code
stringlengths 82
53.2k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str=13 , UpperCAmelCase__ : List[str]=7 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Any=99 , UpperCAmelCase__ : Optional[int]=32 , UpperCAmelCase__ : Any=5 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : Union[str, Any]=37 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Optional[Any]=512 , UpperCAmelCase__ : Any=16 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : Dict=0.02 , UpperCAmelCase__ : Dict=4 , ) ->Optional[Any]:
'''simple docstring'''
A__ = parent
A__ = batch_size
A__ = seq_length
A__ = is_training
A__ = use_attention_mask
A__ = use_token_type_ids
A__ = use_labels
A__ = vocab_size
A__ = hidden_size
A__ = num_hidden_layers
A__ = num_attention_heads
A__ = intermediate_size
A__ = hidden_act
A__ = hidden_dropout_prob
A__ = attention_probs_dropout_prob
A__ = max_position_embeddings
A__ = type_vocab_size
A__ = type_sequence_label_size
A__ = initializer_range
A__ = num_choices
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->List[str]:
'''simple docstring'''
A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
A__ = None
if self.use_attention_mask:
A__ = random_attention_mask([self.batch_size, self.seq_length])
A__ = None
if self.use_token_type_ids:
A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
A__ = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def SCREAMING_SNAKE_CASE ( self : Tuple) ->int:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ , A__ = config_and_inputs
A__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask}
return config, inputs_dict
def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Optional[Any]:
'''simple docstring'''
A__ = self.prepare_config_and_inputs()
A__ , A__ , A__ , A__ = config_and_inputs
A__ = True
A__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
A__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2)
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class UpperCamelCase_ ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase__ = True
UpperCAmelCase__ = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Optional[int]:
'''simple docstring'''
A__ = FlaxRobertaPreLayerNormModelTester(self)
@slow
def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->str:
'''simple docstring'''
for model_class_name in self.all_model_classes:
A__ = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=UpperCAmelCase__)
A__ = model(np.ones((1, 1)))
self.assertIsNotNone(UpperCAmelCase__)
@require_flax
class UpperCamelCase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def SCREAMING_SNAKE_CASE ( self : str) ->Optional[int]:
'''simple docstring'''
A__ = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=UpperCAmelCase__)
A__ = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa)
A__ = model(UpperCAmelCase__)[0]
A__ = [1, 11, 50_265]
self.assertEqual(list(output.shape) , UpperCAmelCase__)
# compare the actual values for a slice.
A__ = np.array(
[[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa)
self.assertTrue(np.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-4))
@slow
def SCREAMING_SNAKE_CASE ( self : str) ->Any:
'''simple docstring'''
A__ = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''' , from_pt=UpperCAmelCase__)
A__ = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa)
A__ = model(UpperCAmelCase__)[0]
# compare the actual values for a slice.
A__ = np.array(
[[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa)
self.assertTrue(np.allclose(output[:, :3, :3] , UpperCAmelCase__ , atol=1e-4))
| 87 |
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> list:
"""simple docstring"""
if len(lowercase_ ) <= 1:
return [tuple(lowercase_ )]
A__ = []
def generate(lowercase_ , lowercase_ ):
if k == 1:
res.append(tuple(arr[:] ) )
return
generate(k - 1 , lowercase_ )
for i in range(k - 1 ):
if k % 2 == 0: # k is even
A__ , A__ = arr[k - 1], arr[i]
else: # k is odd
A__ , A__ = arr[k - 1], arr[0]
generate(k - 1 , lowercase_ )
generate(len(lowercase_ ) , lowercase_ )
return res
if __name__ == "__main__":
_lowerCamelCase : int = input("""Enter numbers separated by a comma:\n""").strip()
_lowerCamelCase : str = [int(item) for item in user_input.split(""",""")]
print(heaps(arr))
| 87 | 1 |
from __future__ import annotations
from math import pi
from typing import Protocol
import matplotlib.pyplot as plt
import numpy as np
class A__ ( A ):
"""simple docstring"""
def __magic_name__ ( self : List[Any] , A_ : float ):
'''simple docstring'''
return 0.0
def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> tuple[int | float, int | float]:
"""simple docstring"""
_lowerCAmelCase : Union[str, Any] = min([-20, np.min(fft_results[1 : samplerate // 2 - 1] )] )
_lowerCAmelCase : Optional[Any] = max([20, np.max(fft_results[1 : samplerate // 2 - 1] )] )
return lowest, highest
def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
_lowerCAmelCase : Any = 512
_lowerCAmelCase : Tuple = [1] + [0] * (size - 1)
_lowerCAmelCase : Optional[Any] = [filter_type.process(SCREAMING_SNAKE_CASE ) for item in inputs]
_lowerCAmelCase : Dict = [0] * (samplerate - size) # zero-padding
outputs += filler
_lowerCAmelCase : Dict = np.abs(np.fft.fft(SCREAMING_SNAKE_CASE ) )
_lowerCAmelCase : str = 20 * np.logaa(SCREAMING_SNAKE_CASE )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("Frequency (Hz)" )
plt.xscale("log" )
# Display within reasonable bounds
_lowerCAmelCase : Tuple = get_bounds(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
plt.ylim(max([-80, bounds[0]] ) , min([80, bounds[1]] ) )
plt.ylabel("Gain (dB)" )
plt.plot(SCREAMING_SNAKE_CASE )
plt.show()
def _snake_case ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None:
"""simple docstring"""
_lowerCAmelCase : Tuple = 512
_lowerCAmelCase : Tuple = [1] + [0] * (size - 1)
_lowerCAmelCase : Dict = [filter_type.process(SCREAMING_SNAKE_CASE ) for item in inputs]
_lowerCAmelCase : Tuple = [0] * (samplerate - size) # zero-padding
outputs += filler
_lowerCAmelCase : Tuple = np.angle(np.fft.fft(SCREAMING_SNAKE_CASE ) )
# Frequencies on log scale from 24 to nyquist frequency
plt.xlim(24 , samplerate / 2 - 1 )
plt.xlabel("Frequency (Hz)" )
plt.xscale("log" )
plt.ylim(-2 * pi , 2 * pi )
plt.ylabel("Phase shift (Radians)" )
plt.plot(np.unwrap(SCREAMING_SNAKE_CASE , -2 * pi ) )
plt.show()
| 703 |
import warnings
from ...utils import logging
from .image_processing_chinese_clip import ChineseCLIPImageProcessor
__UpperCAmelCase = logging.get_logger(__name__)
class A__ ( A ):
"""simple docstring"""
def __init__( self : Tuple , *A_ : Optional[int] , **A_ : int ):
'''simple docstring'''
warnings.warn(
"The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers."
" Please use ChineseCLIPImageProcessor instead." , A_ , )
super().__init__(*A_ , **A_ )
| 503 | 0 |
"""simple docstring"""
from __future__ import annotations
from math import gcd
def _lowerCamelCase( a , a = 2 , a = 1 , a = 3 , ):
# A value less than 2 can cause an infinite loop in the algorithm.
if num < 2:
raise ValueError("The input value cannot be less than 2" )
# Because of the relationship between ``f(f(x))`` and ``f(x)``, this
# algorithm struggles to find factors that are divisible by two.
# As a workaround, we specifically check for two and even inputs.
# See: https://math.stackexchange.com/a/2856214/165820
if num > 2 and num % 2 == 0:
return 2
# Pollard's Rho algorithm requires a function that returns pseudorandom
# values between 0 <= X < ``num``. It doesn't need to be random in the
# sense that the output value is cryptographically secure or difficult
# to calculate, it only needs to be random in the sense that all output
# values should be equally likely to appear.
# For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num``
# However, the success of Pollard's algorithm isn't guaranteed and is
# determined in part by the initial seed and the chosen random function.
# To make retries easier, we will instead use ``f(x) = (x**2 + C) % num``
# where ``C`` is a value that we can modify between each attempt.
def rand_fn(a , a , a ) -> int:
return (pow(lowercase_ , 2 ) + step) % modulus
for _ in range(lowercase_ ):
# These track the position within the cycle detection logic.
__a = seed
__a = seed
while True:
# At each iteration, the tortoise moves one step and the hare moves two.
__a = rand_fn(lowercase_ , lowercase_ , lowercase_ )
__a = rand_fn(lowercase_ , lowercase_ , lowercase_ )
__a = rand_fn(lowercase_ , lowercase_ , lowercase_ )
# At some point both the tortoise and the hare will enter a cycle whose
# length ``p`` is a divisor of ``num``. Once in that cycle, at some point
# the tortoise and hare will end up on the same value modulo ``p``.
# We can detect when this happens because the position difference between
# the tortoise and the hare will share a common divisor with ``num``.
__a = gcd(hare - tortoise , lowercase_ )
if divisor == 1:
# No common divisor yet, just keep searching.
continue
else:
# We found a common divisor!
if divisor == num:
# Unfortunately, the divisor is ``num`` itself and is useless.
break
else:
# The divisor is a nontrivial factor of ``num``!
return divisor
# If we made it here, then this attempt failed.
# We need to pick a new starting seed for the tortoise and hare
# in addition to a new step value for the random function.
# To keep this example implementation deterministic, the
# new values will be generated based on currently available
# values instead of using something like ``random.randint``.
# We can use the hare's position as the new seed.
# This is actually what Richard Brent's the "optimized" variant does.
__a = hare
# The new step value for the random function can just be incremented.
# At first the results will be similar to what the old function would
# have produced, but the value will quickly diverge after a bit.
step += 1
# We haven't found a divisor within the requested number of attempts.
# We were unlucky or ``num`` itself is actually prime.
return None
if __name__ == "__main__":
import argparse
SCREAMING_SNAKE_CASE__:List[str] = argparse.ArgumentParser()
parser.add_argument(
"""num""",
type=int,
help="""The value to find a divisor of""",
)
parser.add_argument(
"""--attempts""",
type=int,
default=3,
help="""The number of attempts before giving up""",
)
SCREAMING_SNAKE_CASE__:Any = parser.parse_args()
SCREAMING_SNAKE_CASE__:Optional[int] = pollard_rho(args.num, attempts=args.attempts)
if divisor is None:
print(F'''{args.num} is probably prime''')
else:
SCREAMING_SNAKE_CASE__:Union[str, Any] = args.num // divisor
print(F'''{args.num} = {divisor} * {quotient}''')
| 528 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCamelCase = {
'configuration_clipseg': [
'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP',
'CLIPSegConfig',
'CLIPSegTextConfig',
'CLIPSegVisionConfig',
],
'processing_clipseg': ['CLIPSegProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase = [
'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST',
'CLIPSegModel',
'CLIPSegPreTrainedModel',
'CLIPSegTextModel',
'CLIPSegVisionModel',
'CLIPSegForImageSegmentation',
]
if TYPE_CHECKING:
from .configuration_clipseg import (
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPSegConfig,
CLIPSegTextConfig,
CLIPSegVisionConfig,
)
from .processing_clipseg import CLIPSegProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clipseg import (
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPSegForImageSegmentation,
CLIPSegModel,
CLIPSegPreTrainedModel,
CLIPSegTextModel,
CLIPSegVisionModel,
)
else:
import sys
_lowerCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 114 | 0 |
'''simple docstring'''
from collections import deque
class _a :
"""simple docstring"""
def __init__( self : Optional[Any] , lowercase_ : str , lowercase_ : int , lowercase_ : int ):
'''simple docstring'''
lowercase_ = process_name # process name
lowercase_ = arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
lowercase_ = arrival_time
lowercase_ = burst_time # remaining burst time
lowercase_ = 0 # total time of the process wait in ready queue
lowercase_ = 0 # time from arrival time to completion time
class _a :
"""simple docstring"""
def __init__( self : Dict , lowercase_ : int , lowercase_ : list[int] , lowercase_ : deque[Process] , lowercase_ : int , ):
'''simple docstring'''
lowercase_ = number_of_queues
# time slice of queues that round robin algorithm applied
lowercase_ = time_slices
# unfinished process is in this ready_queue
lowercase_ = queue
# current time
lowercase_ = current_time
# finished process is in this sequence queue
lowercase_ = deque()
def lowerCamelCase__ ( self : Union[str, Any] ):
'''simple docstring'''
lowercase_ = []
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def lowerCamelCase__ ( self : str , lowercase_ : list[Process] ):
'''simple docstring'''
lowercase_ = []
for i in range(len(lowercase_ ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def lowerCamelCase__ ( self : int , lowercase_ : list[Process] ):
'''simple docstring'''
lowercase_ = []
for i in range(len(lowercase_ ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def lowerCamelCase__ ( self : str , lowercase_ : list[Process] ):
'''simple docstring'''
lowercase_ = []
for i in range(len(lowercase_ ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def lowerCamelCase__ ( self : Any , lowercase_ : deque[Process] ):
'''simple docstring'''
return [q.burst_time for q in queue]
def lowerCamelCase__ ( self : str , lowercase_ : Process ):
'''simple docstring'''
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def lowerCamelCase__ ( self : Tuple , lowercase_ : deque[Process] ):
'''simple docstring'''
lowercase_ = deque() # sequence deque of finished process
while len(lowercase_ ) != 0:
lowercase_ = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(lowercase_ )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
lowercase_ = 0
# set the process's turnaround time because it is finished
lowercase_ = self.current_time - cp.arrival_time
# set the completion time
lowercase_ = self.current_time
# add the process to queue that has finished queue
finished.append(lowercase_ )
self.finish_queue.extend(lowercase_ ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def lowerCamelCase__ ( self : Any , lowercase_ : deque[Process] , lowercase_ : int ):
'''simple docstring'''
lowercase_ = deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(lowercase_ ) ):
lowercase_ = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(lowercase_ )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
lowercase_ = self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(lowercase_ )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
lowercase_ = 0
# set the finish time
lowercase_ = self.current_time
# update the process' turnaround time because it is finished
lowercase_ = self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(lowercase_ )
self.finish_queue.extend(lowercase_ ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def lowerCamelCase__ ( self : int ):
'''simple docstring'''
for i in range(self.number_of_queues - 1 ):
lowercase_ , lowercase_ = self.round_robin(
self.ready_queue , self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
__snake_case = Process("""P1""", 0, 53)
__snake_case = Process("""P2""", 0, 17)
__snake_case = Process("""P3""", 0, 68)
__snake_case = Process("""P4""", 0, 24)
__snake_case = 3
__snake_case = [17, 25]
__snake_case = deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={"""queue""": deque([Pa, Pa, Pa, Pa])})
__snake_case = Process("""P1""", 0, 53)
__snake_case = Process("""P2""", 0, 17)
__snake_case = Process("""P3""", 0, 68)
__snake_case = Process("""P4""", 0, 24)
__snake_case = 3
__snake_case = [17, 25]
__snake_case = deque([Pa, Pa, Pa, Pa])
__snake_case = MLFQ(number_of_queues, time_slices, queue, 0)
__snake_case = mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
f'''waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}'''
)
# print completion times of processes(P1, P2, P3, P4)
print(
f'''completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}'''
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
f'''turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}'''
)
# print sequence of finished processes
print(
f'''sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}'''
)
| 603 | '''simple docstring'''
from __future__ import annotations
def A_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->list:
lowercase_ = []
lowercase_ , lowercase_ = input_list[low:mid], input_list[mid : high + 1]
while left and right:
result.append((left if left[0] <= right[0] else right).pop(0 ) )
lowercase_ = result + left + right
return input_list
def A_ ( SCREAMING_SNAKE_CASE_ ) ->list:
if len(SCREAMING_SNAKE_CASE_ ) <= 1:
return input_list
lowercase_ = list(SCREAMING_SNAKE_CASE_ )
# iteration for two-way merging
lowercase_ = 2
while p <= len(SCREAMING_SNAKE_CASE_ ):
# getting low, high and middle value for merge-sort of single list
for i in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ):
lowercase_ = i
lowercase_ = i + p - 1
lowercase_ = (low + high + 1) // 2
lowercase_ = merge(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# final merge of last two parts
if p * 2 >= len(SCREAMING_SNAKE_CASE_ ):
lowercase_ = i
lowercase_ = merge(SCREAMING_SNAKE_CASE_ , 0 , SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) - 1 )
break
p *= 2
return input_list
if __name__ == "__main__":
__snake_case = input("""Enter numbers separated by a comma:\n""").strip()
if user_input == "":
__snake_case = []
else:
__snake_case = [int(item.strip()) for item in user_input.split(""",""")]
print(iter_merge_sort(unsorted))
| 603 | 1 |
'''simple docstring'''
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers import (
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
BertConfig,
DPRConfig,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
class lowercase_ :
"""simple docstring"""
def __init__( self : Optional[int], UpperCamelCase__ : Dict, UpperCamelCase__ : Dict=13, UpperCamelCase__ : Optional[Any]=7, UpperCamelCase__ : List[str]=True, UpperCamelCase__ : Union[str, Any]=True, UpperCamelCase__ : Optional[int]=True, UpperCamelCase__ : Optional[Any]=True, UpperCamelCase__ : Dict=99, UpperCamelCase__ : Dict=32, UpperCamelCase__ : Any=2, UpperCamelCase__ : Optional[int]=4, UpperCamelCase__ : Tuple=37, UpperCamelCase__ : Union[str, Any]="gelu", UpperCamelCase__ : Optional[Any]=0.1, UpperCamelCase__ : Any=0.1, UpperCamelCase__ : Union[str, Any]=5_12, UpperCamelCase__ : Optional[Any]=16, UpperCamelCase__ : List[str]=2, UpperCamelCase__ : List[Any]=0.02, UpperCamelCase__ : List[str]=3, UpperCamelCase__ : Optional[Any]=4, UpperCamelCase__ : Optional[Any]=None, UpperCamelCase__ : Union[str, Any]=0, ) -> str:
_A = parent
_A = batch_size
_A = seq_length
_A = is_training
_A = use_input_mask
_A = use_token_type_ids
_A = use_labels
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = type_sequence_label_size
_A = initializer_range
_A = num_labels
_A = num_choices
_A = scope
_A = projection_dim
def __UpperCAmelCase ( self : Any ) -> Optional[Any]:
_A = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
_A = None
if self.use_input_mask:
# follow test_modeling_tf_ctrl.py
_A = random_attention_mask([self.batch_size, self.seq_length] )
_A = None
if self.use_token_type_ids:
_A = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
_A = None
_A = None
_A = None
if self.use_labels:
_A = ids_tensor([self.batch_size], self.type_sequence_label_size )
_A = ids_tensor([self.batch_size, self.seq_length], self.num_labels )
_A = ids_tensor([self.batch_size], self.num_choices )
_A = BertConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=UpperCamelCase__, initializer_range=self.initializer_range, )
_A = DPRConfig(projection_dim=self.projection_dim, **config.to_dict() )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCAmelCase ( self : Tuple, UpperCamelCase__ : Any, UpperCamelCase__ : Any, UpperCamelCase__ : Tuple, UpperCamelCase__ : List[Any], UpperCamelCase__ : Any, UpperCamelCase__ : List[Any], UpperCamelCase__ : Union[str, Any] ) -> int:
_A = TFDPRContextEncoder(config=UpperCamelCase__ )
_A = model(UpperCamelCase__, attention_mask=UpperCamelCase__, token_type_ids=UpperCamelCase__ )
_A = model(UpperCamelCase__, token_type_ids=UpperCamelCase__ )
_A = model(UpperCamelCase__ )
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size) )
def __UpperCAmelCase ( self : Dict, UpperCamelCase__ : int, UpperCamelCase__ : List[Any], UpperCamelCase__ : List[str], UpperCamelCase__ : List[Any], UpperCamelCase__ : Tuple, UpperCamelCase__ : str, UpperCamelCase__ : str ) -> int:
_A = TFDPRQuestionEncoder(config=UpperCamelCase__ )
_A = model(UpperCamelCase__, attention_mask=UpperCamelCase__, token_type_ids=UpperCamelCase__ )
_A = model(UpperCamelCase__, token_type_ids=UpperCamelCase__ )
_A = model(UpperCamelCase__ )
self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.projection_dim or self.hidden_size) )
def __UpperCAmelCase ( self : int, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : List[str], UpperCamelCase__ : Tuple, UpperCamelCase__ : List[str], UpperCamelCase__ : Tuple, UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[int] ) -> Any:
_A = TFDPRReader(config=UpperCamelCase__ )
_A = model(UpperCamelCase__, attention_mask=UpperCamelCase__ )
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.relevance_logits.shape, (self.batch_size,) )
def __UpperCAmelCase ( self : Dict ) -> Dict:
_A = self.prepare_config_and_inputs()
(
(
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) ,
) = config_and_inputs
_A = {'input_ids': input_ids}
return config, inputs_dict
@require_tf
class lowercase_ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
__lowerCAmelCase = (
(
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
if is_tf_available()
else ()
)
__lowerCAmelCase = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {}
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
__lowerCAmelCase = False
def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]:
_A = TFDPRModelTester(self )
_A = ConfigTester(self, config_class=UpperCamelCase__, hidden_size=37 )
def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]:
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self : List[str] ) -> List[str]:
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_context_encoder(*UpperCamelCase__ )
def __UpperCAmelCase ( self : int ) -> List[str]:
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_question_encoder(*UpperCamelCase__ )
def __UpperCAmelCase ( self : int ) -> Tuple:
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_reader(*UpperCamelCase__ )
@slow
def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]:
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = TFDPRContextEncoder.from_pretrained(UpperCamelCase__ )
self.assertIsNotNone(UpperCamelCase__ )
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = TFDPRContextEncoder.from_pretrained(UpperCamelCase__ )
self.assertIsNotNone(UpperCamelCase__ )
for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = TFDPRQuestionEncoder.from_pretrained(UpperCamelCase__ )
self.assertIsNotNone(UpperCamelCase__ )
for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = TFDPRReader.from_pretrained(UpperCamelCase__ )
self.assertIsNotNone(UpperCamelCase__ )
@require_tf
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
@slow
def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]:
_A = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' )
_A = tf.constant(
[[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP]
_A = model(UpperCamelCase__ )[0] # embedding shape = (1, 768)
# compare the actual values for a slice.
_A = tf.constant(
[
[
0.03_236_253,
0.12_753_335,
0.16_818_509,
0.00_279_786,
0.3_896_933,
0.24_264_945,
0.2_178_971,
-0.02_335_227,
-0.08_481_959,
-0.14_324_117,
]
] )
self.assertTrue(numpy.allclose(output[:, :10].numpy(), expected_slice.numpy(), atol=1e-4 ) )
| 107 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
_SCREAMING_SNAKE_CASE = logging.get_logger(__name__)
class lowerCAmelCase_ ( __magic_name__ ):
def __init__( self , *_lowerCAmelCase , **_lowerCAmelCase ) -> None:
warnings.warn(
"The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"
" use YolosImageProcessor instead." , _lowerCAmelCase , )
super().__init__(*_lowerCAmelCase , **_lowerCAmelCase )
| 18 | 0 |
# Lint as: python3
import sys
from collections.abc import Mapping
from typing import TYPE_CHECKING
import numpy as np
import pyarrow as pa
from .. import config
from ..utils.py_utils import map_nested
from .formatting import TensorFormatter
if TYPE_CHECKING:
import torch
class lowerCamelCase__ ( TensorFormatter[Mapping, 'torch.Tensor', Mapping]):
'''simple docstring'''
def __init__( self :List[Any] , a :Union[str, Any]=None , **a :str ) -> Any:
super().__init__(features=__UpperCamelCase )
__UpperCamelCase : Optional[int] = torch_tensor_kwargs
import torch # noqa import torch at initialization
def _lowerCamelCase ( self :str , a :Optional[int] ) -> Optional[Any]:
import torch
if isinstance(__UpperCamelCase , __UpperCamelCase ) and column:
if all(
isinstance(__UpperCamelCase , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype
for x in column ):
return torch.stack(__UpperCamelCase )
return column
def _lowerCamelCase ( self :Union[str, Any] , a :Tuple ) -> Optional[Any]:
import torch
if isinstance(__UpperCamelCase , (str, bytes, type(__UpperCamelCase )) ):
return value
elif isinstance(__UpperCamelCase , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ):
return value.tolist()
__UpperCamelCase : str = {}
if isinstance(__UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ):
__UpperCamelCase : Optional[Any] = {"dtype": torch.intaa}
elif isinstance(__UpperCamelCase , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ):
__UpperCamelCase : List[str] = {"dtype": torch.floataa}
elif config.PIL_AVAILABLE and "PIL" in sys.modules:
import PIL.Image
if isinstance(__UpperCamelCase , PIL.Image.Image ):
__UpperCamelCase : Tuple = np.asarray(__UpperCamelCase )
return torch.tensor(__UpperCamelCase , **{**default_dtype, **self.torch_tensor_kwargs} )
def _lowerCamelCase ( self :Tuple , a :int ) -> Optional[int]:
import torch
# support for torch, tf, jax etc.
if hasattr(__UpperCamelCase , "__array__" ) and not isinstance(__UpperCamelCase , torch.Tensor ):
__UpperCamelCase : Tuple = data_struct.__array__()
# support for nested types like struct of list of struct
if isinstance(__UpperCamelCase , np.ndarray ):
if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects
return self._consolidate([self.recursive_tensorize(__UpperCamelCase ) for substruct in data_struct] )
elif isinstance(__UpperCamelCase , (list, tuple) ):
return self._consolidate([self.recursive_tensorize(__UpperCamelCase ) for substruct in data_struct] )
return self._tensorize(__UpperCamelCase )
def _lowerCamelCase ( self :int , a :Union[str, Any] ) -> Union[str, Any]:
return map_nested(self._recursive_tensorize , __UpperCamelCase , map_list=__UpperCamelCase )
def _lowerCamelCase ( self :Optional[int] , a :str ) -> Optional[int]:
__UpperCamelCase : str = self.numpy_arrow_extractor().extract_row(__UpperCamelCase )
__UpperCamelCase : int = self.python_features_decoder.decode_row(__UpperCamelCase )
return self.recursive_tensorize(__UpperCamelCase )
def _lowerCamelCase ( self :List[str] , a :Union[str, Any] ) -> int:
__UpperCamelCase : List[str] = self.numpy_arrow_extractor().extract_column(__UpperCamelCase )
__UpperCamelCase : List[str] = self.python_features_decoder.decode_column(__UpperCamelCase , pa_table.column_names[0] )
__UpperCamelCase : Dict = self.recursive_tensorize(__UpperCamelCase )
__UpperCamelCase : Any = self._consolidate(__UpperCamelCase )
return column
def _lowerCamelCase ( self :Any , a :str ) -> str:
__UpperCamelCase : List[Any] = self.numpy_arrow_extractor().extract_batch(__UpperCamelCase )
__UpperCamelCase : int = self.python_features_decoder.decode_batch(__UpperCamelCase )
__UpperCamelCase : Optional[Any] = self.recursive_tensorize(__UpperCamelCase )
for column_name in batch:
__UpperCamelCase : List[str] = self._consolidate(batch[column_name] )
return batch | 702 |
import re
import string
import numpy as np
import datasets
lowercase : List[str] = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n'
lowercase : List[str] = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n'
lowercase : List[str] = '\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class lowerCamelCase__ ( datasets.Metric):
'''simple docstring'''
def _lowerCamelCase ( self :Dict ) -> Optional[Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , reference_urls=[] , )
def _lowerCamelCase ( self :int , a :Optional[Any] , a :Dict , a :Optional[int]=None , a :int=False , a :Tuple=False , a :Optional[int]=False , ) -> Any:
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
__UpperCamelCase : List[Any] = np.array([re.sub(a , "" , a ) for x in predictions] )
__UpperCamelCase : Optional[Any] = np.array([re.sub(a , "" , a ) for x in references] )
else:
__UpperCamelCase : Optional[int] = np.asarray(a )
__UpperCamelCase : List[str] = np.asarray(a )
if ignore_case:
__UpperCamelCase : Optional[int] = np.char.lower(a )
__UpperCamelCase : str = np.char.lower(a )
if ignore_punctuation:
__UpperCamelCase : Tuple = string.punctuation.maketrans("" , "" , string.punctuation )
__UpperCamelCase : int = np.char.translate(a , table=a )
__UpperCamelCase : str = np.char.translate(a , table=a )
if ignore_numbers:
__UpperCamelCase : List[str] = string.digits.maketrans("" , "" , string.digits )
__UpperCamelCase : Tuple = np.char.translate(a , table=a )
__UpperCamelCase : Union[str, Any] = np.char.translate(a , table=a )
__UpperCamelCase : List[Any] = predictions == references
return {"exact_match": np.mean(a ) * 1_0_0} | 94 | 0 |
"""simple docstring"""
import math
import unittest
def SCREAMING_SNAKE_CASE ( snake_case):
assert isinstance(snake_case, snake_case) and (
number >= 0
), "'number' must been an int and positive"
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5, int(math.sqrt(snake_case) + 1), 6):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
class _A ( unittest.TestCase ):
"""simple docstring"""
def lowercase ( self : Optional[int] ) -> Optional[Any]:
self.assertTrue(is_prime(2 ) )
self.assertTrue(is_prime(3 ) )
self.assertTrue(is_prime(5 ) )
self.assertTrue(is_prime(7 ) )
self.assertTrue(is_prime(11 ) )
self.assertTrue(is_prime(13 ) )
self.assertTrue(is_prime(17 ) )
self.assertTrue(is_prime(19 ) )
self.assertTrue(is_prime(23 ) )
self.assertTrue(is_prime(29 ) )
def lowercase ( self : str ) -> Any:
with self.assertRaises(a__ ):
is_prime(-19 )
self.assertFalse(
is_prime(0 ) , '''Zero doesn\'t have any positive factors, primes must have exactly two.''' , )
self.assertFalse(
is_prime(1 ) , '''One only has 1 positive factor, primes must have exactly two.''' , )
self.assertFalse(is_prime(2 * 2 ) )
self.assertFalse(is_prime(2 * 3 ) )
self.assertFalse(is_prime(3 * 3 ) )
self.assertFalse(is_prime(3 * 5 ) )
self.assertFalse(is_prime(3 * 5 * 7 ) )
if __name__ == "__main__":
unittest.main() | 564 |
"""simple docstring"""
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
A_ : Optional[int] =logging.get_logger(__name__)
A_ : Optional[int] ={"""vocab_file""": """vocab.txt"""}
A_ : Union[str, Any] ={
"""vocab_file""": {
"""YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""",
"""YituTech/conv-bert-medium-small""": (
"""https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt"""
),
"""YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""",
}
}
A_ : Tuple ={
"""YituTech/conv-bert-base""": 5_1_2,
"""YituTech/conv-bert-medium-small""": 5_1_2,
"""YituTech/conv-bert-small""": 5_1_2,
}
A_ : str ={
"""YituTech/conv-bert-base""": {"""do_lower_case""": True},
"""YituTech/conv-bert-medium-small""": {"""do_lower_case""": True},
"""YituTech/conv-bert-small""": {"""do_lower_case""": True},
}
class __a ( lowerCAmelCase__ ):
SCREAMING_SNAKE_CASE__ : Union[str, Any] = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ : str = PRETRAINED_INIT_CONFIGURATION
SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE__ : Tuple = ConvBertTokenizer
def __init__( self , a__=None , a__=None , a__=True , a__="[UNK]" , a__="[SEP]" , a__="[PAD]" , a__="[CLS]" , a__="[MASK]" , a__=True , a__=None , **a__ , ):
super().__init__(
a__ , tokenizer_file=a__ , do_lower_case=a__ , unk_token=a__ , sep_token=a__ , pad_token=a__ , cls_token=a__ , mask_token=a__ , tokenize_chinese_chars=a__ , strip_accents=a__ , **a__ , )
_lowerCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , a__ ) != do_lower_case
or normalizer_state.get('strip_accents' , a__ ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , a__ ) != tokenize_chinese_chars
):
_lowerCamelCase = getattr(a__ , normalizer_state.pop('type' ) )
_lowerCamelCase = do_lower_case
_lowerCamelCase = strip_accents
_lowerCamelCase = tokenize_chinese_chars
_lowerCamelCase = normalizer_class(**a__ )
_lowerCamelCase = do_lower_case
def snake_case_ ( self , a__ , a__=None ):
_lowerCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case_ ( self , a__ , a__ = None ):
_lowerCamelCase = [self.sep_token_id]
_lowerCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case_ ( self , a__ , a__ = None ):
_lowerCamelCase = self._tokenizer.model.save(a__ , name=a__ )
return tuple(a__ )
| 650 | 0 |
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import subprocess
from packaging.version import Version, parse
from accelerate.commands.config.config_args import default_config_file, load_config_from_file
__lowerCAmelCase : Union[str, Any] ='Run commands across TPU VMs for initial setup before running `accelerate launch`.'
def _UpperCamelCase ( lowercase__=None ):
if subparsers is not None:
__SCREAMING_SNAKE_CASE : Dict = subparsers.add_parser('''tpu-config''' , description=_description )
else:
__SCREAMING_SNAKE_CASE : Dict = argparse.ArgumentParser('''Accelerate tpu-config command''' , description=_description )
# Core arguments
__SCREAMING_SNAKE_CASE : List[str] = parser.add_argument_group(
'''Config Arguments''' , '''Arguments that can be configured through `accelerate config`.''' )
config_args.add_argument(
'''--config_file''' , type=lowercase__ , default=lowercase__ , help='''Path to the config file to use for accelerate.''' , )
config_args.add_argument(
'''--tpu_name''' , default=lowercase__ , help='''The name of the TPU to use. If not specified, will use the TPU specified in the config file.''' , )
config_args.add_argument(
'''--tpu_zone''' , default=lowercase__ , help='''The zone of the TPU to use. If not specified, will use the zone specified in the config file.''' , )
__SCREAMING_SNAKE_CASE : List[str] = parser.add_argument_group('''TPU Arguments''' , '''Arguments for options ran inside the TPU.''' )
pod_args.add_argument(
'''--use_alpha''' , action='''store_true''' , help='''Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.''' , )
pod_args.add_argument(
'''--command_file''' , default=lowercase__ , help='''The path to the file containing the commands to run on the pod on startup.''' , )
pod_args.add_argument(
'''--command''' , action='''append''' , nargs='''+''' , help='''A command to run on the pod. Can be passed multiple times.''' , )
pod_args.add_argument(
'''--install_accelerate''' , action='''store_true''' , help='''Whether to install accelerate on the pod. Defaults to False.''' , )
pod_args.add_argument(
'''--accelerate_version''' , default='''latest''' , help='''The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.''' , )
pod_args.add_argument(
'''--debug''' , action='''store_true''' , help='''If set, will print the command that would be run instead of running it.''' )
if subparsers is not None:
parser.set_defaults(func=lowercase__ )
return parser
def _UpperCamelCase ( lowercase__ ):
__SCREAMING_SNAKE_CASE : Optional[int] = None
# Get the default from the config file if it exists.
if args.config_file is not None or os.path.isfile(lowercase__ ):
__SCREAMING_SNAKE_CASE : Dict = load_config_from_file(args.config_file )
if not args.command_file and defaults.command_file is not None and not args.command:
__SCREAMING_SNAKE_CASE : Optional[int] = defaults.command_file
if not args.command and defaults.commands is not None:
__SCREAMING_SNAKE_CASE : Union[str, Any] = defaults.commands
if not args.tpu_name:
__SCREAMING_SNAKE_CASE : Optional[int] = defaults.tpu_name
if not args.tpu_zone:
__SCREAMING_SNAKE_CASE : List[Any] = defaults.tpu_zone
if args.accelerate_version == "dev":
__SCREAMING_SNAKE_CASE : Dict = '''git+https://github.com/huggingface/accelerate.git'''
elif args.accelerate_version == "latest":
__SCREAMING_SNAKE_CASE : Optional[Any] = '''accelerate -U'''
elif isinstance(parse(args.accelerate_version ) , lowercase__ ):
__SCREAMING_SNAKE_CASE : List[str] = F'''accelerate=={args.accelerate_version}'''
if not args.command_file and not args.command:
raise ValueError('''You must specify either a command file or a command to run on the pod.''' )
if args.command_file:
with open(args.command_file , '''r''' ) as f:
__SCREAMING_SNAKE_CASE : Any = [f.read().splitlines()]
# To turn list of lists into list of strings
if isinstance(args.command[0] , lowercase__ ):
__SCREAMING_SNAKE_CASE : List[Any] = [line for cmd in args.command for line in cmd]
# Default to the shared folder and install accelerate
__SCREAMING_SNAKE_CASE : int = ['''cd /usr/share''']
if args.install_accelerate:
new_cmd += [F'''pip install {args.accelerate_version}''']
new_cmd += args.command
__SCREAMING_SNAKE_CASE : List[str] = '''; '''.join(lowercase__ )
# Then send it to gcloud
# Eventually try to use google-api-core to do this instead of subprocess
__SCREAMING_SNAKE_CASE : Dict = ['''gcloud''']
if args.use_alpha:
cmd += ["alpha"]
cmd += [
"compute",
"tpus",
"tpu-vm",
"ssh",
args.tpu_name,
"--zone",
args.tpu_zone,
"--command",
args.command,
"--worker",
"all",
]
if args.debug:
print(F'''Running {' '.join(lowercase__ )}''' )
return
subprocess.run(lowercase__ )
print('''Successfully setup pod.''' )
def _UpperCamelCase ( ):
__SCREAMING_SNAKE_CASE : List[Any] = tpu_command_parser()
__SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
tpu_command_launcher(lowercase__ )
| 702 |
import torch
from diffusers import EulerDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class _lowercase ( A__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[Any] = (EulerDiscreteScheduler,)
SCREAMING_SNAKE_CASE__ : Union[str, Any] = 10
def __magic_name__( self :Dict , **lowerCAmelCase__ :Any ) -> int:
__SCREAMING_SNAKE_CASE : List[str] = {
'''num_train_timesteps''': 1_100,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**lowerCAmelCase__ )
return config
def __magic_name__( self :str ) -> Optional[Any]:
for timesteps in [10, 50, 100, 1_000]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase__ )
def __magic_name__( self :str ) -> List[str]:
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ )
def __magic_name__( self :Dict ) -> Any:
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=lowerCAmelCase__ )
def __magic_name__( self :List[Any] ) -> List[str]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase__ )
def __magic_name__( self :Dict ) -> int:
__SCREAMING_SNAKE_CASE : Dict = self.scheduler_classes[0]
__SCREAMING_SNAKE_CASE : List[str] = self.get_scheduler_config()
__SCREAMING_SNAKE_CASE : Dict = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
__SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE : List[Any] = self.dummy_model()
__SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
__SCREAMING_SNAKE_CASE : Any = sample.to(lowerCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
__SCREAMING_SNAKE_CASE : List[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Optional[Any] = model(lowerCAmelCase__ , lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : str = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Optional[int] = output.prev_sample
__SCREAMING_SNAKE_CASE : Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) )
__SCREAMING_SNAKE_CASE : Union[str, Any] = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1E-2
assert abs(result_mean.item() - 0.0131 ) < 1E-3
def __magic_name__( self :Union[str, Any] ) -> int:
__SCREAMING_SNAKE_CASE : Tuple = self.scheduler_classes[0]
__SCREAMING_SNAKE_CASE : int = self.get_scheduler_config(prediction_type='''v_prediction''' )
__SCREAMING_SNAKE_CASE : Optional[int] = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps )
__SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE : Optional[Any] = self.dummy_model()
__SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_sample_deter * scheduler.init_noise_sigma
__SCREAMING_SNAKE_CASE : Dict = sample.to(lowerCAmelCase__ )
for i, t in enumerate(scheduler.timesteps ):
__SCREAMING_SNAKE_CASE : str = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : List[Any] = model(lowerCAmelCase__ , lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : List[str] = output.prev_sample
__SCREAMING_SNAKE_CASE : Tuple = torch.sum(torch.abs(lowerCAmelCase__ ) )
__SCREAMING_SNAKE_CASE : Tuple = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 0.0002 ) < 1E-2
assert abs(result_mean.item() - 2.2_6_7_6E-0_6 ) < 1E-3
def __magic_name__( self :Optional[int] ) -> List[str]:
__SCREAMING_SNAKE_CASE : Any = self.scheduler_classes[0]
__SCREAMING_SNAKE_CASE : Optional[int] = self.get_scheduler_config()
__SCREAMING_SNAKE_CASE : List[str] = scheduler_class(**lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Dict = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE : int = self.dummy_model()
__SCREAMING_SNAKE_CASE : int = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
__SCREAMING_SNAKE_CASE : Optional[Any] = sample.to(lowerCAmelCase__ )
for t in scheduler.timesteps:
__SCREAMING_SNAKE_CASE : Optional[Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : str = model(lowerCAmelCase__ , lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : List[str] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Optional[int] = output.prev_sample
__SCREAMING_SNAKE_CASE : Dict = torch.sum(torch.abs(lowerCAmelCase__ ) )
__SCREAMING_SNAKE_CASE : int = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 10.0807 ) < 1E-2
assert abs(result_mean.item() - 0.0131 ) < 1E-3
def __magic_name__( self :List[Any] ) -> int:
__SCREAMING_SNAKE_CASE : str = self.scheduler_classes[0]
__SCREAMING_SNAKE_CASE : Tuple = self.get_scheduler_config()
__SCREAMING_SNAKE_CASE : Any = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ )
scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Any = torch.manual_seed(0 )
__SCREAMING_SNAKE_CASE : Optional[int] = self.dummy_model()
__SCREAMING_SNAKE_CASE : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu()
__SCREAMING_SNAKE_CASE : List[str] = sample.to(lowerCAmelCase__ )
for t in scheduler.timesteps:
__SCREAMING_SNAKE_CASE : Any = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : int = model(lowerCAmelCase__ , lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : List[str] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : str = output.prev_sample
__SCREAMING_SNAKE_CASE : Any = torch.sum(torch.abs(lowerCAmelCase__ ) )
__SCREAMING_SNAKE_CASE : Optional[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) )
assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1E-2
assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1E-3
| 260 | 0 |
import argparse
import collections
import os
import re
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_table.py
_snake_case = '''src/transformers'''
_snake_case = '''docs/source/en'''
_snake_case = '''.'''
def _UpperCamelCase ( snake_case__, snake_case__, snake_case__ ) -> List[str]:
with open(snake_case__, "r", encoding="utf-8", newline="\n" ) as f:
__UpperCAmelCase : str = f.readlines()
# Find the start prompt.
__UpperCAmelCase : Union[str, Any] = 0
while not lines[start_index].startswith(snake_case__ ):
start_index += 1
start_index += 1
__UpperCAmelCase : Optional[int] = start_index
while not lines[end_index].startswith(snake_case__ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# Add here suffixes that are used to identify models, separated by |
_snake_case = '''Model|Encoder|Decoder|ForConditionalGeneration'''
# Regexes that match TF/Flax/PT model names.
_snake_case = re.compile(r'''TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
_snake_case = re.compile(r'''Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
_snake_case = re.compile(r'''(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)''')
# This is to make sure the transformers module imported is the one in the repo.
_snake_case = direct_transformers_import(TRANSFORMERS_PATH)
def _UpperCamelCase ( snake_case__ ) -> Union[str, Any]:
__UpperCAmelCase : int = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", snake_case__ )
return [m.group(0 ) for m in matches]
def _UpperCamelCase ( snake_case__, snake_case__ ) -> List[str]:
__UpperCAmelCase : Any = 2 if text == "✅" or text == "❌" else len(snake_case__ )
__UpperCAmelCase : Optional[Any] = (width - text_length) // 2
__UpperCAmelCase : Any = width - text_length - left_indent
return " " * left_indent + text + " " * right_indent
def _UpperCamelCase ( ) -> Union[str, Any]:
__UpperCAmelCase : Dict = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
__UpperCAmelCase : Dict = {
name: config_maping_names[code]
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if code in config_maping_names
}
__UpperCAmelCase : Tuple = {name: config.replace("Config", "" ) for name, config in model_name_to_config.items()}
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
__UpperCAmelCase : int = collections.defaultdict(snake_case__ )
__UpperCAmelCase : str = collections.defaultdict(snake_case__ )
__UpperCAmelCase : str = collections.defaultdict(snake_case__ )
__UpperCAmelCase : Optional[int] = collections.defaultdict(snake_case__ )
__UpperCAmelCase : Optional[int] = collections.defaultdict(snake_case__ )
# Let's lookup through all transformers object (once).
for attr_name in dir(snake_case__ ):
__UpperCAmelCase : Dict = None
if attr_name.endswith("Tokenizer" ):
__UpperCAmelCase : Tuple = slow_tokenizers
__UpperCAmelCase : Tuple = attr_name[:-9]
elif attr_name.endswith("TokenizerFast" ):
__UpperCAmelCase : Dict = fast_tokenizers
__UpperCAmelCase : int = attr_name[:-13]
elif _re_tf_models.match(snake_case__ ) is not None:
__UpperCAmelCase : Tuple = tf_models
__UpperCAmelCase : Optional[Any] = _re_tf_models.match(snake_case__ ).groups()[0]
elif _re_flax_models.match(snake_case__ ) is not None:
__UpperCAmelCase : List[Any] = flax_models
__UpperCAmelCase : Optional[int] = _re_flax_models.match(snake_case__ ).groups()[0]
elif _re_pt_models.match(snake_case__ ) is not None:
__UpperCAmelCase : Any = pt_models
__UpperCAmelCase : Dict = _re_pt_models.match(snake_case__ ).groups()[0]
if lookup_dict is not None:
while len(snake_case__ ) > 0:
if attr_name in model_name_to_prefix.values():
__UpperCAmelCase : int = True
break
# Try again after removing the last word in the name
__UpperCAmelCase : Dict = "".join(camel_case_split(snake_case__ )[:-1] )
# Let's build that table!
__UpperCAmelCase : Optional[Any] = list(model_name_to_config.keys() )
model_names.sort(key=str.lower )
__UpperCAmelCase : int = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"]
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
__UpperCAmelCase : Dict = [len(snake_case__ ) + 2 for c in columns]
__UpperCAmelCase : Dict = max([len(snake_case__ ) for name in model_names] ) + 2
# Build the table per se
__UpperCAmelCase : List[str] = "|" + "|".join([_center_text(snake_case__, snake_case__ ) for c, w in zip(snake_case__, snake_case__ )] ) + "|\n"
# Use ":-----:" format to center-aligned table cell texts
table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths] ) + "|\n"
__UpperCAmelCase : Any = {True: "✅", False: "❌"}
for name in model_names:
__UpperCAmelCase : str = model_name_to_prefix[name]
__UpperCAmelCase : List[Any] = [
name,
check[slow_tokenizers[prefix]],
check[fast_tokenizers[prefix]],
check[pt_models[prefix]],
check[tf_models[prefix]],
check[flax_models[prefix]],
]
table += "|" + "|".join([_center_text(snake_case__, snake_case__ ) for l, w in zip(snake_case__, snake_case__ )] ) + "|\n"
return table
def _UpperCamelCase ( snake_case__=False ) -> Optional[int]:
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase : List[Any] = _find_text_in_file(
filename=os.path.join(snake_case__, "index.md" ), start_prompt="<!--This table is updated automatically from the auto modules", end_prompt="<!-- End table-->", )
__UpperCAmelCase : List[Any] = get_model_table_from_auto_modules()
if current_table != new_table:
if overwrite:
with open(os.path.join(snake_case__, "index.md" ), "w", encoding="utf-8", newline="\n" ) as f:
f.writelines(lines[:start_index] + [new_table] + lines[end_index:] )
else:
raise ValueError(
"The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this." )
if __name__ == "__main__":
_snake_case = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
_snake_case = parser.parse_args()
check_model_table(args.fix_and_overwrite)
| 382 | import sacrebleu as scb
from packaging import version
from sacrebleu import CHRF
import datasets
_snake_case = '''\
@inproceedings{popovic-2015-chrf,
title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation",
author = "Popovi{\'c}, Maja",
booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation",
month = sep,
year = "2015",
address = "Lisbon, Portugal",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W15-3049",
doi = "10.18653/v1/W15-3049",
pages = "392--395",
}
@inproceedings{popovic-2017-chrf,
title = "chr{F}++: words helping character n-grams",
author = "Popovi{\'c}, Maja",
booktitle = "Proceedings of the Second Conference on Machine Translation",
month = sep,
year = "2017",
address = "Copenhagen, Denmark",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W17-4770",
doi = "10.18653/v1/W17-4770",
pages = "612--618",
}
@inproceedings{post-2018-call,
title = "A Call for Clarity in Reporting {BLEU} Scores",
author = "Post, Matt",
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
month = oct,
year = "2018",
address = "Belgium, Brussels",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/W18-6319",
pages = "186--191",
}
'''
_snake_case = '''\
ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches,
and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation
that is already present in sacrebleu.
The implementation here is slightly different from sacrebleu in terms of the required input format. The length of
the references and hypotheses lists need to be the same, so you may need to transpose your references compared to
sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534
See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information.
'''
_snake_case = '''
Produces ChrF(++) scores for hypotheses given reference translations.
Args:
predictions (list of str): The predicted sentences.
references (list of list of str): The references. There should be one reference sub-list for each prediction sentence.
char_order (int): Character n-gram order. Defaults to `6`.
word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`.
beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`.
lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`.
whitespace (bool): If `True`, include whitespaces when extracting character n-grams.
eps_smoothing (bool): If `True`, applies epsilon smoothing similar
to reference chrF++.py, NLTK and Moses implementations. If `False`,
it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`.
Returns:
\'score\' (float): The chrF (chrF++) score,
\'char_order\' (int): The character n-gram order,
\'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++,
\'beta\' (int): Determine the importance of recall w.r.t precision
Examples:
Example 1--a simple example of calculating chrF:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction, references=reference)
>>> print(results)
{\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2}
Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction,
... references=reference,
... word_order=2)
>>> print(results)
{\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}
Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case:
>>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."]
>>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]]
>>> chrf = datasets.load_metric("chrf")
>>> results = chrf.compute(predictions=prediction,
... references=reference,
... word_order=2,
... lowercase=True)
>>> print(results)
{\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class _snake_case ( datasets.Metric ):
def _lowerCamelCase ( self: Dict ) -> Tuple:
if version.parse(scb.__version__ ) < version.parse("1.4.12" ):
raise ImportWarning(
"To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n"
"You can install it with `pip install \"sacrebleu>=1.4.12\"`." )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/mjpost/sacreBLEU#chrf--chrf" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ),
} ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#chrf--chrf"] , reference_urls=[
"https://github.com/m-popovic/chrF",
] , )
def _lowerCamelCase ( self: Dict , __lowerCamelCase: str , __lowerCamelCase: Optional[int] , __lowerCamelCase: int = CHRF.CHAR_ORDER , __lowerCamelCase: int = CHRF.WORD_ORDER , __lowerCamelCase: int = CHRF.BETA , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , __lowerCamelCase: bool = False , ) -> Optional[Any]:
__UpperCAmelCase : List[str] = len(references[0] )
if any(len(__lowerCamelCase ) != references_per_prediction for refs in references ):
raise ValueError("Sacrebleu requires the same number of references for each prediction" )
__UpperCAmelCase : List[Any] = [[refs[i] for refs in references] for i in range(__lowerCamelCase )]
__UpperCAmelCase : Optional[int] = CHRF(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
__UpperCAmelCase : List[str] = sb_chrf.corpus_score(__lowerCamelCase , __lowerCamelCase )
return {
"score": output.score,
"char_order": output.char_order,
"word_order": output.word_order,
"beta": output.beta,
}
| 382 | 1 |
from torch import nn
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(F'''Unsupported activation function: {act_fn}''' )
| 708 | from __future__ import annotations
from bisect import bisect_left
from functools import total_ordering
from heapq import merge
@total_ordering
class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ):
def __lt__( self : Tuple , _lowerCAmelCase : Optional[int] ):
return self[-1] < other[-1]
def __eq__( self : Tuple , _lowerCAmelCase : Tuple ):
return self[-1] == other[-1]
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : list ):
'''simple docstring'''
__snake_case : list[Stack] = []
# sort into stacks
for element in collection:
__snake_case : Dict = Stack([element] )
__snake_case : int = bisect_left(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if i != len(__SCREAMING_SNAKE_CASE ):
stacks[i].append(__SCREAMING_SNAKE_CASE )
else:
stacks.append(__SCREAMING_SNAKE_CASE )
# use a heap-based merge to merge stack efficiently
__snake_case : int = merge(*(reversed(__SCREAMING_SNAKE_CASE ) for stack in stacks) )
return collection
if __name__ == "__main__":
lowercase_ = input("Enter numbers separated by a comma:\n").strip()
lowercase_ = [int(item) for item in user_input.split(",")]
print(patience_sort(unsorted))
| 390 | 0 |
"""simple docstring"""
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
UpperCAmelCase = 2
class UpperCAmelCase_ :
def __init__( self : Union[str, Any] , *, # begin keyword-only arguments
__UpperCamelCase : Union[str, Any]="<s>" , __UpperCamelCase : Union[str, Any]="<pad>" , __UpperCamelCase : int="</s>" , __UpperCamelCase : Optional[Any]="<unk>" , __UpperCamelCase : Tuple=None , ) -> List[Any]:
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = bos, unk, pad, eos
_UpperCamelCase = []
_UpperCamelCase = []
_UpperCamelCase = {}
_UpperCamelCase = self.add_symbol(__UpperCamelCase )
_UpperCamelCase = self.add_symbol(__UpperCamelCase )
_UpperCamelCase = self.add_symbol(__UpperCamelCase )
_UpperCamelCase = self.add_symbol(__UpperCamelCase )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(__UpperCamelCase )
_UpperCamelCase = len(self.symbols )
def __eq__( self : Optional[Any] , __UpperCamelCase : List[Any] ) -> Dict:
return self.indices == other.indices
def __getitem__( self : List[str] , __UpperCamelCase : int ) -> Tuple:
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : Any ) -> str:
return len(self.symbols )
def __contains__( self : str , __UpperCamelCase : List[Any] ) -> Any:
return sym in self.indices
@classmethod
def _UpperCamelCase ( cls : Tuple , __UpperCamelCase : str ) -> str:
_UpperCamelCase = cls()
d.add_from_file(__UpperCamelCase )
return d
def _UpperCamelCase ( self : str , __UpperCamelCase : int , __UpperCamelCase : Tuple=1 , __UpperCamelCase : str=False ) -> List[Any]:
if word in self.indices and not overwrite:
_UpperCamelCase = self.indices[word]
_UpperCamelCase = self.count[idx] + n
return idx
else:
_UpperCamelCase = len(self.symbols )
_UpperCamelCase = idx
self.symbols.append(__UpperCamelCase )
self.count.append(__UpperCamelCase )
return idx
def _UpperCamelCase ( self : str , __UpperCamelCase : Dict ) -> Optional[int]:
return 0
def _UpperCamelCase ( self : int , __UpperCamelCase : Union[str, Any] ) -> Dict:
if isinstance(__UpperCamelCase , __UpperCamelCase ):
try:
with open(__UpperCamelCase , '''r''' , encoding='''utf-8''' ) as fd:
self.add_from_file(__UpperCamelCase )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(__UpperCamelCase ) )
return
_UpperCamelCase = f.readlines()
_UpperCamelCase = self._load_meta(__UpperCamelCase )
for line in lines[indices_start_line:]:
try:
_UpperCamelCase , _UpperCamelCase = line.rstrip().rsplit(''' ''' , 1 )
if field == "#fairseq:overwrite":
_UpperCamelCase = True
_UpperCamelCase , _UpperCamelCase = line.rsplit(''' ''' , 1 )
else:
_UpperCamelCase = False
_UpperCamelCase = int(__UpperCamelCase )
_UpperCamelCase = line
if word in self and not overwrite:
raise RuntimeError(
'''Duplicate word found when loading Dictionary: \'{}\'. '''
'''Duplicate words can overwrite earlier ones by adding the '''
'''#fairseq:overwrite flag at the end of the corresponding row '''
'''in the dictionary file. If using the Camembert model, please '''
'''download an updated copy of the model file.'''.format(__UpperCamelCase ) )
self.add_symbol(__UpperCamelCase , n=__UpperCamelCase , overwrite=__UpperCamelCase )
except ValueError:
raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' )
def lowercase ( a__ : List[Any] ) -> int:
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
_UpperCamelCase = dict((re.sub(R'''@@$''' , '''''' , a__ ), v) if k.endswith('''@@''' ) else (re.sub(R'''$''' , '''</w>''' , a__ ), v) for k, v in d.items() )
_UpperCamelCase = '''<s> <pad> </s> <unk>'''.split()
# restore the special tokens
for k in keep_keys:
del da[F'''{k}</w>''']
_UpperCamelCase = d[k] # restore
return da
def lowercase ( a__ : int , a__ : int ) -> str:
# prep
if not os.path.exists(a__ ):
raise ValueError(F'''path {biogpt_checkpoint_path} does not exist!''' )
os.makedirs(a__ , exist_ok=a__ )
print(F'''Writing results to {pytorch_dump_folder_path}''' )
# handle various types of models
_UpperCamelCase = os.path.join(a__ , '''checkpoint.pt''' )
if not os.path.isfile(a__ ):
raise ValueError(F'''path to the file {checkpoint_file} does not exist!''' )
_UpperCamelCase = torch.load(a__ , map_location='''cpu''' )
_UpperCamelCase = chkpt['''cfg''']['''model''']
# dicts
_UpperCamelCase = os.path.join(a__ , '''dict.txt''' )
if not os.path.isfile(a__ ):
raise ValueError(F'''path to the file {dict_file} does not exist!''' )
_UpperCamelCase = Dictionary.load(a__ )
_UpperCamelCase = rewrite_dict_keys(src_dict.indices )
_UpperCamelCase = len(a__ )
_UpperCamelCase = os.path.join(a__ , VOCAB_FILES_NAMES['''vocab_file'''] )
print(F'''Generating {src_vocab_file} of {src_vocab_size} records''' )
with open(a__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(a__ , ensure_ascii=a__ , indent=a__ ) )
# merges_file (bpecodes)
_UpperCamelCase = os.path.join(a__ , '''bpecodes''' )
if not os.path.isfile(a__ ):
raise ValueError(F'''path to the file {bpecodes_file} does not exist!''' )
_UpperCamelCase = os.path.join(a__ , VOCAB_FILES_NAMES['''merges_file'''] )
shutil.copyfile(a__ , a__ )
# model config
_UpperCamelCase = os.path.join(a__ , '''config.json''' )
_UpperCamelCase = {
'''activation_dropout''': args['''activation_dropout'''],
'''architectures''': ['''BioGptForCausalLM'''],
'''attention_probs_dropout_prob''': args['''attention_dropout'''],
'''bos_token_id''': 0,
'''eos_token_id''': 2,
'''hidden_act''': args['''activation_fn'''],
'''hidden_dropout_prob''': args['''dropout'''],
'''hidden_size''': args['''decoder_embed_dim'''],
'''initializer_range''': 0.02,
'''intermediate_size''': args['''decoder_ffn_embed_dim'''],
'''layer_norm_eps''': 1e-12,
'''layerdrop''': args['''decoder_layerdrop'''],
'''max_position_embeddings''': args['''max_target_positions'''],
'''model_type''': '''biogpt''',
'''num_attention_heads''': args['''decoder_attention_heads'''],
'''num_hidden_layers''': args['''decoder_layers'''],
'''pad_token_id''': 1,
'''scale_embedding''': not args['''no_scale_embedding'''],
'''tie_word_embeddings''': args['''share_decoder_input_output_embed'''],
'''vocab_size''': src_vocab_size,
}
# good hparam defaults to start with
print(F'''Generating {biogpt_model_config_file}''' )
with open(a__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(a__ , ensure_ascii=a__ , indent=a__ ) )
# tokenizer config
_UpperCamelCase = os.path.join(a__ , a__ )
_UpperCamelCase = {
'''bos_token''': '''<s>''',
'''eos_token''': '''</s>''',
'''model_max_length''': 1024,
'''pad_token''': '''<pad>''',
'''special_tokens_map_file''': None,
'''tokenizer_class''': '''BioGptTokenizer''',
'''unk_token''': '''<unk>''',
}
print(F'''Generating {biogpt_tokenizer_config_file}''' )
with open(a__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(a__ , ensure_ascii=a__ , indent=a__ ) )
# model
_UpperCamelCase = chkpt['''model''']
# remove unneeded keys
_UpperCamelCase = [
'''decoder.version''',
]
for k in ignore_keys:
model_state_dict.pop(a__ , a__ )
_UpperCamelCase = list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith('''output_projection.weight''' ):
_UpperCamelCase = model_state_dict.pop(a__ )
else:
_UpperCamelCase = model_state_dict.pop(a__ )
_UpperCamelCase = BioGptConfig.from_pretrained(a__ )
_UpperCamelCase = BioGptForCausalLM(a__ )
# check that it loads ok
model_new.load_state_dict(a__ )
# save
_UpperCamelCase = os.path.join(a__ , a__ )
print(F'''Generating {pytorch_weights_dump_path}''' )
torch.save(a__ , a__ )
print('''Conversion is done!''' )
if __name__ == "__main__":
UpperCAmelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--biogpt_checkpoint_path""",
default=None,
type=str,
required=True,
help=(
"""Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,"""
""" bpecodes, etc."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
UpperCAmelCase = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 420 | """simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available
UpperCAmelCase = {}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase = ["""MLukeTokenizer"""]
if TYPE_CHECKING:
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_mluke import MLukeTokenizer
else:
import sys
UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 420 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a_ = {
"""configuration_clipseg""": [
"""CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""CLIPSegConfig""",
"""CLIPSegTextConfig""",
"""CLIPSegVisionConfig""",
],
"""processing_clipseg""": ["""CLIPSegProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
"""CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""CLIPSegModel""",
"""CLIPSegPreTrainedModel""",
"""CLIPSegTextModel""",
"""CLIPSegVisionModel""",
"""CLIPSegForImageSegmentation""",
]
if TYPE_CHECKING:
from .configuration_clipseg import (
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPSegConfig,
CLIPSegTextConfig,
CLIPSegVisionConfig,
)
from .processing_clipseg import CLIPSegProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clipseg import (
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPSegForImageSegmentation,
CLIPSegModel,
CLIPSegPreTrainedModel,
CLIPSegTextModel,
CLIPSegVisionModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 622 |
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a_ = get_tests_dir("""fixtures/test_sentencepiece.model""")
@require_sentencepiece
class __lowerCAmelCase ( lowerCAmelCase__ , unittest.TestCase ):
lowerCAmelCase__ = XLMProphetNetTokenizer
lowerCAmelCase__ = False
lowerCAmelCase__ = True
def lowerCamelCase ( self ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
__lowerCamelCase = XLMProphetNetTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def lowerCamelCase ( self ):
'''simple docstring'''
__lowerCamelCase = '''[PAD]'''
__lowerCamelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase )
def lowerCamelCase ( self ):
'''simple docstring'''
__lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''[PAD]''' )
self.assertEqual(vocab_keys[1] , '''[CLS]''' )
self.assertEqual(vocab_keys[-1] , '''j''' )
self.assertEqual(len(__UpperCAmelCase ) , 1012 )
def lowerCamelCase ( self ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1012 )
def lowerCamelCase ( self ):
'''simple docstring'''
__lowerCamelCase = XLMProphetNetTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase )
__lowerCamelCase = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(__UpperCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
__lowerCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
__UpperCAmelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
__lowerCamelCase = tokenizer.convert_tokens_to_ids(__UpperCAmelCase )
self.assertListEqual(
__UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
__lowerCamelCase = tokenizer.convert_ids_to_tokens(__UpperCAmelCase )
self.assertListEqual(
__UpperCAmelCase , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''[UNK]''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''[UNK]''',
'''.''',
] , )
@cached_property
def lowerCamelCase ( self ):
'''simple docstring'''
return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' )
@slow
def lowerCamelCase ( self ):
'''simple docstring'''
__lowerCamelCase = '''Hello World!'''
__lowerCamelCase = [35389, 6672, 49, 2]
self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) )
@slow
def lowerCamelCase ( self ):
'''simple docstring'''
# fmt: off
__lowerCamelCase = {'''input_ids''': [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__UpperCAmelCase , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
| 622 | 1 |
import argparse
import hashlib # hashlib is only used inside the Test class
import struct
class lowerCAmelCase_ :
def __init__( self , _lowerCAmelCase ):
_lowercase : int = data
_lowercase : Optional[int] = [0x67_452_301, 0xef_cda_b89, 0x98_bad_cfe, 0x10_325_476, 0xc3_d2e_1f0]
@staticmethod
def __a ( _lowerCAmelCase , _lowerCAmelCase ):
return ((n << b) | (n >> (3_2 - b))) & 0xff_fff_fff
def __a ( self ):
_lowercase : Union[str, Any] = b'\x80' + b'\x00' * (6_3 - (len(self.data ) + 8) % 6_4)
_lowercase : List[Any] = self.data + padding + struct.pack('>Q' , 8 * len(self.data ) )
return padded_data
def __a ( self ):
return [
self.padded_data[i : i + 6_4] for i in range(0 , len(self.padded_data ) , 6_4 )
]
def __a ( self , _lowerCAmelCase ):
_lowercase : str = list(struct.unpack('>16L' , _lowerCAmelCase ) ) + [0] * 6_4
for i in range(1_6 , 8_0 ):
_lowercase : List[Any] = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 1_4] ^ w[i - 1_6]) , 1 )
return w
def __a ( self ):
_lowercase : Dict = self.padding()
_lowercase : int = self.split_blocks()
for block in self.blocks:
_lowercase : List[str] = self.expand_block(_lowerCAmelCase )
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = self.h
for i in range(0 , 8_0 ):
if 0 <= i < 2_0:
_lowercase : Any = (b & c) | ((~b) & d)
_lowercase : List[Any] = 0x5a_827_999
elif 2_0 <= i < 4_0:
_lowercase : Optional[Any] = b ^ c ^ d
_lowercase : Union[str, Any] = 0x6e_d9e_ba1
elif 4_0 <= i < 6_0:
_lowercase : Optional[int] = (b & c) | (b & d) | (c & d)
_lowercase : Tuple = 0x8f_1bb_cdc
elif 6_0 <= i < 8_0:
_lowercase : Any = b ^ c ^ d
_lowercase : Optional[Any] = 0xca_62c_1d6
_lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Union[str, Any] = (
self.rotate(_lowerCAmelCase , 5 ) + f + e + k + expanded_block[i] & 0xff_fff_fff,
a,
self.rotate(_lowerCAmelCase , 3_0 ),
c,
d,
)
_lowercase : Optional[Any] = (
self.h[0] + a & 0xff_fff_fff,
self.h[1] + b & 0xff_fff_fff,
self.h[2] + c & 0xff_fff_fff,
self.h[3] + d & 0xff_fff_fff,
self.h[4] + e & 0xff_fff_fff,
)
return ("{:08x}" * 5).format(*self.h )
def __magic_name__ ( ) -> List[Any]:
_lowercase : Union[str, Any] = b'Test String'
assert SHAaHash(SCREAMING_SNAKE_CASE ).final_hash() == hashlib.shaa(SCREAMING_SNAKE_CASE ).hexdigest() # noqa: S324
def __magic_name__ ( ) -> List[str]:
_lowercase : List[Any] = argparse.ArgumentParser(description='Process some strings or files' )
parser.add_argument(
'--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument('--file' , dest='input_file' , help='Hash contents of a file' )
_lowercase : Optional[Any] = parser.parse_args()
_lowercase : Any = args.input_string
# In any case hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
_lowercase : Dict = f.read()
else:
_lowercase : List[Any] = bytes(SCREAMING_SNAKE_CASE , 'utf-8' )
print(SHAaHash(SCREAMING_SNAKE_CASE ).final_hash() )
if __name__ == "__main__":
main()
import doctest
doctest.testmod()
| 66 |
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class lowerCAmelCase ( __UpperCamelCase ):
def __init__( self : str , UpperCAmelCase : Dict , UpperCAmelCase : Dict=13 , UpperCAmelCase : List[Any]=7 , UpperCAmelCase : Tuple=True , UpperCAmelCase : str=True , UpperCAmelCase : int=False , UpperCAmelCase : Optional[Any]=True , UpperCAmelCase : int=99 , UpperCAmelCase : Dict=32 , UpperCAmelCase : Dict=5 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Optional[Any]=64 , UpperCAmelCase : Any="gelu" , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Optional[Any]=0.1 , UpperCAmelCase : Any=512 , UpperCAmelCase : List[str]=16 , UpperCAmelCase : Union[str, Any]=2 , UpperCAmelCase : Union[str, Any]=0.0_2 , UpperCAmelCase : Dict=3 , UpperCAmelCase : List[Any]=4 , UpperCAmelCase : int=None , UpperCAmelCase : Optional[int]=2 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : Optional[Any]=2 , UpperCAmelCase : Tuple=2 , UpperCAmelCase : List[str]=4 , UpperCAmelCase : Dict=1 , ) -> List[Any]:
lowerCamelCase__ : Any = parent
lowerCamelCase__ : Tuple = batch_size
lowerCamelCase__ : Union[str, Any] = seq_length
lowerCamelCase__ : Optional[Any] = is_training
lowerCamelCase__ : Optional[Any] = use_input_mask
lowerCamelCase__ : List[Any] = use_token_type_ids
lowerCamelCase__ : str = use_labels
lowerCamelCase__ : Any = vocab_size
lowerCamelCase__ : Any = hidden_size
lowerCamelCase__ : int = num_hidden_layers
lowerCamelCase__ : Optional[Any] = num_attention_heads
lowerCamelCase__ : Optional[int] = intermediate_size
lowerCamelCase__ : int = hidden_act
lowerCamelCase__ : List[Any] = hidden_dropout_prob
lowerCamelCase__ : List[str] = attention_probs_dropout_prob
lowerCamelCase__ : Any = max_position_embeddings
lowerCamelCase__ : Dict = type_vocab_size
lowerCamelCase__ : Optional[int] = type_sequence_label_size
lowerCamelCase__ : Any = initializer_range
lowerCamelCase__ : int = num_labels
lowerCamelCase__ : Tuple = num_choices
lowerCamelCase__ : Optional[Any] = scope
lowerCamelCase__ : Dict = q_groups
lowerCamelCase__ : Optional[Any] = k_groups
lowerCamelCase__ : Any = v_groups
lowerCamelCase__ : List[str] = post_attention_groups
lowerCamelCase__ : Dict = intermediate_groups
lowerCamelCase__ : Optional[int] = output_groups
def A_ ( self : str ) -> str:
lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowerCamelCase__ : Tuple = None
if self.use_input_mask:
lowerCamelCase__ : Any = random_attention_mask([self.batch_size, self.seq_length] )
lowerCamelCase__ : Optional[Any] = None
lowerCamelCase__ : Union[str, Any] = None
lowerCamelCase__ : Dict = None
if self.use_labels:
lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
lowerCamelCase__ : List[str] = ids_tensor([self.batch_size] , self.num_choices )
lowerCamelCase__ : int = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def A_ ( self : Union[str, Any] ) -> List[Any]:
return SqueezeBertConfig(
embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , )
def A_ ( self : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Dict , UpperCAmelCase : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] ) -> List[str]:
lowerCamelCase__ : List[Any] = SqueezeBertModel(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCamelCase__ : Optional[Any] = model(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase__ : Union[str, Any] = model(UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A_ ( self : List[str] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] ) -> Optional[Any]:
lowerCamelCase__ : List[Any] = SqueezeBertForMaskedLM(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCamelCase__ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def A_ ( self : int , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] ) -> Optional[Any]:
lowerCamelCase__ : Union[str, Any] = SqueezeBertForQuestionAnswering(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCamelCase__ : List[Any] = model(
UpperCAmelCase , attention_mask=UpperCAmelCase , start_positions=UpperCAmelCase , end_positions=UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def A_ ( self : Tuple , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any , UpperCAmelCase : Any ) -> Any:
lowerCamelCase__ : int = self.num_labels
lowerCamelCase__ : Optional[int] = SqueezeBertForSequenceClassification(UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCamelCase__ : Union[str, Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A_ ( self : int , UpperCAmelCase : Any , UpperCAmelCase : Tuple , UpperCAmelCase : Any , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ) -> List[str]:
lowerCamelCase__ : str = self.num_labels
lowerCamelCase__ : int = SqueezeBertForTokenClassification(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCamelCase__ : List[Any] = model(UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def A_ ( self : Optional[int] , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Dict , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int ) -> Tuple:
lowerCamelCase__ : Optional[int] = self.num_choices
lowerCamelCase__ : List[str] = SqueezeBertForMultipleChoice(config=UpperCAmelCase )
model.to(UpperCAmelCase )
model.eval()
lowerCamelCase__ : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
lowerCamelCase__ : str = model(
UpperCAmelCase , attention_mask=UpperCAmelCase , labels=UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def A_ ( self : Optional[Any] ) -> Optional[int]:
lowerCamelCase__ : Optional[Any] = self.prepare_config_and_inputs()
((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) : Tuple = config_and_inputs
lowerCamelCase__ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, unittest.TestCase ):
UpperCAmelCase__ = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
UpperCAmelCase__ = (
{
"""feature-extraction""": SqueezeBertModel,
"""fill-mask""": SqueezeBertForMaskedLM,
"""question-answering""": SqueezeBertForQuestionAnswering,
"""text-classification""": SqueezeBertForSequenceClassification,
"""token-classification""": SqueezeBertForTokenClassification,
"""zero-shot""": SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
UpperCAmelCase__ = False
UpperCAmelCase__ = True
UpperCAmelCase__ = False
def A_ ( self : Union[str, Any] ) -> Dict:
lowerCamelCase__ : Optional[Any] = SqueezeBertModelTester(self )
lowerCamelCase__ : Optional[Any] = ConfigTester(self , config_class=UpperCAmelCase , dim=37 )
def A_ ( self : str ) -> str:
self.config_tester.run_common_tests()
def A_ ( self : str ) -> int:
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*UpperCAmelCase )
def A_ ( self : Union[str, Any] ) -> Tuple:
lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*UpperCAmelCase )
def A_ ( self : Union[str, Any] ) -> Any:
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*UpperCAmelCase )
def A_ ( self : Union[str, Any] ) -> List[str]:
lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*UpperCAmelCase )
def A_ ( self : Optional[int] ) -> Optional[Any]:
lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*UpperCAmelCase )
def A_ ( self : Any ) -> Optional[Any]:
lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*UpperCAmelCase )
@slow
def A_ ( self : Optional[int] ) -> Dict:
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase__ : Any = SqueezeBertModel.from_pretrained(UpperCAmelCase )
self.assertIsNotNone(UpperCAmelCase )
@require_sentencepiece
@require_tokenizers
@require_torch
class lowerCAmelCase ( unittest.TestCase ):
@slow
def A_ ( self : Optional[Any] ) -> List[str]:
lowerCamelCase__ : Dict = SqueezeBertForSequenceClassification.from_pretrained('squeezebert/squeezebert-mnli' )
lowerCamelCase__ : Optional[int] = torch.tensor([[1, 29414, 232, 328, 740, 1140, 12695, 69, 13, 1588, 2]] )
lowerCamelCase__ : Optional[int] = model(UpperCAmelCase )[0]
lowerCamelCase__ : Dict = torch.Size((1, 3) )
self.assertEqual(output.shape , UpperCAmelCase )
lowerCamelCase__ : List[str] = torch.tensor([[0.6_4_0_1, -0.0_3_4_9, -0.6_0_4_1]] )
self.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-4 ) )
| 295 | 0 |
'''simple docstring'''
import pytest
from datasets import Dataset, DatasetDict, Features, NamedSplit, Value
from datasets.io.text import TextDatasetReader
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ) -> Optional[int]:
'''simple docstring'''
assert isinstance(lowerCamelCase_ ,lowerCamelCase_ )
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' ,[False, True] )
def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase_ : Tuple = tmp_path / '''cache'''
UpperCAmelCase_ : Tuple = {'''text''': '''string'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCAmelCase_ : Optional[int] = TextDatasetReader(lowerCamelCase_ ,cache_dir=lowerCamelCase_ ,keep_in_memory=lowerCamelCase_ ).read()
_check_text_dataset(lowerCamelCase_ ,lowerCamelCase_ )
@pytest.mark.parametrize(
'features' ,[
None,
{'text': 'string'},
{'text': 'int32'},
{'text': 'float32'},
] ,)
def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Optional[Any]:
'''simple docstring'''
UpperCAmelCase_ : Union[str, Any] = tmp_path / '''cache'''
UpperCAmelCase_ : Tuple = {'''text''': '''string'''}
UpperCAmelCase_ : Tuple = features.copy() if features else default_expected_features
UpperCAmelCase_ : Optional[int] = (
Features({feature: Value(lowerCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase_ : List[Any] = TextDatasetReader(lowerCamelCase_ ,features=lowerCamelCase_ ,cache_dir=lowerCamelCase_ ).read()
_check_text_dataset(lowerCamelCase_ ,lowerCamelCase_ )
@pytest.mark.parametrize('split' ,[None, NamedSplit('train' ), 'train', 'test'] )
def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[str]:
'''simple docstring'''
UpperCAmelCase_ : Dict = tmp_path / '''cache'''
UpperCAmelCase_ : List[Any] = {'''text''': '''string'''}
UpperCAmelCase_ : List[Any] = TextDatasetReader(lowerCamelCase_ ,cache_dir=lowerCamelCase_ ,split=lowerCamelCase_ ).read()
_check_text_dataset(lowerCamelCase_ ,lowerCamelCase_ )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type' ,[str, list] )
def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> int:
'''simple docstring'''
if issubclass(lowerCamelCase_ ,lowerCamelCase_ ):
UpperCAmelCase_ : List[Any] = text_path
elif issubclass(lowerCamelCase_ ,lowerCamelCase_ ):
UpperCAmelCase_ : str = [text_path]
UpperCAmelCase_ : List[Any] = tmp_path / '''cache'''
UpperCAmelCase_ : Optional[Any] = {'''text''': '''string'''}
UpperCAmelCase_ : int = TextDatasetReader(lowerCamelCase_ ,cache_dir=lowerCamelCase_ ).read()
_check_text_dataset(lowerCamelCase_ ,lowerCamelCase_ )
def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ,UpperCamelCase=("train",) ) -> Dict:
'''simple docstring'''
assert isinstance(lowerCamelCase_ ,lowerCamelCase_ )
for split in splits:
UpperCAmelCase_ : Optional[int] = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 1
assert dataset.column_names == ["text"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' ,[False, True] )
def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Tuple:
'''simple docstring'''
UpperCAmelCase_ : Union[str, Any] = tmp_path / '''cache'''
UpperCAmelCase_ : Tuple = {'''text''': '''string'''}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
UpperCAmelCase_ : Dict = TextDatasetReader({'train': text_path} ,cache_dir=lowerCamelCase_ ,keep_in_memory=lowerCamelCase_ ).read()
_check_text_datasetdict(lowerCamelCase_ ,lowerCamelCase_ )
@pytest.mark.parametrize(
'features' ,[
None,
{'text': 'string'},
{'text': 'int32'},
{'text': 'float32'},
] ,)
def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ : str = tmp_path / '''cache'''
# CSV file loses col_1 string dtype information: default now is "int64" instead of "string"
UpperCAmelCase_ : str = {'''text''': '''string'''}
UpperCAmelCase_ : List[str] = features.copy() if features else default_expected_features
UpperCAmelCase_ : str = (
Features({feature: Value(lowerCamelCase_ ) for feature, dtype in features.items()} ) if features is not None else None
)
UpperCAmelCase_ : int = TextDatasetReader({'train': text_path} ,features=lowerCamelCase_ ,cache_dir=lowerCamelCase_ ).read()
_check_text_datasetdict(lowerCamelCase_ ,lowerCamelCase_ )
@pytest.mark.parametrize('split' ,[None, NamedSplit('train' ), 'train', 'test'] )
def SCREAMING_SNAKE_CASE( UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> int:
'''simple docstring'''
if split:
UpperCAmelCase_ : Dict = {split: text_path}
else:
UpperCAmelCase_ : Optional[int] = '''train'''
UpperCAmelCase_ : int = {'''train''': text_path, '''test''': text_path}
UpperCAmelCase_ : Optional[Any] = tmp_path / '''cache'''
UpperCAmelCase_ : str = {'''text''': '''string'''}
UpperCAmelCase_ : int = TextDatasetReader(lowerCamelCase_ ,cache_dir=lowerCamelCase_ ).read()
_check_text_datasetdict(lowerCamelCase_ ,lowerCamelCase_ ,splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
| 702 |
'''simple docstring'''
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
lowerCAmelCase__ = logging.get_logger(__name__)
# General docstring
lowerCAmelCase__ = "RegNetConfig"
# Base docstring
lowerCAmelCase__ = "facebook/regnet-y-040"
lowerCAmelCase__ = [1, 1088, 7, 7]
# Image classification docstring
lowerCAmelCase__ = "facebook/regnet-y-040"
lowerCAmelCase__ = "tabby, tabby cat"
lowerCAmelCase__ = [
"facebook/regnet-y-040",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class lowercase ( nn.Module ):
def __init__( self , _snake_case , _snake_case , _snake_case = 3 , _snake_case = 1 , _snake_case = 1 , _snake_case = "relu" , ) -> int:
super().__init__()
UpperCAmelCase_ : str = nn.Convad(
_snake_case , _snake_case , kernel_size=_snake_case , stride=_snake_case , padding=kernel_size // 2 , groups=_snake_case , bias=_snake_case , )
UpperCAmelCase_ : List[Any] = nn.BatchNormad(_snake_case)
UpperCAmelCase_ : Tuple = ACTaFN[activation] if activation is not None else nn.Identity()
def _snake_case ( self , _snake_case) -> Tuple:
UpperCAmelCase_ : Optional[int] = self.convolution(_snake_case)
UpperCAmelCase_ : int = self.normalization(_snake_case)
UpperCAmelCase_ : Optional[int] = self.activation(_snake_case)
return hidden_state
class lowercase ( nn.Module ):
def __init__( self , _snake_case) -> List[Any]:
super().__init__()
UpperCAmelCase_ : Tuple = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act)
UpperCAmelCase_ : Optional[Any] = config.num_channels
def _snake_case ( self , _snake_case) -> Dict:
UpperCAmelCase_ : List[Any] = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
'Make sure that the channel dimension of the pixel values match with the one set in the configuration.')
