowercase__ : torch.FloatTensor , **lowercase__ : Optional[Any] ) ->bool: '''simple docstring''' _UpperCamelCase : List[Any] = input_ids.shape[-1] _UpperCamelCase : Optional[int] = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " f'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' "exceptions, performance degradation, or nothing at all." ) return is_done class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] , lowercase__ : int , lowercase__ : int ) ->int: '''simple docstring''' warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " f'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' "with `max_length = start_length + max_new_tokens` instead." , lowercase__ , ) _UpperCamelCase : Dict = start_length _UpperCamelCase : Optional[Any] = max_new_tokens _UpperCamelCase : List[Any] = start_length + max_new_tokens @add_start_docstrings(lowercase__ ) def __call__( self : Dict , lowercase__ : torch.LongTensor , lowercase__ : torch.FloatTensor , **lowercase__ : Dict ) ->bool: '''simple docstring''' return input_ids.shape[-1] >= self.max_length class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase__ : float , lowercase__ : Optional[float] = None ) ->Dict: '''simple docstring''' _UpperCamelCase : Dict = max_time _UpperCamelCase : int = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(lowercase__ ) def __call__( self : Dict , lowercase__ : torch.LongTensor , lowercase__ : torch.FloatTensor , **lowercase__ : Tuple ) ->bool: '''simple docstring''' return time.time() - self.initial_timestamp > self.max_time class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @add_start_docstrings(lowercase__ ) def __call__( self : Optional[int] , lowercase__ : torch.LongTensor , lowercase__ : torch.FloatTensor , **lowercase__ : List[Any] ) ->bool: '''simple docstring''' return any(criteria(lowercase__ , lowercase__ ) for criteria in self ) @property def snake_case__ ( self : Tuple ) ->Optional[int]: '''simple docstring''' for stopping_criterium in self: if isinstance(lowercase__ , lowercase__ ): return stopping_criterium.max_length elif isinstance(lowercase__ , lowercase__ ): return stopping_criterium.max_length return None def __A ( UpperCAmelCase ,UpperCAmelCase ) -> StoppingCriteriaList: '''simple docstring''' _UpperCamelCase : Optional[int] = stopping_criteria.max_length _UpperCamelCase : Optional[Any] = deepcopy(UpperCAmelCase ) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" ,UpperCAmelCase ) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=UpperCAmelCase ) ) return new_stopping_criteria
204
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : Union[str, Any] = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } UpperCAmelCase_ : Union[str, Any] = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def UpperCamelCase ( _A : int )-> Union[str, Any]: """simple docstring""" A__ = {} with open(_A , "r" ) as file: for line_number, line in enumerate(_A ): A__ = line.strip() if line: A__ = line.split() A__ = line_number A__ = words[0] A__ = value return result def UpperCamelCase ( _A : int , _A : List[str] , _A : Union[str, Any] , _A : Dict , _A : Any )-> Union[str, Any]: """simple docstring""" for attribute in key.split("." ): A__ = getattr(_A , _A ) A__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_A ): A__ = PARAM_MAPPING[full_name.split("." )[-1]] A__ = "param" if weight_type is not None and weight_type != "param": A__ = getattr(_A , _A ).shape elif weight_type is not None and weight_type == "param": A__ = hf_pointer for attribute in hf_param_name.split("." ): A__ = getattr(_A , _A ) A__ = shape_pointer.shape # let's reduce dimension A__ = value[0] else: A__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": A__ = value elif weight_type == "weight_g": A__ = value elif weight_type == "weight_v": A__ = value elif weight_type == "bias": A__ = value elif weight_type == "param": for attribute in hf_param_name.split("." ): A__ = getattr(_A , _A ) A__ = value else: A__ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : Dict , _A : Dict , _A : Optional[int] )-> str: """simple docstring""" A__ = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_A ): A__ = PARAM_MAPPING[full_name.split("." )[-1]] A__ = "param" if weight_type is not None and weight_type != "param": A__ = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": A__ = ".".join([key, hf_param_name] ) else: A__ = key A__ = value if "lm_head" in full_key else value[0] UpperCAmelCase_ : str = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def UpperCamelCase ( _A : Tuple , _A : Union[str, Any] , _A : Optional[int]=None , _A : List[Any]=None )-> Union[str, Any]: """simple docstring""" A__ = False for key, mapped_key in MAPPING.items(): A__ = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A__ = True if "*" in mapped_key: A__ = name.split(_A )[0].split("." )[-2] A__ = mapped_key.replace("*" , _A ) if "weight_g" in name: A__ = "weight_g" elif "weight_v" in name: A__ = "weight_v" elif "bias" in name: A__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj A__ = "weight" else: A__ = None if hf_dict is not None: rename_dict(_A , _A , _A , _A , _A ) else: set_recursively(_A , _A , _A , _A , _A ) return is_used return is_used def UpperCamelCase ( _A : Dict , _A : str , _A : Dict )-> Tuple: """simple docstring""" A__ = [] A__ = fairseq_model.state_dict() A__ = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): A__ = False if "conv_layers" in name: load_conv_layer( _A , _A , _A , _A , hf_model.config.feat_extract_norm == "group" , ) A__ = True else: A__ = load_wavaveca_layer(_A , _A , _A ) if not is_used: unused_weights.append(_A ) logger.warning(f"""Unused weights: {unused_weights}""" ) def UpperCamelCase ( _A : Optional[int] , _A : str , _A : Optional[Any] , _A : Any , _A : Any )-> Union[str, Any]: """simple docstring""" A__ = full_name.split("conv_layers." )[-1] A__ = name.split("." ) A__ = int(items[0] ) A__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) A__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) A__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) A__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) A__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(_A ) @torch.no_grad() def UpperCamelCase ( _A : Optional[Any] , _A : List[Any] , _A : Tuple=None , _A : List[str]=None , _A : str=True , _A : Dict=False )-> List[str]: """simple docstring""" if config_path is not None: A__ = WavaVecaConfig.from_pretrained(_A ) else: A__ = WavaVecaConfig() if is_seq_class: A__ = read_txt_into_dict(_A ) A__ = idalabel A__ = WavaVecaForSequenceClassification(_A ) A__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_A , return_attention_mask=_A , ) feature_extractor.save_pretrained(_A ) elif is_finetuned: if dict_path: A__ = Dictionary.load(_A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A__ = target_dict.pad_index A__ = target_dict.bos_index A__ = target_dict.eos_index A__ = len(target_dict.symbols ) A__ = os.path.join(_A , "vocab.json" ) if not os.path.isdir(_A ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_A ) ) return os.makedirs(_A , exist_ok=_A ) A__ = target_dict.indices # fairseq has the <pad> and <s> switched A__ = 0 A__ = 1 with open(_A , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_A , _A ) A__ = WavaVecaCTCTokenizer( _A , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_A , ) A__ = True if config.feat_extract_norm == "layer" else False A__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_A , return_attention_mask=_A , ) A__ = WavaVecaProcessor(feature_extractor=_A , tokenizer=_A ) processor.save_pretrained(_A ) A__ = WavaVecaForCTC(_A ) else: A__ = WavaVecaForPreTraining(_A ) if is_finetuned or is_seq_class: A__ , A__ , A__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: A__ = argparse.Namespace(task="audio_pretraining" ) A__ = fairseq.tasks.setup_task(_A ) A__ , A__ , A__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_A ) A__ = model[0].eval() recursively_load_weights(_A , _A , not is_finetuned ) hf_wavavec.save_pretrained(_A ) if __name__ == "__main__": UpperCAmelCase_ : str = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) UpperCAmelCase_ : List[str] = parser.parse_args() UpperCAmelCase_ : Dict = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
491
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCamelCase ( _A : Union[str, Any] , _A : Optional[Any] , _A : List[Any] )-> Any: """simple docstring""" A__ = OmegaConf.load(_A ) A__ = torch.load(_A , map_location="cpu" )["model"] A__ = list(state_dict.keys() ) # extract state_dict for VQVAE A__ = {} A__ = "first_stage_model." for key in keys: if key.startswith(_A ): A__ = state_dict[key] # extract state_dict for UNetLDM A__ = {} A__ = "model.diffusion_model." for key in keys: if key.startswith(_A ): A__ = state_dict[key] A__ = config.model.params.first_stage_config.params A__ = config.model.params.unet_config.params A__ = VQModel(**_A ).eval() vqvae.load_state_dict(_A ) A__ = UNetLDMModel(**_A ).eval() unet.load_state_dict(_A ) A__ = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=_A , ) A__ = LDMPipeline(_A , _A , _A ) pipeline.save_pretrained(_A ) if __name__ == "__main__": UpperCAmelCase_ : Tuple = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", type=str, required=True) parser.add_argument("--config_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) UpperCAmelCase_ : str = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
491
1
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def snake_case_ (*__A : List[str] , __A : List[str] = None , __A : Dict=True , __A : Any=2 ) -> Any: from .. import __version__ __lowerCAmelCase : Optional[Any] = take_from __lowerCAmelCase : Any = () if not isinstance(args[0] , lowerCamelCase__ ): __lowerCAmelCase : Optional[int] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(lowerCamelCase__ ).base_version ) >= version.parse(lowerCamelCase__ ): raise ValueError( f'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' f''' version {__version__} is >= {version_name}''' ) __lowerCAmelCase : List[Any] = None if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowerCamelCase__ ),) __lowerCAmelCase : List[Any] = f'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(lowerCamelCase__ , lowerCamelCase__ ): values += (getattr(lowerCamelCase__ , lowerCamelCase__ ),) __lowerCAmelCase : Any = f'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: __lowerCAmelCase : Optional[int] = f'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: __lowerCAmelCase : Optional[int] = warning + " " if standard_warn else "" warnings.warn(warning + message , lowerCamelCase__ , stacklevel=lowerCamelCase__ ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) > 0: __lowerCAmelCase : str = inspect.getouterframes(inspect.currentframe() )[1] __lowerCAmelCase : Union[str, Any] = call_frame.filename __lowerCAmelCase : List[str] = call_frame.lineno __lowerCAmelCase : Dict = call_frame.function __lowerCAmelCase : Tuple = next(iter(deprecated_kwargs.items() ) ) raise TypeError(f'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(lowerCamelCase__ ) == 0: return elif len(lowerCamelCase__ ) == 1: return values[0] return values
710
import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def snake_case_ (__A : int ) -> str: __lowerCAmelCase : str = int(__A ) __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase : str = t // 3_6_0_0, (t // 6_0) % 6_0, t % 6_0 return f'''{h}:{m:02d}:{s:02d}''' if h != 0 else f'''{m:02d}:{s:02d}''' def snake_case_ (__A : Dict , __A : Any , __A : List[str] , __A : Optional[int] , __A : Dict=3_0_0 ) -> int: # docstyle-ignore return f''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def snake_case_ (__A : Optional[Any] ) -> Tuple: __lowerCAmelCase : List[Any] = """<table border=\"1\" class=\"dataframe\">\n""" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: __lowerCAmelCase : Any = f'''{elt:.6f}''' if isinstance(__A , __A ) else str(__A ) html_code += f''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class SCREAMING_SNAKE_CASE : """simple docstring""" lowerCamelCase : Optional[int] =5 lowerCamelCase : Tuple =0.2 def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : bool = True , lowerCAmelCase : Optional["NotebookTrainingTracker"] = None , lowerCAmelCase : int = 3_00 , ) -> int: """simple docstring""" __lowerCAmelCase : Optional[int] = total __lowerCAmelCase : Dict = """""" if prefix is None else prefix __lowerCAmelCase : str = leave __lowerCAmelCase : Optional[Any] = parent __lowerCAmelCase : Optional[Any] = width __lowerCAmelCase : List[str] = None __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : List[str] = None def SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase : int , lowerCAmelCase : bool = False , lowerCAmelCase : str = None ) -> Union[str, Any]: """simple docstring""" __lowerCAmelCase : str = value if comment is not None: __lowerCAmelCase : Optional[Any] = comment if self.last_value is None: __lowerCAmelCase : List[Any] = time.time() __lowerCAmelCase : Optional[int] = value __lowerCAmelCase : Optional[int] = None __lowerCAmelCase : Any = self.warmup __lowerCAmelCase : List[str] = 1 self.update_bar(lowerCAmelCase ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 __lowerCAmelCase : Optional[Any] = time.time() __lowerCAmelCase : Optional[int] = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: __lowerCAmelCase : Optional[Any] = self.elapsed_time / (value - self.start_value) else: __lowerCAmelCase : str = None if value >= self.total: __lowerCAmelCase : Any = self.total __lowerCAmelCase : List[str] = None if not self.leave: self.close() elif self.average_time_per_item is not None: __lowerCAmelCase : List[str] = self.average_time_per_item * (self.total - value) self.update_bar(lowerCAmelCase ) __lowerCAmelCase : str = value __lowerCAmelCase : Union[str, Any] = current_time if self.average_time_per_item is None: __lowerCAmelCase : Optional[Any] = 1 else: __lowerCAmelCase : List[str] = max(int(self.update_every / self.average_time_per_item ) , 1 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[str] = """ """ * (len(str(self.total ) ) - len(str(lowerCAmelCase ) )) + str(lowerCAmelCase ) if self.elapsed_time is None: __lowerCAmelCase : List[str] = f'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: __lowerCAmelCase : Dict = f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )}''' else: __lowerCAmelCase : Dict = ( f'''[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <''' f''' {format_time(self.predicted_remaining )}''' ) self.label += f''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment ) == 0 else f''', {self.comment}]''' self.display() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: """simple docstring""" __lowerCAmelCase : str = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: __lowerCAmelCase : List[str] = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def SCREAMING_SNAKE_CASE ( self : List[str] ) -> str: """simple docstring""" if self.parent is None and self.output is not None: self.output.update(disp.HTML("""""" ) ) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[Any]=None ) -> Any: """simple docstring""" super().__init__(lowerCAmelCase ) __lowerCAmelCase : str = None if column_names is None else [column_names] __lowerCAmelCase : List[str] = None def SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: __lowerCAmelCase : Optional[int] = disp.display(disp.HTML(self.html_code ) , display_id=lowerCAmelCase ) else: self.output.update(disp.HTML(self.html_code ) ) def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" if self.inner_table is None: __lowerCAmelCase : Tuple = [list(values.keys() ), list(values.values() )] else: __lowerCAmelCase : Dict = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(lowerCAmelCase ) __lowerCAmelCase : List[str] = columns self.inner_table.append([values[c] for c in columns] ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase : Any , lowerCAmelCase : Tuple=None , lowerCAmelCase : List[str]=3_00 ) -> Tuple: """simple docstring""" __lowerCAmelCase : Union[str, Any] = NotebookProgressBar(lowerCAmelCase , prefix=lowerCAmelCase , parent=self , width=lowerCAmelCase ) return self.child_bar def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: """simple docstring""" __lowerCAmelCase : Optional[Any] = None self.display() class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Optional[int] ) -> Tuple: """simple docstring""" __lowerCAmelCase : int = None __lowerCAmelCase : Any = None __lowerCAmelCase : Optional[Any] = False def SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , **lowerCAmelCase : Any ) -> str: """simple docstring""" __lowerCAmelCase : int = """Epoch""" if args.evaluation_strategy == IntervalStrategy.EPOCH else """Step""" __lowerCAmelCase : Tuple = 0 __lowerCAmelCase : str = 0 __lowerCAmelCase : List[Any] = [self.first_column] + ["""Training Loss"""] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("""Validation Loss""" ) __lowerCAmelCase : int = NotebookTrainingTracker(state.max_steps , lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : int , **lowerCAmelCase : Tuple ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Any = int(state.epoch ) if int(state.epoch ) == state.epoch else f'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=f'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) __lowerCAmelCase : Optional[Any] = False def SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple=None , **lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" if not has_length(lowerCAmelCase ): return if self.prediction_bar is None: if self.training_tracker is not None: __lowerCAmelCase : List[str] = self.training_tracker.add_child(len(lowerCAmelCase ) ) else: __lowerCAmelCase : List[Any] = NotebookProgressBar(len(lowerCAmelCase ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple ) -> Optional[int]: """simple docstring""" if self.prediction_bar is not None: self.prediction_bar.close() __lowerCAmelCase : List[str] = None def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : str , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any=None , **lowerCAmelCase : Tuple ) -> List[str]: """simple docstring""" if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: __lowerCAmelCase : List[str] = {"""Training Loss""": logs["""loss"""]} # First column is necessarily Step sine we're not in epoch eval strategy __lowerCAmelCase : Tuple = state.global_step self.training_tracker.write_line(lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : int=None , **lowerCAmelCase : Union[str, Any] ) -> str: """simple docstring""" if self.training_tracker is not None: __lowerCAmelCase : Union[str, Any] = {"""Training Loss""": """No log""", """Validation Loss""": """No log"""} for log in reversed(state.log_history ): if "loss" in log: __lowerCAmelCase : int = log["""loss"""] break if self.first_column == "Epoch": __lowerCAmelCase : int = int(state.epoch ) else: __lowerCAmelCase : Optional[int] = state.global_step __lowerCAmelCase : Union[str, Any] = """eval""" for k in metrics: if k.endswith("""_loss""" ): __lowerCAmelCase : Dict = re.sub(r"""\_loss$""" , """""" , lowerCAmelCase ) __lowerCAmelCase : Tuple = metrics.pop("""total_flos""" , lowerCAmelCase ) __lowerCAmelCase : List[Any] = metrics.pop("""epoch""" , lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = metrics.pop(f'''{metric_key_prefix}_runtime''' , lowerCAmelCase ) __lowerCAmelCase : Tuple = metrics.pop(f'''{metric_key_prefix}_samples_per_second''' , lowerCAmelCase ) __lowerCAmelCase : List[Any] = metrics.pop(f'''{metric_key_prefix}_steps_per_second''' , lowerCAmelCase ) __lowerCAmelCase : Dict = metrics.pop(f'''{metric_key_prefix}_jit_compilation_time''' , lowerCAmelCase ) for k, v in metrics.items(): if k == f'''{metric_key_prefix}_loss''': __lowerCAmelCase : Tuple = v else: __lowerCAmelCase : Any = k.split("""_""" ) __lowerCAmelCase : Optional[Any] = """ """.join([part.capitalize() for part in splits[1:]] ) __lowerCAmelCase : List[str] = v self.training_tracker.write_line(lowerCAmelCase ) self.training_tracker.remove_child() __lowerCAmelCase : int = None # Evaluation takes a long time so we should force the next update. __lowerCAmelCase : str = True def SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : List[str] , lowerCAmelCase : Dict , **lowerCAmelCase : Any ) -> Tuple: """simple docstring""" self.training_tracker.update( state.global_step , comment=f'''Epoch {int(state.epoch )}/{state.num_train_epochs}''' , force_update=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = None