UpperCAmelCase_ : Any = self.embedder(_snake_case)
return hidden_state
class lowercase ( nn.Module ):
def __init__( self , _snake_case , _snake_case , _snake_case = 2) -> Optional[Any]:
super().__init__()
UpperCAmelCase_ : Any = nn.Convad(_snake_case , _snake_case , kernel_size=1 , stride=_snake_case , bias=_snake_case)
UpperCAmelCase_ : Optional[Any] = nn.BatchNormad(_snake_case)
def _snake_case ( self , _snake_case) -> Tensor:
UpperCAmelCase_ : Optional[Any] = self.convolution(_snake_case)
UpperCAmelCase_ : Dict = self.normalization(_snake_case)
return hidden_state
class lowercase ( nn.Module ):
def __init__( self , _snake_case , _snake_case) -> Any:
super().__init__()
UpperCAmelCase_ : Tuple = nn.AdaptiveAvgPoolad((1, 1))
UpperCAmelCase_ : int = nn.Sequential(
nn.Convad(_snake_case , _snake_case , kernel_size=1) , nn.ReLU() , nn.Convad(_snake_case , _snake_case , kernel_size=1) , nn.Sigmoid() , )
def _snake_case ( self , _snake_case) -> Any:
# b c h w -> b c 1 1
UpperCAmelCase_ : Union[str, Any] = self.pooler(_snake_case)
UpperCAmelCase_ : Any = self.attention(_snake_case)
UpperCAmelCase_ : Optional[Any] = hidden_state * attention
return hidden_state
class lowercase ( nn.Module ):
def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case = 1) -> str:
super().__init__()
UpperCAmelCase_ : Optional[Any] = in_channels != out_channels or stride != 1
UpperCAmelCase_ : Any = max(1 , out_channels // config.groups_width)
UpperCAmelCase_ : str = (
RegNetShortCut(_snake_case , _snake_case , stride=_snake_case) if should_apply_shortcut else nn.Identity()
)
UpperCAmelCase_ : Optional[int] = nn.Sequential(
RegNetConvLayer(_snake_case , _snake_case , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(_snake_case , _snake_case , stride=_snake_case , groups=_snake_case , activation=config.hidden_act) , RegNetConvLayer(_snake_case , _snake_case , kernel_size=1 , activation=_snake_case) , )
UpperCAmelCase_ : int = ACTaFN[config.hidden_act]
def _snake_case ( self , _snake_case) -> Union[str, Any]:
UpperCAmelCase_ : str = hidden_state
UpperCAmelCase_ : List[Any] = self.layer(_snake_case)
UpperCAmelCase_ : Dict = self.shortcut(_snake_case)
hidden_state += residual
UpperCAmelCase_ : Any = self.activation(_snake_case)
return hidden_state
class lowercase ( nn.Module ):
def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case = 1) -> int:
super().__init__()
UpperCAmelCase_ : List[Any] = in_channels != out_channels or stride != 1
UpperCAmelCase_ : Optional[Any] = max(1 , out_channels // config.groups_width)
UpperCAmelCase_ : Optional[int] = (
RegNetShortCut(_snake_case , _snake_case , stride=_snake_case) if should_apply_shortcut else nn.Identity()
)
UpperCAmelCase_ : Optional[Any] = nn.Sequential(
RegNetConvLayer(_snake_case , _snake_case , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(_snake_case , _snake_case , stride=_snake_case , groups=_snake_case , activation=config.hidden_act) , RegNetSELayer(_snake_case , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(_snake_case , _snake_case , kernel_size=1 , activation=_snake_case) , )
UpperCAmelCase_ : Any = ACTaFN[config.hidden_act]
def _snake_case ( self , _snake_case) -> Union[str, Any]:
UpperCAmelCase_ : List[str] = hidden_state
UpperCAmelCase_ : int = self.layer(_snake_case)
UpperCAmelCase_ : Any = self.shortcut(_snake_case)
hidden_state += residual
UpperCAmelCase_ : Any = self.activation(_snake_case)
return hidden_state
class lowercase ( nn.Module ):
def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case = 2 , _snake_case = 2 , ) -> Optional[int]:
super().__init__()
UpperCAmelCase_ : str = RegNetXLayer if config.layer_type == 'x' else RegNetYLayer
UpperCAmelCase_ : Dict = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
_snake_case , _snake_case , _snake_case , stride=_snake_case , ) , *[layer(_snake_case , _snake_case , _snake_case) for _ in range(depth - 1)] , )
def _snake_case ( self , _snake_case) -> Dict:
UpperCAmelCase_ : Optional[Any] = self.layers(_snake_case)
return hidden_state
class lowercase ( nn.Module ):
def __init__( self , _snake_case) -> List[Any]:
super().__init__()
UpperCAmelCase_ : List[str] = nn.ModuleList([])
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
_snake_case , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ))
UpperCAmelCase_ : Dict = zip(config.hidden_sizes , config.hidden_sizes[1:])
for (in_channels, out_channels), depth in zip(_snake_case , config.depths[1:]):
self.stages.append(RegNetStage(_snake_case , _snake_case , _snake_case , depth=_snake_case))
def _snake_case ( self , _snake_case , _snake_case = False , _snake_case = True) -> BaseModelOutputWithNoAttention:
UpperCAmelCase_ : List[Any] = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
UpperCAmelCase_ : int = hidden_states + (hidden_state,)
UpperCAmelCase_ : Tuple = stage_module(_snake_case)
if output_hidden_states:
UpperCAmelCase_ : Union[str, Any] = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=_snake_case , hidden_states=_snake_case)
class lowercase ( a_ ):
_lowerCamelCase : str= RegNetConfig
_lowerCamelCase : Optional[int]= "regnet"
_lowerCamelCase : Union[str, Any]= "pixel_values"
_lowerCamelCase : List[str]= True
def _snake_case ( self , _snake_case) -> List[Any]:
if isinstance(_snake_case , nn.Convad):
nn.init.kaiming_normal_(module.weight , mode='fan_out' , nonlinearity='relu')
elif isinstance(_snake_case , (nn.BatchNormad, nn.GroupNorm)):
nn.init.constant_(module.weight , 1)
nn.init.constant_(module.bias , 0)
def _snake_case ( self , _snake_case , _snake_case=False) -> List[Any]:
if isinstance(_snake_case , _snake_case):
UpperCAmelCase_ : str = value
lowerCAmelCase__ = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
lowerCAmelCase__ = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
"The bare RegNet model outputting raw features without any specific head on top.", a_, )
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class lowercase ( a_ ):
def __init__( self , _snake_case) -> List[str]:
super().__init__(_snake_case)
UpperCAmelCase_ : str = config
UpperCAmelCase_ : Optional[int] = RegNetEmbeddings(_snake_case)
UpperCAmelCase_ : int = RegNetEncoder(_snake_case)
UpperCAmelCase_ : Any = nn.AdaptiveAvgPoolad((1, 1))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_snake_case)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=_snake_case , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def _snake_case ( self , _snake_case , _snake_case = None , _snake_case = None) -> BaseModelOutputWithPoolingAndNoAttention:
UpperCAmelCase_ : List[Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
UpperCAmelCase_ : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict
UpperCAmelCase_ : int = self.embedder(_snake_case)
UpperCAmelCase_ : str = self.encoder(
_snake_case , output_hidden_states=_snake_case , return_dict=_snake_case)
UpperCAmelCase_ : List[Any] = encoder_outputs[0]
UpperCAmelCase_ : str = self.pooler(_snake_case)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=_snake_case , pooler_output=_snake_case , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ", a_, )
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class lowercase ( a_ ):
def __init__( self , _snake_case) -> Union[str, Any]:
super().__init__(_snake_case)
UpperCAmelCase_ : List[str] = config.num_labels
UpperCAmelCase_ : Optional[int] = RegNetModel(_snake_case)
# classification head
UpperCAmelCase_ : Optional[Any] = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(_snake_case)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_snake_case , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def _snake_case ( self , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = None , ) -> ImageClassifierOutputWithNoAttention:
UpperCAmelCase_ : str = return_dict if return_dict is not None else self.config.use_return_dict
UpperCAmelCase_ : Optional[Any] = self.regnet(_snake_case , output_hidden_states=_snake_case , return_dict=_snake_case)
UpperCAmelCase_ : Dict = outputs.pooler_output if return_dict else outputs[1]
UpperCAmelCase_ : int = self.classifier(_snake_case)
UpperCAmelCase_ : List[Any] = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
UpperCAmelCase_ : Optional[int] = 'regression'
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
UpperCAmelCase_ : Union[str, Any] = 'single_label_classification'
else:
UpperCAmelCase_ : Tuple = 'multi_label_classification'
if self.config.problem_type == "regression":
UpperCAmelCase_ : int = MSELoss()
if self.num_labels == 1:
UpperCAmelCase_ : Dict = loss_fct(logits.squeeze() , labels.squeeze())
else:
UpperCAmelCase_ : Union[str, Any] = loss_fct(_snake_case , _snake_case)
elif self.config.problem_type == "single_label_classification":
UpperCAmelCase_ : Optional[int] = CrossEntropyLoss()
UpperCAmelCase_ : Union[str, Any] = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
UpperCAmelCase_ : int = BCEWithLogitsLoss()
UpperCAmelCase_ : Tuple = loss_fct(_snake_case , _snake_case)
if not return_dict:
UpperCAmelCase_ : Union[str, Any] = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=_snake_case , logits=_snake_case , hidden_states=outputs.hidden_states)
| 471 | 0 |
'''simple docstring'''
from typing import List, Optional, Tuple, Union
import torch
from ...utils import logging, randn_tensor
from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline
lowercase__ : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name
class SCREAMING_SNAKE_CASE (UpperCamelCase_ ):
def __init__( self , _UpperCAmelCase , _UpperCAmelCase):
'''simple docstring'''
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase)
@torch.no_grad()
def __call__( self , _UpperCAmelCase = 1 , _UpperCAmelCase = 100 , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = True , ):
'''simple docstring'''
if audio_length_in_s is None:
__A : str = self.unet.config.sample_size / self.unet.config.sample_rate
__A : List[Any] = audio_length_in_s * self.unet.config.sample_rate
__A : int = 2 ** len(self.unet.up_blocks)
if sample_size < 3 * down_scale_factor:
raise ValueError(
F'{audio_length_in_s} is too small. Make sure it\'s bigger or equal to'
F' {3 * down_scale_factor / self.unet.config.sample_rate}.')
__A : Optional[Any] = int(_UpperCAmelCase)
if sample_size % down_scale_factor != 0:
__A : Optional[int] = (
(audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1
) * down_scale_factor
logger.info(
F'{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled'
F' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising'
' process.')
__A : int = int(_UpperCAmelCase)
__A : Dict = next(iter(self.unet.parameters())).dtype
__A : Dict = (batch_size, self.unet.config.in_channels, sample_size)
if isinstance(_UpperCAmelCase , _UpperCAmelCase) and len(_UpperCAmelCase) != batch_size:
raise ValueError(
F'You have passed a list of generators of length {len(_UpperCAmelCase)}, but requested an effective batch'
F' size of {batch_size}. Make sure the batch size matches the length of the generators.')
__A : List[str] = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase)
# set step values
self.scheduler.set_timesteps(_UpperCAmelCase , device=audio.device)
__A : List[Any] = self.scheduler.timesteps.to(_UpperCAmelCase)
for t in self.progress_bar(self.scheduler.timesteps):
# 1. predict noise model_output
__A : Union[str, Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase).sample
# 2. compute previous image: x_t -> t_t-1
__A : Optional[int] = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase).prev_sample
__A : str = audio.clamp(-1 , 1).float().cpu().numpy()
__A : str = audio[:, :, :original_sample_size]
if not return_dict:
return (audio,)
return AudioPipelineOutput(audios=_UpperCAmelCase) | 8 |
'''simple docstring'''
def __a ( A__ , A__ ) -> Optional[int]:
_enforce_args(A__ , A__ )
if n == 0:
return 0
lowerCAmelCase = float("-inf" )
for i in range(1 , n + 1 ):
lowerCAmelCase = max(
A__ , prices[i - 1] + naive_cut_rod_recursive(n - i , A__ ) )
return max_revue
def __a ( A__ , A__ ) -> Dict:
_enforce_args(A__ , A__ )
lowerCAmelCase = [float("-inf" ) for _ in range(n + 1 )]
return _top_down_cut_rod_recursive(A__ , A__ , A__ )
def __a ( A__ , A__ , A__ ) -> Any:
if max_rev[n] >= 0:
return max_rev[n]
elif n == 0:
return 0
else:
lowerCAmelCase = float("-inf" )
for i in range(1 , n + 1 ):
lowerCAmelCase = max(
A__ , prices[i - 1] + _top_down_cut_rod_recursive(n - i , A__ , A__ ) , )
lowerCAmelCase = max_revenue
return max_rev[n]
def __a ( A__ , A__ ) -> Optional[int]:
_enforce_args(A__ , A__ )
# length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of
# length 0.
lowerCAmelCase = [float("-inf" ) for _ in range(n + 1 )]
lowerCAmelCase = 0
for i in range(1 , n + 1 ):
lowerCAmelCase = max_rev[i]
for j in range(1 , i + 1 ):
lowerCAmelCase = max(A__ , prices[j - 1] + max_rev[i - j] )
lowerCAmelCase = max_revenue_i
return max_rev[n]
def __a ( A__ , A__ ) -> Union[str, Any]:
if n < 0:
lowerCAmelCase = f"n must be greater than or equal to 0. Got n = {n}"
raise ValueError(A__ )
if n > len(A__ ):
lowerCAmelCase = (
"Each integral piece of rod must have a corresponding price. "
f"Got n = {n} but length of prices = {len(A__ )}"
)
raise ValueError(A__ )
def __a ( ) -> Union[str, Any]:
lowerCAmelCase = [6, 10, 12, 15, 20, 23]
lowerCAmelCase = len(A__ )
# the best revenue comes from cutting the rod into 6 pieces, each
# of length 1 resulting in a revenue of 6 * 6 = 36.
lowerCAmelCase = 36
lowerCAmelCase = top_down_cut_rod(A__ , A__ )
lowerCAmelCase = bottom_up_cut_rod(A__ , A__ )
lowerCAmelCase = naive_cut_rod_recursive(A__ , A__ )
assert expected_max_revenue == max_rev_top_down
assert max_rev_top_down == max_rev_bottom_up
assert max_rev_bottom_up == max_rev_naive
if __name__ == "__main__":
main()
| 649 | 0 |
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from transformers import CLIPImageProcessor, CLIPVisionModel
from ...models import PriorTransformer
from ...pipelines import DiffusionPipeline
from ...schedulers import HeunDiscreteScheduler
from ...utils import (
BaseOutput,
is_accelerate_available,
logging,
randn_tensor,
replace_example_docstring,
)
from .renderer import ShapERenderer
__a : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name
__a : Union[str, Any] = """
Examples:
```py
>>> from PIL import Image
>>> import torch
>>> from diffusers import DiffusionPipeline
>>> from diffusers.utils import export_to_gif, load_image
>>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")
>>> repo = \"openai/shap-e-img2img\"
>>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16)
>>> pipe = pipe.to(device)
>>> guidance_scale = 3.0
>>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\"
>>> image = load_image(image_url).convert(\"RGB\")
>>> images = pipe(
... image,
... guidance_scale=guidance_scale,
... num_inference_steps=64,
... frame_size=256,
... ).images
>>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\")
```
"""
@dataclass
class __UpperCAmelCase ( snake_case__ ):
"""simple docstring"""
lowercase = 42
class __UpperCAmelCase ( snake_case__ ):
"""simple docstring"""
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
self.register_modules(
prior=SCREAMING_SNAKE_CASE , image_encoder=SCREAMING_SNAKE_CASE , image_processor=SCREAMING_SNAKE_CASE , scheduler=SCREAMING_SNAKE_CASE , renderer=SCREAMING_SNAKE_CASE , )
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
if latents is None:
UpperCamelCase = randn_tensor(SCREAMING_SNAKE_CASE , generator=SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE )
else:
if latents.shape != shape:
raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' )
UpperCamelCase = latents.to(SCREAMING_SNAKE_CASE )
UpperCamelCase = latents * scheduler.init_noise_sigma
return latents
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE=0 ) -> str:
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("Please install accelerate via `pip install accelerate`" )
UpperCamelCase = torch.device(f'''cuda:{gpu_id}''' )
UpperCamelCase = [self.image_encoder, self.prior]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
@property
def __lowerCAmelCase ( self ) -> List[Any]:
"""simple docstring"""
if self.device != torch.device("meta" ) or not hasattr(self.image_encoder , "_hf_hook" ):
return self.device
for module in self.image_encoder.modules():
if (
hasattr(SCREAMING_SNAKE_CASE , "_hf_hook" )
and hasattr(module._hf_hook , "execution_device" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> List[Any]:
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(image[0] , torch.Tensor ):
UpperCamelCase = torch.cat(SCREAMING_SNAKE_CASE , axis=0 ) if image[0].ndim == 4 else torch.stack(SCREAMING_SNAKE_CASE , axis=0 )
if not isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ):
UpperCamelCase = self.image_processor(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values[0].unsqueeze(0 )
UpperCamelCase = image.to(dtype=self.image_encoder.dtype , device=SCREAMING_SNAKE_CASE )
UpperCamelCase = self.image_encoder(SCREAMING_SNAKE_CASE )["last_hidden_state"]
UpperCamelCase = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256
UpperCamelCase = image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE , dim=0 )
if do_classifier_free_guidance:
UpperCamelCase = torch.zeros_like(SCREAMING_SNAKE_CASE )
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
UpperCamelCase = torch.cat([negative_image_embeds, image_embeds] )
return image_embeds
@torch.no_grad()
@replace_example_docstring(SCREAMING_SNAKE_CASE )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = 1 , SCREAMING_SNAKE_CASE = 25 , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 4.0 , SCREAMING_SNAKE_CASE = 64 , SCREAMING_SNAKE_CASE = "pil" , SCREAMING_SNAKE_CASE = True , ) -> Dict:
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE , PIL.Image.Image ):
UpperCamelCase = 1
elif isinstance(SCREAMING_SNAKE_CASE , torch.Tensor ):
UpperCamelCase = image.shape[0]
elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ):
UpperCamelCase = len(SCREAMING_SNAKE_CASE )
else:
raise ValueError(
f'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(SCREAMING_SNAKE_CASE )}''' )
UpperCamelCase = self._execution_device
UpperCamelCase = batch_size * num_images_per_prompt
UpperCamelCase = guidance_scale > 1.0
UpperCamelCase = self._encode_image(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
# prior
self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE , device=SCREAMING_SNAKE_CASE )
UpperCamelCase = self.scheduler.timesteps
UpperCamelCase = self.prior.config.num_embeddings
UpperCamelCase = self.prior.config.embedding_dim
UpperCamelCase = self.prepare_latents(
(batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.scheduler , )
# YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim
UpperCamelCase = latents.reshape(latents.shape[0] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE ) ):
# expand the latents if we are doing classifier free guidance
UpperCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
UpperCamelCase = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
UpperCamelCase = self.prior(
SCREAMING_SNAKE_CASE , timestep=SCREAMING_SNAKE_CASE , proj_embedding=SCREAMING_SNAKE_CASE , ).predicted_image_embedding
# remove the variance
UpperCamelCase , UpperCamelCase = noise_pred.split(
scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim
if do_classifier_free_guidance is not None:
UpperCamelCase , UpperCamelCase = noise_pred.chunk(2 )
UpperCamelCase = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond)
UpperCamelCase = self.scheduler.step(
SCREAMING_SNAKE_CASE , timestep=SCREAMING_SNAKE_CASE , sample=SCREAMING_SNAKE_CASE , ).prev_sample
if output_type == "latent":
return ShapEPipelineOutput(images=SCREAMING_SNAKE_CASE )
UpperCamelCase = []
for i, latent in enumerate(SCREAMING_SNAKE_CASE ):
print()
UpperCamelCase = self.renderer.decode(
latent[None, :] , SCREAMING_SNAKE_CASE , size=SCREAMING_SNAKE_CASE , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , )
images.append(SCREAMING_SNAKE_CASE )
UpperCamelCase = torch.stack(SCREAMING_SNAKE_CASE )
if output_type not in ["np", "pil"]:
raise ValueError(f'''Only the output types `pil` and `np` are supported not output_type={output_type}''' )
UpperCamelCase = images.cpu().numpy()
if output_type == "pil":
UpperCamelCase = [self.numpy_to_pil(SCREAMING_SNAKE_CASE ) for image in images]
# Offload last model to CPU
if hasattr(self , "final_offload_hook" ) and self.final_offload_hook is not None:
self.final_offload_hook.offload()
if not return_dict:
return (images,)
return ShapEPipelineOutput(images=SCREAMING_SNAKE_CASE )
| 414 |
from collections import UserDict
from typing import Union
import numpy as np
import requests
from ..utils import (
add_end_docstrings,
logging,
)
from .audio_classification import ffmpeg_read
from .base import PIPELINE_INIT_ARGS, Pipeline
__a : Optional[int] = logging.get_logger(__name__)
@add_end_docstrings(snake_case__ )
class __UpperCAmelCase ( snake_case__ ):
"""simple docstring"""
def __init__( self , **SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
super().__init__(**SCREAMING_SNAKE_CASE )
if self.framework != "pt":
raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' )
# No specific FOR_XXX available yet
def __call__( self , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
return super().__call__(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
def __lowerCAmelCase ( self , **SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
UpperCamelCase = {}
if "candidate_labels" in kwargs:
UpperCamelCase = kwargs["candidate_labels"]
if "hypothesis_template" in kwargs:
UpperCamelCase = kwargs["hypothesis_template"]
return preprocess_params, {}, {}
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="This is a sound of {}." ) -> Optional[int]:
"""simple docstring"""
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
if audio.startswith("http://" ) or audio.startswith("https://" ):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
UpperCamelCase = requests.get(SCREAMING_SNAKE_CASE ).content
else:
with open(SCREAMING_SNAKE_CASE , "rb" ) as f:
UpperCamelCase = f.read()
if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
UpperCamelCase = ffmpeg_read(SCREAMING_SNAKE_CASE , self.feature_extractor.sampling_rate )
if not isinstance(SCREAMING_SNAKE_CASE , np.ndarray ):
raise ValueError("We expect a numpy ndarray as input" )
if len(audio.shape ) != 1:
raise ValueError("We expect a single channel audio input for ZeroShotAudioClassificationPipeline" )
UpperCamelCase = self.feature_extractor(
[audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="pt" )
UpperCamelCase = candidate_labels
UpperCamelCase = [hypothesis_template.format(SCREAMING_SNAKE_CASE ) for x in candidate_labels]
UpperCamelCase = self.tokenizer(SCREAMING_SNAKE_CASE , return_tensors=self.framework , padding=SCREAMING_SNAKE_CASE )
UpperCamelCase = [text_inputs]
return inputs
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase = model_inputs.pop("candidate_labels" )
UpperCamelCase = model_inputs.pop("text_inputs" )
if isinstance(text_inputs[0] , SCREAMING_SNAKE_CASE ):
UpperCamelCase = text_inputs[0]
else:
# Batching case.
UpperCamelCase = text_inputs[0][0]
UpperCamelCase = self.model(**SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
UpperCamelCase = {
"candidate_labels": candidate_labels,
"logits": outputs.logits_per_audio,
}
return model_outputs
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
UpperCamelCase = model_outputs.pop("candidate_labels" )
UpperCamelCase = model_outputs["logits"][0]
if self.framework == "pt":
UpperCamelCase = logits.softmax(dim=0 )
UpperCamelCase = probs.tolist()
else:
raise ValueError("`tf` framework not supported." )
UpperCamelCase = [
{"score": score, "label": candidate_label}
for score, candidate_label in sorted(zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , key=lambda SCREAMING_SNAKE_CASE : -x[0] )
]
return result
| 414 | 1 |
'''simple docstring'''
from dataclasses import dataclass, field
from typing import Optional
@dataclass
class _snake_case:
__snake_case: Optional[str] = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be trained.'''} )
__snake_case: Optional[str] = field(
default='''./''' , metadata={'''help''': '''Save dir where model repo is cloned and models updates are saved to.'''} )
__snake_case: Optional[str] = field(
default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path of training dataset.'''} )
__snake_case: Optional[str] = field(
default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} )
__snake_case: Optional[int] = field(default=2 , metadata={'''help''': '''Batch size for training.'''} )
__snake_case: Optional[int] = field(default=2 , metadata={'''help''': '''Batch size for evaluation.'''} )
__snake_case: Optional[float] = field(default=0.1 , metadata={'''help''': '''Value of weight decay.'''} )
__snake_case: Optional[int] = field(
default=1_00_00 , metadata={'''help''': '''Size of buffer used to shuffle streaming dataset.'''} )
__snake_case: Optional[float] = field(default=2E-4 , metadata={'''help''': '''Learning rate fo training.'''} )
__snake_case: Optional[str] = field(default='''cosine''' , metadata={'''help''': '''Learning rate.'''} )
__snake_case: Optional[int] = field(
default=7_50 , metadata={'''help''': '''Number of warmup steps in the learning rate schedule.'''} )
__snake_case: Optional[int] = field(
default=16 , metadata={'''help''': '''Number of gradient accumulation steps.'''} )
__snake_case: Optional[bool] = field(
default=lowercase__ , metadata={'''help''': '''Use gradient checkpointing to reduce memory footprint.'''} )
__snake_case: Optional[int] = field(default=5_00_00 , metadata={'''help''': '''Maximum number of training steps.'''} )
__snake_case: Optional[int] = field(
default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} )
__snake_case: Optional[int] = field(default=10_24 , metadata={'''help''': '''Sequence lengths used for training.'''} )
__snake_case: Optional[int] = field(default=1 , metadata={'''help''': '''Training seed.'''} )
__snake_case: Optional[int] = field(
default=10_24 , metadata={'''help''': '''Interval to save checkpoints. Measured as number of forward passes not training steps.'''} , )
__snake_case: Optional[str] = field(
default=lowercase__ , metadata={'''help''': '''States path if the training should continue from a checkpoint folder.'''} )
__snake_case: Optional[bool] = field(default=lowercase__ , metadata={'''help''': '''If True the data is pretokenized.'''} )
@dataclass
class _snake_case:
__snake_case: Optional[str] = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} )
__snake_case: Optional[str] = field(
default='''codeparrot/codeparrot-clean-valid''' , metadata={'''help''': '''Name or path of validation dataset.'''} )
__snake_case: Optional[int] = field(default=2 , metadata={'''help''': '''Batch size used for evaluation.'''} )
__snake_case: Optional[int] = field(
default=-1 , metadata={'''help''': '''Maximum number of evaluation steps. If -1 the full dataset is evaluated.'''} )
__snake_case: Optional[int] = field(default=10_24 , metadata={'''help''': '''Length of sequences to be evaluated.'''} )
__snake_case: Optional[int] = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} )
@dataclass
class _snake_case:
__snake_case: Optional[str] = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Model name or path of model to be evaluated.'''} )
__snake_case: Optional[int] = field(default=lowercase__ , metadata={'''help''': '''Number of workers used for code evaluation.'''} )
__snake_case: Optional[int] = field(
default=lowercase__ , metadata={'''help''': '''The number of human-eval tasks to run. If not included all tasks are evaluated.'''} , )
__snake_case: Optional[bool] = field(
default=lowercase__ , metadata={'''help''': '''Sample from the language model\'s output distribution.'''} )
__snake_case: Optional[float] = field(default=0.2 , metadata={'''help''': '''Sampling temperature used for generation.'''} )
__snake_case: Optional[int] = field(default=2_56 , metadata={'''help''': '''Maximum number of newly generated tokens.'''} )
__snake_case: Optional[int] = field(default=0 , metadata={'''help''': '''Top-k parameter used for generation.'''} )
__snake_case: Optional[float] = field(default=0.95 , metadata={'''help''': '''Top-p parameter used for nucleus sampling.'''} )
__snake_case: Optional[int] = field(default=10 , metadata={'''help''': '''Number of generations to run in parallel.'''} )
__snake_case: Optional[int] = field(
default=2_00 , metadata={'''help''': '''Number of completions to generate for each sample.'''} )
__snake_case: Optional[int] = field(default=1 , metadata={'''help''': '''Random seed used for evaluation.'''} )
__snake_case: Optional[str] = field(
default='''eval_results.json''' , metadata={'''help''': '''Random seed used for evaluation.'''} )
__snake_case: Optional[str] = field(
default='''0''' , metadata={'''help''': '''Allow `code_eval` to execute Python code on machine'''} )
__snake_case: Optional[int] = field(
default=-1 , metadata={
'''help''': (
'''Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive'''
''' number corresponds to which GPU device id to run on.'''
)
} , )
@dataclass
class _snake_case:
__snake_case: Optional[int] = field(
default=lowercase__ , metadata={
'''help''': '''The number of CPU cores to use for parallel preprocessing. Default uses the maximum available.'''
} , )
__snake_case: Optional[str] = field(
default='''transformersbook/codeparrot''' , metadata={'''help''': '''Folder or name of dataset to process.'''} )
__snake_case: Optional[str] = field(
default='''codeparrot-clean''' , metadata={'''help''': '''Folder to save processed processed dataset.'''} )
__snake_case: Optional[int] = field(
default=10_00_00 , metadata={'''help''': '''Number of files to save per JSON output file.'''} )
__snake_case: Optional[str] = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} )
__snake_case: Optional[float] = field(
default=10_00 , metadata={'''help''': '''Maximum line length in file, otherwise file is filtered.'''} )
__snake_case: Optional[float] = field(
default=1_00 , metadata={'''help''': '''Maximum mean line length in file, otherwise file is filtered.'''} )
__snake_case: Optional[float] = field(
default=0.25 , metadata={'''help''': '''Maximum fraction of non-alphanumeric characters, otherwise file is filtered.'''} )
__snake_case: Optional[float] = field(
default=1.5 , metadata={'''help''': '''Minimum character token ratio for the file, otherwise file is filtered.'''} )
__snake_case: Optional[float] = field(
default=0.7 , metadata={'''help''': '''Probability for filtering config, test and uncommon files.'''} )
__snake_case: Optional[str] = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} , )
__snake_case: Optional[bool] = field(
default=lowercase__ , metadata={'''help''': '''If True, near-duplicate samples are removed.'''} )
__snake_case: Optional[float] = field(
default=0.85 , metadata={'''help''': '''Jaccard threshold for near-duplicate samples.'''} )
@dataclass
class _snake_case:
__snake_case: Optional[str] = field(
default='''gpt2''' , metadata={'''help''': '''Base tokenizer to build new tokenizer from.'''} )
__snake_case: Optional[str] = field(
default='''transformersbook/codeparrot-train''' , metadata={'''help''': '''Dataset to train tokenizer on.'''} )
__snake_case: Optional[str] = field(default='''content''' , metadata={'''help''': '''Column containing text data to process.'''} )
__snake_case: Optional[int] = field(default=20_00_00 , metadata={'''help''': '''Number of examples to train tokenizer on.'''} )
__snake_case: Optional[int] = field(
default=3_27_68 , metadata={'''help''': '''Number of examples to train the tokenizer on.'''} )
__snake_case: Optional[str] = field(default='''codeparrot''' , metadata={'''help''': '''Name of new tokenizer.'''} )
__snake_case: Optional[bool] = field(default=lowercase__ , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
@dataclass
class _snake_case:
__snake_case: Optional[str] = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Name or path to the tokenizer.'''} )
__snake_case: Optional[str] = field(
default='''codeparrot/codeparrot-clean-train''' , metadata={'''help''': '''Name or path to the dataset to pretokenize.'''} )
__snake_case: Optional[str] = field(
default='''tokenized-codeparrot-train''' , metadata={'''help''': '''Repo name of the pretokenized data.'''} )
__snake_case: Optional[int] = field(default=lowercase__ , metadata={'''help''': '''Number of workers used for code evaluation.'''} )
@dataclass
class _snake_case:
__snake_case: Optional[str] = field(
default='''gpt2-large''' , metadata={'''help''': '''Configuration to use for model initialization.'''} )
__snake_case: Optional[str] = field(
default='''codeparrot/codeparrot''' , metadata={'''help''': '''Tokenizer attached to model.'''} )
__snake_case: Optional[str] = field(default='''codeparrot''' , metadata={'''help''': '''Name of the created model.'''} )
__snake_case: Optional[bool] = field(default=lowercase__ , metadata={'''help''': '''Push saved tokenizer to the hub.'''} )
| 531 |
'''simple docstring'''
import argparse
import gc
import json
import os
import re
import torch
from huggingface_hub import hf_hub_download
from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig
from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint
a : List[str] = {
"169M": 12,
"430M": 24,
"1B5": 24,
"3B": 32,
"7B": 32,
"14B": 40,
}
a : Dict = {
"169M": 7_68,
"430M": 10_24,
"1B5": 20_48,
"3B": 25_60,
"7B": 40_96,
"14B": 51_20,
}
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = list(state_dict.keys() )
for name in state_dict_keys:
UpperCAmelCase : str = state_dict.pop(__magic_name__ )
# emb -> embedding
if name.startswith("emb." ):
UpperCAmelCase : str = name.replace("emb." , "embeddings." )
# ln_0 -> pre_ln (only present at block 0)
if name.startswith("blocks.0.ln0" ):
UpperCAmelCase : int = name.replace("blocks.0.ln0" , "blocks.0.pre_ln" )
# att -> attention
UpperCAmelCase : Optional[int] = re.sub(R"blocks\.(\d+)\.att" , R"blocks.\1.attention" , __magic_name__ )
# ffn -> feed_forward
UpperCAmelCase : Tuple = re.sub(R"blocks\.(\d+)\.ffn" , R"blocks.\1.feed_forward" , __magic_name__ )
# time_mix_k -> time_mix_key and reshape
if name.endswith(".time_mix_k" ):
UpperCAmelCase : Optional[Any] = name.replace(".time_mix_k" , ".time_mix_key" )
# time_mix_v -> time_mix_value and reshape
if name.endswith(".time_mix_v" ):
UpperCAmelCase : List[str] = name.replace(".time_mix_v" , ".time_mix_value" )
# time_mix_r -> time_mix_key and reshape
if name.endswith(".time_mix_r" ):
UpperCAmelCase : List[Any] = name.replace(".time_mix_r" , ".time_mix_receptance" )
if name != "head.weight":
UpperCAmelCase : List[str] = "rwkv." + name
UpperCAmelCase : List[Any] = weight
return state_dict
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__=False , __magic_name__=None ):
'''simple docstring'''
if tokenizer_file is None:
print("No `--tokenizer_file` provided, we will use the default tokenizer." )
UpperCAmelCase : List[str] = 5_0277
UpperCAmelCase : str = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b" )
else:
UpperCAmelCase : List[Any] = PreTrainedTokenizerFast(tokenizer_file=__magic_name__ )
UpperCAmelCase : List[Any] = len(__magic_name__ )
tokenizer.save_pretrained(__magic_name__ )
# 2. Build the config
UpperCAmelCase : Optional[int] = list(NUM_HIDDEN_LAYERS_MAPPING.keys() )
if size is None:
# Try to infer size from the checkpoint name
for candidate in possible_sizes:
if candidate in checkpoint_file:
UpperCAmelCase : Union[str, Any] = candidate
break
if size is None:
raise ValueError("Could not infer the size, please provide it with the `--size` argument." )
if size not in possible_sizes:
raise ValueError(F"`size` should be one of {possible_sizes}, got {size}." )
UpperCAmelCase : str = RwkvConfig(
vocab_size=__magic_name__ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , )
config.save_pretrained(__magic_name__ )
# 3. Download model file then convert state_dict
UpperCAmelCase : Union[str, Any] = hf_hub_download(__magic_name__ , __magic_name__ )
UpperCAmelCase : Optional[Any] = torch.load(__magic_name__ , map_location="cpu" )
UpperCAmelCase : Union[str, Any] = convert_state_dict(__magic_name__ )
# 4. Split in shards and save
UpperCAmelCase , UpperCAmelCase : Any = shard_checkpoint(__magic_name__ )
for shard_file, shard in shards.items():
torch.save(__magic_name__ , os.path.join(__magic_name__ , __magic_name__ ) )
if index is not None:
UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ )
# Save the index as well
with open(__magic_name__ , "w" , encoding="utf-8" ) as f:
UpperCAmelCase : List[Any] = json.dumps(__magic_name__ , indent=2 , sort_keys=__magic_name__ ) + "\n"
f.write(__magic_name__ )
# 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict
print(
"Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model." )
UpperCAmelCase : Any = list(shards.keys() )
del state_dict
del shards
gc.collect()
for shard_file in shard_files:
UpperCAmelCase : Dict = torch.load(os.path.join(__magic_name__ , __magic_name__ ) )
torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(__magic_name__ , __magic_name__ ) )
del state_dict
gc.collect()
if push_to_hub:
if model_name is None:
raise ValueError("Please provide a `model_name` to push the model to the Hub." )
UpperCAmelCase : int = AutoModelForCausalLM.from_pretrained(__magic_name__ )
model.push_to_hub(__magic_name__ , max_shard_size="2GB" )
tokenizer.push_to_hub(__magic_name__ )
if __name__ == "__main__":
a : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--repo_id", default=None, type=str, required=True, help="Repo ID from which to pull the checkpoint."
)
parser.add_argument(
"--checkpoint_file", default=None, type=str, required=True, help="Name of the checkpoint file in the repo."
)
parser.add_argument(
"--output_dir", default=None, type=str, required=True, help="Where to save the converted model."
)
parser.add_argument(
"--tokenizer_file",
default=None,
type=str,
help="Path to the tokenizer file to use (if not provided, only the model is converted).",
)
parser.add_argument(
"--size",
default=None,
type=str,
help="Size of the model. Will be inferred from the `checkpoint_file` if not passed.",
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Push to the Hub the converted model.",
)
parser.add_argument(
"--model_name",
default=None,
type=str,
help="Name of the pushed model on the Hub, including the username / organization.",
)
a : Dict = parser.parse_args()
convert_rmkv_checkpoint_to_hf_format(
args.repo_id,
args.checkpoint_file,
args.output_dir,
size=args.size,
tokenizer_file=args.tokenizer_file,
push_to_hub=args.push_to_hub,
model_name=args.model_name,
)
| 679 | 0 |
from __future__ import annotations
from dataclasses import dataclass
@dataclass
class snake_case :
"""simple docstring"""
__lowerCAmelCase = 42
__lowerCAmelCase = None
__lowerCAmelCase = None
def __lowercase ( _UpperCAmelCase ) -> int:
'''simple docstring'''
def is_valid_tree(_UpperCAmelCase ) -> bool:
if node is None:
return True
if not isinstance(A__ , A__ ):
return False
try:
float(node.data )
except (TypeError, ValueError):
return False
return is_valid_tree(node.left ) and is_valid_tree(node.right )
if not is_valid_tree(A__ ):
raise ValueError(
"Each node should be type of TreeNode and data should be float." )
def is_binary_search_tree_recursive_check(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> bool:
if node is None:
return True
return (
left_bound < node.data < right_bound
and is_binary_search_tree_recursive_check(node.left , A__ , node.data )
and is_binary_search_tree_recursive_check(
node.right , node.data , A__ )
)
return is_binary_search_tree_recursive_check(A__ , -float("inf" ) , float("inf" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 714 | import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
lowerCAmelCase__ = argparse.ArgumentParser(
description=(
'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned'
' Distillation'
)
)
parser.add_argument('--model_type', default='bert', choices=['bert'])
parser.add_argument('--model_name', default='bert-base-uncased', type=str)
parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str)
parser.add_argument('--vocab_transform', action='store_true')
lowerCAmelCase__ = parser.parse_args()
if args.model_type == "bert":
lowerCAmelCase__ = BertForMaskedLM.from_pretrained(args.model_name)
lowerCAmelCase__ = 'bert'
else:
raise ValueError('args.model_type should be "bert".')
lowerCAmelCase__ = model.state_dict()
lowerCAmelCase__ = {}
for w in ["word_embeddings", "position_embeddings"]:
lowerCAmelCase__ = state_dict[F"{prefix}.embeddings.{w}.weight"]
for w in ["weight", "bias"]:
lowerCAmelCase__ = state_dict[F"{prefix}.embeddings.LayerNorm.{w}"]
lowerCAmelCase__ = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
for w in ["weight", "bias"]:
lowerCAmelCase__ = state_dict[
F"{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}"
]
lowerCAmelCase__ = state_dict[
F"{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}"
]
lowerCAmelCase__ = state_dict[
F"{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}"
]
lowerCAmelCase__ = state_dict[
F"{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}"
]
lowerCAmelCase__ = state_dict[
F"{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}"
]
lowerCAmelCase__ = state_dict[
F"{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}"
]
lowerCAmelCase__ = state_dict[
F"{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}"
]
lowerCAmelCase__ = state_dict[
F"{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}"
]
std_idx += 1
lowerCAmelCase__ = state_dict['cls.predictions.decoder.weight']
lowerCAmelCase__ = state_dict['cls.predictions.bias']
if args.vocab_transform:
for w in ["weight", "bias"]:
lowerCAmelCase__ = state_dict[F"cls.predictions.transform.dense.{w}"]
lowerCAmelCase__ = state_dict[F"cls.predictions.transform.LayerNorm.{w}"]
print(F"N layers selected for distillation: {std_idx}")
print(F"Number of params transferred for distillation: {len(compressed_sd.keys())}")
print(F"Save transferred checkpoint to {args.dump_checkpoint}.")
torch.save(compressed_sd, args.dump_checkpoint)
| 576 | 0 |
import json
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from transformers import OneFormerImageProcessor
from transformers.models.oneformer.image_processing_oneformer import binary_mask_to_rle
from transformers.models.oneformer.modeling_oneformer import OneFormerForUniversalSegmentationOutput
if is_vision_available():
from PIL import Image
def snake_case__ ( lowercase , lowercase="shi-labs/oneformer_demo" ):
with open(hf_hub_download(lowercase , lowercase , repo_type="dataset" ) , "r" ) as f:
lowerCAmelCase_: List[Any] = json.load(lowercase )
lowerCAmelCase_: Any = {}
lowerCAmelCase_: List[Any] = []
lowerCAmelCase_: Union[str, Any] = []
for key, info in class_info.items():
lowerCAmelCase_: Dict = info["name"]
class_names.append(info["name"] )
if info["isthing"]:
thing_ids.append(int(lowercase ) )
lowerCAmelCase_: Optional[Any] = thing_ids
lowerCAmelCase_: Optional[int] = class_names
return metadata
class _lowercase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , lowerCamelCase__ , lowerCamelCase__=7 , lowerCamelCase__=3 , lowerCamelCase__=30 , lowerCamelCase__=400 , lowerCamelCase__=None , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=[0.5, 0.5, 0.5] , lowerCamelCase__=[0.5, 0.5, 0.5] , lowerCamelCase__=10 , lowerCamelCase__=False , lowerCamelCase__=255 , lowerCamelCase__="shi-labs/oneformer_demo" , lowerCamelCase__="ade20k_panoptic.json" , lowerCamelCase__=10 , ):
lowerCAmelCase_: str = parent
lowerCAmelCase_: Any = batch_size
lowerCAmelCase_: str = num_channels
lowerCAmelCase_: Dict = min_resolution
lowerCAmelCase_: Tuple = max_resolution
lowerCAmelCase_: Tuple = do_resize
lowerCAmelCase_: Optional[Any] = {"shortest_edge": 32, "longest_edge": 1_333} if size is None else size
lowerCAmelCase_: Optional[int] = do_normalize
lowerCAmelCase_: List[str] = image_mean
lowerCAmelCase_: Any = image_std
lowerCAmelCase_: Optional[Any] = class_info_file
lowerCAmelCase_: List[str] = prepare_metadata(lowerCamelCase__ , lowerCamelCase__ )
lowerCAmelCase_: Dict = num_text
lowerCAmelCase_: Tuple = repo_path
# for the post_process_functions
lowerCAmelCase_: List[str] = 2
lowerCAmelCase_: Any = 10
lowerCAmelCase_: str = 10
lowerCAmelCase_: Any = 3
lowerCAmelCase_: List[Any] = 4
lowerCAmelCase_: List[Any] = num_labels
lowerCAmelCase_: int = do_reduce_labels
lowerCAmelCase_: List[Any] = ignore_index
def _a ( self ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"num_labels": self.num_labels,
"do_reduce_labels": self.do_reduce_labels,
"ignore_index": self.ignore_index,
"class_info_file": self.class_info_file,
"metadata": self.metadata,
"num_text": self.num_text,
}
def _a ( self , lowerCamelCase__ , lowerCamelCase__=False ):
if not batched:
lowerCAmelCase_: List[Any] = image_inputs[0]
if isinstance(lowerCamelCase__ , Image.Image ):
lowerCAmelCase_ , lowerCAmelCase_: Dict = image.size
else:
lowerCAmelCase_ , lowerCAmelCase_: Tuple = image.shape[1], image.shape[2]
if w < h:
lowerCAmelCase_: List[Any] = int(self.size["shortest_edge"] * h / w )
lowerCAmelCase_: List[Any] = self.size["shortest_edge"]
elif w > h:
lowerCAmelCase_: Union[str, Any] = self.size["shortest_edge"]
lowerCAmelCase_: List[str] = int(self.size["shortest_edge"] * w / h )
else:
lowerCAmelCase_: str = self.size["shortest_edge"]
lowerCAmelCase_: int = self.size["shortest_edge"]
else:
lowerCAmelCase_: Dict = []
for image in image_inputs:
lowerCAmelCase_ , lowerCAmelCase_: Optional[Any] = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
lowerCAmelCase_: List[Any] = max(lowerCamelCase__ , key=lambda lowerCamelCase__ : item[0] )[0]
lowerCAmelCase_: str = max(lowerCamelCase__ , key=lambda lowerCamelCase__ : item[1] )[1]
return expected_height, expected_width
def _a ( self ):
return OneFormerForUniversalSegmentationOutput(
# +1 for null class
class_queries_logits=torch.randn((self.batch_size, self.num_queries, self.num_classes + 1) ) , masks_queries_logits=torch.randn((self.batch_size, self.num_queries, self.height, self.width) ) , )
@require_torch
@require_vision
class _lowercase ( UpperCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE: Dict = OneFormerImageProcessor if (is_vision_available() and is_torch_available()) else None
# only for test_image_processing_common.test_image_proc_to_json_string
SCREAMING_SNAKE_CASE: Optional[int] = image_processing_class
def _a ( self ):
lowerCAmelCase_: Optional[int] = OneFormerImageProcessorTester(self )
@property
def _a ( self ):
return self.image_processing_tester.prepare_image_processor_dict()
def _a ( self ):
lowerCAmelCase_: Tuple = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCamelCase__ , "image_mean" ) )
self.assertTrue(hasattr(lowerCamelCase__ , "image_std" ) )
self.assertTrue(hasattr(lowerCamelCase__ , "do_normalize" ) )
self.assertTrue(hasattr(lowerCamelCase__ , "do_resize" ) )
self.assertTrue(hasattr(lowerCamelCase__ , "size" ) )
self.assertTrue(hasattr(lowerCamelCase__ , "ignore_index" ) )
self.assertTrue(hasattr(lowerCamelCase__ , "class_info_file" ) )
self.assertTrue(hasattr(lowerCamelCase__ , "num_text" ) )
self.assertTrue(hasattr(lowerCamelCase__ , "repo_path" ) )
self.assertTrue(hasattr(lowerCamelCase__ , "metadata" ) )
self.assertTrue(hasattr(lowerCamelCase__ , "do_reduce_labels" ) )
def _a ( self ):
pass
def _a ( self ):
# Initialize image_processor
lowerCAmelCase_: Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase_: List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase__ , Image.Image )
# Test not batched input
lowerCAmelCase_: Optional[int] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values
lowerCAmelCase_ , lowerCAmelCase_: List[Any] = self.image_processing_tester.get_expected_values(lowerCamelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase_ , lowerCAmelCase_: Tuple = self.image_processing_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ )
lowerCAmelCase_: int = image_processor(
lowerCamelCase__ , ["semantic"] * len(lowerCamelCase__ ) , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def _a ( self ):
# Initialize image_processor
lowerCAmelCase_: Tuple = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase_: List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase__ , np.ndarray )
# Test not batched input
lowerCAmelCase_: List[Any] = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values
lowerCAmelCase_ , lowerCAmelCase_: str = self.image_processing_tester.get_expected_values(lowerCamelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase_ , lowerCAmelCase_: Tuple = self.image_processing_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ )
lowerCAmelCase_: Any = image_processor(
lowerCamelCase__ , ["semantic"] * len(lowerCamelCase__ ) , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def _a ( self ):
# Initialize image_processor
lowerCAmelCase_: Dict = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase_: Optional[int] = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ )
for image in image_inputs:
self.assertIsInstance(lowerCamelCase__ , torch.Tensor )
# Test not batched input
lowerCAmelCase_: int = image_processor(image_inputs[0] , ["semantic"] , return_tensors="pt" ).pixel_values
lowerCAmelCase_ , lowerCAmelCase_: str = self.image_processing_tester.get_expected_values(lowerCamelCase__ )
self.assertEqual(
encoded_images.shape , (1, self.image_processing_tester.num_channels, expected_height, expected_width) , )
# Test batched
lowerCAmelCase_ , lowerCAmelCase_: List[str] = self.image_processing_tester.get_expected_values(lowerCamelCase__ , batched=lowerCamelCase__ )
lowerCAmelCase_: Tuple = image_processor(
lowerCamelCase__ , ["semantic"] * len(lowerCamelCase__ ) , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processing_tester.batch_size,
self.image_processing_tester.num_channels,
expected_height,
expected_width,
) , )
def _a ( self , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__="np" ):
lowerCAmelCase_: Optional[int] = self.image_processing_class(**self.image_processor_dict )
# prepare image and target
lowerCAmelCase_: List[Any] = self.image_processing_tester.num_labels
lowerCAmelCase_: int = None
lowerCAmelCase_: Dict = None
lowerCAmelCase_: List[str] = prepare_image_inputs(self.image_processing_tester , equal_resolution=lowerCamelCase__ )
if with_segmentation_maps:
lowerCAmelCase_: str = num_labels
if is_instance_map:
lowerCAmelCase_: int = list(range(lowerCamelCase__ ) ) * 2
lowerCAmelCase_: Dict = dict(enumerate(lowerCamelCase__ ) )
lowerCAmelCase_: Tuple = [
np.random.randint(0 , high * 2 , (img.size[1], img.size[0]) ).astype(np.uinta ) for img in image_inputs
]
if segmentation_type == "pil":
lowerCAmelCase_: Any = [Image.fromarray(lowerCamelCase__ ) for annotation in annotations]
lowerCAmelCase_: List[str] = image_processor(
lowerCamelCase__ , ["semantic"] * len(lowerCamelCase__ ) , lowerCamelCase__ , return_tensors="pt" , instance_id_to_semantic_id=lowerCamelCase__ , pad_and_return_pixel_mask=lowerCamelCase__ , )
return inputs
def _a ( self ):
pass
def _a ( self ):
def common(lowerCamelCase__=False , lowerCamelCase__=None ):
lowerCAmelCase_: Dict = self.comm_get_image_processor_inputs(
with_segmentation_maps=lowerCamelCase__ , is_instance_map=lowerCamelCase__ , segmentation_type=lowerCamelCase__ )
lowerCAmelCase_: Any = inputs["mask_labels"]
lowerCAmelCase_: Tuple = inputs["class_labels"]
lowerCAmelCase_: Any = inputs["pixel_values"]
lowerCAmelCase_: int = inputs["text_inputs"]
# check the batch_size
for mask_label, class_label, text_input in zip(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
self.assertEqual(mask_label.shape[0] , class_label.shape[0] )
# this ensure padding has happened
self.assertEqual(mask_label.shape[1:] , pixel_values.shape[2:] )
self.assertEqual(len(lowerCamelCase__ ) , self.image_processing_tester.num_text )
common()
common(is_instance_map=lowerCamelCase__ )
common(is_instance_map=lowerCamelCase__ , segmentation_type="pil" )
common(is_instance_map=lowerCamelCase__ , segmentation_type="pil" )
def _a ( self ):
lowerCAmelCase_: Optional[Any] = np.zeros((20, 50) )
lowerCAmelCase_: Optional[Any] = 1
lowerCAmelCase_: int = 1
lowerCAmelCase_: Union[str, Any] = 1
lowerCAmelCase_: str = binary_mask_to_rle(lowerCamelCase__ )
self.assertEqual(len(lowerCamelCase__ ) , 4 )
self.assertEqual(rle[0] , 21 )
self.assertEqual(rle[1] , 45 )
def _a ( self ):
lowerCAmelCase_: Any = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , )
lowerCAmelCase_: int = self.image_processing_tester.get_fake_oneformer_outputs()
lowerCAmelCase_: List[str] = fature_extractor.post_process_semantic_segmentation(lowerCamelCase__ )
self.assertEqual(len(lowerCamelCase__ ) , self.image_processing_tester.batch_size )
self.assertEqual(
segmentation[0].shape , (
self.image_processing_tester.height,
self.image_processing_tester.width,
) , )
lowerCAmelCase_: Any = [(1, 4) for i in range(self.image_processing_tester.batch_size )]
lowerCAmelCase_: Dict = fature_extractor.post_process_semantic_segmentation(lowerCamelCase__ , target_sizes=lowerCamelCase__ )
self.assertEqual(segmentation[0].shape , target_sizes[0] )
def _a ( self ):
lowerCAmelCase_: Optional[Any] = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , )
lowerCAmelCase_: Any = self.image_processing_tester.get_fake_oneformer_outputs()
lowerCAmelCase_: int = image_processor.post_process_instance_segmentation(lowerCamelCase__ , threshold=0 )
self.assertTrue(len(lowerCamelCase__ ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue("segmentation" in el )
self.assertTrue("segments_info" in el )
self.assertEqual(type(el["segments_info"] ) , lowerCamelCase__ )
self.assertEqual(
el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) )
def _a ( self ):
lowerCAmelCase_: str = self.image_processing_class(
num_labels=self.image_processing_tester.num_classes , max_seq_length=77 , task_seq_length=77 , class_info_file="ade20k_panoptic.json" , num_text=self.image_processing_tester.num_text , repo_path="shi-labs/oneformer_demo" , )
lowerCAmelCase_: Any = self.image_processing_tester.get_fake_oneformer_outputs()
lowerCAmelCase_: List[Any] = image_processor.post_process_panoptic_segmentation(lowerCamelCase__ , threshold=0 )
self.assertTrue(len(lowerCamelCase__ ) == self.image_processing_tester.batch_size )
for el in segmentation:
self.assertTrue("segmentation" in el )
self.assertTrue("segments_info" in el )
self.assertEqual(type(el["segments_info"] ) , lowerCamelCase__ )
self.assertEqual(
el["segmentation"].shape , (self.image_processing_tester.height, self.image_processing_tester.width) ) | 613 | def snake_case__ ( lowercase ):
lowerCAmelCase_: Union[str, Any] = [1]
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_: int = 0, 0, 0
lowerCAmelCase_: Union[str, Any] = ugly_nums[ia] * 2
lowerCAmelCase_: str = ugly_nums[ia] * 3
lowerCAmelCase_: Dict = ugly_nums[ia] * 5
for _ in range(1 , lowercase ):
lowerCAmelCase_: Any = min(lowercase , lowercase , lowercase )
ugly_nums.append(lowercase )
if next_num == next_a:
ia += 1
lowerCAmelCase_: str = ugly_nums[ia] * 2
if next_num == next_a:
ia += 1
lowerCAmelCase_: Optional[int] = ugly_nums[ia] * 3
if next_num == next_a:
ia += 1
lowerCAmelCase_: int = ugly_nums[ia] * 5
return ugly_nums[-1]
if __name__ == "__main__":
from doctest import testmod
testmod(verbose=True)
print(f'''{ugly_numbers(2_0_0) = }''') | 613 | 1 |
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ = 1_0 , lowerCamelCase__ = 2_2 ) -> int:
__lowerCamelCase : int = range(1 , lowerCamelCase__ )
__lowerCamelCase : List[Any] = range(1 , lowerCamelCase__ )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(F"""{solution(10, 22) = }""")
| 337 |
import os
import pytest
from attr import dataclass
a ="""us-east-1""" # defaults region
@dataclass
class A_ :
_UpperCAmelCase : str
_UpperCAmelCase : Tuple = '''arn:aws:iam::558105141721:role/sagemaker_execution_role'''
_UpperCAmelCase : Optional[int] = {
'''task_name''': '''mnli''',
'''per_device_train_batch_size''': 16,
'''per_device_eval_batch_size''': 16,
'''do_train''': True,
'''do_eval''': True,
'''do_predict''': True,
'''output_dir''': '''/opt/ml/model''',
'''overwrite_output_dir''': True,
'''max_steps''': 500,
'''save_steps''': 5_500,
}
_UpperCAmelCase : int = {**hyperparameters, '''max_steps''': 1_000}
@property
def lowerCAmelCase ( self : Dict):
if self.framework == "pytorch":
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"},
{"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"},
]
else:
return [
{"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"},
{"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"},
{"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"},
]
@property
def lowerCAmelCase ( self : List[str]):
return F"{self.framework}-transfromers-test"
@property
def lowerCAmelCase ( self : List[Any]):
return F"./tests/sagemaker/scripts/{self.framework}"
@property
def lowerCAmelCase ( self : List[Any]):
if self.framework == "pytorch":
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04"
else:
return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04"
@pytest.fixture(scope='class' )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Any:
__lowerCamelCase : List[str] = SageMakerTestEnvironment(framework=request.cls.framework )
| 337 | 1 |
'''simple docstring'''
import unittest
from transformers.testing_utils import CaptureStdout
from transformers.tools.python_interpreter import evaluate
def A (__lowerCamelCase :Optional[int] ):
return x + 2
class UpperCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = """x = 3"""
_lowerCAmelCase = {}
_lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase )
assert result == 3
self.assertDictEqual(_lowercase , {"""x""": 3} )
_lowerCAmelCase = """x = y"""
_lowerCAmelCase = {"""y""": 5}
_lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(_lowercase , {"""x""": 5, """y""": 5} )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = """y = add_two(x)"""
_lowerCAmelCase = {"""x""": 3}
_lowerCAmelCase = evaluate(_lowercase , {"""add_two""": add_two} , state=_lowercase )
assert result == 5
self.assertDictEqual(_lowercase , {"""x""": 3, """y""": 5} )
# Won't work without the tool
with CaptureStdout() as out:
_lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase )
assert result is None
assert "tried to execute add_two" in out.out
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = """x = 3"""
_lowerCAmelCase = {}
_lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase )
assert result == 3
self.assertDictEqual(_lowercase , {"""x""": 3} )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = """test_dict = {'x': x, 'y': add_two(x)}"""
_lowerCAmelCase = {"""x""": 3}
_lowerCAmelCase = evaluate(_lowercase , {"""add_two""": add_two} , state=_lowercase )
self.assertDictEqual(_lowercase , {"""x""": 3, """y""": 5} )
self.assertDictEqual(_lowercase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = """x = 3\ny = 5"""
_lowerCAmelCase = {}
_lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(_lowercase , {"""x""": 3, """y""": 5} )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = """text = f'This is x: {x}.'"""
_lowerCAmelCase = {"""x""": 3}
_lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase )
# evaluate returns the value of the last assignment.
assert result == "This is x: 3."
self.assertDictEqual(_lowercase , {"""x""": 3, """text""": """This is x: 3."""} )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = """if x <= 3:\n y = 2\nelse:\n y = 5"""
_lowerCAmelCase = {"""x""": 3}
_lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase )
# evaluate returns the value of the last assignment.
assert result == 2
self.assertDictEqual(_lowercase , {"""x""": 3, """y""": 2} )
_lowerCAmelCase = {"""x""": 8}
_lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(_lowercase , {"""x""": 8, """y""": 5} )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = """test_list = [x, add_two(x)]"""
_lowerCAmelCase = {"""x""": 3}
_lowerCAmelCase = evaluate(_lowercase , {"""add_two""": add_two} , state=_lowercase )
self.assertListEqual(_lowercase , [3, 5] )
self.assertDictEqual(_lowercase , {"""x""": 3, """test_list""": [3, 5]} )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = """y = x"""
_lowerCAmelCase = {"""x""": 3}
_lowerCAmelCase = evaluate(_lowercase , {} , state=_lowercase )
assert result == 3
self.assertDictEqual(_lowercase , {"""x""": 3, """y""": 3} )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = """test_list = [x, add_two(x)]\ntest_list[1]"""
_lowerCAmelCase = {"""x""": 3}
_lowerCAmelCase = evaluate(_lowercase , {"""add_two""": add_two} , state=_lowercase )
assert result == 5
self.assertDictEqual(_lowercase , {"""x""": 3, """test_list""": [3, 5]} )
_lowerCAmelCase = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']"""
_lowerCAmelCase = {"""x""": 3}
_lowerCAmelCase = evaluate(_lowercase , {"""add_two""": add_two} , state=_lowercase )
assert result == 5
self.assertDictEqual(_lowercase , {"""x""": 3, """test_dict""": {"""x""": 3, """y""": 5}} )
def _lowercase ( self ):
"""simple docstring"""
_lowerCAmelCase = """x = 0\nfor i in range(3):\n x = i"""
_lowerCAmelCase = {}
_lowerCAmelCase = evaluate(_lowercase , {"""range""": range} , state=_lowercase )
assert result == 2
self.assertDictEqual(_lowercase , {"""x""": 2, """i""": 2} )
| 5 |
'''simple docstring'''
from typing import List, Optional, Union
import numpy as np
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
_lowercase = logging.get_logger(__name__)
class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
_lowercase : List[str] = ['''input_values''', '''padding_mask''']
def __init__( self , _lowercase = 1 , _lowercase = 24_000 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , **_lowercase , ):
"""simple docstring"""
super().__init__(feature_size=_lowercase , sampling_rate=_lowercase , padding_value=_lowercase , **_lowercase )
_lowerCAmelCase = chunk_length_s
_lowerCAmelCase = overlap
@property
def _lowercase ( self ):
"""simple docstring"""
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def _lowercase ( self ):
"""simple docstring"""
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
def __call__( self , _lowercase , _lowercase = None , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , ):
"""simple docstring"""
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'The model corresponding to this feature extractor: {self} was trained using a sampling rate of'
F' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'
F' {self.sampling_rate} and not {sampling_rate}.' )
else:
logger.warning(
"""It is strongly recommended to pass the `sampling_rate` argument to this function. """
"""Failing to do so can result in silent errors that might be hard to debug.""" )
if padding and truncation:
raise ValueError("""Both padding and truncation were set. Make sure you only set one.""" )
elif padding is None:
# by default let's pad the inputs
_lowerCAmelCase = True
_lowerCAmelCase = bool(
isinstance(_lowercase , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) )
if is_batched:
_lowerCAmelCase = [np.asarray(_lowercase , dtype=np.floataa ).T for audio in raw_audio]
elif not is_batched and not isinstance(_lowercase , np.ndarray ):
_lowerCAmelCase = np.asarray(_lowercase , dtype=np.floataa )
elif isinstance(_lowercase , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ):
_lowerCAmelCase = raw_audio.astype(np.floataa )
# always return batch
if not is_batched:
_lowerCAmelCase = [np.asarray(_lowercase ).T]
# verify inputs are valid
for idx, example in enumerate(_lowercase ):
if example.ndim > 2:
raise ValueError(F'Expected input shape (channels, length) but got shape {example.shape}' )
if self.feature_size == 1 and example.ndim != 1:
raise ValueError(F'Expected mono audio but example has {example.shape[-1]} channels' )
if self.feature_size == 2 and example.shape[-1] != 2:
raise ValueError(F'Expected stereo audio but example has {example.shape[-1]} channels' )
_lowerCAmelCase = None
_lowerCAmelCase = BatchFeature({"""input_values""": raw_audio} )
if self.chunk_stride is not None and self.chunk_length is not None and max_length is None:
if truncation:
_lowerCAmelCase = min(array.shape[0] for array in raw_audio )
_lowerCAmelCase = int(np.floor(max_length / self.chunk_stride ) )
_lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length
elif padding:
_lowerCAmelCase = max(array.shape[0] for array in raw_audio )
_lowerCAmelCase = int(np.ceil(max_length / self.chunk_stride ) )
_lowerCAmelCase = (nb_step - 1) * self.chunk_stride + self.chunk_length
_lowerCAmelCase = """max_length"""
else:
_lowerCAmelCase = input_values
# normal padding on batch
if padded_inputs is None:
_lowerCAmelCase = self.pad(
_lowercase , max_length=_lowercase , truncation=_lowercase , padding=_lowercase , return_attention_mask=_lowercase , )
if padding:
_lowerCAmelCase = padded_inputs.pop("""attention_mask""" )
_lowerCAmelCase = []
for example in padded_inputs.pop("""input_values""" ):
if self.feature_size == 1:
_lowerCAmelCase = example[..., None]
input_values.append(example.T )
_lowerCAmelCase = input_values
if return_tensors is not None:
_lowerCAmelCase = padded_inputs.convert_to_tensors(_lowercase )
return padded_inputs
| 5 | 1 |
'''simple docstring'''
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class a__( unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase_ : int = MODEL_FOR_MASKED_LM_MAPPING
UpperCAmelCase_ : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING
def a_ ( self):
"""simple docstring"""
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def a_ ( self):
"""simple docstring"""
lowerCAmelCase = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""tf""")
lowerCAmelCase = unmasker("""My name is <mask>""")
self.assertEqual(
nested_simplify(__lowerCAmelCase , decimals=6) , [
{"""sequence""": """My name is grouped""", """score""": 2.1E-0_5, """token""": 38015, """token_str""": """ grouped"""},
{"""sequence""": """My name is accuser""", """score""": 2.1E-0_5, """token""": 25506, """token_str""": """ accuser"""},
] , )
lowerCAmelCase = unmasker("""The largest city in France is <mask>""")
self.assertEqual(
nested_simplify(__lowerCAmelCase , decimals=6) , [
{
"""sequence""": """The largest city in France is grouped""",
"""score""": 2.1E-0_5,
"""token""": 38015,
"""token_str""": """ grouped""",
},
{
"""sequence""": """The largest city in France is accuser""",
"""score""": 2.1E-0_5,
"""token""": 25506,
"""token_str""": """ accuser""",
},
] , )
lowerCAmelCase = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3)
self.assertEqual(
nested_simplify(__lowerCAmelCase , decimals=6) , [
{"""sequence""": """My name is Clara""", """score""": 2E-0_5, """token""": 13606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Patrick""", """score""": 2E-0_5, """token""": 3499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 1.9E-0_5, """token""": 2941, """token_str""": """ Te"""},
] , )
@require_torch
def a_ ( self):
"""simple docstring"""
lowerCAmelCase = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , top_k=2 , framework="""pt""")
lowerCAmelCase = unmasker("""My name is <mask>""")
self.assertEqual(
nested_simplify(__lowerCAmelCase , decimals=6) , [
{"""sequence""": """My name is Maul""", """score""": 2.2E-0_5, """token""": 35676, """token_str""": """ Maul"""},
{"""sequence""": """My name isELS""", """score""": 2.2E-0_5, """token""": 16416, """token_str""": """ELS"""},
] , )
lowerCAmelCase = unmasker("""The largest city in France is <mask>""")
self.assertEqual(
nested_simplify(__lowerCAmelCase , decimals=6) , [
{
"""sequence""": """The largest city in France is Maul""",
"""score""": 2.2E-0_5,
"""token""": 35676,
"""token_str""": """ Maul""",
},
{"""sequence""": """The largest city in France isELS""", """score""": 2.2E-0_5, """token""": 16416, """token_str""": """ELS"""},
] , )
lowerCAmelCase = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3)
self.assertEqual(
nested_simplify(__lowerCAmelCase , decimals=6) , [
{"""sequence""": """My name is Patrick""", """score""": 2.1E-0_5, """token""": 3499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Te""", """score""": 2E-0_5, """token""": 2941, """token_str""": """ Te"""},
{"""sequence""": """My name is Clara""", """score""": 2E-0_5, """token""": 13606, """token_str""": """ Clara"""},
] , )
lowerCAmelCase = unmasker("""My name is <mask> <mask>""" , top_k=2)
self.assertEqual(
nested_simplify(__lowerCAmelCase , decimals=6) , [
[
{
"""score""": 2.2E-0_5,
"""token""": 35676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is Maul<mask></s>""",
},
{"""score""": 2.2E-0_5, """token""": 16416, """token_str""": """ELS""", """sequence""": """<s>My name isELS<mask></s>"""},
],
[
{
"""score""": 2.2E-0_5,
"""token""": 35676,
"""token_str""": """ Maul""",
"""sequence""": """<s>My name is<mask> Maul</s>""",
},
{"""score""": 2.2E-0_5, """token""": 16416, """token_str""": """ELS""", """sequence""": """<s>My name is<mask>ELS</s>"""},
],
] , )
@require_torch_gpu
def a_ ( self):
"""simple docstring"""
lowerCAmelCase = pipeline("""fill-mask""" , model="""hf-internal-testing/tiny-random-distilbert""" , device=0 , framework="""pt""")
# convert model to fp16
pipe.model.half()
lowerCAmelCase = pipe("""Paris is the [MASK] of France.""")
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase)
@slow
@require_torch
def a_ ( self):
"""simple docstring"""
lowerCAmelCase = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""pt""")
self.run_large_test(__lowerCAmelCase)
@slow
@require_tf
def a_ ( self):
"""simple docstring"""
lowerCAmelCase = pipeline(task="""fill-mask""" , model="""distilroberta-base""" , top_k=2 , framework="""tf""")
self.run_large_test(__lowerCAmelCase)
def a_ ( self , __lowerCAmelCase):
"""simple docstring"""
lowerCAmelCase = unmasker("""My name is <mask>""")
self.assertEqual(
nested_simplify(__lowerCAmelCase) , [
{"""sequence""": """My name is John""", """score""": 0.008, """token""": 610, """token_str""": """ John"""},
{"""sequence""": """My name is Chris""", """score""": 0.007, """token""": 1573, """token_str""": """ Chris"""},
] , )
lowerCAmelCase = unmasker("""The largest city in France is <mask>""")
self.assertEqual(
nested_simplify(__lowerCAmelCase) , [
{
"""sequence""": """The largest city in France is Paris""",
"""score""": 0.251,
"""token""": 2201,
"""token_str""": """ Paris""",
},
{
"""sequence""": """The largest city in France is Lyon""",
"""score""": 0.214,
"""token""": 12790,
"""token_str""": """ Lyon""",
},
] , )
lowerCAmelCase = unmasker("""My name is <mask>""" , targets=[""" Patrick""", """ Clara""", """ Teven"""] , top_k=3)
self.assertEqual(
nested_simplify(__lowerCAmelCase) , [
{"""sequence""": """My name is Patrick""", """score""": 0.005, """token""": 3499, """token_str""": """ Patrick"""},
{"""sequence""": """My name is Clara""", """score""": 0.000, """token""": 13606, """token_str""": """ Clara"""},
{"""sequence""": """My name is Te""", """score""": 0.000, """token""": 2941, """token_str""": """ Te"""},
] , )
@require_torch
def a_ ( self):
"""simple docstring"""
lowerCAmelCase = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""pt""")
lowerCAmelCase = None
lowerCAmelCase = None
self.run_pipeline_test(__lowerCAmelCase , [])
@require_tf
def a_ ( self):
"""simple docstring"""
lowerCAmelCase = pipeline(task="""fill-mask""" , model="""sshleifer/tiny-distilroberta-base""" , framework="""tf""")
lowerCAmelCase = None
lowerCAmelCase = None
self.run_pipeline_test(__lowerCAmelCase , [])
def a_ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase):
"""simple docstring"""
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest("""The provided tokenizer has no mask token, (probably reformer or wav2vec2)""")
lowerCAmelCase = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase)
lowerCAmelCase = [
f"This is another {tokenizer.mask_token} test",
]
return fill_masker, examples
def a_ ( self , __lowerCAmelCase , __lowerCAmelCase):
"""simple docstring"""
lowerCAmelCase = fill_masker.tokenizer
lowerCAmelCase = fill_masker.model
lowerCAmelCase = fill_masker(
f"This is a {tokenizer.mask_token}" , )
self.assertEqual(
__lowerCAmelCase , [
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
] , )
lowerCAmelCase = fill_masker([f"This is a {tokenizer.mask_token}"])
self.assertEqual(
__lowerCAmelCase , [
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
] , )
lowerCAmelCase = fill_masker([f"This is a {tokenizer.mask_token}", f"Another {tokenizer.mask_token} great test."])
self.assertEqual(
__lowerCAmelCase , [
[
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
],
[
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
],
] , )
with self.assertRaises(__lowerCAmelCase):
fill_masker([None])
# No mask_token is not supported
with self.assertRaises(__lowerCAmelCase):
fill_masker("""This is""")
self.run_test_top_k(__lowerCAmelCase , __lowerCAmelCase)
self.run_test_targets(__lowerCAmelCase , __lowerCAmelCase)
self.run_test_top_k_targets(__lowerCAmelCase , __lowerCAmelCase)
self.fill_mask_with_duplicate_targets_and_top_k(__lowerCAmelCase , __lowerCAmelCase)
self.fill_mask_with_multiple_masks(__lowerCAmelCase , __lowerCAmelCase)
def a_ ( self , __lowerCAmelCase , __lowerCAmelCase):
"""simple docstring"""
lowerCAmelCase = tokenizer.get_vocab()
lowerCAmelCase = sorted(vocab.keys())[:2]
# Pipeline argument
lowerCAmelCase = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase , targets=__lowerCAmelCase)
lowerCAmelCase = fill_masker(f"This is a {tokenizer.mask_token}")
self.assertEqual(
__lowerCAmelCase , [
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
] , )
lowerCAmelCase = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __lowerCAmelCase)
lowerCAmelCase = [tokenizer.decode([x]) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__lowerCAmelCase))
# Call argument
lowerCAmelCase = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase)
lowerCAmelCase = fill_masker(f"This is a {tokenizer.mask_token}" , targets=__lowerCAmelCase)
self.assertEqual(
__lowerCAmelCase , [
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
] , )
lowerCAmelCase = {vocab[el] for el in targets}
self.assertEqual({el["""token"""] for el in outputs} , __lowerCAmelCase)
lowerCAmelCase = [tokenizer.decode([x]) for x in target_ids]
self.assertEqual({el["""token_str"""] for el in outputs} , set(__lowerCAmelCase))
# Score equivalence
lowerCAmelCase = fill_masker(f"This is a {tokenizer.mask_token}" , targets=__lowerCAmelCase)
lowerCAmelCase = [top_mask["""token_str"""] for top_mask in outputs]
lowerCAmelCase = [top_mask["""score"""] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__lowerCAmelCase) == set(__lowerCAmelCase):
lowerCAmelCase = fill_masker(f"This is a {tokenizer.mask_token}" , targets=__lowerCAmelCase)
lowerCAmelCase = [top_mask["""score"""] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(__lowerCAmelCase) , nested_simplify(__lowerCAmelCase))
# Raises with invalid
with self.assertRaises(__lowerCAmelCase):
lowerCAmelCase = fill_masker(f"This is a {tokenizer.mask_token}" , targets=[])
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(__lowerCAmelCase):
lowerCAmelCase = fill_masker(f"This is a {tokenizer.mask_token}" , targets=[""""""])
with self.assertRaises(__lowerCAmelCase):
lowerCAmelCase = fill_masker(f"This is a {tokenizer.mask_token}" , targets="""""")
def a_ ( self , __lowerCAmelCase , __lowerCAmelCase):
"""simple docstring"""
lowerCAmelCase = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase , top_k=2)
lowerCAmelCase = fill_masker(f"This is a {tokenizer.mask_token}")
self.assertEqual(
__lowerCAmelCase , [
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
] , )
lowerCAmelCase = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase)
lowerCAmelCase = fill_masker(f"This is a {tokenizer.mask_token}" , top_k=2)
self.assertEqual(
__lowerCAmelCase , [
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
] , )
self.assertEqual(nested_simplify(__lowerCAmelCase) , nested_simplify(__lowerCAmelCase))
def a_ ( self , __lowerCAmelCase , __lowerCAmelCase):
"""simple docstring"""
lowerCAmelCase = tokenizer.get_vocab()
lowerCAmelCase = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase)
# top_k=2, ntargets=3
lowerCAmelCase = sorted(vocab.keys())[:3]
lowerCAmelCase = fill_masker(f"This is a {tokenizer.mask_token}" , top_k=2 , targets=__lowerCAmelCase)
# If we use the most probably targets, and filter differently, we should still
# have the same results
lowerCAmelCase = [el["""token_str"""] for el in sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase: x["score"] , reverse=__lowerCAmelCase)]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__lowerCAmelCase).issubset(__lowerCAmelCase):
lowerCAmelCase = fill_masker(f"This is a {tokenizer.mask_token}" , top_k=3 , targets=__lowerCAmelCase)
# They should yield exactly the same result
self.assertEqual(nested_simplify(__lowerCAmelCase) , nested_simplify(__lowerCAmelCase))
def a_ ( self , __lowerCAmelCase , __lowerCAmelCase):
"""simple docstring"""
lowerCAmelCase = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase)
lowerCAmelCase = tokenizer.get_vocab()
# String duplicates + id duplicates
lowerCAmelCase = sorted(vocab.keys())[:3]
lowerCAmelCase = [targets[0], targets[1], targets[0], targets[2], targets[1]]
lowerCAmelCase = fill_masker(f"My name is {tokenizer.mask_token}" , targets=__lowerCAmelCase , top_k=10)
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(__lowerCAmelCase) , 3)
def a_ ( self , __lowerCAmelCase , __lowerCAmelCase):
"""simple docstring"""
lowerCAmelCase = FillMaskPipeline(model=__lowerCAmelCase , tokenizer=__lowerCAmelCase)
lowerCAmelCase = fill_masker(
f"This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}" , top_k=2)
self.assertEqual(
__lowerCAmelCase , [
[
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
],
[
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
],
[
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
{"""sequence""": ANY(__lowerCAmelCase), """score""": ANY(__lowerCAmelCase), """token""": ANY(__lowerCAmelCase), """token_str""": ANY(__lowerCAmelCase)},
],
] , )
| 710 | '''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__lowercase = logging.get_logger(__name__)
__lowercase = {
'''google/switch-base-8''': '''https://huggingface.co/google/switch-base-8/blob/main/config.json''',
}
class a__( lowerCAmelCase__ ):
'''simple docstring'''
UpperCAmelCase_ : List[str] = '''switch_transformers'''
UpperCAmelCase_ : Tuple = ['''past_key_values''']
UpperCAmelCase_ : List[Any] = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self , __lowerCAmelCase=32128 , __lowerCAmelCase=768 , __lowerCAmelCase=64 , __lowerCAmelCase=2048 , __lowerCAmelCase=64 , __lowerCAmelCase=12 , __lowerCAmelCase=3 , __lowerCAmelCase=12 , __lowerCAmelCase=3 , __lowerCAmelCase=12 , __lowerCAmelCase=8 , __lowerCAmelCase=False , __lowerCAmelCase=0.01 , __lowerCAmelCase="float32" , __lowerCAmelCase=False , __lowerCAmelCase=32 , __lowerCAmelCase=128 , __lowerCAmelCase=0.1 , __lowerCAmelCase=1E-6 , __lowerCAmelCase=0.001 , __lowerCAmelCase=0.001 , __lowerCAmelCase=1.0 , __lowerCAmelCase="relu" , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=0 , __lowerCAmelCase=1 , **__lowerCAmelCase , ):
"""simple docstring"""
lowerCAmelCase = vocab_size
lowerCAmelCase = d_model
lowerCAmelCase = d_kv
lowerCAmelCase = d_ff
lowerCAmelCase = num_sparse_encoder_layers
lowerCAmelCase = num_layers
lowerCAmelCase = (
num_decoder_layers if num_decoder_layers is not None else self.num_layers
) # default = symmetry
lowerCAmelCase = num_sparse_decoder_layers
# This tells us, each how many encoder layer we'll have to set a sparse layer.
if self.num_sparse_encoder_layers > 0:
lowerCAmelCase = self.num_layers // self.num_sparse_encoder_layers
else:
lowerCAmelCase = self.num_layers # HACK: this will create 0 sparse layers
# This tells us, each how many encoder layer we'll have to set a sparse layer.
if self.num_sparse_decoder_layers > 0:
lowerCAmelCase = self.num_decoder_layers // self.num_sparse_decoder_layers
else:
lowerCAmelCase = self.num_decoder_layers # HACK: this will create 0 sparse layers
lowerCAmelCase = num_heads
lowerCAmelCase = num_experts
lowerCAmelCase = expert_capacity
lowerCAmelCase = router_bias
lowerCAmelCase = router_jitter_noise
if router_dtype not in ["float32", "float16", "bfloat16"]:
raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}")
lowerCAmelCase = router_dtype
lowerCAmelCase = router_ignore_padding_tokens
lowerCAmelCase = relative_attention_num_buckets
lowerCAmelCase = relative_attention_max_distance
lowerCAmelCase = dropout_rate
lowerCAmelCase = layer_norm_epsilon
lowerCAmelCase = initializer_factor
lowerCAmelCase = feed_forward_proj
lowerCAmelCase = use_cache
lowerCAmelCase = add_router_probs
lowerCAmelCase = router_z_loss_coef
lowerCAmelCase = router_aux_loss_coef
lowerCAmelCase = self.feed_forward_proj.split("""-""")
lowerCAmelCase = act_info[-1]
lowerCAmelCase = act_info[0] == """gated"""
if len(__lowerCAmelCase) > 1 and act_info[0] != "gated" or len(__lowerCAmelCase) > 2:
raise ValueError(
f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer."
"""Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """
"""'gated-gelu' or 'relu'""")
# for backwards compatibility
if feed_forward_proj == "gated-gelu":
lowerCAmelCase = """gelu_new"""
super().__init__(
pad_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , is_encoder_decoder=__lowerCAmelCase , **__lowerCAmelCase , )
| 605 | 0 |
import json
import os
import unittest
from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast
from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class UpperCamelCase ( a__ , unittest.TestCase ):
__UpperCamelCase =LEDTokenizer
__UpperCamelCase =LEDTokenizerFast
__UpperCamelCase =True
def UpperCamelCase ( self : Any ):
"""simple docstring"""
super().setUp()
SCREAMING_SNAKE_CASE = [
'l',
'o',
'w',
'e',
'r',
's',
't',
'i',
'd',
'n',
'\u0120',
'\u0120l',
'\u0120n',
'\u0120lo',
'\u0120low',
'er',
'\u0120lowest',
'\u0120newer',
'\u0120wider',
'<unk>',
]
SCREAMING_SNAKE_CASE = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
SCREAMING_SNAKE_CASE = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', '']
SCREAMING_SNAKE_CASE = {'unk_token': '<unk>'}
SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] )
SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' )
with open(self.merges_file , 'w' , encoding='utf-8' ) as fp:
fp.write('\n'.join(SCREAMING_SNAKE_CASE_ ) )
def UpperCamelCase ( self : List[Any] , **snake_case__ : str ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def UpperCamelCase ( self : Dict , **snake_case__ : int ):
"""simple docstring"""
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def UpperCamelCase ( self : Union[str, Any] , snake_case__ : Optional[Any] ):
"""simple docstring"""
return "lower newer", "lower newer"
@cached_property
def UpperCamelCase ( self : List[str] ):
"""simple docstring"""
return LEDTokenizer.from_pretrained('allenai/led-base-16384' )
@cached_property
def UpperCamelCase ( self : Dict ):
"""simple docstring"""
return LEDTokenizerFast.from_pretrained('allenai/led-base-16384' )
@require_torch
def UpperCamelCase ( self : List[str] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
SCREAMING_SNAKE_CASE = [0, 2_5_0, 2_5_1, 1_7_8_1_8, 1_3, 3_9_1_8_6, 1_9_3_8, 4, 2]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE = tokenizer(SCREAMING_SNAKE_CASE_ , max_length=len(SCREAMING_SNAKE_CASE_ ) , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual((2, 9) , batch.input_ids.shape )
self.assertEqual((2, 9) , batch.attention_mask.shape )
SCREAMING_SNAKE_CASE = batch.input_ids.tolist()[0]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@require_torch
def UpperCamelCase ( self : List[str] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.', 'Another paragraph for summarization.']
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' )
self.assertIn('input_ids' , SCREAMING_SNAKE_CASE_ )
self.assertIn('attention_mask' , SCREAMING_SNAKE_CASE_ )
self.assertNotIn('labels' , SCREAMING_SNAKE_CASE_ )
self.assertNotIn('decoder_attention_mask' , SCREAMING_SNAKE_CASE_ )
@require_torch
def UpperCamelCase ( self : str ):
"""simple docstring"""
SCREAMING_SNAKE_CASE = [
'Summary of the text.',
'Another summary.',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE = tokenizer(text_target=SCREAMING_SNAKE_CASE_ , max_length=3_2 , padding='max_length' , return_tensors='pt' )
self.assertEqual(3_2 , targets['input_ids'].shape[1] )
@require_torch
def UpperCamelCase ( self : Dict ):
"""simple docstring"""
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE = tokenizer(
['I am a small frog' * 1_0_2_4, 'I am a small frog'] , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='pt' )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(batch.input_ids.shape , (2, 5_1_2_2) )
@require_torch
def UpperCamelCase ( self : Tuple ):
"""simple docstring"""
SCREAMING_SNAKE_CASE = ['A long paragraph for summarization.']
SCREAMING_SNAKE_CASE = [
'Summary of the text.',
]
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE = tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors='pt' )
SCREAMING_SNAKE_CASE = tokenizer(text_target=SCREAMING_SNAKE_CASE_ , return_tensors='pt' )
SCREAMING_SNAKE_CASE = inputs['input_ids']
SCREAMING_SNAKE_CASE = targets['input_ids']
self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() )
self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() )
self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() )
@require_torch
def UpperCamelCase ( self : Union[str, Any] ):
"""simple docstring"""
for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]:
SCREAMING_SNAKE_CASE = ['Summary of the text.', 'Another summary.']