218
0
"""simple docstring""" def __A ( a_ : Optional[int] )-> Optional[int]: # noqa: E741 '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = len(a_ ) SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Optional[int] = [0] * n SCREAMING_SNAKE_CASE : Optional[int] = [False] * n SCREAMING_SNAKE_CASE : List[str] = [False] * n def dfs(a_ : int , a_ : Optional[Any] , a_ : List[Any] , a_ : List[Any] ): if parent == root: out_edge_count += 1 SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Dict = at for to in l[at]: if to == parent: pass elif not visited[to]: SCREAMING_SNAKE_CASE : str = dfs(a_ , a_ , a_ , a_ ) SCREAMING_SNAKE_CASE : List[str] = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: SCREAMING_SNAKE_CASE : Optional[Any] = True # AP found via cycle if at == low[to]: SCREAMING_SNAKE_CASE : List[Any] = True else: SCREAMING_SNAKE_CASE : List[str] = min(low[at] , a_ ) return out_edge_count for i in range(a_ ): if not visited[i]: SCREAMING_SNAKE_CASE : str = 0 SCREAMING_SNAKE_CASE : int = dfs(a_ , a_ , -1 , a_ ) SCREAMING_SNAKE_CASE : str = out_edge_count > 1 for x in range(len(a_ ) ): if is_art[x] is True: print(a_ ) # Adjacency list of graph lowerCamelCase__ : int = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
698
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase__ : Union[str, Any] = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ : str = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys lowerCamelCase__ : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
698
1
from math import asin, atan, cos, radians, sin, sqrt, tan lowerCAmelCase_ = 6_378_137.0 lowerCAmelCase_ = 6_356_752.314_245 lowerCAmelCase_ = 6_378_137 def snake_case ( UpperCAmelCase : float, UpperCAmelCase : float, UpperCAmelCase : float, UpperCAmelCase : float ): A = (AXIS_A - AXIS_B) / AXIS_A A = atan((1 - flattening) * tan(radians(UpperCAmelCase ) ) ) A = atan((1 - flattening) * tan(radians(UpperCAmelCase ) ) ) A = radians(UpperCAmelCase ) A = radians(UpperCAmelCase ) # Equation A = sin((phi_a - phi_a) / 2 ) A = sin((lambda_a - lambda_a) / 2 ) # Square both values sin_sq_phi *= sin_sq_phi sin_sq_lambda *= sin_sq_lambda A = sqrt(sin_sq_phi + (cos(UpperCAmelCase ) * cos(UpperCAmelCase ) * sin_sq_lambda) ) return 2 * RADIUS * asin(UpperCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
110
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def snake_case ( UpperCAmelCase : List[Any] ): A = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(UpperCAmelCase, UpperCAmelCase ) def snake_case ( UpperCAmelCase : Union[str, Any] ): A = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: A = s_dict.pop(UpperCAmelCase ) elif "subsample" in key: A = s_dict.pop(UpperCAmelCase ) def snake_case ( UpperCAmelCase : Union[str, Any] ): A , A = emb.weight.shape A = nn.Linear(UpperCAmelCase, UpperCAmelCase, bias=UpperCAmelCase ) A = emb.weight.data return lin_layer def snake_case ( UpperCAmelCase : str, UpperCAmelCase : str ): A = torch.load(UpperCAmelCase, map_location='cpu' ) A = mam_aaa['args'] A = mam_aaa['model'] A = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(UpperCAmelCase ) rename_keys(UpperCAmelCase ) A = state_dict['decoder.embed_tokens.weight'].shape[0] A = args.share_decoder_input_output_embed A = [int(UpperCAmelCase ) for i in args.conv_kernel_sizes.split(',' )] A = SpeechaTextConfig( vocab_size=UpperCAmelCase, max_source_positions=args.max_source_positions, max_target_positions=args.max_target_positions, encoder_layers=args.encoder_layers, decoder_layers=args.decoder_layers, encoder_attention_heads=args.encoder_attention_heads, decoder_attention_heads=args.decoder_attention_heads, encoder_ffn_dim=args.encoder_ffn_embed_dim, decoder_ffn_dim=args.decoder_ffn_embed_dim, d_model=args.encoder_embed_dim, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function='relu', num_conv_layers=len(UpperCAmelCase ), conv_channels=args.conv_channels, conv_kernel_sizes=UpperCAmelCase, input_feat_per_channel=args.input_feat_per_channel, input_channels=args.input_channels, tie_word_embeddings=UpperCAmelCase, num_beams=5, max_length=2_00, use_cache=UpperCAmelCase, decoder_start_token_id=2, early_stopping=UpperCAmelCase, ) A = SpeechaTextForConditionalGeneration(UpperCAmelCase ) A , A = model.model.load_state_dict(UpperCAmelCase, strict=UpperCAmelCase ) if len(UpperCAmelCase ) > 0 and not set(UpperCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' f' but all the following weights are missing {missing}' ) if tie_embeds: A = make_linear_from_emb(model.model.decoder.embed_tokens ) else: A = lm_head_weights model.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowerCAmelCase_ = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
110
1
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class _A : '''simple docstring''' def __init__( self : Optional[int] , lowerCamelCase : str = "cpu" , lowerCamelCase : str = "openai/clip-vit-large-patch14" ): '''simple docstring''' __lowercase = device __lowercase = CLIPTokenizerFast.from_pretrained(lowerCamelCase ) __lowercase = [0.4814_5466, 0.457_8275, 0.4082_1073] __lowercase = [0.2686_2954, 0.2613_0258, 0.2757_7711] __lowercase = torchvision.transforms.Normalize(self.image_mean , self.image_std ) __lowercase = torchvision.transforms.Resize(224 ) __lowercase = torchvision.transforms.CenterCrop(224 ) def _snake_case ( self : Optional[Any] , lowerCamelCase : List[str] ): '''simple docstring''' __lowercase = self.resize(lowerCamelCase ) __lowercase = self.center_crop(lowerCamelCase ) __lowercase = self.normalize(lowerCamelCase ) return images def __call__( self : Optional[Any] , lowerCamelCase : Any=None , lowerCamelCase : Optional[Any]=None , **lowerCamelCase : List[str] ): '''simple docstring''' __lowercase = self.tokenizer(text=lowerCamelCase , **lowerCamelCase ) __lowercase = self.preprocess_img(lowerCamelCase ) __lowercase = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class _A ( nn.Module ): '''simple docstring''' def __init__( self : Any , lowerCamelCase : Tuple=10 , lowerCamelCase : str=0.01 , lowerCamelCase : Tuple=None , lowerCamelCase : Dict=None , lowerCamelCase : List[Any]=None , lowerCamelCase : str=None , lowerCamelCase : List[Any]=None , lowerCamelCase : str=None , lowerCamelCase : int=False , lowerCamelCase : int=True , lowerCamelCase : Union[str, Any]="image" , lowerCamelCase : Any=True , lowerCamelCase : str=False , lowerCamelCase : Union[str, Any]=False , lowerCamelCase : Optional[Any]=False , ): '''simple docstring''' super().__init__() __lowercase = None __lowercase = device if device else get_device() if vqgan: __lowercase = vqgan else: __lowercase = load_vqgan(self.device , conf_path=lowerCamelCase , ckpt_path=lowerCamelCase ) self.vqgan.eval() if clip: __lowercase = clip else: __lowercase = CLIPModel.from_pretrained("openai/clip-vit-base-patch32" ) self.clip.to(self.device ) __lowercase = ProcessorGradientFlow(device=self.device ) __lowercase = iterations __lowercase = lr __lowercase = log __lowercase = make_grid __lowercase = return_val __lowercase = quantize __lowercase = self.vqgan.decoder.z_shape def _snake_case ( self : Tuple , lowerCamelCase : Optional[int]=None , lowerCamelCase : List[Any]=None , lowerCamelCase : Dict=5 , lowerCamelCase : Dict=True ): '''simple docstring''' __lowercase = [] if output_path is None: __lowercase = "./animation.gif" if input_path is None: __lowercase = self.save_path __lowercase = sorted(glob(input_path + "/*" ) ) if not len(lowerCamelCase ): raise ValueError( "No images found in save path, aborting (did you pass save_intermediate=True to the generate" " function?)" ) if len(lowerCamelCase ) == 1: print("Only one image found in save path, (did you pass save_intermediate=True to the generate function?)" ) __lowercase = total_duration / len(lowerCamelCase ) __lowercase = [frame_duration] * len(lowerCamelCase ) if extend_frames: __lowercase = 1.5 __lowercase = 3 for file_name in paths: if file_name.endswith(".png" ): images.append(imageio.imread(lowerCamelCase ) ) imageio.mimsave(lowerCamelCase , lowerCamelCase , duration=lowerCamelCase ) print(f"""gif saved to {output_path}""" ) def _snake_case ( self : str , lowerCamelCase : str=None , lowerCamelCase : int=None ): '''simple docstring''' if not (path or img): raise ValueError("Input either path or tensor" ) if img is not None: raise NotImplementedError __lowercase = preprocess(Image.open(lowerCamelCase ) , target_image_size=256 ).to(self.device ) __lowercase = preprocess_vqgan(lowerCamelCase ) __lowercase , *__lowercase = self.vqgan.encode(lowerCamelCase ) return z def _snake_case ( self : Tuple , lowerCamelCase : int ): '''simple docstring''' __lowercase = self.latent.detach().requires_grad_() __lowercase = base_latent + transform_vector if self.quantize: __lowercase , *__lowercase = self.vqgan.quantize(lowerCamelCase ) else: __lowercase = trans_latent return self.vqgan.decode(lowerCamelCase ) def _snake_case ( self : Optional[int] , lowerCamelCase : Optional[Any] , lowerCamelCase : str , lowerCamelCase : List[Any]=None ): '''simple docstring''' __lowercase = self.clip_preprocessor(text=lowerCamelCase , images=lowerCamelCase , return_tensors="pt" , padding=lowerCamelCase ) __lowercase = self.clip(**lowerCamelCase ) __lowercase = clip_outputs.logits_per_image if weights is not None: __lowercase = similarity_logits * weights return similarity_logits.sum() def _snake_case ( self : Dict , lowerCamelCase : str , lowerCamelCase : List[str] , lowerCamelCase : Tuple ): '''simple docstring''' __lowercase = self._get_clip_similarity(pos_prompts["prompts"] , lowerCamelCase , weights=(1 / pos_prompts["weights"]) ) if neg_prompts: __lowercase = self._get_clip_similarity(neg_prompts["prompts"] , lowerCamelCase , weights=neg_prompts["weights"] ) else: __lowercase = torch.tensor([1] , device=self.device ) __lowercase = -torch.log(lowerCamelCase ) + torch.log(lowerCamelCase ) return loss def _snake_case ( self : Dict , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] , lowerCamelCase : Optional[int] ): '''simple docstring''' __lowercase = torch.randn_like(self.latent , requires_grad=lowerCamelCase , device=self.device ) __lowercase = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() __lowercase = self._add_vector(lowerCamelCase ) __lowercase = loop_post_process(lowerCamelCase ) __lowercase = self._get_CLIP_loss(lowerCamelCase , lowerCamelCase , lowerCamelCase ) print("CLIP loss" , lowerCamelCase ) if self.log: wandb.log({"CLIP Loss": clip_loss} ) clip_loss.backward(retain_graph=lowerCamelCase ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def _snake_case ( self : Optional[Any] , lowerCamelCase : Dict , lowerCamelCase : Tuple , lowerCamelCase : int ): '''simple docstring''' wandb.init(reinit=lowerCamelCase , project="face-editor" ) wandb.config.update({"Positive Prompts": positive_prompts} ) wandb.config.update({"Negative Prompts": negative_prompts} ) wandb.config.update({"lr": self.lr, "iterations": self.iterations} ) if image_path: __lowercase = Image.open(lowerCamelCase ) __lowercase = image.resize((256, 256) ) wandb.log("Original Image" , wandb.Image(lowerCamelCase ) ) def _snake_case ( self : int , lowerCamelCase : int ): '''simple docstring''' if not prompts: return [] __lowercase = [] __lowercase = [] if isinstance(lowerCamelCase , lowerCamelCase ): __lowercase = [prompt.strip() for prompt in prompts.split("|" )] for prompt in prompts: if isinstance(lowerCamelCase , (tuple, list) ): __lowercase = prompt[0] __lowercase = float(prompt[1] ) elif ":" in prompt: __lowercase , __lowercase = prompt.split(":" ) __lowercase = float(lowerCamelCase ) else: __lowercase = prompt __lowercase = 1.0 processed_prompts.append(lowerCamelCase ) weights.append(lowerCamelCase ) return { "prompts": processed_prompts, "weights": torch.tensor(lowerCamelCase , device=self.device ), } def _snake_case ( self : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any]=None , lowerCamelCase : List[str]=None , lowerCamelCase : Dict=True , lowerCamelCase : Dict=False , lowerCamelCase : Optional[int]=True , lowerCamelCase : List[str]=True , lowerCamelCase : Any=None , ): '''simple docstring''' if image_path: __lowercase = self._get_latent(lowerCamelCase ) else: __lowercase = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(lowerCamelCase , lowerCamelCase , lowerCamelCase ) assert pos_prompts, "You must provide at least one positive prompt." __lowercase = self.process_prompts(lowerCamelCase ) __lowercase = self.process_prompts(lowerCamelCase ) if save_final and save_path is None: __lowercase = os.path.join("./outputs/" , "_".join(pos_prompts["prompts"] ) ) if not os.path.exists(lowerCamelCase ): os.makedirs(lowerCamelCase ) else: __lowercase = save_path + "_" + get_timestamp() os.makedirs(lowerCamelCase ) __lowercase = save_path __lowercase = self.vqgan.decode(self.latent )[0] if show_intermediate: print("Original Image" ) show_pil(custom_to_pil(lowerCamelCase ) ) __lowercase = loop_post_process(lowerCamelCase ) for iter, transformed_img in enumerate(self._optimize_CLIP(lowerCamelCase , lowerCamelCase , lowerCamelCase ) ): if show_intermediate: show_pil(lowerCamelCase ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}.png""" ) ) if self.log: wandb.log({"Image": wandb.Image(lowerCamelCase )} ) if show_final: show_pil(lowerCamelCase ) if save_final: transformed_img.save(os.path.join(self.save_path , f"""iter_{iter:03d}_final.png""" ) )
402
def snake_case_ ( _SCREAMING_SNAKE_CASE ): __lowercase = [] __lowercase = set({"(", "[", "{"} ) __lowercase = set({")", "]", "}"} ) __lowercase = {"{": "}", "[": "]", "(": ")"} for i in range(len(_SCREAMING_SNAKE_CASE ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_SCREAMING_SNAKE_CASE ) == 0 or (len(_SCREAMING_SNAKE_CASE ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_SCREAMING_SNAKE_CASE ) == 0 def snake_case_ ( ): __lowercase = input("Enter sequence of brackets: " ) if is_balanced(_SCREAMING_SNAKE_CASE ): print(_SCREAMING_SNAKE_CASE , "is balanced" ) else: print(_SCREAMING_SNAKE_CASE , "is not balanced" ) if __name__ == "__main__": main()
402
1
"""simple docstring""" import os # Precomputes a list of the 100 first triangular numbers UpperCAmelCase_ : Any = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def _A () -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = os.path.dirname(os.path.realpath(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE_ : List[str] = os.path.join(UpperCamelCase__ , '''words.txt''' ) SCREAMING_SNAKE_CASE_ : int = '''''' with open(UpperCamelCase__ ) as f: SCREAMING_SNAKE_CASE_ : Tuple = f.readline() SCREAMING_SNAKE_CASE_ : List[str] = [word.strip('''\"''' ) for word in words.strip('''\r\n''' ).split(''',''' )] SCREAMING_SNAKE_CASE_ : Optional[int] = [ word for word in [sum(ord(UpperCamelCase__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(UpperCamelCase__ ) if __name__ == "__main__": print(solution())
715
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = self.dummy_uncond_unet SCREAMING_SNAKE_CASE_ : int = ScoreSdeVeScheduler() SCREAMING_SNAKE_CASE_ : List[str] = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_) sde_ve.to(lowercase_) sde_ve.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : Dict = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=lowercase_).images SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : Optional[int] = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=lowercase_ , return_dict=lowercase_)[ 0 ] SCREAMING_SNAKE_CASE_ : Dict = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE_ : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE_ : str = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''google/ncsnpp-church-256''' SCREAMING_SNAKE_CASE_ : str = UNetaDModel.from_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Any = ScoreSdeVeScheduler.from_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Any = ScoreSdeVePipeline(unet=lowercase_ , scheduler=lowercase_) sde_ve.to(lowercase_) sde_ve.set_progress_bar_config(disable=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.manual_seed(0) SCREAMING_SNAKE_CASE_ : List[str] = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=lowercase_).images SCREAMING_SNAKE_CASE_ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE_ : int = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
176
0
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": lowercase_ = argparse.ArgumentParser( description=( """Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""roberta""", choices=["""roberta""", """gpt2"""]) parser.add_argument("""--model_name""", default="""roberta-large""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_roberta_048131723.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") lowercase_ = parser.parse_args() if args.model_type == "roberta": lowercase_ = RobertaForMaskedLM.from_pretrained(args.model_name) lowercase_ = """roberta""" elif args.model_type == "gpt2": lowercase_ = GPTaLMHeadModel.from_pretrained(args.model_name) lowercase_ = """transformer""" lowercase_ = model.state_dict() lowercase_ = {} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: lowercase_ = state_dict[f'''{prefix}.{param_name}'''] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: lowercase_ = f'''{prefix}.embeddings.{w}.weight''' lowercase_ = state_dict[param_name] for w in ["weight", "bias"]: lowercase_ = f'''{prefix}.embeddings.LayerNorm.{w}''' lowercase_ = state_dict[param_name] # Transformer Blocks # lowercase_ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: lowercase_ = state_dict[ f'''{prefix}.h.{teacher_idx}.{layer}.{w}''' ] lowercase_ = state_dict[f'''{prefix}.h.{teacher_idx}.attn.bias'''] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: lowercase_ = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}''' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: lowercase_ = state_dict[f'''{layer}'''] if args.vocab_transform: for w in ["weight", "bias"]: lowercase_ = state_dict[f'''lm_head.dense.{w}'''] lowercase_ = state_dict[f'''lm_head.layer_norm.{w}'''] elif args.model_type == "gpt2": for w in ["weight", "bias"]: lowercase_ = state_dict[f'''{prefix}.ln_f.{w}'''] lowercase_ = state_dict["""lm_head.weight"""] print(f'''N layers selected for distillation: {std_idx}''') print(f'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(f'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
235
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = {"""vocab_file""": """spm_char.model"""} lowercase_ = { """vocab_file""": { """microsoft/speecht5_asr""": """https://huggingface.co/microsoft/speecht5_asr/resolve/main/spm_char.model""", """microsoft/speecht5_tts""": """https://huggingface.co/microsoft/speecht5_tts/resolve/main/spm_char.model""", """microsoft/speecht5_vc""": """https://huggingface.co/microsoft/speecht5_vc/resolve/main/spm_char.model""", } } lowercase_ = { """microsoft/speecht5_asr""": 1_024, """microsoft/speecht5_tts""": 1_024, """microsoft/speecht5_vc""": 1_024, } class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : str = VOCAB_FILES_NAMES _UpperCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = ['input_ids', 'attention_mask'] def __init__( self : Optional[int] , a : Any , a : Any="<s>" , a : List[Any]="</s>" , a : List[str]="<unk>" , a : Any="<pad>" , a : Optional[Dict[str, Any]] = None , **a : Optional[Any] , )-> None: """simple docstring""" lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a , eos_token=a , unk_token=a , pad_token=a , sp_model_kwargs=self.sp_model_kwargs , **a , ) lowercase__ = vocab_file lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(a ) @property def SCREAMING_SNAKE_CASE_ ( self : Any )-> Tuple: """simple docstring""" return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE_ ( self : int )-> Tuple: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] )-> str: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None return state def __setstate__( self : Dict , a : Union[str, Any] )-> Union[str, Any]: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : str )-> List[str]: """simple docstring""" return self.sp_model.encode(a , out_type=a ) def SCREAMING_SNAKE_CASE_ ( self : int , a : Optional[Any] )-> str: """simple docstring""" return self.sp_model.piece_to_id(a ) def SCREAMING_SNAKE_CASE_ ( self : str , a : List[Any] )-> Dict: """simple docstring""" lowercase__ = self.sp_model.IdToPiece(a ) return token def SCREAMING_SNAKE_CASE_ ( self : str , a : Dict )-> List[str]: """simple docstring""" lowercase__ = [] lowercase__ = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(a ) + token lowercase__ = [] else: current_sub_tokens.append(a ) out_string += self.sp_model.decode(a ) return out_string.strip() def SCREAMING_SNAKE_CASE_ ( self : str , a : List[Any] , a : Optional[Any]=None )-> List[int]: """simple docstring""" if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self : int , a : List[int] , a : Optional[List[int]] = None , a : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) lowercase__ = [1] if token_ids_a is None: return ([0] * len(a )) + suffix_ones return ([0] * len(a )) + ([0] * len(a )) + suffix_ones def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , a : str , a : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ = os.path.join( a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a ) elif not os.path.isfile(self.vocab_file ): with open(a , 'wb' ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(a ) return (out_vocab_file,)
235
1
'''simple docstring''' from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[str] = """new-model""" if is_tf_available(): class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = NewModelConfig @require_tf class A_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase_ ( self : Dict ) -> Dict: UpperCAmelCase : str = 'bert-base-cased' UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : Optional[int] = TFAutoModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> List[str]: UpperCAmelCase : Dict = 'bert-base-cased' UpperCAmelCase : int = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = TFAutoModelForPreTraining.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def UpperCAmelCase_ ( self : Dict ) -> Any: for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : str = TFAutoModelForCausalLM.from_pretrained(lowercase_ ) UpperCAmelCase , UpperCAmelCase : int = TFAutoModelForCausalLM.from_pretrained(lowercase_ , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def UpperCAmelCase_ ( self : List[Any] ) -> Dict: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def UpperCAmelCase_ ( self : Dict ) -> List[str]: for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : List[Any] = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : List[Any] = TFAutoModelForMaskedLM.from_pretrained(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = TFAutoModelForMaskedLM.from_pretrained(lowercase_ , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def UpperCAmelCase_ ( self : int ) -> List[str]: for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase_ ) UpperCAmelCase , UpperCAmelCase : str = TFAutoModelForSeqaSeqLM.from_pretrained(lowercase_ , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def UpperCAmelCase_ ( self : Tuple ) -> Optional[int]: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase : Tuple = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = TFAutoModelForSequenceClassification.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow def UpperCAmelCase_ ( self : Optional[Any] ) -> Tuple: # for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: for model_name in ["bert-base-uncased"]: UpperCAmelCase : Dict = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : Optional[int] = TFAutoModelForQuestionAnswering.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) @slow @require_tensorflow_probability def UpperCAmelCase_ ( self : Optional[Any] ) -> Any: for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: UpperCAmelCase : str = AutoConfig.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : Tuple = TFAutoModelForTableQuestionAnswering.from_pretrained(lowercase_ ) UpperCAmelCase , UpperCAmelCase : Tuple = TFAutoModelForTableQuestionAnswering.from_pretrained( lowercase_ , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase_ ) , 14_410 ) def UpperCAmelCase_ ( self : int ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = TFAutoModelWithLMHead.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) self.assertEqual(model.num_parameters() , 14_410 ) self.assertEqual(model.num_parameters(only_trainable=lowercase_ ) , 14_410 ) def UpperCAmelCase_ ( self : int ) -> List[Any]: # For the auto model mapping, FunnelConfig has two models: FunnelModel and FunnelBaseModel UpperCAmelCase : List[str] = TFAutoModel.from_pretrained('sgugger/funnel-random-tiny' ) self.assertIsInstance(lowercase_ , lowercase_ ) UpperCAmelCase : List[Any] = copy.deepcopy(model.config ) UpperCAmelCase : Any = ['FunnelBaseModel'] UpperCAmelCase : Optional[Any] = TFAutoModel.from_config(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase_ ) UpperCAmelCase : Optional[Any] = TFAutoModel.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : List[Any] ) -> int: try: AutoConfig.register('new-model' , lowercase_ ) UpperCAmelCase : Optional[int] = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__ ): # Wrong config class will raise an error with self.assertRaises(lowercase_ ): auto_class.register(lowercase_ , lowercase_ ) auto_class.register(lowercase_ , lowercase_ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowercase_ ): auto_class.register(lowercase_ , lowercase_ ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase : Optional[Any] = BertModelTester(self ).get_config() UpperCAmelCase : Union[str, Any] = NewModelConfig(**tiny_config.to_dict() ) UpperCAmelCase : Optional[int] = auto_class.from_config(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowercase_ ) UpperCAmelCase : int = auto_class.from_pretrained(lowercase_ ) self.assertIsInstance(lowercase_ , lowercase_ ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: with self.assertRaisesRegex( lowercase_ , 'bert-base is not a local folder and is not a valid model identifier' ): UpperCAmelCase : Optional[Any] = TFAutoModel.from_pretrained('bert-base' ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: with self.assertRaisesRegex( lowercase_ , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): UpperCAmelCase : List[str] = TFAutoModel.from_pretrained(lowercase_ , revision='aaaaaa' ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: with self.assertRaisesRegex( lowercase_ , 'hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin' , ): UpperCAmelCase : Optional[Any] = TFAutoModel.from_pretrained('hf-internal-testing/config-no-model' ) def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: with self.assertRaisesRegex(lowercase_ , 'Use `from_pt=True` to load this model' ): UpperCAmelCase : Tuple = TFAutoModel.from_pretrained('hf-internal-testing/tiny-bert-pt-only' ) def UpperCAmelCase_ ( self : Any ) -> str: # Make sure we have cached the model. UpperCAmelCase : str = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) with RequestCounter() as counter: UpperCAmelCase : Tuple = TFAutoModel.from_pretrained('hf-internal-testing/tiny-random-bert' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 ) # With a sharded checkpoint UpperCAmelCase : Optional[Any] = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) with RequestCounter() as counter: UpperCAmelCase : Optional[Any] = TFAutoModel.from_pretrained('ArthurZ/tiny-random-bert-sharded' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
695
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class A_ ( _snake_case ): '''simple docstring''' UpperCAmelCase_ : List[Any] = """openai/whisper-base""" UpperCAmelCase_ : Union[str, Any] = ( """This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the """ """transcribed text.""" ) UpperCAmelCase_ : Dict = """transcriber""" UpperCAmelCase_ : int = WhisperProcessor UpperCAmelCase_ : Optional[int] = WhisperForConditionalGeneration UpperCAmelCase_ : Dict = ["""audio"""] UpperCAmelCase_ : Optional[int] = ["""text"""] def UpperCAmelCase_ ( self : Tuple , lowercase_ : str ) -> Optional[int]: return self.pre_processor(lowercase_ , return_tensors='pt' ).input_features def UpperCAmelCase_ ( self : Tuple , lowercase_ : int ) -> List[str]: return self.model.generate(inputs=lowercase_ ) def UpperCAmelCase_ ( self : str , lowercase_ : List[Any] ) -> List[str]: return self.pre_processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ )[0]
695
1
from __future__ import annotations def _a ( lowercase__ : list[int] ): # This function is recursive '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = len(lowercase__ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else SCREAMING_SNAKE_CASE__ : Optional[int] = array[0] SCREAMING_SNAKE_CASE__ : int = False SCREAMING_SNAKE_CASE__ : Any = 1 SCREAMING_SNAKE_CASE__ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: SCREAMING_SNAKE_CASE__ : List[str] = True SCREAMING_SNAKE_CASE__ : Any = [element for element in array[i:] if element >= array[i]] SCREAMING_SNAKE_CASE__ : Optional[Any] = longest_subsequence(lowercase__ ) if len(lowercase__ ) > len(lowercase__ ): SCREAMING_SNAKE_CASE__ : Any = temp_array else: i += 1 SCREAMING_SNAKE_CASE__ : Any = [element for element in array[1:] if element >= pivot] SCREAMING_SNAKE_CASE__ : str = [pivot, *longest_subsequence(lowercase__ )] if len(lowercase__ ) > len(lowercase__ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
85