SCREAMING_SNAKE_CASE = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]]
SCREAMING_SNAKE_CASE = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ )
SCREAMING_SNAKE_CASE = [[0] * len(SCREAMING_SNAKE_CASE_ ) for x in encoded_output['input_ids']]
SCREAMING_SNAKE_CASE = tokenizer.pad(SCREAMING_SNAKE_CASE_ )
self.assertSequenceEqual(outputs['global_attention_mask'] , SCREAMING_SNAKE_CASE_ )
def UpperCamelCase ( self : Any ):
"""simple docstring"""
pass
def UpperCamelCase ( self : Union[str, Any] ):
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
SCREAMING_SNAKE_CASE = 'A, <mask> AllenNLP sentence.'
SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ )
SCREAMING_SNAKE_CASE = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ )
self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) )
self.assertEqual(
sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , )
SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] )
SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] )
self.assertSequenceEqual(tokens_p['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(tokens_r['input_ids'] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] )
self.assertSequenceEqual(
SCREAMING_SNAKE_CASE_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
self.assertSequenceEqual(
SCREAMING_SNAKE_CASE_ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] )
| 439 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__UpperCAmelCase = {
'''configuration_pix2struct''': [
'''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Pix2StructConfig''',
'''Pix2StructTextConfig''',
'''Pix2StructVisionConfig''',
],
'''processing_pix2struct''': ['''Pix2StructProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = ['''Pix2StructImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Pix2StructPreTrainedModel''',
'''Pix2StructForConditionalGeneration''',
'''Pix2StructVisionModel''',
'''Pix2StructTextModel''',
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 40 | 0 |
# Algorithm for the pigeonhole sorting
def _A ( _UpperCamelCase ):
_UpperCAmelCase : int = min(_UpperCamelCase ) # min() finds the minimum value
_UpperCAmelCase : Any = max(_UpperCamelCase ) # max() finds the maximum value
_UpperCAmelCase : str = max_val - min_val + 1 # size is difference of max and min values plus one
# list of pigeonholes of size equal to the variable size
_UpperCAmelCase : Union[str, Any] = [0] * size
# Populate the pigeonholes.
for x in a:
assert isinstance(_UpperCamelCase , _UpperCamelCase ), "integers only please"
holes[x - min_val] += 1
# Putting the elements back into the array in an order.
_UpperCAmelCase : Tuple = 0
for count in range(_UpperCamelCase ):
while holes[count] > 0:
holes[count] -= 1
_UpperCAmelCase : List[str] = count + min_val
i += 1
def _A ( ):
_UpperCAmelCase : Union[str, Any] = [8, 3, 2, 7, 4, 6, 8]
pigeonhole_sort(_UpperCamelCase )
print('''Sorted order is:''' , ''' '''.join(_UpperCamelCase ) )
if __name__ == "__main__":
main()
| 416 |
import os
import tempfile
from functools import partial
from unittest import TestCase
from unittest.mock import patch
import datasets
import datasets.config
from .utils import require_beam
class lowerCAmelCase_ ( datasets.BeamBasedBuilder ):
def a_ ( self : Dict ) -> Dict:
'''simple docstring'''
return datasets.DatasetInfo(
features=datasets.Features({'''content''': datasets.Value('''string''' )} ) , supervised_keys=UpperCAmelCase_ , )
def a_ ( self : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int ) -> Dict:
'''simple docstring'''
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_dummy_examples()} )]
def a_ ( self : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int ) -> Any:
'''simple docstring'''
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(UpperCAmelCase_ )
class lowerCAmelCase_ ( datasets.BeamBasedBuilder ):
def a_ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
return datasets.DatasetInfo(
features=datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) , supervised_keys=UpperCAmelCase_ , )
def a_ ( self : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ) -> Optional[int]:
'''simple docstring'''
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''examples''': get_test_nested_examples()} )
]
def a_ ( self : List[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) -> Dict:
'''simple docstring'''
import apache_beam as beam
return pipeline | "Load Examples" >> beam.Create(UpperCAmelCase_ )
def _A ( ):
return [(i, {"content": content}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )]
def _A ( ):
return [(i, {"a": {"b": [content]}}) for i, content in enumerate(['''foo''', '''bar''', '''foobar'''] )]
class lowerCAmelCase_ ( lowercase_ ):
@require_beam
def a_ ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
_UpperCAmelCase : Optional[Any] = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
_UpperCAmelCase : Dict = DummyBeamDataset(cache_dir=UpperCAmelCase_ , beam_runner='''DirectRunner''' )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(UpperCAmelCase_ , builder.name , '''default''' , '''0.0.0''' , F'''{builder.name}-train.arrow''' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) )
_UpperCAmelCase : str = builder.as_dataset()
self.assertEqual(dset['''train'''].num_rows , UpperCAmelCase_ )
self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , UpperCAmelCase_ )
self.assertDictEqual(dset['''train'''][0] , get_test_dummy_examples()[0][1] )
self.assertDictEqual(
dset['''train'''][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(UpperCAmelCase_ , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) )
del dset
@require_beam
def a_ ( self : List[Any] ) -> str:
'''simple docstring'''
import apache_beam as beam
_UpperCAmelCase : List[str] = beam.io.parquetio.WriteToParquet
_UpperCAmelCase : Optional[Any] = len(get_test_dummy_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
_UpperCAmelCase : Union[str, Any] = DummyBeamDataset(cache_dir=UpperCAmelCase_ , beam_runner='''DirectRunner''' )
with patch('''apache_beam.io.parquetio.WriteToParquet''' ) as write_parquet_mock:
_UpperCAmelCase : List[str] = partial(UpperCAmelCase_ , num_shards=2 )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(
UpperCAmelCase_ , builder.name , '''default''' , '''0.0.0''' , F'''{builder.name}-train-00000-of-00002.arrow''' ) ) )
self.assertTrue(
os.path.exists(
os.path.join(
UpperCAmelCase_ , builder.name , '''default''' , '''0.0.0''' , F'''{builder.name}-train-00000-of-00002.arrow''' ) ) )
self.assertDictEqual(builder.info.features , datasets.Features({'''content''': datasets.Value('''string''' )} ) )
_UpperCAmelCase : Dict = builder.as_dataset()
self.assertEqual(dset['''train'''].num_rows , UpperCAmelCase_ )
self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , UpperCAmelCase_ )
# Order is not preserved when sharding, so we just check that all the elements are there
self.assertListEqual(sorted(dset['''train''']['''content'''] ) , sorted(['''foo''', '''bar''', '''foobar'''] ) )
self.assertTrue(
os.path.exists(os.path.join(UpperCAmelCase_ , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) )
del dset
@require_beam
def a_ ( self : str ) -> Any:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_cache_dir:
_UpperCAmelCase : str = DummyBeamDataset(cache_dir=UpperCAmelCase_ )
self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare )
@require_beam
def a_ ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
_UpperCAmelCase : Union[str, Any] = len(get_test_nested_examples() )
with tempfile.TemporaryDirectory() as tmp_cache_dir:
_UpperCAmelCase : Optional[Any] = NestedBeamDataset(cache_dir=UpperCAmelCase_ , beam_runner='''DirectRunner''' )
builder.download_and_prepare()
self.assertTrue(
os.path.exists(
os.path.join(UpperCAmelCase_ , builder.name , '''default''' , '''0.0.0''' , F'''{builder.name}-train.arrow''' ) ) )
self.assertDictEqual(
builder.info.features , datasets.Features({'''a''': datasets.Sequence({'''b''': datasets.Value('''string''' )} )} ) )
_UpperCAmelCase : List[str] = builder.as_dataset()
self.assertEqual(dset['''train'''].num_rows , UpperCAmelCase_ )
self.assertEqual(dset['''train'''].info.splits['''train'''].num_examples , UpperCAmelCase_ )
self.assertDictEqual(dset['''train'''][0] , get_test_nested_examples()[0][1] )
self.assertDictEqual(
dset['''train'''][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] )
self.assertTrue(
os.path.exists(os.path.join(UpperCAmelCase_ , builder.name , '''default''' , '''0.0.0''' , '''dataset_info.json''' ) ) )
del dset
| 416 | 1 |
"""simple docstring"""
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .notes_encoder import SpectrogramNotesEncoder
from .continous_encoder import SpectrogramContEncoder
from .pipeline_spectrogram_diffusion import (
SpectrogramContEncoder,
SpectrogramDiffusionPipeline,
TaFilmDecoder,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .midi_utils import MidiProcessor
| 624 |
from __future__ import annotations
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
if not nums:
raise ValueError('''List is empty''' )
return sum(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 39 | 0 |
import math
from typing import Optional
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {
'''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''',
'''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''',
}
class a ( __a ):
lowercase_ : List[str] = '''encodec'''
def __init__( self : List[Any] , snake_case__ : str=[1.5, 3.0, 6.0, 1_2.0, 2_4.0] , snake_case__ : int=24_000 , snake_case__ : Any=1 , snake_case__ : Optional[int]=False , snake_case__ : Tuple=None , snake_case__ : Optional[int]=None , snake_case__ : str=128 , snake_case__ : Tuple=32 , snake_case__ : Optional[int]=1 , snake_case__ : Dict=[8, 5, 4, 2] , snake_case__ : List[Any]="weight_norm" , snake_case__ : Union[str, Any]=7 , snake_case__ : Optional[int]=7 , snake_case__ : List[Any]=3 , snake_case__ : Optional[int]=2 , snake_case__ : List[str]=True , snake_case__ : str="reflect" , snake_case__ : int=2 , snake_case__ : Union[str, Any]=2 , snake_case__ : str=1.0 , snake_case__ : str=1_024 , snake_case__ : str=None , snake_case__ : List[Any]=True , **snake_case__ : Any , ):
"""simple docstring"""
__lowerCAmelCase = target_bandwidths
__lowerCAmelCase = sampling_rate
__lowerCAmelCase = audio_channels
__lowerCAmelCase = normalize
__lowerCAmelCase = chunk_length_s
__lowerCAmelCase = overlap
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_filters
__lowerCAmelCase = num_residual_layers
__lowerCAmelCase = upsampling_ratios
__lowerCAmelCase = norm_type
__lowerCAmelCase = kernel_size
__lowerCAmelCase = last_kernel_size
__lowerCAmelCase = residual_kernel_size
__lowerCAmelCase = dilation_growth_rate
__lowerCAmelCase = use_causal_conv
__lowerCAmelCase = pad_mode
__lowerCAmelCase = compress
__lowerCAmelCase = num_lstm_layers
__lowerCAmelCase = trim_right_ratio
__lowerCAmelCase = codebook_size
__lowerCAmelCase = codebook_dim if codebook_dim is not None else hidden_size
__lowerCAmelCase = use_conv_shortcut
if self.norm_type not in ["weight_norm", "time_group_norm"]:
raise ValueError(
F"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" )
super().__init__(**snake_case__ )
@property
def UpperCAmelCase__ ( self : Any ):
"""simple docstring"""
if self.chunk_length_s is None:
return None
else:
return int(self.chunk_length_s * self.sampling_rate )
@property
def UpperCAmelCase__ ( self : str ):
"""simple docstring"""
if self.chunk_length_s is None or self.overlap is None:
return None
else:
return max(1 , int((1.0 - self.overlap) * self.chunk_length ) )
@property
def UpperCAmelCase__ ( self : Optional[int] ):
"""simple docstring"""
__lowerCAmelCase = np.prod(self.upsampling_ratios )
return math.ceil(self.sampling_rate / hop_length )
@property
def UpperCAmelCase__ ( self : str ):
"""simple docstring"""
return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
| 706 |
from copy import deepcopy
from typing import Optional, Union
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_tf_available, is_torch_available
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
class a ( __UpperCAmelCase ):
lowercase_ : Tuple = ['image_processor']
lowercase_ : Tuple = 'SamImageProcessor'
def __init__( self : List[str] , snake_case__ : Optional[Any] ):
"""simple docstring"""
super().__init__(snake_case__ )
__lowerCAmelCase = self.image_processor
__lowerCAmelCase = -10
__lowerCAmelCase = self.image_processor.size["longest_edge"]
def __call__( self : Any , snake_case__ : Optional[int]=None , snake_case__ : Optional[int]=None , snake_case__ : str=None , snake_case__ : List[str]=None , snake_case__ : Optional[Union[str, TensorType]] = None , **snake_case__ : Any , ):
"""simple docstring"""
__lowerCAmelCase = self.image_processor(
snake_case__ , return_tensors=snake_case__ , **snake_case__ , )
# pop arguments that are not used in the foward but used nevertheless
__lowerCAmelCase = encoding_image_processor["original_sizes"]
if hasattr(snake_case__ , "numpy" ): # Checks if Torch or TF tensor
__lowerCAmelCase = original_sizes.numpy()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._check_and_preprocess_points(
input_points=snake_case__ , input_labels=snake_case__ , input_boxes=snake_case__ , )
__lowerCAmelCase = self._normalize_and_convert(
snake_case__ , snake_case__ , input_points=snake_case__ , input_labels=snake_case__ , input_boxes=snake_case__ , return_tensors=snake_case__ , )
return encoding_image_processor
def UpperCAmelCase__ ( self : Tuple , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : str=None , snake_case__ : Any=None , snake_case__ : Any=None , snake_case__ : List[str]="pt" , ):
"""simple docstring"""
if input_points is not None:
if len(snake_case__ ) != len(snake_case__ ):
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size , snake_case__ , original_sizes[0] ) for point in input_points
]
else:
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size , snake_case__ , snake_case__ )
for point, original_size in zip(snake_case__ , snake_case__ )
]
# check that all arrays have the same shape
if not all(point.shape == input_points[0].shape for point in input_points ):
if input_labels is not None:
__lowerCAmelCase , __lowerCAmelCase = self._pad_points_and_labels(snake_case__ , snake_case__ )
__lowerCAmelCase = np.array(snake_case__ )
if input_labels is not None:
__lowerCAmelCase = np.array(snake_case__ )
if input_boxes is not None:
if len(snake_case__ ) != len(snake_case__ ):
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size , snake_case__ , original_sizes[0] , is_bounding_box=snake_case__ )
for box in input_boxes
]
else:
__lowerCAmelCase = [
self._normalize_coordinates(self.target_size , snake_case__ , snake_case__ , is_bounding_box=snake_case__ )
for box, original_size in zip(snake_case__ , snake_case__ )
]
__lowerCAmelCase = np.array(snake_case__ )
if input_boxes is not None:
if return_tensors == "pt":
__lowerCAmelCase = torch.from_numpy(snake_case__ )
# boxes batch size of 1 by default
__lowerCAmelCase = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes
elif return_tensors == "tf":
__lowerCAmelCase = tf.convert_to_tensor(snake_case__ )
# boxes batch size of 1 by default
__lowerCAmelCase = tf.expand_dims(snake_case__ , 1 ) if len(input_boxes.shape ) != 3 else input_boxes
encoding_image_processor.update({"input_boxes": input_boxes} )
if input_points is not None:
if return_tensors == "pt":
__lowerCAmelCase = torch.from_numpy(snake_case__ )
# point batch size of 1 by default
__lowerCAmelCase = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points
elif return_tensors == "tf":
__lowerCAmelCase = tf.convert_to_tensor(snake_case__ )
# point batch size of 1 by default
__lowerCAmelCase = tf.expand_dims(snake_case__ , 1 ) if len(input_points.shape ) != 4 else input_points
encoding_image_processor.update({"input_points": input_points} )
if input_labels is not None:
if return_tensors == "pt":
__lowerCAmelCase = torch.from_numpy(snake_case__ )
# point batch size of 1 by default
__lowerCAmelCase = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels
elif return_tensors == "tf":
__lowerCAmelCase = tf.convert_to_tensor(snake_case__ )
# point batch size of 1 by default
__lowerCAmelCase = tf.expand_dims(snake_case__ , 1 ) if len(input_labels.shape ) != 3 else input_labels
encoding_image_processor.update({"input_labels": input_labels} )
return encoding_image_processor
def UpperCAmelCase__ ( self : str , snake_case__ : Union[str, Any] , snake_case__ : Dict ):
"""simple docstring"""
__lowerCAmelCase = max([point.shape[0] for point in input_points] )
__lowerCAmelCase = []
for i, point in enumerate(snake_case__ ):
if point.shape[0] != expected_nb_points:
__lowerCAmelCase = np.concatenate(
[point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 )
__lowerCAmelCase = np.append(input_labels[i] , [self.point_pad_value] )
processed_input_points.append(snake_case__ )
__lowerCAmelCase = processed_input_points
return input_points, input_labels
def UpperCAmelCase__ ( self : Dict , snake_case__ : int , snake_case__ : np.ndarray , snake_case__ : List[str] , snake_case__ : Dict=False ):
"""simple docstring"""
__lowerCAmelCase , __lowerCAmelCase = original_size
__lowerCAmelCase , __lowerCAmelCase = self.image_processor._get_preprocess_shape(snake_case__ , longest_edge=snake_case__ )
__lowerCAmelCase = deepcopy(snake_case__ ).astype(snake_case__ )
if is_bounding_box:
__lowerCAmelCase = coords.reshape(-1 , 2 , 2 )
__lowerCAmelCase = coords[..., 0] * (new_w / old_w)
__lowerCAmelCase = coords[..., 1] * (new_h / old_h)
if is_bounding_box:
__lowerCAmelCase = coords.reshape(-1 , 4 )
return coords
def UpperCAmelCase__ ( self : List[str] , snake_case__ : Union[str, Any]=None , snake_case__ : int=None , snake_case__ : Any=None , ):
"""simple docstring"""
if input_points is not None:
if hasattr(snake_case__ , "numpy" ): # Checks for TF or Torch tensor
__lowerCAmelCase = input_points.numpy().tolist()
if not isinstance(snake_case__ , snake_case__ ) or not isinstance(input_points[0] , snake_case__ ):
raise ValueError("Input points must be a list of list of floating points." )
__lowerCAmelCase = [np.array(snake_case__ ) for input_point in input_points]
else:
__lowerCAmelCase = None
if input_labels is not None:
if hasattr(snake_case__ , "numpy" ):
__lowerCAmelCase = input_labels.numpy().tolist()
if not isinstance(snake_case__ , snake_case__ ) or not isinstance(input_labels[0] , snake_case__ ):
raise ValueError("Input labels must be a list of list integers." )
__lowerCAmelCase = [np.array(snake_case__ ) for label in input_labels]
else:
__lowerCAmelCase = None
if input_boxes is not None:
if hasattr(snake_case__ , "numpy" ):
__lowerCAmelCase = input_boxes.numpy().tolist()
if (
not isinstance(snake_case__ , snake_case__ )
or not isinstance(input_boxes[0] , snake_case__ )
or not isinstance(input_boxes[0][0] , snake_case__ )
):
raise ValueError("Input boxes must be a list of list of list of floating points." )
__lowerCAmelCase = [np.array(snake_case__ ).astype(np.floataa ) for box in input_boxes]
else:
__lowerCAmelCase = None
return input_points, input_labels, input_boxes
@property
def UpperCAmelCase__ ( self : Union[str, Any] ):
"""simple docstring"""
__lowerCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(snake_case__ ) )
def UpperCAmelCase__ ( self : Optional[Any] , *snake_case__ : Dict , **snake_case__ : Union[str, Any] ):
"""simple docstring"""
return self.image_processor.post_process_masks(*snake_case__ , **snake_case__ )
| 376 | 0 |
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ):
SCREAMING_SNAKE_CASE__ =(IPNDMScheduler,)
SCREAMING_SNAKE_CASE__ =(("""num_inference_steps""", 50),)
def __lowerCAmelCase ( self, **_a ) -> str:
__SCREAMING_SNAKE_CASE = {"num_train_timesteps": 10_00}
config.update(**_a )
return config
def __lowerCAmelCase ( self, _a=0, **_a ) -> List[Any]:
__SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs )
__SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps", _a )
__SCREAMING_SNAKE_CASE = self.dummy_sample
__SCREAMING_SNAKE_CASE = 0.1 * sample
__SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_a )
__SCREAMING_SNAKE_CASE = scheduler_class(**_a )
scheduler.set_timesteps(_a )
# copy over dummy past residuals
__SCREAMING_SNAKE_CASE = dummy_past_residuals[:]
if time_step is None:
__SCREAMING_SNAKE_CASE = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_a )
__SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(_a )
new_scheduler.set_timesteps(_a )
# copy over dummy past residuals
__SCREAMING_SNAKE_CASE = dummy_past_residuals[:]
__SCREAMING_SNAKE_CASE = scheduler.step(_a, _a, _a, **_a ).prev_sample
__SCREAMING_SNAKE_CASE = new_scheduler.step(_a, _a, _a, **_a ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
__SCREAMING_SNAKE_CASE = scheduler.step(_a, _a, _a, **_a ).prev_sample
__SCREAMING_SNAKE_CASE = new_scheduler.step(_a, _a, _a, **_a ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def __lowerCAmelCase ( self ) -> str:
pass
def __lowerCAmelCase ( self, _a=0, **_a ) -> int:
__SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs )
__SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps", _a )
__SCREAMING_SNAKE_CASE = self.dummy_sample
__SCREAMING_SNAKE_CASE = 0.1 * sample
__SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
__SCREAMING_SNAKE_CASE = self.get_scheduler_config()
__SCREAMING_SNAKE_CASE = scheduler_class(**_a )
scheduler.set_timesteps(_a )
# copy over dummy past residuals (must be after setting timesteps)
__SCREAMING_SNAKE_CASE = dummy_past_residuals[:]
if time_step is None:
__SCREAMING_SNAKE_CASE = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(_a )
__SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(_a )
# copy over dummy past residuals
new_scheduler.set_timesteps(_a )
# copy over dummy past residual (must be after setting timesteps)
__SCREAMING_SNAKE_CASE = dummy_past_residuals[:]
__SCREAMING_SNAKE_CASE = scheduler.step(_a, _a, _a, **_a ).prev_sample
__SCREAMING_SNAKE_CASE = new_scheduler.step(_a, _a, _a, **_a ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
__SCREAMING_SNAKE_CASE = scheduler.step(_a, _a, _a, **_a ).prev_sample
__SCREAMING_SNAKE_CASE = new_scheduler.step(_a, _a, _a, **_a ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def __lowerCAmelCase ( self, **_a ) -> Tuple:
__SCREAMING_SNAKE_CASE = self.scheduler_classes[0]
__SCREAMING_SNAKE_CASE = self.get_scheduler_config(**_a )
__SCREAMING_SNAKE_CASE = scheduler_class(**_a )
__SCREAMING_SNAKE_CASE = 10
__SCREAMING_SNAKE_CASE = self.dummy_model()
__SCREAMING_SNAKE_CASE = self.dummy_sample_deter
scheduler.set_timesteps(_a )
for i, t in enumerate(scheduler.timesteps ):
__SCREAMING_SNAKE_CASE = model(_a, _a )
__SCREAMING_SNAKE_CASE = scheduler.step(_a, _a, _a ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
__SCREAMING_SNAKE_CASE = model(_a, _a )
__SCREAMING_SNAKE_CASE = scheduler.step(_a, _a, _a ).prev_sample
return sample
def __lowerCAmelCase ( self ) -> Optional[int]:
__SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs )
__SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps", _a )
for scheduler_class in self.scheduler_classes:
__SCREAMING_SNAKE_CASE = self.get_scheduler_config()
__SCREAMING_SNAKE_CASE = scheduler_class(**_a )
__SCREAMING_SNAKE_CASE = self.dummy_sample
__SCREAMING_SNAKE_CASE = 0.1 * sample
if num_inference_steps is not None and hasattr(_a, "set_timesteps" ):
scheduler.set_timesteps(_a )
elif num_inference_steps is not None and not hasattr(_a, "set_timesteps" ):
__SCREAMING_SNAKE_CASE = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
__SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
__SCREAMING_SNAKE_CASE = dummy_past_residuals[:]
__SCREAMING_SNAKE_CASE = scheduler.timesteps[5]
__SCREAMING_SNAKE_CASE = scheduler.timesteps[6]
__SCREAMING_SNAKE_CASE = scheduler.step(_a, _a, _a, **_a ).prev_sample
__SCREAMING_SNAKE_CASE = scheduler.step(_a, _a, _a, **_a ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
__SCREAMING_SNAKE_CASE = scheduler.step(_a, _a, _a, **_a ).prev_sample
__SCREAMING_SNAKE_CASE = scheduler.step(_a, _a, _a, **_a ).prev_sample
self.assertEqual(output_a.shape, sample.shape )
self.assertEqual(output_a.shape, output_a.shape )
def __lowerCAmelCase ( self ) -> str:
for timesteps in [1_00, 10_00]:
self.check_over_configs(num_train_timesteps=_a, time_step=_a )
def __lowerCAmelCase ( self ) -> Optional[Any]:
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 1_00] ):
self.check_over_forward(num_inference_steps=_a, time_step=_a )
def __lowerCAmelCase ( self ) -> Any:
__SCREAMING_SNAKE_CASE = self.full_loop()
__SCREAMING_SNAKE_CASE = torch.mean(torch.abs(_a ) )
assert abs(result_mean.item() - 2_54_05_29 ) < 10
| 693 |
import os
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen, xsplitext
from ..table import array_cast
from ..utils.py_utils import no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
from .features import FeatureType
_snake_case , _snake_case , _snake_case : List[Any] = False, False, False
@dataclass
class __SCREAMING_SNAKE_CASE :
SCREAMING_SNAKE_CASE__ =None
SCREAMING_SNAKE_CASE__ =True
SCREAMING_SNAKE_CASE__ =True
SCREAMING_SNAKE_CASE__ =None
# Automatically constructed
SCREAMING_SNAKE_CASE__ ="dict"
SCREAMING_SNAKE_CASE__ =pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} )
SCREAMING_SNAKE_CASE__ =field(default="""Audio""" , init=__SCREAMING_SNAKE_CASE , repr=__SCREAMING_SNAKE_CASE )
def __call__( self ) -> Optional[int]:
return self.pa_type
def __lowerCAmelCase ( self, _a ) -> dict:
try:
import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files.
except ImportError as err:
raise ImportError("To support encoding audio data, please install 'soundfile'." ) from err
if isinstance(_a, _a ):
return {"bytes": None, "path": value}
elif isinstance(_a, _a ):
return {"bytes": value, "path": None}
elif "array" in value:
# convert the audio array to wav bytes
__SCREAMING_SNAKE_CASE = BytesIO()
sf.write(_a, value["array"], value["sampling_rate"], format="wav" )
return {"bytes": buffer.getvalue(), "path": None}
elif value.get("path" ) is not None and os.path.isfile(value["path"] ):
# we set "bytes": None to not duplicate the data if they're already available locally
if value["path"].endswith("pcm" ):
# "PCM" only has raw audio bytes
if value.get("sampling_rate" ) is None:
# At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate
raise KeyError("To use PCM files, please specify a 'sampling_rate' in Audio object" )
if value.get("bytes" ):
# If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!)
__SCREAMING_SNAKE_CASE = np.frombuffer(value["bytes"], dtype=np.intaa ).astype(np.floataa ) / 3_27_67
else:
__SCREAMING_SNAKE_CASE = np.memmap(value["path"], dtype="h", mode="r" ).astype(np.floataa ) / 3_27_67
__SCREAMING_SNAKE_CASE = BytesIO(bytes() )
sf.write(_a, _a, value["sampling_rate"], format="wav" )
return {"bytes": buffer.getvalue(), "path": None}
else:
return {"bytes": None, "path": value.get("path" )}
elif value.get("bytes" ) is not None or value.get("path" ) is not None:
# store the audio bytes, and path is used to infer the audio format using the file extension
return {"bytes": value.get("bytes" ), "path": value.get("path" )}
else:
raise ValueError(
f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''' )
def __lowerCAmelCase ( self, _a, _a = None ) -> dict:
if not self.decode:
raise RuntimeError("Decoding is disabled for this feature. Please use Audio(decode=True) instead." )
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = (value["path"], BytesIO(value["bytes"] )) if value["bytes"] is not None else (value["path"], None)
if path is None and file is None:
raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''' )
try:
import librosa
import soundfile as sf
except ImportError as err:
raise ImportError("To support decoding audio files, please install 'librosa' and 'soundfile'." ) from err
__SCREAMING_SNAKE_CASE = xsplitext(_a )[1][1:].lower() if path is not None else None
if not config.IS_OPUS_SUPPORTED and audio_format == "opus":
raise RuntimeError(
"Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, "
"You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " )
elif not config.IS_MP3_SUPPORTED and audio_format == "mp3":
raise RuntimeError(
"Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, "
"You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. " )
if file is None:
__SCREAMING_SNAKE_CASE = token_per_repo_id or {}
__SCREAMING_SNAKE_CASE = path.split("::" )[-1]
try:
__SCREAMING_SNAKE_CASE = string_to_dict(_a, config.HUB_DATASETS_URL )["repo_id"]
__SCREAMING_SNAKE_CASE = token_per_repo_id[repo_id]
except (ValueError, KeyError):
__SCREAMING_SNAKE_CASE = None
with xopen(_a, "rb", use_auth_token=_a ) as f:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = sf.read(_a )
else:
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = sf.read(_a )
__SCREAMING_SNAKE_CASE = array.T
if self.mono:
__SCREAMING_SNAKE_CASE = librosa.to_mono(_a )
if self.sampling_rate and self.sampling_rate != sampling_rate:
__SCREAMING_SNAKE_CASE = librosa.resample(_a, orig_sr=_a, target_sr=self.sampling_rate )
__SCREAMING_SNAKE_CASE = self.sampling_rate
return {"path": path, "array": array, "sampling_rate": sampling_rate}
def __lowerCAmelCase ( self ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
from .features import Value
if self.decode:
raise ValueError("Cannot flatten a decoded Audio feature." )
return {
"bytes": Value("binary" ),
"path": Value("string" ),
}
def __lowerCAmelCase ( self, _a ) -> pa.StructArray:
if pa.types.is_string(storage.type ):
__SCREAMING_SNAKE_CASE = pa.array([None] * len(_a ), type=pa.binary() )
__SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([bytes_array, storage], ["bytes", "path"], mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
__SCREAMING_SNAKE_CASE = pa.array([None] * len(_a ), type=pa.string() )
__SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([storage, path_array], ["bytes", "path"], mask=storage.is_null() )
elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices("array" ):
__SCREAMING_SNAKE_CASE = pa.array([Audio().encode_example(_a ) if x is not None else None for x in storage.to_pylist()] )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index("bytes" ) >= 0:
__SCREAMING_SNAKE_CASE = storage.field("bytes" )
else:
__SCREAMING_SNAKE_CASE = pa.array([None] * len(_a ), type=pa.binary() )
if storage.type.get_field_index("path" ) >= 0:
__SCREAMING_SNAKE_CASE = storage.field("path" )
else:
__SCREAMING_SNAKE_CASE = pa.array([None] * len(_a ), type=pa.string() )
__SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=storage.is_null() )
return array_cast(_a, self.pa_type )
def __lowerCAmelCase ( self, _a ) -> pa.StructArray:
@no_op_if_value_is_null
def path_to_bytes(_a ):
with xopen(_a, "rb" ) as f:
__SCREAMING_SNAKE_CASE = f.read()
return bytes_
__SCREAMING_SNAKE_CASE = pa.array(
[
(path_to_bytes(x["path"] ) if x["bytes"] is None else x["bytes"]) if x is not None else None
for x in storage.to_pylist()
], type=pa.binary(), )
__SCREAMING_SNAKE_CASE = pa.array(
[os.path.basename(_a ) if path is not None else None for path in storage.field("path" ).to_pylist()], type=pa.string(), )
__SCREAMING_SNAKE_CASE = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null() )
return array_cast(_a, self.pa_type )
| 693 | 1 |
"""simple docstring"""
def snake_case ( ) -> Tuple:
_snake_case = 0
for i in range(1 , 1001 ):
total += i**i
return str(lowerCAmelCase_ )[-10:]
if __name__ == "__main__":
print(solution())
| 404 |
"""simple docstring"""
def snake_case ( lowerCAmelCase_ = 1000 ) -> int:
return sum(e for e in range(3 , lowerCAmelCase_ ) if e % 3 == 0 or e % 5 == 0 )
if __name__ == "__main__":
print(F"{solution() = }")
| 404 | 1 |
lowerCamelCase__ = """Alexander Joslin"""
import operator as op
from .stack import Stack
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
__a = {"""*""": op.mul, """/""": op.truediv, """+""": op.add, """-""": op.sub}
__a = Stack()
__a = Stack()
for i in equation:
if i.isdigit():
# RULE 1
operand_stack.push(int(_SCREAMING_SNAKE_CASE ) )
elif i in operators:
# RULE 2
operator_stack.push(_SCREAMING_SNAKE_CASE )
elif i == ")":
# RULE 4
__a = operator_stack.peek()
operator_stack.pop()
__a = operand_stack.peek()
operand_stack.pop()
__a = operand_stack.peek()
operand_stack.pop()
__a = operators[opr](_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
operand_stack.push(_SCREAMING_SNAKE_CASE )
# RULE 5
return operand_stack.peek()
if __name__ == "__main__":
lowerCamelCase__ = """(5 + ((4 * 2) * (2 + 3)))"""
# answer = 45
print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
| 225 |
class SCREAMING_SNAKE_CASE :
def __init__( self : List[Any] ):
'''simple docstring'''
__a = {} # Mapping from char to TrieNode
__a = False
def UpperCamelCase_ ( self : Dict , __lowercase : list[str] ):
'''simple docstring'''
for word in words:
self.insert(__lowercase )
def UpperCamelCase_ ( self : List[Any] , __lowercase : str ):
'''simple docstring'''
__a = self
for char in word:
if char not in curr.nodes:
__a = TrieNode()
__a = curr.nodes[char]
__a = True
def UpperCamelCase_ ( self : Dict , __lowercase : str ):
'''simple docstring'''
__a = self
for char in word:
if char not in curr.nodes:
return False
__a = curr.nodes[char]
return curr.is_leaf
def UpperCamelCase_ ( self : List[str] , __lowercase : str ):
'''simple docstring'''
def _delete(__lowercase : TrieNode , __lowercase : str , __lowercase : int ) -> bool:
if index == len(__lowercase ):
# If word does not exist
if not curr.is_leaf:
return False
__a = False
return len(curr.nodes ) == 0
__a = word[index]
__a = curr.nodes.get(__lowercase )
# If char not in current trie node
if not char_node:
return False
# Flag to check if node can be deleted
__a = _delete(__lowercase , __lowercase , index + 1 )
if delete_curr:
del curr.nodes[char]
return len(curr.nodes ) == 0
return delete_curr
_delete(self , __lowercase , 0 )
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : TrieNode , _SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
if node.is_leaf:
print(_SCREAMING_SNAKE_CASE , end=""" """ )
for key, value in node.nodes.items():
print_words(_SCREAMING_SNAKE_CASE , word + key )
def lowerCAmelCase__ ( ):
"""simple docstring"""
__a = """banana bananas bandana band apple all beast""".split()
__a = TrieNode()
root.insert_many(_SCREAMING_SNAKE_CASE )
# print_words(root, "")
assert all(root.find(_SCREAMING_SNAKE_CASE ) for word in words )
assert root.find("""banana""" )
assert not root.find("""bandanas""" )
assert not root.find("""apps""" )
assert root.find("""apple""" )
assert root.find("""all""" )
root.delete("""all""" )
assert not root.find("""all""" )
root.delete("""banana""" )
assert not root.find("""banana""" )
assert root.find("""bananas""" )
return True
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : bool ):
"""simple docstring"""
print(str(_SCREAMING_SNAKE_CASE ) , """works!""" if passes else """doesn't work :(""" )
def lowerCAmelCase__ ( ):
"""simple docstring"""
assert test_trie()
def lowerCAmelCase__ ( ):
"""simple docstring"""
print_results("""Testing trie functionality""" , test_trie() )
if __name__ == "__main__":
main()
| 225 | 1 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import (
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaubertConfig,
TFFlaubertForMultipleChoice,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForSequenceClassification,
TFFlaubertForTokenClassification,
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
)
class __A :
'''simple docstring'''
def __init__( self : Union[str, Any] , UpperCAmelCase_ : Any , ) ->List[Any]:
"""simple docstring"""
snake_case_ = parent
snake_case_ = 13
snake_case_ = 7
snake_case_ = True
snake_case_ = True
snake_case_ = True
snake_case_ = True
snake_case_ = True
snake_case_ = False
snake_case_ = False
snake_case_ = False
snake_case_ = 2
snake_case_ = 99
snake_case_ = 0
snake_case_ = 32
snake_case_ = 2
snake_case_ = 4
snake_case_ = 0.1
snake_case_ = 0.1
snake_case_ = 512
snake_case_ = 16
snake_case_ = 2
snake_case_ = 0.02
snake_case_ = 3
snake_case_ = 4
snake_case_ = """last"""
snake_case_ = True
snake_case_ = None
snake_case_ = 0
def lowerCAmelCase ( self : int ) ->Tuple:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa )
snake_case_ = None
if self.use_input_lengths:
snake_case_ = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
snake_case_ = None
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa )
snake_case_ = ids_tensor([self.batch_size] , self.num_choices )
snake_case_ = FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , )
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = TFFlaubertModel(config=_SCREAMING_SNAKE_CASE )
snake_case_ = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids}
snake_case_ = model(_SCREAMING_SNAKE_CASE )
snake_case_ = [input_ids, input_mask]
snake_case_ = model(_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : int , ) ->Tuple:
"""simple docstring"""
snake_case_ = TFFlaubertWithLMHeadModel(_SCREAMING_SNAKE_CASE )
snake_case_ = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids}
snake_case_ = model(_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , ) ->Tuple:
"""simple docstring"""
snake_case_ = TFFlaubertForQuestionAnsweringSimple(_SCREAMING_SNAKE_CASE )
snake_case_ = {"""input_ids""": input_ids, """lengths""": input_lengths}
snake_case_ = model(_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = TFFlaubertForSequenceClassification(_SCREAMING_SNAKE_CASE )
snake_case_ = {"""input_ids""": input_ids, """lengths""": input_lengths}
snake_case_ = model(_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , ) ->Tuple:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = TFFlaubertForTokenClassification(config=_SCREAMING_SNAKE_CASE )
snake_case_ = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
snake_case_ = model(_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Dict , ) ->Any:
"""simple docstring"""
snake_case_ = self.num_choices
snake_case_ = TFFlaubertForMultipleChoice(config=_SCREAMING_SNAKE_CASE )
snake_case_ = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) )
snake_case_ = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) )
snake_case_ = tf.tile(tf.expand_dims(_SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) )
snake_case_ = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
"""token_type_ids""": multiple_choice_token_type_ids,
}
snake_case_ = model(_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase ( self : int ) ->int:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""token_type_ids""": token_type_ids,
"""langs""": token_type_ids,
"""lengths""": input_lengths,
}
return config, inputs_dict
@require_tf
class __A (snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: List[Any] = (
(
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
TFFlaubertForSequenceClassification,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForTokenClassification,
TFFlaubertForMultipleChoice,
)
if is_tf_available()
else ()
)
__lowercase: Dict = (
(TFFlaubertWithLMHeadModel,) if is_tf_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
__lowercase: Union[str, Any] = (
{
"""feature-extraction""": TFFlaubertModel,
"""fill-mask""": TFFlaubertWithLMHeadModel,
"""question-answering""": TFFlaubertForQuestionAnsweringSimple,
"""text-classification""": TFFlaubertForSequenceClassification,
"""token-classification""": TFFlaubertForTokenClassification,
"""zero-shot""": TFFlaubertForSequenceClassification,
}
if is_tf_available()
else {}
)
__lowercase: Any = False
__lowercase: Optional[Any] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith("""Fast""" )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = TFFlaubertModelTester(self )
snake_case_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , emb_dim=37 )
def lowerCAmelCase ( self : Union[str, Any] ) ->Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : Optional[int] ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*_SCREAMING_SNAKE_CASE )
def lowerCAmelCase ( self : List[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*_SCREAMING_SNAKE_CASE )
def lowerCAmelCase ( self : Tuple ) ->Optional[Any]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*_SCREAMING_SNAKE_CASE )
def lowerCAmelCase ( self : Any ) ->Any:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*_SCREAMING_SNAKE_CASE )
def lowerCAmelCase ( self : List[Any] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_token_classification(*_SCREAMING_SNAKE_CASE )
def lowerCAmelCase ( self : List[str] ) ->str:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_multiple_choice(*_SCREAMING_SNAKE_CASE )
@slow
def lowerCAmelCase ( self : List[Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = TFFlaubertModel.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
@require_tf
@require_sentencepiece
@require_tokenizers
class __A (unittest.TestCase):
'''simple docstring'''
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Any:
"""simple docstring"""
snake_case_ = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" )
snake_case_ = tf.convert_to_tensor(
[[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !"
snake_case_ = model(_SCREAMING_SNAKE_CASE )[0]
snake_case_ = tf.TensorShape((1, 8, 512) )
self.assertEqual(output.shape , _SCREAMING_SNAKE_CASE )
# compare the actual values for a slice.
snake_case_ = tf.convert_to_tensor(
[
[
[-1.8_768_773, -1.566_555, 0.27_072_418],
[-1.6_920_038, -0.5_873_505, 1.9_329_599],
[-2.9_563_985, -1.6_993_835, 1.7_972_052],
]
] , dtype=tf.floataa , )
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 721 |
"""simple docstring"""
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__SCREAMING_SNAKE_CASE : Union[str, Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__SCREAMING_SNAKE_CASE : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__SCREAMING_SNAKE_CASE : Dict = 'zero2'
__SCREAMING_SNAKE_CASE : List[Any] = 'zero3'
__SCREAMING_SNAKE_CASE : int = [ZEROa, ZEROa]
def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
snake_case_ = parameterized.to_safe_name("""_""".join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return f"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__SCREAMING_SNAKE_CASE : Dict = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __A (snake_case__):
'''simple docstring'''
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Union[str, Any] ) ->Any:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[Any] ) ->Optional[Any]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int] ) ->List[str]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
@require_torch_multi_gpu
@parameterized.expand(UpperCAmelCase_ , name_func=UpperCAmelCase_ )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ) ->Optional[int]:
"""simple docstring"""
self.run_and_check(
stage=UpperCAmelCase_ , model=UpperCAmelCase_ , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
pass
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = models[model]
snake_case_ = self.run_trainer(
stage=UpperCAmelCase_ , model_name=UpperCAmelCase_ , eval_steps=UpperCAmelCase_ , num_train_epochs=1 , distributed=UpperCAmelCase_ , fpaa=UpperCAmelCase_ , )
self.do_checks(UpperCAmelCase_ )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 10 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = True , ) ->List[str]:
"""simple docstring"""
snake_case_ = self.get_auto_remove_tmp_dir("""./xxx""" , after=UpperCAmelCase_ )
snake_case_ = F"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(UpperCAmelCase_ )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(["""--fp16"""] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
snake_case_ = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
snake_case_ = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
snake_case_ = self.get_launcher(UpperCAmelCase_ )
snake_case_ = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(UpperCAmelCase_ , env=self.get_env() )
return output_dir
def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any=False ) ->Tuple:
"""simple docstring"""
snake_case_ = min(2 , get_gpu_count() ) if distributed else 1
return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 2 | 0 |
"""simple docstring"""
from dataclasses import asdict, dataclass
from typing import Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
# TODO Update this
lowerCAmelCase__ = {
'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json',
# See all ESM models at https://huggingface.co/models?filter=esm
}
class _lowerCAmelCase ( __UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Tuple = 'esm'
def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=7_6_8 , lowerCAmelCase_=1_2 , lowerCAmelCase_=1_2 , lowerCAmelCase_=3_0_7_2 , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=1_0_2_6 , lowerCAmelCase_=0.02 , lowerCAmelCase_=1e-12 , lowerCAmelCase_="absolute" , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> List[str]:
super().__init__(pad_token_id=lowerCAmelCase_ , mask_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
_SCREAMING_SNAKE_CASE : str = vocab_size
_SCREAMING_SNAKE_CASE : Any = hidden_size
_SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers
_SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads
_SCREAMING_SNAKE_CASE : List[Any] = intermediate_size
_SCREAMING_SNAKE_CASE : int = hidden_dropout_prob
_SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob
_SCREAMING_SNAKE_CASE : Optional[int] = max_position_embeddings
_SCREAMING_SNAKE_CASE : Optional[int] = initializer_range
_SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps
_SCREAMING_SNAKE_CASE : Union[str, Any] = position_embedding_type
_SCREAMING_SNAKE_CASE : Union[str, Any] = use_cache
_SCREAMING_SNAKE_CASE : Optional[Any] = emb_layer_norm_before
_SCREAMING_SNAKE_CASE : int = token_dropout
_SCREAMING_SNAKE_CASE : Tuple = is_folding_model
if is_folding_model:
if esmfold_config is None:
logger.info('No esmfold_config supplied for folding model, using default values.' )
_SCREAMING_SNAKE_CASE : int = EsmFoldConfig()
elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ):
_SCREAMING_SNAKE_CASE : Tuple = EsmFoldConfig(**lowerCAmelCase_ )
_SCREAMING_SNAKE_CASE : Optional[int] = esmfold_config
if vocab_list is None:
logger.warning('No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!' )
_SCREAMING_SNAKE_CASE : int = get_default_vocab_list()
else:
_SCREAMING_SNAKE_CASE : Optional[int] = vocab_list
else:
_SCREAMING_SNAKE_CASE : str = None
_SCREAMING_SNAKE_CASE : Any = None
if self.esmfold_config is not None and getattr(self.esmfold_config , 'use_esm_attn_map' , lowerCAmelCase_ ):
raise ValueError('The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!' )
def A ( self ) -> Tuple:
_SCREAMING_SNAKE_CASE : Optional[int] = super().to_dict()
if isinstance(self.esmfold_config , lowerCAmelCase_ ):
_SCREAMING_SNAKE_CASE : str = self.esmfold_config.to_dict()
return output
@dataclass
class _lowerCAmelCase :
SCREAMING_SNAKE_CASE_: str = None
SCREAMING_SNAKE_CASE_: bool = True
SCREAMING_SNAKE_CASE_: bool = False
SCREAMING_SNAKE_CASE_: bool = False
SCREAMING_SNAKE_CASE_: bool = False
SCREAMING_SNAKE_CASE_: float = 0
SCREAMING_SNAKE_CASE_: bool = True
SCREAMING_SNAKE_CASE_: bool = False
SCREAMING_SNAKE_CASE_: int = 128
SCREAMING_SNAKE_CASE_: "TrunkConfig" = None
def A ( self ) -> Any:
if self.trunk is None:
_SCREAMING_SNAKE_CASE : Tuple = TrunkConfig()
elif isinstance(self.trunk , lowerCAmelCase_ ):
_SCREAMING_SNAKE_CASE : str = TrunkConfig(**self.trunk )
def A ( self ) -> List[str]:
_SCREAMING_SNAKE_CASE : Union[str, Any] = asdict(self )
_SCREAMING_SNAKE_CASE : str = self.trunk.to_dict()
return output
@dataclass
class _lowerCAmelCase :
SCREAMING_SNAKE_CASE_: int = 48
SCREAMING_SNAKE_CASE_: int = 1024
SCREAMING_SNAKE_CASE_: int = 128
SCREAMING_SNAKE_CASE_: int = 32
SCREAMING_SNAKE_CASE_: int = 32
SCREAMING_SNAKE_CASE_: int = 32
SCREAMING_SNAKE_CASE_: float = 0
SCREAMING_SNAKE_CASE_: float = 0
SCREAMING_SNAKE_CASE_: bool = False
SCREAMING_SNAKE_CASE_: int = 4
SCREAMING_SNAKE_CASE_: Optional[int] = 128
SCREAMING_SNAKE_CASE_: "StructureModuleConfig" = None
def A ( self ) -> List[str]:
if self.structure_module is None:
_SCREAMING_SNAKE_CASE : str = StructureModuleConfig()
elif isinstance(self.structure_module , lowerCAmelCase_ ):
_SCREAMING_SNAKE_CASE : Tuple = StructureModuleConfig(**self.structure_module )
if self.max_recycles <= 0:
raise ValueError(F"""`max_recycles` should be positive, got {self.max_recycles}.""" )
if self.sequence_state_dim % self.sequence_state_dim != 0:
raise ValueError(
'`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got'
F""" {self.sequence_state_dim} and {self.sequence_state_dim}.""" )
if self.pairwise_state_dim % self.pairwise_state_dim != 0:
raise ValueError(
'`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got'
F""" {self.pairwise_state_dim} and {self.pairwise_state_dim}.""" )
_SCREAMING_SNAKE_CASE : Union[str, Any] = self.sequence_state_dim // self.sequence_head_width
_SCREAMING_SNAKE_CASE : Any = self.pairwise_state_dim // self.pairwise_head_width
if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width:
raise ValueError(
'`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got'
F""" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}.""" )
if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width:
raise ValueError(
'`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got'
F""" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}.""" )
if self.pairwise_state_dim % 2 != 0:
raise ValueError(F"""`pairwise_state_dim` should be even, got {self.pairwise_state_dim}.""" )
if self.dropout >= 0.4:
raise ValueError(F"""`dropout` should not be greater than 0.4, got {self.dropout}.""" )
def A ( self ) -> List[Any]:
_SCREAMING_SNAKE_CASE : Optional[int] = asdict(self )
_SCREAMING_SNAKE_CASE : List[str] = self.structure_module.to_dict()
return output
@dataclass
class _lowerCAmelCase :
SCREAMING_SNAKE_CASE_: int = 384
SCREAMING_SNAKE_CASE_: int = 128
SCREAMING_SNAKE_CASE_: int = 16
SCREAMING_SNAKE_CASE_: int = 128
SCREAMING_SNAKE_CASE_: int = 12
SCREAMING_SNAKE_CASE_: int = 4
SCREAMING_SNAKE_CASE_: int = 8
SCREAMING_SNAKE_CASE_: float = 0.1
SCREAMING_SNAKE_CASE_: int = 8
SCREAMING_SNAKE_CASE_: int = 1
SCREAMING_SNAKE_CASE_: int = 2
SCREAMING_SNAKE_CASE_: int = 7
SCREAMING_SNAKE_CASE_: int = 10
SCREAMING_SNAKE_CASE_: float = 1E-8
SCREAMING_SNAKE_CASE_: float = 1E5
def A ( self ) -> Optional[int]:
return asdict(self )
def lowercase__ ( ):
return (
"<cls>",
"<pad>",
"<eos>",
"<unk>",
"L",
"A",
"G",
"V",
"S",
"E",
"R",
"T",
"I",
"D",
"P",
"K",
"Q",
"N",
"F",
"Y",
"M",
"H",
"W",
"C",
"X",
"B",
"U",
"Z",
"O",
".",
"-",
"<null_1>",
"<mask>",
)
| 621 |
"""simple docstring"""
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('4.31.0')
require_version('datasets>=1.8.0', 'To fix: pip install -r examples/pytorch/text-classification/requirements.txt')
lowerCAmelCase__ = logging.getLogger(__name__)
@dataclass
class _lowerCAmelCase :
SCREAMING_SNAKE_CASE_: Optional[int] = field(
default=128 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
SCREAMING_SNAKE_CASE_: bool = field(
default=__UpperCAmelCase , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} )
SCREAMING_SNAKE_CASE_: bool = field(
default=__UpperCAmelCase , metadata={
'help': (
'Whether to pad all samples to `max_seq_length`. '
'If False, will pad the samples dynamically when batching to the maximum length in the batch.'
)
} , )
SCREAMING_SNAKE_CASE_: Optional[int] = field(
default=__UpperCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of training examples to this '
'value if set.'
)
} , )
SCREAMING_SNAKE_CASE_: Optional[int] = field(
default=__UpperCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of evaluation examples to this '
'value if set.'
)
} , )
SCREAMING_SNAKE_CASE_: Optional[int] = field(
default=__UpperCAmelCase , metadata={
'help': (
'For debugging purposes or quicker training, truncate the number of prediction examples to this '
'value if set.'
)
} , )
@dataclass
class _lowerCAmelCase :
SCREAMING_SNAKE_CASE_: str = field(
default=__UpperCAmelCase , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
SCREAMING_SNAKE_CASE_: str = field(
default=__UpperCAmelCase , metadata={'help': 'Evaluation language. Also train language if `train_language` is set to None.'} )
SCREAMING_SNAKE_CASE_: Optional[str] = field(
default=__UpperCAmelCase , metadata={'help': 'Train language if it is different from the evaluation language.'} )
SCREAMING_SNAKE_CASE_: Optional[str] = field(
default=__UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} )
SCREAMING_SNAKE_CASE_: Optional[str] = field(
default=__UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} )
SCREAMING_SNAKE_CASE_: Optional[str] = field(
default=__UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
SCREAMING_SNAKE_CASE_: Optional[bool] = field(
default=__UpperCAmelCase , metadata={'help': 'arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()'} , )
SCREAMING_SNAKE_CASE_: bool = field(
default=__UpperCAmelCase , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , )
SCREAMING_SNAKE_CASE_: str = field(
default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , )
SCREAMING_SNAKE_CASE_: bool = field(
default=__UpperCAmelCase , metadata={
'help': (
'Will use the token generated when running `huggingface-cli login` (necessary to use this script '
'with private models).'
)
} , )
SCREAMING_SNAKE_CASE_: bool = field(
default=__UpperCAmelCase , metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'} , )
def lowercase__ ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_SCREAMING_SNAKE_CASE : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_xnli', lowerCamelCase )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE : Any = training_args.get_process_log_level()
logger.setLevel(lowerCamelCase )
datasets.utils.logging.set_verbosity(lowerCamelCase )
transformers.utils.logging.set_verbosity(lowerCamelCase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ f"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(f"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
_SCREAMING_SNAKE_CASE : Optional[Any] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_SCREAMING_SNAKE_CASE : str = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
f"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None:
logger.info(
f"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Set seed before initializing model.
set_seed(training_args.seed )
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
# Downloading and loading xnli dataset from the hub.
if training_args.do_train:
if model_args.train_language is None:
_SCREAMING_SNAKE_CASE : Optional[Any] = load_dataset(
'xnli', model_args.language, split='train', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
else:
_SCREAMING_SNAKE_CASE : int = load_dataset(
'xnli', model_args.train_language, split='train', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
_SCREAMING_SNAKE_CASE : Dict = train_dataset.features['label'].names
if training_args.do_eval:
_SCREAMING_SNAKE_CASE : Any = load_dataset(
'xnli', model_args.language, split='validation', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
_SCREAMING_SNAKE_CASE : List[Any] = eval_dataset.features['label'].names
if training_args.do_predict:
_SCREAMING_SNAKE_CASE : Optional[int] = load_dataset(
'xnli', model_args.language, split='test', cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, )
_SCREAMING_SNAKE_CASE : int = predict_dataset.features['label'].names
# Labels
_SCREAMING_SNAKE_CASE : List[Any] = len(lowerCamelCase )
# Load pretrained model and tokenizer
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_SCREAMING_SNAKE_CASE : Dict = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=lowerCamelCase, idalabel={str(lowerCamelCase ): label for i, label in enumerate(lowerCamelCase )}, labelaid={label: i for i, label in enumerate(lowerCamelCase )}, finetuning_task='xnli', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
_SCREAMING_SNAKE_CASE : List[str] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, do_lower_case=model_args.do_lower_case, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
_SCREAMING_SNAKE_CASE : Optional[int] = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowerCamelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, )
# Preprocessing the datasets
# Padding strategy
if data_args.pad_to_max_length:
_SCREAMING_SNAKE_CASE : Tuple = 'max_length'
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
_SCREAMING_SNAKE_CASE : Tuple = False
def preprocess_function(lowerCamelCase ):
# Tokenize the texts
return tokenizer(
examples['premise'], examples['hypothesis'], padding=lowerCamelCase, max_length=data_args.max_seq_length, truncation=lowerCamelCase, )
if training_args.do_train:
if data_args.max_train_samples is not None:
_SCREAMING_SNAKE_CASE : List[Any] = min(len(lowerCamelCase ), data_args.max_train_samples )
_SCREAMING_SNAKE_CASE : Tuple = train_dataset.select(range(lowerCamelCase ) )
with training_args.main_process_first(desc='train dataset map pre-processing' ):
_SCREAMING_SNAKE_CASE : Tuple = train_dataset.map(
lowerCamelCase, batched=lowerCamelCase, load_from_cache_file=not data_args.overwrite_cache, desc='Running tokenizer on train dataset', )
# Log a few random samples from the training set:
for index in random.sample(range(len(lowerCamelCase ) ), 3 ):
logger.info(f"""Sample {index} of the training set: {train_dataset[index]}.""" )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
_SCREAMING_SNAKE_CASE : Dict = min(len(lowerCamelCase ), data_args.max_eval_samples )
_SCREAMING_SNAKE_CASE : Optional[Any] = eval_dataset.select(range(lowerCamelCase ) )
with training_args.main_process_first(desc='validation dataset map pre-processing' ):
_SCREAMING_SNAKE_CASE : Tuple = eval_dataset.map(
lowerCamelCase, batched=lowerCamelCase, load_from_cache_file=not data_args.overwrite_cache, desc='Running tokenizer on validation dataset', )
if training_args.do_predict:
if data_args.max_predict_samples is not None:
_SCREAMING_SNAKE_CASE : Tuple = min(len(lowerCamelCase ), data_args.max_predict_samples )
_SCREAMING_SNAKE_CASE : Dict = predict_dataset.select(range(lowerCamelCase ) )
with training_args.main_process_first(desc='prediction dataset map pre-processing' ):
_SCREAMING_SNAKE_CASE : Tuple = predict_dataset.map(
lowerCamelCase, batched=lowerCamelCase, load_from_cache_file=not data_args.overwrite_cache, desc='Running tokenizer on prediction dataset', )
# Get the metric function
_SCREAMING_SNAKE_CASE : Tuple = evaluate.load('xnli' )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Dict = p.predictions[0] if isinstance(p.predictions, lowerCamelCase ) else p.predictions
_SCREAMING_SNAKE_CASE : int = np.argmax(lowerCamelCase, axis=1 )
return metric.compute(predictions=lowerCamelCase, references=p.label_ids )
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
_SCREAMING_SNAKE_CASE : List[str] = default_data_collator
elif training_args.fpaa:
_SCREAMING_SNAKE_CASE : List[Any] = DataCollatorWithPadding(lowerCamelCase, pad_to_multiple_of=8 )
else:
_SCREAMING_SNAKE_CASE : Tuple = None
# Initialize our Trainer
_SCREAMING_SNAKE_CASE : Optional[Any] = Trainer(
model=lowerCamelCase, args=lowerCamelCase, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=lowerCamelCase, tokenizer=lowerCamelCase, data_collator=lowerCamelCase, )
# Training
if training_args.do_train:
_SCREAMING_SNAKE_CASE : List[Any] = None
if training_args.resume_from_checkpoint is not None:
_SCREAMING_SNAKE_CASE : List[str] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_SCREAMING_SNAKE_CASE : Union[str, Any] = last_checkpoint
_SCREAMING_SNAKE_CASE : List[Any] = trainer.train(resume_from_checkpoint=lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = train_result.metrics
_SCREAMING_SNAKE_CASE : str = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase )
)
_SCREAMING_SNAKE_CASE : Tuple = min(lowerCamelCase, len(lowerCamelCase ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics('train', lowerCamelCase )
trainer.save_metrics('train', lowerCamelCase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('*** Evaluate ***' )
_SCREAMING_SNAKE_CASE : Union[str, Any] = trainer.evaluate(eval_dataset=lowerCamelCase )
_SCREAMING_SNAKE_CASE : Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = min(lowerCamelCase, len(lowerCamelCase ) )
trainer.log_metrics('eval', lowerCamelCase )
trainer.save_metrics('eval', lowerCamelCase )
# Prediction
if training_args.do_predict:
logger.info('*** Predict ***' )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Any = trainer.predict(lowerCamelCase, metric_key_prefix='predict' )
_SCREAMING_SNAKE_CASE : List[Any] = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowerCamelCase )
)
_SCREAMING_SNAKE_CASE : Optional[Any] = min(lowerCamelCase, len(lowerCamelCase ) )
trainer.log_metrics('predict', lowerCamelCase )
trainer.save_metrics('predict', lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = np.argmax(lowerCamelCase, axis=1 )
_SCREAMING_SNAKE_CASE : List[str] = os.path.join(training_args.output_dir, 'predictions.txt' )
if trainer.is_world_process_zero():
with open(lowerCamelCase, 'w' ) as writer:
writer.write('index\tprediction\n' )
for index, item in enumerate(lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = label_list[item]
writer.write(f"""{index}\t{item}\n""" )
if __name__ == "__main__":
main()
| 621 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCAmelCase ={
"""configuration_xlm_roberta_xl""": [
"""XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""XLMRobertaXLConfig""",
"""XLMRobertaXLOnnxConfig""",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase =[
"""XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XLMRobertaXLForCausalLM""",
"""XLMRobertaXLForMaskedLM""",
"""XLMRobertaXLForMultipleChoice""",
"""XLMRobertaXLForQuestionAnswering""",
"""XLMRobertaXLForSequenceClassification""",
"""XLMRobertaXLForTokenClassification""",
"""XLMRobertaXLModel""",
"""XLMRobertaXLPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_xlm_roberta_xl import (
XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP,
XLMRobertaXLConfig,
XLMRobertaXLOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm_roberta_xl import (
XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMRobertaXLForCausalLM,
XLMRobertaXLForMaskedLM,
XLMRobertaXLForMultipleChoice,
XLMRobertaXLForQuestionAnswering,
XLMRobertaXLForSequenceClassification,
XLMRobertaXLForTokenClassification,
XLMRobertaXLModel,
XLMRobertaXLPreTrainedModel,
)
else:
import sys
__UpperCAmelCase =_LazyModule(__name__, globals()["""__file__"""], _import_structure) | 261 |
"""simple docstring"""
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
if TYPE_CHECKING:
from ... import FeatureExtractionMixin, TensorType
__UpperCAmelCase =logging.get_logger(__name__)
__UpperCAmelCase ={
"""openai/imagegpt-small""": """""",
"""openai/imagegpt-medium""": """""",
"""openai/imagegpt-large""": """""",
}
class lowerCAmelCase__ ( UpperCAmelCase_ ):
lowercase__ : Dict = """imagegpt"""
lowercase__ : str = ["""past_key_values"""]
lowercase__ : Union[str, Any] = {
"""hidden_size""": """n_embd""",
"""max_position_embeddings""": """n_positions""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self , UpperCamelCase__=5_12 + 1 , UpperCamelCase__=32 * 32 , UpperCamelCase__=5_12 , UpperCamelCase__=24 , UpperCamelCase__=8 , UpperCamelCase__=None , UpperCamelCase__="quick_gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1e-5 , UpperCamelCase__=0.02 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , **UpperCamelCase__ , ):
'''simple docstring'''
A__ = vocab_size
A__ = n_positions
A__ = n_embd
A__ = n_layer
A__ = n_head
A__ = n_inner
A__ = activation_function
A__ = resid_pdrop
A__ = embd_pdrop
A__ = attn_pdrop
A__ = layer_norm_epsilon
A__ = initializer_range
A__ = scale_attn_weights
A__ = use_cache
A__ = scale_attn_by_inverse_layer_idx
A__ = reorder_and_upcast_attn
A__ = tie_word_embeddings
super().__init__(tie_word_embeddings=UpperCamelCase__ , **UpperCamelCase__ )
class lowerCAmelCase__ ( UpperCAmelCase_ ):
@property
def lowercase_ ( self ):
'''simple docstring'''
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
] )
def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ = 1 , UpperCamelCase__ = -1 , UpperCamelCase__ = False , UpperCamelCase__ = None , UpperCamelCase__ = 3 , UpperCamelCase__ = 32 , UpperCamelCase__ = 32 , ):
'''simple docstring'''
A__ = self._generate_dummy_images(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
A__ = dict(preprocessor(images=UpperCamelCase__ , return_tensors=UpperCamelCase__ ) )
return inputs | 261 | 1 |
from __future__ import annotations
import random
import unittest
from transformers import TransfoXLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLModel,
)
class _snake_case :
def __init__( self , SCREAMING_SNAKE_CASE_ , ):
'''simple docstring'''
lowercase__ : Any = parent
lowercase__ : Optional[Any] = 13
lowercase__ : Any = 7
lowercase__ : Optional[Any] = 30
lowercase__ : int = self.seq_length + self.mem_len
lowercase__ : str = 15
lowercase__ : int = True
lowercase__ : Union[str, Any] = True
lowercase__ : Optional[Any] = 99
lowercase__ : Any = [10, 50, 80]
lowercase__ : str = 32
lowercase__ : Tuple = 32
lowercase__ : int = 4
lowercase__ : Tuple = 8
lowercase__ : Optional[int] = 1_28
lowercase__ : Any = 2
lowercase__ : Optional[int] = 2
lowercase__ : List[Any] = None
lowercase__ : Union[str, Any] = 1
lowercase__ : List[Any] = 0
lowercase__ : Union[str, Any] = 3
lowercase__ : Tuple = self.vocab_size - 1
lowercase__ : Union[str, Any] = 0.0_1
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : List[str] = None
if self.use_labels:
lowercase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
lowercase__ : int = TransfoXLConfig(
vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , )
return (config, input_ids_a, input_ids_a, lm_labels)
def lowercase__ ( self):
'''simple docstring'''
random.seed(self.seed)
tf.random.set_seed(self.seed)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : List[str] = TFTransfoXLModel(SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : List[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a}
lowercase__ , lowercase__ : Tuple = model(SCREAMING_SNAKE_CASE_).to_tuple()
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Union[str, Any] = TFTransfoXLLMHeadModel(SCREAMING_SNAKE_CASE_)
lowercase__ , lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ : int = {"""input_ids""": input_ids_a, """labels""": lm_labels}
lowercase__ , lowercase__ : str = model(SCREAMING_SNAKE_CASE_).to_tuple()
lowercase__ , lowercase__ : Dict = model([input_ids_a, mems_a]).to_tuple()
lowercase__ : Tuple = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels}
lowercase__ , lowercase__ : Dict = model(SCREAMING_SNAKE_CASE_).to_tuple()
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : str = TFTransfoXLForSequenceClassification(SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[Any] = model(SCREAMING_SNAKE_CASE_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Union[str, Any] = self.prepare_config_and_inputs()
((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) : Any = config_and_inputs
lowercase__ : Any = {"""input_ids""": input_ids_a}
return config, inputs_dict
@require_tf
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
__lowerCAmelCase : List[Any] = (
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
)
__lowerCAmelCase : Union[str, Any] = () if is_tf_available() else ()
__lowerCAmelCase : Optional[int] = (
{
'feature-extraction': TFTransfoXLModel,
'text-classification': TFTransfoXLForSequenceClassification,
'text-generation': TFTransfoXLLMHeadModel,
'zero-shot': TFTransfoXLForSequenceClassification,
}
if is_tf_available()
else {}
)
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
__lowerCAmelCase : Any = False
__lowerCAmelCase : Dict = False
__lowerCAmelCase : Union[str, Any] = False
__lowerCAmelCase : List[Any] = False
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Any = TFTransfoXLModelTester(self)
lowercase__ : int = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , d_embed=37)
def lowercase__ ( self):
'''simple docstring'''
self.config_tester.run_common_tests()
def lowercase__ ( self):
'''simple docstring'''
self.model_tester.set_seed()
lowercase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_model(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
self.model_tester.set_seed()
lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*SCREAMING_SNAKE_CASE_)
def lowercase__ ( self):
'''simple docstring'''
lowercase__ , lowercase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
lowercase__ : List[str] = [TFTransfoXLForSequenceClassification]
for model_class in self.all_model_classes:
lowercase__ : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_)
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer)
if model_class in list_other_models_with_output_ebd:
lowercase__ : Tuple = model.get_output_embeddings()
assert isinstance(SCREAMING_SNAKE_CASE_ , tf.keras.layers.Layer)
lowercase__ : List[Any] = model.get_bias()
assert name is None
else:
lowercase__ : Union[str, Any] = model.get_output_embeddings()
assert x is None
lowercase__ : Optional[Any] = model.get_bias()
assert name is None
def lowercase__ ( self):
'''simple docstring'''
pass
@slow
def lowercase__ ( self):
'''simple docstring'''
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : Union[str, Any] = TFTransfoXLModel.from_pretrained(SCREAMING_SNAKE_CASE_)
self.assertIsNotNone(SCREAMING_SNAKE_CASE_)
@unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""")
def lowercase__ ( self):
'''simple docstring'''
pass
@require_tf
class _snake_case ( unittest.TestCase ):
@unittest.skip("""Skip test until #12651 is resolved.""")
@slow
def lowercase__ ( self):
'''simple docstring'''
lowercase__ : List[str] = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""")
# fmt: off
lowercase__ : int = tf.convert_to_tensor([[33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0]] , dtype=tf.intaa) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
lowercase__ : Optional[int] = [33,12_97,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,22,17_06,17,2_00_98,5,32_15,21,37,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,62_24,8_31,1_60_02,2,8,6_03,7_89_67,2_95_46,23,8_03,20,25,4_16,5,8,2_32,4,2_77,6,18_55,46_01,3,2_95_46,54,8,36_09,5,5_72_11,49,4,1,2_77,18,8,17_55,1_56_91,3,3_41,25,4_16,6_93,4_25_73,71,17,4_01,94,31,1_79_19,2,2_95_46,78_73,18,1,4_35,23,1_10_11,7_55,5,51_67,3,79_83,98,84,2,2_95_46,32_67,8,36_09,4,1,48_65,10_75,2,60_87,71,6,3_46,8,58_54,3,2_95_46,8_24,14_00,18_68,2,19,1_60,2,3_11,8,54_96,2,2_09_20,17,25,1_50_97,3,24,24,0,33,1,18_57,2,1,10_09,4,11_09,1_17_39,47_62,3_58,5,25,2_45,28,11_10,3,13,10_41,4,24,6_03,4_90,2,7_14_77,2_00_98,10_44_47,2,2_09_61,1,26_04,4,1,3_29,3,0] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
lowercase__ : List[Any] = model.generate(SCREAMING_SNAKE_CASE_ , max_length=2_00 , do_sample=SCREAMING_SNAKE_CASE_)
self.assertListEqual(output_ids[0].numpy().tolist() , SCREAMING_SNAKE_CASE_)
| 12 |
'''simple docstring'''
import math
lowerCamelCase :int = 1_0
lowerCamelCase :List[Any] = 7
lowerCamelCase :Union[str, Any] = BALLS_PER_COLOUR * NUM_COLOURS
def a ( lowerCamelCase__ = 20 ):
'''simple docstring'''
A_ : Dict = math.comb(lowerCamelCase__ , lowerCamelCase__ )
A_ : Optional[Any] = math.comb(NUM_BALLS - BALLS_PER_COLOUR , lowerCamelCase__ )
A_ : List[str] = NUM_COLOURS * (1 - missing_colour / total)
return f'{result:.9f}'
if __name__ == "__main__":
print(solution(2_0)) | 667 | 0 |
# Note: if you intend to run this script make sure you look under scripts/fsmt/
# to locate the appropriate script to do the work correctly. There is a set of scripts to:
# - download and prepare data and run the conversion script
# - perform eval to get the best hparam into the config
# - generate model_cards - useful if you have multiple models from the same paper
import argparse
import json
import os
import re
from collections import OrderedDict
from os.path import basename, dirname
import fairseq
import torch
from fairseq import hub_utils
from fairseq.data.dictionary import Dictionary
from transformers import FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
__magic_name__ = 2
# based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping`
# values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults:
#
# * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users)
# * `early_stopping`: `False` consistently scored better
# * `length_penalty` varied, so will assign the best one depending on the model
__magic_name__ = {
# fairseq:
'''wmt19-ru-en''': {'''length_penalty''': 1.1},
'''wmt19-en-ru''': {'''length_penalty''': 1.1_5},
'''wmt19-en-de''': {'''length_penalty''': 1.0},
'''wmt19-de-en''': {'''length_penalty''': 1.1},
# allenai:
'''wmt16-en-de-dist-12-1''': {'''length_penalty''': 0.6},
'''wmt16-en-de-dist-6-1''': {'''length_penalty''': 0.6},
'''wmt16-en-de-12-1''': {'''length_penalty''': 0.8},
'''wmt19-de-en-6-6-base''': {'''length_penalty''': 0.6},
'''wmt19-de-en-6-6-big''': {'''length_penalty''': 0.6},
}
# this remaps the different models to their organization names
__magic_name__ = {}
for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
__magic_name__ = '''facebook'''
for m in [
"wmt16-en-de-dist-12-1",
"wmt16-en-de-dist-6-1",
"wmt16-en-de-12-1",
"wmt19-de-en-6-6-base",
"wmt19-de-en-6-6-big",
]:
__magic_name__ = '''allenai'''
def __snake_case ( _UpperCAmelCase ):
"""simple docstring"""
lowercase = dict((re.sub(R'@@$' , '' , _UpperCAmelCase ), v) if k.endswith('@@' ) else (re.sub(R'$' , '</w>' , _UpperCAmelCase ), v) for k, v in d.items() )
lowercase = '<s> <pad> </s> <unk>'.split()
# restore the special tokens
for k in keep_keys:
del da[f"""{k}</w>"""]
lowercase = d[k] # restore
return da
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ):
"""simple docstring"""
assert os.path.exists(_UpperCAmelCase )
os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase )
print(f"""Writing results to {pytorch_dump_folder_path}""" )
# handle various types of models
lowercase = basename(_UpperCAmelCase )
lowercase = dirname(_UpperCAmelCase )
lowercase = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel
lowercase = cls.hub_models()
lowercase = {'bpe': 'fastbpe', 'tokenizer': 'moses'}
lowercase = '.'
# note: since the model dump is old, fairseq has upgraded its model some
# time later, and it does a whole lot of rewrites and splits on the saved
# weights, therefore we can't use torch.load() directly on the model file.
# see: upgrade_state_dict(state_dict) in fairseq_model.py
print(f"""using checkpoint {checkpoint_file}""" )
lowercase = hub_utils.from_pretrained(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , archive_map=_UpperCAmelCase , **_UpperCAmelCase )
lowercase = vars(chkpt['args']['model'] )
lowercase = args['source_lang']
lowercase = args['target_lang']
lowercase = dirname(_UpperCAmelCase )
lowercase = basename(_UpperCAmelCase )
# dicts
lowercase = os.path.join(_UpperCAmelCase , f"""dict.{src_lang}.txt""" )
lowercase = os.path.join(_UpperCAmelCase , f"""dict.{tgt_lang}.txt""" )
lowercase = Dictionary.load(_UpperCAmelCase )
lowercase = rewrite_dict_keys(src_dict.indices )
lowercase = len(_UpperCAmelCase )
lowercase = os.path.join(_UpperCAmelCase , 'vocab-src.json' )
print(f"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(_UpperCAmelCase , ensure_ascii=_UpperCAmelCase , indent=_UpperCAmelCase ) )
# detect whether this is a do_lower_case situation, which can be derived by checking whether we
# have at least one uppercase letter in the source vocab
lowercase = True
for k in src_vocab.keys():
if not k.islower():
lowercase = False
break
lowercase = Dictionary.load(_UpperCAmelCase )
lowercase = rewrite_dict_keys(tgt_dict.indices )
lowercase = len(_UpperCAmelCase )
lowercase = os.path.join(_UpperCAmelCase , 'vocab-tgt.json' )
print(f"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(_UpperCAmelCase , ensure_ascii=_UpperCAmelCase , indent=_UpperCAmelCase ) )
# merges_file (bpecodes)
lowercase = os.path.join(_UpperCAmelCase , VOCAB_FILES_NAMES['merges_file'] )
for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code"
lowercase = os.path.join(_UpperCAmelCase , _UpperCAmelCase )
if os.path.exists(_UpperCAmelCase ):
break
with open(_UpperCAmelCase , encoding='utf-8' ) as fin:
lowercase = fin.read()
lowercase = re.sub(R' \d+$' , '' , _UpperCAmelCase , 0 , re.M ) # remove frequency number
print(f"""Generating {merges_file}""" )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as fout:
fout.write(_UpperCAmelCase )
# model config
lowercase = os.path.join(_UpperCAmelCase , 'config.json' )
# validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe -
# may have to modify the tokenizer if a different type is used by a future model
assert args["bpe"] == "fastbpe", f"""need to extend tokenizer to support bpe={args['bpe']}"""
assert args["tokenizer"] == "moses", f"""need to extend tokenizer to support bpe={args['tokenizer']}"""
lowercase = {
'architectures': ['FSMTForConditionalGeneration'],
'model_type': 'fsmt',
'activation_dropout': args['activation_dropout'],
'activation_function': 'relu',
'attention_dropout': args['attention_dropout'],
'd_model': args['decoder_embed_dim'],
'dropout': args['dropout'],
'init_std': 0.02,
'max_position_embeddings': args['max_source_positions'],
'num_hidden_layers': args['encoder_layers'],
'src_vocab_size': src_vocab_size,
'tgt_vocab_size': tgt_vocab_size,
'langs': [src_lang, tgt_lang],
'encoder_attention_heads': args['encoder_attention_heads'],
'encoder_ffn_dim': args['encoder_ffn_embed_dim'],
'encoder_layerdrop': args['encoder_layerdrop'],
'encoder_layers': args['encoder_layers'],
'decoder_attention_heads': args['decoder_attention_heads'],
'decoder_ffn_dim': args['decoder_ffn_embed_dim'],
'decoder_layerdrop': args['decoder_layerdrop'],
'decoder_layers': args['decoder_layers'],
'bos_token_id': 0,
'pad_token_id': 1,
'eos_token_id': 2,
'is_encoder_decoder': True,
'scale_embedding': not args['no_scale_embedding'],
'tie_word_embeddings': args['share_all_embeddings'],
}
# good hparam defaults to start with
lowercase = 5
lowercase = False
if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]:
lowercase = best_score_hparams[model_dir]['length_penalty']
else:
lowercase = 1.0
print(f"""Generating {fsmt_model_config_file}""" )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(_UpperCAmelCase , ensure_ascii=_UpperCAmelCase , indent=_UpperCAmelCase ) )
# tokenizer config
lowercase = os.path.join(_UpperCAmelCase , _UpperCAmelCase )
lowercase = {
'langs': [src_lang, tgt_lang],
'model_max_length': 10_24,
'do_lower_case': do_lower_case,
}
print(f"""Generating {fsmt_tokenizer_config_file}""" )
with open(_UpperCAmelCase , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(_UpperCAmelCase , ensure_ascii=_UpperCAmelCase , indent=_UpperCAmelCase ) )
# model
lowercase = chkpt['models'][0]
lowercase = model.state_dict()
# rename keys to start with 'model.'
lowercase = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() )
# remove unneeded keys
lowercase = [
'model.model',
'model.encoder.version',
'model.decoder.version',
'model.encoder_embed_tokens.weight',
'model.decoder_embed_tokens.weight',
'model.encoder.embed_positions._float_tensor',
'model.decoder.embed_positions._float_tensor',
]
for k in ignore_keys:
model_state_dict.pop(_UpperCAmelCase , _UpperCAmelCase )
lowercase = FSMTConfig.from_pretrained(_UpperCAmelCase )
lowercase = FSMTForConditionalGeneration(_UpperCAmelCase )
# check that it loads ok
model_new.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase )
# save
lowercase = os.path.join(_UpperCAmelCase , _UpperCAmelCase )
print(f"""Generating {pytorch_weights_dump_path}""" )
torch.save(_UpperCAmelCase , _UpperCAmelCase )
print('Conversion is done!' )
print('\nLast step is to upload the files to s3' )
print(f"""cd {data_root}""" )
print(f"""transformers-cli upload {model_dir}""" )
if __name__ == "__main__":
__magic_name__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--fsmt_checkpoint_path''',
default=None,
type=str,
required=True,
help=(
'''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,'''
''' bpecodes, etc.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
__magic_name__ = parser.parse_args()
convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
| 314 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__magic_name__ = {
'''configuration_vision_text_dual_encoder''': ['''VisionTextDualEncoderConfig'''],
'''processing_vision_text_dual_encoder''': ['''VisionTextDualEncoderProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = ['''VisionTextDualEncoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = ['''FlaxVisionTextDualEncoderModel''']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = ['''TFVisionTextDualEncoderModel''']
if TYPE_CHECKING:
from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig
from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel
else:
import sys
__magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
| 314 | 1 |
'''simple docstring'''
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE__ ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = """hf-internal-testing/tiny-random-t5"""
UpperCAmelCase__ = AutoTokenizer.from_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = tokenizer("""This is me""" , return_tensors="""pt""" )
UpperCAmelCase__ = model.to_bettertransformer()
self.assertTrue(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
UpperCAmelCase__ = model.generate(**_UpperCAmelCase )
UpperCAmelCase__ = model.reverse_bettertransformer()
self.assertFalse(any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase )
self.assertFalse(
any("""BetterTransformer""" in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
UpperCAmelCase__ = model_reloaded.generate(**_UpperCAmelCase )
self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
def SCREAMING_SNAKE_CASE__ ( self : int ):
"""simple docstring"""
UpperCAmelCase__ = """hf-internal-testing/tiny-random-t5"""
UpperCAmelCase__ = AutoModelForSeqaSeqLM.from_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(_UpperCAmelCase ):
model.save_pretrained(_UpperCAmelCase )
UpperCAmelCase__ = model.reverse_bettertransformer()
model.save_pretrained(_UpperCAmelCase )
| 603 |
'''simple docstring'''
import copy
from typing import Dict, List, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
UpperCAmelCase_ = {
'facebook/mask2former-swin-small-coco-instance': (
'https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json'
)
# See all Mask2Former models at https://huggingface.co/models?filter=mask2former
}
UpperCAmelCase_ = logging.get_logger(__name__)
class lowerCAmelCase_ ( lowerCamelCase_ ):
'''simple docstring'''
lowerCAmelCase_ : Optional[Any] = """mask2former"""
lowerCAmelCase_ : List[Any] = ["""swin"""]
lowerCAmelCase_ : Optional[int] = {"""hidden_size""": """hidden_dim"""}
def __init__( self : str , _UpperCAmelCase : Optional[Dict] = None , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : int = 10_24 , _UpperCAmelCase : str = "relu" , _UpperCAmelCase : int = 6 , _UpperCAmelCase : int = 10 , _UpperCAmelCase : int = 8 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 4 , _UpperCAmelCase : int = 2_55 , _UpperCAmelCase : int = 1_00 , _UpperCAmelCase : float = 0.1 , _UpperCAmelCase : float = 2.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : float = 5.0 , _UpperCAmelCase : int = 1_25_44 , _UpperCAmelCase : float = 3.0 , _UpperCAmelCase : float = 0.75 , _UpperCAmelCase : float = 0.02 , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : bool = True , _UpperCAmelCase : List[int] = [4, 8, 16, 32] , _UpperCAmelCase : bool = None , **_UpperCAmelCase : int , ):
"""simple docstring"""
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" )
UpperCAmelCase__ = CONFIG_MAPPING["""swin"""](
image_size=2_24 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=_UpperCAmelCase , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , )
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
UpperCAmelCase__ = backbone_config.pop("""model_type""" )
UpperCAmelCase__ = CONFIG_MAPPING[backbone_model_type]
UpperCAmelCase__ = config_class.from_dict(_UpperCAmelCase )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. '''
f'''Supported model types: {','.join(self.backbones_supported )}''' )
UpperCAmelCase__ = backbone_config
UpperCAmelCase__ = feature_size
UpperCAmelCase__ = mask_feature_size
UpperCAmelCase__ = hidden_dim
UpperCAmelCase__ = encoder_feedforward_dim
UpperCAmelCase__ = activation_function
UpperCAmelCase__ = encoder_layers
UpperCAmelCase__ = decoder_layers
UpperCAmelCase__ = num_attention_heads
UpperCAmelCase__ = dropout
UpperCAmelCase__ = dim_feedforward
UpperCAmelCase__ = pre_norm
UpperCAmelCase__ = enforce_input_projection
UpperCAmelCase__ = common_stride
UpperCAmelCase__ = ignore_value
UpperCAmelCase__ = num_queries
UpperCAmelCase__ = no_object_weight
UpperCAmelCase__ = class_weight
UpperCAmelCase__ = mask_weight
UpperCAmelCase__ = dice_weight
UpperCAmelCase__ = train_num_points
UpperCAmelCase__ = oversample_ratio
UpperCAmelCase__ = importance_sample_ratio
UpperCAmelCase__ = init_std
UpperCAmelCase__ = init_xavier_std
UpperCAmelCase__ = use_auxiliary_loss
UpperCAmelCase__ = feature_strides
UpperCAmelCase__ = output_auxiliary_logits
UpperCAmelCase__ = decoder_layers
super().__init__(**_UpperCAmelCase )
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls : int , _UpperCAmelCase : PretrainedConfig , **_UpperCAmelCase : Tuple ):
"""simple docstring"""
return cls(
backbone_config=_UpperCAmelCase , **_UpperCAmelCase , )
def SCREAMING_SNAKE_CASE__ ( self : Tuple ):
"""simple docstring"""
UpperCAmelCase__ = copy.deepcopy(self.__dict__ )
UpperCAmelCase__ = self.backbone_config.to_dict()
UpperCAmelCase__ = self.__class__.model_type
return output
| 603 | 1 |
import argparse
import torch
from torch import nn
from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration
def _a ( lowercase__ : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Any = [
'encoder.version',
'decoder.version',
'model.encoder.version',
'model.decoder.version',
'decoder.output_projection.weight',
'_float_tensor',
'encoder.embed_positions._float_tensor',
'decoder.embed_positions._float_tensor',
]
for k in ignore_keys:
state_dict.pop(lowercase__ , lowercase__ )
def _a ( lowercase__ : Optional[int] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Any = list(s_dict.keys() )
for key in keys:
if "transformer_layers" in key:
SCREAMING_SNAKE_CASE__ : List[Any] = s_dict.pop(lowercase__ )
elif "subsample" in key:
SCREAMING_SNAKE_CASE__ : Optional[Any] = s_dict.pop(lowercase__ )
def _a ( lowercase__ : List[str] ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = emb.weight.shape
SCREAMING_SNAKE_CASE__ : int = nn.Linear(lowercase__ , lowercase__ , bias=lowercase__ )
SCREAMING_SNAKE_CASE__ : Tuple = emb.weight.data
return lin_layer
def _a ( lowercase__ : List[str] , lowercase__ : str ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[int] = torch.load(lowercase__ , map_location='cpu' )
SCREAMING_SNAKE_CASE__ : Optional[Any] = mam_aaa['args']
SCREAMING_SNAKE_CASE__ : Dict = mam_aaa['model']
SCREAMING_SNAKE_CASE__ : List[str] = state_dict['decoder.output_projection.weight']
remove_ignore_keys_(lowercase__ )
rename_keys(lowercase__ )
SCREAMING_SNAKE_CASE__ : List[Any] = state_dict['decoder.embed_tokens.weight'].shape[0]
SCREAMING_SNAKE_CASE__ : Optional[int] = args.share_decoder_input_output_embed
SCREAMING_SNAKE_CASE__ : Optional[int] = [int(lowercase__ ) for i in args.conv_kernel_sizes.split(',' )]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = SpeechaTextConfig(
vocab_size=lowercase__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , num_conv_layers=len(lowercase__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=lowercase__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=lowercase__ , num_beams=5 , max_length=2_00 , use_cache=lowercase__ , decoder_start_token_id=2 , early_stopping=lowercase__ , )
SCREAMING_SNAKE_CASE__ : Any = SpeechaTextForConditionalGeneration(lowercase__ )
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] = model.model.load_state_dict(lowercase__ , strict=lowercase__ )
if len(lowercase__ ) > 0 and not set(lowercase__ ) <= {
"encoder.embed_positions.weights",
"decoder.embed_positions.weights",
}:
raise ValueError(
'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,'
f''' but all the following weights are missing {missing}''' )
if tie_embeds:
SCREAMING_SNAKE_CASE__ : Optional[int] = make_linear_from_emb(model.model.decoder.embed_tokens )
else:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = lm_head_weights
model.save_pretrained(lowercase__ )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--fairseq_path", type=str, help="Path to the fairseq model (.pt) file.")
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
SCREAMING_SNAKE_CASE__ : List[Any] = parser.parse_args()
convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
| 636 | from packaging import version
from .import_utils import is_accelerate_available
if is_accelerate_available():
import accelerate
def _a ( lowercase__ : List[str] ):
'''simple docstring'''
if not is_accelerate_available():
return method
SCREAMING_SNAKE_CASE__ : str = version.parse(accelerate.__version__ ).base_version
if version.parse(lowercase__ ) < version.parse('0.17.0' ):
return method
def wrapper(self : Optional[int] , *lowercase__ : int , **lowercase__ : Tuple ):
if hasattr(self , '_hf_hook' ) and hasattr(self._hf_hook , 'pre_forward' ):
self._hf_hook.pre_forward(self )
return method(self , *lowercase__ , **lowercase__ )
return wrapper
| 636 | 1 |
from pathlib import Path
from typing import List
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import get_tests_dir, is_tool_test
from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
a_ = ['text', 'image', 'audio']
def lowerCamelCase__ ( _a):
SCREAMING_SNAKE_CASE : List[str] = []
for input_type in input_types:
if input_type == "text":
inputs.append("Text input")
elif input_type == "image":
inputs.append(
Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((512, 512)))
elif input_type == "audio":
inputs.append(torch.ones(3000))
elif isinstance(_a , _a):
inputs.append(create_inputs(_a))
else:
raise ValueError(f"Invalid type requested: {input_type}")
return inputs
def lowerCamelCase__ ( _a):
SCREAMING_SNAKE_CASE : List[Any] = []
for output in outputs:
if isinstance(_a , (str, AgentText)):
output_types.append("text")
elif isinstance(_a , (Image.Image, AgentImage)):
output_types.append("image")
elif isinstance(_a , (torch.Tensor, AgentAudio)):
output_types.append("audio")
else:
raise ValueError(f"Invalid output: {output}")
return output_types
@is_tool_test
class _UpperCamelCase :
'''simple docstring'''
def __UpperCamelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
self.assertTrue(hasattr(self.tool , "inputs" ) )
self.assertTrue(hasattr(self.tool , "outputs" ) )
SCREAMING_SNAKE_CASE : List[str] = self.tool.inputs
for _input in inputs:
if isinstance(_input , a ):
for __input in _input:
self.assertTrue(__input in authorized_types )
else:
self.assertTrue(_input in authorized_types )
SCREAMING_SNAKE_CASE : Optional[Any] = self.tool.outputs
for _output in outputs:
self.assertTrue(_output in authorized_types )
def __UpperCamelCase ( self : List[str] ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = create_inputs(self.tool.inputs )
SCREAMING_SNAKE_CASE : Dict = self.tool(*a )
# There is a single output
if len(self.tool.outputs ) == 1:
SCREAMING_SNAKE_CASE : Union[str, Any] = [outputs]
self.assertListEqual(output_types(a ) , self.tool.outputs )
def __UpperCamelCase ( self : List[str] ) -> int:
"""simple docstring"""
self.assertTrue(hasattr(self.tool , "description" ) )
self.assertTrue(hasattr(self.tool , "default_checkpoint" ) )
self.assertTrue(self.tool.description.startswith("This is a tool that" ) )
def __UpperCamelCase ( self : str ) -> Dict:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Optional[int] = create_inputs(self.tool.inputs )
SCREAMING_SNAKE_CASE : Any = self.tool(*a )
if not isinstance(a , a ):
SCREAMING_SNAKE_CASE : Dict = [outputs]
self.assertEqual(len(a ) , len(self.tool.outputs ) )
for output, output_type in zip(a , self.tool.outputs ):
SCREAMING_SNAKE_CASE : Any = AGENT_TYPE_MAPPING[output_type]
self.assertTrue(isinstance(a , a ) )
def __UpperCamelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] = create_inputs(self.tool.inputs )
SCREAMING_SNAKE_CASE : List[Any] = []
for _input, input_type in zip(a , self.tool.inputs ):
if isinstance(a , a ):
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] )
else:
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) )
# Should not raise an error
SCREAMING_SNAKE_CASE : Tuple = self.tool(*a )
if not isinstance(a , a ):
SCREAMING_SNAKE_CASE : List[str] = [outputs]
self.assertEqual(len(a ) , len(self.tool.outputs ) ) | 25 |
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import SeqaSeqTrainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class UpperCamelCase__ (lowerCAmelCase__ ):
'''simple docstring'''
def __init__( self , *UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> List[Any]:
super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
lowerCamelCase : Union[str, Any] = eval_examples
lowerCamelCase : Optional[int] = post_process_function
def _lowercase ( self , UpperCamelCase__ = None , UpperCamelCase__=None , UpperCamelCase__ = None , UpperCamelCase__ = "eval" , **UpperCamelCase__ , ) -> Dict[str, float]:
lowerCamelCase : Dict = gen_kwargs.copy()
lowerCamelCase : List[str] = (
gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length
)
lowerCamelCase : List[str] = (
gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams
)
lowerCamelCase : Optional[Any] = gen_kwargs
lowerCamelCase : Optional[int] = self.eval_dataset if eval_dataset is None else eval_dataset
lowerCamelCase : List[str] = self.get_eval_dataloader(UpperCamelCase__ )
lowerCamelCase : Optional[int] = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
lowerCamelCase : Dict = self.compute_metrics
lowerCamelCase : Any = None
lowerCamelCase : Optional[int] = time.time()
lowerCamelCase : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
lowerCamelCase : Dict = eval_loop(
UpperCamelCase__ , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase__ , metric_key_prefix=UpperCamelCase__ , )
finally:
lowerCamelCase : Union[str, Any] = compute_metrics
lowerCamelCase : Optional[Any] = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
UpperCamelCase__ , UpperCamelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
lowerCamelCase : List[str] = self.post_process_function(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
lowerCamelCase : int = self.compute_metrics(UpperCamelCase__ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
lowerCamelCase : Any = metrics.pop(UpperCamelCase__ )
metrics.update(output.metrics )
else:
lowerCamelCase : Tuple = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(UpperCamelCase__ )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
lowerCamelCase : Optional[int] = self.callback_handler.on_evaluate(self.args , self.state , self.control , UpperCamelCase__ )
return metrics
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=None , UpperCamelCase__ = "test" , **UpperCamelCase__ ) -> int:
lowerCamelCase : str = gen_kwargs.copy()
lowerCamelCase : str = self.get_test_dataloader(UpperCamelCase__ )
# Temporarily disable metric computation, we will do it in the loop here.
lowerCamelCase : Union[str, Any] = self.compute_metrics
lowerCamelCase : int = None
lowerCamelCase : Optional[int] = time.time()
lowerCamelCase : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
lowerCamelCase : Any = eval_loop(
UpperCamelCase__ , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=UpperCamelCase__ , metric_key_prefix=UpperCamelCase__ , )
finally:
lowerCamelCase : Tuple = compute_metrics
lowerCamelCase : Optional[Any] = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
UpperCamelCase__ , UpperCamelCase__ , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
lowerCamelCase : str = self.post_process_function(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , "predict" )
lowerCamelCase : Dict = self.compute_metrics(UpperCamelCase__ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
lowerCamelCase : int = metrics.pop(UpperCamelCase__ )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=UpperCamelCase__ )
| 311 | 0 |
import inspect
import unittest
from transformers import ViTConfig
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel
from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class __magic_name__ :
'''simple docstring'''
def __init__( self: Dict , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: str=13 , _lowerCamelCase: Tuple=30 , _lowerCamelCase: str=2 , _lowerCamelCase: List[Any]=3 , _lowerCamelCase: Union[str, Any]=True , _lowerCamelCase: List[Any]=True , _lowerCamelCase: int=32 , _lowerCamelCase: Optional[int]=5 , _lowerCamelCase: int=4 , _lowerCamelCase: str=37 , _lowerCamelCase: Optional[Any]="gelu" , _lowerCamelCase: Tuple=0.1 , _lowerCamelCase: Optional[int]=0.1 , _lowerCamelCase: Optional[int]=10 , _lowerCamelCase: Any=0.02 , _lowerCamelCase: Union[str, Any]=None , _lowerCamelCase: Tuple=2 , ):
SCREAMING_SNAKE_CASE_ = parent
SCREAMING_SNAKE_CASE_ = batch_size
SCREAMING_SNAKE_CASE_ = image_size
SCREAMING_SNAKE_CASE_ = patch_size
SCREAMING_SNAKE_CASE_ = num_channels
SCREAMING_SNAKE_CASE_ = is_training
SCREAMING_SNAKE_CASE_ = use_labels
SCREAMING_SNAKE_CASE_ = hidden_size
SCREAMING_SNAKE_CASE_ = num_hidden_layers
SCREAMING_SNAKE_CASE_ = num_attention_heads
SCREAMING_SNAKE_CASE_ = intermediate_size
SCREAMING_SNAKE_CASE_ = hidden_act
SCREAMING_SNAKE_CASE_ = hidden_dropout_prob
SCREAMING_SNAKE_CASE_ = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE_ = type_sequence_label_size
SCREAMING_SNAKE_CASE_ = initializer_range
SCREAMING_SNAKE_CASE_ = scope
SCREAMING_SNAKE_CASE_ = encoder_stride
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
SCREAMING_SNAKE_CASE_ = (image_size // patch_size) ** 2
SCREAMING_SNAKE_CASE_ = num_patches + 1
def _A ( self: Tuple ):
SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE_ = None
if self.use_labels:
SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
SCREAMING_SNAKE_CASE_ = self.get_config()
return config, pixel_values, labels
def _A ( self: Tuple ):
return ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def _A ( self: Optional[Any] , _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = ViTModel(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _A ( self: List[str] , _lowerCamelCase: List[str] , _lowerCamelCase: Union[str, Any] , _lowerCamelCase: Optional[Any] ):
SCREAMING_SNAKE_CASE_ = ViTForMaskedImageModeling(config=_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
SCREAMING_SNAKE_CASE_ = 1
SCREAMING_SNAKE_CASE_ = ViTForMaskedImageModeling(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def _A ( self: Tuple , _lowerCamelCase: List[Any] , _lowerCamelCase: int , _lowerCamelCase: Dict ):
SCREAMING_SNAKE_CASE_ = self.type_sequence_label_size
SCREAMING_SNAKE_CASE_ = ViTForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase , labels=_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
SCREAMING_SNAKE_CASE_ = 1
SCREAMING_SNAKE_CASE_ = ViTForImageClassification(_lowerCamelCase )
model.to(_lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _A ( self: str ):
SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) ,
) = config_and_inputs
SCREAMING_SNAKE_CASE_ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class __magic_name__ ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : int = (
(
ViTModel,
ViTForImageClassification,
ViTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE__ : str = (
{"""feature-extraction""": ViTModel, """image-classification""": ViTForImageClassification}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE__ : Optional[int] = True
SCREAMING_SNAKE_CASE__ : Optional[Any] = False
SCREAMING_SNAKE_CASE__ : List[Any] = False
SCREAMING_SNAKE_CASE__ : str = False
def _A ( self: Union[str, Any] ):
SCREAMING_SNAKE_CASE_ = ViTModelTester(self )
SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=37 )
def _A ( self: Optional[Any] ):
self.config_tester.run_common_tests()
@unittest.skip(reason='''ViT does not use inputs_embeds''' )
def _A ( self: Optional[int] ):
pass
def _A ( self: Optional[int] ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ = model_class(_lowerCamelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
SCREAMING_SNAKE_CASE_ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCamelCase , nn.Linear ) )
def _A ( self: List[str] ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ = model_class(_lowerCamelCase )
SCREAMING_SNAKE_CASE_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE_ = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE_ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , _lowerCamelCase )
def _A ( self: str ):
SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCamelCase )
def _A ( self: int ):
SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCamelCase )
def _A ( self: Tuple ):
SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase )
@slow
def _A ( self: int ):
for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE_ = ViTModel.from_pretrained(_lowerCamelCase )
self.assertIsNotNone(_lowerCamelCase )
def a ():
SCREAMING_SNAKE_CASE_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class __magic_name__ ( unittest.TestCase):
'''simple docstring'''
@cached_property
def _A ( self: int ):
return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None
@slow
def _A ( self: Optional[Any] ):
SCREAMING_SNAKE_CASE_ = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE_ = self.default_image_processor
SCREAMING_SNAKE_CASE_ = prepare_img()
SCREAMING_SNAKE_CASE_ = image_processor(images=_lowerCamelCase , return_tensors='''pt''' ).to(_lowerCamelCase )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE_ = model(**_lowerCamelCase )
# verify the logits
SCREAMING_SNAKE_CASE_ = torch.Size((1, 10_00) )
self.assertEqual(outputs.logits.shape , _lowerCamelCase )
SCREAMING_SNAKE_CASE_ = torch.tensor([-0.27_44, 0.82_15, -0.08_36] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCamelCase , atol=1E-4 ) )
@slow
def _A ( self: Union[str, Any] ):
# ViT models have an `interpolate_pos_encoding` argument in their forward method,
# allowing to interpolate the pre-trained position embeddings in order to use
# the model on higher resolutions. The DINO model by Facebook AI leverages this
# to visualize self-attention on higher resolution images.
SCREAMING_SNAKE_CASE_ = ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(_lowerCamelCase )
SCREAMING_SNAKE_CASE_ = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' , size=4_80 )
SCREAMING_SNAKE_CASE_ = prepare_img()
SCREAMING_SNAKE_CASE_ = image_processor(images=_lowerCamelCase , return_tensors='''pt''' )
SCREAMING_SNAKE_CASE_ = inputs.pixel_values.to(_lowerCamelCase )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase , interpolate_pos_encoding=_lowerCamelCase )
# verify the logits
SCREAMING_SNAKE_CASE_ = torch.Size((1, 36_01, 3_84) )
self.assertEqual(outputs.last_hidden_state.shape , _lowerCamelCase )
SCREAMING_SNAKE_CASE_ = torch.tensor(
[[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]] ).to(_lowerCamelCase )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=1E-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def _A ( self: Optional[int] ):
SCREAMING_SNAKE_CASE_ = ViTModel.from_pretrained('''facebook/dino-vits8''' , torch_dtype=torch.floataa , device_map='''auto''' )
SCREAMING_SNAKE_CASE_ = self.default_image_processor
SCREAMING_SNAKE_CASE_ = prepare_img()
SCREAMING_SNAKE_CASE_ = image_processor(images=_lowerCamelCase , return_tensors='''pt''' )
SCREAMING_SNAKE_CASE_ = inputs.pixel_values.to(_lowerCamelCase )
# forward pass to make sure inference works in fp16
with torch.no_grad():
SCREAMING_SNAKE_CASE_ = model(_lowerCamelCase )
| 717 |
def a (_lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = [], []
while len(_lowerCAmelCase ) > 1:
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = min(_lowerCAmelCase ), max(_lowerCAmelCase )
start.append(_lowerCAmelCase )
end.append(_lowerCAmelCase )
collection.remove(_lowerCAmelCase )
collection.remove(_lowerCAmelCase )
end.reverse()
return start + collection + end
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE =input("""Enter numbers separated by a comma:\n""").strip()
__SCREAMING_SNAKE_CASE =[int(item) for item in user_input.split(""",""")]
print(*merge_sort(unsorted), sep=""",""")
| 89 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE__ : Tuple = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ : List[Any] = {
"""MIT/ast-finetuned-audioset-10-10-0.4593""": (
"""https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593/resolve/main/config.json"""
),
}
class UpperCAmelCase_ ( __lowerCamelCase ):
__lowerCamelCase = 'audio-spectrogram-transformer'
def __init__( self , _lowerCAmelCase=768 , _lowerCAmelCase=12 , _lowerCAmelCase=12 , _lowerCAmelCase=3072 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0_2 , _lowerCAmelCase=1e-12 , _lowerCAmelCase=16 , _lowerCAmelCase=True , _lowerCAmelCase=10 , _lowerCAmelCase=10 , _lowerCAmelCase=1024 , _lowerCAmelCase=128 , **_lowerCAmelCase , ):
super().__init__(**_lowerCAmelCase )
UpperCAmelCase__ : Optional[int] = hidden_size
UpperCAmelCase__ : int = num_hidden_layers
UpperCAmelCase__ : List[Any] = num_attention_heads
UpperCAmelCase__ : Dict = intermediate_size
UpperCAmelCase__ : Dict = hidden_act
UpperCAmelCase__ : str = hidden_dropout_prob
UpperCAmelCase__ : str = attention_probs_dropout_prob
UpperCAmelCase__ : Tuple = initializer_range
UpperCAmelCase__ : Dict = layer_norm_eps
UpperCAmelCase__ : Optional[Any] = patch_size
UpperCAmelCase__ : Tuple = qkv_bias
UpperCAmelCase__ : Tuple = frequency_stride
UpperCAmelCase__ : Union[str, Any] = time_stride
UpperCAmelCase__ : Optional[Any] = max_length
UpperCAmelCase__ : Optional[int] = num_mel_bins
| 79 |
import os
from dataclasses import dataclass, field
from io import BytesIO
from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union
import numpy as np
import pyarrow as pa
from .. import config
from ..download.streaming_download_manager import xopen, xsplitext
from ..table import array_cast
from ..utils.py_utils import no_op_if_value_is_null, string_to_dict
if TYPE_CHECKING:
from .features import FeatureType
SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ : Any = False, False, False
@dataclass
class snake_case_ :
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = None
# Automatically constructed
__UpperCamelCase = "dict"
__UpperCamelCase = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} )
__UpperCamelCase = field(default='''Audio''' , init=UpperCAmelCase_ , repr=UpperCAmelCase_ )
def __call__( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
return self.pa_type
def UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Union[str, bytes, dict] ) -> dict:
'''simple docstring'''
try:
import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files.
except ImportError as err:
raise ImportError('To support encoding audio data, please install \'soundfile\'.' ) from err
if isinstance(__lowerCamelCase , __lowerCamelCase ):
return {"bytes": None, "path": value}
elif isinstance(__lowerCamelCase , __lowerCamelCase ):
return {"bytes": value, "path": None}
elif "array" in value:
# convert the audio array to wav bytes
__lowercase = BytesIO()
sf.write(__lowerCamelCase , value['array'] , value['sampling_rate'] , format='wav' )
return {"bytes": buffer.getvalue(), "path": None}
elif value.get('path' ) is not None and os.path.isfile(value['path'] ):
# we set "bytes": None to not duplicate the data if they're already available locally
if value["path"].endswith('pcm' ):
# "PCM" only has raw audio bytes
if value.get('sampling_rate' ) is None:
# At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate
raise KeyError('To use PCM files, please specify a \'sampling_rate\' in Audio object' )
if value.get('bytes' ):
# If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!)
__lowercase = np.frombuffer(value['bytes'] , dtype=np.intaa ).astype(np.floataa ) / 32_767
else:
__lowercase = np.memmap(value['path'] , dtype='h' , mode='r' ).astype(np.floataa ) / 32_767
__lowercase = BytesIO(bytes() )
sf.write(__lowerCamelCase , __lowerCamelCase , value['sampling_rate'] , format='wav' )
return {"bytes": buffer.getvalue(), "path": None}
else:
return {"bytes": None, "path": value.get('path' )}
elif value.get('bytes' ) is not None or value.get('path' ) is not None:
# store the audio bytes, and path is used to infer the audio format using the file extension
return {"bytes": value.get('bytes' ), "path": value.get('path' )}
else:
raise ValueError(
F"An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}." )
def UpperCAmelCase ( self : Any , __lowerCamelCase : dict , __lowerCamelCase : Optional[Dict[str, Union[str, bool, None]]] = None ) -> dict:
'''simple docstring'''
if not self.decode:
raise RuntimeError('Decoding is disabled for this feature. Please use Audio(decode=True) instead.' )
__lowercase , __lowercase = (value['path'], BytesIO(value['bytes'] )) if value['bytes'] is not None else (value['path'], None)
if path is None and file is None:
raise ValueError(F"An audio sample should have one of 'path' or 'bytes' but both are None in {value}." )
try:
import librosa
import soundfile as sf
except ImportError as err:
raise ImportError('To support decoding audio files, please install \'librosa\' and \'soundfile\'.' ) from err
__lowercase = xsplitext(__lowerCamelCase )[1][1:].lower() if path is not None else None
if not config.IS_OPUS_SUPPORTED and audio_format == "opus":
raise RuntimeError(
'Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, '
'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' )
elif not config.IS_MP3_SUPPORTED and audio_format == "mp3":
raise RuntimeError(
'Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, '
'You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ' )
if file is None:
__lowercase = token_per_repo_id or {}
__lowercase = path.split('::' )[-1]
try:
__lowercase = string_to_dict(__lowerCamelCase , config.HUB_DATASETS_URL )['repo_id']
__lowercase = token_per_repo_id[repo_id]
except (ValueError, KeyError):
__lowercase = None
with xopen(__lowerCamelCase , 'rb' , use_auth_token=__lowerCamelCase ) as f:
__lowercase , __lowercase = sf.read(__lowerCamelCase )
else:
__lowercase , __lowercase = sf.read(__lowerCamelCase )
__lowercase = array.T
if self.mono:
__lowercase = librosa.to_mono(__lowerCamelCase )
if self.sampling_rate and self.sampling_rate != sampling_rate:
__lowercase = librosa.resample(__lowerCamelCase , orig_sr=__lowerCamelCase , target_sr=self.sampling_rate )
__lowercase = self.sampling_rate
return {"path": path, "array": array, "sampling_rate": sampling_rate}
def UpperCAmelCase ( self : int ) -> Union["FeatureType", Dict[str, "FeatureType"]]:
'''simple docstring'''
from .features import Value
if self.decode:
raise ValueError('Cannot flatten a decoded Audio feature.' )
return {
"bytes": Value('binary' ),
"path": Value('string' ),
}
def UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Union[pa.StringArray, pa.StructArray] ) -> pa.StructArray:
'''simple docstring'''
if pa.types.is_string(storage.type ):
__lowercase = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() )
__lowercase = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() )
elif pa.types.is_binary(storage.type ):
__lowercase = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() )
__lowercase = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() )
elif pa.types.is_struct(storage.type ) and storage.type.get_all_field_indices('array' ):
__lowercase = pa.array([Audio().encode_example(__lowerCamelCase ) if x is not None else None for x in storage.to_pylist()] )
elif pa.types.is_struct(storage.type ):
if storage.type.get_field_index('bytes' ) >= 0:
__lowercase = storage.field('bytes' )
else:
__lowercase = pa.array([None] * len(__lowerCamelCase ) , type=pa.binary() )
if storage.type.get_field_index('path' ) >= 0:
__lowercase = storage.field('path' )
else:
__lowercase = pa.array([None] * len(__lowerCamelCase ) , type=pa.string() )
__lowercase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() )
return array_cast(__lowerCamelCase , self.pa_type )
def UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : pa.StructArray ) -> pa.StructArray:
'''simple docstring'''
@no_op_if_value_is_null
def path_to_bytes(__lowerCamelCase : Any ):
with xopen(__lowerCamelCase , 'rb' ) as f:
__lowercase = f.read()
return bytes_
__lowercase = pa.array(
[
(path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None
for x in storage.to_pylist()
] , type=pa.binary() , )
__lowercase = pa.array(
[os.path.basename(__lowerCamelCase ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , )
__lowercase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() )
return array_cast(__lowerCamelCase , self.pa_type )
| 375 | 0 |
"""simple docstring"""
def _lowerCamelCase ( __a, __a, __a ):
if exponent == 1:
return base
if exponent % 2 == 0:
SCREAMING_SNAKE_CASE_ = _modexpt(__a, exponent // 2, __a ) % modulo_value
return (x * x) % modulo_value
else:
return (base * _modexpt(__a, exponent - 1, __a )) % modulo_value
def _lowerCamelCase ( __a = 1_777, __a = 1_855, __a = 8 ):
SCREAMING_SNAKE_CASE_ = base
for _ in range(1, __a ):
SCREAMING_SNAKE_CASE_ = _modexpt(__a, __a, 10**digits )
return result
if __name__ == "__main__":
print(f'''{solution() = }''') | 628 |
"""simple docstring"""
def _lowerCamelCase ( __a ):
if not isinstance(__a, __a ):
SCREAMING_SNAKE_CASE_ = F'Input value of [number={number}] must be an integer'
raise TypeError(__a )
if number < 1:
SCREAMING_SNAKE_CASE_ = F'Input value of [number={number}] must be > 0'
raise ValueError(__a )
SCREAMING_SNAKE_CASE_ = 1
for i in range(1, __a ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod() | 628 | 1 |
"""simple docstring"""
from torch import nn
def _snake_case ( snake_case__ : Union[str, Any] ):
if act_fn in ["swish", "silu"]:
return nn.SiLU()
elif act_fn == "mish":
return nn.Mish()
elif act_fn == "gelu":
return nn.GELU()
else:
raise ValueError(F'Unsupported activation function: {act_fn}' ) | 91 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
a : Optional[Any] = logging.get_logger(__name__)
a : Dict = {'''vocab_file''': '''sentencepiece.model'''}
a : Tuple = {
'''vocab_file''': {
'''google/rembert''': '''https://huggingface.co/google/rembert/resolve/main/sentencepiece.model''',
},
}
a : str = {
'''google/rembert''': 256,
}
class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ):
__SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
__SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
__SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Optional[Any] , a_ : int , a_ : Any=False , a_ : List[Any]=True , a_ : List[Any]=True , a_ : List[Any]="[CLS]" , a_ : List[Any]="[SEP]" , a_ : List[Any]="[UNK]" , a_ : str="[SEP]" , a_ : List[str]="[PAD]" , a_ : Optional[int]="[CLS]" , a_ : List[str]="[MASK]" , **a_ : str , ):
"""simple docstring"""
super().__init__(
do_lower_case=a_ , remove_space=a_ , keep_accents=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , **a_ , )
__snake_case = do_lower_case
__snake_case = remove_space
__snake_case = keep_accents
__snake_case = vocab_file
__snake_case = spm.SentencePieceProcessor()
self.sp_model.Load(a_ )
@property
def A ( self : Optional[Any] ):
"""simple docstring"""
return len(self.sp_model )
def A ( self : Optional[Any] ):
"""simple docstring"""
__snake_case = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : Dict ):
"""simple docstring"""
__snake_case = self.__dict__.copy()
__snake_case = None
return state
def __setstate__( self : str , a_ : Optional[int] ):
"""simple docstring"""
__snake_case = d
__snake_case = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file )
def A ( self : Tuple , a_ : Optional[int] , a_ : int=False ):
"""simple docstring"""
__snake_case = self.sp_model.EncodeAsPieces(a_ )
return pieces
def A ( self : Any , a_ : Optional[Any] ):
"""simple docstring"""
return self.sp_model.PieceToId(a_ )
def A ( self : Optional[Any] , a_ : List[str] ):
"""simple docstring"""
return self.sp_model.IdToPiece(a_ )
def A ( self : Optional[Any] , a_ : int ):
"""simple docstring"""
__snake_case = self.sp_model.decode_pieces(a_ )
return out_string
def A ( self : Union[str, Any] , a_ : List[int] , a_ : Optional[List[int]] = None ):
"""simple docstring"""
__snake_case = [self.sep_token_id]
__snake_case = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def A ( self : List[str] , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ):
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model." )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1]
return [1] + ([0] * len(a_ )) + [1]
def A ( self : Tuple , a_ : List[int] , a_ : Optional[List[int]] = None ):
"""simple docstring"""
__snake_case = [self.sep_token_id]
__snake_case = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def A ( self : List[Any] , a_ : str , a_ : Optional[str] = None ):
"""simple docstring"""
if not os.path.isdir(a_ ):
logger.error("Vocabulary path ({}) should be a directory".format(a_ ) )
return
__snake_case = os.path.join(
a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ):
copyfile(self.vocab_file , a_ )
return (out_vocab_file,)
| 69 | 0 |
from sklearn.metrics import fa_score
import datasets
SCREAMING_SNAKE_CASE : List[str] = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n"
SCREAMING_SNAKE_CASE : Optional[int] = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n"
SCREAMING_SNAKE_CASE : Tuple = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase ( datasets.Metric ):
'''simple docstring'''
def UpperCamelCase ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ),
'''references''': datasets.Sequence(datasets.Value('''int32''' ) ),
}
if self.config_name == '''multilabel'''
else {
'''predictions''': datasets.Value('''int32''' ),
'''references''': datasets.Value('''int32''' ),
} ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , )
def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=1 , UpperCamelCase_="binary" , UpperCamelCase_=None ):
lowercase_ :List[Any] = fa_score(
UpperCamelCase_ , UpperCamelCase_ , labels=UpperCamelCase_ , pos_label=UpperCamelCase_ , average=UpperCamelCase_ , sample_weight=UpperCamelCase_ )
return {"f1": float(UpperCamelCase_ ) if score.size == 1 else score}
| 441 |
from __future__ import annotations
import random
import unittest
from transformers import TransfoXLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLModel,
)
class UpperCamelCase :
'''simple docstring'''
def __init__( self , UpperCamelCase_ , ):
lowercase_ :Dict = parent
lowercase_ :Optional[Any] = 13
lowercase_ :Optional[Any] = 7
lowercase_ :List[Any] = 30
lowercase_ :int = self.seq_length + self.mem_len
lowercase_ :Any = 15
lowercase_ :Optional[Any] = True
lowercase_ :List[Any] = True
lowercase_ :Any = 99
lowercase_ :Optional[int] = [10, 50, 80]
lowercase_ :Union[str, Any] = 32
lowercase_ :List[Any] = 32
lowercase_ :Tuple = 4
lowercase_ :Tuple = 8
lowercase_ :List[Any] = 128
lowercase_ :Any = 2
lowercase_ :Tuple = 2
lowercase_ :Dict = None
lowercase_ :Optional[Any] = 1
lowercase_ :Optional[int] = 0
lowercase_ :List[str] = 3
lowercase_ :Optional[int] = self.vocab_size - 1
lowercase_ :List[Any] = 0.01
def UpperCamelCase ( self ):
lowercase_ :str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase_ :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase_ :int = None
if self.use_labels:
lowercase_ :str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase_ :int = TransfoXLConfig(
vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , )
return (config, input_ids_a, input_ids_a, lm_labels)
def UpperCamelCase ( self ):
random.seed(self.seed )
tf.random.set_seed(self.seed )
def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
lowercase_ :Any = TFTransfoXLModel(UpperCamelCase_ )
lowercase_ , lowercase_ :List[Any] = model(UpperCamelCase_ ).to_tuple()
lowercase_ :Dict = {'''input_ids''': input_ids_a, '''mems''': mems_a}
lowercase_ , lowercase_ :int = model(UpperCamelCase_ ).to_tuple()
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
lowercase_ :Any = TFTransfoXLLMHeadModel(UpperCamelCase_ )
lowercase_ , lowercase_ :int = model(UpperCamelCase_ ).to_tuple()
lowercase_ :Optional[int] = {'''input_ids''': input_ids_a, '''labels''': lm_labels}
lowercase_ , lowercase_ :Optional[int] = model(UpperCamelCase_ ).to_tuple()
lowercase_ , lowercase_ :Tuple = model([input_ids_a, mems_a] ).to_tuple()
lowercase_ :Union[str, Any] = {'''input_ids''': input_ids_a, '''mems''': mems_a, '''labels''': lm_labels}
lowercase_ , lowercase_ :Union[str, Any] = model(UpperCamelCase_ ).to_tuple()
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
lowercase_ :int = TFTransfoXLForSequenceClassification(UpperCamelCase_ )
lowercase_ :int = model(UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase ( self ):
lowercase_ :str = self.prepare_config_and_inputs()
((lowercase_) , (lowercase_) , (lowercase_) , (lowercase_)) :Tuple = config_and_inputs
lowercase_ :Dict = {'''input_ids''': input_ids_a}
return config, inputs_dict
@require_tf
class UpperCamelCase ( lowercase__ , lowercase__ , unittest.TestCase ):
'''simple docstring'''
lowercase : str =(
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
)
lowercase : Dict =() if is_tf_available() else ()
lowercase : List[str] =(
{
"""feature-extraction""": TFTransfoXLModel,
"""text-classification""": TFTransfoXLForSequenceClassification,
"""text-generation""": TFTransfoXLLMHeadModel,
"""zero-shot""": TFTransfoXLForSequenceClassification,
}
if is_tf_available()
else {}
)
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
lowercase : Optional[int] =False
lowercase : Tuple =False
lowercase : Dict =False
lowercase : Dict =False
def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ):
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def UpperCamelCase ( self ):
lowercase_ :Union[str, Any] = TFTransfoXLModelTester(self )
lowercase_ :str = ConfigTester(self , config_class=UpperCamelCase_ , d_embed=37 )
def UpperCamelCase ( self ):
self.config_tester.run_common_tests()
def UpperCamelCase ( self ):
self.model_tester.set_seed()
lowercase_ :str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_model(*UpperCamelCase_ )
def UpperCamelCase ( self ):
self.model_tester.set_seed()
lowercase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*UpperCamelCase_ )
def UpperCamelCase ( self ):
lowercase_ :Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*UpperCamelCase_ )
def UpperCamelCase ( self ):
lowercase_ , lowercase_ :Any = self.model_tester.prepare_config_and_inputs_for_common()
lowercase_ :List[str] = [TFTransfoXLForSequenceClassification]
for model_class in self.all_model_classes:
lowercase_ :Dict = model_class(UpperCamelCase_ )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class in list_other_models_with_output_ebd:
lowercase_ :str = model.get_output_embeddings()
assert isinstance(UpperCamelCase_ , tf.keras.layers.Layer )
lowercase_ :Optional[int] = model.get_bias()
assert name is None
else:
lowercase_ :List[Any] = model.get_output_embeddings()
assert x is None
lowercase_ :Dict = model.get_bias()
assert name is None
def UpperCamelCase ( self ):
# TODO JP: Make TransfoXL XLA compliant
pass
@slow
def UpperCamelCase ( self ):
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase_ :Dict = TFTransfoXLModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
@unittest.skip(reason='''This model doesn\'t play well with fit() due to not returning a single loss.''' )
def UpperCamelCase ( self ):
pass
@require_tf
class UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
@unittest.skip('''Skip test until #12651 is resolved.''' )
@slow
def UpperCamelCase ( self ):
lowercase_ :Any = TFTransfoXLLMHeadModel.from_pretrained('''transfo-xl-wt103''' )
# fmt: off
lowercase_ :List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
lowercase_ :List[Any] = [33,1297,2,1,1009,4,1109,1_1739,4762,358,5,25,245,22,1706,17,2_0098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,6224,831,1_6002,2,8,603,7_8967,2_9546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,2_9546,54,8,3609,5,5_7211,49,4,1,277,18,8,1755,1_5691,3,341,25,416,693,4_2573,71,17,401,94,31,1_7919,2,2_9546,7873,18,1,435,23,1_1011,755,5,5167,3,7983,98,84,2,2_9546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,2_9546,824,1400,1868,2,19,160,2,311,8,5496,2,2_0920,17,25,1_5097,3,24,24,0,33,1,1857,2,1,1009,4,1109,1_1739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,7_1477,2_0098,10_4447,2,2_0961,1,2604,4,1,329,3,0] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
lowercase_ :Any = model.generate(UpperCamelCase_ , max_length=200 , do_sample=UpperCamelCase_ )
self.assertListEqual(output_ids[0].numpy().tolist() , UpperCamelCase_ )
| 441 | 1 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def lowercase_ ( __UpperCAmelCase ) -> int:
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0X4E_00 and cp <= 0X9F_FF)
or (cp >= 0X34_00 and cp <= 0X4D_BF) #
or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) #
or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) #
or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) #
or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) #
or (cp >= 0XF9_00 and cp <= 0XFA_FF)
or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) #
): #
return True
return False
def lowercase_ ( __UpperCAmelCase ) -> Optional[Any]:
# word like '180' or '身高' or '神'
for char in word:
lowerCAmelCase__ : Optional[int] = ord(__UpperCAmelCase )
if not _is_chinese_char(__UpperCAmelCase ):
return 0
return 1
def lowercase_ ( __UpperCAmelCase ) -> str:
lowerCAmelCase__ : Union[str, Any] = set()
for token in tokens:
lowerCAmelCase__ : Dict = len(__UpperCAmelCase ) > 1 and is_chinese(__UpperCAmelCase )
if chinese_word:
word_set.add(__UpperCAmelCase )
lowerCAmelCase__ : Any = list(__UpperCAmelCase )
return word_list
def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> str:
if not chinese_word_set:
return bert_tokens
lowerCAmelCase__ : Union[str, Any] = max([len(__UpperCAmelCase ) for w in chinese_word_set] )
lowerCAmelCase__ : List[str] = bert_tokens
lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = 0, len(__UpperCAmelCase )
while start < end:
lowerCAmelCase__ : Any = True
if is_chinese(bert_word[start] ):
lowerCAmelCase__ : int = min(end - start , __UpperCAmelCase )
for i in range(__UpperCAmelCase , 1 , -1 ):
lowerCAmelCase__ : Any = """""".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
lowerCAmelCase__ : List[Any] = """##""" + bert_word[j]
lowerCAmelCase__ : Tuple = start + i
lowerCAmelCase__ : int = False
break
if single_word:
start += 1
return bert_word
def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]:
lowerCAmelCase__ : List[str] = []
for i in range(0 , len(__UpperCAmelCase ) , 100 ):
lowerCAmelCase__ : List[str] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["""cws"""] ).cws
lowerCAmelCase__ : Dict = [get_chinese_word(__UpperCAmelCase ) for r in res]
ltp_res.extend(__UpperCAmelCase )
assert len(__UpperCAmelCase ) == len(__UpperCAmelCase )
lowerCAmelCase__ : Union[str, Any] = []
for i in range(0 , len(__UpperCAmelCase ) , 100 ):
lowerCAmelCase__ : Optional[int] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=__UpperCAmelCase , truncation=__UpperCAmelCase , max_length=512 )
bert_res.extend(res["""input_ids"""] )
assert len(__UpperCAmelCase ) == len(__UpperCAmelCase )
lowerCAmelCase__ : Dict = []
for input_ids, chinese_word in zip(__UpperCAmelCase , __UpperCAmelCase ):
lowerCAmelCase__ : Optional[int] = []
for id in input_ids:
lowerCAmelCase__ : Union[str, Any] = bert_tokenizer._convert_id_to_token(__UpperCAmelCase )
input_tokens.append(__UpperCAmelCase )
lowerCAmelCase__ : List[Any] = add_sub_symbol(__UpperCAmelCase , __UpperCAmelCase )
lowerCAmelCase__ : Optional[int] = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(__UpperCAmelCase ):
if token[:2] == "##":
lowerCAmelCase__ : Optional[Any] = token[2:]
# save chinese tokens' pos
if len(__UpperCAmelCase ) == 1 and _is_chinese_char(ord(__UpperCAmelCase ) ):
ref_id.append(__UpperCAmelCase )
ref_ids.append(__UpperCAmelCase )
assert len(__UpperCAmelCase ) == len(__UpperCAmelCase )
return ref_ids
def lowercase_ ( __UpperCAmelCase ) -> List[Any]:
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , """r""" , encoding="""utf-8""" ) as f:
lowerCAmelCase__ : int = f.readlines()
lowerCAmelCase__ : List[Any] = [line.strip() for line in data if len(__UpperCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
lowerCAmelCase__ : Dict = LTP(args.ltp ) # faster in GPU device
lowerCAmelCase__ : int = BertTokenizer.from_pretrained(args.bert )
lowerCAmelCase__ : int = prepare_ref(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
with open(args.save_path , """w""" , encoding="""utf-8""" ) as f:
lowerCAmelCase__ : Union[str, Any] = [json.dumps(__UpperCAmelCase ) + """\n""" for ref in ref_ids]
f.writelines(__UpperCAmelCase )
if __name__ == "__main__":
_A = argparse.ArgumentParser(description="""prepare_chinese_ref""")
parser.add_argument(
"""--file_name""",
required=False,
type=str,
default="""./resources/chinese-demo.txt""",
help="""file need process, same as training data in lm""",
)
parser.add_argument(
"""--ltp""",
required=False,
type=str,
default="""./resources/ltp""",
help="""resources for LTP tokenizer, usually a path""",
)
parser.add_argument(
"""--bert""",
required=False,
type=str,
default="""./resources/robert""",
help="""resources for Bert tokenizer""",
)
parser.add_argument(
"""--save_path""",
required=False,
type=str,
default="""./resources/ref.txt""",
help="""path to save res""",
)
_A = parser.parse_args()
main(args)
| 299 |
"""simple docstring"""
import unittest
from transformers.utils.backbone_utils import (
BackboneMixin,
get_aligned_output_features_output_indices,
verify_out_features_out_indices,
)
class _lowerCamelCase ( unittest.TestCase ):
def _lowerCAmelCase ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
lowerCAmelCase__ : Optional[int] = ["""a""", """b""", """c"""]
# Defaults to last layer if both are None
lowerCAmelCase__ , lowerCAmelCase__ : str = get_aligned_output_features_output_indices(UpperCamelCase , UpperCamelCase , UpperCamelCase )
self.assertEqual(UpperCamelCase , ["""c"""] )
self.assertEqual(UpperCamelCase , [2] )
# Out indices set to match out features
lowerCAmelCase__ , lowerCAmelCase__ : int = get_aligned_output_features_output_indices(["""a""", """c"""] , UpperCamelCase , UpperCamelCase )
self.assertEqual(UpperCamelCase , ["""a""", """c"""] )
self.assertEqual(UpperCamelCase , [0, 2] )
# Out features set to match out indices
lowerCAmelCase__ , lowerCAmelCase__ : int = get_aligned_output_features_output_indices(UpperCamelCase , [0, 2] , UpperCamelCase )
self.assertEqual(UpperCamelCase , ["""a""", """c"""] )
self.assertEqual(UpperCamelCase , [0, 2] )
# Out features selected from negative indices
lowerCAmelCase__ , lowerCAmelCase__ : Tuple = get_aligned_output_features_output_indices(UpperCamelCase , [-3, -1] , UpperCamelCase )
self.assertEqual(UpperCamelCase , ["""a""", """c"""] )
self.assertEqual(UpperCamelCase , [-3, -1] )
def _lowerCAmelCase ( self : List[str] ) -> Tuple:
"""simple docstring"""
# Stage names must be set
with self.assertRaises(UpperCamelCase ):
verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , UpperCamelCase )
# Out features must be a list
with self.assertRaises(UpperCamelCase ):
verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""] )
# Out features must be a subset of stage names
with self.assertRaises(UpperCamelCase ):
verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""] )
# Out indices must be a list or tuple
with self.assertRaises(UpperCamelCase ):
verify_out_features_out_indices(UpperCamelCase , 0 , ["""a""", """b"""] )
# Out indices must be a subset of stage names
with self.assertRaises(UpperCamelCase ):
verify_out_features_out_indices(UpperCamelCase , (0, 1) , ["""a"""] )
# Out features and out indices must be the same length
with self.assertRaises(UpperCamelCase ):
verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""] )
# Out features should match out indices
with self.assertRaises(UpperCamelCase ):
verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""] )
# Out features and out indices should be in order
with self.assertRaises(UpperCamelCase ):
verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""] )
# Check passes with valid inputs
verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""] )
def _lowerCAmelCase ( self : Dict ) -> Optional[int]:
"""simple docstring"""
lowerCAmelCase__ : str = BackboneMixin()
lowerCAmelCase__ : str = ["""a""", """b""", """c"""]
lowerCAmelCase__ : List[str] = ["""a""", """c"""]
lowerCAmelCase__ : Union[str, Any] = [0, 2]
# Check that the output features and indices are set correctly
self.assertEqual(backbone.out_features , ["""a""", """c"""] )
self.assertEqual(backbone.out_indices , [0, 2] )
# Check out features and indices are updated correctly
lowerCAmelCase__ : List[str] = ["""a""", """b"""]
self.assertEqual(backbone.out_features , ["""a""", """b"""] )
self.assertEqual(backbone.out_indices , [0, 1] )
lowerCAmelCase__ : int = [-3, -1]
self.assertEqual(backbone.out_features , ["""a""", """c"""] )
self.assertEqual(backbone.out_indices , [-3, -1] )
| 299 | 1 |
"""simple docstring"""
from __future__ import annotations
class __UpperCAmelCase :
def __init__( self : str , a_ : Optional[int]=None ) -> Optional[int]:
'''simple docstring'''
a__ : str = data
a__ : Optional[int] = None
def __repr__( self : str ) -> List[str]:
'''simple docstring'''
a__ : int = []
a__ : List[str] = self
while temp:
string_rep.append(F"{temp.data}" )
a__ : Any = temp.next
return "->".join(a_ )
def lowercase__ ( lowerCAmelCase__ : list ) -> int:
'''simple docstring'''
if not elements_list:
raise Exception("The Elements List is empty" )
a__ : List[str] = Node(elements_list[0] )
for i in range(1 , len(lowerCAmelCase__ ) ):
a__ : int = Node(elements_list[i] )
a__ : int = current.next
return head
def lowercase__ ( lowerCAmelCase__ : Node ) -> None:
'''simple docstring'''
if head_node is not None and isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
print_reverse(head_node.next )
print(head_node.data )
def lowercase__ ( ) -> Union[str, Any]:
'''simple docstring'''
from doctest import testmod
testmod()
a__ : Optional[int] = make_linked_list([1_4, 5_2, 1_4, 1_2, 4_3] )
print("Linked List:" )
print(lowerCAmelCase__ )
print("Elements in Reverse:" )
print_reverse(lowerCAmelCase__ )
if __name__ == "__main__":
main() | 251 |
"""simple docstring"""
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer
from ...utils import logging
__UpperCAmelCase = logging.get_logger(__name__)
__UpperCAmelCase = '''▁'''
__UpperCAmelCase = {
'''vocab_file''': '''vocab.json''',
'''spm_file''': '''sentencepiece.bpe.model''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
__UpperCAmelCase = {
'''vocab_file''': {
'''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''',
'''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''',
},
'''spm_file''': {
'''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''',
'''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''',
},
'''tokenizer_config_file''': {
'''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''',
'''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''',
},
}
__UpperCAmelCase = {
'''facebook/m2m100_418M''': 1024,
}
# fmt: off
__UpperCAmelCase = {
'''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''],
'''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de''']
}
class __UpperCAmelCase ( _UpperCamelCase ):
__lowerCamelCase : str = VOCAB_FILES_NAMES
__lowerCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__lowerCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
__lowerCamelCase : Dict = ["input_ids", "attention_mask"]
__lowerCamelCase : List[int] = []
__lowerCamelCase : List[int] = []
def __init__( self : Any , a_ : Any , a_ : int , a_ : int=None , a_ : Union[str, Any]=None , a_ : Optional[Any]="<s>" , a_ : Tuple="</s>" , a_ : int="</s>" , a_ : Optional[int]="<pad>" , a_ : List[Any]="<unk>" , a_ : Tuple="m2m100" , a_ : Optional[Dict[str, Any]] = None , a_ : Optional[Any]=8 , **a_ : Union[str, Any] , ) -> None:
'''simple docstring'''
a__ : int = {} if sp_model_kwargs is None else sp_model_kwargs
a__ : List[str] = language_codes
a__ : int = FAIRSEQ_LANGUAGE_CODES[language_codes]
a__ : Tuple = {lang_code: F"__{lang_code}__" for lang_code in fairseq_language_code}
a__ : Optional[Any] = kwargs.get("additional_special_tokens" , [] )
kwargs["additional_special_tokens"] += [
self.get_lang_token(a_ )
for lang_code in fairseq_language_code
if self.get_lang_token(a_ ) not in kwargs["additional_special_tokens"]
]
super().__init__(
src_lang=a_ , tgt_lang=a_ , bos_token=a_ , eos_token=a_ , sep_token=a_ , unk_token=a_ , pad_token=a_ , language_codes=a_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=a_ , **a_ , )
a__ : List[str] = vocab_file
a__ : Optional[int] = load_json(a_ )
a__ : List[Any] = {v: k for k, v in self.encoder.items()}
a__ : List[Any] = spm_file
a__ : Any = load_spm(a_ , self.sp_model_kwargs )
a__ : Tuple = len(self.encoder )
a__ : Any = {
self.get_lang_token(a_ ): self.encoder_size + i for i, lang_code in enumerate(a_ )
}
a__ : List[str] = {lang_code: self.encoder_size + i for i, lang_code in enumerate(a_ )}
a__ : Any = {v: k for k, v in self.lang_token_to_id.items()}
a__ : Union[str, Any] = src_lang if src_lang is not None else "en"
a__ : Union[str, Any] = tgt_lang
a__ : List[Any] = self.get_lang_id(self._src_lang )
self.set_src_lang_special_tokens(self._src_lang )
a__ : Optional[int] = num_madeup_words
@property
def UpperCAmelCase ( self : Dict ) -> int:
'''simple docstring'''
return len(self.encoder ) + len(self.lang_token_to_id )
@property
def UpperCAmelCase ( self : Any ) -> str:
'''simple docstring'''
return self._src_lang
@src_lang.setter
def UpperCAmelCase ( self : List[Any] , a_ : str ) -> None:
'''simple docstring'''
a__ : List[str] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def UpperCAmelCase ( self : Tuple , a_ : str ) -> List[str]:
'''simple docstring'''
return self.sp_model.encode(a_ , out_type=a_ )
def UpperCAmelCase ( self : List[Any] , a_ : Optional[int] ) -> Any:
'''simple docstring'''
if token in self.lang_token_to_id:
return self.lang_token_to_id[token]
return self.encoder.get(a_ , self.encoder[self.unk_token] )
def UpperCAmelCase ( self : str , a_ : int ) -> str:
'''simple docstring'''
if index in self.id_to_lang_token:
return self.id_to_lang_token[index]
return self.decoder.get(a_ , self.unk_token )
def UpperCAmelCase ( self : Dict , a_ : Optional[int] ) -> Optional[int]:
'''simple docstring'''
a__ : Optional[Any] = []
a__ : Optional[int] = ""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(a_ ) + token
a__ : List[str] = []
else:
current_sub_tokens.append(a_ )
out_string += self.sp_model.decode(a_ )
return out_string.strip()
def UpperCAmelCase ( self : Union[str, Any] , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ )
a__ : Any = [1] * len(self.prefix_tokens )
a__ : Optional[int] = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(a_ )) + suffix_ones
return prefix_ones + ([0] * len(a_ )) + ([0] * len(a_ )) + suffix_ones
def UpperCAmelCase ( self : Union[str, Any] , a_ : List[int] , a_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def UpperCAmelCase ( self : str ) -> Dict:
'''simple docstring'''
a__ : int = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : str ) -> Dict:
'''simple docstring'''
a__ : Tuple = self.__dict__.copy()
a__ : Optional[int] = None
return state
def __setstate__( self : List[str] , a_ : Dict ) -> None:
'''simple docstring'''
a__ : Tuple = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
a__ : List[Any] = {}
a__ : Optional[int] = load_spm(self.spm_file , self.sp_model_kwargs )
def UpperCAmelCase ( self : List[Any] , a_ : str , a_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
a__ : Dict = Path(a_ )
if not save_dir.is_dir():
raise OSError(F"{save_directory} should be a directory" )
a__ : Union[str, Any] = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"]
)
a__ : Tuple = save_dir / (
(filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"]
)
save_json(self.encoder , a_ )
if os.path.abspath(self.spm_file ) != os.path.abspath(a_ ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , a_ )
elif not os.path.isfile(self.spm_file ):
with open(a_ , "wb" ) as fi:
a__ : List[Any] = self.sp_model.serialized_model_proto()
fi.write(a_ )
return (str(a_ ), str(a_ ))
def UpperCAmelCase ( self : Any , a_ : List[str] , a_ : str = "en" , a_ : Optional[List[str]] = None , a_ : str = "ro" , **a_ : Dict , ) -> BatchEncoding:
'''simple docstring'''
a__ : str = src_lang
a__ : Any = tgt_lang
self.set_src_lang_special_tokens(self.src_lang )
return super().prepare_seqaseq_batch(a_ , a_ , **a_ )
def UpperCAmelCase ( self : Optional[Any] , a_ : Dict , a_ : Optional[str] , a_ : Optional[str] , **a_ : Tuple ) -> str:
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model" )
a__ : List[Any] = src_lang
a__ : Optional[int] = self(a_ , add_special_tokens=a_ , **a_ )
a__ : Any = self.get_lang_id(a_ )
a__ : int = tgt_lang_id
return inputs
def UpperCAmelCase ( self : Any ) -> Optional[Any]:
'''simple docstring'''
self.set_src_lang_special_tokens(self.src_lang )
def UpperCAmelCase ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
self.set_tgt_lang_special_tokens(self.tgt_lang )
def UpperCAmelCase ( self : Union[str, Any] , a_ : str ) -> None:
'''simple docstring'''
a__ : Optional[int] = self.get_lang_token(a_ )
a__ : Tuple = self.lang_token_to_id[lang_token]
a__ : List[str] = [self.cur_lang_id]
a__ : Optional[int] = [self.eos_token_id]
def UpperCAmelCase ( self : List[str] , a_ : str ) -> None:
'''simple docstring'''
a__ : Optional[int] = self.get_lang_token(a_ )
a__ : int = self.lang_token_to_id[lang_token]
a__ : Tuple = [self.cur_lang_id]
a__ : Optional[int] = [self.eos_token_id]
def UpperCAmelCase ( self : Any , a_ : str ) -> str:
'''simple docstring'''
return self.lang_code_to_token[lang]
def UpperCAmelCase ( self : List[str] , a_ : str ) -> int:
'''simple docstring'''
a__ : List[str] = self.get_lang_token(a_ )
return self.lang_token_to_id[lang_token]
def lowercase__ ( lowerCAmelCase__ : str , lowerCAmelCase__ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor:
'''simple docstring'''
a__ : Any = sentencepiece.SentencePieceProcessor(**lowerCAmelCase__ )
spm.Load(str(lowerCAmelCase__ ) )
return spm
def lowercase__ ( lowerCAmelCase__ : str ) -> Union[Dict, List]:
'''simple docstring'''
with open(lowerCAmelCase__ , "r" ) as f:
return json.load(lowerCAmelCase__ )
def lowercase__ ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str ) -> None:
'''simple docstring'''
with open(lowerCAmelCase__ , "w" ) as f:
json.dump(lowerCAmelCase__ , lowerCAmelCase__ , indent=2 ) | 251 | 1 |
'''simple docstring'''
import json
import os
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from requests.exceptions import HTTPError
from transformers.utils import (
CONFIG_NAME,
FLAX_WEIGHTS_NAME,
TF2_WEIGHTS_NAME,
TRANSFORMERS_CACHE,
WEIGHTS_NAME,
cached_file,
get_file_from_repo,
has_file,
)
lowercase__ : List[str] = 'hf-internal-testing/tiny-random-bert'
lowercase__ : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, 'models--hf-internal-testing--tiny-random-bert')
lowercase__ : Union[str, Any] = '9b8c223d42b2188cb49d29af482996f9d0f3e5a6'
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def snake_case__ ( self : Union[str, Any] ) -> List[str]:
'''simple docstring'''
_UpperCamelCase = cached_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Should have downloaded the file in here
self.assertTrue(os.path.isdir(SCREAMING_SNAKE_CASE_ ) )
# Cache should contain at least those three subfolders:
for subfolder in ["blobs", "refs", "snapshots"]:
self.assertTrue(os.path.isdir(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) )
with open(os.path.join(SCREAMING_SNAKE_CASE_ , '''refs''' , '''main''' ) ) as f:
_UpperCamelCase = f.read()
self.assertEqual(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''snapshots''' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
self.assertTrue(os.path.isfile(SCREAMING_SNAKE_CASE_ ) )
# File is cached at the same place the second time.
_UpperCamelCase = cached_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Using a specific revision to test the full commit hash.
_UpperCamelCase = cached_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , revision='''9b8c223''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''snapshots''' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def snake_case__ ( self : Optional[Any] ) -> str:
'''simple docstring'''
with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , '''is not a valid model identifier''' ):
_UpperCamelCase = cached_file('''tiny-random-bert''' , SCREAMING_SNAKE_CASE_ )
with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , '''is not a valid git identifier''' ):
_UpperCamelCase = cached_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , revision='''aaaa''' )
with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , '''does not appear to have a file named''' ):
_UpperCamelCase = cached_file(SCREAMING_SNAKE_CASE_ , '''conf''' )
def snake_case__ ( self : Dict ) -> Any:
'''simple docstring'''
with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , '''does not appear to have a file named''' ):
_UpperCamelCase = cached_file(SCREAMING_SNAKE_CASE_ , '''conf''' )
with open(os.path.join(SCREAMING_SNAKE_CASE_ , '''refs''' , '''main''' ) ) as f:
_UpperCamelCase = f.read()
self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE_ , '''.no_exist''' , SCREAMING_SNAKE_CASE_ , '''conf''' ) ) )
_UpperCamelCase = cached_file(SCREAMING_SNAKE_CASE_ , '''conf''' , _raise_exceptions_for_missing_entries=SCREAMING_SNAKE_CASE_ )
self.assertIsNone(SCREAMING_SNAKE_CASE_ )
_UpperCamelCase = cached_file(SCREAMING_SNAKE_CASE_ , '''conf''' , local_files_only=SCREAMING_SNAKE_CASE_ , _raise_exceptions_for_missing_entries=SCREAMING_SNAKE_CASE_ )
self.assertIsNone(SCREAMING_SNAKE_CASE_ )
_UpperCamelCase = mock.Mock()
_UpperCamelCase = 500
_UpperCamelCase = {}
_UpperCamelCase = HTTPError
_UpperCamelCase = {}
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch('''requests.Session.request''' , return_value=SCREAMING_SNAKE_CASE_ ) as mock_head:
_UpperCamelCase = cached_file(SCREAMING_SNAKE_CASE_ , '''conf''' , _raise_exceptions_for_connection_errors=SCREAMING_SNAKE_CASE_ )
self.assertIsNone(SCREAMING_SNAKE_CASE_ )
# This check we did call the fake head request
mock_head.assert_called()
def snake_case__ ( self : List[str] ) -> int:
'''simple docstring'''
self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , SCREAMING_SNAKE_CASE_ ) )
self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , SCREAMING_SNAKE_CASE_ ) )
self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , SCREAMING_SNAKE_CASE_ ) )
def snake_case__ ( self : str ) -> Union[str, Any]:
'''simple docstring'''
self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) )
# The function raises if the repository does not exist.
with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , '''is not a valid model identifier''' ):
get_file_from_repo('''bert-base-case''' , SCREAMING_SNAKE_CASE_ )
# The function raises if the revision does not exist.
with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , '''is not a valid git identifier''' ):
get_file_from_repo('''bert-base-cased''' , SCREAMING_SNAKE_CASE_ , revision='''ahaha''' )
_UpperCamelCase = get_file_from_repo('''bert-base-cased''' , SCREAMING_SNAKE_CASE_ )
# The name is the cached name which is not very easy to test, so instead we load the content.
_UpperCamelCase = json.loads(open(SCREAMING_SNAKE_CASE_ , '''r''' ).read() )
self.assertEqual(config['''hidden_size'''] , 768 )
def snake_case__ ( self : Tuple ) -> List[Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmp_dir:
_UpperCamelCase = Path(SCREAMING_SNAKE_CASE_ ) / '''a.txt'''
filename.touch()
self.assertEqual(get_file_from_repo(SCREAMING_SNAKE_CASE_ , '''a.txt''' ) , str(SCREAMING_SNAKE_CASE_ ) )
self.assertIsNone(get_file_from_repo(SCREAMING_SNAKE_CASE_ , '''b.txt''' ) )
| 98 | import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DetaImageProcessor
class _A ( unittest.TestCase ):
def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=30 , SCREAMING_SNAKE_CASE_=400 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=1 / 255 , SCREAMING_SNAKE_CASE_=True , ) -> List[Any]:
'''simple docstring'''
UpperCamelCase__ = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333}
UpperCamelCase__ = parent
UpperCamelCase__ = batch_size
UpperCamelCase__ = num_channels
UpperCamelCase__ = min_resolution
UpperCamelCase__ = max_resolution
UpperCamelCase__ = do_resize
UpperCamelCase__ = size
UpperCamelCase__ = do_normalize
UpperCamelCase__ = image_mean
UpperCamelCase__ = image_std
UpperCamelCase__ = do_rescale
UpperCamelCase__ = rescale_factor
UpperCamelCase__ = do_pad
def _a (self ) -> List[str]:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def _a (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) -> str:
'''simple docstring'''
if not batched:
UpperCamelCase__ = image_inputs[0]
if isinstance(SCREAMING_SNAKE_CASE_ , Image.Image ):
UpperCamelCase__ , UpperCamelCase__ = image.size
else:
UpperCamelCase__ , UpperCamelCase__ = image.shape[1], image.shape[2]
if w < h:
UpperCamelCase__ = int(self.size['''shortest_edge'''] * h / w )
UpperCamelCase__ = self.size['''shortest_edge''']
elif w > h:
UpperCamelCase__ = self.size['''shortest_edge''']
UpperCamelCase__ = int(self.size['''shortest_edge'''] * w / h )
else:
UpperCamelCase__ = self.size['''shortest_edge''']
UpperCamelCase__ = self.size['''shortest_edge''']
else:
UpperCamelCase__ = []
for image in image_inputs:
UpperCamelCase__ , UpperCamelCase__ = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
UpperCamelCase__ = max(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : item[0] )[0]
UpperCamelCase__ = max(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class _A ( __UpperCamelCase , unittest.TestCase ):
SCREAMING_SNAKE_CASE_ : Optional[int] =DetaImageProcessor if is_vision_available() else None
def _a (self ) -> Tuple:
'''simple docstring'''
UpperCamelCase__ = DetaImageProcessingTester(self )
@property
def _a (self ) -> List[str]:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def _a (self ) -> Dict:
'''simple docstring'''
UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''image_mean''' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''image_std''' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_normalize''' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_resize''' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_rescale''' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''do_pad''' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''size''' ) )
def _a (self ) -> Dict:
'''simple docstring'''
UpperCamelCase__ = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} )
self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE_ )
def _a (self ) -> List[Any]:
'''simple docstring'''
pass
def _a (self ) -> List[str]:
'''simple docstring'''
UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , Image.Image )
# Test not batched input
UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
UpperCamelCase__ , UpperCamelCase__ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCamelCase__ , UpperCamelCase__ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _a (self ) -> int:
'''simple docstring'''
UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , numpify=SCREAMING_SNAKE_CASE_ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , np.ndarray )
# Test not batched input
UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
UpperCamelCase__ , UpperCamelCase__ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCamelCase__ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values
UpperCamelCase__ , UpperCamelCase__ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def _a (self ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase__ = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase__ = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE_ , torchify=SCREAMING_SNAKE_CASE_ )
for image in image_inputs:
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , torch.Tensor )
# Test not batched input
UpperCamelCase__ = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
UpperCamelCase__ , UpperCamelCase__ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
UpperCamelCase__ = image_processing(SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).pixel_values
UpperCamelCase__ , UpperCamelCase__ = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE_ , batched=SCREAMING_SNAKE_CASE_ )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def _a (self ) -> Optional[int]:
'''simple docstring'''
UpperCamelCase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f:
UpperCamelCase__ = json.loads(f.read() )
UpperCamelCase__ = {'''image_id''': 3_9769, '''annotations''': target}
# encode them
UpperCamelCase__ = DetaImageProcessor()
UpperCamelCase__ = image_processing(images=SCREAMING_SNAKE_CASE_ , annotations=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' )
# verify pixel values
UpperCamelCase__ = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
# verify area
UpperCamelCase__ = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , SCREAMING_SNAKE_CASE_ ) )
# verify boxes
UpperCamelCase__ = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) )
# verify image_id
UpperCamelCase__ = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , SCREAMING_SNAKE_CASE_ ) )
# verify is_crowd
UpperCamelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , SCREAMING_SNAKE_CASE_ ) )
# verify class_labels
UpperCamelCase__ = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , SCREAMING_SNAKE_CASE_ ) )
# verify orig_size
UpperCamelCase__ = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , SCREAMING_SNAKE_CASE_ ) )
# verify size
UpperCamelCase__ = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , SCREAMING_SNAKE_CASE_ ) )
@slow
def _a (self ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f:
UpperCamelCase__ = json.loads(f.read() )
UpperCamelCase__ = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9769, '''segments_info''': target}
UpperCamelCase__ = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' )
# encode them
UpperCamelCase__ = DetaImageProcessor(format='''coco_panoptic''' )
UpperCamelCase__ = image_processing(images=SCREAMING_SNAKE_CASE_ , annotations=SCREAMING_SNAKE_CASE_ , masks_path=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' )
# verify pixel values
UpperCamelCase__ = torch.Size([1, 3, 800, 1066] )
self.assertEqual(encoding['''pixel_values'''].shape , SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) )
# verify area
UpperCamelCase__ = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , SCREAMING_SNAKE_CASE_ ) )
# verify boxes
UpperCamelCase__ = torch.Size([6, 4] )
self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , SCREAMING_SNAKE_CASE_ )
UpperCamelCase__ = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) )
# verify image_id
UpperCamelCase__ = torch.tensor([3_9769] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , SCREAMING_SNAKE_CASE_ ) )
# verify is_crowd
UpperCamelCase__ = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , SCREAMING_SNAKE_CASE_ ) )
# verify class_labels
UpperCamelCase__ = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , SCREAMING_SNAKE_CASE_ ) )
# verify masks
UpperCamelCase__ = 82_2873
self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , SCREAMING_SNAKE_CASE_ )
# verify orig_size
UpperCamelCase__ = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , SCREAMING_SNAKE_CASE_ ) )
# verify size
UpperCamelCase__ = torch.tensor([800, 1066] )
self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , SCREAMING_SNAKE_CASE_ ) )
| 415 | 0 |
import gc
import unittest
import numpy as np
import torch
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
from diffusers.utils import slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps
from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class UpperCAmelCase ( __snake_case , unittest.TestCase ):
a: str = DanceDiffusionPipeline
a: Any = UNCONDITIONAL_AUDIO_GENERATION_PARAMS
a: str = PipelineTesterMixin.required_optional_params - {
"callback",
"latents",
"callback_steps",
"output_type",
"num_images_per_prompt",
}
a: Tuple = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS
a: int = False
a: List[Any] = False
def _A ( self: Optional[int] ):
torch.manual_seed(0 )
_a = UNetaDModel(
block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=512 , sample_rate=1_6000 , in_channels=2 , out_channels=2 , flip_sin_to_cos=__UpperCamelCase , use_timestep_embedding=__UpperCamelCase , time_embedding_type='''fourier''' , mid_block_type='''UNetMidBlock1D''' , down_block_types=('''DownBlock1DNoSkip''', '''DownBlock1D''', '''AttnDownBlock1D''') , up_block_types=('''AttnUpBlock1D''', '''UpBlock1D''', '''UpBlock1DNoSkip''') , )
_a = IPNDMScheduler()
_a = {
'''unet''': unet,
'''scheduler''': scheduler,
}
return components
def _A ( self: Any , __UpperCamelCase: List[Any] , __UpperCamelCase: Any=0 ):
if str(__UpperCamelCase ).startswith('''mps''' ):
_a = torch.manual_seed(__UpperCamelCase )
else:
_a = torch.Generator(device=__UpperCamelCase ).manual_seed(__UpperCamelCase )
_a = {
'''batch_size''': 1,
'''generator''': generator,
'''num_inference_steps''': 4,
}
return inputs
def _A ( self: Any ):
_a = '''cpu''' # ensure determinism for the device-dependent torch.Generator
_a = self.get_dummy_components()
_a = DanceDiffusionPipeline(**__UpperCamelCase )
_a = pipe.to(__UpperCamelCase )
pipe.set_progress_bar_config(disable=__UpperCamelCase )
_a = self.get_dummy_inputs(__UpperCamelCase )
_a = pipe(**__UpperCamelCase )
_a = output.audios
_a = audio[0, -3:, -3:]
assert audio.shape == (1, 2, components["unet"].sample_size)
_a = np.array([-0.7_2_6_5, 1.0_0_0_0, -0.8_3_8_8, 0.1_1_7_5, 0.9_4_9_8, -1.0_0_0_0] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
@skip_mps
def _A ( self: int ):
return super().test_save_load_local()
@skip_mps
def _A ( self: Union[str, Any] ):
return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 )
@skip_mps
def _A ( self: Optional[Any] ):
return super().test_save_load_optional_components()
@skip_mps
def _A ( self: Optional[int] ):
return super().test_attention_slicing_forward_pass()
def _A ( self: Optional[Any] ):
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class UpperCAmelCase ( unittest.TestCase ):
def _A ( self: Any ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _A ( self: Dict ):
_a = torch_device
_a = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' )
_a = pipe.to(__UpperCamelCase )
pipe.set_progress_bar_config(disable=__UpperCamelCase )
_a = torch.manual_seed(0 )
_a = pipe(generator=__UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.0_9_6 )
_a = output.audios
_a = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_a = np.array([-0.0_1_9_2, -0.0_2_3_1, -0.0_3_1_8, -0.0_0_5_9, 0.0_0_0_2, -0.0_0_2_0] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
def _A ( self: Any ):
_a = torch_device
_a = DanceDiffusionPipeline.from_pretrained('''harmonai/maestro-150k''' , torch_dtype=torch.floataa )
_a = pipe.to(__UpperCamelCase )
pipe.set_progress_bar_config(disable=__UpperCamelCase )
_a = torch.manual_seed(0 )
_a = pipe(generator=__UpperCamelCase , num_inference_steps=100 , audio_length_in_s=4.0_9_6 )
_a = output.audios
_a = audio[0, -3:, -3:]
assert audio.shape == (1, 2, pipe.unet.sample_size)
_a = np.array([-0.0_3_6_7, -0.0_4_8_8, -0.0_7_7_1, -0.0_5_2_5, -0.0_4_4_4, -0.0_3_4_1] )
assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
| 705 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCamelCase :List[Any] = {
'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'],
'tokenization_roc_bert': ['RoCBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase :str = [
'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'RoCBertForCausalLM',
'RoCBertForMaskedLM',
'RoCBertForMultipleChoice',
'RoCBertForPreTraining',
'RoCBertForQuestionAnswering',
'RoCBertForSequenceClassification',
'RoCBertForTokenClassification',
'RoCBertLayer',
'RoCBertModel',
'RoCBertPreTrainedModel',
'load_tf_weights_in_roc_bert',
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
lowerCamelCase :int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 346 | 0 |
"""simple docstring"""
from typing import Dict
from .base import GenericTensor, Pipeline
class __lowercase ( __lowerCamelCase ):
def __lowercase ( self : int ,A : Dict=None ,A : Optional[Any]=None ,A : Any=None ,**A : Dict ):
'''simple docstring'''
if tokenize_kwargs is None:
UpperCAmelCase__ : List[Any] = {}
if truncation is not None:
if "truncation" in tokenize_kwargs:
raise ValueError(
"""truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)""" )
UpperCAmelCase__ : List[str] = truncation
UpperCAmelCase__ : Union[str, Any] = tokenize_kwargs
UpperCAmelCase__ : List[Any] = {}
if return_tensors is not None:
UpperCAmelCase__ : Union[str, Any] = return_tensors
return preprocess_params, {}, postprocess_params
def __lowercase ( self : Optional[int] ,A : str ,**A : Dict ):
'''simple docstring'''
UpperCAmelCase__ : Dict = self.framework
UpperCAmelCase__ : Optional[int] = self.tokenizer(A ,return_tensors=A ,**A )
return model_inputs
def __lowercase ( self : Optional[int] ,A : int ):
'''simple docstring'''
UpperCAmelCase__ : str = self.model(**A )
return model_outputs
def __lowercase ( self : Union[str, Any] ,A : Dict ,A : Dict=False ):
'''simple docstring'''
# [0] is the first available tensor, logits or last_hidden_state.
if return_tensors:
return model_outputs[0]
if self.framework == "pt":
return model_outputs[0].tolist()
elif self.framework == "tf":
return model_outputs[0].numpy().tolist()
def __call__( self : Union[str, Any] ,*A : Tuple ,**A : Optional[int] ):
'''simple docstring'''
return super().__call__(*A ,**A )
| 65 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a : List[str] = logging.get_logger(__name__)
_a : Dict = {
"facebook/timesformer": "https://huggingface.co/facebook/timesformer/resolve/main/config.json",
}
class _lowercase ( __lowercase ):
_SCREAMING_SNAKE_CASE : int = "timesformer"
def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : List[str]=224 , SCREAMING_SNAKE_CASE_ : List[str]=16 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : int=8 , SCREAMING_SNAKE_CASE_ : Tuple=768 , SCREAMING_SNAKE_CASE_ : int=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=12 , SCREAMING_SNAKE_CASE_ : Optional[int]=3072 , SCREAMING_SNAKE_CASE_ : Tuple="gelu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=0.0 , SCREAMING_SNAKE_CASE_ : List[Any]=0.0 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0.0_2 , SCREAMING_SNAKE_CASE_ : Any=1e-6 , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : List[str]="divided_space_time" , SCREAMING_SNAKE_CASE_ : int=0 , **SCREAMING_SNAKE_CASE_ : Optional[int] , ) -> List[str]:
super().__init__(**SCREAMING_SNAKE_CASE_ )
__snake_case = image_size
__snake_case = patch_size
__snake_case = num_channels
__snake_case = num_frames
__snake_case = hidden_size
__snake_case = num_hidden_layers
__snake_case = num_attention_heads
__snake_case = intermediate_size
__snake_case = hidden_act
__snake_case = hidden_dropout_prob
__snake_case = attention_probs_dropout_prob
__snake_case = initializer_range
__snake_case = layer_norm_eps
__snake_case = qkv_bias
__snake_case = attention_type
__snake_case = drop_path_rate
| 56 | 0 |
from binascii import hexlify
from hashlib import shaaaa
from os import urandom
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
lowerCamelCase__ = {
# 1536-bit
5: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
# 2048-bit
14: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'''
+ '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'''
+ '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510'''
+ '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
# 3072-bit
15: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'''
+ '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'''
+ '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510'''
+ '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'''
+ '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'''
+ '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'''
+ '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'''
+ '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'''
+ '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
# 4096-bit
16: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'''
+ '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'''
+ '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510'''
+ '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'''
+ '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'''
+ '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'''
+ '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'''
+ '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'''
+ '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7'''
+ '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA'''
+ '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6'''
+ '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED'''
+ '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9'''
+ '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199'''
+ '''FFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
# 6144-bit
17: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08'''
+ '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B'''
+ '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9'''
+ '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6'''
+ '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8'''
+ '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C'''
+ '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718'''
+ '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D'''
+ '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D'''
+ '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226'''
+ '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C'''
+ '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC'''
+ '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26'''
+ '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB'''
+ '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2'''
+ '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127'''
+ '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492'''
+ '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406'''
+ '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918'''
+ '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151'''
+ '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03'''
+ '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F'''
+ '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA'''
+ '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B'''
+ '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632'''
+ '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E'''
+ '''6DCC4024FFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
# 8192-bit
18: {
'''prime''': int(
'''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1'''
+ '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD'''
+ '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245'''
+ '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED'''
+ '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D'''
+ '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F'''
+ '''83655D23DCA3AD961C62F356208552BB9ED529077096966D'''
+ '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B'''
+ '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9'''
+ '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510'''
+ '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64'''
+ '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7'''
+ '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B'''
+ '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C'''
+ '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31'''
+ '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7'''
+ '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA'''
+ '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6'''
+ '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED'''
+ '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9'''
+ '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492'''
+ '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD'''
+ '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831'''
+ '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B'''
+ '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF'''
+ '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6'''
+ '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3'''
+ '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA'''
+ '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328'''
+ '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C'''
+ '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE'''
+ '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4'''
+ '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300'''
+ '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568'''
+ '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9'''
+ '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B'''
+ '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A'''
+ '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36'''
+ '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1'''
+ '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92'''
+ '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47'''
+ '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71'''
+ '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''',
base=16,
),
'''generator''': 2,
},
}
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE = 14 ) -> None:
"""simple docstring"""
if group not in primes:
raise ValueError('''Unsupported Group''' )
snake_case__ : Union[str, Any] =primes[group]['''prime''']
snake_case__ : List[str] =primes[group]['''generator''']
snake_case__ : Tuple =int(hexlify(urandom(32 ) ) , base=16 )
def UpperCAmelCase ( self ) -> str:
"""simple docstring"""
return hex(self.__private_key )[2:]
def UpperCAmelCase ( self ) -> str:
"""simple docstring"""
snake_case__ : Union[str, Any] =pow(self.generator , self.__private_key , self.prime )
return hex(__SCREAMING_SNAKE_CASE )[2:]
def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> bool:
"""simple docstring"""
return (
2 <= key <= self.prime - 2
and pow(__SCREAMING_SNAKE_CASE , (self.prime - 1) // 2 , self.prime ) == 1
)
def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
snake_case__ : Any =int(__SCREAMING_SNAKE_CASE , base=16 )
if not self.is_valid_public_key(__SCREAMING_SNAKE_CASE ):
raise ValueError('''Invalid public key''' )
snake_case__ : Optional[int] =pow(__SCREAMING_SNAKE_CASE , self.__private_key , self.prime )
return shaaaa(str(__SCREAMING_SNAKE_CASE ).encode() ).hexdigest()
@staticmethod
def UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> bool:
"""simple docstring"""
return (
2 <= remote_public_key_str <= prime - 2
and pow(__SCREAMING_SNAKE_CASE , (prime - 1) // 2 , __SCREAMING_SNAKE_CASE ) == 1
)
@staticmethod
def UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 14 ) -> str:
"""simple docstring"""
snake_case__ : Union[str, Any] =int(__SCREAMING_SNAKE_CASE , base=16 )
snake_case__ : int =int(__SCREAMING_SNAKE_CASE , base=16 )
snake_case__ : Dict =primes[group]['''prime''']
if not DiffieHellman.is_valid_public_key_static(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
raise ValueError('''Invalid public key''' )
snake_case__ : Any =pow(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
return shaaaa(str(__SCREAMING_SNAKE_CASE ).encode() ).hexdigest()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 717 |
from __future__ import annotations
from collections.abc import Generator
import requests
from bsa import BeautifulSoup
lowerCamelCase__ = '''https://www.indeed.co.in/jobs?q=mobile+app+development&l='''
def lowercase_ ( SCREAMING_SNAKE_CASE : str = "mumbai" ):
"""simple docstring"""
snake_case__ : Optional[int] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' )
# This attribute finds out all the specifics listed in a job
for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ):
snake_case__ : Optional[Any] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip()
snake_case__ : Dict =job.find('''span''' , {'''class''': '''company'''} ).text.strip()
yield job_title, company_name
if __name__ == "__main__":
for i, job in enumerate(fetch_jobs('''Bangalore'''), 1):
print(F"""Job {i:>2} is {job[0]} at {job[1]}""")
| 408 | 0 |
import torch
def lowerCAmelCase_ ( ):
if torch.cuda.is_available():
__snake_case : int = torch.cuda.device_count()
else:
__snake_case : Tuple = 0
print(F'Successfully ran on {num_gpus} GPUs' )
if __name__ == "__main__":
main()
| 81 |
import argparse
import logging
import os
import datasets
import tensorflow as tf
from transformers import AutoTokenizer
_snake_case : Union[str, Any] = logging.getLogger(__name__)
def lowerCAmelCase_ ( ):
__snake_case : int = argparse.ArgumentParser(
description="Prepare TFRecord shards from pre-tokenized samples of the wikitext dataset." )
parser.add_argument(
"--dataset_name" , type=__lowerCamelCase , default="wikitext" , help="Name of the training. Explore datasets at: hf.co/datasets." , )
parser.add_argument(
"--dataset_config" , type=__lowerCamelCase , default="wikitext-103-raw-v1" , help="Configuration name of the dataset." )
parser.add_argument(
"--tokenizer_name_or_path" , type=__lowerCamelCase , default="sayakpaul/unigram-tokenizer-wikitext" , help="Tokenizer identifier. Can be a local filepath or a Hub identifier." , )
parser.add_argument(
"--shard_size" , type=__lowerCamelCase , default=1_0_0_0 , help="Number of entries to go in a single shard." , )
parser.add_argument("--split" , type=__lowerCamelCase , default="train" , choices=["train", "test", "validation"] )
parser.add_argument(
"--limit" , default=__lowerCamelCase , type=__lowerCamelCase , help="Limit the number of shards (used for debugging)." , )
parser.add_argument(
"--max_length" , type=__lowerCamelCase , default=5_1_2 , help="Maximum sequence length. For training on TPUs, it helps to have a maximum"
" sequence length that is a multiple of 8." , )
parser.add_argument(
"--output_dir" , default="tf-tpu" , type=__lowerCamelCase , help="Output directory where the TFRecord shards will be saved. If the"
" path is appended with `gs://` ('gs://tf-tpu', for example) then the TFRecord"
" shards will be directly saved to a Google Cloud Storage bucket." , )
__snake_case : List[str] = parser.parse_args()
return args
def lowerCAmelCase_ ( __lowerCamelCase ):
def fn(__lowerCamelCase ):
return tokenizer(examples["text"] )
return fn
def lowerCAmelCase_ ( __lowerCamelCase ):
__snake_case : Tuple = []
for i in range(len(tokenized_data["input_ids"] ) ):
__snake_case : Tuple = {
"input_ids": tf.train.Feature(intaa_list=tf.train.IntaaList(value=tokenized_data["input_ids"][i] ) ),
"attention_mask": tf.train.Feature(
intaa_list=tf.train.IntaaList(value=tokenized_data["attention_mask"][i] ) ),
}
__snake_case : List[Any] = tf.train.Features(feature=__lowerCamelCase )
__snake_case : str = tf.train.Example(features=__lowerCamelCase )
__snake_case : List[str] = example.SerializeToString()
records.append(__lowerCamelCase )
return records
def lowerCAmelCase_ ( __lowerCamelCase ):
__snake_case : Optional[int] = datasets.load_dataset(args.dataset_name , args.dataset_config , split=args.split )
if args.limit is not None:
__snake_case : Optional[Any] = min(len(__lowerCamelCase ) , args.limit )
__snake_case : Dict = dataset.select(range(__lowerCamelCase ) )
print(F'Limiting the dataset to {args.limit} entries.' )