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __A = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["""MLukeTokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys __A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
93
0
"""simple docstring""" from collections.abc import Sequence from queue import Queue class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None) -> int: '''simple docstring''' snake_case__ : Dict = start snake_case__ : Tuple = end snake_case__ : str = val snake_case__ : List[str] = (start + end) // 2 snake_case__ : List[Any] = left snake_case__ : List[str] = right def __repr__( self) -> int: '''simple docstring''' return f"""SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})""" class SCREAMING_SNAKE_CASE_ : '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__) -> Optional[Any]: '''simple docstring''' snake_case__ : List[Any] = collection snake_case__ : List[Any] = function if self.collection: snake_case__ : Dict = self._build_tree(0 , len(lowerCamelCase__) - 1) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__) -> List[str]: '''simple docstring''' self._update_tree(self.root , lowerCamelCase__ , lowerCamelCase__) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__) -> Union[str, Any]: '''simple docstring''' return self._query_range(self.root , lowerCamelCase__ , lowerCamelCase__) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__) -> Dict: '''simple docstring''' if start == end: return SegmentTreeNode(lowerCamelCase__ , lowerCamelCase__ , self.collection[start]) snake_case__ : str = (start + end) // 2 snake_case__ : Union[str, Any] = self._build_tree(lowerCamelCase__ , lowerCamelCase__) snake_case__ : Union[str, Any] = self._build_tree(mid + 1 , lowerCamelCase__) return SegmentTreeNode(lowerCamelCase__ , lowerCamelCase__ , self.fn(left.val , right.val) , lowerCamelCase__ , lowerCamelCase__) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__) -> Dict: '''simple docstring''' if node.start == i and node.end == i: snake_case__ : Optional[int] = val return if i <= node.mid: self._update_tree(node.left , lowerCamelCase__ , lowerCamelCase__) else: self._update_tree(node.right , lowerCamelCase__ , lowerCamelCase__) snake_case__ : List[Any] = self.fn(node.left.val , node.right.val) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__) -> Tuple: '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , lowerCamelCase__ , lowerCamelCase__) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , lowerCamelCase__ , node.mid) , self._query_range(node.right , node.mid + 1 , lowerCamelCase__) , ) else: # range in right child tree return self._query_range(node.right , lowerCamelCase__ , lowerCamelCase__) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' if self.root is not None: snake_case__ : int = Queue() queue.put(self.root) while not queue.empty(): snake_case__ : List[Any] = queue.get() yield node if node.left is not None: queue.put(node.left) if node.right is not None: queue.put(node.right) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 50) lowercase = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
150
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase = logging.get_logger(__name__) lowercase = { """BAAI/AltCLIP""": """https://huggingface.co/BAAI/AltCLIP/resolve/main/config.json""", # See all AltCLIP models at https://huggingface.co/models?filter=altclip } class SCREAMING_SNAKE_CASE_ ( _lowercase): '''simple docstring''' __magic_name__ : str = '''altclip_text_model''' def __init__( self , lowerCamelCase__=250_002 , lowerCamelCase__=1_024 , lowerCamelCase__=24 , lowerCamelCase__=16 , lowerCamelCase__=4_096 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=514 , lowerCamelCase__=1 , lowerCamelCase__=0.02 , lowerCamelCase__=0.02 , lowerCamelCase__=1E-05 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , lowerCamelCase__="absolute" , lowerCamelCase__=True , lowerCamelCase__=768 , **lowerCamelCase__ , ) -> Optional[int]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__) snake_case__ : str = vocab_size snake_case__ : int = hidden_size snake_case__ : Dict = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : List[str] = hidden_act snake_case__ : List[Any] = intermediate_size snake_case__ : Tuple = hidden_dropout_prob snake_case__ : Union[str, Any] = attention_probs_dropout_prob snake_case__ : Tuple = max_position_embeddings snake_case__ : Any = type_vocab_size snake_case__ : int = initializer_range snake_case__ : Dict = initializer_factor snake_case__ : Optional[Any] = layer_norm_eps snake_case__ : List[str] = position_embedding_type snake_case__ : Union[str, Any] = use_cache snake_case__ : Dict = project_dim class SCREAMING_SNAKE_CASE_ ( _lowercase): '''simple docstring''' __magic_name__ : int = '''altclip_vision_model''' def __init__( self , lowerCamelCase__=768 , lowerCamelCase__=3_072 , lowerCamelCase__=512 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3 , lowerCamelCase__=224 , lowerCamelCase__=32 , lowerCamelCase__="quick_gelu" , lowerCamelCase__=1E-5 , lowerCamelCase__=0.0 , lowerCamelCase__=0.02 , lowerCamelCase__=1.0 , **lowerCamelCase__ , ) -> Optional[Any]: '''simple docstring''' super().__init__(**lowerCamelCase__) snake_case__ : str = hidden_size snake_case__ : List[Any] = intermediate_size snake_case__ : Union[str, Any] = projection_dim snake_case__ : Union[str, Any] = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Optional[Any] = num_channels snake_case__ : Tuple = patch_size snake_case__ : List[Any] = image_size snake_case__ : Optional[Any] = initializer_range snake_case__ : Union[str, Any] = initializer_factor snake_case__ : int = attention_dropout snake_case__ : List[str] = layer_norm_eps snake_case__ : List[str] = hidden_act @classmethod def UpperCAmelCase ( cls , lowerCamelCase__ , **lowerCamelCase__) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase__) snake_case__, snake_case__ : str = cls.get_config_dict(lowerCamelCase__ , **lowerCamelCase__) # get the vision config dict if we are loading from AltCLIPConfig if config_dict.get("model_type") == "altclip": snake_case__ : List[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(lowerCamelCase__ , **lowerCamelCase__) class SCREAMING_SNAKE_CASE_ ( _lowercase): '''simple docstring''' __magic_name__ : Dict = '''altclip''' __magic_name__ : Union[str, Any] = True def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=768 , lowerCamelCase__=2.65_92 , **lowerCamelCase__) -> Any: '''simple docstring''' snake_case__ : List[Any] = kwargs.pop("text_config_dict" , lowerCamelCase__) snake_case__ : str = kwargs.pop("vision_config_dict" , lowerCamelCase__) super().__init__(**lowerCamelCase__) # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`. if text_config_dict is not None: if text_config is None: snake_case__ : str = {} # This is the complete result when using `text_config_dict`. snake_case__ : str = AltCLIPTextConfig(**lowerCamelCase__).to_dict() # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different. for key, value in _text_config_dict.items(): if key in text_config and value != text_config[key] and key not in ["transformers_version"]: # If specified in `text_config_dict` if key in text_config_dict: snake_case__ : List[Any] = ( f"""`{key}` is found in both `text_config_dict` and `text_config` but with different values. """ f"""The value `text_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: snake_case__ : Dict = ( f"""`text_config_dict` is provided which will be used to initialize `AltCLIPTextConfig`. The """ f"""value `text_config[\"{key}\"]` will be overriden.""" ) logger.warning(lowerCamelCase__) # Update all values in `text_config` with the ones in `_text_config_dict`. text_config.update(_text_config_dict) if vision_config_dict is not None: if vision_config is None: snake_case__ : List[Any] = {} # This is the complete result when using `vision_config_dict`. snake_case__ : Union[str, Any] = AltCLIPVisionConfig(**lowerCamelCase__).to_dict() # convert keys to string instead of integer if "id2label" in _vision_config_dict: snake_case__ : List[Any] = { str(lowerCamelCase__): value for key, value in _vision_config_dict["id2label"].items() } # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different. for key, value in _vision_config_dict.items(): if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]: # If specified in `vision_config_dict` if key in vision_config_dict: snake_case__ : Any = ( f"""`{key}` is found in both `vision_config_dict` and `vision_config` but with different """ f"""values. The value `vision_config_dict[\"{key}\"]` will be used instead.""" ) # If inferred from default argument values (just to be super careful) else: snake_case__ : int = ( f"""`vision_config_dict` is provided which will be used to initialize `AltCLIPVisionConfig`. """ f"""The value `vision_config[\"{key}\"]` will be overriden.""" ) logger.warning(lowerCamelCase__) # Update all values in `vision_config` with the ones in `_vision_config_dict`. vision_config.update(_vision_config_dict) if text_config is None: snake_case__ : Tuple = {} logger.info("`text_config` is `None`. Initializing the `AltCLIPTextConfig` with default values.") if vision_config is None: snake_case__ : List[Any] = {} logger.info("`vision_config` is `None`. initializing the `AltCLIPVisionConfig` with default values.") snake_case__ : Any = AltCLIPTextConfig(**lowerCamelCase__) snake_case__ : Dict = AltCLIPVisionConfig(**lowerCamelCase__) snake_case__ : List[str] = projection_dim snake_case__ : Tuple = logit_scale_init_value snake_case__ : List[Any] = 1.0 @classmethod def UpperCAmelCase ( cls , lowerCamelCase__ , lowerCamelCase__ , **lowerCamelCase__) -> Optional[Any]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowerCamelCase__) def UpperCAmelCase ( self) -> int: '''simple docstring''' snake_case__ : Any = copy.deepcopy(self.__dict__) snake_case__ : Optional[Any] = self.text_config.to_dict() snake_case__ : List[str] = self.vision_config.to_dict() snake_case__ : str = self.__class__.model_type return output
150
1