__snake_case : Dict = AutoTokenizer.from_pretrained(args.tokenizer_name_or_path )
# Handle output directory creation.
# For serializing into a Google Cloud Storage Bucket, one needs to first
# create a bucket.
if "gs" not in args.output_dir:
if not os.path.exists(args.output_dir ):
os.makedirs(args.output_dir )
__snake_case : Dict = os.path.join(args.output_dir , args.split )
if not os.path.exists(__lowerCamelCase ):
os.makedirs(__lowerCamelCase )
else:
__snake_case : str = os.path.join(args.output_dir , args.split )
# Tokenize the whole dataset at once.
__snake_case : Any = tokenize_function(__lowerCamelCase )
__snake_case : Optional[Any] = dataset.map(__lowerCamelCase , batched=__lowerCamelCase , num_proc=4 , remove_columns=["text"] )
# We need to concatenate all our texts together, and then split the result
# into chunks of a fixed size, which we will call block_size. To do this, we
# will use the map method again, with the option batched=True. When we use batched=True,
# the function we pass to map() will be passed multiple inputs at once, allowing us
# to group them into more or fewer examples than we had in the input.
# This allows us to create our new fixed-length samples. The advantage of this
# method is that we don't lose a whole lot of content from the dataset compared to the
# case where we simply tokenize with a pre-defined max_length.
def group_texts(__lowerCamelCase ):
# Concatenate all texts.
__snake_case : List[str] = {k: sum(examples[k] , [] ) for k in examples.keys()}
__snake_case : List[Any] = len(concatenated_examples[list(examples.keys() )[0]] )
# We drop the small remainder, though you could add padding instead if the model supports it
# In this, as in all things, we advise you to follow your heart 🫀
__snake_case : Any = (total_length // args.max_length) * args.max_length
# Split by chunks of max_len.
__snake_case : int = {
k: [t[i : i + args.max_length] for i in range(0 , __lowerCamelCase , args.max_length )]
for k, t in concatenated_examples.items()
}
return result
__snake_case : Any = dataset_tokenized.map(__lowerCamelCase , batched=__lowerCamelCase , batch_size=1_0_0_0 , num_proc=4 )
__snake_case : Optional[Any] = 0
__snake_case : Optional[Any] = 0
for shard in range(0 , len(__lowerCamelCase ) , args.shard_size ):
__snake_case : List[str] = grouped_dataset[shard : shard + args.shard_size]
__snake_case : Any = len(dataset_snapshot["input_ids"] )
__snake_case : List[Any] = os.path.join(__lowerCamelCase , F'dataset-{shard_count}-{records_containing}.tfrecord' )
__snake_case : Optional[Any] = get_serialized_examples(__lowerCamelCase )
with tf.io.TFRecordWriter(__lowerCamelCase ) as out_file:
for i in range(len(__lowerCamelCase ) ):
__snake_case : Union[str, Any] = serialized_examples[i]
out_file.write(__lowerCamelCase )
print("Wrote file {} containing {} records".format(__lowerCamelCase , __lowerCamelCase ) )
shard_count += 1
total_records += records_containing
with open(F'split-{args.split}-records-count.txt' , "w" ) as f:
print(F'Total {args.split} records: {total_records}' , file=__lowerCamelCase )
if __name__ == "__main__":
_snake_case : List[Any] = parse_args()
main(args)
| 81 | 1 |
"""simple docstring"""
import inspect
import warnings
from typing import Any, Dict, Optional, Union
from packaging import version
def _lowerCAmelCase ( *__lowerCamelCase:str , __lowerCamelCase:Optional[Union[Dict, Any]] = None , __lowerCamelCase:List[Any]=True , __lowerCamelCase:str=2 ):
'''simple docstring'''
from .. import __version__
__magic_name__ = take_from
__magic_name__ = ()
if not isinstance(args[0] , __lowerCamelCase ):
__magic_name__ = (args,)
for attribute, version_name, message in args:
if version.parse(version.parse(__lowerCamelCase ).base_version ) >= version.parse(__lowerCamelCase ):
raise ValueError(
f'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\''''
f''' version {__version__} is >= {version_name}''' )
__magic_name__ = None
if isinstance(__lowerCamelCase , __lowerCamelCase ) and attribute in deprecated_kwargs:
values += (deprecated_kwargs.pop(__lowerCamelCase ),)
__magic_name__ = f'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.'''
elif hasattr(__lowerCamelCase , __lowerCamelCase ):
values += (getattr(__lowerCamelCase , __lowerCamelCase ),)
__magic_name__ = f'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.'''
elif deprecated_kwargs is None:
__magic_name__ = f'''`{attribute}` is deprecated and will be removed in version {version_name}.'''
if warning is not None:
__magic_name__ = warning + " " if standard_warn else ""
warnings.warn(warning + message , __lowerCamelCase , stacklevel=__lowerCamelCase )
if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) > 0:
__magic_name__ = inspect.getouterframes(inspect.currentframe() )[1]
__magic_name__ = call_frame.filename
__magic_name__ = call_frame.lineno
__magic_name__ = call_frame.function
__magic_name__ , __magic_name__ = next(iter(deprecated_kwargs.items() ) )
raise TypeError(f'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' )
if len(__lowerCamelCase ) == 0:
return
elif len(__lowerCamelCase ) == 1:
return values[0]
return values
| 468 |
"""simple docstring"""
import colorsys
from PIL import Image # type: ignore
def _lowerCAmelCase ( __lowerCamelCase:float , __lowerCamelCase:float , __lowerCamelCase:int ):
'''simple docstring'''
__magic_name__ = x
__magic_name__ = y
for step in range(__lowerCamelCase ): # noqa: B007
__magic_name__ = a * a - b * b + x
__magic_name__ = 2 * a * b + y
__magic_name__ = a_new
# divergence happens for all complex number with an absolute value
# greater than 4
if a * a + b * b > 4:
break
return step / (max_step - 1)
def _lowerCAmelCase ( __lowerCamelCase:float ):
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return (2_5_5, 2_5_5, 2_5_5)
def _lowerCAmelCase ( __lowerCamelCase:float ):
'''simple docstring'''
if distance == 1:
return (0, 0, 0)
else:
return tuple(round(i * 2_5_5 ) for i in colorsys.hsv_to_rgb(__lowerCamelCase , 1 , 1 ) )
def _lowerCAmelCase ( __lowerCamelCase:int = 8_0_0 , __lowerCamelCase:int = 6_0_0 , __lowerCamelCase:float = -0.6 , __lowerCamelCase:float = 0 , __lowerCamelCase:float = 3.2 , __lowerCamelCase:int = 5_0 , __lowerCamelCase:bool = True , ):
'''simple docstring'''
__magic_name__ = Image.new("RGB" , (image_width, image_height) )
__magic_name__ = img.load()
# loop through the image-coordinates
for image_x in range(__lowerCamelCase ):
for image_y in range(__lowerCamelCase ):
# determine the figure-coordinates based on the image-coordinates
__magic_name__ = figure_width / image_width * image_height
__magic_name__ = figure_center_x + (image_x / image_width - 0.5) * figure_width
__magic_name__ = figure_center_y + (image_y / image_height - 0.5) * figure_height
__magic_name__ = get_distance(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# color the corresponding pixel based on the selected coloring-function
if use_distance_color_coding:
__magic_name__ = get_color_coded_rgb(__lowerCamelCase )
else:
__magic_name__ = get_black_and_white_rgb(__lowerCamelCase )
return img
if __name__ == "__main__":
import doctest
doctest.testmod()
# colored version, full figure
lowercase = get_image()
# uncomment for colored version, different section, zoomed in
# img = get_image(figure_center_x = -0.6, figure_center_y = -0.4,
# figure_width = 0.8)
# uncomment for black and white version, full figure
# img = get_image(use_distance_color_coding = False)
# uncomment to save the image
# img.save("mandelbrot.png")
img.show()
| 468 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
A__ : str = {'''configuration_deit''': ['''DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''DeiTConfig''', '''DeiTOnnxConfig''']}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Union[str, Any] = ['''DeiTFeatureExtractor''']
A__ : Union[str, Any] = ['''DeiTImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : Dict = [
'''DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''DeiTForImageClassification''',
'''DeiTForImageClassificationWithTeacher''',
'''DeiTForMaskedImageModeling''',
'''DeiTModel''',
'''DeiTPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A__ : str = [
'''TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFDeiTForImageClassification''',
'''TFDeiTForImageClassificationWithTeacher''',
'''TFDeiTForMaskedImageModeling''',
'''TFDeiTModel''',
'''TFDeiTPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_deit import DeiTFeatureExtractor
from .image_processing_deit import DeiTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_deit import (
DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
DeiTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_deit import (
TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
TFDeiTPreTrainedModel,
)
else:
import sys
A__ : Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 171 |
import argparse
import gc
import json
import os
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils.deepspeed import DummyOptim, DummyScheduler
A__ : Union[str, Any] = 16
A__ : int = 32
def UpperCamelCase( __UpperCamelCase : Tuple ):
return int(x / 2**20 )
class __snake_case :
def __enter__( self : str):
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero
lowerCAmelCase_ : List[str] = torch.cuda.memory_allocated()
return self
def __exit__( self : Any , *A_ : Dict):
gc.collect()
torch.cuda.empty_cache()
lowerCAmelCase_ : str = torch.cuda.memory_allocated()
lowerCAmelCase_ : Optional[int] = torch.cuda.max_memory_allocated()
lowerCAmelCase_ : List[str] = bamb(self.end - self.begin)
lowerCAmelCase_ : Optional[int] = bamb(self.peak - self.begin)
# print(f"delta used/peak {self.used:4d}/{self.peaked:4d}")
def UpperCamelCase( __UpperCamelCase : Accelerator ,__UpperCamelCase : int = 16 ,__UpperCamelCase : str = "bert-base-cased" ,__UpperCamelCase : int = 320 ,__UpperCamelCase : int = 160 ,):
lowerCAmelCase_ : Dict = AutoTokenizer.from_pretrained(__UpperCamelCase )
lowerCAmelCase_ : Any = load_dataset(
'''glue''' ,'''mrpc''' ,split={'''train''': f"""train[:{n_train}]""", '''validation''': f"""validation[:{n_val}]"""} )
def tokenize_function(__UpperCamelCase : Any ):
# max_length=None => use the model max length (it's actually the default)
lowerCAmelCase_ : Union[str, Any] = tokenizer(examples['''sentence1'''] ,examples['''sentence2'''] ,truncation=__UpperCamelCase ,max_length=__UpperCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
lowerCAmelCase_ : Union[str, Any] = datasets.map(
__UpperCamelCase ,batched=__UpperCamelCase ,remove_columns=['''idx''', '''sentence1''', '''sentence2'''] ,load_from_cache_file=__UpperCamelCase )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowerCAmelCase_ : List[str] = tokenized_datasets.rename_column('''label''' ,'''labels''' )
def collate_fn(__UpperCamelCase : List[Any] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
if accelerator.distributed_type == DistributedType.TPU:
return tokenizer.pad(__UpperCamelCase ,padding='''max_length''' ,max_length=128 ,return_tensors='''pt''' )
return tokenizer.pad(__UpperCamelCase ,padding='''longest''' ,return_tensors='''pt''' )
# Instantiate dataloaders.
lowerCAmelCase_ : Union[str, Any] = DataLoader(
tokenized_datasets['''train'''] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase )
lowerCAmelCase_ : str = DataLoader(
tokenized_datasets['''validation'''] ,shuffle=__UpperCamelCase ,collate_fn=__UpperCamelCase ,batch_size=__UpperCamelCase )
return train_dataloader, eval_dataloader
def UpperCamelCase( __UpperCamelCase : Any ,__UpperCamelCase : Tuple ):
# Initialize accelerator
lowerCAmelCase_ : Union[str, Any] = Accelerator()
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCAmelCase_ : Any = config['''lr''']
lowerCAmelCase_ : Any = int(config['''num_epochs'''] )
lowerCAmelCase_ : Any = int(config['''seed'''] )
lowerCAmelCase_ : Dict = int(config['''batch_size'''] )
lowerCAmelCase_ : Dict = args.model_name_or_path
set_seed(__UpperCamelCase )
lowerCAmelCase_ , lowerCAmelCase_ : Dict = get_dataloaders(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,args.n_train ,args.n_val )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCAmelCase_ : Any = AutoModelForSequenceClassification.from_pretrained(__UpperCamelCase ,return_dict=__UpperCamelCase )
# Instantiate optimizer
lowerCAmelCase_ : Any = (
AdamW
if accelerator.state.deepspeed_plugin is None
or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config
else DummyOptim
)
lowerCAmelCase_ : List[str] = optimizer_cls(params=model.parameters() ,lr=__UpperCamelCase )
if accelerator.state.deepspeed_plugin is not None:
lowerCAmelCase_ : str = accelerator.state.deepspeed_plugin.deepspeed_config[
'''gradient_accumulation_steps'''
]
else:
lowerCAmelCase_ : Tuple = 1
lowerCAmelCase_ : str = (len(__UpperCamelCase ) * num_epochs) // gradient_accumulation_steps
# Instantiate scheduler
if (
accelerator.state.deepspeed_plugin is None
or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
):
lowerCAmelCase_ : Union[str, Any] = get_linear_schedule_with_warmup(
optimizer=__UpperCamelCase ,num_warmup_steps=0 ,num_training_steps=__UpperCamelCase ,)
else:
lowerCAmelCase_ : List[Any] = DummyScheduler(__UpperCamelCase ,total_num_steps=__UpperCamelCase ,warmup_num_steps=0 )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] = accelerator.prepare(
__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase )
# We need to keep track of how many total steps we have iterated over
lowerCAmelCase_ : str = 0
# We also need to keep track of the stating epoch so files are named properly
lowerCAmelCase_ : List[Any] = 0
# Now we train the model
lowerCAmelCase_ : Union[str, Any] = {}
for epoch in range(__UpperCamelCase ,__UpperCamelCase ):
with TorchTracemalloc() as tracemalloc:
model.train()
for step, batch in enumerate(__UpperCamelCase ):
lowerCAmelCase_ : Union[str, Any] = model(**__UpperCamelCase )
lowerCAmelCase_ : Any = outputs.loss
lowerCAmelCase_ : List[str] = loss / gradient_accumulation_steps
accelerator.backward(__UpperCamelCase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
overall_step += 1
# Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage
accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) )
accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) )
accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) )
accelerator.print(
'''Total Peak Memory consumed during the train (max): {}'''.format(
tracemalloc.peaked + bamb(tracemalloc.begin ) ) )
lowerCAmelCase_ : Tuple = tracemalloc.peaked + bamb(tracemalloc.begin )
if args.peak_memory_upper_bound is not None:
assert (
train_total_peak_memory[f"""epoch-{epoch}"""] <= args.peak_memory_upper_bound
), "Peak memory usage exceeded the upper bound"
accelerator.wait_for_everyone()
if accelerator.is_main_process:
with open(os.path.join(args.output_dir ,'''peak_memory_utilization.json''' ) ,'''w''' ) as f:
json.dump(__UpperCamelCase ,__UpperCamelCase )
def UpperCamelCase( ):
lowerCAmelCase_ : str = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' )
parser.add_argument(
'''--model_name_or_path''' ,type=__UpperCamelCase ,default='''bert-base-cased''' ,help='''Path to pretrained model or model identifier from huggingface.co/models.''' ,required=__UpperCamelCase ,)
parser.add_argument(
'''--output_dir''' ,type=__UpperCamelCase ,default='''.''' ,help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' ,)
parser.add_argument(
'''--peak_memory_upper_bound''' ,type=__UpperCamelCase ,default=__UpperCamelCase ,help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' ,)
parser.add_argument(
'''--n_train''' ,type=__UpperCamelCase ,default=320 ,help='''Number of training examples to use.''' ,)
parser.add_argument(
'''--n_val''' ,type=__UpperCamelCase ,default=160 ,help='''Number of validation examples to use.''' ,)
parser.add_argument(
'''--num_epochs''' ,type=__UpperCamelCase ,default=1 ,help='''Number of train epochs.''' ,)
lowerCAmelCase_ : Dict = parser.parse_args()
lowerCAmelCase_ : int = {'''lr''': 2e-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16}
training_function(__UpperCamelCase ,__UpperCamelCase )
if __name__ == "__main__":
main()
| 171 | 1 |
import unittest
from knapsack import knapsack as k
class __lowerCAmelCase ( unittest.TestCase ):
def A__ ( self ) -> List[str]:
'''simple docstring'''
_lowercase =0
_lowercase =[0]
_lowercase =[0]
_lowercase =len(lowerCAmelCase )
self.assertEqual(k.knapsack(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , 0 )
_lowercase =[60]
_lowercase =[10]
_lowercase =len(lowerCAmelCase )
self.assertEqual(k.knapsack(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , 0 )
def A__ ( self ) -> List[Any]:
'''simple docstring'''
_lowercase =3
_lowercase =[1, 2, 3]
_lowercase =[3, 2, 1]
_lowercase =len(lowerCAmelCase )
self.assertEqual(k.knapsack(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , 5 )
def A__ ( self ) -> str:
'''simple docstring'''
_lowercase =50
_lowercase =[60, 100, 120]
_lowercase =[10, 20, 30]
_lowercase =len(lowerCAmelCase )
self.assertEqual(k.knapsack(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) , 220 )
if __name__ == "__main__":
unittest.main()
| 702 |
import os
from pathlib import Path
import numpy as np
import pytest
from pack_dataset import pack_data_dir
from parameterized import parameterized
from save_len_file import save_len_file
from torch.utils.data import DataLoader
from transformers import AutoTokenizer
from transformers.models.mbart.modeling_mbart import shift_tokens_right
from transformers.testing_utils import TestCasePlus, slow
from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset
lowercase_ = 'bert-base-cased'
lowercase_ = 'google/pegasus-xsum'
lowercase_ = [' Sam ate lunch today.', 'Sams lunch ingredients.']
lowercase_ = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee']
lowercase_ = 'patrickvonplaten/t5-tiny-random'
lowercase_ = 'sshleifer/bart-tiny-random'
lowercase_ = 'sshleifer/tiny-mbart'
lowercase_ = 'sshleifer/tiny-marian-en-de'
def a ( A__ : Path , A__ : list ) -> Tuple:
"""simple docstring"""
_lowercase ='\n'.join(A__ )
Path(A__ ).open('w' ).writelines(A__ )
def a ( A__ : str ) -> Union[str, Any]:
"""simple docstring"""
for split in ["train", "val", "test"]:
_dump_articles(os.path.join(A__ , F'''{split}.source''' ) , A__ )
_dump_articles(os.path.join(A__ , F'''{split}.target''' ) , A__ )
return tmp_dir
class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ):
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
@slow
def A__ ( self , lowerCAmelCase ) -> List[str]:
'''simple docstring'''
_lowercase =AutoTokenizer.from_pretrained(lowerCAmelCase )
_lowercase =make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
_lowercase =max(len(tokenizer.encode(lowerCAmelCase ) ) for a in ARTICLES )
_lowercase =max(len(tokenizer.encode(lowerCAmelCase ) ) for a in SUMMARIES )
_lowercase =4
_lowercase =8
assert max_len_target > max_src_len # Will be truncated
assert max_len_source > max_src_len # Will be truncated
_lowercase , _lowercase ='ro_RO', 'de_DE' # ignored for all but mbart, but never causes error.
_lowercase =SeqaSeqDataset(
lowerCAmelCase , data_dir=lowerCAmelCase , type_path='train' , max_source_length=lowerCAmelCase , max_target_length=lowerCAmelCase , src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , )
_lowercase =DataLoader(lowerCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert isinstance(lowerCAmelCase , lowerCAmelCase )
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_src_len
# show that targets are the same len
assert batch["labels"].shape[1] == max_tgt_len
if tok_name != MBART_TINY:
continue
# check language codes in correct place
_lowercase =shift_tokens_right(batch['labels'] , tokenizer.pad_token_id )
assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang]
assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id
assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang]
break # No need to test every batch
@parameterized.expand([BART_TINY, BERT_BASE_CASED] )
def A__ ( self , lowerCAmelCase ) -> str:
'''simple docstring'''
_lowercase =AutoTokenizer.from_pretrained(lowerCAmelCase )
_lowercase =make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() )
_lowercase =max(len(tokenizer.encode(lowerCAmelCase ) ) for a in ARTICLES )
_lowercase =max(len(tokenizer.encode(lowerCAmelCase ) ) for a in SUMMARIES )
_lowercase =4
_lowercase =LegacySeqaSeqDataset(
lowerCAmelCase , data_dir=lowerCAmelCase , type_path='train' , max_source_length=20 , max_target_length=lowerCAmelCase , )
_lowercase =DataLoader(lowerCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn )
for batch in dataloader:
assert batch["attention_mask"].shape == batch["input_ids"].shape
# show that articles were trimmed.
assert batch["input_ids"].shape[1] == max_len_source
assert 20 >= batch["input_ids"].shape[1] # trimmed significantly
# show that targets were truncated
assert batch["labels"].shape[1] == trunc_target # Truncated
assert max_len_target > trunc_target # Truncated
break # No need to test every batch
def A__ ( self ) -> List[str]:
'''simple docstring'''
_lowercase =AutoTokenizer.from_pretrained('facebook/mbart-large-cc25' )
_lowercase =Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
_lowercase =tmp_dir.joinpath('train.source' ).open().readlines()
_lowercase =Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) )
pack_data_dir(lowerCAmelCase , lowerCAmelCase , 128 , lowerCAmelCase )
_lowercase ={x.name for x in tmp_dir.iterdir()}
_lowercase ={x.name for x in save_dir.iterdir()}
_lowercase =save_dir.joinpath('train.source' ).open().readlines()
# orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.']
# desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.']
assert len(lowerCAmelCase ) < len(lowerCAmelCase )
assert len(lowerCAmelCase ) == 1
assert len(packed_examples[0] ) == sum(len(lowerCAmelCase ) for x in orig_examples )
assert orig_paths == new_paths
@pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq' )
def A__ ( self ) -> int:
'''simple docstring'''
if not FAIRSEQ_AVAILABLE:
return
_lowercase , _lowercase , _lowercase =self._get_dataset(max_len=64 )
_lowercase =64
_lowercase =ds.make_dynamic_sampler(lowerCAmelCase , required_batch_size_multiple=lowerCAmelCase )
_lowercase =[len(lowerCAmelCase ) for x in batch_sampler]
assert len(set(lowerCAmelCase ) ) > 1 # it's not dynamic batch size if every batch is the same length
assert sum(lowerCAmelCase ) == len(lowerCAmelCase ) # no dropped or added examples
_lowercase =DataLoader(lowerCAmelCase , batch_sampler=lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 )
_lowercase =[]
_lowercase =[]
for batch in data_loader:
_lowercase =batch['input_ids'].shape
_lowercase =src_shape[0]
assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple
_lowercase =np.product(batch['input_ids'].shape )
num_src_per_batch.append(lowerCAmelCase )
if num_src_tokens > (max_tokens * 1.1):
failures.append(lowerCAmelCase )
assert num_src_per_batch[0] == max(lowerCAmelCase )
if failures:
raise AssertionError(F'''too many tokens in {len(lowerCAmelCase )} batches''' )
def A__ ( self ) -> List[str]:
'''simple docstring'''
_lowercase , _lowercase , _lowercase =self._get_dataset(max_len=512 )
_lowercase =2
_lowercase =ds.make_sortish_sampler(lowerCAmelCase , shuffle=lowerCAmelCase )
_lowercase =DataLoader(lowerCAmelCase , batch_size=lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 )
_lowercase =DataLoader(lowerCAmelCase , batch_size=lowerCAmelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowerCAmelCase )
_lowercase =tokenizer.pad_token_id
def count_pad_tokens(lowerCAmelCase , lowerCAmelCase="input_ids" ):
return [batch[k].eq(lowerCAmelCase ).sum().item() for batch in data_loader]
assert sum(count_pad_tokens(lowerCAmelCase , k='labels' ) ) < sum(count_pad_tokens(lowerCAmelCase , k='labels' ) )
assert sum(count_pad_tokens(lowerCAmelCase ) ) < sum(count_pad_tokens(lowerCAmelCase ) )
assert len(lowerCAmelCase ) == len(lowerCAmelCase )
def A__ ( self , lowerCAmelCase=1_000 , lowerCAmelCase=128 ) -> Union[str, Any]:
'''simple docstring'''
if os.getenv('USE_REAL_DATA' , lowerCAmelCase ):
_lowercase ='examples/seq2seq/wmt_en_ro'
_lowercase =max_len * 2 * 64
if not Path(lowerCAmelCase ).joinpath('train.len' ).exists():
save_len_file(lowerCAmelCase , lowerCAmelCase )
else:
_lowercase ='examples/seq2seq/test_data/wmt_en_ro'
_lowercase =max_len * 4
save_len_file(lowerCAmelCase , lowerCAmelCase )
_lowercase =AutoTokenizer.from_pretrained(lowerCAmelCase )
_lowercase =SeqaSeqDataset(
lowerCAmelCase , data_dir=lowerCAmelCase , type_path='train' , max_source_length=lowerCAmelCase , max_target_length=lowerCAmelCase , n_obs=lowerCAmelCase , )
return ds, max_tokens, tokenizer
def A__ ( self ) -> int:
'''simple docstring'''
_lowercase , _lowercase , _lowercase =self._get_dataset()
_lowercase =set(DistributedSortishSampler(lowerCAmelCase , 256 , num_replicas=2 , rank=0 , add_extra_examples=lowerCAmelCase ) )
_lowercase =set(DistributedSortishSampler(lowerCAmelCase , 256 , num_replicas=2 , rank=1 , add_extra_examples=lowerCAmelCase ) )
assert idsa.intersection(lowerCAmelCase ) == set()
@parameterized.expand(
[
MBART_TINY,
MARIAN_TINY,
T5_TINY,
BART_TINY,
PEGASUS_XSUM,
] , )
def A__ ( self , lowerCAmelCase ) -> Dict:
'''simple docstring'''
_lowercase =AutoTokenizer.from_pretrained(lowerCAmelCase , use_fast=lowerCAmelCase )
if tok_name == MBART_TINY:
_lowercase =SeqaSeqDataset(
lowerCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , )
_lowercase =train_dataset.dataset_kwargs
assert "src_lang" in kwargs and "tgt_lang" in kwargs
else:
_lowercase =SeqaSeqDataset(
lowerCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path='train' , max_source_length=4 , max_target_length=8 , )
_lowercase =train_dataset.dataset_kwargs
assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs
assert len(lowerCAmelCase ) == 1 if tok_name == BART_TINY else len(lowerCAmelCase ) == 0
| 380 | 0 |
'''simple docstring'''
from ....configuration_utils import PretrainedConfig
from ....utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'''speechbrain/m-ctc-t-large''': '''https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json''',
# See all M-CTC-T models at https://huggingface.co/models?filter=mctct
}
class lowercase_ (lowerCamelCase__ ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : int = 'mctct'
def __init__( self : Any ,lowercase__ : Any=8_0_6_5 ,lowercase__ : Optional[Any]=1_5_3_6 ,lowercase__ : Dict=3_6 ,lowercase__ : List[Any]=6_1_4_4 ,lowercase__ : Any=4 ,lowercase__ : Tuple=3_8_4 ,lowercase__ : Tuple=9_2_0 ,lowercase__ : List[Any]=1e-5 ,lowercase__ : Optional[Any]=0.3 ,lowercase__ : str="relu" ,lowercase__ : Optional[Any]=0.0_2 ,lowercase__ : List[str]=0.3 ,lowercase__ : Any=0.3 ,lowercase__ : Optional[int]=1 ,lowercase__ : Optional[Any]=0 ,lowercase__ : Dict=2 ,lowercase__ : int=1 ,lowercase__ : Optional[Any]=0.3 ,lowercase__ : Union[str, Any]=1 ,lowercase__ : Optional[int]=(7,) ,lowercase__ : Optional[int]=(3,) ,lowercase__ : Dict=8_0 ,lowercase__ : List[Any]=1 ,lowercase__ : Optional[Any]=None ,lowercase__ : Tuple="sum" ,lowercase__ : Optional[int]=False ,**lowercase__ : Dict ,):
super().__init__(**lowercase__ ,pad_token_id=lowercase__ ,bos_token_id=lowercase__ ,eos_token_id=lowercase__ )
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = intermediate_size
__lowercase = num_attention_heads
__lowercase = attention_head_dim
__lowercase = max_position_embeddings
__lowercase = layer_norm_eps
__lowercase = layerdrop
__lowercase = hidden_act
__lowercase = initializer_range
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = pad_token_id
__lowercase = bos_token_id
__lowercase = eos_token_id
__lowercase = conv_glu_dim
__lowercase = conv_dropout
__lowercase = num_conv_layers
__lowercase = input_feat_per_channel
__lowercase = input_channels
__lowercase = conv_channels
__lowercase = ctc_loss_reduction
__lowercase = ctc_zero_infinity
# prevents config testing fail with exporting to json
__lowercase = list(lowercase__ )
__lowercase = list(lowercase__ )
if len(self.conv_kernel ) != self.num_conv_layers:
raise ValueError(
'''Configuration for convolutional module is incorrect. '''
'''It is required that `len(config.conv_kernel)` == `config.num_conv_layers` '''
F"but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, "
F"`config.num_conv_layers = {self.num_conv_layers}`." )
| 41 |
from __future__ import annotations
from numpy import array, cos, cross, floataa, radians, sin
from numpy.typing import NDArray
def UpperCAmelCase__ ( __magic_name__ : float , __magic_name__ : float , __magic_name__ : bool = False ):
'''simple docstring'''
if radian_mode:
return [magnitude * cos(__magic_name__ ), magnitude * sin(__magic_name__ )]
return [magnitude * cos(radians(__magic_name__ ) ), magnitude * sin(radians(__magic_name__ ) )]
def UpperCAmelCase__ ( __magic_name__ : NDArray[floataa] , __magic_name__ : NDArray[floataa] , __magic_name__ : float = 10**-1 ):
'''simple docstring'''
lowerCAmelCase : NDArray[floataa] = cross(__magic_name__ , __magic_name__ )
lowerCAmelCase : float = sum(__magic_name__ )
return abs(__magic_name__ ) < eps
if __name__ == "__main__":
# Test to check if it works
__SCREAMING_SNAKE_CASE : str = array(
[
polar_force(718.4, 1_80 - 30),
polar_force(879.54, 45),
polar_force(1_00, -90),
]
)
__SCREAMING_SNAKE_CASE : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem 1 in image_data/2D_problems.jpg
__SCREAMING_SNAKE_CASE : List[Any] = array(
[
polar_force(30 * 9.81, 15),
polar_force(2_15, 1_80 - 45),
polar_force(2_64, 90 - 30),
]
)
__SCREAMING_SNAKE_CASE : Any = array([[0, 0], [0, 0], [0, 0]])
assert in_static_equilibrium(forces, location)
# Problem in image_data/2D_problems_1.jpg
__SCREAMING_SNAKE_CASE : List[Any] = array([[0, -20_00], [0, -12_00], [0, 1_56_00], [0, -1_24_00]])
__SCREAMING_SNAKE_CASE : List[Any] = array([[0, 0], [6, 0], [10, 0], [12, 0]])
assert in_static_equilibrium(forces, location)
import doctest
doctest.testmod()
| 348 | 0 |
import os
def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : Dict = "input.txt" ):
"""simple docstring"""
with open(os.path.join(os.path.dirname(lowerCAmelCase_ ) ,lowerCAmelCase_ ) ) as input_file:
SCREAMING_SNAKE_CASE_ : Optional[Any] =[
[int(lowerCAmelCase_ ) for element in line.split(',' )]
for line in input_file.readlines()
]
SCREAMING_SNAKE_CASE_ : Optional[Any] =len(lowerCAmelCase_ )
SCREAMING_SNAKE_CASE_ : Dict =len(matrix[0] )
SCREAMING_SNAKE_CASE_ : Any =[[-1 for _ in range(lowerCAmelCase_ )] for _ in range(lowerCAmelCase_ )]
for i in range(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE_ : Any =matrix[i][0]
for j in range(1 ,lowerCAmelCase_ ):
for i in range(lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE_ : List[str] =minimal_path_sums[i][j - 1] + matrix[i][j]
for i in range(1 ,lowerCAmelCase_ ):
SCREAMING_SNAKE_CASE_ : str =min(
minimal_path_sums[i][j] ,minimal_path_sums[i - 1][j] + matrix[i][j] )
for i in range(rows - 2 ,-1 ,-1 ):
SCREAMING_SNAKE_CASE_ : int =min(
minimal_path_sums[i][j] ,minimal_path_sums[i + 1][j] + matrix[i][j] )
return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums )
if __name__ == "__main__":
print(f"""{solution() = }""")
| 719 |
import gc
import random
import tempfile
import unittest
import numpy as np
import torch
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMInverseScheduler,
DDIMScheduler,
DPMSolverMultistepInverseScheduler,
DPMSolverMultistepScheduler,
StableDiffusionDiffEditPipeline,
UNetaDConditionModel,
)
from diffusers.utils import load_image, slow
from diffusers.utils.testing_utils import enable_full_determinism, floats_tensor, require_torch_gpu, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase_ ( __A , __A , unittest.TestCase ):
'''simple docstring'''
_lowercase = StableDiffusionDiffEditPipeline
_lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'height', 'width', 'image'} | {'image_latents'}
_lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS - {'image'} | {'image_latents'}
_lowercase = frozenset(
[] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess
_lowercase = frozenset([] )
def __lowerCamelCase ( self ):
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ : List[str] =UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=__UpperCAmelCase , )
SCREAMING_SNAKE_CASE_ : Optional[Any] =DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , )
SCREAMING_SNAKE_CASE_ : Union[str, Any] =DDIMInverseScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=__UpperCAmelCase , set_alpha_to_zero=__UpperCAmelCase , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ : List[str] =AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ : List[Any] =CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act='gelu' , projection_dim=512 , )
SCREAMING_SNAKE_CASE_ : str =CLIPTextModel(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : int =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' )
SCREAMING_SNAKE_CASE_ : Tuple ={
'unet': unet,
'scheduler': scheduler,
'inverse_scheduler': inverse_scheduler,
'vae': vae,
'text_encoder': text_encoder,
'tokenizer': tokenizer,
'safety_checker': None,
'feature_extractor': None,
}
return components
def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ):
SCREAMING_SNAKE_CASE_ : Any =floats_tensor((1, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : Optional[int] =floats_tensor((1, 2, 4, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
if str(__UpperCAmelCase ).startswith('mps' ):
SCREAMING_SNAKE_CASE_ : Union[str, Any] =torch.manual_seed(__UpperCAmelCase )
else:
SCREAMING_SNAKE_CASE_ : Any =torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : List[Any] ={
'prompt': 'a dog and a newt',
'mask_image': mask,
'image_latents': latents,
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ):
SCREAMING_SNAKE_CASE_ : Dict =floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : Dict =image.cpu().permute(0 , 2 , 3 , 1 )[0]
SCREAMING_SNAKE_CASE_ : List[Any] =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert('RGB' )
if str(__UpperCAmelCase ).startswith('mps' ):
SCREAMING_SNAKE_CASE_ : Optional[int] =torch.manual_seed(__UpperCAmelCase )
else:
SCREAMING_SNAKE_CASE_ : List[Any] =torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : Optional[Any] ={
'image': image,
'source_prompt': 'a cat and a frog',
'target_prompt': 'a dog and a newt',
'generator': generator,
'num_inference_steps': 2,
'num_maps_per_mask': 2,
'mask_encode_strength': 1.0,
'guidance_scale': 6.0,
'output_type': 'numpy',
}
return inputs
def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ):
SCREAMING_SNAKE_CASE_ : str =floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : Union[str, Any] =image.cpu().permute(0 , 2 , 3 , 1 )[0]
SCREAMING_SNAKE_CASE_ : List[Any] =Image.fromarray(np.uinta(__UpperCAmelCase ) ).convert('RGB' )
if str(__UpperCAmelCase ).startswith('mps' ):
SCREAMING_SNAKE_CASE_ : Dict =torch.manual_seed(__UpperCAmelCase )
else:
SCREAMING_SNAKE_CASE_ : Tuple =torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : List[str] ={
'image': image,
'prompt': 'a cat and a frog',
'generator': generator,
'num_inference_steps': 2,
'inpaint_strength': 1.0,
'guidance_scale': 6.0,
'decode_latents': True,
'output_type': 'numpy',
}
return inputs
def __lowerCamelCase ( self ):
if not hasattr(self.pipeline_class , '_optional_components' ):
return
SCREAMING_SNAKE_CASE_ : List[str] =self.get_dummy_components()
SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.pipeline_class(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
# set all optional components to None and update pipeline config accordingly
for optional_component in pipe._optional_components:
setattr(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
pipe.register_modules(**{optional_component: None for optional_component in pipe._optional_components} )
SCREAMING_SNAKE_CASE_ : Tuple =self.get_dummy_inputs(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : List[str] =pipe(**__UpperCAmelCase )[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : Optional[Any] =self.pipeline_class.from_pretrained(__UpperCAmelCase )
pipe_loaded.to(__UpperCAmelCase )
pipe_loaded.set_progress_bar_config(disable=__UpperCAmelCase )
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(__UpperCAmelCase , __UpperCAmelCase ) is None , F"""`{optional_component}` did not stay set to None after loading.""" , )
SCREAMING_SNAKE_CASE_ : Tuple =self.get_dummy_inputs(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : Optional[Any] =pipe_loaded(**__UpperCAmelCase )[0]
SCREAMING_SNAKE_CASE_ : str =np.abs(output - output_loaded ).max()
self.assertLess(__UpperCAmelCase , 1E-4 )
def __lowerCamelCase ( self ):
SCREAMING_SNAKE_CASE_ : Optional[int] ='cpu'
SCREAMING_SNAKE_CASE_ : List[str] =self.get_dummy_components()
SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.pipeline_class(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : Optional[Any] =self.get_dummy_mask_inputs(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : int =pipe.generate_mask(**__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : Optional[Any] =mask[0, -3:, -3:]
self.assertEqual(mask.shape , (1, 16, 16) )
SCREAMING_SNAKE_CASE_ : str =np.array([0] * 9 )
SCREAMING_SNAKE_CASE_ : Optional[Any] =np.abs(mask_slice.flatten() - expected_slice ).max()
self.assertLessEqual(__UpperCAmelCase , 1E-3 )
self.assertEqual(mask[0, -3, -4] , 0 )
def __lowerCamelCase ( self ):
SCREAMING_SNAKE_CASE_ : int ='cpu'
SCREAMING_SNAKE_CASE_ : List[str] =self.get_dummy_components()
SCREAMING_SNAKE_CASE_ : List[str] =self.pipeline_class(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : Dict =self.get_dummy_inversion_inputs(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : Union[str, Any] =pipe.invert(**__UpperCAmelCase ).images
SCREAMING_SNAKE_CASE_ : str =image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
SCREAMING_SNAKE_CASE_ : Tuple =np.array(
[0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , )
SCREAMING_SNAKE_CASE_ : int =np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(__UpperCAmelCase , 1E-3 )
def __lowerCamelCase ( self ):
super().test_inference_batch_single_identical(expected_max_diff=5E-3 )
def __lowerCamelCase ( self ):
SCREAMING_SNAKE_CASE_ : int ='cpu'
SCREAMING_SNAKE_CASE_ : Union[str, Any] =self.get_dummy_components()
SCREAMING_SNAKE_CASE_ : Dict ={'beta_start': 0.00_085, 'beta_end': 0.012, 'beta_schedule': 'scaled_linear'}
SCREAMING_SNAKE_CASE_ : str =DPMSolverMultistepScheduler(**__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : Union[str, Any] =DPMSolverMultistepInverseScheduler(**__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : List[str] =self.pipeline_class(**__UpperCAmelCase )
pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : Optional[int] =self.get_dummy_inversion_inputs(__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : List[str] =pipe.invert(**__UpperCAmelCase ).images
SCREAMING_SNAKE_CASE_ : Optional[Any] =image[0, -1, -3:, -3:]
self.assertEqual(image.shape , (2, 32, 32, 3) )
SCREAMING_SNAKE_CASE_ : Union[str, Any] =np.array(
[0.5_150, 0.5_134, 0.5_043, 0.5_376, 0.4_694, 0.51_050, 0.5_015, 0.4_407, 0.4_799] , )
SCREAMING_SNAKE_CASE_ : Optional[Any] =np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(__UpperCAmelCase , 1E-3 )
@require_torch_gpu
@slow
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def __lowerCamelCase ( self ):
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@classmethod
def __lowerCamelCase ( cls ):
SCREAMING_SNAKE_CASE_ : Tuple =load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/diffedit/fruit.png' )
SCREAMING_SNAKE_CASE_ : Any =raw_image.convert('RGB' ).resize((768, 768) )
SCREAMING_SNAKE_CASE_ : Optional[int] =raw_image
def __lowerCamelCase ( self ):
SCREAMING_SNAKE_CASE_ : Optional[int] =torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ : Dict =StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1' , safety_checker=__UpperCAmelCase , torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE_ : Dict =DDIMScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE_ : Optional[Any] =DDIMInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : List[str] ='a bowl of fruit'
SCREAMING_SNAKE_CASE_ : Optional[int] ='a bowl of pears'
SCREAMING_SNAKE_CASE_ : int =pipe.generate_mask(
image=self.raw_image , source_prompt=__UpperCAmelCase , target_prompt=__UpperCAmelCase , generator=__UpperCAmelCase , )
SCREAMING_SNAKE_CASE_ : Optional[int] =pipe.invert(
prompt=__UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__UpperCAmelCase ).latents
SCREAMING_SNAKE_CASE_ : List[Any] =pipe(
prompt=__UpperCAmelCase , mask_image=__UpperCAmelCase , image_latents=__UpperCAmelCase , generator=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , inpaint_strength=0.7 , output_type='numpy' , ).images[0]
SCREAMING_SNAKE_CASE_ : Optional[Any] =(
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
def __lowerCamelCase ( self ):
SCREAMING_SNAKE_CASE_ : List[str] =torch.manual_seed(0 )
SCREAMING_SNAKE_CASE_ : Optional[int] =StableDiffusionDiffEditPipeline.from_pretrained(
'stabilityai/stable-diffusion-2-1' , safety_checker=__UpperCAmelCase , torch_dtype=torch.floataa )
SCREAMING_SNAKE_CASE_ : Any =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
SCREAMING_SNAKE_CASE_ : Any =DPMSolverMultistepInverseScheduler.from_config(pipe.scheduler.config )
pipe.enable_model_cpu_offload()
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
SCREAMING_SNAKE_CASE_ : str ='a bowl of fruit'
SCREAMING_SNAKE_CASE_ : str ='a bowl of pears'
SCREAMING_SNAKE_CASE_ : int =pipe.generate_mask(
image=self.raw_image , source_prompt=__UpperCAmelCase , target_prompt=__UpperCAmelCase , generator=__UpperCAmelCase , )
SCREAMING_SNAKE_CASE_ : Optional[Any] =pipe.invert(
prompt=__UpperCAmelCase , image=self.raw_image , inpaint_strength=0.7 , generator=__UpperCAmelCase , num_inference_steps=25 , ).latents
SCREAMING_SNAKE_CASE_ : Union[str, Any] =pipe(
prompt=__UpperCAmelCase , mask_image=__UpperCAmelCase , image_latents=__UpperCAmelCase , generator=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , inpaint_strength=0.7 , num_inference_steps=25 , output_type='numpy' , ).images[0]
SCREAMING_SNAKE_CASE_ : List[str] =(
np.array(
load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'
'/diffedit/pears.png' ).resize((768, 768) ) )
/ 255
)
assert np.abs((expected_image - image).max() ) < 5E-1
| 153 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase_ : Optional[Any] = {
"configuration_table_transformer": [
"TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TableTransformerConfig",
"TableTransformerOnnxConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Optional[int] = [
"TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TableTransformerForObjectDetection",
"TableTransformerModel",
"TableTransformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_table_transformer import (
TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TableTransformerConfig,
TableTransformerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_table_transformer import (
TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TableTransformerForObjectDetection,
TableTransformerModel,
TableTransformerPreTrainedModel,
)
else:
import sys
UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 21 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCAmelCase_ : Tuple = logging.get_logger(__name__)
UpperCAmelCase_ : List[str] = {
"facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json",
"facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json",
# See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl
}
class __A ( UpperCamelCase__ ):
UpperCamelCase = """xlm-roberta-xl"""
def __init__( self :Dict , __snake_case :Optional[Any]=25_08_80 , __snake_case :List[Any]=25_60 , __snake_case :Optional[Any]=36 , __snake_case :Any=32 , __snake_case :int=1_02_40 , __snake_case :List[Any]="gelu" , __snake_case :Union[str, Any]=0.1 , __snake_case :Optional[Any]=0.1 , __snake_case :str=5_14 , __snake_case :Union[str, Any]=1 , __snake_case :Optional[int]=0.02 , __snake_case :str=1E-05 , __snake_case :str=1 , __snake_case :int=0 , __snake_case :Tuple=2 , __snake_case :Optional[int]="absolute" , __snake_case :str=True , __snake_case :Any=None , **__snake_case :Dict , ):
'''simple docstring'''
super().__init__(pad_token_id=__snake_case , bos_token_id=__snake_case , eos_token_id=__snake_case , **__snake_case )
__magic_name__ : List[str] =vocab_size
__magic_name__ : List[str] =hidden_size
__magic_name__ : Union[str, Any] =num_hidden_layers
__magic_name__ : Any =num_attention_heads
__magic_name__ : Any =hidden_act
__magic_name__ : List[str] =intermediate_size
__magic_name__ : Any =hidden_dropout_prob
__magic_name__ : Union[str, Any] =attention_probs_dropout_prob
__magic_name__ : Any =max_position_embeddings
__magic_name__ : Any =type_vocab_size
__magic_name__ : List[str] =initializer_range
__magic_name__ : Optional[int] =layer_norm_eps
__magic_name__ : Dict =position_embedding_type
__magic_name__ : Any =use_cache
__magic_name__ : Dict =classifier_dropout
class __A ( UpperCamelCase__ ):
@property
def A__ ( self :Dict ):
'''simple docstring'''
if self.task == "multiple-choice":
__magic_name__ : str ={0: """batch""", 1: """choice""", 2: """sequence"""}
else:
__magic_name__ : Optional[Any] ={0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
] )
| 21 | 1 |
import numpy as np
from cva import destroyAllWindows, imread, imshow, waitKey
class SCREAMING_SNAKE_CASE :
def __init__( self : Union[str, Any] , __lowercase : List[Any] , __lowercase : int , __lowercase : int ):
'''simple docstring'''
if dst_width < 0 or dst_height < 0:
raise ValueError("""Destination width/height should be > 0""" )
__a = img
__a = img.shape[1]
__a = img.shape[0]
__a = dst_width
__a = dst_height
__a = self.src_w / self.dst_w
__a = self.src_h / self.dst_h
__a = __a = (
np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255
)
def UpperCamelCase_ ( self : Tuple ):
'''simple docstring'''
for i in range(self.dst_h ):
for j in range(self.dst_w ):
__a = self.img[self.get_y(__lowercase )][self.get_x(__lowercase )]
def UpperCamelCase_ ( self : str , __lowercase : int ):
'''simple docstring'''
return int(self.ratio_x * x )
def UpperCamelCase_ ( self : List[Any] , __lowercase : int ):
'''simple docstring'''
return int(self.ratio_y * y )
if __name__ == "__main__":
lowerCamelCase__ , lowerCamelCase__ = 800, 600
lowerCamelCase__ = imread("""image_data/lena.jpg""", 1)
lowerCamelCase__ = NearestNeighbour(im, dst_w, dst_h)
n.process()
imshow(
F"""Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}""", n.output
)
waitKey(0)
destroyAllWindows()
| 547 |
def lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Tuple=False ):
"""simple docstring"""
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
__a = len(set_a.intersection(_SCREAMING_SNAKE_CASE ) )
if alternative_union:
__a = len(_SCREAMING_SNAKE_CASE ) + len(_SCREAMING_SNAKE_CASE )
else:
__a = len(set_a.union(_SCREAMING_SNAKE_CASE ) )
return intersection / union
if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ):
__a = [element for element in set_a if element in set_b]
if alternative_union:
__a = len(_SCREAMING_SNAKE_CASE ) + len(_SCREAMING_SNAKE_CASE )
return len(_SCREAMING_SNAKE_CASE ) / union
else:
__a = set_a + [element for element in set_b if element not in set_a]
return len(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )
return len(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )
return None
if __name__ == "__main__":
lowerCamelCase__ = {"""a""", """b""", """c""", """d""", """e"""}
lowerCamelCase__ = {"""c""", """d""", """e""", """f""", """h""", """i"""}
print(jaccard_similarity(set_a, set_b))
| 547 | 1 |
def _SCREAMING_SNAKE_CASE ( __lowercase : list[list[float]] ) -> list[list[float]]:
"""simple docstring"""
__A = []
for data in source_data:
for i, el in enumerate(__lowercase ):
if len(__lowercase ) < i + 1:
data_lists.append([] )
data_lists[i].append(float(__lowercase ) )
return data_lists
def _SCREAMING_SNAKE_CASE ( __lowercase : list[list[float]] , __lowercase : list[int] ) -> list[list[float]]:
"""simple docstring"""
__A = []
for dlist, weight in zip(__lowercase , __lowercase ):
__A = min(__lowercase )
__A = max(__lowercase )
__A = []
# for weight 0 score is 1 - actual score
if weight == 0:
for item in dlist:
try:
score.append(1 - ((item - mind) / (maxd - mind)) )
except ZeroDivisionError:
score.append(1 )
elif weight == 1:
for item in dlist:
try:
score.append((item - mind) / (maxd - mind) )
except ZeroDivisionError:
score.append(0 )
# weight not 0 or 1
else:
__A = f"Invalid weight of {weight:f} provided"
raise ValueError(__lowercase )
score_lists.append(__lowercase )
return score_lists
def _SCREAMING_SNAKE_CASE ( __lowercase : list[list[float]] ) -> list[float]:
"""simple docstring"""
__A = [0 for i in range(len(score_lists[0] ) )]
for slist in score_lists:
for j, ele in enumerate(__lowercase ):
__A = final_scores[j] + ele
return final_scores
def _SCREAMING_SNAKE_CASE ( __lowercase : list[list[float]] , __lowercase : list[int] ) -> list[list[float]]:
"""simple docstring"""
__A = get_data(__lowercase )
__A = calculate_each_score(__lowercase , __lowercase )
__A = generate_final_scores(__lowercase )
# append scores to source data
for i, ele in enumerate(__lowercase ):
source_data[i].append(__lowercase )
return source_data
| 637 |
import unittest
from transformers import SqueezeBertConfig, is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
SqueezeBertModel,
)
class __lowercase ( lowercase_ ):
'''simple docstring'''
def __init__( self : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str]=13 , UpperCamelCase_ : int=7 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : int=True , UpperCamelCase_ : str=False , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Union[str, Any]=99 , UpperCamelCase_ : Any=32 , UpperCamelCase_ : Union[str, Any]=5 , UpperCamelCase_ : List[str]=4 , UpperCamelCase_ : Union[str, Any]=64 , UpperCamelCase_ : Any="gelu" , UpperCamelCase_ : str=0.1 , UpperCamelCase_ : List[Any]=0.1 , UpperCamelCase_ : int=512 , UpperCamelCase_ : Dict=16 , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : int=0.02 , UpperCamelCase_ : Dict=3 , UpperCamelCase_ : List[Any]=4 , UpperCamelCase_ : int=None , UpperCamelCase_ : Any=2 , UpperCamelCase_ : Any=2 , UpperCamelCase_ : int=2 , UpperCamelCase_ : Optional[Any]=2 , UpperCamelCase_ : str=4 , UpperCamelCase_ : List[str]=1 , ):
"""simple docstring"""
__A = parent
__A = batch_size
__A = seq_length
__A = is_training
__A = use_input_mask
__A = use_token_type_ids
__A = use_labels
__A = vocab_size
__A = hidden_size
__A = num_hidden_layers
__A = num_attention_heads
__A = intermediate_size
__A = hidden_act
__A = hidden_dropout_prob
__A = attention_probs_dropout_prob
__A = max_position_embeddings
__A = type_vocab_size
__A = type_sequence_label_size
__A = initializer_range
__A = num_labels
__A = num_choices
__A = scope
__A = q_groups
__A = k_groups
__A = v_groups
__A = post_attention_groups
__A = intermediate_groups
__A = output_groups
def lowerCAmelCase_ ( self : Dict ):
"""simple docstring"""
__A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__A = None
if self.use_input_mask:
__A = random_attention_mask([self.batch_size, self.seq_length] )
__A = None
__A = None
__A = None
if self.use_labels:
__A = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__A = ids_tensor([self.batch_size] , self.num_choices )
__A = self.get_config()
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase_ ( self : Any ):
"""simple docstring"""
return SqueezeBertConfig(
embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , )
def lowerCAmelCase_ ( self : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : Dict ):
"""simple docstring"""
__A = SqueezeBertModel(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__A = model(UpperCamelCase_ , UpperCamelCase_ )
__A = model(UpperCamelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase_ ( self : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] ):
"""simple docstring"""
__A = SqueezeBertForMaskedLM(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase_ ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] ):
"""simple docstring"""
__A = SqueezeBertForQuestionAnswering(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__A = model(
UpperCamelCase_ , attention_mask=UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase_ ( self : str , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ):
"""simple docstring"""
__A = self.num_labels
__A = SqueezeBertForSequenceClassification(UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCAmelCase_ ( self : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Dict , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : int ):
"""simple docstring"""
__A = self.num_labels
__A = SqueezeBertForTokenClassification(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__A = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase_ ( self : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict ):
"""simple docstring"""
__A = self.num_choices
__A = SqueezeBertForMultipleChoice(config=UpperCamelCase_ )
model.to(UpperCamelCase_ )
model.eval()
__A = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__A = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous()
__A = model(
UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def lowerCAmelCase_ ( self : int ):
"""simple docstring"""
__A = self.prepare_config_and_inputs()
((__A) , (__A) , (__A) , (__A) , (__A) , (__A)) = config_and_inputs
__A = {"""input_ids""": input_ids, """attention_mask""": input_mask}
return config, inputs_dict
@require_torch
class __lowercase ( lowercase_ , lowercase_ , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE = (
(
SqueezeBertModel,
SqueezeBertForMaskedLM,
SqueezeBertForMultipleChoice,
SqueezeBertForQuestionAnswering,
SqueezeBertForSequenceClassification,
SqueezeBertForTokenClassification,
)
if is_torch_available()
else None
)
SCREAMING_SNAKE_CASE = (
{
"feature-extraction": SqueezeBertModel,
"fill-mask": SqueezeBertForMaskedLM,
"question-answering": SqueezeBertForQuestionAnswering,
"text-classification": SqueezeBertForSequenceClassification,
"token-classification": SqueezeBertForTokenClassification,
"zero-shot": SqueezeBertForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE = False
SCREAMING_SNAKE_CASE = True
SCREAMING_SNAKE_CASE = False
def lowerCAmelCase_ ( self : Tuple ):
"""simple docstring"""
__A = SqueezeBertModelTester(self )
__A = ConfigTester(self , config_class=UpperCamelCase_ , dim=37 )
def lowerCAmelCase_ ( self : Optional[Any] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase_ ( self : str ):
"""simple docstring"""
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_model(*UpperCamelCase_ )
def lowerCAmelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_masked_lm(*UpperCamelCase_ )
def lowerCAmelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_question_answering(*UpperCamelCase_ )
def lowerCAmelCase_ ( self : Any ):
"""simple docstring"""
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_sequence_classification(*UpperCamelCase_ )
def lowerCAmelCase_ ( self : Union[str, Any] ):
"""simple docstring"""
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_token_classification(*UpperCamelCase_ )
def lowerCAmelCase_ ( self : Dict ):
"""simple docstring"""
__A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_squeezebert_for_multiple_choice(*UpperCamelCase_ )
@slow
def lowerCAmelCase_ ( self : int ):
"""simple docstring"""
for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__A = SqueezeBertModel.from_pretrained(UpperCamelCase_ )
self.assertIsNotNone(UpperCamelCase_ )
@require_sentencepiece
@require_tokenizers
@require_torch
class __lowercase ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCAmelCase_ ( self : Optional[int] ):
"""simple docstring"""
__A = SqueezeBertForSequenceClassification.from_pretrained("""squeezebert/squeezebert-mnli""" )
__A = torch.tensor([[1, 29_414, 232, 328, 740, 1_140, 12_695, 69, 13, 1_588, 2]] )
__A = model(UpperCamelCase_ )[0]
__A = torch.Size((1, 3) )
self.assertEqual(output.shape , UpperCamelCase_ )
__A = torch.tensor([[0.6401, -0.0349, -0.6041]] )
self.assertTrue(torch.allclose(UpperCamelCase_ , UpperCamelCase_ , atol=1e-4 ) )
| 637 | 1 |
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
def __UpperCamelCase ( self ):
'''simple docstring'''
__A =inspect.getfile(accelerate.test_utils )
__A =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] )
__A =os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] )
__A =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] )
@require_multi_gpu
def __UpperCamelCase ( self ):
'''simple docstring'''
print(f'''Found {torch.cuda.device_count()} devices.''' )
__A =['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(lowercase__ , env=os.environ.copy() )
@require_multi_gpu
def __UpperCamelCase ( self ):
'''simple docstring'''
print(f'''Found {torch.cuda.device_count()} devices.''' )
__A =['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.operation_file_path]
print(f'''Command: {cmd}''' )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(lowercase__ , env=os.environ.copy() )
@require_multi_gpu
def __UpperCamelCase ( self ):
'''simple docstring'''
__A =['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(lowercase__ , env=os.environ.copy() )
@require_multi_gpu
def __UpperCamelCase ( self ):
'''simple docstring'''
print(f'''Found {torch.cuda.device_count()} devices, using 2 devices only''' )
__A =['''torchrun''', f'''--nproc_per_node={torch.cuda.device_count()}''', self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ):
execute_subprocess_async(lowercase__ , env=os.environ.copy() )
if __name__ == "__main__":
_lowerCamelCase : Union[str, Any] = Accelerator()
_lowerCamelCase : List[str] = (accelerator.state.process_index + 2, 10)
_lowerCamelCase : int = torch.randint(0, 10, shape).to(accelerator.device)
_lowerCamelCase : List[str] = ''''''
_lowerCamelCase : Union[str, Any] = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
_lowerCamelCase : int = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
_lowerCamelCase : Any = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 706 |
import argparse
import torch
from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt
if __name__ == "__main__":
_lowerCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument(
'''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.'''
)
# !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml
parser.add_argument(
'''--original_config_file''',
default=None,
type=str,
help='''The YAML config file corresponding to the original architecture.''',
)
parser.add_argument(
'''--num_in_channels''',
default=None,
type=int,
help='''The number of input channels. If `None` number of input channels will be automatically inferred.''',
)
parser.add_argument(
'''--scheduler_type''',
default='''pndm''',
type=str,
help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''',
)
parser.add_argument(
'''--pipeline_type''',
default=None,
type=str,
help=(
'''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\''''
'''. If `None` pipeline will be automatically inferred.'''
),
)
parser.add_argument(
'''--image_size''',
default=None,
type=int,
help=(
'''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2'''
''' Base. Use 768 for Stable Diffusion v2.'''
),
)
parser.add_argument(
'''--prediction_type''',
default=None,
type=str,
help=(
'''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable'''
''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.'''
),
)
parser.add_argument(
'''--extract_ema''',
action='''store_true''',
help=(
'''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights'''
''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield'''
''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.'''
),
)
parser.add_argument(
'''--upcast_attention''',
action='''store_true''',
help=(
'''Whether the attention computation should always be upcasted. This is necessary when running stable'''
''' diffusion 2.1.'''
),
)
parser.add_argument(
'''--from_safetensors''',
action='''store_true''',
help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''',
)
parser.add_argument(
'''--to_safetensors''',
action='''store_true''',
help='''Whether to store pipeline in safetensors format or not.''',
)
parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''')
parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''')
parser.add_argument(
'''--stable_unclip''',
type=str,
default=None,
required=False,
help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''',
)
parser.add_argument(
'''--stable_unclip_prior''',
type=str,
default=None,
required=False,
help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''',
)
parser.add_argument(
'''--clip_stats_path''',
type=str,
help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''',
required=False,
)
parser.add_argument(
'''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.'''
)
parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''')
parser.add_argument(
'''--vae_path''',
type=str,
default=None,
required=False,
help='''Set to a path, hub id to an already converted vae to not convert it again.''',
)
_lowerCamelCase : List[Any] = parser.parse_args()
_lowerCamelCase : Optional[Any] = download_from_original_stable_diffusion_ckpt(
checkpoint_path=args.checkpoint_path,
original_config_file=args.original_config_file,
image_size=args.image_size,
prediction_type=args.prediction_type,
model_type=args.pipeline_type,
extract_ema=args.extract_ema,
scheduler_type=args.scheduler_type,
num_in_channels=args.num_in_channels,
upcast_attention=args.upcast_attention,
from_safetensors=args.from_safetensors,
device=args.device,
stable_unclip=args.stable_unclip,
stable_unclip_prior=args.stable_unclip_prior,
clip_stats_path=args.clip_stats_path,
controlnet=args.controlnet,
vae_path=args.vae_path,
)
if args.half:
pipe.to(torch_dtype=torch.floataa)
if args.controlnet:
# only save the controlnet model
pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
else:
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 516 | 0 |
import json
import os
import shutil
import tempfile
from unittest import TestCase
from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast
from transformers.models.bart.configuration_bart import BartConfig
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES
from transformers.models.dpr.configuration_dpr import DPRConfig
from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES
from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow
from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available
if is_torch_available() and is_datasets_available() and is_faiss_available():
from transformers.models.rag.configuration_rag import RagConfig
from transformers.models.rag.tokenization_rag import RagTokenizer
@require_faiss
@require_torch
class _snake_case ( lowerCamelCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Optional[Any]:
"""simple docstring"""
_A = tempfile.mkdtemp()
_A = 8
# DPR tok
_A = [
'''[UNK]''',
'''[CLS]''',
'''[SEP]''',
'''[PAD]''',
'''[MASK]''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
_A = os.path.join(self.tmpdirname , '''dpr_tokenizer''' )
os.makedirs(a , exist_ok=a )
_A = os.path.join(a , DPR_VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
# BART tok
_A = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
_A = dict(zip(a , range(len(a ) ) ) )
_A = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
_A = {'''unk_token''': '''<unk>'''}
_A = os.path.join(self.tmpdirname , '''bart_tokenizer''' )
os.makedirs(a , exist_ok=a )
_A = os.path.join(a , BART_VOCAB_FILES_NAMES['''vocab_file'''] )
_A = os.path.join(a , BART_VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(a ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(a ) )
def lowercase_ ( self ) -> DPRQuestionEncoderTokenizer:
"""simple docstring"""
return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''dpr_tokenizer''' ) )
def lowercase_ ( self ) -> BartTokenizer:
"""simple docstring"""
return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , '''bart_tokenizer''' ) )
def lowercase_ ( self ) -> int:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
@require_tokenizers
def lowercase_ ( self ) -> Any:
"""simple docstring"""
_A = os.path.join(self.tmpdirname , '''rag_tokenizer''' )
_A = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() )
_A = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() )
rag_config.save_pretrained(a )
rag_tokenizer.save_pretrained(a )
_A = RagTokenizer.from_pretrained(a , config=a )
self.assertIsInstance(new_rag_tokenizer.question_encoder , a )
self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() )
self.assertIsInstance(new_rag_tokenizer.generator , a )
self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() )
@slow
def lowercase_ ( self ) -> Optional[int]:
"""simple docstring"""
_A = RagTokenizer.from_pretrained('''facebook/rag-token-nq''' )
_A = [
'''who got the first nobel prize in physics''',
'''when is the next deadpool movie being released''',
'''which mode is used for short wave broadcast service''',
'''who is the owner of reading football club''',
'''when is the next scandal episode coming out''',
'''when is the last time the philadelphia won the superbowl''',
'''what is the most current adobe flash player version''',
'''how many episodes are there in dragon ball z''',
'''what is the first step in the evolution of the eye''',
'''where is gall bladder situated in human body''',
'''what is the main mineral in lithium batteries''',
'''who is the president of usa right now''',
'''where do the greasers live in the outsiders''',
'''panda is a national animal of which country''',
'''what is the name of manchester united stadium''',
]
_A = tokenizer(a )
self.assertIsNotNone(a )
@slow
def lowercase_ ( self ) -> Optional[Any]:
"""simple docstring"""
_A = RagTokenizer.from_pretrained('''facebook/rag-sequence-nq''' )
_A = [
'''who got the first nobel prize in physics''',
'''when is the next deadpool movie being released''',
'''which mode is used for short wave broadcast service''',
'''who is the owner of reading football club''',
'''when is the next scandal episode coming out''',
'''when is the last time the philadelphia won the superbowl''',
'''what is the most current adobe flash player version''',
'''how many episodes are there in dragon ball z''',
'''what is the first step in the evolution of the eye''',
'''where is gall bladder situated in human body''',
'''what is the main mineral in lithium batteries''',
'''who is the president of usa right now''',
'''where do the greasers live in the outsiders''',
'''panda is a national animal of which country''',
'''what is the name of manchester united stadium''',
]
_A = tokenizer(a )
self.assertIsNotNone(a ) | 317 |
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv('''TEST_SAGEMAKER''' ,'''False''' ) ) is not True ,reason='''Skipping test because should only be run when releasing minor transformers version''' ,)
@pytest.mark.usefixtures('''sm_env''' )
@parameterized_class(
[
{
'''framework''': '''pytorch''',
'''script''': '''run_glue.py''',
'''model_name_or_path''': '''distilbert-base-cased''',
'''instance_type''': '''ml.g4dn.xlarge''',
'''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9},
},
{
'''framework''': '''tensorflow''',
'''script''': '''run_tf.py''',
'''model_name_or_path''': '''distilbert-base-cased''',
'''instance_type''': '''ml.g4dn.xlarge''',
'''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9},
},
] )
class _snake_case ( unittest.TestCase ):
"""simple docstring"""
def lowercase_ ( self ) -> Dict:
"""simple docstring"""
if self.framework == "pytorch":
subprocess.run(
f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding='''utf-8''' , check=a , )
assert hasattr(self , '''env''' )
def lowercase_ ( self , a=1 ) -> Optional[int]:
"""simple docstring"""
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f'''{self.env.base_job_name}-single''' , instance_count=a , instance_type=self.instance_type , debugger_hook_config=a , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , )
def lowercase_ ( self , a ) -> Any:
"""simple docstring"""
TrainingJobAnalytics(a ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' )
def lowercase_ ( self ) -> Optional[int]:
"""simple docstring"""
_A = self.create_estimator()
# run training
estimator.fit()
# result dataframe
_A = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
_A = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] )
_A = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
_A = (
Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 9_9_9_9_9_9 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy )
assert all(t <= self.results['''eval_loss'''] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f'''{estimator.latest_training_job.name}.json''' , '''w''' ) as outfile:
json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , a ) | 317 | 1 |
'''simple docstring'''
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import VideoMAEConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
VideoMAEForPreTraining,
VideoMAEForVideoClassification,
VideoMAEModel,
)
from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class UpperCAmelCase_ :
def __init__( self , lowercase_ , lowercase_=13 , lowercase_=10 , lowercase_=3 , lowercase_=2 , lowercase_=2 , lowercase_=2 , lowercase_=True , lowercase_=True , lowercase_=32 , lowercase_=5 , lowercase_=4 , lowercase_=37 , lowercase_="gelu" , lowercase_=0.1 , lowercase_=0.1 , lowercase_=10 , lowercase_=0.02 , lowercase_=0.9 , lowercase_=None , ):
snake_case_ : Union[str, Any] = parent
snake_case_ : Union[str, Any] = batch_size
snake_case_ : int = image_size
snake_case_ : Optional[int] = num_channels
snake_case_ : int = patch_size
snake_case_ : Any = tubelet_size
snake_case_ : Tuple = num_frames
snake_case_ : Union[str, Any] = is_training
snake_case_ : Optional[Any] = use_labels
snake_case_ : Tuple = hidden_size
snake_case_ : Union[str, Any] = num_hidden_layers
snake_case_ : Union[str, Any] = num_attention_heads
snake_case_ : Optional[int] = intermediate_size
snake_case_ : List[str] = hidden_act
snake_case_ : Any = hidden_dropout_prob
snake_case_ : Union[str, Any] = attention_probs_dropout_prob
snake_case_ : Dict = type_sequence_label_size
snake_case_ : Tuple = initializer_range
snake_case_ : Tuple = mask_ratio
snake_case_ : List[str] = scope
# in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame
snake_case_ : Optional[Any] = (image_size // patch_size) ** 2
snake_case_ : str = (num_frames // tubelet_size) * self.num_patches_per_frame
# use this variable to define bool_masked_pos
snake_case_ : List[str] = int(mask_ratio * self.seq_length)
def snake_case__ ( self):
snake_case_ : List[Any] = floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size])
snake_case_ : List[Any] = None
if self.use_labels:
snake_case_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size)
snake_case_ : Dict = self.get_config()
return config, pixel_values, labels
def snake_case__ ( self):
return VideoMAEConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , )
def snake_case__ ( self , lowercase_ , lowercase_ , lowercase_):
snake_case_ : Optional[Any] = VideoMAEModel(config=_lowerCAmelCase)
model.to(_lowerCAmelCase)
model.eval()
snake_case_ : Union[str, Any] = model(_lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def snake_case__ ( self , lowercase_ , lowercase_ , lowercase_):
snake_case_ : Union[str, Any] = VideoMAEForPreTraining(_lowerCAmelCase)
model.to(_lowerCAmelCase)
model.eval()
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
snake_case_ : Dict = torch.ones((self.num_masks,))
snake_case_ : Optional[int] = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))])
snake_case_ : Any = mask.expand(self.batch_size , -1).bool()
snake_case_ : List[str] = model(_lowerCAmelCase , _lowerCAmelCase)
# model only returns predictions for masked patches
snake_case_ : Union[str, Any] = mask.sum().item()
snake_case_ : Tuple = 3 * self.tubelet_size * self.patch_size**2
self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels))
def snake_case__ ( self):
snake_case_ : str = self.prepare_config_and_inputs()
snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs
snake_case_ : Optional[Any] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase_ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ):
UpperCAmelCase_ = (
(VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else ()
)
UpperCAmelCase_ = (
{'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification}
if is_torch_available()
else {}
)
UpperCAmelCase_ = False
UpperCAmelCase_ = False
UpperCAmelCase_ = False
UpperCAmelCase_ = False
def snake_case__ ( self):
snake_case_ : str = VideoMAEModelTester(self)
snake_case_ : str = ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37)
def snake_case__ ( self , lowercase_ , lowercase_ , lowercase_=False):
snake_case_ : List[str] = copy.deepcopy(_lowerCAmelCase)
if model_class == VideoMAEForPreTraining:
# important: each video needs to have the same number of masked patches
# hence we define a single mask, which we then repeat for each example in the batch
snake_case_ : List[str] = torch.ones((self.model_tester.num_masks,))
snake_case_ : List[str] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))])
snake_case_ : Tuple = mask.expand(self.model_tester.batch_size , -1).bool()
snake_case_ : str = bool_masked_pos.to(_lowerCAmelCase)
if return_labels:
if model_class in [
*get_values(_lowerCAmelCase),
]:
snake_case_ : Optional[int] = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=_lowerCAmelCase)
return inputs_dict
def snake_case__ ( self):
self.config_tester.run_common_tests()
@unittest.skip(reason="VideoMAE does not use inputs_embeds")
def snake_case__ ( self):
pass
def snake_case__ ( self):
snake_case_ , snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : List[Any] = model_class(_lowerCAmelCase)
self.assertIsInstance(model.get_input_embeddings() , (nn.Module))
snake_case_ : Dict = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear))
def snake_case__ ( self):
snake_case_ , snake_case_ : int = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : Any = model_class(_lowerCAmelCase)
snake_case_ : Optional[Any] = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
snake_case_ : Optional[int] = [*signature.parameters.keys()]
snake_case_ : Tuple = ["pixel_values"]
self.assertListEqual(arg_names[:1] , _lowerCAmelCase)
def snake_case__ ( self):
snake_case_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase)
def snake_case__ ( self):
snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_pretraining(*_lowerCAmelCase)
@slow
def snake_case__ ( self):
for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ : Union[str, Any] = VideoMAEModel.from_pretrained(_lowerCAmelCase)
self.assertIsNotNone(_lowerCAmelCase)
def snake_case__ ( self):
if not self.has_attentions:
pass
else:
snake_case_ , snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
snake_case_ : Dict = True
for model_class in self.all_model_classes:
snake_case_ : Tuple = self.model_tester.seq_length - self.model_tester.num_masks
snake_case_ : str = (
num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
)
snake_case_ : Dict = True
snake_case_ : Any = False
snake_case_ : List[str] = True
snake_case_ : Union[str, Any] = model_class(_lowerCAmelCase)
model.to(_lowerCAmelCase)
model.eval()
with torch.no_grad():
snake_case_ : Dict = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase))
snake_case_ : str = outputs.attentions
self.assertEqual(len(_lowerCAmelCase) , self.model_tester.num_hidden_layers)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
snake_case_ : Dict = True
snake_case_ : List[str] = model_class(_lowerCAmelCase)
model.to(_lowerCAmelCase)
model.eval()
with torch.no_grad():
snake_case_ : Any = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase))
snake_case_ : List[Any] = outputs.attentions
self.assertEqual(len(_lowerCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
snake_case_ : Optional[Any] = len(_lowerCAmelCase)
# Check attention is always last and order is fine
snake_case_ : List[Any] = True
snake_case_ : str = True
snake_case_ : Optional[int] = model_class(_lowerCAmelCase)
model.to(_lowerCAmelCase)
model.eval()
with torch.no_grad():
snake_case_ : Any = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase))
self.assertEqual(out_len + 1 , len(_lowerCAmelCase))
snake_case_ : List[str] = outputs.attentions
self.assertEqual(len(_lowerCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , )
def snake_case__ ( self):
def check_hidden_states_output(lowercase_ , lowercase_ , lowercase_):
snake_case_ : str = model_class(_lowerCAmelCase)
model.to(_lowerCAmelCase)
model.eval()
with torch.no_grad():
snake_case_ : str = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase))
snake_case_ : List[Any] = outputs.hidden_states
snake_case_ : Tuple = self.model_tester.num_hidden_layers + 1
self.assertEqual(len(_lowerCAmelCase) , _lowerCAmelCase)
snake_case_ : int = self.model_tester.seq_length - self.model_tester.num_masks
snake_case_ : List[Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , )
snake_case_ , snake_case_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
snake_case_ : List[Any] = True
check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
snake_case_ : Any = True
check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.")
def snake_case__ ( self):
pass
def UpperCamelCase_ ( ):
"""simple docstring"""
snake_case_ : Union[str, Any] = hf_hub_download(
repo_id="hf-internal-testing/spaghetti-video", filename="eating_spaghetti.npy", repo_type="dataset" )
snake_case_ : Dict = np.load(__SCREAMING_SNAKE_CASE )
return list(__SCREAMING_SNAKE_CASE )
@require_torch
@require_vision
class UpperCAmelCase_ ( unittest.TestCase ):
@cached_property
def snake_case__ ( self):
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5])
if is_vision_available()
else None
)
@slow
def snake_case__ ( self):
snake_case_ : Tuple = VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics").to(
_lowerCAmelCase)
snake_case_ : List[Any] = self.default_image_processor
snake_case_ : Dict = prepare_video()
snake_case_ : int = image_processor(_lowerCAmelCase , return_tensors="pt").to(_lowerCAmelCase)
# forward pass
with torch.no_grad():
snake_case_ : Optional[int] = model(**_lowerCAmelCase)
# verify the logits
snake_case_ : Tuple = torch.Size((1, 4_00))
self.assertEqual(outputs.logits.shape , _lowerCAmelCase)
snake_case_ : Optional[Any] = torch.tensor([0.3_669, -0.0_688, -0.2_421]).to(_lowerCAmelCase)
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1E-4))
@slow
def snake_case__ ( self):
snake_case_ : Union[str, Any] = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short").to(_lowerCAmelCase)
snake_case_ : List[str] = self.default_image_processor
snake_case_ : List[str] = prepare_video()
snake_case_ : Tuple = image_processor(_lowerCAmelCase , return_tensors="pt").to(_lowerCAmelCase)
# add boolean mask, indicating which patches to mask
snake_case_ : Optional[Any] = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt")
snake_case_ : str = torch.load(_lowerCAmelCase)
# forward pass
with torch.no_grad():
snake_case_ : Optional[int] = model(**_lowerCAmelCase)
# verify the logits
snake_case_ : Tuple = torch.Size([1, 14_08, 15_36])
snake_case_ : Dict = torch.tensor(
[[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] , device=_lowerCAmelCase)
self.assertEqual(outputs.logits.shape , _lowerCAmelCase)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _lowerCAmelCase , atol=1E-4))
# verify the loss (`config.norm_pix_loss` = `True`)
snake_case_ : List[str] = torch.tensor([0.5_142] , device=_lowerCAmelCase)
self.assertTrue(torch.allclose(outputs.loss , _lowerCAmelCase , atol=1E-4))
# verify the loss (`config.norm_pix_loss` = `False`)
snake_case_ : Any = VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" , norm_pix_loss=_lowerCAmelCase).to(
_lowerCAmelCase)
with torch.no_grad():
snake_case_ : Any = model(**_lowerCAmelCase)
snake_case_ : List[str] = torch.tensor(torch.tensor([0.6_469]) , device=_lowerCAmelCase)
self.assertTrue(torch.allclose(outputs.loss , _lowerCAmelCase , atol=1E-4))
| 709 |
'''simple docstring'''
import argparse
import os
import torch
from transformers.utils import WEIGHTS_NAME
a_ = ["small", "medium", "large"]
a_ = "lm_head.decoder.weight"
a_ = "lm_head.weight"
def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
snake_case_ : List[Any] = torch.load(__SCREAMING_SNAKE_CASE )
snake_case_ : List[Any] = d.pop(__SCREAMING_SNAKE_CASE )
os.makedirs(__SCREAMING_SNAKE_CASE, exist_ok=__SCREAMING_SNAKE_CASE )
torch.save(__SCREAMING_SNAKE_CASE, os.path.join(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
parser.add_argument("--dialogpt_path", default=".", type=str)
a_ = parser.parse_args()
for MODEL in DIALOGPT_MODELS:
a_ = os.path.join(args.dialogpt_path, f"""{MODEL}_ft.pkl""")
a_ = f"""./DialoGPT-{MODEL}"""
convert_dialogpt_checkpoint(
checkpoint_path,
pytorch_dump_folder_path,
)
| 92 | 0 |
'''simple docstring'''
lowercase__ = {
"joule": 1.0,
"kilojoule": 10_00,
"megajoule": 1_00_00_00,
"gigajoule": 10_00_00_00_00,
"wattsecond": 1.0,
"watthour": 36_00,
"kilowatthour": 3_60_00_00,
"newtonmeter": 1.0,
"calorie_nutr": 41_86.8,
"kilocalorie_nutr": 4_18_68_00.00,
"electronvolt": 1.6_02_17_66_34E-19,
"britishthermalunit_it": 10_55.0_55_85,
"footpound": 1.355818,
}
def __snake_case ( lowercase : str , lowercase : str , lowercase : float ):
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
snake_case_ = (
f'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n'''
f'''Valid values are: {", ".join(lowercase )}'''
)
raise ValueError(lowercase )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 508 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowercase__ = logging.get_logger(__name__)
lowercase__ = {
'''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''',
}
class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
snake_case = """focalnet"""
def __init__( self , UpperCAmelCase_=2_24 , UpperCAmelCase_=4 , UpperCAmelCase_=3 , UpperCAmelCase_=96 , UpperCAmelCase_=False , UpperCAmelCase_=[1_92, 3_84, 7_68, 7_68] , UpperCAmelCase_=[2, 2, 6, 2] , UpperCAmelCase_=[2, 2, 2, 2] , UpperCAmelCase_=[3, 3, 3, 3] , UpperCAmelCase_="gelu" , UpperCAmelCase_=4.0 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.1 , UpperCAmelCase_=False , UpperCAmelCase_=1e-4 , UpperCAmelCase_=False , UpperCAmelCase_=False , UpperCAmelCase_=False , UpperCAmelCase_=0.02 , UpperCAmelCase_=1e-5 , UpperCAmelCase_=32 , UpperCAmelCase_=None , UpperCAmelCase_=None , **UpperCAmelCase_ , ):
super().__init__(**UpperCAmelCase_ )
snake_case_ = image_size
snake_case_ = patch_size
snake_case_ = num_channels
snake_case_ = embed_dim
snake_case_ = use_conv_embed
snake_case_ = hidden_sizes
snake_case_ = depths
snake_case_ = focal_levels
snake_case_ = focal_windows
snake_case_ = hidden_act
snake_case_ = mlp_ratio
snake_case_ = hidden_dropout_prob
snake_case_ = drop_path_rate
snake_case_ = use_layerscale
snake_case_ = layerscale_value
snake_case_ = use_post_layernorm
snake_case_ = use_post_layernorm_in_modulation
snake_case_ = normalize_modulator
snake_case_ = initializer_range
snake_case_ = layer_norm_eps
snake_case_ = encoder_stride
snake_case_ = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(self.depths ) + 1 )]
snake_case_ , snake_case_ = get_aligned_output_features_output_indices(
out_features=UpperCAmelCase_ , out_indices=UpperCAmelCase_ , stage_names=self.stage_names )
| 508 | 1 |
'''simple docstring'''
from __future__ import annotations
from math import ceil, floor, sqrt
def _A (lowerCAmelCase__ :int = 2_00_00_00 ) -> int:
'''simple docstring'''
_a = [0]
_a = 42
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
_a = 0
# the area corresponding to the grid that gives the product closest to target
_a = 0
# an estimate of b, using the quadratic formula
_a = 42
# the largest integer less than b_estimate
_a = 42
# the largest integer less than b_estimate
_a = 42
# the triangle number corresponding to b_floor
_a = 42
# the triangle number corresponding to b_ceil
_a = 42
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
_a = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
_a = floor(lowerCAmelCase__ )
_a = ceil(lowerCAmelCase__ )
_a = triangle_numbers[b_floor]
_a = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
_a = triangle_b_first_guess * triangle_a
_a = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
_a = triangle_b_second_guess * triangle_a
_a = idx_a * b_ceil
return area
if __name__ == "__main__":
print(f'''{solution() = }''')
| 532 |
'''simple docstring'''
import argparse
import torch
from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert
from transformers.utils import logging
logging.set_verbosity_info()
def _A (lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Any ) -> str:
'''simple docstring'''
_a = BertConfig.from_json_file(lowerCAmelCase__ )
print(f'Building PyTorch model from configuration: {config}' )
_a = BertForPreTraining(lowerCAmelCase__ )
# Load weights from tf checkpoint
load_tf_weights_in_bert(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
# Save pytorch-model
print(f'Save PyTorch model to {pytorch_dump_path}' )
torch.save(model.state_dict() , lowerCAmelCase__ )
if __name__ == "__main__":
a_ : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--bert_config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained BERT model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
a_ : Optional[int] = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
| 532 | 1 |
"""simple docstring"""
import json
import os
import re
import unittest
from transformers import CodeGenTokenizer, CodeGenTokenizerFast
from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowercase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase = CodeGenTokenizer
UpperCamelCase = CodeGenTokenizerFast
UpperCamelCase = True
UpperCamelCase = {'''add_prefix_space''': True}
UpperCamelCase = False
def lowercase__ ( self : int ) -> Any:
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
UpperCAmelCase_ = [
"l",
"o",
"w",
"e",
"r",
"s",
"t",
"i",
"d",
"n",
"\u0120",
"\u0120l",
"\u0120n",
"\u0120lo",
"\u0120low",
"er",
"\u0120lowest",
"\u0120newer",
"\u0120wider",
"<unk>",
"<|endoftext|>",
]
UpperCAmelCase_ = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase ) ) ) )
UpperCAmelCase_ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""]
UpperCAmelCase_ = {"unk_token": "<unk>"}
UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(_UpperCAmelCase ) + "\n" )
with open(self.merges_file , "w" , encoding="utf-8" ) as fp:
fp.write("\n".join(_UpperCAmelCase ) )
def lowercase__ ( self : List[str] , **_UpperCAmelCase : Dict ) -> List[Any]:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return CodeGenTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def lowercase__ ( self : Any , **_UpperCAmelCase : int ) -> int:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def lowercase__ ( self : Dict , _UpperCAmelCase : Optional[int] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = "lower newer"
UpperCAmelCase_ = "lower newer"
return input_text, output_text
def lowercase__ ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase_ = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
UpperCAmelCase_ = "lower newer"
UpperCAmelCase_ = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"]
UpperCAmelCase_ = tokenizer.tokenize(_UpperCAmelCase , add_prefix_space=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
UpperCAmelCase_ = tokens + [tokenizer.unk_token]
UpperCAmelCase_ = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
def lowercase__ ( self : List[Any] ) -> List[str]:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
UpperCAmelCase_ = self.get_tokenizer()
UpperCAmelCase_ = self.get_rust_tokenizer(add_prefix_space=_UpperCAmelCase )
UpperCAmelCase_ = "lower newer"
# Testing tokenization
UpperCAmelCase_ = tokenizer.tokenize(_UpperCAmelCase , add_prefix_space=_UpperCAmelCase )
UpperCAmelCase_ = rust_tokenizer.tokenize(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
# Testing conversion to ids without special tokens
UpperCAmelCase_ = tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase )
UpperCAmelCase_ = rust_tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
# Testing conversion to ids with special tokens
UpperCAmelCase_ = self.get_rust_tokenizer(add_prefix_space=_UpperCAmelCase )
UpperCAmelCase_ = tokenizer.encode(_UpperCAmelCase , add_prefix_space=_UpperCAmelCase )
UpperCAmelCase_ = rust_tokenizer.encode(_UpperCAmelCase )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
# Testing the unknown token
UpperCAmelCase_ = tokens + [rust_tokenizer.unk_token]
UpperCAmelCase_ = [14, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , _UpperCAmelCase )
def lowercase__ ( self : str , *_UpperCAmelCase : Union[str, Any] , **_UpperCAmelCase : Union[str, Any] ) -> Dict:
'''simple docstring'''
pass
def lowercase__ ( self : Optional[Any] , _UpperCAmelCase : Any=15 ) -> Union[str, Any]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
UpperCAmelCase_ = self.rust_tokenizer_class.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase )
# Simple input
UpperCAmelCase_ = "This is a simple input"
UpperCAmelCase_ = ["This is a simple input 1", "This is a simple input 2"]
UpperCAmelCase_ = ("This is a simple input", "This is a pair")
UpperCAmelCase_ = [
("This is a simple input 1", "This is a simple input 2"),
("This is a simple pair 1", "This is a simple pair 2"),
]
# Simple input tests
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="max_length" )
# Simple input
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="max_length" )
# Simple input
self.assertRaises(
_UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="max_length" , )
# Pair input
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="max_length" )
# Pair input
self.assertRaises(_UpperCAmelCase , tokenizer_r.encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="max_length" )
# Pair input
self.assertRaises(
_UpperCAmelCase , tokenizer_r.batch_encode_plus , _UpperCAmelCase , max_length=_UpperCAmelCase , padding="max_length" , )
def lowercase__ ( self : Tuple ) -> Any:
'''simple docstring'''
UpperCAmelCase_ = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" )
# Simple input
UpperCAmelCase_ = "This is a simple input"
UpperCAmelCase_ = ["This is a simple input looooooooong", "This is a simple input"]
UpperCAmelCase_ = ("This is a simple input", "This is a pair")
UpperCAmelCase_ = [
("This is a simple input loooooong", "This is a simple input"),
("This is a simple pair loooooong", "This is a simple pair"),
]
UpperCAmelCase_ = tokenizer.pad_token_id
UpperCAmelCase_ = tokenizer(_UpperCAmelCase , padding="max_length" , max_length=30 , return_tensors="np" )
UpperCAmelCase_ = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncate=_UpperCAmelCase , return_tensors="np" )
UpperCAmelCase_ = tokenizer(*_UpperCAmelCase , padding="max_length" , max_length=60 , return_tensors="np" )
UpperCAmelCase_ = tokenizer(_UpperCAmelCase , padding=_UpperCAmelCase , truncate=_UpperCAmelCase , return_tensors="np" )
# s
# test single string max_length padding
self.assertEqual(out_s["input_ids"].shape[-1] , 30 )
self.assertTrue(pad_token_id in out_s["input_ids"] )
self.assertTrue(0 in out_s["attention_mask"] )
# s2
# test automatic padding
self.assertEqual(out_sa["input_ids"].shape[-1] , 33 )
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa["input_ids"][0] )
self.assertFalse(0 in out_sa["attention_mask"][0] )
# short slice does have padding
self.assertTrue(pad_token_id in out_sa["input_ids"][1] )
self.assertTrue(0 in out_sa["attention_mask"][1] )
# p
# test single pair max_length padding
self.assertEqual(out_p["input_ids"].shape[-1] , 60 )
self.assertTrue(pad_token_id in out_p["input_ids"] )
self.assertTrue(0 in out_p["attention_mask"] )
# p2
# test automatic padding pair
self.assertEqual(out_pa["input_ids"].shape[-1] , 52 )
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa["input_ids"][0] )
self.assertFalse(0 in out_pa["attention_mask"][0] )
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa["input_ids"][1] )
self.assertTrue(0 in out_pa["attention_mask"][1] )
def lowercase__ ( self : int ) -> List[Any]:
'''simple docstring'''
UpperCAmelCase_ = "$$$"
UpperCAmelCase_ = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=_UpperCAmelCase , add_bos_token=_UpperCAmelCase )
UpperCAmelCase_ = "This is a simple input"
UpperCAmelCase_ = ["This is a simple input 1", "This is a simple input 2"]
UpperCAmelCase_ = tokenizer.bos_token_id
UpperCAmelCase_ = tokenizer(_UpperCAmelCase )
UpperCAmelCase_ = tokenizer(_UpperCAmelCase )
self.assertEqual(out_s.input_ids[0] , _UpperCAmelCase )
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) )
UpperCAmelCase_ = tokenizer.decode(out_s.input_ids )
UpperCAmelCase_ = tokenizer.batch_decode(out_sa.input_ids )
self.assertEqual(decode_s.split()[0] , _UpperCAmelCase )
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) )
@slow
def lowercase__ ( self : List[str] ) -> int:
'''simple docstring'''
UpperCAmelCase_ = CodeGenTokenizer.from_pretrained("Salesforce/codegen-350M-mono" )
UpperCAmelCase_ = "\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#"
UpperCAmelCase_ = "\nif len_a > len_b: result = a\nelse: result = b"
UpperCAmelCase_ = tokenizer.encode(_UpperCAmelCase )
UpperCAmelCase_ = ["^#", re.escape("<|endoftext|>" ), "^'''", "^\"\"\"", "\n\n\n"]
UpperCAmelCase_ = tokenizer.decode(_UpperCAmelCase , truncate_before_pattern=_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
def lowercase__ ( self : Optional[Any] ) -> List[str]:
'''simple docstring'''
pass
| 82 |
"""simple docstring"""
import functools
import logging
import os
import sys
import threading
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
import huggingface_hub.utils as hf_hub_utils
from tqdm import auto as tqdm_lib
_lowerCAmelCase : Union[str, Any] = threading.Lock()
_lowerCAmelCase : Optional[logging.Handler] = None
_lowerCAmelCase : Union[str, Any] = {
"""debug""": logging.DEBUG,
"""info""": logging.INFO,
"""warning""": logging.WARNING,
"""error""": logging.ERROR,
"""critical""": logging.CRITICAL,
}
_lowerCAmelCase : Dict = logging.WARNING
_lowerCAmelCase : Optional[Any] = True
def SCREAMING_SNAKE_CASE__ ( )-> List[str]:
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = os.getenv("TRANSFORMERS_VERBOSITY" , snake_case )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
f'Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, '
f'has to be one of: { ", ".join(log_levels.keys() ) }' )
return _default_log_level
def SCREAMING_SNAKE_CASE__ ( )-> str:
'''simple docstring'''
return __name__.split("." )[0]
def SCREAMING_SNAKE_CASE__ ( )-> logging.Logger:
'''simple docstring'''
return logging.getLogger(_get_library_name() )
def SCREAMING_SNAKE_CASE__ ( )-> None:
'''simple docstring'''
global _default_handler
with _lock:
if _default_handler:
# This library has already configured the library root logger.
return
UpperCAmelCase__ : Any = logging.StreamHandler() # Set sys.stderr as stream.
UpperCAmelCase__ : Union[str, Any] = sys.stderr.flush
# Apply our default configuration to the library root logger.
UpperCAmelCase__ : Union[str, Any] = _get_library_root_logger()
library_root_logger.addHandler(_default_handler )
library_root_logger.setLevel(_get_default_logging_level() )
UpperCAmelCase__ : int = False
def SCREAMING_SNAKE_CASE__ ( )-> None:
'''simple docstring'''
global _default_handler
with _lock:
if not _default_handler:
return
UpperCAmelCase__ : Union[str, Any] = _get_library_root_logger()
library_root_logger.removeHandler(_default_handler )
library_root_logger.setLevel(logging.NOTSET )
UpperCAmelCase__ : Optional[int] = None
def SCREAMING_SNAKE_CASE__ ( )-> Optional[int]:
'''simple docstring'''
return log_levels
def SCREAMING_SNAKE_CASE__ ( snake_case : Optional[str] = None )-> logging.Logger:
'''simple docstring'''
if name is None:
UpperCAmelCase__ : Tuple = _get_library_name()
_configure_library_root_logger()
return logging.getLogger(snake_case )
def SCREAMING_SNAKE_CASE__ ( )-> int:
'''simple docstring'''
_configure_library_root_logger()
return _get_library_root_logger().getEffectiveLevel()
def SCREAMING_SNAKE_CASE__ ( snake_case : int )-> None:
'''simple docstring'''
_configure_library_root_logger()
_get_library_root_logger().setLevel(snake_case )
def SCREAMING_SNAKE_CASE__ ( )-> Optional[Any]:
'''simple docstring'''
return set_verbosity(snake_case )
def SCREAMING_SNAKE_CASE__ ( )-> List[str]:
'''simple docstring'''
return set_verbosity(snake_case )
def SCREAMING_SNAKE_CASE__ ( )-> Tuple:
'''simple docstring'''
return set_verbosity(snake_case )
def SCREAMING_SNAKE_CASE__ ( )-> str:
'''simple docstring'''
return set_verbosity(snake_case )
def SCREAMING_SNAKE_CASE__ ( )-> None:
'''simple docstring'''
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().removeHandler(_default_handler )
def SCREAMING_SNAKE_CASE__ ( )-> None:
'''simple docstring'''
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().addHandler(_default_handler )
def SCREAMING_SNAKE_CASE__ ( snake_case : logging.Handler )-> None:
'''simple docstring'''
_configure_library_root_logger()
assert handler is not None
_get_library_root_logger().addHandler(snake_case )
def SCREAMING_SNAKE_CASE__ ( snake_case : logging.Handler )-> None:
'''simple docstring'''
_configure_library_root_logger()
assert handler is not None and handler not in _get_library_root_logger().handlers
_get_library_root_logger().removeHandler(snake_case )
def SCREAMING_SNAKE_CASE__ ( )-> None:
'''simple docstring'''
_configure_library_root_logger()
UpperCAmelCase__ : Dict = False
def SCREAMING_SNAKE_CASE__ ( )-> None:
'''simple docstring'''
_configure_library_root_logger()
UpperCAmelCase__ : List[Any] = True
def SCREAMING_SNAKE_CASE__ ( )-> None:
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = _get_library_root_logger().handlers
for handler in handlers:
UpperCAmelCase__ : Union[str, Any] = logging.Formatter("[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s" )
handler.setFormatter(snake_case )
def SCREAMING_SNAKE_CASE__ ( )-> None:
'''simple docstring'''
UpperCAmelCase__ : Any = _get_library_root_logger().handlers
for handler in handlers:
handler.setFormatter(snake_case )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , *snake_case : List[str] , **snake_case : str )-> Union[str, Any]:
'''simple docstring'''
UpperCAmelCase__ : Union[str, Any] = os.getenv("TRANSFORMERS_NO_ADVISORY_WARNINGS" , snake_case )
if no_advisory_warnings:
return
self.warning(*snake_case , **snake_case )
_lowerCAmelCase : int = warning_advice
@functools.lru_cache(snake_case )
def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , *snake_case : Dict , **snake_case : Any )-> Any:
'''simple docstring'''
self.warning(*snake_case , **snake_case )
_lowerCAmelCase : Tuple = warning_once
class lowerCAmelCase__ :
def __init__( self : List[str] , *snake_case__ : Any , **snake_case__ : List[str] ): # pylint: disable=unused-argument
'''simple docstring'''
UpperCAmelCase__ : List[Any] = args[0] if args else None
def __iter__( self : Any ):
'''simple docstring'''
return iter(self._iterator )
def __getattr__( self : List[Any] , snake_case__ : Tuple ):
'''simple docstring'''
def empty_fn(*snake_case__ : Dict , **snake_case__ : str ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self : Optional[Any] ):
'''simple docstring'''
return self
def __exit__( self : Tuple , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : Optional[int] ):
'''simple docstring'''
return
class lowerCAmelCase__ :
def __call__( self : Optional[Any] , *snake_case__ : Optional[Any] , **snake_case__ : Tuple ):
'''simple docstring'''
if _tqdm_active:
return tqdm_lib.tqdm(*snake_case__ , **snake_case__ )
else:
return EmptyTqdm(*snake_case__ , **snake_case__ )
def __a ( self : Dict , *snake_case__ : List[str] , **snake_case__ : Union[str, Any] ):
'''simple docstring'''
UpperCAmelCase__ : Dict = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*snake_case__ , **snake_case__ )
def __a ( self : Tuple ):
'''simple docstring'''
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
_lowerCAmelCase : Optional[int] = _tqdm_cls()
def SCREAMING_SNAKE_CASE__ ( )-> bool:
'''simple docstring'''
global _tqdm_active
return bool(_tqdm_active )
def SCREAMING_SNAKE_CASE__ ( )-> List[Any]:
'''simple docstring'''
global _tqdm_active
UpperCAmelCase__ : int = True
hf_hub_utils.enable_progress_bars()
def SCREAMING_SNAKE_CASE__ ( )-> List[Any]:
'''simple docstring'''
global _tqdm_active
UpperCAmelCase__ : Optional[Any] = False
hf_hub_utils.disable_progress_bars()
| 438 | 0 |
"""simple docstring"""
from sklearn.metrics import mean_squared_error
import datasets
SCREAMING_SNAKE_CASE_ = '''\
@article{scikit-learn,
title={Scikit-learn: Machine Learning in {P}ython},
author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
journal={Journal of Machine Learning Research},
volume={12},
pages={2825--2830},
year={2011}
}
'''
SCREAMING_SNAKE_CASE_ = '''\
Mean Squared Error(MSE) is the average of the square of difference between the predicted
and actual values.
'''
SCREAMING_SNAKE_CASE_ = '''
Args:
predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)
Estimated target values.
references: array-like of shape (n_samples,) or (n_samples, n_outputs)
Ground truth (correct) target values.
sample_weight: array-like of shape (n_samples,), default=None
Sample weights.
multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average"
Defines aggregating of multiple output values. Array-like value defines weights used to average errors.
"raw_values" : Returns a full set of errors in case of multioutput input.
"uniform_average" : Errors of all outputs are averaged with uniform weight.
squared : bool, default=True
If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.
Returns:
mse : mean squared error.
Examples:
>>> mse_metric = datasets.load_metric("mse")
>>> predictions = [2.5, 0.0, 2, 8]
>>> references = [3, -0.5, 2, 7]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'mse\': 0.375}
>>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)
>>> print(rmse_result)
{\'mse\': 0.6123724356957945}
If you\'re using multi-dimensional lists, then set the config as follows :
>>> mse_metric = datasets.load_metric("mse", "multilist")
>>> predictions = [[0.5, 1], [-1, 1], [7, -6]]
>>> references = [[0, 2], [-1, 2], [8, -5]]
>>> results = mse_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'mse\': 0.7083333333333334}
>>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\')
>>> print(results) # doctest: +NORMALIZE_WHITESPACE
{\'mse\': array([0.41666667, 1. ])}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION )
class a ( datasets.Metric ):
"""simple docstring"""
def __A ( self ) -> Union[str, Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[
"https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html"
] , )
def __A ( self ) -> Dict:
if self.config_name == "multilist":
return {
"predictions": datasets.Sequence(datasets.Value("float" ) ),
"references": datasets.Sequence(datasets.Value("float" ) ),
}
else:
return {
"predictions": datasets.Value("float" ),
"references": datasets.Value("float" ),
}
def __A ( self , snake_case_ , snake_case_ , snake_case_=None , snake_case_="uniform_average" , snake_case_=True ) -> Dict:
_UpperCAmelCase = mean_squared_error(
snake_case_ , snake_case_ , sample_weight=snake_case_ , multioutput=snake_case_ , squared=snake_case_ )
return {"mse": mse}
| 579 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_ = {
'''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''',
'''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''',
}
class a ( _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
A__ : int = "luke"
def __init__( self , snake_case_=50267 , snake_case_=500000 , snake_case_=768 , snake_case_=256 , snake_case_=12 , snake_case_=12 , snake_case_=3072 , snake_case_="gelu" , snake_case_=0.1 , snake_case_=0.1 , snake_case_=512 , snake_case_=2 , snake_case_=0.02 , snake_case_=1e-1_2 , snake_case_=True , snake_case_=None , snake_case_=1 , snake_case_=0 , snake_case_=2 , **snake_case_ , ) -> Any:
super().__init__(pad_token_id=snake_case_ , bos_token_id=snake_case_ , eos_token_id=snake_case_ , **snake_case_ )
_UpperCAmelCase = vocab_size
_UpperCAmelCase = entity_vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = entity_emb_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = hidden_act
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = type_vocab_size
_UpperCAmelCase = initializer_range
_UpperCAmelCase = layer_norm_eps
_UpperCAmelCase = use_entity_aware_attention
_UpperCAmelCase = classifier_dropout
| 579 | 1 |
"""simple docstring"""
from datasets.utils.patching import _PatchedModuleObj, patch_submodule
from . import _test_patching
def _SCREAMING_SNAKE_CASE ():
import os as original_os
from os import path as original_path
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
lowerCAmelCase = '__test_patch_submodule_mock__'
with patch_submodule(_test_patching , 'os.path.join' , _UpperCAmelCase ):
# Every way to access os.path.join must be patched, and the rest must stay untouched
# check os.path.join
assert isinstance(_test_patching.os , _PatchedModuleObj )
assert isinstance(_test_patching.os.path , _PatchedModuleObj )
assert _test_patching.os.path.join is mock
# check path.join
assert isinstance(_test_patching.path , _PatchedModuleObj )
assert _test_patching.path.join is mock
# check join
assert _test_patching.join is mock
# check that the other attributes are untouched
assert _test_patching.os.rename is original_rename
assert _test_patching.path.dirname is original_dirname
assert _test_patching.os.path.dirname is original_dirname
# Even renamed modules or objects must be patched
# check renamed_os.path.join
assert isinstance(_test_patching.renamed_os , _PatchedModuleObj )
assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj )
assert _test_patching.renamed_os.path.join is mock
# check renamed_path.join
assert isinstance(_test_patching.renamed_path , _PatchedModuleObj )
assert _test_patching.renamed_path.join is mock
# check renamed_join
assert _test_patching.renamed_join is mock
# check that the other attributes are untouched
assert _test_patching.renamed_os.rename is original_rename
assert _test_patching.renamed_path.dirname is original_dirname
assert _test_patching.renamed_os.path.dirname is original_dirname
# check that everthing is back to normal when the patch is over
assert _test_patching.os is original_os
assert _test_patching.path is original_path
assert _test_patching.join is original_join
assert _test_patching.renamed_os is original_os
assert _test_patching.renamed_path is original_path
assert _test_patching.renamed_join is original_join
def _SCREAMING_SNAKE_CASE ():
assert _test_patching.open is open
lowerCAmelCase = '__test_patch_submodule_builtin_mock__'
# _test_patching has "open" in its globals
assert _test_patching.open is open
with patch_submodule(_test_patching , 'open' , _UpperCAmelCase ):
assert _test_patching.open is mock
# check that everthing is back to normal when the patch is over
assert _test_patching.open is open
def _SCREAMING_SNAKE_CASE ():
# pandas.read_csv is not present in _test_patching
lowerCAmelCase = '__test_patch_submodule_missing_mock__'
with patch_submodule(_test_patching , 'pandas.read_csv' , _UpperCAmelCase ):
pass
def _SCREAMING_SNAKE_CASE ():
# builtin should always be mocked even if they're not in the globals
# in case they're loaded at one point
lowerCAmelCase = '__test_patch_submodule_missing_builtin_mock__'
# _test_patching doesn't have "len" in its globals
assert getattr(_test_patching , 'len' , _UpperCAmelCase ) is None
with patch_submodule(_test_patching , 'len' , _UpperCAmelCase ):
assert _test_patching.len is mock
assert _test_patching.len is len
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = '__test_patch_submodule_start_and_stop_mock__'
lowerCAmelCase = patch_submodule(_test_patching , 'open' , _UpperCAmelCase )
assert _test_patching.open is open
patch.start()
assert _test_patching.open is mock
patch.stop()
assert _test_patching.open is open
def _SCREAMING_SNAKE_CASE ():
from os import rename as original_rename
from os.path import dirname as original_dirname
from os.path import join as original_join
lowerCAmelCase = '__test_patch_submodule_successive_join__'
lowerCAmelCase = '__test_patch_submodule_successive_dirname__'
lowerCAmelCase = '__test_patch_submodule_successive_rename__'
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
with patch_submodule(_test_patching , 'os.path.join' , _UpperCAmelCase ):
with patch_submodule(_test_patching , 'os.rename' , _UpperCAmelCase ):
with patch_submodule(_test_patching , 'os.path.dirname' , _UpperCAmelCase ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
# try another order
with patch_submodule(_test_patching , 'os.rename' , _UpperCAmelCase ):
with patch_submodule(_test_patching , 'os.path.join' , _UpperCAmelCase ):
with patch_submodule(_test_patching , 'os.path.dirname' , _UpperCAmelCase ):
assert _test_patching.os.path.join is mock_join
assert _test_patching.os.path.dirname is mock_dirname
assert _test_patching.os.rename is mock_rename
assert _test_patching.os.path.join is original_join
assert _test_patching.os.path.dirname is original_dirname
assert _test_patching.os.rename is original_rename
def _SCREAMING_SNAKE_CASE ():
lowerCAmelCase = '__test_patch_submodule_doesnt_exist_mock__'
with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , _UpperCAmelCase ):
pass
with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , _UpperCAmelCase ):
pass
| 4 |
import importlib.metadata
import warnings
from copy import deepcopy
from packaging import version
from ..utils import logging
from .import_utils import is_accelerate_available, is_bitsandbytes_available
if is_bitsandbytes_available():
import bitsandbytes as bnb
import torch
import torch.nn as nn
from ..pytorch_utils import ConvaD
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import find_tied_parameters
__UpperCAmelCase = logging.get_logger(__name__)
def UpperCamelCase ( snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : List[str]=None , snake_case__ : Union[str, Any]=None ) -> Optional[Any]:
# Recurse if needed
if "." in tensor_name:
UpperCamelCase : List[Any] = tensor_name.split('.' )
for split in splits[:-1]:
UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ )
if new_module is None:
raise ValueError(F"""{module} has no attribute {split}.""" )
UpperCamelCase : Dict = new_module
UpperCamelCase : int = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(F"""{module} does not have a parameter or a buffer named {tensor_name}.""" )
UpperCamelCase : Union[str, Any] = tensor_name in module._buffers
UpperCamelCase : Tuple = getattr(snake_case__ , snake_case__ )
if old_value.device == torch.device('meta' ) and device not in ["meta", torch.device('meta' )] and value is None:
raise ValueError(F"""{tensor_name} is on the meta device, we need a `value` to put in on {device}.""" )
UpperCamelCase : Optional[Any] = False
UpperCamelCase : str = False
if is_buffer or not is_bitsandbytes_available():
UpperCamelCase : List[str] = False
UpperCamelCase : Tuple = False
else:
UpperCamelCase : Union[str, Any] = hasattr(bnb.nn , 'Params4bit' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit )
UpperCamelCase : Optional[int] = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams )
if is_abit or is_abit:
UpperCamelCase : List[Any] = module._parameters[tensor_name]
if param.device.type != "cuda":
if value is None:
UpperCamelCase : Dict = old_value.to(snake_case__ )
elif isinstance(snake_case__ , torch.Tensor ):
UpperCamelCase : List[Any] = value.to('cpu' )
if value.dtype == torch.inta:
UpperCamelCase : Tuple = version.parse(importlib.metadata.version('bitsandbytes' ) ) > version.parse(
'0.37.2' )
if not is_abit_serializable:
raise ValueError(
'Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. '
'Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.' )
else:
UpperCamelCase : Union[str, Any] = torch.tensor(snake_case__ , device='cpu' )
# Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls , snake_case__ ) and fpaa_statistics is None:
UpperCamelCase : Union[str, Any] = new_value.T
UpperCamelCase : Union[str, Any] = old_value.__dict__
if is_abit:
UpperCamelCase : Optional[Any] = bnb.nn.IntaParams(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ )
elif is_abit:
UpperCamelCase : Optional[Any] = bnb.nn.Paramsabit(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ )
UpperCamelCase : Dict = new_value
if fpaa_statistics is not None:
setattr(module.weight , 'SCB' , fpaa_statistics.to(snake_case__ ) )
else:
if value is None:
UpperCamelCase : Union[str, Any] = old_value.to(snake_case__ )
elif isinstance(snake_case__ , torch.Tensor ):
UpperCamelCase : List[str] = value.to(snake_case__ )
else:
UpperCamelCase : Tuple = torch.tensor(snake_case__ , device=snake_case__ )
if is_buffer:
UpperCamelCase : Optional[int] = new_value
else:
UpperCamelCase : Tuple = nn.Parameter(snake_case__ , requires_grad=old_value.requires_grad )
UpperCamelCase : List[str] = new_value
def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Any=None , snake_case__ : Optional[int]=None , snake_case__ : Union[str, Any]=None , snake_case__ : List[str]=False ) -> int:
for name, module in model.named_children():
if current_key_name is None:
UpperCamelCase : str = []
current_key_name.append(snake_case__ )
if (isinstance(snake_case__ , nn.Linear ) or isinstance(snake_case__ , snake_case__ )) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in '.'.join(snake_case__ ) for key in modules_to_not_convert ):
with init_empty_weights():
if isinstance(snake_case__ , snake_case__ ):
UpperCamelCase , UpperCamelCase : Tuple = module.weight.shape
else:
UpperCamelCase : Any = module.in_features
UpperCamelCase : List[str] = module.out_features
if quantization_config.quantization_method() == "llm_int8":
UpperCamelCase : Any = bnb.nn.LinearabitLt(
snake_case__ , snake_case__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , )
UpperCamelCase : Optional[int] = True
else:
if (
quantization_config.llm_inta_skip_modules is not None
and name in quantization_config.llm_inta_skip_modules
):
pass
else:
UpperCamelCase : str = bnb.nn.Linearabit(
snake_case__ , snake_case__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , )
UpperCamelCase : int = True
# Store the module class in case we need to transpose the weight later
UpperCamelCase : Any = type(snake_case__ )
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(snake_case__ )
if len(list(module.children() ) ) > 0:
UpperCamelCase , UpperCamelCase : Optional[int] = _replace_with_bnb_linear(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_been_replaced=snake_case__ , )
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Tuple=None , snake_case__ : Union[str, Any]=None , snake_case__ : Dict=None ) -> Optional[Any]:
UpperCamelCase : Union[str, Any] = ['lm_head'] if modules_to_not_convert is None else modules_to_not_convert
UpperCamelCase , UpperCamelCase : List[str] = _replace_with_bnb_linear(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
if not has_been_replaced:
logger.warning(
'You are loading your model in 8bit or 4bit but no linear modules were found in your model.'
' Please double check your model architecture, or submit an issue on github if you think this is'
' a bug.' )
return model
def UpperCamelCase ( *snake_case__ : Tuple , **snake_case__ : List[str] ) -> List[str]:
warnings.warn(
'`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead' , snake_case__ , )
return replace_with_bnb_linear(*snake_case__ , **snake_case__ )
def UpperCamelCase ( *snake_case__ : Dict , **snake_case__ : str ) -> Tuple:
warnings.warn(
'`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead' , snake_case__ , )
return set_module_quantized_tensor_to_device(*snake_case__ , **snake_case__ )
def UpperCamelCase ( snake_case__ : Tuple ) -> List[Any]:
UpperCamelCase : int = deepcopy(snake_case__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
UpperCamelCase : List[str] = find_tied_parameters(snake_case__ )
# For compatibility with Accelerate < 0.18
if isinstance(snake_case__ , snake_case__ ):
UpperCamelCase : Tuple = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
UpperCamelCase : Union[str, Any] = sum(snake_case__ , [] )
UpperCamelCase : Optional[int] = len(snake_case__ ) > 0
# Check if it is a base model
UpperCamelCase : str = not hasattr(snake_case__ , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
UpperCamelCase : List[Any] = list(model.named_children() )
UpperCamelCase : Optional[Any] = [list_modules[-1][0]]
# add last module together with tied weights
UpperCamelCase : Union[str, Any] = set(snake_case__ ) - set(snake_case__ )
UpperCamelCase : Optional[int] = list(set(snake_case__ ) ) + list(snake_case__ )
# remove ".weight" from the keys
UpperCamelCase : Tuple = ['.weight', '.bias']
UpperCamelCase : Tuple = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
UpperCamelCase : Optional[int] = name.replace(snake_case__ , '' )
filtered_module_names.append(snake_case__ )
return filtered_module_names
| 40 | 0 |
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
_UpperCAmelCase : List[str] = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n"
_UpperCAmelCase : int = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n"
_UpperCAmelCase : Optional[int] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class __lowerCAmelCase ( datasets.Metric):
def SCREAMING_SNAKE_CASE ( self: Dict ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ),
"references": datasets.Sequence(
datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ),
} ) , )
def SCREAMING_SNAKE_CASE ( self: str , _lowerCAmelCase: List[List[List[str]]] , _lowerCAmelCase: List[List[str]] , _lowerCAmelCase: int = 1 , _lowerCAmelCase: int = 4 , ):
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=_lowerCAmelCase , hypotheses=_lowerCAmelCase , min_len=_lowerCAmelCase , max_len=_lowerCAmelCase )
}
| 715 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_UpperCAmelCase : Optional[int] = {
"configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"],
"tokenization_biogpt": ["BioGptTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_UpperCAmelCase : int = [
"BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST",
"BioGptForCausalLM",
"BioGptForTokenClassification",
"BioGptForSequenceClassification",
"BioGptModel",
"BioGptPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig
from .tokenization_biogpt import BioGptTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_biogpt import (
BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST,
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptPreTrainedModel,
)
else:
import sys
_UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 453 | 0 |
import argparse
import collections
import os
import re
import tempfile
import pandas as pd
from datasets import Dataset
from huggingface_hub import hf_hub_download, upload_folder
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/update_metadata.py
a__ = """src/transformers"""
# This is to make sure the transformers module imported is the one in the repo.
a__ = direct_transformers_import(TRANSFORMERS_PATH)
# Regexes that match TF/Flax/PT model names.
a__ = re.compile(r"""TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""")
a__ = re.compile(r"""Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""")
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
a__ = re.compile(r"""(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)""")
# Fill this with tuples (pipeline_tag, model_mapping, auto_model)
a__ = [
("""pretraining""", """MODEL_FOR_PRETRAINING_MAPPING_NAMES""", """AutoModelForPreTraining"""),
("""feature-extraction""", """MODEL_MAPPING_NAMES""", """AutoModel"""),
("""audio-classification""", """MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForAudioClassification"""),
("""text-generation""", """MODEL_FOR_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForCausalLM"""),
("""automatic-speech-recognition""", """MODEL_FOR_CTC_MAPPING_NAMES""", """AutoModelForCTC"""),
("""image-classification""", """MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForImageClassification"""),
("""image-segmentation""", """MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES""", """AutoModelForImageSegmentation"""),
("""fill-mask""", """MODEL_FOR_MASKED_LM_MAPPING_NAMES""", """AutoModelForMaskedLM"""),
("""object-detection""", """MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES""", """AutoModelForObjectDetection"""),
(
"""zero-shot-object-detection""",
"""MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES""",
"""AutoModelForZeroShotObjectDetection""",
),
("""question-answering""", """MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES""", """AutoModelForQuestionAnswering"""),
("""text2text-generation""", """MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES""", """AutoModelForSeq2SeqLM"""),
("""text-classification""", """MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForSequenceClassification"""),
("""automatic-speech-recognition""", """MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES""", """AutoModelForSpeechSeq2Seq"""),
(
"""table-question-answering""",
"""MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES""",
"""AutoModelForTableQuestionAnswering""",
),
("""token-classification""", """MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForTokenClassification"""),
("""multiple-choice""", """MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES""", """AutoModelForMultipleChoice"""),
(
"""next-sentence-prediction""",
"""MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES""",
"""AutoModelForNextSentencePrediction""",
),
(
"""audio-frame-classification""",
"""MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES""",
"""AutoModelForAudioFrameClassification""",
),
("""audio-xvector""", """MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES""", """AutoModelForAudioXVector"""),
(
"""document-question-answering""",
"""MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES""",
"""AutoModelForDocumentQuestionAnswering""",
),
(
"""visual-question-answering""",
"""MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES""",
"""AutoModelForVisualQuestionAnswering""",
),
("""image-to-text""", """MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES""", """AutoModelForVision2Seq"""),
(
"""zero-shot-image-classification""",
"""MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES""",
"""AutoModelForZeroShotImageClassification""",
),
("""depth-estimation""", """MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES""", """AutoModelForDepthEstimation"""),
("""video-classification""", """MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES""", """AutoModelForVideoClassification"""),
("""mask-generation""", """MODEL_FOR_MASK_GENERATION_MAPPING_NAMES""", """AutoModelForMaskGeneration"""),
]
def _UpperCAmelCase ( a : Tuple ):
snake_case__ = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , a )
return [m.group(0 ) for m in matches]
def _UpperCAmelCase ( ):
snake_case__ = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
snake_case__ = {
config.replace("""Config""" , """""" ): model_type for model_type, config in config_maping_names.items()
}
# Dictionaries flagging if each model prefix has a backend in PT/TF/Flax.
snake_case__ = collections.defaultdict(a )
snake_case__ = collections.defaultdict(a )
snake_case__ = collections.defaultdict(a )
# Let's lookup through all transformers object (once) and find if models are supported by a given backend.
for attr_name in dir(a ):
snake_case__ = None
if _re_tf_models.match(a ) is not None:
snake_case__ = tf_models
snake_case__ = _re_tf_models.match(a ).groups()[0]
elif _re_flax_models.match(a ) is not None:
snake_case__ = flax_models
snake_case__ = _re_flax_models.match(a ).groups()[0]
elif _re_pt_models.match(a ) is not None:
snake_case__ = pt_models
snake_case__ = _re_pt_models.match(a ).groups()[0]
if lookup_dict is not None:
while len(a ) > 0:
if attr_name in model_prefix_to_model_type:
snake_case__ = True
break
# Try again after removing the last word in the name
snake_case__ = """""".join(camel_case_split(a )[:-1] )
snake_case__ = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) )
snake_case__ = list(a )
all_models.sort()
snake_case__ = {"""model_type""": all_models}
snake_case__ = [pt_models[t] for t in all_models]
snake_case__ = [tf_models[t] for t in all_models]
snake_case__ = [flax_models[t] for t in all_models]
# Now let's use the auto-mapping names to make sure
snake_case__ = {}
for t in all_models:
if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES:
snake_case__ = """AutoProcessor"""
elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES:
snake_case__ = """AutoTokenizer"""
elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES:
snake_case__ = """AutoFeatureExtractor"""
else:
# Default to AutoTokenizer if a model has nothing, for backward compatibility.
snake_case__ = """AutoTokenizer"""
snake_case__ = [processors[t] for t in all_models]
return pd.DataFrame(a )
def _UpperCAmelCase ( a : List[str] ):
snake_case__ = [
transformers_module.models.auto.modeling_auto,
transformers_module.models.auto.modeling_tf_auto,
transformers_module.models.auto.modeling_flax_auto,
]
for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS:
snake_case__ = [model_mapping, F'''TF_{model_mapping}''', F'''FLAX_{model_mapping}''']
snake_case__ = [auto_class, F'''TF_{auto_class}''', F'''Flax_{auto_class}''']
# Loop through all three frameworks
for module, cls, mapping in zip(a , a , a ):
# The type of pipeline may not exist in this framework
if not hasattr(a , a ):
continue
# First extract all model_names
snake_case__ = []
for name in getattr(a , a ).values():
if isinstance(a , a ):
model_names.append(a )
else:
model_names.extend(list(a ) )
# Add pipeline tag and auto model class for those models
table.update({model_name: (pipeline_tag, cls) for model_name in model_names} )
return table
def _UpperCAmelCase ( a : Union[str, Any] , a : Optional[int] ):
snake_case__ = get_frameworks_table()
snake_case__ = Dataset.from_pandas(a )
snake_case__ = hf_hub_download(
"""huggingface/transformers-metadata""" , """pipeline_tags.json""" , repo_type="""dataset""" , token=a )
snake_case__ = Dataset.from_json(a )
snake_case__ = {
tags_dataset[i]["""model_class"""]: (tags_dataset[i]["""pipeline_tag"""], tags_dataset[i]["""auto_class"""])
for i in range(len(a ) )
}
snake_case__ = update_pipeline_and_auto_class_table(a )
# Sort the model classes to avoid some nondeterministic updates to create false update commits.
snake_case__ = sorted(table.keys() )
snake_case__ = pd.DataFrame(
{
"""model_class""": model_classes,
"""pipeline_tag""": [table[m][0] for m in model_classes],
"""auto_class""": [table[m][1] for m in model_classes],
} )
snake_case__ = Dataset.from_pandas(a )
with tempfile.TemporaryDirectory() as tmp_dir:
frameworks_dataset.to_json(os.path.join(a , """frameworks.json""" ) )
tags_dataset.to_json(os.path.join(a , """pipeline_tags.json""" ) )
if commit_sha is not None:
snake_case__ = (
F'''Update with commit {commit_sha}\n\nSee: '''
F'''https://github.com/huggingface/transformers/commit/{commit_sha}'''
)
else:
snake_case__ = """Update"""
upload_folder(
repo_id="""huggingface/transformers-metadata""" , folder_path=a , repo_type="""dataset""" , token=a , commit_message=a , )
def _UpperCAmelCase ( ):
snake_case__ = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS}
snake_case__ = transformers_module.pipelines.SUPPORTED_TASKS
snake_case__ = []
for key in pipeline_tasks:
if key not in in_table:
snake_case__ = pipeline_tasks[key]["""pt"""]
if isinstance(a , (list, tuple) ):
snake_case__ = model[0]
snake_case__ = model.__name__
if model not in in_table.values():
missing.append(a )
if len(a ) > 0:
snake_case__ = """, """.join(a )
raise ValueError(
"""The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside """
F'''`utils/update_metadata.py`: {msg}. Please add them!''' )
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
parser.add_argument("""--token""", type=str, help="""The token to use to push to the transformers-metadata dataset.""")
parser.add_argument("""--commit_sha""", type=str, help="""The sha of the commit going with this update.""")
parser.add_argument("""--check-only""", action="""store_true""", help="""Activate to just check all pipelines are present.""")
a__ = parser.parse_args()
if args.check_only:
check_pipeline_tags()
else:
update_metadata(args.token, args.commit_sha)
| 654 |
import argparse
import torch
from transformers import YosoConfig, YosoForMaskedLM
def _UpperCAmelCase ( a : str ):
if "model" in orig_key:
snake_case__ = orig_key.replace("""model.""" , """""" )
if "norm1" in orig_key:
snake_case__ = orig_key.replace("""norm1""" , """attention.output.LayerNorm""" )
if "norm2" in orig_key:
snake_case__ = orig_key.replace("""norm2""" , """output.LayerNorm""" )
if "norm" in orig_key:
snake_case__ = orig_key.replace("""norm""" , """LayerNorm""" )
if "transformer" in orig_key:
snake_case__ = orig_key.split(""".""" )[0].split("""_""" )[-1]
snake_case__ = orig_key.replace(F'''transformer_{layer_num}''' , F'''encoder.layer.{layer_num}''' )
if "mha.attn" in orig_key:
snake_case__ = orig_key.replace("""mha.attn""" , """attention.self""" )
if "mha" in orig_key:
snake_case__ = orig_key.replace("""mha""" , """attention""" )
if "W_q" in orig_key:
snake_case__ = orig_key.replace("""W_q""" , """self.query""" )
if "W_k" in orig_key:
snake_case__ = orig_key.replace("""W_k""" , """self.key""" )
if "W_v" in orig_key:
snake_case__ = orig_key.replace("""W_v""" , """self.value""" )
if "ff1" in orig_key:
snake_case__ = orig_key.replace("""ff1""" , """intermediate.dense""" )
if "ff2" in orig_key:
snake_case__ = orig_key.replace("""ff2""" , """output.dense""" )
if "ff" in orig_key:
snake_case__ = orig_key.replace("""ff""" , """output.dense""" )
if "mlm_class" in orig_key:
snake_case__ = orig_key.replace("""mlm.mlm_class""" , """cls.predictions.decoder""" )
if "mlm" in orig_key:
snake_case__ = orig_key.replace("""mlm""" , """cls.predictions.transform""" )
if "cls" not in orig_key:
snake_case__ = """yoso.""" + orig_key
return orig_key
def _UpperCAmelCase ( a : Tuple , a : Dict ):
for key in orig_state_dict.copy().keys():
snake_case__ = orig_state_dict.pop(a )
if ("pooler" in key) or ("sen_class" in key):
continue
else:
snake_case__ = val
snake_case__ = orig_state_dict["""cls.predictions.decoder.bias"""]
snake_case__ = torch.arange(a ).expand((1, -1) ) + 2
return orig_state_dict
def _UpperCAmelCase ( a : int , a : List[Any] , a : List[Any] ):
snake_case__ = torch.load(a , map_location="""cpu""" )["""model_state_dict"""]
snake_case__ = YosoConfig.from_json_file(a )
snake_case__ = YosoForMaskedLM(a )
snake_case__ = convert_checkpoint_helper(config.max_position_embeddings , a )
print(model.load_state_dict(a ) )
model.eval()
model.save_pretrained(a )
print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' )
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--pytorch_model_path""", default=None, type=str, required=True, help="""Path to YOSO pytorch checkpoint."""
)
parser.add_argument(
"""--config_file""",
default=None,
type=str,
required=True,
help="""The json file for YOSO model config.""",
)
parser.add_argument(
"""--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
a__ = parser.parse_args()
convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
| 654 | 1 |
'''simple docstring'''
import json
import os
import tempfile
import transformers
import datasets
from utils import generate_example_dataset, get_duration
__UpperCAmelCase = 500_000
__UpperCAmelCase , __UpperCAmelCase = os.path.split(__file__)
__UpperCAmelCase = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json'''))
@get_duration
def _snake_case ( A , **A ) -> int:
lowerCAmelCase__ = dataset.map(**A )
@get_duration
def _snake_case ( A , **A ) -> Union[str, Any]:
lowerCAmelCase__ = dataset.filter(**A )
def _snake_case ( ) -> Any:
lowerCAmelCase__ = {'''num examples''': SPEED_TEST_N_EXAMPLES}
with tempfile.TemporaryDirectory() as tmp_dir:
lowerCAmelCase__ = datasets.Features({'''text''': datasets.Value('''string''' ), '''numbers''': datasets.Value('''float32''' )} )
lowerCAmelCase__ = generate_example_dataset(
os.path.join(A , '''dataset.arrow''' ) , A , num_examples=A )
lowerCAmelCase__ = transformers.AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=A )
def tokenize(A ):
return tokenizer(examples['''text'''] )
lowerCAmelCase__ = map(A )
lowerCAmelCase__ = map(A , batched=A )
lowerCAmelCase__ = map(A , function=lambda A : None , batched=A )
with dataset.formatted_as(type='''numpy''' ):
lowerCAmelCase__ = map(A , function=lambda A : None , batched=A )
with dataset.formatted_as(type='''pandas''' ):
lowerCAmelCase__ = map(A , function=lambda A : None , batched=A )
with dataset.formatted_as(type='''torch''' , columns='''numbers''' ):
lowerCAmelCase__ = map(A , function=lambda A : None , batched=A )
with dataset.formatted_as(type='''tensorflow''' , columns='''numbers''' ):
lowerCAmelCase__ = map(A , function=lambda A : None , batched=A )
lowerCAmelCase__ = map(A , function=A , batched=A )
lowerCAmelCase__ = filter(A )
# Activate later when tokenizer support batched inputs
# with dataset.formatted_as(type='numpy'):
# times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True)
with open(A , '''wb''' ) as f:
f.write(json.dumps(A ).encode('''utf-8''' ) )
if __name__ == "__main__": # useful to run the profiler
benchmark_map_filter() | 98 |
'''simple docstring'''
from unittest.mock import patch
import pyspark
from datasets.packaged_modules.spark.spark import (
Spark,
SparkExamplesIterable,
_generate_iterable_examples,
)
from ..utils import (
require_dill_gt_0_3_2,
require_not_windows,
)
def _snake_case ( A , A ) -> List[Any]:
lowerCAmelCase__ = []
for part_id in partition_order:
lowerCAmelCase__ = df.where(F"""SPARK_PARTITION_ID() = {part_id}""" ).collect()
for row_idx, row in enumerate(A ):
expected_row_ids_and_row_dicts.append((F"""{part_id}_{row_idx}""", row.asDict()) )
return expected_row_ids_and_row_dicts
@require_not_windows
@require_dill_gt_0_3_2
def _snake_case ( ) -> Tuple:
lowerCAmelCase__ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
lowerCAmelCase__ = spark.range(100 ).repartition(1 )
lowerCAmelCase__ = Spark(A )
# The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means
# that each partition can hold 2 rows.
spark_builder._repartition_df_if_needed(max_shard_size=16 )
# Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions.
assert spark_builder.df.rdd.getNumPartitions() == 50
@require_not_windows
@require_dill_gt_0_3_2
def _snake_case ( ) -> Optional[int]:
lowerCAmelCase__ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
lowerCAmelCase__ = spark.range(10 ).repartition(2 )
lowerCAmelCase__ = [1, 0]
lowerCAmelCase__ = _generate_iterable_examples(A , A ) # Reverse the partitions.
lowerCAmelCase__ = _get_expected_row_ids_and_row_dicts_for_partition_order(A , A )
for i, (row_id, row_dict) in enumerate(generate_fn() ):
lowerCAmelCase__ , lowerCAmelCase__ = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def _snake_case ( ) -> Optional[Any]:
lowerCAmelCase__ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
lowerCAmelCase__ = spark.range(10 ).repartition(1 )
lowerCAmelCase__ = SparkExamplesIterable(A )
assert it.n_shards == 1
for i, (row_id, row_dict) in enumerate(A ):
assert row_id == F"""0_{i}"""
assert row_dict == {"id": i}
@require_not_windows
@require_dill_gt_0_3_2
def _snake_case ( ) -> Union[str, Any]:
lowerCAmelCase__ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
lowerCAmelCase__ = spark.range(30 ).repartition(3 )
# Mock the generator so that shuffle reverses the partition indices.
with patch('''numpy.random.Generator''' ) as generator_mock:
lowerCAmelCase__ = lambda A : x.reverse()
lowerCAmelCase__ = _get_expected_row_ids_and_row_dicts_for_partition_order(A , [2, 1, 0] )
lowerCAmelCase__ = SparkExamplesIterable(A ).shuffle_data_sources(A )
assert shuffled_it.n_shards == 3
for i, (row_id, row_dict) in enumerate(A ):
lowerCAmelCase__ , lowerCAmelCase__ = expected_row_ids_and_row_dicts[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def _snake_case ( ) -> Dict:
lowerCAmelCase__ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
lowerCAmelCase__ = spark.range(20 ).repartition(4 )
# Partitions 0 and 2
lowerCAmelCase__ = SparkExamplesIterable(A ).shard_data_sources(worker_id=0 , num_workers=2 )
assert shard_it_a.n_shards == 2
lowerCAmelCase__ = _get_expected_row_ids_and_row_dicts_for_partition_order(A , [0, 2] )
for i, (row_id, row_dict) in enumerate(A ):
lowerCAmelCase__ , lowerCAmelCase__ = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
# Partitions 1 and 3
lowerCAmelCase__ = SparkExamplesIterable(A ).shard_data_sources(worker_id=1 , num_workers=2 )
assert shard_it_a.n_shards == 2
lowerCAmelCase__ = _get_expected_row_ids_and_row_dicts_for_partition_order(A , [1, 3] )
for i, (row_id, row_dict) in enumerate(A ):
lowerCAmelCase__ , lowerCAmelCase__ = expected_row_ids_and_row_dicts_a[i]
assert row_id == expected_row_id
assert row_dict == expected_row_dict
@require_not_windows
@require_dill_gt_0_3_2
def _snake_case ( ) -> Dict:
lowerCAmelCase__ = pyspark.sql.SparkSession.builder.master('''local[*]''' ).appName('''pyspark''' ).getOrCreate()
lowerCAmelCase__ = spark.range(100 ).repartition(1 )
lowerCAmelCase__ = Spark(A )
# Choose a small max_shard_size for maximum partitioning.
spark_builder._repartition_df_if_needed(max_shard_size=1 )
# The new number of partitions should not be greater than the number of rows.
assert spark_builder.df.rdd.getNumPartitions() == 100 | 98 | 1 |
from .data_collator import (
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForSeqaSeq,
DataCollatorForSOP,
DataCollatorForTokenClassification,
DataCollatorForWholeWordMask,
DataCollatorWithPadding,
DefaultDataCollator,
default_data_collator,
)
from .metrics import glue_compute_metrics, xnli_compute_metrics
from .processors import (
DataProcessor,
InputExample,
InputFeatures,
SingleSentenceClassificationProcessor,
SquadExample,
SquadFeatures,
SquadVaProcessor,
SquadVaProcessor,
glue_convert_examples_to_features,
glue_output_modes,
glue_processors,
glue_tasks_num_labels,
squad_convert_examples_to_features,
xnli_output_modes,
xnli_processors,
xnli_tasks_num_labels,
)
| 300 |
from math import pi, sqrt
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: float ) -> float:
if num <= 0:
raise ValueError("math domain error" )
if num > 171.5:
raise OverflowError("math range error" )
elif num - int(lowerCAmelCase ) not in (0, 0.5):
raise NotImplementedError("num must be an integer or a half-integer" )
elif num == 0.5:
return sqrt(lowerCAmelCase )
else:
return 1.0 if num == 1 else (num - 1) * gamma(num - 1 )
def __SCREAMING_SNAKE_CASE ( ) -> None:
assert gamma(0.5 ) == sqrt(lowerCAmelCase )
assert gamma(1 ) == 1.0
assert gamma(2 ) == 1.0
if __name__ == "__main__":
from doctest import testmod
testmod()
SCREAMING_SNAKE_CASE_ = 1.0
while num:
SCREAMING_SNAKE_CASE_ = float(input('Gamma of: '))
print(F'''gamma({num}) = {gamma(num)}''')
print('\nEnter 0 to exit...')
| 300 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_snake_case : Union[str, Any] = logging.get_logger(__name__)
_snake_case : int = {
'uclanlp/visualbert-vqa': 'https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json',
'uclanlp/visualbert-vqa-pre': 'https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json',
'uclanlp/visualbert-vqa-coco-pre': (
'https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json'
),
'uclanlp/visualbert-vcr': 'https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json',
'uclanlp/visualbert-vcr-pre': 'https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json',
'uclanlp/visualbert-vcr-coco-pre': (
'https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json'
),
'uclanlp/visualbert-nlvr2': 'https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json',
'uclanlp/visualbert-nlvr2-pre': 'https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json',
'uclanlp/visualbert-nlvr2-coco-pre': (
'https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json'
)
# See all VisualBERT models at https://huggingface.co/models?filter=visual_bert
}
class _UpperCAmelCase ( _UpperCamelCase ):
"""simple docstring"""
a_ = """visual_bert"""
def __init__( self : Any , lowerCAmelCase_ : str=3_0_5_2_2 , lowerCAmelCase_ : Any=7_6_8 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : Any=1_2 , lowerCAmelCase_ : List[str]=1_2 , lowerCAmelCase_ : str=3_0_7_2 , lowerCAmelCase_ : Union[str, Any]="gelu" , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Optional[int]=5_1_2 , lowerCAmelCase_ : Optional[int]=2 , lowerCAmelCase_ : Any=0.02 , lowerCAmelCase_ : Union[str, Any]=1e-12 , lowerCAmelCase_ : str=False , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Dict=1 , lowerCAmelCase_ : Optional[Any]=0 , lowerCAmelCase_ : Optional[int]=2 , **lowerCAmelCase_ : Optional[Any] , ) -> Dict:
super().__init__(pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
__lowerCAmelCase = vocab_size
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = hidden_size
__lowerCAmelCase = visual_embedding_dim
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = initializer_range
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = layer_norm_eps
__lowerCAmelCase = bypass_transformer
__lowerCAmelCase = special_visual_initialize
| 707 |
import unittest
import numpy as np
from transformers import RobertaPreLayerNormConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
import jax.numpy as jnp
from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import (
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormModel,
)
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Union[str, Any]=1_3 , lowerCAmelCase_ : List[str]=7 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : List[Any]=9_9 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Any=5 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : Tuple="gelu" , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : str=0.1 , lowerCAmelCase_ : str=5_1_2 , lowerCAmelCase_ : Dict=1_6 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Optional[int]=0.02 , lowerCAmelCase_ : Optional[int]=4 , ) -> List[Any]:
__lowerCAmelCase = parent
__lowerCAmelCase = batch_size
__lowerCAmelCase = seq_length
__lowerCAmelCase = is_training
__lowerCAmelCase = use_attention_mask
__lowerCAmelCase = use_token_type_ids
__lowerCAmelCase = use_labels
__lowerCAmelCase = vocab_size
__lowerCAmelCase = hidden_size
__lowerCAmelCase = num_hidden_layers
__lowerCAmelCase = num_attention_heads
__lowerCAmelCase = intermediate_size
__lowerCAmelCase = hidden_act
__lowerCAmelCase = hidden_dropout_prob
__lowerCAmelCase = attention_probs_dropout_prob
__lowerCAmelCase = max_position_embeddings
__lowerCAmelCase = type_vocab_size
__lowerCAmelCase = type_sequence_label_size
__lowerCAmelCase = initializer_range
__lowerCAmelCase = num_choices
def lowercase ( self : List[str] ) -> Optional[int]:
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__lowerCAmelCase = None
if self.use_attention_mask:
__lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
__lowerCAmelCase = None
if self.use_token_type_ids:
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowerCAmelCase = RobertaPreLayerNormConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase_ , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def lowercase ( self : Dict ) -> Dict:
__lowerCAmelCase = self.prepare_config_and_inputs()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs
__lowerCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def lowercase ( self : Tuple ) -> int:
__lowerCAmelCase = self.prepare_config_and_inputs()
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = config_and_inputs
__lowerCAmelCase = True
__lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
# Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40
class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ):
"""simple docstring"""
a_ = True
a_ = (
(
FlaxRobertaPreLayerNormModel,
FlaxRobertaPreLayerNormForCausalLM,
FlaxRobertaPreLayerNormForMaskedLM,
FlaxRobertaPreLayerNormForSequenceClassification,
FlaxRobertaPreLayerNormForTokenClassification,
FlaxRobertaPreLayerNormForMultipleChoice,
FlaxRobertaPreLayerNormForQuestionAnswering,
)
if is_flax_available()
else ()
)
def lowercase ( self : Any ) -> Dict:
__lowerCAmelCase = FlaxRobertaPreLayerNormModelTester(self )
@slow
def lowercase ( self : Tuple ) -> List[str]:
for model_class_name in self.all_model_classes:
__lowerCAmelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCAmelCase_ )
__lowerCAmelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(lowerCAmelCase_ )
@require_flax
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def lowercase ( self : int ) -> int:
__lowerCAmelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCAmelCase_ )
__lowerCAmelCase = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa )
__lowerCAmelCase = model(lowerCAmelCase_ )[0]
__lowerCAmelCase = [1, 1_1, 5_0_2_6_5]
self.assertEqual(list(output.shape ) , lowerCAmelCase_ )
# compare the actual values for a slice.
__lowerCAmelCase = np.array(
[[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
@slow
def lowercase ( self : Union[str, Any] ) -> Tuple:
__lowerCAmelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCAmelCase_ )
__lowerCAmelCase = np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa )
__lowerCAmelCase = model(lowerCAmelCase_ )[0]
# compare the actual values for a slice.
__lowerCAmelCase = np.array(
[[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa )
self.assertTrue(np.allclose(output[:, :3, :3] , lowerCAmelCase_ , atol=1e-4 ) )
| 421 | 0 |
"""simple docstring"""
from math import ceil, sqrt
def UpperCamelCase (SCREAMING_SNAKE_CASE = 100_0000 ):
UpperCamelCase : int = 0
for outer_width in range(3 , (limit // 4) + 2 ):
if outer_width**2 > limit:
UpperCamelCase : Optional[Any] = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 )
else:
UpperCamelCase : str = 1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(f'''{solution() = }''')
| 102 |
import os
from collections import deque
import torch
from torch.utils.data import Dataset
class __A( a ):
def __init__( self , _snake_case="" , _snake_case="train" ) -> Union[str, Any]:
'''simple docstring'''
assert os.path.isdir(_snake_case )
__a = []
__a = os.listdir(_snake_case )
for story_filename in story_filenames_list:
if "summary" in story_filename:
continue
__a = os.path.join(_snake_case , _snake_case )
if not os.path.isfile(_snake_case ):
continue
self.documents.append(_snake_case )
def __len__( self ) -> List[Any]:
'''simple docstring'''
return len(self.documents )
def __getitem__( self , _snake_case ) -> Optional[Any]:
'''simple docstring'''
__a = self.documents[idx]
__a = document_path.split('''/''' )[-1]
with open(_snake_case , encoding='''utf-8''' ) as source:
__a = source.read()
__a , __a = process_story(_snake_case )
return document_name, story_lines, summary_lines
def __lowerCAmelCase ( a__ ) -> List[Any]:
__a = list(filter(lambda a__ : len(a__ ) != 0 , [line.strip() for line in raw_story.split('''\n''' )] ) )
# for some unknown reason some lines miss a period, add it
__a = [_add_missing_period(a__ ) for line in nonempty_lines]
# gather article lines
__a = []
__a = deque(a__ )
while True:
try:
__a = lines.popleft()
if element.startswith('''@highlight''' ):
break
story_lines.append(a__ )
except IndexError:
# if "@highlight" is absent from the file we pop
# all elements until there is None, raising an exception.
return story_lines, []
# gather summary lines
__a = list(filter(lambda a__ : not t.startswith('''@highlight''' ) , a__ ) )
return story_lines, summary_lines
def __lowerCAmelCase ( a__ ) -> Tuple:
__a = ['''.''', '''!''', '''?''', '''...''', '''\'''', '''`''', '''"''', '''\u2019''', '''\u2019''', ''')''']
if line.startswith('''@highlight''' ):
return line
if line[-1] in END_TOKENS:
return line
return line + "."
def __lowerCAmelCase ( a__ , a__ , a__ ) -> Optional[Any]:
if len(a__ ) > block_size:
return sequence[:block_size]
else:
sequence.extend([pad_token_id] * (block_size - len(a__ )) )
return sequence
def __lowerCAmelCase ( a__ , a__ ) -> Dict:
__a = torch.ones_like(a__ )
__a = sequence == pad_token_id
__a = 0
return mask
def __lowerCAmelCase ( a__ , a__ , a__ ) -> List[Any]:
__a = [tokenizer.encode(a__ ) for line in story_lines]
__a = [token for sentence in story_lines_token_ids for token in sentence]
__a = [tokenizer.encode(a__ ) for line in summary_lines]
__a = [token for sentence in summary_lines_token_ids for token in sentence]
return story_token_ids, summary_token_ids
def __lowerCAmelCase ( a__ , a__ ) -> str:
__a = []
for sequence in batch:
__a = -1
__a = []
for s in sequence:
if s == separator_token_id:
sentence_num += 1
embeddings.append(sentence_num % 2 )
batch_embeddings.append(a__ )
return torch.tensor(a__ ) | 219 | 0 |
import warnings
from ...utils import logging
from .image_processing_deformable_detr import DeformableDetrImageProcessor
UpperCamelCase__ = logging.get_logger(__name__)
class __lowercase ( a__ ):
def __init__( self : Tuple , *lowercase__ : List[str] , **lowercase__ : int ):
warnings.warn(
'''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use DeformableDetrImageProcessor instead.''' , lowercase__ , )
super().__init__(*lowercase__ , **lowercase__ )
| 702 |
import os
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home
UpperCamelCase__ = HUGGINGFACE_HUB_CACHE
UpperCamelCase__ = '''config.json'''
UpperCamelCase__ = '''diffusion_pytorch_model.bin'''
UpperCamelCase__ = '''diffusion_flax_model.msgpack'''
UpperCamelCase__ = '''model.onnx'''
UpperCamelCase__ = '''diffusion_pytorch_model.safetensors'''
UpperCamelCase__ = '''weights.pb'''
UpperCamelCase__ = '''https://huggingface.co'''
UpperCamelCase__ = default_cache_path
UpperCamelCase__ = '''diffusers_modules'''
UpperCamelCase__ = os.getenv('''HF_MODULES_CACHE''', os.path.join(hf_cache_home, '''modules'''))
UpperCamelCase__ = ['''fp16''', '''non-ema''']
UpperCamelCase__ = '''.self_attn'''
| 143 | 0 |
'''simple docstring'''
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Union[str, Any] = 1
for i in range(1 ,num + 1 ):
fact *= i
return fact
def lowercase__( __UpperCamelCase: int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : Any = 0
while number > 0:
SCREAMING_SNAKE_CASE : Optional[Any] = number % 10
sum_of_digits += last_digit
SCREAMING_SNAKE_CASE : Optional[Any] = number // 10 # Removing the last_digit from the given number
return sum_of_digits
def lowercase__( __UpperCamelCase: int = 1_00 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[Any] = factorial(__UpperCamelCase )
SCREAMING_SNAKE_CASE : Tuple = split_and_add(__UpperCamelCase )
return result
if __name__ == "__main__":
print(solution(int(input("Enter the Number: ").strip())))
| 28 |
'''simple docstring'''
import torch
from diffusers import DDPMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class A ( _a ):
lowercase_ = (DDPMParallelScheduler,)
def __lowerCAmelCase ( self : Optional[Any] , **lowerCAmelCase_ : Optional[int] ) -> List[Any]:
"""simple docstring"""
_a = {
'''num_train_timesteps''': 10_00,
'''beta_start''': 0.0_0_0_1,
'''beta_end''': 0.0_2,
'''beta_schedule''': '''linear''',
'''variance_type''': '''fixed_small''',
'''clip_sample''': True,
}
config.update(**lowerCAmelCase_ )
return config
def __lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
for timesteps in [1, 5, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ):
self.check_over_configs(beta_start=lowerCAmelCase_ , beta_end=lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=lowerCAmelCase_ )
def __lowerCAmelCase ( self : int ) -> Optional[Any]:
"""simple docstring"""
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Any ) -> List[Any]:
"""simple docstring"""
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]:
"""simple docstring"""
self.check_over_configs(thresholding=lowerCAmelCase_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(
thresholding=lowerCAmelCase_ , prediction_type=lowerCAmelCase_ , sample_max_value=lowerCAmelCase_ , )
def __lowerCAmelCase ( self : Tuple ) -> str:
"""simple docstring"""
for prediction_type in ["epsilon", "sample", "v_prediction"]:
self.check_over_configs(prediction_type=lowerCAmelCase_ )
def __lowerCAmelCase ( self : str ) -> List[str]:
"""simple docstring"""
for t in [0, 5_00, 9_99]:
self.check_over_forward(time_step=lowerCAmelCase_ )
def __lowerCAmelCase ( self : str ) -> Optional[int]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(4_87 ) - 0.0_0_9_7_9 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(9_99 ) - 0.0_2 ) ) < 1e-5
def __lowerCAmelCase ( self : Dict ) -> str:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = len(lowerCAmelCase_ )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = self.dummy_sample_deter + 0.1
_a = self.dummy_sample_deter - 0.1
_a = samplea.shape[0]
_a = torch.stack([samplea, samplea, samplea] , dim=0 )
_a = torch.arange(lowerCAmelCase_ )[0:3, None].repeat(1 , lowerCAmelCase_ )
_a = model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
_a = scheduler.batch_step_no_noise(lowerCAmelCase_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) )
_a = torch.sum(torch.abs(lowerCAmelCase_ ) )
_a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 1_1_5_3.1_8_3_3 ) < 1e-2
assert abs(result_mean.item() - 0.5_0_0_5 ) < 1e-3
def __lowerCAmelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = len(lowerCAmelCase_ )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = torch.manual_seed(0 )
for t in reversed(range(lowerCAmelCase_ ) ):
# 1. predict noise residual
_a = model(lowerCAmelCase_ , lowerCAmelCase_ )
# 2. predict previous mean of sample x_t-1
_a = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(lowerCAmelCase_ ) )
_a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2
assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3
def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config(prediction_type='''v_prediction''' )
_a = scheduler_class(**lowerCAmelCase_ )
_a = len(lowerCAmelCase_ )
_a = self.dummy_model()
_a = self.dummy_sample_deter
_a = torch.manual_seed(0 )
for t in reversed(range(lowerCAmelCase_ ) ):
# 1. predict noise residual
_a = model(lowerCAmelCase_ , lowerCAmelCase_ )
# 2. predict previous mean of sample x_t-1
_a = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample
_a = pred_prev_sample
_a = torch.sum(torch.abs(lowerCAmelCase_ ) )
_a = torch.mean(torch.abs(lowerCAmelCase_ ) )
assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2
assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3
def __lowerCAmelCase ( self : int ) -> Dict:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [1_00, 87, 50, 1, 0]
scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
_a = scheduler.timesteps
for i, timestep in enumerate(lowerCAmelCase_ ):
if i == len(lowerCAmelCase_ ) - 1:
_a = -1
else:
_a = timesteps[i + 1]
_a = scheduler.previous_timestep(lowerCAmelCase_ )
_a = prev_t.item()
self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [1_00, 87, 50, 51, 0]
with self.assertRaises(lowerCAmelCase_ , msg='''`custom_timesteps` must be in descending order.''' ):
scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
def __lowerCAmelCase ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [1_00, 87, 50, 1, 0]
_a = len(lowerCAmelCase_ )
with self.assertRaises(lowerCAmelCase_ , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ):
scheduler.set_timesteps(num_inference_steps=lowerCAmelCase_ , timesteps=lowerCAmelCase_ )
def __lowerCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
_a = self.scheduler_classes[0]
_a = self.get_scheduler_config()
_a = scheduler_class(**lowerCAmelCase_ )
_a = [scheduler.config.num_train_timesteps]
with self.assertRaises(
lowerCAmelCase_ , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ):
scheduler.set_timesteps(timesteps=lowerCAmelCase_ )
| 22 | 0 |
'''simple docstring'''
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel
from diffusers.utils.testing_utils import (
enable_full_determinism,
load_numpy,
nightly,
require_torch_gpu,
slow,
torch_device,
)
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE__ ( lowercase_ , unittest.TestCase ):
__SCREAMING_SNAKE_CASE = LDMTextToImagePipeline
__SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS - {
'''negative_prompt''',
'''negative_prompt_embeds''',
'''cross_attention_kwargs''',
'''prompt_embeds''',
}
__SCREAMING_SNAKE_CASE = PipelineTesterMixin.required_optional_params - {
'''num_images_per_prompt''',
'''callback''',
'''callback_steps''',
}
__SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS
__SCREAMING_SNAKE_CASE = False
def A ( self : Union[str, Any] ):
"""simple docstring"""
torch.manual_seed(0 )
__snake_case = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , )
__snake_case = DDIMScheduler(
beta_start=0.00085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , )
torch.manual_seed(0 )
__snake_case = AutoencoderKL(
block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=("DownEncoderBlock2D", "DownEncoderBlock2D") , up_block_types=("UpDecoderBlock2D", "UpDecoderBlock2D") , latent_channels=4 , )
torch.manual_seed(0 )
__snake_case = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
__snake_case = CLIPTextModel(UpperCamelCase__ )
__snake_case = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" )
__snake_case = {
"unet": unet,
"scheduler": scheduler,
"vqvae": vae,
"bert": text_encoder,
"tokenizer": tokenizer,
}
return components
def A ( self : Any , a_ : Optional[int] , a_ : Optional[Any]=0 ):
"""simple docstring"""
if str(UpperCamelCase__ ).startswith("mps" ):
__snake_case = torch.manual_seed(UpperCamelCase__ )
else:
__snake_case = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ )
__snake_case = {
"prompt": "A painting of a squirrel eating a burger",
"generator": generator,
"num_inference_steps": 2,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def A ( self : Tuple ):
"""simple docstring"""
__snake_case = "cpu" # ensure determinism for the device-dependent torch.Generator
__snake_case = self.get_dummy_components()
__snake_case = LDMTextToImagePipeline(**UpperCamelCase__ )
pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
__snake_case = self.get_dummy_inputs(UpperCamelCase__ )
__snake_case = pipe(**UpperCamelCase__ ).images
__snake_case = image[0, -3:, -3:, -1]
assert image.shape == (1, 16, 16, 3)
__snake_case = np.array([0.6101, 0.6156, 0.5622, 0.4895, 0.6661, 0.3804, 0.5748, 0.6136, 0.5014] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def A ( self : Any ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A ( self : str , a_ : str , a_ : int=torch.floataa , a_ : Tuple=0 ):
"""simple docstring"""
__snake_case = torch.manual_seed(UpperCamelCase__ )
__snake_case = np.random.RandomState(UpperCamelCase__ ).standard_normal((1, 4, 32, 32) )
__snake_case = torch.from_numpy(UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ )
__snake_case = {
"prompt": "A painting of a squirrel eating a burger",
"latents": latents,
"generator": generator,
"num_inference_steps": 3,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def A ( self : Optional[Any] ):
"""simple docstring"""
__snake_case = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
__snake_case = self.get_inputs(UpperCamelCase__ )
__snake_case = pipe(**UpperCamelCase__ ).images
__snake_case = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 256, 256, 3)
__snake_case = np.array([0.51825, 0.52850, 0.52543, 0.54258, 0.52304, 0.52569, 0.54363, 0.55276, 0.56878] )
__snake_case = np.abs(expected_slice - image_slice ).max()
assert max_diff < 1e-3
@nightly
@require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def A ( self : Optional[Any] ):
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A ( self : Optional[int] , a_ : List[Any] , a_ : Optional[Any]=torch.floataa , a_ : int=0 ):
"""simple docstring"""
__snake_case = torch.manual_seed(UpperCamelCase__ )
__snake_case = np.random.RandomState(UpperCamelCase__ ).standard_normal((1, 4, 32, 32) )
__snake_case = torch.from_numpy(UpperCamelCase__ ).to(device=UpperCamelCase__ , dtype=UpperCamelCase__ )
__snake_case = {
"prompt": "A painting of a squirrel eating a burger",
"latents": latents,
"generator": generator,
"num_inference_steps": 50,
"guidance_scale": 6.0,
"output_type": "numpy",
}
return inputs
def A ( self : Any ):
"""simple docstring"""
__snake_case = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256" ).to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
__snake_case = self.get_inputs(UpperCamelCase__ )
__snake_case = pipe(**UpperCamelCase__ ).images[0]
__snake_case = load_numpy(
"https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy" )
__snake_case = np.abs(expected_image - image ).max()
assert max_diff < 1e-3
| 711 |
'''simple docstring'''
import math
import sys
import cva
import numpy as np
def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float ) -> np.ndarray:
# For applying gaussian function for each element in matrix.
__snake_case = math.sqrt(_UpperCAmelCase )
__snake_case = 1 / (sigma * math.sqrt(2 * math.pi ))
return cons * np.exp(-((img / sigma) ** 2) * 0.5 )
def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> np.ndarray:
__snake_case = kernel_size // 2
return img[x - half : x + half + 1, y - half : y + half + 1]
def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : float ) -> np.ndarray:
# Creates a gaussian kernel of given dimension.
__snake_case = np.zeros((kernel_size, kernel_size) )
for i in range(0 , _UpperCAmelCase ):
for j in range(0 , _UpperCAmelCase ):
__snake_case = math.sqrt(
abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 )
return vec_gaussian(_UpperCAmelCase , _UpperCAmelCase )
def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : int , ) -> np.ndarray:
__snake_case = np.zeros(img.shape )
__snake_case = get_gauss_kernel(_UpperCAmelCase , _UpperCAmelCase )
__snake_case , __snake_case = img.shape
for i in range(kernel_size // 2 , size_x - kernel_size // 2 ):
for j in range(kernel_size // 2 , size_y - kernel_size // 2 ):
__snake_case = get_slice(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
__snake_case = img_s - img_s[kernel_size // 2, kernel_size // 2]
__snake_case = vec_gaussian(_UpperCAmelCase , _UpperCAmelCase )
__snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase )
__snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase )
__snake_case = np.sum(_UpperCAmelCase ) / np.sum(_UpperCAmelCase )
__snake_case = val
return imga
def __UpperCAmelCase ( _UpperCAmelCase : list ) -> tuple:
__snake_case = args[1] if args[1:] else "../image_data/lena.jpg"
__snake_case = float(args[2] ) if args[2:] else 1.0
__snake_case = float(args[3] ) if args[3:] else 1.0
if args[4:]:
__snake_case = int(args[4] )
__snake_case = kernel_size + abs(kernel_size % 2 - 1 )
else:
__snake_case = 5
return filename, spatial_variance, intensity_variance, kernel_size
if __name__ == "__main__":
a , a , a , a : Tuple = parse_args(sys.argv)
a : Tuple = cva.imread(filename, 0)
cva.imshow('''input image''', img)
a : Dict = img / 255
a : str = out.astype('''float32''')
a : Union[str, Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size)
a : Dict = out * 255
a : List[str] = np.uinta(out)
cva.imshow('''output image''', out)
cva.waitKey(0)
cva.destroyAllWindows()
| 680 | 0 |
'''simple docstring'''
from collections import deque
from .hash_table import HashTable
class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ):
def __init__( self : int , *__SCREAMING_SNAKE_CASE : int , **__SCREAMING_SNAKE_CASE : Dict ) -> Union[str, Any]:
super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Any ) -> Optional[int]:
a_ : Tuple = deque([] ) if self.values[key] is None else self.values[key]
self.values[key].appendleft(__SCREAMING_SNAKE_CASE )
a_ : str = self.values[key]
def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union[str, Any]:
return (
sum(self.charge_factor - len(__SCREAMING_SNAKE_CASE ) for slot in self.values )
/ self.size_table
* self.charge_factor
)
def SCREAMING_SNAKE_CASE ( self : List[str] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[str]=None ) -> Optional[Any]:
if not (
len(self.values[key] ) == self.charge_factor and self.values.count(__SCREAMING_SNAKE_CASE ) == 0
):
return key
return super()._collision_resolution(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
| 466 |
'''simple docstring'''
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor
from .base import PipelineTool
class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE_ ):
snake_case__ = "openai/whisper-base"
snake_case__ = (
"This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the "
"transcribed text."
)
snake_case__ = "transcriber"
snake_case__ = WhisperProcessor
snake_case__ = WhisperForConditionalGeneration
snake_case__ = ["audio"]
snake_case__ = ["text"]
def SCREAMING_SNAKE_CASE ( self : str , __SCREAMING_SNAKE_CASE : Tuple ) -> str:
return self.pre_processor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).input_features
def SCREAMING_SNAKE_CASE ( self : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> List[str]:
return self.model.generate(inputs=__SCREAMING_SNAKE_CASE )
def SCREAMING_SNAKE_CASE ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]:
return self.pre_processor.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )[0]
| 466 | 1 |
from typing import Optional
import pyspark
from .. import Features, NamedSplit
from ..download import DownloadMode
from ..packaged_modules.spark.spark import Spark
from .abc import AbstractDatasetReader
class __A ( a ):
def __init__( self , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , UpperCAmelCase_ = True , UpperCAmelCase_ = None , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = True , UpperCAmelCase_ = "arrow" , **UpperCAmelCase_ , ):
super().__init__(
split=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ , streaming=UpperCAmelCase_ , **UpperCAmelCase_ , )
lowerCamelCase =load_from_cache_file
lowerCamelCase =file_format
lowerCamelCase =Spark(
df=UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , working_dir=UpperCAmelCase_ , **UpperCAmelCase_ , )
def _snake_case ( self ):
if self.streaming:
return self.builder.as_streaming_dataset(split=self.split )
lowerCamelCase =None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD
self.builder.download_and_prepare(
download_mode=UpperCAmelCase_ , file_format=self._file_format , )
return self.builder.as_dataset(split=self.split )
| 269 |
import argparse
from pathlib import Path
from typing import Dict, OrderedDict, Tuple
import torch
from audiocraft.models import MusicGen
from transformers import (
AutoFeatureExtractor,
AutoTokenizer,
EncodecModel,
MusicgenDecoderConfig,
MusicgenForConditionalGeneration,
MusicgenProcessor,
TaEncoderModel,
)
from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase__ : Tuple =logging.get_logger(__name__)
UpperCAmelCase__ : str =['''model.decoder.embed_positions.weights''']
def _lowercase ( _UpperCAmelCase ) -> List[Any]:
if "emb" in name:
lowerCamelCase =name.replace("""emb""" , """model.decoder.embed_tokens""" )
if "transformer" in name:
lowerCamelCase =name.replace("""transformer""" , """model.decoder""" )
if "cross_attention" in name:
lowerCamelCase =name.replace("""cross_attention""" , """encoder_attn""" )
if "linear1" in name:
lowerCamelCase =name.replace("""linear1""" , """fc1""" )
if "linear2" in name:
lowerCamelCase =name.replace("""linear2""" , """fc2""" )
if "norm1" in name:
lowerCamelCase =name.replace("""norm1""" , """self_attn_layer_norm""" )
if "norm_cross" in name:
lowerCamelCase =name.replace("""norm_cross""" , """encoder_attn_layer_norm""" )
if "norm2" in name:
lowerCamelCase =name.replace("""norm2""" , """final_layer_norm""" )
if "out_norm" in name:
lowerCamelCase =name.replace("""out_norm""" , """model.decoder.layer_norm""" )
if "linears" in name:
lowerCamelCase =name.replace("""linears""" , """lm_heads""" )
if "condition_provider.conditioners.description.output_proj" in name:
lowerCamelCase =name.replace("""condition_provider.conditioners.description.output_proj""" , """enc_to_dec_proj""" )
return name
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase ) -> Tuple[Dict, Dict]:
lowerCamelCase =list(state_dict.keys() )
lowerCamelCase ={}
for key in keys:
lowerCamelCase =state_dict.pop(_UpperCAmelCase )
lowerCamelCase =rename_keys(_UpperCAmelCase )
if "in_proj_weight" in key:
# split fused qkv proj
lowerCamelCase =val[:hidden_size, :]
lowerCamelCase =val[hidden_size : 2 * hidden_size, :]
lowerCamelCase =val[-hidden_size:, :]
elif "enc_to_dec_proj" in key:
lowerCamelCase =val
else:
lowerCamelCase =val
return state_dict, enc_dec_proj_state_dict
def _lowercase ( _UpperCAmelCase ) -> MusicgenDecoderConfig:
if checkpoint == "small":
# default config values
lowerCamelCase =10_24
lowerCamelCase =24
lowerCamelCase =16
elif checkpoint == "medium":
lowerCamelCase =15_36
lowerCamelCase =48
lowerCamelCase =24
elif checkpoint == "large":
lowerCamelCase =20_48
lowerCamelCase =48
lowerCamelCase =32
else:
raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" )
lowerCamelCase =MusicgenDecoderConfig(
hidden_size=_UpperCAmelCase , ffn_dim=hidden_size * 4 , num_hidden_layers=_UpperCAmelCase , num_attention_heads=_UpperCAmelCase , )
return config
@torch.no_grad()
def _lowercase ( _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="cpu" ) -> Dict:
lowerCamelCase =MusicGen.get_pretrained(_UpperCAmelCase , device=_UpperCAmelCase )
lowerCamelCase =decoder_config_from_checkpoint(_UpperCAmelCase )
lowerCamelCase =fairseq_model.lm.state_dict()
lowerCamelCase , lowerCamelCase =rename_state_dict(
_UpperCAmelCase , hidden_size=decoder_config.hidden_size )
lowerCamelCase =TaEncoderModel.from_pretrained("""t5-base""" )
lowerCamelCase =EncodecModel.from_pretrained("""facebook/encodec_32khz""" )
lowerCamelCase =MusicgenForCausalLM(_UpperCAmelCase ).eval()
# load all decoder weights - expect that we'll be missing embeddings and enc-dec projection
lowerCamelCase , lowerCamelCase =decoder.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase )
for key in missing_keys.copy():
if key.startswith(("""text_encoder""", """audio_encoder""") ) or key in EXPECTED_MISSING_KEYS:
missing_keys.remove(_UpperCAmelCase )
if len(_UpperCAmelCase ) > 0:
raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" )
if len(_UpperCAmelCase ) > 0:
raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" )
# init the composite model
lowerCamelCase =MusicgenForConditionalGeneration(text_encoder=_UpperCAmelCase , audio_encoder=_UpperCAmelCase , decoder=_UpperCAmelCase )
# load the pre-trained enc-dec projection (from the decoder state dict)
model.enc_to_dec_proj.load_state_dict(_UpperCAmelCase )
# check we can do a forward pass
lowerCamelCase =torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 )
lowerCamelCase =input_ids.reshape(2 * 4 , -1 )
with torch.no_grad():
lowerCamelCase =model(input_ids=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase ).logits
if logits.shape != (8, 1, 20_48):
raise ValueError("""Incorrect shape for logits""" )
# now construct the processor
lowerCamelCase =AutoTokenizer.from_pretrained("""t5-base""" )
lowerCamelCase =AutoFeatureExtractor.from_pretrained("""facebook/encodec_32khz""" , padding_side="""left""" )
lowerCamelCase =MusicgenProcessor(feature_extractor=_UpperCAmelCase , tokenizer=_UpperCAmelCase )
# set the appropriate bos/pad token ids
lowerCamelCase =20_48
lowerCamelCase =20_48
# set other default generation config params
lowerCamelCase =int(30 * audio_encoder.config.frame_rate )
lowerCamelCase =True
lowerCamelCase =3.0
if pytorch_dump_folder is not None:
Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase )
logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" )
model.save_pretrained(_UpperCAmelCase )
processor.save_pretrained(_UpperCAmelCase )
if repo_id:
logger.info(F"""Pushing model {checkpoint} to {repo_id}""" )
model.push_to_hub(_UpperCAmelCase )
processor.push_to_hub(_UpperCAmelCase )
if __name__ == "__main__":
UpperCAmelCase__ : List[Any] =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint''',
default='''small''',
type=str,
help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''',
)
parser.add_argument(
'''--pytorch_dump_folder''',
required=True,
default=None,
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.'''