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : List[str] ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase ( self : str ) -> Dict: '''simple docstring''' __lowercase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) __lowercase = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler('sample_euler' ) __lowercase = 'A painting of a squirrel eating a burger' __lowercase = torch.manual_seed(0 ) __lowercase = sd_pipe([prompt] , generator=__lowerCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.0447, 0.0492, 0.0468, 0.0408, 0.0383, 0.0408, 0.0354, 0.0380, 0.0339] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase ( self : Tuple ) -> Dict: '''simple docstring''' __lowercase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __lowercase = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler('sample_euler' ) __lowercase = 'A painting of a squirrel eating a burger' __lowercase = torch.manual_seed(0 ) __lowercase = sd_pipe([prompt] , generator=__lowerCamelCase , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array([0.1237, 0.1320, 0.1438, 0.1359, 0.1390, 0.1132, 0.1277, 0.1175, 0.1112] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def UpperCAmelCase ( self : Union[str, Any] ) -> str: '''simple docstring''' __lowercase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __lowercase = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) __lowercase = 'A painting of a squirrel eating a burger' __lowercase = torch.manual_seed(0 ) __lowercase = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=__lowerCamelCase , ) __lowercase = output.images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __lowercase = np.array( [0.11381689, 0.12112921, 0.1389457, 0.12549606, 0.1244964, 0.10831517, 0.11562866, 0.10867816, 0.10499048] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
375
from math import factorial def SCREAMING_SNAKE_CASE ( snake_case , snake_case ) -> int: # If either of the conditions are true, the function is being asked # to calculate a factorial of a negative number, which is not possible if n < k or k < 0: raise ValueError('Please enter positive integers for n and k where n >= k' ) return factorial(snake_case ) // (factorial(snake_case ) * factorial(n - k )) if __name__ == "__main__": print( '''The number of five-card hands possible from a standard''', F"""fifty-two card deck is: {combinations(52, 5)}\n""", ) print( '''If a class of 40 students must be arranged into groups of''', F"""4 for group projects, there are {combinations(40, 4)} ways""", '''to arrange them.\n''', ) print( '''If 10 teams are competing in a Formula One race, there''', F"""are {combinations(10, 3)} ways that first, second and""", '''third place can be awarded.''', )
375
1
'''simple docstring''' def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> list[int]: """simple docstring""" if num <= 0: raise ValueError("""Input must be a positive integer""" ) _SCREAMING_SNAKE_CASE = [True] * (num + 1) _SCREAMING_SNAKE_CASE = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , SCREAMING_SNAKE_CASE_ ): _SCREAMING_SNAKE_CASE = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : Optional[Any] = int(input("Enter a positive integer: ").strip()) print(prime_sieve_eratosthenes(user_num))
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MaMaaaConfig, MaMaaaForConditionalGeneration def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """encoder.embed_positions._float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = emb.weight.shape _SCREAMING_SNAKE_CASE = nn.Linear(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , bias=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = emb.weight.data return lin_layer def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = torch.load(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" ) _SCREAMING_SNAKE_CASE = mam_aaa["""args"""] or mam_aaa["""cfg"""]["""model"""] _SCREAMING_SNAKE_CASE = mam_aaa["""model"""] remove_ignore_keys_(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = state_dict["""encoder.embed_tokens.weight"""].shape[0] _SCREAMING_SNAKE_CASE = MaMaaaConfig( vocab_size=SCREAMING_SNAKE_CASE_ , max_position_embeddings=10_24 , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , encoder_layerdrop=args.encoder_layerdrop , decoder_layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""relu""" , ) _SCREAMING_SNAKE_CASE = state_dict["""decoder.embed_tokens.weight"""] _SCREAMING_SNAKE_CASE = MaMaaaForConditionalGeneration(SCREAMING_SNAKE_CASE_ ) model.model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCamelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.") parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") UpperCamelCase__ : List[str] = parser.parse_args() UpperCamelCase__ : Any = convert_fairseq_mamaaa_checkpoint_from_disk(args.fairseq_pathß) model.save_pretrained(args.pytorch_dump_folder_path)
0
1
'''simple docstring''' import random from .binary_exp_mod import bin_exp_mod def __snake_case ( UpperCAmelCase_ : Dict , UpperCAmelCase_ : List[Any]=1000 ): if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd lowerCamelCase_ = n - 1 lowerCamelCase_ = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) lowerCamelCase_ = 0 while count < prec: lowerCamelCase_ = random.randint(2 , n - 1 ) lowerCamelCase_ = bin_exp_mod(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if b != 1: lowerCamelCase_ = True for _ in range(lowerCAmelCase__ ): if b == n - 1: lowerCamelCase_ = False break lowerCamelCase_ = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": a_ : Optional[int] = abs(int(input("""Enter bound : """).strip())) print("""Here's the list of primes:""") print(""", """.join(str(i) for i in range(n + 1) if is_prime_big(i)))
675
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar snake_case = TypeVar("T") class __A ( Generic[T] ): '''simple docstring''' a_ = 42 # Cache store of keys a_ = 42 # References of the keys in cache a_ = 10 # Maximum capacity of cache def __init__( self , _snake_case ): _lowerCAmelCase : Tuple = deque() _lowerCAmelCase : List[Any] = set() if not n: _lowerCAmelCase : Any = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: _lowerCAmelCase : List[str] = n def SCREAMING_SNAKE_CASE__ ( self , _snake_case ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _lowerCAmelCase : Optional[int] = self.dq_store.pop() self.key_reference.remove(_snake_case ) else: self.dq_store.remove(_snake_case ) self.dq_store.appendleft(_snake_case ) self.key_reference.add(_snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): for k in self.dq_store: print(_snake_case ) def __repr__( self ): return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() snake_case = LRUCache(4) lru_cache.refer("A") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("A") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
424
0
import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class __lowercase ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=2 , __UpperCAmelCase=99 , __UpperCAmelCase=0 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase="last" , __UpperCAmelCase=None , __UpperCAmelCase=None , ) -> Any: A : int = parent A : Union[str, Any] = batch_size A : Union[str, Any] = seq_length A : Any = is_training A : List[Any] = use_input_lengths A : Optional[int] = use_token_type_ids A : Optional[int] = use_labels A : str = gelu_activation A : int = sinusoidal_embeddings A : Tuple = causal A : Any = asm A : str = n_langs A : str = vocab_size A : List[str] = n_special A : Optional[int] = hidden_size A : Any = num_hidden_layers A : int = num_attention_heads A : Optional[Any] = hidden_dropout_prob A : Any = attention_probs_dropout_prob A : Dict = max_position_embeddings A : Optional[int] = type_vocab_size A : int = type_sequence_label_size A : List[str] = initializer_range A : Optional[Any] = num_labels A : Optional[Any] = num_choices A : List[Any] = summary_type A : int = use_proj A : Optional[int] = scope def snake_case ( self ) -> Union[str, Any]: A : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A : str = random_attention_mask([self.batch_size, self.seq_length] ) A : List[Any] = None if self.use_input_lengths: A : Union[str, Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A : Tuple = None if self.use_token_type_ids: A : Dict = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A : Dict = None A : Union[str, Any] = None A : Tuple = None if self.use_labels: A : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A : str = ids_tensor([self.batch_size] , 2 ).float() A : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) A : List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def snake_case ( self ) -> Optional[Any]: return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Union[str, Any]: A : Union[str, Any] = FlaubertModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A : Optional[Any] = model(__UpperCAmelCase , lengths=__UpperCAmelCase , langs=__UpperCAmelCase ) A : Dict = model(__UpperCAmelCase , langs=__UpperCAmelCase ) A : List[Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> int: A : List[Any] = FlaubertWithLMHeadModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A : Optional[int] = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[Any]: A : Dict = FlaubertForQuestionAnsweringSimple(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A : Tuple = model(__UpperCAmelCase ) A : Optional[int] = model(__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: A : Tuple = FlaubertForQuestionAnswering(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A : Optional[Any] = model(__UpperCAmelCase ) A : Optional[Any] = model( __UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , cls_index=__UpperCAmelCase , is_impossible=__UpperCAmelCase , p_mask=__UpperCAmelCase , ) A : int = model( __UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , cls_index=__UpperCAmelCase , is_impossible=__UpperCAmelCase , ) ((A) , ) : Union[str, Any] = result_with_labels.to_tuple() A : Any = model(__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase ) ((A) , ) : Any = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> int: A : Dict = FlaubertForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A : Dict = model(__UpperCAmelCase ) A : Any = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> int: A : List[Any] = self.num_labels A : str = FlaubertForTokenClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Dict: A : List[str] = self.num_choices A : Optional[int] = FlaubertForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() A : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A : Optional[int] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case ( self ) -> List[Any]: A : List[str] = self.prepare_config_and_inputs() ( ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ( A ) , ) : Dict = config_and_inputs A : Any = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : Dict = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) UpperCAmelCase_ : Optional[int] = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def snake_case ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[int]: A : Tuple = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": A : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) A : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def snake_case ( self ) -> Optional[Any]: A : List[Any] = FlaubertModelTester(self ) A : Optional[int] = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 ) def snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() def snake_case ( self ) -> str: A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase ) def snake_case ( self ) -> Dict: A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase ) def snake_case ( self ) -> Tuple: A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*__UpperCAmelCase ) def snake_case ( self ) -> int: A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase ) def snake_case ( self ) -> List[str]: A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase ) def snake_case ( self ) -> Optional[int]: A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*__UpperCAmelCase ) def snake_case ( self ) -> Optional[int]: A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*__UpperCAmelCase ) @slow def snake_case ( self ) -> List[Any]: for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A : List[Any] = FlaubertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @slow @require_torch_gpu def snake_case ( self ) -> List[str]: A , A : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return A : int = True A : Any = model_class(config=__UpperCAmelCase ) A : Any = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) A : str = torch.jit.trace( __UpperCAmelCase , (inputs_dict['''input_ids'''].to('''cpu''' ), inputs_dict['''attention_mask'''].to('''cpu''' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(__UpperCAmelCase , os.path.join(__UpperCAmelCase , '''traced_model.pt''' ) ) A : Any = torch.jit.load(os.path.join(__UpperCAmelCase , '''traced_model.pt''' ) , map_location=__UpperCAmelCase ) loaded(inputs_dict['''input_ids'''].to(__UpperCAmelCase ) , inputs_dict['''attention_mask'''].to(__UpperCAmelCase ) ) @require_torch class __lowercase ( unittest.TestCase ): """simple docstring""" @slow def snake_case ( self ) -> Optional[int]: A : Dict = FlaubertModel.from_pretrained('''flaubert/flaubert_base_cased''' ) A : List[str] = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) with torch.no_grad(): A : List[str] = model(__UpperCAmelCase )[0] A : str = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , __UpperCAmelCase ) A : List[Any] = torch.tensor( [[[-2.6_2_5_1, -1.4_2_9_8, -0.0_2_2_7], [-2.8_5_1_0, -1.6_3_8_7, 0.2_2_5_8], [-2.8_1_1_4, -1.1_8_3_2, -0.3_0_6_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
423
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowercase : int = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
423
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_deit import DeiTImageProcessor _a = logging.get_logger(__name__) class _UpperCAmelCase( lowerCamelCase ): def __init__( self , *__a , **__a) -> None: '''simple docstring''' warnings.warn( '''The class DeiTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DeiTImageProcessor instead.''' , __a , ) super().__init__(*__a , **__a)
19
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'detr' lowercase__ = ['past_key_values'] lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__a , __a): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__a) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __a , **__a) -> int: '''simple docstring''' return cls(backbone_config=__a , **__a) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12
19
1
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule lowerCamelCase__ : Optional[Any] = { """config""": [ """EXTERNAL_DATA_FORMAT_SIZE_LIMIT""", """OnnxConfig""", """OnnxConfigWithPast""", """OnnxSeq2SeqConfigWithPast""", """PatchingSpec""", ], """convert""": ["""export""", """validate_model_outputs"""], """features""": ["""FeaturesManager"""], """utils""": ["""ParameterFormat""", """compute_serialized_parameters_size"""], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowerCamelCase__ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
705
import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration lowerCamelCase__ : Optional[Any] = pytest.mark.integration lowerCamelCase__ : Union[str, Any] = {"""comet"""} lowerCamelCase__ : Dict = importlib.util.find_spec("""fairseq""") is not None lowerCamelCase__ : List[Any] = {"""code_eval"""} lowerCamelCase__ : Tuple = os.name == """nt""" lowerCamelCase__ : str = {"""bertscore""", """frugalscore""", """perplexity"""} lowerCamelCase__ : List[str] = importlib.util.find_spec("""transformers""") is not None def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]: @wraps(__lowerCAmelCase ) def wrapper(self , __lowerCAmelCase ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('''"test requires Fairseq"''' ) else: test_case(self , __lowerCAmelCase ) return wrapper def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: @wraps(__lowerCAmelCase ) def wrapper(self , __lowerCAmelCase ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('''"test requires transformers"''' ) else: test_case(self , __lowerCAmelCase ) return wrapper def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Any: @wraps(__lowerCAmelCase ) def wrapper(self , __lowerCAmelCase ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('''"test not supported on Windows"''' ) else: test_case(self , __lowerCAmelCase ) return wrapper def SCREAMING_SNAKE_CASE ( ) -> str: snake_case__ = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( snake_case_ ,snake_case_ ,snake_case_ ) @local class __magic_name__ (parameterized.TestCase ): '''simple docstring''' __lowercase : Tuple = {} __lowercase : List[str] = None @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' ) def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:str ): snake_case__ = '''[...]''' snake_case__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , _a ) ).module_path ) snake_case__ = datasets.load.import_main_class(metric_module.__name__ , dataset=_a ) # check parameters snake_case__ = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_a , metric_module.__name__ ): with self.use_local_metrics(): try: snake_case__ = doctest.testmod(_a , verbose=_a , raise_on_error=_a ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:List[str] ): snake_case__ = '''[...]''' snake_case__ = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , _a ) ).module_path ) # run doctest with self.use_local_metrics(): snake_case__ = doctest.testmod(_a , verbose=_a , raise_on_error=_a ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:List[str] , _a:Optional[int] ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_a ): yield else: yield @contextmanager def SCREAMING_SNAKE_CASE__ ( self:str ): def load_local_metric(_a:Dict , *_a:Optional[int] , **_a:Dict ): return load_metric(os.path.join('''metrics''' , _a ) , *_a , **_a ) with patch('''datasets.load_metric''' ) as mock_load_metric: snake_case__ = load_local_metric yield @classmethod def SCREAMING_SNAKE_CASE__ ( cls:Tuple , _a:Tuple ): def wrapper(_a:Dict ): snake_case__ = contextmanager(_a ) snake_case__ = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('''bleurt''' ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Dict: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags class __magic_name__ (snake_case_ ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Any , _a:Union[str, Any] ): assert len(input_dict['''input_ids'''] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor: snake_case__ = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('''bertscore''' ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[int]: import torch def bert_cos_score_idf(__lowerCAmelCase , __lowerCAmelCase , *__lowerCAmelCase , **__lowerCAmelCase ): return torch.tensor([[1.0, 1.0, 1.0]] * len(__lowerCAmelCase ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('''bert_score.scorer.get_model''' ), patch( '''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf: snake_case__ = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('''comet''' ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Dict: def load_from_checkpoint(__lowerCAmelCase ): class __magic_name__ : '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:Union[str, Any] , *_a:Optional[Any] , **_a:Any ): assert len(_a ) == 2 snake_case__ = [0.19, 0.92] return scores, sum(_a ) / len(_a ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('''comet.download_model''' ) as mock_download_model: snake_case__ = None with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint: snake_case__ = load_from_checkpoint yield def SCREAMING_SNAKE_CASE ( ) -> int: snake_case__ = load_metric(os.path.join('''metrics''' , '''seqeval''' ) ) snake_case__ = '''ERROR''' snake_case__ = F"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(__lowerCAmelCase , match=re.escape(__lowerCAmelCase ) ): metric.compute(predictions=[] , references=[] , scheme=__lowerCAmelCase )
208
0