)
parser.add_argument(
'''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.'''
)
UpperCAmelCase__ : Optional[Any] =parser.parse_args()
convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
| 269 | 1 |
def UpperCAmelCase_ ( __UpperCAmelCase : int = 2_00 ) -> int:
SCREAMING_SNAKE_CASE_ = [1, 2, 5, 10, 20, 50, 1_00, 2_00]
SCREAMING_SNAKE_CASE_ = [0] * (pence + 1)
SCREAMING_SNAKE_CASE_ = 1 # base case: 1 way to make 0 pence
for coin in coins:
for i in range(__UpperCAmelCase , pence + 1 , 1 ):
number_of_ways[i] += number_of_ways[i - coin]
return number_of_ways[pence]
if __name__ == "__main__":
assert solution(200) == 73_682 | 31 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
A : Optional[Any] = {
"""configuration_megatron_bert""": ["""MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MegatronBertConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A : Any = [
"""MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MegatronBertForCausalLM""",
"""MegatronBertForMaskedLM""",
"""MegatronBertForMultipleChoice""",
"""MegatronBertForNextSentencePrediction""",
"""MegatronBertForPreTraining""",
"""MegatronBertForQuestionAnswering""",
"""MegatronBertForSequenceClassification""",
"""MegatronBertForTokenClassification""",
"""MegatronBertModel""",
"""MegatronBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_megatron_bert import (
MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
MegatronBertForCausalLM,
MegatronBertForMaskedLM,
MegatronBertForMultipleChoice,
MegatronBertForNextSentencePrediction,
MegatronBertForPreTraining,
MegatronBertForQuestionAnswering,
MegatronBertForSequenceClassification,
MegatronBertForTokenClassification,
MegatronBertModel,
MegatronBertPreTrainedModel,
)
else:
import sys
A : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 349 | 0 |
'''simple docstring'''
def snake_case_ ( a__ : int = 60_08_51_47_51_43 ):
"""simple docstring"""
try:
__lowercase = int(a__ )
except (TypeError, ValueError):
raise TypeError("""Parameter n must be int or castable to int.""" )
if n <= 0:
raise ValueError("""Parameter n must be greater than or equal to one.""" )
__lowercase = 2
__lowercase = 0
if n == 2:
return 2
while n > 2:
while n % i != 0:
i += 1
__lowercase = i
while n % i == 0:
__lowercase = n // i
i += 1
return int(a__ )
if __name__ == "__main__":
print(F"""{solution() = }""")
| 719 |
'''simple docstring'''
from statistics import mean, stdev
def snake_case_ ( a__ : list ,a__ : int = 3 ):
"""simple docstring"""
__lowercase = min(a__ )
__lowercase = max(a__ )
# normalize data
return [round((x - x_min) / (x_max - x_min) ,a__ ) for x in data]
def snake_case_ ( a__ : list ,a__ : int = 3 ):
"""simple docstring"""
__lowercase = mean(a__ )
__lowercase = stdev(a__ )
# standardize data
return [round((x - mu) / (sigma) ,a__ ) for x in data]
| 163 | 0 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow
if is_torch_available():
import torch
from transformers import XLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_torch
class lowerCAmelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def __snake_case ( self : List[Any] ):
UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' )
UpperCAmelCase = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] )
# The dog is cute and lives in the garden house
UpperCAmelCase = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim
UpperCAmelCase = torch.tensor(
[[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
UpperCAmelCase = model(a__ )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , a__ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , a__ , atol=1e-3 ) )
@slow
def __snake_case ( self : Union[str, Any] ):
UpperCAmelCase = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' )
UpperCAmelCase = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] )
# The dog is cute and lives in the garden house
UpperCAmelCase = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim
UpperCAmelCase = torch.tensor(
[[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] )
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large')
# xlmr.eval()
# expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1]
with torch.no_grad():
UpperCAmelCase = model(a__ )['''last_hidden_state'''].detach()
self.assertEqual(output.shape , a__ )
# compare the actual values for a slice of last dim
self.assertTrue(torch.allclose(output[:, :, -1] , a__ , atol=1e-3 ) )
| 51 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
lowerCAmelCase : str = logging.get_logger(__name__)
lowerCAmelCase : int = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class _A ( __magic_name__):
SCREAMING_SNAKE_CASE : int = '''gpt_neo'''
SCREAMING_SNAKE_CASE : Tuple = ['''past_key_values''']
SCREAMING_SNAKE_CASE : List[str] = {'''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''}
def __init__( self , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=2048 , _SCREAMING_SNAKE_CASE=24 , _SCREAMING_SNAKE_CASE=[[["global", "local"], 12]] , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=256 , _SCREAMING_SNAKE_CASE="gelu_new" , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1e-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=5_0256 , _SCREAMING_SNAKE_CASE=5_0256 , **_SCREAMING_SNAKE_CASE , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = vocab_size
SCREAMING_SNAKE_CASE_ : Any = max_position_embeddings
SCREAMING_SNAKE_CASE_ : str = hidden_size
SCREAMING_SNAKE_CASE_ : List[Any] = num_layers
SCREAMING_SNAKE_CASE_ : List[str] = num_heads
SCREAMING_SNAKE_CASE_ : Union[str, Any] = intermediate_size
SCREAMING_SNAKE_CASE_ : Optional[int] = window_size
SCREAMING_SNAKE_CASE_ : int = activation_function
SCREAMING_SNAKE_CASE_ : Union[str, Any] = resid_dropout
SCREAMING_SNAKE_CASE_ : Optional[Any] = embed_dropout
SCREAMING_SNAKE_CASE_ : int = attention_dropout
SCREAMING_SNAKE_CASE_ : int = classifier_dropout
SCREAMING_SNAKE_CASE_ : Union[str, Any] = layer_norm_epsilon
SCREAMING_SNAKE_CASE_ : Dict = initializer_range
SCREAMING_SNAKE_CASE_ : List[Any] = use_cache
SCREAMING_SNAKE_CASE_ : List[Any] = bos_token_id
SCREAMING_SNAKE_CASE_ : Union[str, Any] = eos_token_id
SCREAMING_SNAKE_CASE_ : Union[str, Any] = attention_types
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.expand_attention_types_params(_SCREAMING_SNAKE_CASE )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.attention_layers)` == `config.num_layers` '
f"but is `len(config.attention_layers) = {len(self.attention_layers )}`, "
f"`config.num_layers = {self.num_layers}`. "
'`config.attention_layers` is prepared using `config.attention_types`. '
'Please verify the value of `config.attention_types` argument.' )
super().__init__(bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
@staticmethod
def UpperCAmelCase ( _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def A_ ( a , a , a , a ):
"""simple docstring"""
import torch
SCREAMING_SNAKE_CASE_ : List[Any] = input.size()
SCREAMING_SNAKE_CASE_ : str = len(a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = shape[dimension]
SCREAMING_SNAKE_CASE_ : List[Any] = torch.arange(0 , a , a )
SCREAMING_SNAKE_CASE_ : List[str] = torch.div(sizedim - size , a , rounding_mode='floor' ) + 1
SCREAMING_SNAKE_CASE_ : Tuple = torch.arange(a ) + low_indices[:min_length][:, None]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = [slice(a )] * rank
SCREAMING_SNAKE_CASE_ : int = indices
SCREAMING_SNAKE_CASE_ : int = input[s]
SCREAMING_SNAKE_CASE_ : List[str] = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(a )
def A_ ( a , a ):
"""simple docstring"""
import torch
SCREAMING_SNAKE_CASE_ : str = torch.arange(1 , a )
SCREAMING_SNAKE_CASE_ : List[str] = torch.remainder(a , a )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = remainders == 0
SCREAMING_SNAKE_CASE_ : Any = candidates[divisor_indices]
SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.max(a )
return largest_divisor, torch.div(a , a , rounding_mode='floor' )
class _A ( __magic_name__):
@property
def UpperCAmelCase ( self ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} )
if self.use_past:
self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction='inputs' )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {0: 'batch', 1: 'past_sequence + sequence'}
else:
SCREAMING_SNAKE_CASE_ : List[Any] = {0: 'batch', 1: 'sequence'}
return common_inputs
@property
def UpperCAmelCase ( self ):
"""simple docstring"""
return self._config.num_heads
def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = -1 , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = super(_SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs(
_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE )
# We need to order the input in the way they appears in the forward()
SCREAMING_SNAKE_CASE_ : int = OrderedDict({'input_ids': common_inputs['input_ids']} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = common_inputs['input_ids'].shape
# Not using the same length for past_key_values
SCREAMING_SNAKE_CASE_ : Any = seqlen + 2
SCREAMING_SNAKE_CASE_ : Optional[int] = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
SCREAMING_SNAKE_CASE_ : List[Any] = [
(torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers )
]
SCREAMING_SNAKE_CASE_ : Tuple = common_inputs['attention_mask']
if self.use_past:
SCREAMING_SNAKE_CASE_ : Any = ordered_inputs['attention_mask'].dtype
SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat(
[ordered_inputs['attention_mask'], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE )] , dim=1 )
return ordered_inputs
@property
def UpperCAmelCase ( self ):
"""simple docstring"""
return 13
| 511 | 0 |
import math
def _SCREAMING_SNAKE_CASE ( lowercase : int = 1_00 ):
'''simple docstring'''
lowerCamelCase_ = sum(i * i for i in range(1 , n + 1 ) )
lowerCamelCase_ = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) )
return square_of_sum - sum_of_squares
if __name__ == "__main__":
print(F"""{solution() = }""")
| 702 |
import json
import os
from functools import lru_cache
from typing import TYPE_CHECKING, List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
lowerCamelCase : str = logging.get_logger(__name__)
lowerCamelCase : Optional[Any] = {
"vocab_file": "vocab.json",
"merges_file": "merges.txt",
"tokenizer_config_file": "tokenizer_config.json",
}
lowerCamelCase : int = {
"vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"},
"merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"},
"tokenizer_config_file": {
"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json"
},
}
lowerCamelCase : Tuple = {"facebook/blenderbot-3B": 128}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def _SCREAMING_SNAKE_CASE ( ):
'''simple docstring'''
lowerCamelCase_ = (
list(range(ord('!' ) , ord('~' ) + 1 ) ) + list(range(ord('¡' ) , ord('¬' ) + 1 ) ) + list(range(ord('®' ) , ord('ÿ' ) + 1 ) )
)
lowerCamelCase_ = bs[:]
lowerCamelCase_ = 0
for b in range(2**8 ):
if b not in bs:
bs.append(lowercase )
cs.append(2**8 + n )
n += 1
lowerCamelCase_ = [chr(lowercase ) for n in cs]
return dict(zip(lowercase , lowercase ) )
def _SCREAMING_SNAKE_CASE ( lowercase : int ):
'''simple docstring'''
lowerCamelCase_ = set()
lowerCamelCase_ = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
lowerCamelCase_ = char
return pairs
class A( UpperCamelCase ):
'''simple docstring'''
UpperCamelCase = VOCAB_FILES_NAMES
UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase = ['''input_ids''', '''attention_mask''']
def __init__( self : Optional[Any] , A_ : List[Any] , A_ : List[Any] , A_ : Union[str, Any]="replace" , A_ : Dict="<s>" , A_ : Optional[int]="</s>" , A_ : Optional[Any]="</s>" , A_ : Dict="<s>" , A_ : Dict="<unk>" , A_ : Any="<pad>" , A_ : Dict="<mask>" , A_ : Union[str, Any]=False , **A_ : List[str] , ) -> Tuple:
"""simple docstring"""
lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token
lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token
lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token
lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token
lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token
lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCamelCase_ = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token
super().__init__(
errors=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , **A_ , )
with open(A_ , encoding='utf-8' ) as vocab_handle:
lowerCamelCase_ = json.load(A_ )
lowerCamelCase_ = {v: k for k, v in self.encoder.items()}
lowerCamelCase_ = errors # how to handle errors in decoding
lowerCamelCase_ = bytes_to_unicode()
lowerCamelCase_ = {v: k for k, v in self.byte_encoder.items()}
with open(A_ , encoding='utf-8' ) as merges_handle:
lowerCamelCase_ = merges_handle.read().split('\n' )[1:-1]
lowerCamelCase_ = [tuple(merge.split() ) for merge in bpe_merges]
lowerCamelCase_ = dict(zip(A_ , range(len(A_ ) ) ) )
lowerCamelCase_ = {}
lowerCamelCase_ = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowerCamelCase_ = re.compile(r'\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+' )
@property
# Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot
def a__ ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
return len(self.encoder )
def a__ ( self : List[Any] ) -> Dict:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder )
def a__ ( self : Tuple , A_ : Tuple ) -> Optional[Any]:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
lowerCamelCase_ = tuple(A_ )
lowerCamelCase_ = get_pairs(A_ )
if not pairs:
return token
while True:
lowerCamelCase_ = min(A_ , key=lambda A_ : self.bpe_ranks.get(A_ , float('inf' ) ) )
if bigram not in self.bpe_ranks:
break
lowerCamelCase_ , lowerCamelCase_ = bigram
lowerCamelCase_ = []
lowerCamelCase_ = 0
while i < len(A_ ):
try:
lowerCamelCase_ = word.index(A_ , A_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCamelCase_ = j
if word[i] == first and i < len(A_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCamelCase_ = tuple(A_ )
lowerCamelCase_ = new_word
if len(A_ ) == 1:
break
else:
lowerCamelCase_ = get_pairs(A_ )
lowerCamelCase_ = ' '.join(A_ )
lowerCamelCase_ = word
return word
def a__ ( self : str , A_ : List[str] ) -> List[str]:
"""simple docstring"""
lowerCamelCase_ = []
for token in re.findall(self.pat , A_ ):
lowerCamelCase_ = ''.join(
self.byte_encoder[b] for b in token.encode('utf-8' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(A_ ).split(' ' ) )
return bpe_tokens
def a__ ( self : Tuple , A_ : str ) -> Optional[Any]:
"""simple docstring"""
return self.encoder.get(A_ , self.encoder.get(self.unk_token ) )
def a__ ( self : Tuple , A_ : Dict ) -> List[Any]:
"""simple docstring"""
return self.decoder.get(A_ )
def a__ ( self : Optional[int] , A_ : List[Any] ) -> Union[str, Any]:
"""simple docstring"""
lowerCamelCase_ = ''.join(A_ )
lowerCamelCase_ = bytearray([self.byte_decoder[c] for c in text] ).decode('utf-8' , errors=self.errors )
return text
def a__ ( self : Tuple , A_ : str , A_ : Optional[str] = None ) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(A_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
lowerCamelCase_ = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
lowerCamelCase_ = os.path.join(
A_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] )
with open(A_ , 'w' , encoding='utf-8' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=A_ , ensure_ascii=A_ ) + '\n' )
lowerCamelCase_ = 0
with open(A_ , 'w' , encoding='utf-8' ) as writer:
writer.write('#version: 0.2\n' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda A_ : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
' Please check that the tokenizer is not corrupted!' )
lowerCamelCase_ = token_index
writer.write(' '.join(A_ ) + '\n' )
index += 1
return vocab_file, merge_file
def a__ ( self : str , A_ : List[int] , A_ : Optional[List[int]] = None , A_ : bool = False ) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ )
if token_ids_a is None:
return [1] + ([0] * len(A_ )) + [1]
return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1]
def a__ ( self : int , A_ : List[int] , A_ : Optional[List[int]] = None ) -> List[int]:
"""simple docstring"""
lowerCamelCase_ = [self.sep_token_id]
lowerCamelCase_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def a__ ( self : str , A_ : Optional[Any] , A_ : Union[str, Any]=False , **A_ : List[str] ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ = kwargs.pop('add_prefix_space' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(A_ ) > 0 and not text[0].isspace()):
lowerCamelCase_ = ' ' + text
return (text, kwargs)
def a__ ( self : List[Any] , A_ : List[int] , A_ : Optional[List[int]] = None ) -> Dict:
"""simple docstring"""
return token_ids_a + [self.eos_token_id]
def a__ ( self : Optional[int] , A_ : "Conversation" ) -> List[int]:
"""simple docstring"""
lowerCamelCase_ = []
for is_user, text in conversation.iter_texts():
if is_user:
# We need to space prefix as it's being done within blenderbot
inputs.append(' ' + text )
else:
# Generated responses should contain them already.
inputs.append(A_ )
lowerCamelCase_ = ' '.join(A_ )
lowerCamelCase_ = self.encode(A_ )
if len(A_ ) > self.model_max_length:
lowerCamelCase_ = input_ids[-self.model_max_length :]
logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" )
return input_ids
| 651 | 0 |
"""simple docstring"""
import logging
import os
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
from tqdm import auto as tqdm_lib
snake_case = {
'''debug''': logging.DEBUG,
'''info''': logging.INFO,
'''warning''': logging.WARNING,
'''error''': logging.ERROR,
'''critical''': logging.CRITICAL,
}
snake_case = logging.WARNING
def snake_case ( ) -> Optional[int]:
_snake_case = os.getenv('''DATASETS_VERBOSITY''' , lowerCAmelCase_ )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """
f"""has to be one of: { ', '.join(log_levels.keys() ) }""" )
return _default_log_level
def snake_case ( ) -> str:
return __name__.split('''.''' )[0]
def snake_case ( ) -> logging.Logger:
return logging.getLogger(_get_library_name() )
def snake_case ( ) -> None:
# Apply our default configuration to the library root logger.
_snake_case = _get_library_root_logger()
library_root_logger.setLevel(_get_default_logging_level() )
def snake_case ( ) -> None:
_snake_case = _get_library_root_logger()
library_root_logger.setLevel(logging.NOTSET )
def snake_case ( lowerCAmelCase_ = None ) -> logging.Logger:
if name is None:
_snake_case = _get_library_name()
return logging.getLogger(lowerCAmelCase_ )
def snake_case ( ) -> int:
return _get_library_root_logger().getEffectiveLevel()
def snake_case ( lowerCAmelCase_ ) -> None:
_get_library_root_logger().setLevel(lowerCAmelCase_ )
def snake_case ( ) -> Tuple:
return set_verbosity(lowerCAmelCase_ )
def snake_case ( ) -> str:
return set_verbosity(lowerCAmelCase_ )
def snake_case ( ) -> Union[str, Any]:
return set_verbosity(lowerCAmelCase_ )
def snake_case ( ) -> Any:
return set_verbosity(lowerCAmelCase_ )
def snake_case ( ) -> None:
_snake_case = False
def snake_case ( ) -> None:
_snake_case = True
# Configure the library root logger at the module level (singleton-like)
_configure_library_root_logger()
class UpperCAmelCase :
def __init__( self : Optional[int] , *__lowerCamelCase : List[Any] , **__lowerCamelCase : List[Any] ): # pylint: disable=unused-argument
"""simple docstring"""
_snake_case = args[0] if args else None
def __iter__( self : Dict ):
"""simple docstring"""
return iter(self._iterator )
def __getattr__( self : Optional[int] , __lowerCamelCase : Tuple ):
"""simple docstring"""
def empty_fn(*__lowerCamelCase : Any , **__lowerCamelCase : Union[str, Any] ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self : int ):
"""simple docstring"""
return self
def __exit__( self : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Dict ):
"""simple docstring"""
return
snake_case = True
class UpperCAmelCase :
def __call__( self : Union[str, Any] , *__lowerCamelCase : Dict , __lowerCamelCase : List[Any]=False , **__lowerCamelCase : Union[str, Any] ):
"""simple docstring"""
if _tqdm_active and not disable:
return tqdm_lib.tqdm(*__lowerCamelCase , **__lowerCamelCase )
else:
return EmptyTqdm(*__lowerCamelCase , **__lowerCamelCase )
def __UpperCAmelCase ( self : Dict , *__lowerCamelCase : Any , **__lowerCamelCase : Union[str, Any] ):
"""simple docstring"""
_snake_case = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*__lowerCamelCase , **__lowerCamelCase )
def __UpperCAmelCase ( self : Optional[int] ):
"""simple docstring"""
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
snake_case = _tqdm_cls()
def snake_case ( ) -> bool:
global _tqdm_active
return bool(_tqdm_active )
def snake_case ( ) -> Dict:
global _tqdm_active
_snake_case = True
def snake_case ( ) -> List[Any]:
global _tqdm_active
_snake_case = False
| 103 |
"""simple docstring"""
def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> int:
return 1 if input_a == input_a else 0
def snake_case ( ) -> None:
assert xnor_gate(0 , 0 ) == 1
assert xnor_gate(0 , 1 ) == 0
assert xnor_gate(1 , 0 ) == 0
assert xnor_gate(1 , 1 ) == 1
if __name__ == "__main__":
print(xnor_gate(0, 0))
print(xnor_gate(0, 1))
print(xnor_gate(1, 0))
print(xnor_gate(1, 1))
| 103 | 1 |
from typing import Optional, Tuple, Union
import flax
import flax.linen as nn
import jax
import jax.numpy as jnp
from flax.core.frozen_dict import FrozenDict
from ..configuration_utils import ConfigMixin, flax_register_to_config
from ..utils import BaseOutput
from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps
from .modeling_flax_utils import FlaxModelMixin
from .unet_ad_blocks_flax import (
FlaxCrossAttnDownBlockaD,
FlaxCrossAttnUpBlockaD,
FlaxDownBlockaD,
FlaxUNetMidBlockaDCrossAttn,
FlaxUpBlockaD,
)
@flax.struct.dataclass
class __A ( __snake_case ):
UpperCamelCase :Any = 42
@flax_register_to_config
class __A ( nn.Module , __snake_case , __snake_case ):
UpperCamelCase :List[str] = 32
UpperCamelCase :Optional[int] = 4
UpperCamelCase :Optional[Any] = 4
UpperCamelCase :Optional[Any] = (
'''CrossAttnDownBlock2D''',
'''CrossAttnDownBlock2D''',
'''CrossAttnDownBlock2D''',
'''DownBlock2D''',
)
UpperCamelCase :Optional[Any] = ('''UpBlock2D''', '''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''', '''CrossAttnUpBlock2D''')
UpperCamelCase :Optional[Any] = False
UpperCamelCase :Union[str, Any] = (320, 640, 1280, 1280)
UpperCamelCase :int = 2
UpperCamelCase :Optional[Any] = 8
UpperCamelCase :Optional[int] = None
UpperCamelCase :Optional[int] = 1280
UpperCamelCase :List[str] = 0.0
UpperCamelCase :List[Any] = False
UpperCamelCase :List[str] = jnp.floataa
UpperCamelCase :int = True
UpperCamelCase :List[Any] = 0
UpperCamelCase :List[Any] = False
def _snake_case (self , __magic_name__ ):
lowerCamelCase__ : Dict = (1, self.in_channels, self.sample_size, self.sample_size)
lowerCamelCase__ : Optional[int] = jnp.zeros(_lowercase , dtype=jnp.floataa )
lowerCamelCase__ : List[str] = jnp.ones((1,) , dtype=jnp.intaa )
lowerCamelCase__ : str = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa )
lowerCamelCase__ : List[str] = jax.random.split(_lowercase )
lowerCamelCase__ : Tuple = {"""params""": params_rng, """dropout""": dropout_rng}
return self.init(_lowercase , _lowercase , _lowercase , _lowercase )["params"]
def _snake_case (self ):
lowerCamelCase__ : List[Any] = self.block_out_channels
lowerCamelCase__ : List[Any] = block_out_channels[0] * 4
if self.num_attention_heads is not None:
raise ValueError(
"""At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.""" )
# If `num_attention_heads` is not defined (which is the case for most models)
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
# The reason for this behavior is to correct for incorrectly named variables that were introduced
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
# which is why we correct for the naming here.
lowerCamelCase__ : Union[str, Any] = self.num_attention_heads or self.attention_head_dim
# input
lowerCamelCase__ : List[Any] = nn.Conv(
block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
# time
lowerCamelCase__ : Optional[Any] = FlaxTimesteps(
block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift )
lowerCamelCase__ : Optional[Any] = FlaxTimestepEmbedding(_lowercase , dtype=self.dtype )
lowerCamelCase__ : str = self.only_cross_attention
if isinstance(_lowercase , _lowercase ):
lowerCamelCase__ : Dict = (only_cross_attention,) * len(self.down_block_types )
if isinstance(_lowercase , _lowercase ):
lowerCamelCase__ : int = (num_attention_heads,) * len(self.down_block_types )
# down
lowerCamelCase__ : Union[str, Any] = []
lowerCamelCase__ : Optional[Any] = block_out_channels[0]
for i, down_block_type in enumerate(self.down_block_types ):
lowerCamelCase__ : List[Any] = output_channel
lowerCamelCase__ : Dict = block_out_channels[i]
lowerCamelCase__ : Dict = i == len(_lowercase ) - 1
if down_block_type == "CrossAttnDownBlock2D":
lowerCamelCase__ : Optional[Any] = FlaxCrossAttnDownBlockaD(
in_channels=_lowercase , out_channels=_lowercase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
lowerCamelCase__ : Optional[Any] = FlaxDownBlockaD(
in_channels=_lowercase , out_channels=_lowercase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , )
down_blocks.append(_lowercase )
lowerCamelCase__ : Optional[int] = down_blocks
# mid
lowerCamelCase__ : Tuple = FlaxUNetMidBlockaDCrossAttn(
in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
# up
lowerCamelCase__ : Optional[int] = []
lowerCamelCase__ : Union[str, Any] = list(reversed(_lowercase ) )
lowerCamelCase__ : List[str] = list(reversed(_lowercase ) )
lowerCamelCase__ : Tuple = list(reversed(_lowercase ) )
lowerCamelCase__ : Dict = reversed_block_out_channels[0]
for i, up_block_type in enumerate(self.up_block_types ):
lowerCamelCase__ : Union[str, Any] = output_channel
lowerCamelCase__ : Tuple = reversed_block_out_channels[i]
lowerCamelCase__ : Optional[int] = reversed_block_out_channels[min(i + 1 , len(_lowercase ) - 1 )]
lowerCamelCase__ : List[str] = i == len(_lowercase ) - 1
if up_block_type == "CrossAttnUpBlock2D":
lowerCamelCase__ : List[Any] = FlaxCrossAttnUpBlockaD(
in_channels=_lowercase , out_channels=_lowercase , prev_output_channel=_lowercase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
else:
lowerCamelCase__ : Any = FlaxUpBlockaD(
in_channels=_lowercase , out_channels=_lowercase , prev_output_channel=_lowercase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , )
up_blocks.append(_lowercase )
lowerCamelCase__ : Union[str, Any] = output_channel
lowerCamelCase__ : int = up_blocks
# out
lowerCamelCase__ : Optional[Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 )
lowerCamelCase__ : Optional[Any] = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__ = True , __magic_name__ = False , ):
if not isinstance(_lowercase , jnp.ndarray ):
lowerCamelCase__ : Union[str, Any] = jnp.array([timesteps] , dtype=jnp.intaa )
elif isinstance(_lowercase , jnp.ndarray ) and len(timesteps.shape ) == 0:
lowerCamelCase__ : Union[str, Any] = timesteps.astype(dtype=jnp.floataa )
lowerCamelCase__ : List[str] = jnp.expand_dims(_lowercase , 0 )
lowerCamelCase__ : Any = self.time_proj(_lowercase )
lowerCamelCase__ : Tuple = self.time_embedding(_lowercase )
# 2. pre-process
lowerCamelCase__ : Optional[Any] = jnp.transpose(_lowercase , (0, 2, 3, 1) )
lowerCamelCase__ : List[str] = self.conv_in(_lowercase )
# 3. down
lowerCamelCase__ : Dict = (sample,)
for down_block in self.down_blocks:
if isinstance(_lowercase , _lowercase ):
lowerCamelCase__ : Tuple = down_block(_lowercase , _lowercase , _lowercase , deterministic=not train )
else:
lowerCamelCase__ : Tuple = down_block(_lowercase , _lowercase , deterministic=not train )
down_block_res_samples += res_samples
if down_block_additional_residuals is not None:
lowerCamelCase__ : Dict = ()
for down_block_res_sample, down_block_additional_residual in zip(
_lowercase , _lowercase ):
down_block_res_sample += down_block_additional_residual
new_down_block_res_samples += (down_block_res_sample,)
lowerCamelCase__ : Dict = new_down_block_res_samples
# 4. mid
lowerCamelCase__ : Dict = self.mid_block(_lowercase , _lowercase , _lowercase , deterministic=not train )
if mid_block_additional_residual is not None:
sample += mid_block_additional_residual
# 5. up
for up_block in self.up_blocks:
lowerCamelCase__ : List[str] = down_block_res_samples[-(self.layers_per_block + 1) :]
lowerCamelCase__ : Optional[Any] = down_block_res_samples[: -(self.layers_per_block + 1)]
if isinstance(_lowercase , _lowercase ):
lowerCamelCase__ : List[str] = up_block(
_lowercase , temb=_lowercase , encoder_hidden_states=_lowercase , res_hidden_states_tuple=_lowercase , deterministic=not train , )
else:
lowerCamelCase__ : Tuple = up_block(_lowercase , temb=_lowercase , res_hidden_states_tuple=_lowercase , deterministic=not train )
# 6. post-process
lowerCamelCase__ : Optional[Any] = self.conv_norm_out(_lowercase )
lowerCamelCase__ : Optional[Any] = nn.silu(_lowercase )
lowerCamelCase__ : Any = self.conv_out(_lowercase )
lowerCamelCase__ : int = jnp.transpose(_lowercase , (0, 3, 1, 2) )
if not return_dict:
return (sample,)
return FlaxUNetaDConditionOutput(sample=_lowercase )
| 719 |
from __future__ import annotations
def _A (UpperCamelCase : str , UpperCamelCase : list[str] | None = None ) ->list[list[str]]:
'''simple docstring'''
lowerCamelCase__ : List[str] = word_bank or []
# create a table
lowerCamelCase__ : int = len(UpperCamelCase ) + 1
lowerCamelCase__ : list[list[list[str]]] = []
for _ in range(UpperCamelCase ):
table.append([] )
# seed value
lowerCamelCase__ : Tuple = [[]] # because empty string has empty combination
# iterate through the indices
for i in range(UpperCamelCase ):
# condition
if table[i] != []:
for word in word_bank:
# slice condition
if target[i : i + len(UpperCamelCase )] == word:
lowerCamelCase__ : list[list[str]] = [
[word, *way] for way in table[i]
]
# adds the word to every combination the current position holds
# now,push that combination to the table[i+len(word)]
table[i + len(UpperCamelCase )] += new_combinations
# combinations are in reverse order so reverse for better output
for combination in table[len(UpperCamelCase )]:
combination.reverse()
return table[len(UpperCamelCase )]
if __name__ == "__main__":
print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa''']))
print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t''']))
print(
all_construct(
'''hexagonosaurus''',
['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''],
)
)
| 96 | 0 |
from ...utils import is_torch_available, is_transformers_available
if is_transformers_available() and is_torch_available():
from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline | 557 |
import unittest
from transformers.testing_utils import require_bsa
from transformers.utils import is_bsa_available
from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin
if is_bsa_available():
from transformers import MarkupLMFeatureExtractor
class lowerCamelCase__ ( unittest.TestCase):
'''simple docstring'''
def __init__( self :Optional[int] , a :List[str] ) -> Union[str, Any]:
__UpperCamelCase : Dict = parent
def _lowerCamelCase ( self :Dict ) -> int:
return {}
def _SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
'''simple docstring'''
__UpperCamelCase : Union[str, Any] = "<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR=\"FFFFFF\">\n <HR>\n <a href=\"http://google.com\">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style=\"color:#0000FF\">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>"
__UpperCamelCase : Optional[int] = "\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n "
return [html_string_a, html_string_a]
@require_bsa
class lowerCamelCase__ ( __lowercase , unittest.TestCase):
'''simple docstring'''
_A = MarkupLMFeatureExtractor if is_bsa_available() else None
def _lowerCamelCase ( self :List[str] ) -> str:
__UpperCamelCase : List[str] = MarkupLMFeatureExtractionTester(self )
@property
def _lowerCamelCase ( self :List[Any] ) -> List[str]:
return self.feature_extract_tester.prepare_feat_extract_dict()
def _lowerCamelCase ( self :Dict ) -> Dict:
# Initialize feature_extractor
__UpperCamelCase : Tuple = self.feature_extraction_class()
# Test not batched input
__UpperCamelCase : Union[str, Any] = get_html_strings()[0]
__UpperCamelCase : Any = feature_extractor(a )
# fmt: off
__UpperCamelCase : Union[str, Any] = [["sample document", "Goog", "This is one header", "This is a another Header", "Travel from", "SFO to JFK", "on May 2, 2015 at 2:00 pm. For details go to confirm.com", "Traveler", "name", "is", "John Doe"]]
__UpperCamelCase : Tuple = [["/html/head/title", "/html/body/a", "/html/body/h1", "/html/body/h2", "/html/body/p", "/html/body/p/p/b[1]", "/html/body/p/p/b[2]/i", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/b", "/html/body/p/p/div/h3", "/html/body/p/p/div/h3/p"]]
# fmt: on
self.assertEqual(encoding.nodes , a )
self.assertEqual(encoding.xpaths , a )
# Test batched
__UpperCamelCase : str = get_html_strings()
__UpperCamelCase : List[Any] = feature_extractor(a )
# fmt: off
__UpperCamelCase : Optional[int] = expected_nodes + [["My First Heading", "My first paragraph."]]
__UpperCamelCase : Tuple = expected_xpaths + [["/html/body/h1", "/html/body/p"]]
self.assertEqual(len(encoding.nodes ) , 2 )
self.assertEqual(len(encoding.xpaths ) , 2 )
self.assertEqual(encoding.nodes , a )
self.assertEqual(encoding.xpaths , a ) | 557 | 1 |
"""simple docstring"""
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
class _SCREAMING_SNAKE_CASE ( __UpperCAmelCase ):
"""simple docstring"""
_a : Tuple = '''philschmid/bart-large-cnn-samsum'''
_a : Optional[Any] = (
'''This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, '''
'''and returns a summary of the text.'''
)
_a : Union[str, Any] = '''summarizer'''
_a : List[Any] = AutoTokenizer
_a : Optional[Any] = AutoModelForSeqaSeqLM
_a : Any = ['''text''']
_a : List[str] = ['''text''']
def UpperCAmelCase__( self , lowerCamelCase__ ) -> List[str]:
return self.pre_processor(lowerCamelCase__ , return_tensors="""pt""" , truncation=lowerCamelCase__ )
def UpperCAmelCase__( self , lowerCamelCase__ ) -> Dict:
return self.model.generate(**lowerCamelCase__ )[0]
def UpperCAmelCase__( self , lowerCamelCase__ ) -> int:
return self.pre_processor.decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ , clean_up_tokenization_spaces=lowerCamelCase__ ) | 717 |
"""simple docstring"""
from functools import lru_cache
@lru_cache
def _lowerCamelCase ( lowerCamelCase__ : int ):
if num < 0:
raise ValueError("""Number should not be negative.""" )
return 1 if num in (0, 1) else num * factorial(num - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod() | 128 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available
a__ : str = {'''tokenization_herbert''': ['''HerbertTokenizer''']}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ : Tuple = ['''HerbertTokenizerFast''']
if TYPE_CHECKING:
from .tokenization_herbert import HerbertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_herbert_fast import HerbertTokenizerFast
else:
import sys
a__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 368 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a__ : str = logging.get_logger(__name__)
a__ : Any = {
'''xlm-mlm-en-2048''': '''https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json''',
'''xlm-mlm-ende-1024''': '''https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json''',
'''xlm-mlm-enfr-1024''': '''https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json''',
'''xlm-mlm-enro-1024''': '''https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json''',
'''xlm-mlm-tlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json''',
'''xlm-mlm-xnli15-1024''': '''https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json''',
'''xlm-clm-enfr-1024''': '''https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json''',
'''xlm-clm-ende-1024''': '''https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json''',
'''xlm-mlm-17-1280''': '''https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json''',
'''xlm-mlm-100-1280''': '''https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json''',
}
class __snake_case ( __magic_name__ ):
__lowerCAmelCase = '''xlm'''
__lowerCAmelCase = {
'''hidden_size''': '''emb_dim''',
'''num_attention_heads''': '''n_heads''',
'''num_hidden_layers''': '''n_layers''',
'''n_words''': '''vocab_size''', # For backward compatibility
}
def __init__( self , UpperCamelCase_=3_0145 , UpperCamelCase_=2048 , UpperCamelCase_=12 , UpperCamelCase_=16 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=False , UpperCamelCase_=1 , UpperCamelCase_=True , UpperCamelCase_=512 , UpperCamelCase_=2048**-0.5 , UpperCamelCase_=1E-1_2 , UpperCamelCase_=0.0_2 , UpperCamelCase_=0 , UpperCamelCase_=1 , UpperCamelCase_=2 , UpperCamelCase_=3 , UpperCamelCase_=5 , UpperCamelCase_=True , UpperCamelCase_="first" , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=0.1 , UpperCamelCase_=5 , UpperCamelCase_=5 , UpperCamelCase_=0 , UpperCamelCase_=0 , UpperCamelCase_=2 , UpperCamelCase_=0 , **UpperCamelCase_ , ) -> List[str]:
snake_case__ = vocab_size
snake_case__ = emb_dim
snake_case__ = n_layers
snake_case__ = n_heads
snake_case__ = dropout
snake_case__ = attention_dropout
snake_case__ = gelu_activation
snake_case__ = sinusoidal_embeddings
snake_case__ = causal
snake_case__ = asm
snake_case__ = n_langs
snake_case__ = use_lang_emb
snake_case__ = layer_norm_eps
snake_case__ = bos_index
snake_case__ = eos_index
snake_case__ = pad_index
snake_case__ = unk_index
snake_case__ = mask_index
snake_case__ = is_encoder
snake_case__ = max_position_embeddings
snake_case__ = embed_init_std
snake_case__ = init_std
snake_case__ = summary_type
snake_case__ = summary_use_proj
snake_case__ = summary_activation
snake_case__ = summary_proj_to_labels
snake_case__ = summary_first_dropout
snake_case__ = start_n_top
snake_case__ = end_n_top
snake_case__ = mask_token_id
snake_case__ = lang_id
if "n_words" in kwargs:
snake_case__ = kwargs['n_words']
super().__init__(pad_token_id=UpperCamelCase_ , bos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
class __snake_case ( __magic_name__ ):
@property
def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
snake_case__ = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
snake_case__ = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
('token_type_ids', dynamic_axis),
] )
| 368 | 1 |
'''simple docstring'''
import argparse
import torch
from transformers import (
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaForAudioFrameClassification,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
logging,
)
logging.set_verbosity_info()
snake_case__ : List[str] = logging.get_logger(__name__)
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[str]:
_UpperCAmelCase =WavaVecaForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ )
_UpperCAmelCase =downstream_dict['projector.weight']
_UpperCAmelCase =downstream_dict['projector.bias']
_UpperCAmelCase =downstream_dict['model.post_net.linear.weight']
_UpperCAmelCase =downstream_dict['model.post_net.linear.bias']
return model
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[str]:
_UpperCAmelCase =WavaVecaForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ )
_UpperCAmelCase =downstream_dict['model.linear.weight']
_UpperCAmelCase =downstream_dict['model.linear.bias']
return model
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->List[str]:
_UpperCAmelCase =WavaVecaForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ )
_UpperCAmelCase =downstream_dict['connector.weight']
_UpperCAmelCase =downstream_dict['connector.bias']
for i, kernel_size in enumerate(hf_config.tdnn_kernel ):
_UpperCAmelCase =downstream_dict[
F"model.framelevel_feature_extractor.module.{i}.kernel.weight"
]
_UpperCAmelCase =downstream_dict[F"model.framelevel_feature_extractor.module.{i}.kernel.bias"]
_UpperCAmelCase =downstream_dict['model.utterancelevel_feature_extractor.linear1.weight']
_UpperCAmelCase =downstream_dict['model.utterancelevel_feature_extractor.linear1.bias']
_UpperCAmelCase =downstream_dict['model.utterancelevel_feature_extractor.linear2.weight']
_UpperCAmelCase =downstream_dict['model.utterancelevel_feature_extractor.linear2.bias']
_UpperCAmelCase =downstream_dict['objective.W']
return model
@torch.no_grad()
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ->Dict:
_UpperCAmelCase =torch.load(lowerCamelCase_ , map_location="cpu" )
_UpperCAmelCase =checkpoint['Downstream']
_UpperCAmelCase =WavaVecaConfig.from_pretrained(lowerCamelCase_ )
_UpperCAmelCase =WavaVecaFeatureExtractor.from_pretrained(
lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ )
_UpperCAmelCase =hf_config.architectures[0]
if arch.endswith("ForSequenceClassification" ):
_UpperCAmelCase =convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
elif arch.endswith("ForAudioFrameClassification" ):
_UpperCAmelCase =convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
elif arch.endswith("ForXVector" ):
_UpperCAmelCase =convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ )
else:
raise NotImplementedError(F"S3PRL weights conversion is not supported for {arch}" )
if hf_config.use_weighted_layer_sum:
_UpperCAmelCase =checkpoint['Featurizer']['weights']
hf_feature_extractor.save_pretrained(lowerCamelCase_ )
hf_model.save_pretrained(lowerCamelCase_ )
if __name__ == "__main__":
snake_case__ : Optional[Any] = argparse.ArgumentParser()
parser.add_argument(
'--base_model_name', default=None, type=str, help='Name of the huggingface pretrained base model.'
)
parser.add_argument('--config_path', default=None, type=str, help='Path to the huggingface classifier config.')
parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to the s3prl checkpoint.')
parser.add_argument('--model_dump_path', default=None, type=str, help='Path to the final converted model.')
snake_case__ : Any = parser.parse_args()
convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
| 706 |
# Lint as: python3
# pylint: enable=line-too-long
# pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position
snake_case__ : List[Any] = '2.13.1'
import platform
import pyarrow
from packaging import version
if version.parse(platform.python_version()) < version.parse('3.7'):
raise ImportWarning(
'To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.'
)
if version.parse(pyarrow.__version__).major < 8:
raise ImportWarning(
'To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n'
'If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.'
)
del platform
del pyarrow
del version
from .arrow_dataset import Dataset
from .arrow_reader import ReadInstruction
from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder
from .combine import concatenate_datasets, interleave_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .download import *
from .features import *
from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled
from .info import DatasetInfo, MetricInfo
from .inspect import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
list_datasets,
list_metrics,
)
from .iterable_dataset import IterableDataset
from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric
from .metric import Metric
from .splits import (
NamedSplit,
NamedSplitAll,
Split,
SplitBase,
SplitDict,
SplitGenerator,
SplitInfo,
SubSplitInfo,
percent,
)
from .tasks import *
from .utils import *
from .utils import logging
# deprecated modules
from datasets import arrow_dataset as _arrow_dataset # isort:skip
from datasets import utils as _utils # isort:skip
from datasets.utils import download_manager as _deprecated_download_manager # isort:skip
snake_case__ : Optional[Any] = concatenate_datasets
snake_case__ : str = DownloadConfig
snake_case__ : Optional[int] = DownloadManager
snake_case__ : List[Any] = DownloadMode
snake_case__ : List[str] = DownloadConfig
snake_case__ : List[str] = DownloadMode
snake_case__ : List[Any] = DownloadManager
del _arrow_dataset, _utils, _deprecated_download_manager
| 592 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_speech_available,
is_torch_available,
)
UpperCAmelCase_ : Optional[int] = {
'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'],
'processing_trocr': ['TrOCRProcessor'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase_ : Optional[Any] = [
'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST',
'TrOCRForCausalLM',
'TrOCRPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig
from .processing_trocr import TrOCRProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel
else:
import sys
UpperCAmelCase_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__) | 44 |
import math
from typing import Callable, List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline
from diffusers.schedulers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler
def lowerCamelCase__ ( snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any]=[] ) -> Union[str, Any]:
__snake_case = size[0] - overlap_pixels * 2
__snake_case = size[1] - overlap_pixels * 2
for letter in ["l", "r"]:
if letter in remove_borders:
size_x += overlap_pixels
for letter in ["t", "b"]:
if letter in remove_borders:
size_y += overlap_pixels
__snake_case = np.ones((size_y, size_x) , dtype=np.uinta ) * 255
__snake_case = np.pad(snake_case_ , mode='''linear_ramp''' , pad_width=snake_case_ , end_values=0 )
if "l" in remove_borders:
__snake_case = mask[:, overlap_pixels : mask.shape[1]]
if "r" in remove_borders:
__snake_case = mask[:, 0 : mask.shape[1] - overlap_pixels]
if "t" in remove_borders:
__snake_case = mask[overlap_pixels : mask.shape[0], :]
if "b" in remove_borders:
__snake_case = mask[0 : mask.shape[0] - overlap_pixels, :]
return mask
def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : Optional[Any] ) -> str:
return max(snake_case_ , min(snake_case_ , snake_case_ ) )
def lowerCamelCase__ ( snake_case_ : [int] , snake_case_ : [int] , snake_case_ : [int] ) -> Optional[Any]:
return (
clamp(rect[0] , min[0] , max[0] ),
clamp(rect[1] , min[1] , max[1] ),
clamp(rect[2] , min[0] , max[0] ),
clamp(rect[3] , min[1] , max[1] ),
)
def lowerCamelCase__ ( snake_case_ : [int] , snake_case_ : int , snake_case_ : [int] ) -> Tuple:
__snake_case = list(snake_case_ )
rect[0] -= overlap
rect[1] -= overlap
rect[2] += overlap
rect[3] += overlap
__snake_case = clamp_rect(snake_case_ , [0, 0] , [image_size[0], image_size[1]] )
return rect
def lowerCamelCase__ ( snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : List[str] ) -> str:
__snake_case = Image.new('''RGB''' , (tile.size[0] + original_slice, tile.size[1]) )
result.paste(
original_image.resize((tile.size[0], tile.size[1]) , Image.BICUBIC ).crop(
(slice_x, 0, slice_x + original_slice, tile.size[1]) ) , (0, 0) , )
result.paste(snake_case_ , (original_slice, 0) )
return result
def lowerCamelCase__ ( snake_case_ : List[Any] , snake_case_ : str ) -> Optional[Any]:
__snake_case = (original_image_slice * 4, 0, tile.size[0], tile.size[1])
__snake_case = tile.crop(snake_case_ )
return tile
def lowerCamelCase__ ( snake_case_ : Any , snake_case_ : int ) -> Optional[int]:
__snake_case = n % d
return n - divisor
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ):
def __init__(self : Dict , a__ : AutoencoderKL , a__ : CLIPTextModel , a__ : CLIPTokenizer , a__ : UNetaDConditionModel , a__ : DDPMScheduler , a__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , a__ : int = 350 , ):
"""simple docstring"""
super().__init__(
vae=a__ , text_encoder=a__ , tokenizer=a__ , unet=a__ , low_res_scheduler=a__ , scheduler=a__ , max_noise_level=a__ , )
def a (self : Tuple , a__ : str , a__ : int , a__ : Tuple , a__ : List[str] , a__ : Tuple , a__ : str , a__ : Dict , **a__ : List[str] ):
"""simple docstring"""
torch.manual_seed(0 )
__snake_case = (
min(image.size[0] - (tile_size + original_image_slice) , x * tile_size ),
min(image.size[1] - (tile_size + original_image_slice) , y * tile_size ),
min(image.size[0] , (x + 1) * tile_size ),
min(image.size[1] , (y + 1) * tile_size ),
)
__snake_case = add_overlap_rect(a__ , a__ , image.size )
__snake_case = image.crop(a__ )
__snake_case = ((crop_rect[0] + ((crop_rect[2] - crop_rect[0]) / 2)) / image.size[0]) * tile.size[0]
__snake_case = translated_slice_x - (original_image_slice / 2)
__snake_case = max(0 , a__ )
__snake_case = squeeze_tile(a__ , a__ , a__ , a__ )
__snake_case = to_input.size
__snake_case = to_input.resize((tile_size, tile_size) , Image.BICUBIC )
__snake_case = super(a__ , self ).__call__(image=a__ , **a__ ).images[0]
__snake_case = upscaled_tile.resize((orig_input_size[0] * 4, orig_input_size[1] * 4) , Image.BICUBIC )
__snake_case = unsqueeze_tile(a__ , a__ )
__snake_case = upscaled_tile.resize((tile.size[0] * 4, tile.size[1] * 4) , Image.BICUBIC )
__snake_case = []
if x == 0:
remove_borders.append('''l''' )
elif crop_rect[2] == image.size[0]:
remove_borders.append('''r''' )
if y == 0:
remove_borders.append('''t''' )
elif crop_rect[3] == image.size[1]:
remove_borders.append('''b''' )
__snake_case = Image.fromarray(
make_transparency_mask(
(upscaled_tile.size[0], upscaled_tile.size[1]) , tile_border * 4 , remove_borders=a__ ) , mode='''L''' , )
final_image.paste(
a__ , (crop_rect_with_overlap[0] * 4, crop_rect_with_overlap[1] * 4) , a__ )
@torch.no_grad()
def __call__(self : Any , a__ : Union[str, List[str]] , a__ : Union[PIL.Image.Image, List[PIL.Image.Image]] , a__ : int = 75 , a__ : float = 9.0 , a__ : int = 50 , a__ : Optional[Union[str, List[str]]] = None , a__ : Optional[int] = 1 , a__ : float = 0.0 , a__ : Optional[torch.Generator] = None , a__ : Optional[torch.FloatTensor] = None , a__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , a__ : int = 1 , a__ : int = 128 , a__ : int = 32 , a__ : int = 32 , ):
"""simple docstring"""
__snake_case = Image.new('''RGB''' , (image.size[0] * 4, image.size[1] * 4) )
__snake_case = math.ceil(image.size[0] / tile_size )
__snake_case = math.ceil(image.size[1] / tile_size )
__snake_case = tcx * tcy
__snake_case = 0
for y in range(a__ ):
for x in range(a__ ):
self._process_tile(
a__ , a__ , a__ , a__ , a__ , a__ , a__ , prompt=a__ , num_inference_steps=a__ , guidance_scale=a__ , noise_level=a__ , negative_prompt=a__ , num_images_per_prompt=a__ , eta=a__ , generator=a__ , latents=a__ , )
current_count += 1
if callback is not None:
callback({'''progress''': current_count / total_tile_count, '''image''': final_image} )
return final_image
def lowerCamelCase__ ( ) -> Tuple:
# Run a demo
__snake_case = '''stabilityai/stable-diffusion-x4-upscaler'''
__snake_case = StableDiffusionTiledUpscalePipeline.from_pretrained(snake_case_ , revision='''fp16''' , torch_dtype=torch.floataa )
__snake_case = pipe.to('''cuda''' )
__snake_case = Image.open('''../../docs/source/imgs/diffusers_library.jpg''' )
def callback(snake_case_ : Any ):
print(f"""progress: {obj['progress']:.4f}""" )
obj["image"].save('''diffusers_library_progress.jpg''' )
__snake_case = pipe(image=snake_case_ , prompt='''Black font, white background, vector''' , noise_level=40 , callback=snake_case_ )
final_image.save('''diffusers_library.jpg''' )
if __name__ == "__main__":
main()
| 592 | 0 |
"""simple docstring"""
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def lowercase_ ( ):
raise RuntimeError("""CUDA out of memory.""" )
class lowerCAmelCase_ (nn.Module ):
"""simple docstring"""
def __init__(self ) -> int:
"""simple docstring"""
super().__init__()
SCREAMING_SNAKE_CASE__ : Any = nn.Linear(3 , 4 )
SCREAMING_SNAKE_CASE__ : List[str] = nn.BatchNormad(4 )
SCREAMING_SNAKE_CASE__ : Any = nn.Linear(4 , 5 )
def __magic_name__ (self , SCREAMING_SNAKE_CASE__ ) -> List[Any]:
"""simple docstring"""
return self.lineara(self.batchnorm(self.lineara(__a ) ) )
class lowerCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __magic_name__ (self ) -> str:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[str] = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(SCREAMING_SNAKE_CASE__ ):
nonlocal batch_sizes
batch_sizes.append(__a )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(__a , [1_28, 64, 32, 16, 8] )
def __magic_name__ (self ) -> Any:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = []
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
nonlocal batch_sizes
batch_sizes.append(__a )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
SCREAMING_SNAKE_CASE__ : List[str] = mock_training_loop_function("""hello""" )
self.assertListEqual(__a , [1_28, 64, 32, 16, 8] )
self.assertListEqual([bs, arga] , [8, """hello"""] )
def __magic_name__ (self ) -> Dict:
"""simple docstring"""
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(SCREAMING_SNAKE_CASE__ ):
pass
with self.assertRaises(__a ) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] )
def __magic_name__ (self ) -> Any:
"""simple docstring"""
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(SCREAMING_SNAKE_CASE__ ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(__a ) as cm:
mock_training_loop_function()
self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] )
def __magic_name__ (self ) -> List[str]:
"""simple docstring"""
@find_executable_batch_size(starting_batch_size=1_28 )
def mock_training_loop_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(__a ) as cm:
mock_training_loop_function(1_28 , """hello""" , """world""" )
self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0] )
self.assertIn("""`f(arg1=\'hello\', arg2=\'world\')""" , cm.exception.args[0] )
def __magic_name__ (self ) -> Optional[int]:
"""simple docstring"""
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(SCREAMING_SNAKE_CASE__ ):
raise ValueError("""Oops, we had an error!""" )
with self.assertRaises(__a ) as cm:
mock_training_loop_function()
self.assertIn("""Oops, we had an error!""" , cm.exception.args[0] )
@require_cuda
def __magic_name__ (self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Any = torch.cuda.memory_allocated()
SCREAMING_SNAKE_CASE__ : List[str] = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , __a )
SCREAMING_SNAKE_CASE__ : List[str] = release_memory(__a )
self.assertEqual(torch.cuda.memory_allocated() , __a )
| 717 |
"""simple docstring"""
from math import pi, sqrt, tan
def lowercase_ ( _snake_case ):
if side_length < 0:
raise ValueError("""surface_area_cube() only accepts non-negative values""" )
return 6 * side_length**2
def lowercase_ ( _snake_case ,_snake_case ,_snake_case ):
if length < 0 or breadth < 0 or height < 0:
raise ValueError("""surface_area_cuboid() only accepts non-negative values""" )
return 2 * ((length * breadth) + (breadth * height) + (length * height))
def lowercase_ ( _snake_case ):
if radius < 0:
raise ValueError("""surface_area_sphere() only accepts non-negative values""" )
return 4 * pi * radius**2
def lowercase_ ( _snake_case ):
if radius < 0:
raise ValueError("""surface_area_hemisphere() only accepts non-negative values""" )
return 3 * pi * radius**2
def lowercase_ ( _snake_case ,_snake_case ):
if radius < 0 or height < 0:
raise ValueError("""surface_area_cone() only accepts non-negative values""" )
return pi * radius * (radius + (height**2 + radius**2) ** 0.5)
def lowercase_ ( _snake_case ,_snake_case ,_snake_case ):
if radius_a < 0 or radius_a < 0 or height < 0:
raise ValueError(
"""surface_area_conical_frustum() only accepts non-negative values""" )
SCREAMING_SNAKE_CASE__ : int = (height**2 + (radius_a - radius_a) ** 2) ** 0.5
return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2)
def lowercase_ ( _snake_case ,_snake_case ):
if radius < 0 or height < 0:
raise ValueError("""surface_area_cylinder() only accepts non-negative values""" )
return 2 * pi * radius * (height + radius)
def lowercase_ ( _snake_case ,_snake_case ):
if torus_radius < 0 or tube_radius < 0:
raise ValueError("""surface_area_torus() only accepts non-negative values""" )
if torus_radius < tube_radius:
raise ValueError(
"""surface_area_torus() does not support spindle or self intersecting tori""" )
return 4 * pow(_snake_case ,2 ) * torus_radius * tube_radius
def lowercase_ ( _snake_case ,_snake_case ):
if length < 0 or width < 0:
raise ValueError("""area_rectangle() only accepts non-negative values""" )
return length * width
def lowercase_ ( _snake_case ):
if side_length < 0:
raise ValueError("""area_square() only accepts non-negative values""" )
return side_length**2
def lowercase_ ( _snake_case ,_snake_case ):
if base < 0 or height < 0:
raise ValueError("""area_triangle() only accepts non-negative values""" )
return (base * height) / 2
def lowercase_ ( _snake_case ,_snake_case ,_snake_case ):
if sidea < 0 or sidea < 0 or sidea < 0:
raise ValueError("""area_triangle_three_sides() only accepts non-negative values""" )
elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea:
raise ValueError("""Given three sides do not form a triangle""" )
SCREAMING_SNAKE_CASE__ : List[str] = (sidea + sidea + sidea) / 2
SCREAMING_SNAKE_CASE__ : List[Any] = sqrt(
semi_perimeter
* (semi_perimeter - sidea)
* (semi_perimeter - sidea)
* (semi_perimeter - sidea) )
return area
def lowercase_ ( _snake_case ,_snake_case ):
if base < 0 or height < 0:
raise ValueError("""area_parallelogram() only accepts non-negative values""" )
return base * height
def lowercase_ ( _snake_case ,_snake_case ,_snake_case ):
if basea < 0 or basea < 0 or height < 0:
raise ValueError("""area_trapezium() only accepts non-negative values""" )
return 1 / 2 * (basea + basea) * height
def lowercase_ ( _snake_case ):
if radius < 0:
raise ValueError("""area_circle() only accepts non-negative values""" )
return pi * radius**2
def lowercase_ ( _snake_case ,_snake_case ):
if radius_x < 0 or radius_y < 0:
raise ValueError("""area_ellipse() only accepts non-negative values""" )
return pi * radius_x * radius_y
def lowercase_ ( _snake_case ,_snake_case ):
if diagonal_a < 0 or diagonal_a < 0:
raise ValueError("""area_rhombus() only accepts non-negative values""" )
return 1 / 2 * diagonal_a * diagonal_a
def lowercase_ ( _snake_case ,_snake_case ):
if not isinstance(_snake_case ,_snake_case ) or sides < 3:
raise ValueError(
"""area_reg_polygon() only accepts integers greater than or \
equal to three as number of sides""" )
elif length < 0:
raise ValueError(
"""area_reg_polygon() only accepts non-negative values as \
length of a side""" )
return (sides * length**2) / (4 * tan(pi / sides ))
return (sides * length**2) / (4 * tan(pi / sides ))
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True) # verbose so we can see methods missing tests
print('[DEMO] Areas of various geometric shapes: \n')
print(f"""Rectangle: {area_rectangle(1_0, 2_0) = }""")
print(f"""Square: {area_square(1_0) = }""")
print(f"""Triangle: {area_triangle(1_0, 1_0) = }""")
print(f"""Triangle: {area_triangle_three_sides(5, 1_2, 1_3) = }""")
print(f"""Parallelogram: {area_parallelogram(1_0, 2_0) = }""")
print(f"""Rhombus: {area_rhombus(1_0, 2_0) = }""")
print(f"""Trapezium: {area_trapezium(1_0, 2_0, 3_0) = }""")
print(f"""Circle: {area_circle(2_0) = }""")
print(f"""Ellipse: {area_ellipse(1_0, 2_0) = }""")
print('\nSurface Areas of various geometric shapes: \n')
print(f"""Cube: {surface_area_cube(2_0) = }""")
print(f"""Cuboid: {surface_area_cuboid(1_0, 2_0, 3_0) = }""")
print(f"""Sphere: {surface_area_sphere(2_0) = }""")
print(f"""Hemisphere: {surface_area_hemisphere(2_0) = }""")
print(f"""Cone: {surface_area_cone(1_0, 2_0) = }""")
print(f"""Conical Frustum: {surface_area_conical_frustum(1_0, 2_0, 3_0) = }""")
print(f"""Cylinder: {surface_area_cylinder(1_0, 2_0) = }""")
print(f"""Torus: {surface_area_torus(2_0, 1_0) = }""")
print(f"""Equilateral Triangle: {area_reg_polygon(3, 1_0) = }""")
print(f"""Square: {area_reg_polygon(4, 1_0) = }""")
print(f"""Reqular Pentagon: {area_reg_polygon(5, 1_0) = }""")
| 545 | 0 |
from typing import List, Optional, Union
import numpy as np
from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ....feature_extraction_sequence_utils import SequenceFeatureExtractor
from ....feature_extraction_utils import BatchFeature
from ....file_utils import PaddingStrategy, TensorType
from ....utils import logging
_lowercase = logging.get_logger(__name__)
class __snake_case ( snake_case__ ):
"""simple docstring"""
UpperCamelCase_ = ['input_features', 'attention_mask']
def __init__( self : Optional[Any] ,lowerCAmelCase__ : Any=80 ,lowerCAmelCase__ : Optional[Any]=1_60_00 ,lowerCAmelCase__ : List[str]=0.0 ,lowerCAmelCase__ : Tuple=10 ,lowerCAmelCase__ : Optional[Any]=25 ,lowerCAmelCase__ : Any="hamming_window" ,lowerCAmelCase__ : List[str]=32_768.0 ,lowerCAmelCase__ : Union[str, Any]=0.97 ,lowerCAmelCase__ : Any=1.0 ,lowerCAmelCase__ : str=True ,lowerCAmelCase__ : int=True ,lowerCAmelCase__ : Tuple=False ,**lowerCAmelCase__ : Optional[int] ,) -> Optional[Any]:
'''simple docstring'''
super().__init__(feature_size=lowerCAmelCase__ ,sampling_rate=lowerCAmelCase__ ,padding_value=lowerCAmelCase__ ,**lowerCAmelCase__ )
lowerCAmelCase_ : Optional[int] = feature_size
lowerCAmelCase_ : List[Any] = sampling_rate
lowerCAmelCase_ : Union[str, Any] = padding_value
lowerCAmelCase_ : str = hop_length
lowerCAmelCase_ : str = win_length
lowerCAmelCase_ : str = frame_signal_scale
lowerCAmelCase_ : Any = preemphasis_coeff
lowerCAmelCase_ : Optional[Any] = mel_floor
lowerCAmelCase_ : List[str] = normalize_means
lowerCAmelCase_ : Optional[Any] = normalize_vars
lowerCAmelCase_ : Dict = win_function
lowerCAmelCase_ : List[Any] = return_attention_mask
lowerCAmelCase_ : Tuple = win_length * sampling_rate // 10_00
lowerCAmelCase_ : str = hop_length * sampling_rate // 10_00
lowerCAmelCase_ : Dict = optimal_fft_length(self.sample_size )
lowerCAmelCase_ : Optional[int] = (self.n_fft // 2) + 1
def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : np.array ) -> np.ndarray:
'''simple docstring'''
if self.win_function == "hamming_window":
lowerCAmelCase_ : int = window_function(window_length=self.sample_size ,name=self.win_function ,periodic=lowerCAmelCase__ )
else:
lowerCAmelCase_ : Tuple = window_function(window_length=self.sample_size ,name=self.win_function )
lowerCAmelCase_ : List[str] = mel_filter_bank(
num_frequency_bins=self.n_freqs ,num_mel_filters=self.feature_size ,min_frequency=0.0 ,max_frequency=self.sampling_rate / 2.0 ,sampling_rate=self.sampling_rate ,)
lowerCAmelCase_ : Any = spectrogram(
one_waveform * self.frame_signal_scale ,window=lowerCAmelCase__ ,frame_length=self.sample_size ,hop_length=self.sample_stride ,fft_length=self.n_fft ,center=lowerCAmelCase__ ,preemphasis=self.preemphasis_coeff ,mel_filters=lowerCAmelCase__ ,mel_floor=self.mel_floor ,log_mel="log" ,)
return msfc_features.T
def UpperCAmelCase_ ( self : int ,lowerCAmelCase__ : List[Any] ,lowerCAmelCase__ : Optional[Any] ,lowerCAmelCase__ : Tuple ) -> Optional[Any]:
'''simple docstring'''
if self.normalize_means:
lowerCAmelCase_ : Optional[int] = x[:input_length].mean(axis=0 )
lowerCAmelCase_ : List[str] = np.subtract(lowerCAmelCase__ ,lowerCAmelCase__ )
if self.normalize_vars:
lowerCAmelCase_ : Optional[Any] = x[:input_length].std(axis=0 )
lowerCAmelCase_ : Tuple = np.divide(lowerCAmelCase__ ,lowerCAmelCase__ )
if input_length < x.shape[0]:
lowerCAmelCase_ : int = padding_value
# make sure array is in float32
lowerCAmelCase_ : Any = x.astype(np.floataa )
return x
def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : List[np.ndarray] ,lowerCAmelCase__ : Optional[np.ndarray] = None ) -> List[np.ndarray]:
'''simple docstring'''
lowerCAmelCase_ : List[Any] = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features]
return [self._normalize_one(lowerCAmelCase__ ,lowerCAmelCase__ ,self.padding_value ) for x, n in zip(lowerCAmelCase__ ,lowerCAmelCase__ )]
def __call__( self : int ,lowerCAmelCase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,lowerCAmelCase__ : Union[bool, str, PaddingStrategy] = False ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : bool = False ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[bool] = None ,lowerCAmelCase__ : Optional[Union[str, TensorType]] = None ,lowerCAmelCase__ : Optional[int] = None ,**lowerCAmelCase__ : Union[str, Any] ,) -> BatchFeature:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with'''
f''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
"It is strongly recommended to pass the ``sampling_rate`` argument to this function. "
"Failing to do so can result in silent errors that might be hard to debug." )
lowerCAmelCase_ : List[Any] = isinstance(lowerCAmelCase__ ,np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' )
lowerCAmelCase_ : str = is_batched_numpy or (
isinstance(lowerCAmelCase__ ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) ))
)
if is_batched:
lowerCAmelCase_ : Tuple = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for speech in raw_speech]
elif not is_batched and not isinstance(lowerCAmelCase__ ,np.ndarray ):
lowerCAmelCase_ : int = np.asarray(lowerCAmelCase__ ,dtype=np.floataa )
elif isinstance(lowerCAmelCase__ ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
lowerCAmelCase_ : Union[str, Any] = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
lowerCAmelCase_ : Optional[int] = [raw_speech]
# extract fbank features
lowerCAmelCase_ : Dict = [self._extract_mfsc_features(lowerCAmelCase__ ) for one_waveform in raw_speech]
# convert into correct format for padding
lowerCAmelCase_ : int = BatchFeature({"input_features": features} )
lowerCAmelCase_ : Union[str, Any] = self.pad(
lowerCAmelCase__ ,padding=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,truncation=lowerCAmelCase__ ,pad_to_multiple_of=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,**lowerCAmelCase__ ,)
# make sure list is in array format
lowerCAmelCase_ : Optional[Any] = padded_inputs.get("input_features" )
if isinstance(input_features[0] ,lowerCAmelCase__ ):
lowerCAmelCase_ : Optional[int] = [np.asarray(lowerCAmelCase__ ,dtype=np.floataa ) for feature in input_features]
lowerCAmelCase_ : List[Any] = padded_inputs.get("attention_mask" )
if attention_mask is not None:
lowerCAmelCase_ : Dict = [np.asarray(lowerCAmelCase__ ,dtype=np.intaa ) for array in attention_mask]
if self.normalize_means or self.normalize_vars:
lowerCAmelCase_ : Dict = (
np.array(lowerCAmelCase__ ,dtype=np.intaa )
if self._get_padding_strategies(lowerCAmelCase__ ,max_length=lowerCAmelCase__ ) is not PaddingStrategy.DO_NOT_PAD
and padding
else None
)
lowerCAmelCase_ : List[str] = self.normalize(
padded_inputs["input_features"] ,attention_mask=lowerCAmelCase__ )
if return_tensors is not None:
lowerCAmelCase_ : Dict = padded_inputs.convert_to_tensors(lowerCAmelCase__ )
return padded_inputs
| 659 |
import logging
import sys
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
import librosa
import torch
from datasets import DatasetDict, load_dataset
from packaging import version
from torch import nn
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaForPreTraining,
is_apex_available,
trainer_utils,
)
from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices
if is_apex_available():
from apex import amp
if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''):
_lowercase = True
from torch.cuda.amp import autocast
_lowercase = logging.getLogger(__name__)
@dataclass
class __snake_case :
"""simple docstring"""
UpperCamelCase_ = field(
metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} )
UpperCamelCase_ = field(
default=snake_case__ , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , )
UpperCamelCase_ = field(
default=snake_case__ , metadata={'help': 'Whether to freeze the feature extractor layers of the model.'} )
UpperCamelCase_ = field(
default=snake_case__ , metadata={'help': 'Whether to log verbose messages or not.'} , )
UpperCamelCase_ = field(
default=2.0 , metadata={'help': 'Maximum temperature for gumbel softmax.'} )
UpperCamelCase_ = field(
default=0.5 , metadata={'help': 'Minimum temperature for gumbel softmax.'} )
UpperCamelCase_ = field(
default=0.99_99_95 , metadata={'help': 'Decay of gumbel temperature during training.'} )
def UpperCamelCase ( snake_case__ , snake_case__):
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout)] , )
lowerCAmelCase_ : str = logging.WARNING
if model_args.verbose_logging:
lowerCAmelCase_ : int = logging.DEBUG
elif trainer_utils.is_main_process(training_args.local_rank):
lowerCAmelCase_ : Any = logging.INFO
logger.setLevel(snake_case__)
@dataclass
class __snake_case :
"""simple docstring"""
UpperCamelCase_ = field(
default=snake_case__ , metadata={'help': 'The name of the dataset to use (via the datasets library).'} )
UpperCamelCase_ = field(
default=snake_case__ , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} )
UpperCamelCase_ = field(
default='train' , metadata={
'help': 'The name of the training data set split to use (via the datasets library). Defaults to \'train\''
} , )
UpperCamelCase_ = field(
default='validation' , metadata={
'help': (
'The name of the validation data set split to use (via the datasets library). Defaults to \'validation\''
)
} , )
UpperCamelCase_ = field(
default='file' , metadata={'help': 'Column in the dataset that contains speech file path. Defaults to \'file\''} , )
UpperCamelCase_ = field(
default=snake_case__ , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'} )
UpperCamelCase_ = field(
default=1 , metadata={
'help': 'The percentage of the train set used as validation set in case there\'s no validation split'
} , )
UpperCamelCase_ = field(
default=snake_case__ , metadata={'help': 'The number of processes to use for the preprocessing.'} , )
UpperCamelCase_ = field(
default=20.0 , metadata={'help': 'Filter audio files that are longer than `max_duration_in_seconds` seconds'} )
@dataclass
class __snake_case :
"""simple docstring"""
UpperCamelCase_ = 42
UpperCamelCase_ = 42
UpperCamelCase_ = "longest"
UpperCamelCase_ = None
UpperCamelCase_ = None
def __call__( self : str ,lowerCAmelCase__ : List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]:
'''simple docstring'''
lowerCAmelCase_ : Tuple = self.feature_extractor.pad(
lowerCAmelCase__ ,max_length=self.max_length ,padding=self.padding ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors="pt" ,)
lowerCAmelCase_ : Union[str, Any] = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1] )
lowerCAmelCase_ : List[str] = batch["input_values"].shape[0]
# make sure that no loss is computed on padded inputs
if batch["attention_mask"] is not None:
# compute real output lengths according to convolution formula
lowerCAmelCase_ : Tuple = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1 ) ).to(
torch.long )
lowerCAmelCase_ : Optional[Any] = torch.zeros(
(batch_size, mask_indices_seq_length) ,dtype=torch.long ,device=batch["input_values"].device )
# these two operations makes sure that all values
# before the output lengths indices are attended to
lowerCAmelCase_ : Tuple = 1
lowerCAmelCase_ : int = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool()
# sample randomly masked indices
lowerCAmelCase_ : str = _compute_mask_indices(
(batch_size, mask_indices_seq_length) ,self.model.config.mask_time_prob ,self.model.config.mask_time_length ,attention_mask=lowerCAmelCase__ ,min_masks=2 ,)
return batch
class __snake_case ( snake_case__ ):
"""simple docstring"""
def __init__( self : List[str] ,*lowerCAmelCase__ : Optional[int] ,lowerCAmelCase__ : Tuple=1 ,lowerCAmelCase__ : Optional[int]=0 ,lowerCAmelCase__ : Optional[Any]=1.0 ,**lowerCAmelCase__ : Any ) -> str:
'''simple docstring'''
super().__init__(*lowerCAmelCase__ ,**lowerCAmelCase__ )
lowerCAmelCase_ : Tuple = 0
lowerCAmelCase_ : int = max_gumbel_temp
lowerCAmelCase_ : Union[str, Any] = min_gumbel_temp
lowerCAmelCase_ : str = gumbel_temp_decay
def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : nn.Module ,lowerCAmelCase__ : Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor:
'''simple docstring'''
model.train()
lowerCAmelCase_ : str = self._prepare_inputs(lowerCAmelCase__ )
if self.use_amp:
with autocast():
lowerCAmelCase_ : List[Any] = self.compute_loss(lowerCAmelCase__ ,lowerCAmelCase__ )
else:
lowerCAmelCase_ : List[Any] = self.compute_loss(lowerCAmelCase__ ,lowerCAmelCase__ )
if self.args.n_gpu > 1 or self.deepspeed:
if model.module.config.ctc_loss_reduction == "mean":
lowerCAmelCase_ : List[Any] = loss.mean()
elif model.module.config.ctc_loss_reduction == "sum":
lowerCAmelCase_ : Optional[Any] = loss.sum() / (inputs["mask_time_indices"]).sum()
else:
raise ValueError(f'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' )
if self.args.gradient_accumulation_steps > 1:
lowerCAmelCase_ : int = loss / self.args.gradient_accumulation_steps
if self.use_amp:
self.scaler.scale(lowerCAmelCase__ ).backward()
elif self.use_apex:
with amp.scale_loss(lowerCAmelCase__ ,self.optimizer ) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
self.deepspeed.backward(lowerCAmelCase__ )
else:
loss.backward()
self.num_update_step += 1
# make sure gumbel softmax temperature is decayed
if self.args.n_gpu > 1 or self.deepspeed:
model.module.set_gumbel_temperature(
max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step ,self.min_gumbel_temp ) )
else:
model.set_gumbel_temperature(
max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step ,self.min_gumbel_temp ) )
return loss.detach()
def UpperCamelCase ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
lowerCAmelCase_ : Tuple = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : Dict = parser.parse_args_into_dataclasses()
configure_logger(snake_case__ , snake_case__)
# Downloading and loading a dataset from the hub.
lowerCAmelCase_ : List[str] = load_dataset(data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir)
if "validation" not in datasets.keys():
# make sure only "validation" and "train" keys remain"
lowerCAmelCase_ : Any = DatasetDict()
lowerCAmelCase_ : Union[str, Any] = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' , cache_dir=model_args.cache_dir , )
lowerCAmelCase_ : List[str] = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' , cache_dir=model_args.cache_dir , )
else:
# make sure only "validation" and "train" keys remain"
lowerCAmelCase_ : Union[str, Any] = DatasetDict()
lowerCAmelCase_ : int = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split="validation" , cache_dir=model_args.cache_dir , )
lowerCAmelCase_ : Any = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F'''{data_args.train_split_name}''' , cache_dir=model_args.cache_dir , )
# only normalized-inputs-training is supported
lowerCAmelCase_ : Dict = WavaVecaFeatureExtractor.from_pretrained(
model_args.model_name_or_path , cache_dir=model_args.cache_dir , do_normalize=snake_case__)
def prepare_dataset(snake_case__):
# check that all files have the correct sampling rate
lowerCAmelCase_ , lowerCAmelCase_ : str = librosa.load(batch[data_args.speech_file_column] , sr=feature_extractor.sampling_rate)
return batch
# load audio files into numpy arrays
lowerCAmelCase_ : int = datasets.map(
snake_case__ , num_proc=data_args.preprocessing_num_workers , remove_columns=datasets["train"].column_names)
# filter audio files that are too long
lowerCAmelCase_ : int = vectorized_datasets.filter(
lambda snake_case__: len(data["speech"]) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate))
def normalize(snake_case__):
return feature_extractor(batch["speech"] , sampling_rate=feature_extractor.sampling_rate)
# normalize and transform to `BatchFeatures`
lowerCAmelCase_ : str = vectorized_datasets.map(
snake_case__ , batched=snake_case__ , num_proc=data_args.preprocessing_num_workers , load_from_cache_file=not data_args.overwrite_cache , remove_columns=vectorized_datasets["train"].column_names , )
# pretraining is only supported for "newer" stable layer norm architecture
# apply_spec_augment has to be True, mask_feature_prob has to be 0.0
lowerCAmelCase_ : Optional[Any] = WavaVecaConfig.from_pretrained(
model_args.model_name_or_path , cache_dir=model_args.cache_dir , gradient_checkpointing=training_args.gradient_checkpointing , )
if not config.do_stable_layer_norm or config.feat_extract_norm != "layer":
raise ValueError(
"PreTraining is only supported for ``config.do_stable_layer_norm=True`` and"
" ``config.feat_extract_norm='layer'")
lowerCAmelCase_ : Dict = WavaVecaForPreTraining(snake_case__)
lowerCAmelCase_ : int = DataCollatorForWavaVecaPretraining(model=snake_case__ , feature_extractor=snake_case__)
lowerCAmelCase_ : List[Any] = WavaVecaPreTrainer(
model=snake_case__ , data_collator=snake_case__ , args=snake_case__ , train_dataset=vectorized_datasets["train"] , eval_dataset=vectorized_datasets["validation"] , tokenizer=snake_case__ , max_gumbel_temp=model_args.max_gumbel_temperature , min_gumbel_temp=model_args.min_gumbel_temperature , gumbel_temp_decay=model_args.gumbel_temperature_decay , )
trainer.train()
if __name__ == "__main__":
main()
| 659 | 1 |
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
a_ : List[str] = logging.get_logger(__name__)
def UpperCAmelCase ( A__: int ) -> int:
__lowerCamelCase : Any = DPTConfig()
if "large" in checkpoint_url:
__lowerCamelCase : Optional[Any] = 1024
__lowerCamelCase : Tuple = 4096
__lowerCamelCase : int = 24
__lowerCamelCase : str = 16
__lowerCamelCase : Optional[int] = [5, 11, 17, 23]
__lowerCamelCase : List[str] = [256, 512, 1024, 1024]
__lowerCamelCase : Optional[Any] = (1, 384, 384)
if "ade" in checkpoint_url:
__lowerCamelCase : List[str] = True
__lowerCamelCase : Union[str, Any] = 150
__lowerCamelCase : Tuple = 'huggingface/label-files'
__lowerCamelCase : Tuple = 'ade20k-id2label.json'
__lowerCamelCase : Optional[int] = json.load(open(cached_download(hf_hub_url(A__ , A__ , repo_type='dataset' ) ) , 'r' ) )
__lowerCamelCase : Tuple = {int(A__ ): v for k, v in idalabel.items()}
__lowerCamelCase : List[Any] = idalabel
__lowerCamelCase : List[str] = {v: k for k, v in idalabel.items()}
__lowerCamelCase : Optional[Any] = [1, 150, 480, 480]
return config, expected_shape
def UpperCAmelCase ( A__: str ) -> Tuple:
__lowerCamelCase : Union[str, Any] = ['pretrained.model.head.weight', 'pretrained.model.head.bias']
for k in ignore_keys:
state_dict.pop(A__ , A__ )
def UpperCAmelCase ( A__: int ) -> Optional[int]:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
__lowerCamelCase : Optional[int] = name.replace('pretrained.model' , 'dpt.encoder' )
if "pretrained.model" in name:
__lowerCamelCase : List[Any] = name.replace('pretrained.model' , 'dpt.embeddings' )
if "patch_embed" in name:
__lowerCamelCase : Union[str, Any] = name.replace('patch_embed' , 'patch_embeddings' )
if "pos_embed" in name:
__lowerCamelCase : Union[str, Any] = name.replace('pos_embed' , 'position_embeddings' )
if "attn.proj" in name:
__lowerCamelCase : Optional[Any] = name.replace('attn.proj' , 'attention.output.dense' )
if "proj" in name and "project" not in name:
__lowerCamelCase : Tuple = name.replace('proj' , 'projection' )
if "blocks" in name:
__lowerCamelCase : Tuple = name.replace('blocks' , 'layer' )
if "mlp.fc1" in name:
__lowerCamelCase : Union[str, Any] = name.replace('mlp.fc1' , 'intermediate.dense' )
if "mlp.fc2" in name:
__lowerCamelCase : List[Any] = name.replace('mlp.fc2' , 'output.dense' )
if "norm1" in name:
__lowerCamelCase : str = name.replace('norm1' , 'layernorm_before' )
if "norm2" in name:
__lowerCamelCase : int = name.replace('norm2' , 'layernorm_after' )
if "scratch.output_conv" in name:
__lowerCamelCase : Any = name.replace('scratch.output_conv' , 'head' )
if "scratch" in name:
__lowerCamelCase : Any = name.replace('scratch' , 'neck' )
if "layer1_rn" in name:
__lowerCamelCase : str = name.replace('layer1_rn' , 'convs.0' )
if "layer2_rn" in name:
__lowerCamelCase : List[Any] = name.replace('layer2_rn' , 'convs.1' )
if "layer3_rn" in name:
__lowerCamelCase : Dict = name.replace('layer3_rn' , 'convs.2' )
if "layer4_rn" in name:
__lowerCamelCase : List[Any] = name.replace('layer4_rn' , 'convs.3' )
if "refinenet" in name:
__lowerCamelCase : Any = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
__lowerCamelCase : Any = name.replace(f'''refinenet{layer_idx}''' , f'''fusion_stage.layers.{abs(layer_idx-4 )}''' )
if "out_conv" in name:
__lowerCamelCase : Optional[Any] = name.replace('out_conv' , 'projection' )
if "resConfUnit1" in name:
__lowerCamelCase : Dict = name.replace('resConfUnit1' , 'residual_layer1' )
if "resConfUnit2" in name:
__lowerCamelCase : List[str] = name.replace('resConfUnit2' , 'residual_layer2' )
if "conv1" in name:
__lowerCamelCase : Optional[Any] = name.replace('conv1' , 'convolution1' )
if "conv2" in name:
__lowerCamelCase : Optional[Any] = name.replace('conv2' , 'convolution2' )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
__lowerCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' )
if "pretrained.act_postprocess2.0.project.0" in name:
__lowerCamelCase : Dict = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' )
if "pretrained.act_postprocess3.0.project.0" in name:
__lowerCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' )
if "pretrained.act_postprocess4.0.project.0" in name:
__lowerCamelCase : Optional[Any] = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
__lowerCamelCase : Dict = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' )
if "pretrained.act_postprocess1.4" in name:
__lowerCamelCase : int = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' )
if "pretrained.act_postprocess2.3" in name:
__lowerCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' )
if "pretrained.act_postprocess2.4" in name:
__lowerCamelCase : Union[str, Any] = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' )
if "pretrained.act_postprocess3.3" in name:
__lowerCamelCase : int = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' )
if "pretrained.act_postprocess4.3" in name:
__lowerCamelCase : str = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' )
if "pretrained.act_postprocess4.4" in name:
__lowerCamelCase : Dict = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' )
if "pretrained" in name:
__lowerCamelCase : Tuple = name.replace('pretrained' , 'dpt' )
if "bn" in name:
__lowerCamelCase : Dict = name.replace('bn' , 'batch_norm' )
if "head" in name:
__lowerCamelCase : Any = name.replace('head' , 'head.head' )
if "encoder.norm" in name:
__lowerCamelCase : str = name.replace('encoder.norm' , 'layernorm' )
if "auxlayer" in name:
__lowerCamelCase : List[Any] = name.replace('auxlayer' , 'auxiliary_head.head' )
return name
def UpperCAmelCase ( A__: int , A__: List[Any] ) -> List[Any]:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
__lowerCamelCase : List[str] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.weight''' )
__lowerCamelCase : List[Any] = state_dict.pop(f'''dpt.encoder.layer.{i}.attn.qkv.bias''' )
# next, add query, keys and values (in that order) to the state dict
__lowerCamelCase : Optional[int] = in_proj_weight[: config.hidden_size, :]
__lowerCamelCase : int = in_proj_bias[: config.hidden_size]
__lowerCamelCase : str = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
__lowerCamelCase : str = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
__lowerCamelCase : Union[str, Any] = in_proj_weight[
-config.hidden_size :, :
]
__lowerCamelCase : str = in_proj_bias[-config.hidden_size :]
def UpperCAmelCase ( ) -> Union[str, Any]:
__lowerCamelCase : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__lowerCamelCase : List[Any] = Image.open(requests.get(A__ , stream=A__ ).raw )
return im
@torch.no_grad()
def UpperCAmelCase ( A__: Dict , A__: Tuple , A__: Union[str, Any] , A__: List[Any] ) -> Any:
__lowerCamelCase , __lowerCamelCase : Union[str, Any] = get_dpt_config(A__ )
# load original state_dict from URL
__lowerCamelCase : Any = torch.hub.load_state_dict_from_url(A__ , map_location='cpu' )
# remove certain keys
remove_ignore_keys_(A__ )
# rename keys
for key in state_dict.copy().keys():
__lowerCamelCase : str = state_dict.pop(A__ )
__lowerCamelCase : Any = val
# read in qkv matrices
read_in_q_k_v(A__ , A__ )
# load HuggingFace model
__lowerCamelCase : List[Any] = DPTForSemanticSegmentation(A__ ) if 'ade' in checkpoint_url else DPTForDepthEstimation(A__ )
model.load_state_dict(A__ )
model.eval()
# Check outputs on an image
__lowerCamelCase : List[Any] = 480 if 'ade' in checkpoint_url else 384
__lowerCamelCase : Optional[int] = DPTImageProcessor(size=A__ )
__lowerCamelCase : List[str] = prepare_img()
__lowerCamelCase : Any = image_processor(A__ , return_tensors='pt' )
# forward pass
__lowerCamelCase : Optional[Any] = model(**A__ ).logits if 'ade' in checkpoint_url else model(**A__ ).predicted_depth
# Assert logits
__lowerCamelCase : Any = torch.tensor([[6.3_199, 6.3_629, 6.4_148], [6.3_850, 6.3_615, 6.4_166], [6.3_519, 6.3_176, 6.3_575]] )
if "ade" in checkpoint_url:
__lowerCamelCase : str = torch.tensor([[4.0_480, 4.2_420, 4.4_360], [4.3_124, 4.5_693, 4.8_261], [4.5_768, 4.8_965, 5.2_163]] )
assert outputs.shape == torch.Size(A__ )
assert (
torch.allclose(outputs[0, 0, :3, :3] , A__ , atol=1E-4 )
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3] , A__ )
)
Path(A__ ).mkdir(exist_ok=A__ )
print(f'''Saving model to {pytorch_dump_folder_path}''' )
model.save_pretrained(A__ )
print(f'''Saving image processor to {pytorch_dump_folder_path}''' )
image_processor.save_pretrained(A__ )
if push_to_hub:
print('Pushing model to hub...' )
model.push_to_hub(
repo_path_or_name=Path(A__ , A__ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=A__ , )
image_processor.push_to_hub(
repo_path_or_name=Path(A__ , A__ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=A__ , )
if __name__ == "__main__":
a_ : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''',
type=str,
help='''URL of the original DPT checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
parser.add_argument(
'''--model_name''',
default='''dpt-large''',
type=str,
help='''Name of the model, in case you\'re pushing to the hub.''',
)
a_ : Optional[Any] = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 263 |
"""simple docstring"""
import random
from typing import Any
def UpperCAmelCase ( A__: list ) -> list[Any]:
for _ in range(len(A__ ) ):
__lowerCamelCase : List[Any] = random.randint(0 , len(A__ ) - 1 )
__lowerCamelCase : Optional[Any] = random.randint(0 , len(A__ ) - 1 )
__lowerCamelCase , __lowerCamelCase : Any = data[b], data[a]
return data
if __name__ == "__main__":
a_ : Any = [0, 1, 2, 3, 4, 5, 6, 7]
a_ : int = ['''python''', '''says''', '''hello''', '''!''']
print('''Fisher-Yates Shuffle:''')
print('''List''', integers, strings)
print('''FY Shuffle''', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
| 263 | 1 |
def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ) -> Any:
SCREAMING_SNAKE_CASE_ = [1]
for i in range(2 , __UpperCAmelCase ):
factorials.append(factorials[-1] * i )
assert 0 <= k < factorials[-1] * n, "k out of bounds"
SCREAMING_SNAKE_CASE_ = []
SCREAMING_SNAKE_CASE_ = list(range(__UpperCAmelCase ) )
# Find permutation
while factorials:
SCREAMING_SNAKE_CASE_ = factorials.pop()
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = divmod(__UpperCAmelCase , __UpperCAmelCase )
permutation.append(elements[number] )
elements.remove(elements[number] )
permutation.append(elements[0] )
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod() | 31 | """simple docstring"""
import unittest
from typing import Tuple
import torch
from diffusers.utils import floats_tensor, randn_tensor, torch_all_close, torch_device
from diffusers.utils.testing_utils import require_torch
@require_torch
class UpperCamelCase :
@property
def _UpperCAmelCase ( self ) -> Optional[Any]:
'''simple docstring'''
return self.get_dummy_input()
@property
def _UpperCAmelCase ( self ) -> int:
'''simple docstring'''
if self.block_type == "down":
return (4, 32, 16, 16)
elif self.block_type == "mid":
return (4, 32, 32, 32)
elif self.block_type == "up":
return (4, 32, 64, 64)
raise ValueError(f'''\'{self.block_type}\' is not a supported block_type. Set it to \'up\', \'mid\', or \'down\'.''' )
def _UpperCAmelCase ( self ,__UpperCamelCase=True ,__UpperCamelCase=False ,__UpperCamelCase=False ,__UpperCamelCase=False ,) -> Dict:
'''simple docstring'''
lowercase_ : Optional[int] = 4
lowercase_ : Any = 32
lowercase_ : Optional[int] = (32, 32)
lowercase_ : List[str] = torch.manual_seed(0 )
lowercase_ : List[Any] = torch.device(__UpperCamelCase )
lowercase_ : List[str] = (batch_size, num_channels) + sizes
lowercase_ : Any = randn_tensor(__UpperCamelCase ,generator=__UpperCamelCase ,device=__UpperCamelCase )
lowercase_ : List[Any] = {'hidden_states': hidden_states}
if include_temb:
lowercase_ : Tuple = 128
lowercase_ : List[str] = randn_tensor((batch_size, temb_channels) ,generator=__UpperCamelCase ,device=__UpperCamelCase )
if include_res_hidden_states_tuple:
lowercase_ : Tuple = torch.manual_seed(1 )
lowercase_ : Optional[Any] = (randn_tensor(__UpperCamelCase ,generator=__UpperCamelCase ,device=__UpperCamelCase ),)
if include_encoder_hidden_states:
lowercase_ : Any = floats_tensor((batch_size, 32, 32) ).to(__UpperCamelCase )
if include_skip_sample:
lowercase_ : Dict = randn_tensor(((batch_size, 3) + sizes) ,generator=__UpperCamelCase ,device=__UpperCamelCase )
return dummy_input
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ : Tuple = {
'in_channels': 32,
'out_channels': 32,
'temb_channels': 128,
}
if self.block_type == "up":
lowercase_ : List[Any] = 32
if self.block_type == "mid":
init_dict.pop('out_channels' )
lowercase_ : Any = self.dummy_input
return init_dict, inputs_dict
def _UpperCAmelCase ( self ,__UpperCamelCase ) -> Tuple:
'''simple docstring'''
lowercase_ , lowercase_ : Union[str, Any] = self.prepare_init_args_and_inputs_for_common()
lowercase_ : str = self.block_class(**__UpperCamelCase )
unet_block.to(__UpperCamelCase )
unet_block.eval()
with torch.no_grad():
lowercase_ : Dict = unet_block(**__UpperCamelCase )
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : int = output[0]
self.assertEqual(output.shape ,self.output_shape )
lowercase_ : str = output[0, -1, -3:, -3:]
lowercase_ : int = torch.tensor(__UpperCamelCase ).to(__UpperCamelCase )
assert torch_all_close(output_slice.flatten() ,__UpperCamelCase ,atol=5e-3 )
@unittest.skipIf(torch_device == 'mps' ,'Training is not supported in mps' )
def _UpperCAmelCase ( self ) -> str:
'''simple docstring'''
lowercase_ , lowercase_ : List[Any] = self.prepare_init_args_and_inputs_for_common()
lowercase_ : Optional[int] = self.block_class(**__UpperCamelCase )
model.to(__UpperCamelCase )
model.train()
lowercase_ : Any = model(**__UpperCamelCase )
if isinstance(__UpperCamelCase ,__UpperCamelCase ):
lowercase_ : List[str] = output[0]
lowercase_ : Union[str, Any] = torch.device(__UpperCamelCase )
lowercase_ : Any = randn_tensor(output.shape ,device=__UpperCamelCase )
lowercase_ : List[str] = torch.nn.functional.mse_loss(__UpperCamelCase ,__UpperCamelCase )
loss.backward()
| 425 | 0 |
_UpperCamelCase : Optional[int] = 6_5_5_2_1
def __UpperCamelCase ( snake_case ) -> int:
'''simple docstring'''
__A = 1
__A = 0
for plain_chr in plain_text:
__A = (a + ord(snake_case )) % MOD_ADLER
__A = (b + a) % MOD_ADLER
return (b << 1_6) | a
| 701 |
from __future__ import annotations
import math
from collections.abc import Callable
def __UpperCamelCase ( snake_case , snake_case , snake_case , snake_case = 1_0_0 , ) -> float:
'''simple docstring'''
__A = x_start
__A = fnc(snake_case )
__A = 0.0
for _ in range(snake_case ):
# Approximates curve as a sequence of linear lines and sums their length
__A = (x_end - x_start) / steps + xa
__A = fnc(snake_case )
length += math.hypot(xa - xa , fxa - fxa )
# Increment step
__A = xa
__A = fxa
return length
if __name__ == "__main__":
def __UpperCamelCase ( snake_case ) -> int:
'''simple docstring'''
return math.sin(1_0 * x )
print("""f(x) = sin(10 * x)""")
print("""The length of the curve from x = -10 to x = 10 is:""")
_UpperCamelCase : Dict = 1_0
while i <= 1_0_0_0_0_0:
print(F"""With {i} steps: {line_length(f, -1_0, 1_0, i)}""")
i *= 1_0
| 341 | 0 |
'''simple docstring'''
import os
from glob import glob
import imageio
import torch
import torchvision
import wandb
from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan
from loaders import load_vqgan
from PIL import Image
from torch import nn
from transformers import CLIPModel, CLIPTokenizerFast
from utils import get_device, get_timestamp, show_pil
class lowercase_ :
"""simple docstring"""
def __init__( self : str ,lowercase__ : str = "cpu" ,lowercase__ : str = "openai/clip-vit-large-patch14" ):
__lowercase = device
__lowercase = CLIPTokenizerFast.from_pretrained(lowercase__ )
__lowercase = [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3]
__lowercase = [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1]
__lowercase = torchvision.transforms.Normalize(self.image_mean ,self.image_std )
__lowercase = torchvision.transforms.Resize(2_2_4 )
__lowercase = torchvision.transforms.CenterCrop(2_2_4 )
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Dict ):
__lowercase = self.resize(lowercase__ )
__lowercase = self.center_crop(lowercase__ )
__lowercase = self.normalize(lowercase__ )
return images
def __call__( self : List[Any] ,lowercase__ : str=None ,lowercase__ : Any=None ,**lowercase__ : List[Any] ):
__lowercase = self.tokenizer(text=lowercase__ ,**lowercase__ )
__lowercase = self.preprocess_img(lowercase__ )
__lowercase = {key: value.to(self.device ) for (key, value) in encoding.items()}
return encoding
class lowercase_ (nn.Module ):
"""simple docstring"""
def __init__( self : Any ,lowercase__ : Optional[int]=1_0 ,lowercase__ : Optional[Any]=0.0_1 ,lowercase__ : Optional[int]=None ,lowercase__ : Optional[Any]=None ,lowercase__ : str=None ,lowercase__ : Any=None ,lowercase__ : Optional[Any]=None ,lowercase__ : Union[str, Any]=None ,lowercase__ : Union[str, Any]=False ,lowercase__ : Optional[int]=True ,lowercase__ : Optional[Any]="image" ,lowercase__ : Tuple=True ,lowercase__ : Any=False ,lowercase__ : Optional[int]=False ,lowercase__ : Optional[int]=False ,):
super().__init__()
__lowercase = None
__lowercase = device if device else get_device()
if vqgan:
__lowercase = vqgan
else:
__lowercase = load_vqgan(self.device ,conf_path=lowercase__ ,ckpt_path=lowercase__ )
self.vqgan.eval()
if clip:
__lowercase = clip
else:
__lowercase = CLIPModel.from_pretrained('''openai/clip-vit-base-patch32''' )
self.clip.to(self.device )
__lowercase = ProcessorGradientFlow(device=self.device )
__lowercase = iterations
__lowercase = lr
__lowercase = log
__lowercase = make_grid
__lowercase = return_val
__lowercase = quantize
__lowercase = self.vqgan.decoder.z_shape
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[Any]=None ,lowercase__ : Tuple=None ,lowercase__ : Dict=5 ,lowercase__ : Any=True ):
__lowercase = []
if output_path is None:
__lowercase = '''./animation.gif'''
if input_path is None:
__lowercase = self.save_path
__lowercase = sorted(glob(input_path + '''/*''' ) )
if not len(lowercase__ ):
raise ValueError(
'''No images found in save path, aborting (did you pass save_intermediate=True to the generate'''
''' function?)''' )
if len(lowercase__ ) == 1:
print('''Only one image found in save path, (did you pass save_intermediate=True to the generate function?)''' )
__lowercase = total_duration / len(lowercase__ )
__lowercase = [frame_duration] * len(lowercase__ )
if extend_frames:
__lowercase = 1.5
__lowercase = 3
for file_name in paths:
if file_name.endswith('''.png''' ):
images.append(imageio.imread(lowercase__ ) )
imageio.mimsave(lowercase__ ,lowercase__ ,duration=lowercase__ )
print(F"gif saved to {output_path}" )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : List[Any]=None ,lowercase__ : str=None ):
if not (path or img):
raise ValueError('''Input either path or tensor''' )
if img is not None:
raise NotImplementedError
__lowercase = preprocess(Image.open(lowercase__ ) ,target_image_size=2_5_6 ).to(self.device )
__lowercase = preprocess_vqgan(lowercase__ )
__lowercase , *__lowercase = self.vqgan.encode(lowercase__ )
return z
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Dict ):
__lowercase = self.latent.detach().requires_grad_()
__lowercase = base_latent + transform_vector
if self.quantize:
__lowercase , *__lowercase = self.vqgan.quantize(lowercase__ )
else:
__lowercase = trans_latent
return self.vqgan.decode(lowercase__ )
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : str ,lowercase__ : List[Any] ,lowercase__ : Optional[int]=None ):
__lowercase = self.clip_preprocessor(text=lowercase__ ,images=lowercase__ ,return_tensors='''pt''' ,padding=lowercase__ )
__lowercase = self.clip(**lowercase__ )
__lowercase = clip_outputs.logits_per_image
if weights is not None:
__lowercase = similarity_logits * weights
return similarity_logits.sum()
def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Optional[Any] ,lowercase__ : Optional[int] ,lowercase__ : Optional[int] ):
__lowercase = self._get_clip_similarity(pos_prompts['''prompts'''] ,lowercase__ ,weights=(1 / pos_prompts['''weights''']) )
if neg_prompts:
__lowercase = self._get_clip_similarity(neg_prompts['''prompts'''] ,lowercase__ ,weights=neg_prompts['''weights'''] )
else:
__lowercase = torch.tensor([1] ,device=self.device )
__lowercase = -torch.log(lowercase__ ) + torch.log(lowercase__ )
return loss
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : Optional[int] ,lowercase__ : Any ,lowercase__ : str ):
__lowercase = torch.randn_like(self.latent ,requires_grad=lowercase__ ,device=self.device )
__lowercase = torch.optim.Adam([vector] ,lr=self.lr )
for i in range(self.iterations ):
optim.zero_grad()
__lowercase = self._add_vector(lowercase__ )
__lowercase = loop_post_process(lowercase__ )
__lowercase = self._get_CLIP_loss(lowercase__ ,lowercase__ ,lowercase__ )
print('''CLIP loss''' ,lowercase__ )
if self.log:
wandb.log({'''CLIP Loss''': clip_loss} )
clip_loss.backward(retain_graph=lowercase__ )
optim.step()
if self.return_val == "image":
yield custom_to_pil(transformed_img[0] )
else:
yield vector
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : Tuple ,lowercase__ : List[Any] ,lowercase__ : Union[str, Any] ):
wandb.init(reinit=lowercase__ ,project='''face-editor''' )
wandb.config.update({'''Positive Prompts''': positive_prompts} )
wandb.config.update({'''Negative Prompts''': negative_prompts} )
wandb.config.update({'''lr''': self.lr, '''iterations''': self.iterations} )
if image_path:
__lowercase = Image.open(lowercase__ )
__lowercase = image.resize((2_5_6, 2_5_6) )
wandb.log('''Original Image''' ,wandb.Image(lowercase__ ) )
def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Any ):
if not prompts:
return []
__lowercase = []
__lowercase = []
if isinstance(lowercase__ ,lowercase__ ):
__lowercase = [prompt.strip() for prompt in prompts.split('''|''' )]
for prompt in prompts:
if isinstance(lowercase__ ,(tuple, list) ):
__lowercase = prompt[0]
__lowercase = float(prompt[1] )
elif ":" in prompt:
__lowercase , __lowercase = prompt.split(''':''' )
__lowercase = float(lowercase__ )
else:
__lowercase = prompt
__lowercase = 1.0
processed_prompts.append(lowercase__ )
weights.append(lowercase__ )
return {
"prompts": processed_prompts,
"weights": torch.tensor(lowercase__ ,device=self.device ),
}
def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Any ,lowercase__ : List[Any]=None ,lowercase__ : Dict=None ,lowercase__ : Optional[int]=True ,lowercase__ : str=False ,lowercase__ : Any=True ,lowercase__ : List[str]=True ,lowercase__ : int=None ,):
if image_path:
__lowercase = self._get_latent(lowercase__ )
else:
__lowercase = torch.randn(self.latent_dim ,device=self.device )
if self.log:
self._init_logging(lowercase__ ,lowercase__ ,lowercase__ )
assert pos_prompts, "You must provide at least one positive prompt."
__lowercase = self.process_prompts(lowercase__ )
__lowercase = self.process_prompts(lowercase__ )
if save_final and save_path is None:
__lowercase = os.path.join('''./outputs/''' ,'''_'''.join(pos_prompts['''prompts'''] ) )
if not os.path.exists(lowercase__ ):
os.makedirs(lowercase__ )
else:
__lowercase = save_path + '''_''' + get_timestamp()
os.makedirs(lowercase__ )
__lowercase = save_path
__lowercase = self.vqgan.decode(self.latent )[0]
if show_intermediate:
print('''Original Image''' )
show_pil(custom_to_pil(lowercase__ ) )
__lowercase = loop_post_process(lowercase__ )
for iter, transformed_img in enumerate(self._optimize_CLIP(lowercase__ ,lowercase__ ,lowercase__ ) ):
if show_intermediate:
show_pil(lowercase__ )
if save_intermediate:
transformed_img.save(os.path.join(self.save_path ,F"iter_{iter:03d}.png" ) )
if self.log:
wandb.log({'''Image''': wandb.Image(lowercase__ )} )
if show_final:
show_pil(lowercase__ )
if save_final:
transformed_img.save(os.path.join(self.save_path ,F"iter_{iter:03d}_final.png" ) )
| 41 |
import argparse
import os
import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn
from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(nlp.__version__) != version.parse("0.8.3"):
raise Exception("requires gluonnlp == 0.8.3")
if version.parse(mx.__version__) != version.parse("1.5.0"):
raise Exception("requires mxnet == 1.5.0")
logging.set_verbosity_info()
_SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__)
_SCREAMING_SNAKE_CASE : Any = "The Nymphenburg Palace is a beautiful palace in Munich!"
def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ):
"""simple docstring"""
snake_case = {
'''attention_cell''': '''multi_head''',
'''num_layers''': 4,
'''units''': 10_24,
'''hidden_size''': 7_68,
'''max_length''': 5_12,
'''num_heads''': 8,
'''scaled''': True,
'''dropout''': 0.1,
'''use_residual''': True,
'''embed_size''': 10_24,
'''embed_dropout''': 0.1,
'''word_embed''': None,
'''layer_norm_eps''': 1e-5,
'''token_type_vocab_size''': 2,
}
snake_case = bort_4_8_768_1024_hparams
# Let's construct the original Bort model here
# Taken from official BERT implementation, see:
# https://github.com/alexa/bort/blob/master/bort/bort.py
snake_case = BERTEncoder(
attention_cell=predefined_args['''attention_cell'''] ,num_layers=predefined_args['''num_layers'''] ,units=predefined_args['''units'''] ,hidden_size=predefined_args['''hidden_size'''] ,max_length=predefined_args['''max_length'''] ,num_heads=predefined_args['''num_heads'''] ,scaled=predefined_args['''scaled'''] ,dropout=predefined_args['''dropout'''] ,output_attention=UpperCamelCase_ ,output_all_encodings=UpperCamelCase_ ,use_residual=predefined_args['''use_residual'''] ,activation=predefined_args.get('''activation''' ,'''gelu''' ) ,layer_norm_eps=predefined_args.get('''layer_norm_eps''' ,UpperCamelCase_ ) ,)
# Vocab information needs to be fetched first
# It's the same as RoBERTa, so RobertaTokenizer can be used later
snake_case = '''openwebtext_ccnews_stories_books_cased'''
# Specify download folder to Gluonnlp's vocab
snake_case = os.path.join(get_home_dir() ,'''models''' )
snake_case = _load_vocab(UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ,cls=UpperCamelCase_ )
snake_case = nlp.model.BERTModel(
UpperCamelCase_ ,len(UpperCamelCase_ ) ,units=predefined_args['''units'''] ,embed_size=predefined_args['''embed_size'''] ,embed_dropout=predefined_args['''embed_dropout'''] ,word_embed=predefined_args['''word_embed'''] ,use_pooler=UpperCamelCase_ ,use_token_type_embed=UpperCamelCase_ ,token_type_vocab_size=predefined_args['''token_type_vocab_size'''] ,use_classifier=UpperCamelCase_ ,use_decoder=UpperCamelCase_ ,)
original_bort.load_parameters(UpperCamelCase_ ,cast_dtype=UpperCamelCase_ ,ignore_extra=UpperCamelCase_ )
snake_case = original_bort._collect_params_with_prefix()
# Build our config 🤗
snake_case = {
'''architectures''': ['''BertForMaskedLM'''],
'''attention_probs_dropout_prob''': predefined_args['''dropout'''],
'''hidden_act''': '''gelu''',
'''hidden_dropout_prob''': predefined_args['''dropout'''],
'''hidden_size''': predefined_args['''embed_size'''],
'''initializer_range''': 0.02,
'''intermediate_size''': predefined_args['''hidden_size'''],
'''layer_norm_eps''': predefined_args['''layer_norm_eps'''],
'''max_position_embeddings''': predefined_args['''max_length'''],
'''model_type''': '''bort''',
'''num_attention_heads''': predefined_args['''num_heads'''],
'''num_hidden_layers''': predefined_args['''num_layers'''],
'''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa
'''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa
'''vocab_size''': len(UpperCamelCase_ ),
}
snake_case = BertConfig.from_dict(UpperCamelCase_ )
snake_case = BertForMaskedLM(UpperCamelCase_ )
hf_bort_model.eval()
# Parameter mapping table (Gluonnlp to Transformers)
# * denotes layer index
#
# | Gluon Parameter | Transformers Parameter
# | -------------------------------------------------------------- | ----------------------
# | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias`
# | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight`
# | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight`
# | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
# | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight`
# | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight`
# | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias`
# | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight`
# Helper function to convert MXNET Arrays to PyTorch
def to_torch(UpperCamelCase_ ) -> nn.Parameter:
return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) )
# Check param shapes and map new HF param back
def check_and_map_params(UpperCamelCase_ ,UpperCamelCase_ ):
snake_case = hf_param.shape
snake_case = to_torch(params[gluon_param] )
snake_case = gluon_param.shape
assert (
shape_hf == shape_gluon
), F'''The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers'''
return gluon_param
snake_case = check_and_map_params(
hf_bort_model.bert.embeddings.word_embeddings.weight ,'''word_embed.0.weight''' )
snake_case = check_and_map_params(
hf_bort_model.bert.embeddings.position_embeddings.weight ,'''encoder.position_weight''' )
snake_case = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.bias ,'''encoder.layer_norm.beta''' )
snake_case = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.weight ,'''encoder.layer_norm.gamma''' )
# Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
snake_case = torch.zeros_like(
hf_bort_model.bert.embeddings.token_type_embeddings.weight.data )
for i in range(hf_bort_config.num_hidden_layers ):
snake_case = hf_bort_model.bert.encoder.layer[i]
# self attention
snake_case = layer.attention.self
snake_case = check_and_map_params(
self_attn.key.bias.data ,F'''encoder.transformer_cells.{i}.attention_cell.proj_key.bias''' )
snake_case = check_and_map_params(
self_attn.key.weight.data ,F'''encoder.transformer_cells.{i}.attention_cell.proj_key.weight''' )
snake_case = check_and_map_params(
self_attn.query.bias.data ,F'''encoder.transformer_cells.{i}.attention_cell.proj_query.bias''' )
snake_case = check_and_map_params(
self_attn.query.weight.data ,F'''encoder.transformer_cells.{i}.attention_cell.proj_query.weight''' )
snake_case = check_and_map_params(
self_attn.value.bias.data ,F'''encoder.transformer_cells.{i}.attention_cell.proj_value.bias''' )
snake_case = check_and_map_params(
self_attn.value.weight.data ,F'''encoder.transformer_cells.{i}.attention_cell.proj_value.weight''' )
# self attention output
snake_case = layer.attention.output
snake_case = check_and_map_params(
self_output.dense.bias ,F'''encoder.transformer_cells.{i}.proj.bias''' )
snake_case = check_and_map_params(
self_output.dense.weight ,F'''encoder.transformer_cells.{i}.proj.weight''' )
snake_case = check_and_map_params(
self_output.LayerNorm.bias ,F'''encoder.transformer_cells.{i}.layer_norm.beta''' )
snake_case = check_and_map_params(
self_output.LayerNorm.weight ,F'''encoder.transformer_cells.{i}.layer_norm.gamma''' )
# intermediate
snake_case = layer.intermediate
snake_case = check_and_map_params(
intermediate.dense.bias ,F'''encoder.transformer_cells.{i}.ffn.ffn_1.bias''' )
snake_case = check_and_map_params(
intermediate.dense.weight ,F'''encoder.transformer_cells.{i}.ffn.ffn_1.weight''' )
# output
snake_case = layer.output
snake_case = check_and_map_params(
bert_output.dense.bias ,F'''encoder.transformer_cells.{i}.ffn.ffn_2.bias''' )
snake_case = check_and_map_params(
bert_output.dense.weight ,F'''encoder.transformer_cells.{i}.ffn.ffn_2.weight''' )
snake_case = check_and_map_params(
bert_output.LayerNorm.bias ,F'''encoder.transformer_cells.{i}.ffn.layer_norm.beta''' )
snake_case = check_and_map_params(
bert_output.LayerNorm.weight ,F'''encoder.transformer_cells.{i}.ffn.layer_norm.gamma''' )
# Save space and energy 🎄
hf_bort_model.half()
# Compare output of both models
snake_case = RobertaTokenizer.from_pretrained('''roberta-base''' )
snake_case = tokenizer.encode_plus(UpperCamelCase_ )['''input_ids''']
# Get gluon output
snake_case = mx.nd.array([input_ids] )
snake_case = original_bort(inputs=UpperCamelCase_ ,token_types=[] )
# Get Transformer output (save and reload model again)
hf_bort_model.save_pretrained(UpperCamelCase_ )
snake_case = BertModel.from_pretrained(UpperCamelCase_ )
hf_bort_model.eval()
snake_case = tokenizer.encode_plus(UpperCamelCase_ ,return_tensors='''pt''' )
snake_case = hf_bort_model(**UpperCamelCase_ )[0]
snake_case = output_gluon[0].asnumpy()
snake_case = output_hf[0].detach().numpy()
snake_case = np.max(np.abs(hf_layer - gluon_layer ) ).item()
snake_case = np.allclose(UpperCamelCase_ ,UpperCamelCase_ ,atol=1e-3 )
if success:
print('''✔️ Both model do output the same tensors''' )
else:
print('''❌ Both model do **NOT** output the same tensors''' )
print('''Absolute difference is:''' ,UpperCamelCase_ )
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--bort_checkpoint_path", default=None, type=str, required=True, help="Path the official Bort params file."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
_SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args()
convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
| 550 | 0 |
lowerCamelCase_ = 6_55_21
def __magic_name__ ( __a : str ):
'''simple docstring'''
UpperCamelCase__ = 1
UpperCamelCase__ = 0
for plain_chr in plain_text:
UpperCamelCase__ = (a + ord(__a )) % MOD_ADLER
UpperCamelCase__ = (b + a) % MOD_ADLER
return (b << 16) | a
| 86 |
from __future__ import annotations
lowerCamelCase_ = '''#'''
class __A:
"""simple docstring"""
def __init__(self ):
UpperCamelCase__ = {}
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ = self._trie
for char in text:
if char not in trie:
UpperCamelCase__ = {}
UpperCamelCase__ = trie[char]
UpperCamelCase__ = True
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ = self._trie
for char in prefix:
if char in trie:
UpperCamelCase__ = trie[char]
else:
return []
return self._elements(SCREAMING_SNAKE_CASE_ )
def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ):
UpperCamelCase__ = []
for c, v in d.items():
UpperCamelCase__ = [""" """] if c == END else [(c + s) for s in self._elements(SCREAMING_SNAKE_CASE_ )]
result.extend(SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = Trie()
lowerCamelCase_ = ('''depart''', '''detergent''', '''daring''', '''dog''', '''deer''', '''deal''')
for word in words:
trie.insert_word(word)
def __magic_name__ ( __a : str ):
'''simple docstring'''
UpperCamelCase__ = trie.find_word(__a )
return tuple(string + word for word in suffixes )
def __magic_name__ ( ):
'''simple docstring'''
print(autocomplete_using_trie("""de""" ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 86 | 1 |
import argparse
import os.path as osp
import re
import torch
from safetensors.torch import load_file, save_file
# =================#
# UNet Conversion #
# =================#
UpperCAmelCase__ : Any = [
# (stable-diffusion, HF Diffusers)
("time_embed.0.weight", "time_embedding.linear_1.weight"),
("time_embed.0.bias", "time_embedding.linear_1.bias"),
("time_embed.2.weight", "time_embedding.linear_2.weight"),
("time_embed.2.bias", "time_embedding.linear_2.bias"),
("input_blocks.0.0.weight", "conv_in.weight"),
("input_blocks.0.0.bias", "conv_in.bias"),
("out.0.weight", "conv_norm_out.weight"),
("out.0.bias", "conv_norm_out.bias"),
("out.2.weight", "conv_out.weight"),
("out.2.bias", "conv_out.bias"),
]
UpperCAmelCase__ : str = [
# (stable-diffusion, HF Diffusers)
("in_layers.0", "norm1"),
("in_layers.2", "conv1"),
("out_layers.0", "norm2"),
("out_layers.3", "conv2"),
("emb_layers.1", "time_emb_proj"),
("skip_connection", "conv_shortcut"),
]
UpperCAmelCase__ : List[str] = []
# hardcoded number of downblocks and resnets/attentions...
# would need smarter logic for other networks.
for i in range(4):
# loop over downblocks/upblocks
for j in range(2):
# loop over resnets/attentions for downblocks
UpperCAmelCase__ : Any = F"""down_blocks.{i}.resnets.{j}."""
UpperCAmelCase__ : Dict = F"""input_blocks.{3*i + j + 1}.0."""
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
if i < 3:
# no attention layers in down_blocks.3
UpperCAmelCase__ : Dict = F"""down_blocks.{i}.attentions.{j}."""
UpperCAmelCase__ : Optional[int] = F"""input_blocks.{3*i + j + 1}.1."""
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
for j in range(3):
# loop over resnets/attentions for upblocks
UpperCAmelCase__ : int = F"""up_blocks.{i}.resnets.{j}."""
UpperCAmelCase__ : Optional[Any] = F"""output_blocks.{3*i + j}.0."""
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
if i > 0:
# no attention layers in up_blocks.0
UpperCAmelCase__ : List[Any] = F"""up_blocks.{i}.attentions.{j}."""
UpperCAmelCase__ : Optional[Any] = F"""output_blocks.{3*i + j}.1."""
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
if i < 3:
# no downsample in down_blocks.3
UpperCAmelCase__ : int = F"""down_blocks.{i}.downsamplers.0.conv."""
UpperCAmelCase__ : str = F"""input_blocks.{3*(i+1)}.0.op."""
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
# no upsample in up_blocks.3
UpperCAmelCase__ : str = F"""up_blocks.{i}.upsamplers.0."""
UpperCAmelCase__ : Union[str, Any] = F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}."""
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
UpperCAmelCase__ : Tuple = "mid_block.attentions.0."
UpperCAmelCase__ : List[Any] = "middle_block.1."
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
for j in range(2):
UpperCAmelCase__ : str = F"""mid_block.resnets.{j}."""
UpperCAmelCase__ : Optional[Any] = F"""middle_block.{2*j}."""
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
def A ( snake_case__ : Any ) -> Any:
'''simple docstring'''
# buyer beware: this is a *brittle* function,
# and correct output requires that all of these pieces interact in
# the exact order in which I have arranged them.
__snake_case = {k: k for k in unet_state_dict.keys()}
for sd_name, hf_name in unet_conversion_map:
__snake_case = sd_name
for k, v in mapping.items():
if "resnets" in k:
for sd_part, hf_part in unet_conversion_map_resnet:
__snake_case = v.replace(snake_case__ , snake_case__ )
__snake_case = v
for k, v in mapping.items():
for sd_part, hf_part in unet_conversion_map_layer:
__snake_case = v.replace(snake_case__ , snake_case__ )
__snake_case = v
__snake_case = {v: unet_state_dict[k] for k, v in mapping.items()}
return new_state_dict
# ================#
# VAE Conversion #
# ================#
UpperCAmelCase__ : Any = [
# (stable-diffusion, HF Diffusers)
("nin_shortcut", "conv_shortcut"),
("norm_out", "conv_norm_out"),
("mid.attn_1.", "mid_block.attentions.0."),
]
for i in range(4):
# down_blocks have two resnets
for j in range(2):
UpperCAmelCase__ : Any = F"""encoder.down_blocks.{i}.resnets.{j}."""
UpperCAmelCase__ : Dict = F"""encoder.down.{i}.block.{j}."""
vae_conversion_map.append((sd_down_prefix, hf_down_prefix))
if i < 3:
UpperCAmelCase__ : Tuple = F"""down_blocks.{i}.downsamplers.0."""
UpperCAmelCase__ : Optional[int] = F"""down.{i}.downsample."""
vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix))
UpperCAmelCase__ : Optional[Any] = F"""up_blocks.{i}.upsamplers.0."""
UpperCAmelCase__ : Tuple = F"""up.{3-i}.upsample."""
vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix))
# up_blocks have three resnets
# also, up blocks in hf are numbered in reverse from sd
for j in range(3):
UpperCAmelCase__ : Dict = F"""decoder.up_blocks.{i}.resnets.{j}."""
UpperCAmelCase__ : int = F"""decoder.up.{3-i}.block.{j}."""
vae_conversion_map.append((sd_up_prefix, hf_up_prefix))
# this part accounts for mid blocks in both the encoder and the decoder
for i in range(2):
UpperCAmelCase__ : Optional[Any] = F"""mid_block.resnets.{i}."""
UpperCAmelCase__ : Tuple = F"""mid.block_{i+1}."""
vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix))
UpperCAmelCase__ : Dict = [
# (stable-diffusion, HF Diffusers)
("norm.", "group_norm."),
("q.", "query."),
("k.", "key."),
("v.", "value."),
("proj_out.", "proj_attn."),
]
def A ( snake_case__ : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
# convert HF linear weights to SD conv2d weights
return w.reshape(*w.shape , 1 , 1 )
def A ( snake_case__ : Dict ) -> str:
'''simple docstring'''
__snake_case = {k: k for k in vae_state_dict.keys()}
for k, v in mapping.items():
for sd_part, hf_part in vae_conversion_map:
__snake_case = v.replace(snake_case__ , snake_case__ )
__snake_case = v
for k, v in mapping.items():
if "attentions" in k:
for sd_part, hf_part in vae_conversion_map_attn:
__snake_case = v.replace(snake_case__ , snake_case__ )
__snake_case = v
__snake_case = {v: vae_state_dict[k] for k, v in mapping.items()}
__snake_case = ['q', 'k', 'v', 'proj_out']
for k, v in new_state_dict.items():
for weight_name in weights_to_convert:
if f"mid.attn_1.{weight_name}.weight" in k:
print(f"Reshaping {k} for SD format" )
__snake_case = reshape_weight_for_sd(snake_case__ )
return new_state_dict
# =========================#
# Text Encoder Conversion #
# =========================#
UpperCAmelCase__ : Union[str, Any] = [
# (stable-diffusion, HF Diffusers)
("resblocks.", "text_model.encoder.layers."),
("ln_1", "layer_norm1"),
("ln_2", "layer_norm2"),
(".c_fc.", ".fc1."),
(".c_proj.", ".fc2."),
(".attn", ".self_attn"),
("ln_final.", "transformer.text_model.final_layer_norm."),
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"),
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"),
]
UpperCAmelCase__ : int = {re.escape(x[1]): x[0] for x in textenc_conversion_lst}
UpperCAmelCase__ : Any = re.compile("|".join(protected.keys()))
# Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp
UpperCAmelCase__ : Optional[int] = {"q": 0, "k": 1, "v": 2}
def A ( snake_case__ : List[str] ) -> Optional[int]:
'''simple docstring'''
__snake_case = {}
__snake_case = {}
__snake_case = {}
for k, v in text_enc_dict.items():
if (
k.endswith('.self_attn.q_proj.weight' )
or k.endswith('.self_attn.k_proj.weight' )
or k.endswith('.self_attn.v_proj.weight' )
):
__snake_case = k[: -len('.q_proj.weight' )]
__snake_case = k[-len('q_proj.weight' )]
if k_pre not in capture_qkv_weight:
__snake_case = [None, None, None]
__snake_case = v
continue
if (
k.endswith('.self_attn.q_proj.bias' )
or k.endswith('.self_attn.k_proj.bias' )
or k.endswith('.self_attn.v_proj.bias' )
):
__snake_case = k[: -len('.q_proj.bias' )]
__snake_case = k[-len('q_proj.bias' )]
if k_pre not in capture_qkv_bias:
__snake_case = [None, None, None]
__snake_case = v
continue
__snake_case = textenc_pattern.sub(lambda snake_case__ : protected[re.escape(m.group(0 ) )] , snake_case__ )
__snake_case = v
for k_pre, tensors in capture_qkv_weight.items():
if None in tensors:
raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' )
__snake_case = textenc_pattern.sub(lambda snake_case__ : protected[re.escape(m.group(0 ) )] , snake_case__ )
__snake_case = torch.cat(snake_case__ )
for k_pre, tensors in capture_qkv_bias.items():
if None in tensors:
raise Exception('CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing' )
__snake_case = textenc_pattern.sub(lambda snake_case__ : protected[re.escape(m.group(0 ) )] , snake_case__ )
__snake_case = torch.cat(snake_case__ )
return new_state_dict
def A ( snake_case__ : Optional[Any] ) -> Dict:
'''simple docstring'''
return text_enc_dict
if __name__ == "__main__":
UpperCAmelCase__ : Tuple = argparse.ArgumentParser()
parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.")
parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.")
parser.add_argument("--half", action="store_true", help="Save weights in half precision.")
parser.add_argument(
"--use_safetensors", action="store_true", help="Save weights use safetensors, default is ckpt."
)
UpperCAmelCase__ : Tuple = parser.parse_args()
assert args.model_path is not None, "Must provide a model path!"
assert args.checkpoint_path is not None, "Must provide a checkpoint path!"
# Path for safetensors
UpperCAmelCase__ : Any = osp.join(args.model_path, "unet", "diffusion_pytorch_model.safetensors")
UpperCAmelCase__ : Union[str, Any] = osp.join(args.model_path, "vae", "diffusion_pytorch_model.safetensors")
UpperCAmelCase__ : Optional[int] = osp.join(args.model_path, "text_encoder", "model.safetensors")
# Load models from safetensors if it exists, if it doesn't pytorch
if osp.exists(unet_path):
UpperCAmelCase__ : int = load_file(unet_path, device="cpu")
else:
UpperCAmelCase__ : Any = osp.join(args.model_path, "unet", "diffusion_pytorch_model.bin")
UpperCAmelCase__ : Tuple = torch.load(unet_path, map_location="cpu")
if osp.exists(vae_path):
UpperCAmelCase__ : Union[str, Any] = load_file(vae_path, device="cpu")
else:
UpperCAmelCase__ : List[str] = osp.join(args.model_path, "vae", "diffusion_pytorch_model.bin")
UpperCAmelCase__ : List[str] = torch.load(vae_path, map_location="cpu")
if osp.exists(text_enc_path):
UpperCAmelCase__ : Dict = load_file(text_enc_path, device="cpu")
else:
UpperCAmelCase__ : Dict = osp.join(args.model_path, "text_encoder", "pytorch_model.bin")
UpperCAmelCase__ : Optional[Any] = torch.load(text_enc_path, map_location="cpu")
# Convert the UNet model
UpperCAmelCase__ : Dict = convert_unet_state_dict(unet_state_dict)
UpperCAmelCase__ : int = {"model.diffusion_model." + k: v for k, v in unet_state_dict.items()}
# Convert the VAE model
UpperCAmelCase__ : Union[str, Any] = convert_vae_state_dict(vae_state_dict)
UpperCAmelCase__ : Optional[int] = {"first_stage_model." + k: v for k, v in vae_state_dict.items()}
# Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper
UpperCAmelCase__ : int = "text_model.encoder.layers.22.layer_norm2.bias" in text_enc_dict
if is_vaa_model:
# Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm
UpperCAmelCase__ : List[str] = {"transformer." + k: v for k, v in text_enc_dict.items()}
UpperCAmelCase__ : Dict = convert_text_enc_state_dict_vaa(text_enc_dict)
UpperCAmelCase__ : str = {"cond_stage_model.model." + k: v for k, v in text_enc_dict.items()}
else:
UpperCAmelCase__ : Union[str, Any] = convert_text_enc_state_dict(text_enc_dict)
UpperCAmelCase__ : int = {"cond_stage_model.transformer." + k: v for k, v in text_enc_dict.items()}
# Put together new checkpoint
UpperCAmelCase__ : str = {**unet_state_dict, **vae_state_dict, **text_enc_dict}
if args.half:
UpperCAmelCase__ : Any = {k: v.half() for k, v in state_dict.items()}
if args.use_safetensors:
save_file(state_dict, args.checkpoint_path)
else:
UpperCAmelCase__ : str = {"state_dict": state_dict}
torch.save(state_dict, args.checkpoint_path)
| 313 |
import copy
import tempfile
import unittest
from huggingface_hub import HfFolder, delete_repo
from parameterized import parameterized
from requests.exceptions import HTTPError
from transformers import AutoConfig, GenerationConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
class __lowercase ( unittest.TestCase ):
@parameterized.expand([(None,), ('foo.json',)])
def _a ( self , lowercase_) -> int:
__snake_case = GenerationConfig(
do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowercase_ , config_name=lowercase_)
__snake_case = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_)
# Checks parameters that were specified
self.assertEqual(loaded_config.do_sample , lowercase_)
self.assertEqual(loaded_config.temperature , 0.7)
self.assertEqual(loaded_config.length_penalty , 1.0)
self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]])
# Checks parameters that were not specified (defaults)
self.assertEqual(loaded_config.top_k , 5_0)
self.assertEqual(loaded_config.max_length , 2_0)
self.assertEqual(loaded_config.max_time , lowercase_)
def _a ( self) -> Optional[int]:
__snake_case = AutoConfig.from_pretrained('gpt2')
__snake_case = GenerationConfig.from_model_config(lowercase_)
__snake_case = GenerationConfig()
# The generation config has loaded a few non-default parameters from the model config
self.assertNotEqual(lowercase_ , lowercase_)
# One of those parameters is eos_token_id -- check if it matches
self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id)
self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id)
def _a ( self) -> str:
__snake_case = GenerationConfig()
__snake_case = {
'max_new_tokens': 1_0_2_4,
'foo': 'bar',
}
__snake_case = copy.deepcopy(lowercase_)
__snake_case = generation_config.update(**lowercase_)
# update_kwargs was not modified (no side effects)
self.assertEqual(lowercase_ , lowercase_)
# update_kwargs was used to update the config on valid attributes
self.assertEqual(generation_config.max_new_tokens , 1_0_2_4)
# `.update()` returns a dictionary of unused kwargs
self.assertEqual(lowercase_ , {'foo': 'bar'})
def _a ( self) -> Optional[Any]:
__snake_case = GenerationConfig()
__snake_case = 'bar'
with tempfile.TemporaryDirectory('test-generation-config') as tmp_dir:
generation_config.save_pretrained(lowercase_)
__snake_case = GenerationConfig.from_pretrained(lowercase_)
# update_kwargs was used to update the config on valid attributes
self.assertEqual(new_config.foo , 'bar')
__snake_case = GenerationConfig.from_model_config(lowercase_)
assert not hasattr(lowercase_ , 'foo') # no new kwargs should be initialized if from config
def _a ( self) -> Optional[Any]:
__snake_case = GenerationConfig()
self.assertEqual(default_config.temperature , 1.0)
self.assertEqual(default_config.do_sample , lowercase_)
self.assertEqual(default_config.num_beams , 1)
__snake_case = GenerationConfig(
do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , )
self.assertEqual(config.temperature , 0.7)
self.assertEqual(config.do_sample , lowercase_)
self.assertEqual(config.num_beams , 1)
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(lowercase_)
__snake_case = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0)
self.assertEqual(loaded_config.temperature , 1.0)
self.assertEqual(loaded_config.do_sample , lowercase_)
self.assertEqual(loaded_config.num_beams , 1) # default value
@is_staging_test
class __lowercase ( unittest.TestCase ):
@classmethod
def _a ( cls) -> List[str]:
__snake_case = TOKEN
HfFolder.save_token(lowercase_)
@classmethod
def _a ( cls) -> Dict:
try:
delete_repo(token=cls._token , repo_id='test-generation-config')
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='valid_org/test-generation-config-org')
except HTTPError:
pass
def _a ( self) -> List[Any]:
__snake_case = GenerationConfig(
do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('test-generation-config' , use_auth_token=self._token)
__snake_case = GenerationConfig.from_pretrained(F"{USER}/test-generation-config")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_))
# Reset repo
delete_repo(token=self._token , repo_id='test-generation-config')
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowercase_ , repo_id='test-generation-config' , push_to_hub=lowercase_ , use_auth_token=self._token)
__snake_case = GenerationConfig.from_pretrained(F"{USER}/test-generation-config")
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_))
def _a ( self) -> str:
__snake_case = GenerationConfig(
do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , )
config.push_to_hub('valid_org/test-generation-config-org' , use_auth_token=self._token)
__snake_case = GenerationConfig.from_pretrained('valid_org/test-generation-config-org')
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_))
# Reset repo
delete_repo(token=self._token , repo_id='valid_org/test-generation-config-org')
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
lowercase_ , repo_id='valid_org/test-generation-config-org' , push_to_hub=lowercase_ , use_auth_token=self._token)
__snake_case = GenerationConfig.from_pretrained('valid_org/test-generation-config-org')
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_))
| 313 | 1 |
import math
def _A (UpperCamelCase : int ) ->str:
'''simple docstring'''
lowerCamelCase__ : Tuple = 0
lowerCamelCase__ : List[Any] = 0
while num > 0:
lowerCamelCase__ : Tuple = num % 8
lowerCamelCase__ : int = octal + (remainder * math.floor(math.pow(10 , UpperCamelCase ) ))
counter += 1
lowerCamelCase__ : Dict = math.floor(num / 8 ) # basically /= 8 without remainder if any
# This formatting removes trailing '.0' from `octal`.
return f"0o{int(UpperCamelCase )}"
def _A () ->None:
'''simple docstring'''
print("""\n2 in octal is:""" )
print(decimal_to_octal(2 ) ) # = 2
print("""\n8 in octal is:""" )
print(decimal_to_octal(8 ) ) # = 10
print("""\n65 in octal is:""" )
print(decimal_to_octal(65 ) ) # = 101
print("""\n216 in octal is:""" )
print(decimal_to_octal(216 ) ) # = 330
print("""\n512 in octal is:""" )
print(decimal_to_octal(512 ) ) # = 1000
print("""\n""" )
if __name__ == "__main__":
main()
| 711 |
import argparse
from transformers import TaConfig, TaForConditionalGeneration, load_tf_weights_in_ta
from transformers.utils import logging
logging.set_verbosity_info()
def _A (UpperCamelCase : Any , UpperCamelCase : Union[str, Any] , UpperCamelCase : Optional[Any] ) ->Any:
'''simple docstring'''
lowerCamelCase__ : Optional[Any] = TaConfig.from_json_file(UpperCamelCase )
print(f"Building PyTorch model from configuration: {config}" )
lowerCamelCase__ : Optional[int] = TaForConditionalGeneration(UpperCamelCase )
# Load weights from tf checkpoint
load_tf_weights_in_ta(UpperCamelCase , UpperCamelCase , UpperCamelCase )
# Save pytorch-model
print(f"Save PyTorch model to {pytorch_dump_path}" )
model.save_pretrained(UpperCamelCase )
if __name__ == "__main__":
_lowercase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained T5 model. \nThis specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
_lowercase = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
| 96 | 0 |
from math import cos, sin, sqrt, tau
from audio_filters.iir_filter import IIRFilter
def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : float = 1 / sqrt(2 ) ):
__lowerCAmelCase = tau * frequency / samplerate
__lowerCAmelCase = sin(lowerCAmelCase_ )
__lowerCAmelCase = cos(lowerCAmelCase_ )
__lowerCAmelCase = _sin / (2 * q_factor)
__lowerCAmelCase = (1 - _cos) / 2
__lowerCAmelCase = 1 - _cos
__lowerCAmelCase = 1 + alpha
__lowerCAmelCase = -2 * _cos
__lowerCAmelCase = 1 - alpha
__lowerCAmelCase = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa], [ba, ba, ba] )
return filt
def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : float = 1 / sqrt(2 ) ):
__lowerCAmelCase = tau * frequency / samplerate
__lowerCAmelCase = sin(lowerCAmelCase_ )
__lowerCAmelCase = cos(lowerCAmelCase_ )
__lowerCAmelCase = _sin / (2 * q_factor)
__lowerCAmelCase = (1 + _cos) / 2
__lowerCAmelCase = -1 - _cos
__lowerCAmelCase = 1 + alpha
__lowerCAmelCase = -2 * _cos
__lowerCAmelCase = 1 - alpha
__lowerCAmelCase = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa], [ba, ba, ba] )
return filt
def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : float = 1 / sqrt(2 ) ):
__lowerCAmelCase = tau * frequency / samplerate
__lowerCAmelCase = sin(lowerCAmelCase_ )
__lowerCAmelCase = cos(lowerCAmelCase_ )
__lowerCAmelCase = _sin / (2 * q_factor)
__lowerCAmelCase = _sin / 2
__lowerCAmelCase = 0
__lowerCAmelCase = -ba
__lowerCAmelCase = 1 + alpha
__lowerCAmelCase = -2 * _cos
__lowerCAmelCase = 1 - alpha
__lowerCAmelCase = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa], [ba, ba, ba] )
return filt
def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : float = 1 / sqrt(2 ) ):
__lowerCAmelCase = tau * frequency / samplerate
__lowerCAmelCase = sin(lowerCAmelCase_ )
__lowerCAmelCase = cos(lowerCAmelCase_ )
__lowerCAmelCase = _sin / (2 * q_factor)
__lowerCAmelCase = 1 - alpha
__lowerCAmelCase = -2 * _cos
__lowerCAmelCase = 1 + alpha
__lowerCAmelCase = IIRFilter(2 )
filt.set_coefficients([ba, ba, ba], [ba, ba, ba] )
return filt
def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : float, lowerCAmelCase_ : float = 1 / sqrt(2 ), ):
__lowerCAmelCase = tau * frequency / samplerate
__lowerCAmelCase = sin(lowerCAmelCase_ )
__lowerCAmelCase = cos(lowerCAmelCase_ )
__lowerCAmelCase = _sin / (2 * q_factor)
__lowerCAmelCase = 10 ** (gain_db / 40)
__lowerCAmelCase = 1 + alpha * big_a
__lowerCAmelCase = -2 * _cos
__lowerCAmelCase = 1 - alpha * big_a
__lowerCAmelCase = 1 + alpha / big_a
__lowerCAmelCase = -2 * _cos
__lowerCAmelCase = 1 - alpha / big_a
__lowerCAmelCase = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa], [ba, ba, ba] )
return filt
def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : float, lowerCAmelCase_ : float = 1 / sqrt(2 ), ):
__lowerCAmelCase = tau * frequency / samplerate
__lowerCAmelCase = sin(lowerCAmelCase_ )
__lowerCAmelCase = cos(lowerCAmelCase_ )
__lowerCAmelCase = _sin / (2 * q_factor)
__lowerCAmelCase = 10 ** (gain_db / 40)
__lowerCAmelCase = (big_a + 1) - (big_a - 1) * _cos
__lowerCAmelCase = (big_a + 1) + (big_a - 1) * _cos
__lowerCAmelCase = (big_a - 1) - (big_a + 1) * _cos
__lowerCAmelCase = (big_a - 1) + (big_a + 1) * _cos
__lowerCAmelCase = 2 * sqrt(lowerCAmelCase_ ) * alpha
__lowerCAmelCase = big_a * (pmc + aaa)
__lowerCAmelCase = 2 * big_a * mpc
__lowerCAmelCase = big_a * (pmc - aaa)
__lowerCAmelCase = ppmc + aaa
__lowerCAmelCase = -2 * pmpc
__lowerCAmelCase = ppmc - aaa
__lowerCAmelCase = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa], [ba, ba, ba] )
return filt
def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : int, lowerCAmelCase_ : float, lowerCAmelCase_ : float = 1 / sqrt(2 ), ):
__lowerCAmelCase = tau * frequency / samplerate
__lowerCAmelCase = sin(lowerCAmelCase_ )
__lowerCAmelCase = cos(lowerCAmelCase_ )
__lowerCAmelCase = _sin / (2 * q_factor)
__lowerCAmelCase = 10 ** (gain_db / 40)
__lowerCAmelCase = (big_a + 1) - (big_a - 1) * _cos
__lowerCAmelCase = (big_a + 1) + (big_a - 1) * _cos
__lowerCAmelCase = (big_a - 1) - (big_a + 1) * _cos
__lowerCAmelCase = (big_a - 1) + (big_a + 1) * _cos
__lowerCAmelCase = 2 * sqrt(lowerCAmelCase_ ) * alpha
__lowerCAmelCase = big_a * (ppmc + aaa)
__lowerCAmelCase = -2 * big_a * pmpc
__lowerCAmelCase = big_a * (ppmc - aaa)
__lowerCAmelCase = pmc + aaa
__lowerCAmelCase = 2 * mpc
__lowerCAmelCase = pmc - aaa
__lowerCAmelCase = IIRFilter(2 )
filt.set_coefficients([aa, aa, aa], [ba, ba, ba] )
return filt
| 53 |
import json
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from datasets import Dataset, load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoModelForMaskedLM,
AutoTokenizer,
DataCollatorForWholeWordMask,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
_snake_case : Optional[int] = logging.getLogger(__name__)
_snake_case : Dict = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
_snake_case : List[Any] = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class _UpperCAmelCase :
"""simple docstring"""
a_ = field(
default=_UpperCamelCase , metadata={
"""help""": (
"""The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."""
)
} , )
a_ = field(
default=_UpperCamelCase , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(_UpperCamelCase )} , )
a_ = field(
default=_UpperCamelCase , metadata={
"""help""": (
"""Override some existing default config settings when a model is trained from scratch. Example: """
"""n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"""
)
} , )
a_ = field(
default=_UpperCamelCase , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
a_ = field(
default=_UpperCamelCase , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
a_ = field(
default=_UpperCamelCase , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
a_ = field(
default=_UpperCamelCase , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
a_ = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
a_ = field(
default=_UpperCamelCase , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
def lowercase ( self : List[Any] ) -> List[Any]:
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
'--config_overrides can\'t be used in combination with --config_name or --model_name_or_path' )
@dataclass
class _UpperCAmelCase :
"""simple docstring"""
a_ = field(
default=_UpperCamelCase , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} )
a_ = field(
default=_UpperCamelCase , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} )
a_ = field(default=_UpperCamelCase , metadata={"""help""": """The input training data file (a text file)."""} )
a_ = field(
default=_UpperCamelCase , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , )
a_ = field(
default=_UpperCamelCase , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , )
a_ = field(
default=_UpperCamelCase , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , )
a_ = field(
default=_UpperCamelCase , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
a_ = field(
default=5 , metadata={
"""help""": """The percentage of the train set used as validation set in case there's no validation split"""
} , )
a_ = field(
default=_UpperCamelCase , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated. Default to the max input length of the model."""
)
} , )
a_ = field(
default=_UpperCamelCase , metadata={"""help""": """The number of processes to use for the preprocessing."""} , )
a_ = field(
default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} )
a_ = field(
default=_UpperCamelCase , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
def lowercase ( self : int ) -> int:
if self.train_file is not None:
__lowerCAmelCase = self.train_file.split('.' )[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
__lowerCAmelCase = self.validation_file.split('.' )[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def a_ ( lowerCAmelCase_ : List[str], lowerCAmelCase_ : Union[str, Any] ):
with open(lowerCAmelCase_, 'r', encoding='utf-8' ) as f:
__lowerCAmelCase = [json.loads(lowerCAmelCase_ ) for line in f.read().splitlines() if (len(lowerCAmelCase_ ) > 0 and not line.isspace())]
assert len(lowerCAmelCase_ ) == len(lowerCAmelCase_ )
__lowerCAmelCase = {c: dataset[c] for c in dataset.column_names}
__lowerCAmelCase = refs
return Dataset.from_dict(lowerCAmelCase_ )
def a_ ( ):
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
__lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
__lowerCAmelCase = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
__lowerCAmelCase = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('Training/evaluation parameters %s', lowerCAmelCase_ )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
__lowerCAmelCase = load_dataset(data_args.dataset_name, data_args.dataset_config_name )
if "validation" not in datasets.keys():
__lowerCAmelCase = load_dataset(
data_args.dataset_name, data_args.dataset_config_name, split=F"""train[:{data_args.validation_split_percentage}%]""", )
__lowerCAmelCase = load_dataset(
data_args.dataset_name, data_args.dataset_config_name, split=F"""train[{data_args.validation_split_percentage}%:]""", )
else:
__lowerCAmelCase = {}
if data_args.train_file is not None:
__lowerCAmelCase = data_args.train_file
if data_args.validation_file is not None:
__lowerCAmelCase = data_args.validation_file
__lowerCAmelCase = data_args.train_file.split('.' )[-1]
if extension == "txt":
__lowerCAmelCase = 'text'
__lowerCAmelCase = load_dataset(lowerCAmelCase_, data_files=lowerCAmelCase_ )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
__lowerCAmelCase = {
'cache_dir': model_args.cache_dir,
'revision': model_args.model_revision,
'use_auth_token': True if model_args.use_auth_token else None,
}
if model_args.config_name:
__lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name, **lowerCAmelCase_ )
elif model_args.model_name_or_path:
__lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ )
else:
__lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]()
logger.warning('You are instantiating a new config instance from scratch.' )
if model_args.config_overrides is not None:
logger.info(F"""Overriding config: {model_args.config_overrides}""" )
config.update_from_string(model_args.config_overrides )
logger.info(F"""New config: {config}""" )
__lowerCAmelCase = {
'cache_dir': model_args.cache_dir,
'use_fast': model_args.use_fast_tokenizer,
'revision': model_args.model_revision,
'use_auth_token': True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
__lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name, **lowerCAmelCase_ )
elif model_args.model_name_or_path:
__lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path, **lowerCAmelCase_ )
else:
raise ValueError(
'You are instantiating a new tokenizer from scratch. This is not supported by this script.'
'You can do it from another script, save it, and load it from here, using --tokenizer_name.' )
if model_args.model_name_or_path:
__lowerCAmelCase = AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=lowerCAmelCase_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
else:
logger.info('Training new model from scratch' )
__lowerCAmelCase = AutoModelForMaskedLM.from_config(lowerCAmelCase_ )
model.resize_token_embeddings(len(lowerCAmelCase_ ) )
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
__lowerCAmelCase = datasets['train'].column_names
else:
__lowerCAmelCase = datasets['validation'].column_names
__lowerCAmelCase = 'text' if 'text' in column_names else column_names[0]
__lowerCAmelCase = 'max_length' if data_args.pad_to_max_length else False
def tokenize_function(lowerCAmelCase_ : str ):
# Remove empty lines
__lowerCAmelCase = [line for line in examples['text'] if len(lowerCAmelCase_ ) > 0 and not line.isspace()]
return tokenizer(examples['text'], padding=lowerCAmelCase_, truncation=lowerCAmelCase_, max_length=data_args.max_seq_length )
__lowerCAmelCase = datasets.map(
lowerCAmelCase_, batched=lowerCAmelCase_, num_proc=data_args.preprocessing_num_workers, remove_columns=[text_column_name], load_from_cache_file=not data_args.overwrite_cache, )
# Add the chinese references if provided
if data_args.train_ref_file is not None:
__lowerCAmelCase = add_chinese_references(tokenized_datasets['train'], data_args.train_ref_file )
if data_args.validation_ref_file is not None:
__lowerCAmelCase = add_chinese_references(
tokenized_datasets['validation'], data_args.validation_ref_file )
# If we have ref files, need to avoid it removed by trainer
__lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file
if has_ref:
__lowerCAmelCase = False
# Data collator
# This one will take care of randomly masking the tokens.
__lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=lowerCAmelCase_, mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
__lowerCAmelCase = Trainer(
model=lowerCAmelCase_, args=lowerCAmelCase_, train_dataset=tokenized_datasets['train'] if training_args.do_train else None, eval_dataset=tokenized_datasets['validation'] if training_args.do_eval else None, tokenizer=lowerCAmelCase_, data_collator=lowerCAmelCase_, )
# Training
if training_args.do_train:
if last_checkpoint is not None:
__lowerCAmelCase = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ):
__lowerCAmelCase = model_args.model_name_or_path
else:
__lowerCAmelCase = None
__lowerCAmelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase_ )
trainer.save_model() # Saves the tokenizer too for easy upload
__lowerCAmelCase = os.path.join(training_args.output_dir, 'train_results.txt' )
if trainer.is_world_process_zero():
with open(lowerCAmelCase_, 'w' ) as writer:
logger.info('***** Train results *****' )
for key, value in sorted(train_result.metrics.items() ):
logger.info(F""" {key} = {value}""" )
writer.write(F"""{key} = {value}\n""" )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir, 'trainer_state.json' ) )
# Evaluation
__lowerCAmelCase = {}
if training_args.do_eval:
logger.info('*** Evaluate ***' )
__lowerCAmelCase = trainer.evaluate()
__lowerCAmelCase = math.exp(eval_output['eval_loss'] )
__lowerCAmelCase = perplexity
__lowerCAmelCase = os.path.join(training_args.output_dir, 'eval_results_mlm_wwm.txt' )
if trainer.is_world_process_zero():
with open(lowerCAmelCase_, 'w' ) as writer:
logger.info('***** Eval results *****' )
for key, value in sorted(results.items() ):
logger.info(F""" {key} = {value}""" )
writer.write(F"""{key} = {value}\n""" )
return results
def a_ ( lowerCAmelCase_ : Tuple ):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 53 | 1 |
import collections
import os
import re
from pathlib import Path
_UpperCamelCase = "src/transformers"
# Matches is_xxx_available()
_UpperCamelCase = re.compile(r"is\_([a-z_]*)_available()")
# Catches a one-line _import_struct = {xxx}
_UpperCamelCase = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
_UpperCamelCase = re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]")
# Catches a line if not is_foo_available
_UpperCamelCase = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)")
# Catches a line _import_struct["bla"].append("foo")
_UpperCamelCase = re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
_UpperCamelCase = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]")
# Catches a line with an object between quotes and a comma: "MyModel",
_UpperCamelCase = re.compile(r"^\s+\"([^\"]+)\",")
# Catches a line with objects between brackets only: ["foo", "bar"],
_UpperCamelCase = re.compile(r"^\s+\[([^\]]+)\]")
# Catches a line with from foo import bar, bla, boo
_UpperCamelCase = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
# Catches a line with try:
_UpperCamelCase = re.compile(r"^\s*try:")
# Catches a line with else:
_UpperCamelCase = re.compile(r"^\s*else:")
def _lowercase ( lowercase__ ):
if _re_test_backend.search(lowercase__ ) is None:
return None
__lowerCAmelCase : Optional[int] = [b[0] for b in _re_backend.findall(lowercase__ )]
backends.sort()
return "_and_".join(lowercase__ )
def _lowercase ( lowercase__ ):
with open(lowercase__ , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f:
__lowerCAmelCase : Optional[Any] = f.readlines()
__lowerCAmelCase : Optional[int] = 0
while line_index < len(lowercase__ ) and not lines[line_index].startswith('''_import_structure = {''' ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(lowercase__ ):
return None
# First grab the objects without a specific backend in _import_structure
__lowerCAmelCase : List[str] = []
while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None:
__lowerCAmelCase : Optional[Any] = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(lowercase__ ):
__lowerCAmelCase : Any = _re_one_line_import_struct.search(lowercase__ ).groups()[0]
__lowerCAmelCase : int = re.findall(r'''\[([^\]]+)\]''' , lowercase__ )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] )
line_index += 1
continue
__lowerCAmelCase : Any = _re_import_struct_key_value.search(lowercase__ )
if single_line_import_search is not None:
__lowerCAmelCase : Tuple = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(lowercase__ ) > 0]
objects.extend(lowercase__ )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
line_index += 1
__lowerCAmelCase : Tuple = {'''none''': objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith('''if TYPE_CHECKING''' ):
# If the line is an if not is_backend_available, we grab all objects associated.
__lowerCAmelCase : str = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__lowerCAmelCase : Union[str, Any] = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__lowerCAmelCase : Tuple = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ):
__lowerCAmelCase : Dict = lines[line_index]
if _re_import_struct_add_one.search(lowercase__ ) is not None:
objects.append(_re_import_struct_add_one.search(lowercase__ ).groups()[0] )
elif _re_import_struct_add_many.search(lowercase__ ) is not None:
__lowerCAmelCase : str = _re_import_struct_add_many.search(lowercase__ ).groups()[0].split(''', ''' )
__lowerCAmelCase : List[Any] = [obj[1:-1] for obj in imports if len(lowercase__ ) > 0]
objects.extend(lowercase__ )
elif _re_between_brackets.search(lowercase__ ) is not None:
__lowerCAmelCase : int = _re_between_brackets.search(lowercase__ ).groups()[0].split(''', ''' )
__lowerCAmelCase : Optional[Any] = [obj[1:-1] for obj in imports if len(lowercase__ ) > 0]
objects.extend(lowercase__ )
elif _re_quote_object.search(lowercase__ ) is not None:
objects.append(_re_quote_object.search(lowercase__ ).groups()[0] )
elif line.startswith(''' ''' * 8 + '''"''' ):
objects.append(line[9:-3] )
elif line.startswith(''' ''' * 1_2 + '''"''' ):
objects.append(line[1_3:-3] )
line_index += 1
__lowerCAmelCase : List[Any] = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
__lowerCAmelCase : Union[str, Any] = []
while (
line_index < len(lowercase__ )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith('''else''' )
):
__lowerCAmelCase : Any = lines[line_index]
__lowerCAmelCase : int = _re_import.search(lowercase__ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 8 ):
objects.append(line[8:-2] )
line_index += 1
__lowerCAmelCase : str = {'''none''': objects}
# Let's continue with backend-specific objects
while line_index < len(lowercase__ ):
# If the line is an if is_backend_available, we grab all objects associated.
__lowerCAmelCase : int = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
__lowerCAmelCase : Optional[int] = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
__lowerCAmelCase : str = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ):
__lowerCAmelCase : Tuple = lines[line_index]
__lowerCAmelCase : int = _re_import.search(lowercase__ )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(''', ''' ) )
elif line.startswith(''' ''' * 1_2 ):
objects.append(line[1_2:-2] )
line_index += 1
__lowerCAmelCase : List[str] = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def _lowercase ( lowercase__ , lowercase__ ):
def find_duplicates(lowercase__ ):
return [k for k, v in collections.Counter(lowercase__ ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
__lowerCAmelCase : Optional[Any] = []
for key in import_dict_objects.keys():
__lowerCAmelCase : List[str] = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" )
__lowerCAmelCase : List[Any] = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
__lowerCAmelCase : int = '''base imports''' if key == '''none''' else f"""{key} backend"""
errors.append(f"""Differences for {name}:""" )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" )
return errors
def _lowercase ( ):
__lowerCAmelCase : Union[str, Any] = []
for root, _, files in os.walk(lowercase__ ):
if "__init__.py" in files:
__lowerCAmelCase : str = os.path.join(lowercase__ , '''__init__.py''' )
__lowerCAmelCase : str = parse_init(lowercase__ )
if objects is not None:
__lowerCAmelCase : Union[str, Any] = analyze_results(*lowercase__ )
if len(lowercase__ ) > 0:
__lowerCAmelCase : Optional[int] = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}"""
failures.append('''\n'''.join(lowercase__ ) )
if len(lowercase__ ) > 0:
raise ValueError('''\n\n'''.join(lowercase__ ) )
def _lowercase ( ):
__lowerCAmelCase : Union[str, Any] = []
for path, directories, files in os.walk(lowercase__ ):
for folder in directories:
# Ignore private modules
if folder.startswith('''_''' ):
directories.remove(lowercase__ )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(lowercase__ ) / folder).glob('''*.py''' ) ) ) == 0:
continue
__lowerCAmelCase : Tuple = str((Path(lowercase__ ) / folder).relative_to(lowercase__ ) )
__lowerCAmelCase : str = short_path.replace(os.path.sep , '''.''' )
submodules.append(lowercase__ )
for fname in files:
if fname == "__init__.py":
continue
__lowerCAmelCase : List[str] = str((Path(lowercase__ ) / fname).relative_to(lowercase__ ) )
__lowerCAmelCase : List[str] = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' )
if len(submodule.split('''.''' ) ) == 1:
submodules.append(lowercase__ )
return submodules
_UpperCamelCase = [
"convert_pytorch_checkpoint_to_tf2",
"modeling_flax_pytorch_utils",
"models.esm.openfold_utils",
]
def _lowercase ( ):
# This is to make sure the transformers module imported is the one in the repo.
from transformers.utils import direct_transformers_import
__lowerCAmelCase : Union[str, Any] = direct_transformers_import(lowercase__ )
__lowerCAmelCase : Union[str, Any] = set(transformers._import_structure.keys() )
# This contains all the base keys of the _import_structure object defined in the init, but if the user is missing
# some optional dependencies, they may not have all of them. Thus we read the init to read all additions and
# (potentiall re-) add them.
with open(os.path.join(lowercase__ , '''__init__.py''' ) , '''r''' ) as f:
__lowerCAmelCase : Union[str, Any] = f.read()
import_structure_keys.update(set(re.findall(r'''import_structure\[\"([^\"]*)\"\]''' , lowercase__ ) ) )
__lowerCAmelCase : str = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in import_structure_keys
]
if len(lowercase__ ) > 0:
__lowerCAmelCase : Any = '''\n'''.join(f"""- {module}""" for module in module_not_registered )
raise ValueError(
'''The following submodules are not properly registed in the main init of Transformers:\n'''
f"""{list_of_modules}\n"""
'''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 583 |
from __future__ import annotations
from math import ceil, floor, sqrt
def _lowercase ( lowercase__ = 2_0_0_0_0_0_0 ):
__lowerCAmelCase : list[int] = [0]
__lowerCAmelCase : int
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
__lowerCAmelCase : int = 0
# the area corresponding to the grid that gives the product closest to target
__lowerCAmelCase : int = 0
# an estimate of b, using the quadratic formula
__lowerCAmelCase : float
# the largest integer less than b_estimate
__lowerCAmelCase : int
# the largest integer less than b_estimate
__lowerCAmelCase : int
# the triangle number corresponding to b_floor
__lowerCAmelCase : int
# the triangle number corresponding to b_ceil
__lowerCAmelCase : int
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
__lowerCAmelCase : Any = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
__lowerCAmelCase : List[str] = floor(lowercase__ )
__lowerCAmelCase : str = ceil(lowercase__ )
__lowerCAmelCase : Dict = triangle_numbers[b_floor]
__lowerCAmelCase : Dict = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
__lowerCAmelCase : Union[str, Any] = triangle_b_first_guess * triangle_a
__lowerCAmelCase : Any = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
__lowerCAmelCase : Optional[Any] = triangle_b_second_guess * triangle_a
__lowerCAmelCase : int = idx_a * b_ceil
return area
if __name__ == "__main__":
print(F"{solution() = }")
| 583 | 1 |
"""simple docstring"""
import unittest
import numpy as np
import torch
from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def lowerCamelCase__ ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
A_ = 10
def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
A_ = [1, 2, 3, 4]
A_ = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0]
self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0 ) , _snake_case )
def lowerCamelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
A_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
A_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0 ) , _snake_case )
def lowerCamelCase__ ( self : str ) -> Dict:
"""simple docstring"""
A_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]
A_ = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
self.assertEqual(truncate_or_pad(_snake_case , self.block_size , 0 ) , _snake_case )
def lowerCamelCase__ ( self : Dict ) -> Dict:
"""simple docstring"""
A_ = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this."
A_ , A_ = process_story(_snake_case )
self.assertEqual(_snake_case , [] )
def lowerCamelCase__ ( self : str ) -> str:
"""simple docstring"""
A_ = ""
A_ , A_ = process_story(_snake_case )
self.assertEqual(_snake_case , [] )
self.assertEqual(_snake_case , [] )
def lowerCamelCase__ ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
A_ = (
"It was the year of Our Lord one thousand seven hundred and "
"seventy-five\n\nSpiritual revelations were conceded to England "
"at that favoured period, as at this.\n@highlight\n\nIt was the best of times"
)
A_ , A_ = process_story(_snake_case )
A_ = [
"It was the year of Our Lord one thousand seven hundred and seventy-five.",
"Spiritual revelations were conceded to England at that favoured period, as at this.",
]
self.assertEqual(_snake_case , _snake_case )
A_ = ["It was the best of times."]
self.assertEqual(_snake_case , _snake_case )
def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
A_ = torch.tensor([1, 2, 3, 4] )
A_ = torch.tensor([1, 1, 1, 1] )
np.testing.assert_array_equal(build_mask(_snake_case , 0 ).numpy() , expected.numpy() )
def lowerCamelCase__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
A_ = torch.tensor([1, 2, 3, 4, 23, 23, 23] )
A_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(_snake_case , 23 ).numpy() , expected.numpy() )
def lowerCamelCase__ ( self : str ) -> Union[str, Any]:
"""simple docstring"""
A_ = torch.tensor([8, 2, 3, 4, 1, 1, 1] )
A_ = torch.tensor([1, 1, 1, 1, 0, 0, 0] )
np.testing.assert_array_equal(build_mask(_snake_case , 1 ).numpy() , expected.numpy() )
def lowerCamelCase__ ( self : int ) -> List[str]:
"""simple docstring"""
A_ = 101
A_ = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] )
A_ = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] )
A_ = compute_token_type_ids(_snake_case , _snake_case )
np.testing.assert_array_equal(_snake_case , _snake_case )
| 115 |
"""simple docstring"""
import unittest
import numpy as np
from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline
from diffusers.utils.testing_utils import (
is_onnx_available,
load_image,
nightly,
require_onnxruntime,
require_torch_gpu,
)
from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin
if is_onnx_available():
import onnxruntime as ort
class __lowerCAmelCase ( _lowercase , unittest.TestCase ):
"""simple docstring"""
pass
@nightly
@require_onnxruntime
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@property
def lowerCamelCase__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
return (
"CUDAExecutionProvider",
{
"gpu_mem_limit": "15000000000", # 15GB
"arena_extend_strategy": "kSameAsRequested",
},
)
@property
def lowerCamelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
A_ = ort.SessionOptions()
A_ = False
return options
def lowerCamelCase__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
A_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png" )
A_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" )
A_ = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting" , revision="onnx" , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_snake_case )
A_ = "A red cat sitting on a park bench"
A_ = np.random.RandomState(0 )
A_ = pipe(
prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=10 , generator=_snake_case , output_type="np" , )
A_ = output.images
A_ = images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
A_ = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
def lowerCamelCase__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
A_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png" )
A_ = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png" )
A_ = LMSDiscreteScheduler.from_pretrained(
"runwayml/stable-diffusion-inpainting" , subfolder="scheduler" , revision="onnx" )
A_ = OnnxStableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting" , revision="onnx" , scheduler=_snake_case , safety_checker=_snake_case , feature_extractor=_snake_case , provider=self.gpu_provider , sess_options=self.gpu_options , )
pipe.set_progress_bar_config(disable=_snake_case )
A_ = "A red cat sitting on a park bench"
A_ = np.random.RandomState(0 )
A_ = pipe(
prompt=_snake_case , image=_snake_case , mask_image=_snake_case , guidance_scale=7.5 , num_inference_steps=20 , generator=_snake_case , output_type="np" , )
A_ = output.images
A_ = images[0, 255:258, 255:258, -1]
assert images.shape == (1, 512, 512, 3)
A_ = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
| 115 | 1 |
'''simple docstring'''
import argparse
import math
import os
from copy import deepcopy
import torch
from audio_diffusion.models import DiffusionAttnUnetaD
from diffusion import sampling
from torch import nn
from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel
UpperCamelCase__ = {
'gwf-440k': {
'url': 'https://model-server.zqevans2.workers.dev/gwf-440k.ckpt',
'sample_rate': 48000,
'sample_size': 65536,
},
'jmann-small-190k': {
'url': 'https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt',
'sample_rate': 48000,
'sample_size': 65536,
},
'jmann-large-580k': {
'url': 'https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt',
'sample_rate': 48000,
'sample_size': 131072,
},
'maestro-uncond-150k': {
'url': 'https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt',
'sample_rate': 16000,
'sample_size': 65536,
},
'unlocked-uncond-250k': {
'url': 'https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt',
'sample_rate': 16000,
'sample_size': 65536,
},
'honk-140k': {
'url': 'https://model-server.zqevans2.workers.dev/honk-140k.ckpt',
'sample_rate': 16000,
'sample_size': 65536,
},
}
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase ):
"""simple docstring"""
return torch.atana(_UpperCamelCase , _UpperCamelCase ) / math.pi * 2
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
"""simple docstring"""
lowercase_ : str = torch.sin(t * math.pi / 2 ) ** 2
lowercase_ : List[Any] = (1 - sigma**2) ** 0.5
return alpha_sigma_to_t(_UpperCamelCase , _UpperCamelCase )
class _UpperCAmelCase ( snake_case ):
pass
class _UpperCAmelCase ( nn.Module ):
def __init__( self : Optional[int] , a : Any ):
'''simple docstring'''
super().__init__()
lowercase_ : Optional[Any] = DiffusionAttnUnetaD(a , n_attn_layers=4 )
lowercase_ : List[Any] = deepcopy(self.diffusion )
lowercase_ : int = torch.quasirandom.SobolEngine(1 , scramble=a )
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
"""simple docstring"""
lowercase_ : Dict = MODELS_MAP[model_name]["url"]
os.system(F"""wget {url} ./""" )
return F"""./{model_name}.ckpt"""
UpperCamelCase__ = {
'1': 'resnets.0',
'2': 'attentions.0',
'3': 'resnets.1',
'4': 'attentions.1',
'5': 'resnets.2',
'6': 'attentions.2',
}
UpperCamelCase__ = {
'8': 'resnets.0',
'9': 'attentions.0',
'10': 'resnets.1',
'11': 'attentions.1',
'12': 'resnets.2',
'13': 'attentions.2',
}
UpperCamelCase__ = {
'1': 'resnets.0',
'2': 'attentions.0',
'3': 'resnets.1',
'4': 'attentions.1',
'5': 'resnets.2',
'6': 'attentions.2',
'8': 'resnets.3',
'9': 'attentions.3',
'10': 'resnets.4',
'11': 'attentions.4',
'12': 'resnets.5',
'13': 'attentions.5',
}
UpperCamelCase__ = {
'0': 'resnets.0',
'1': 'resnets.1',
'2': 'resnets.2',
'4': 'resnets.0',
'5': 'resnets.1',
'6': 'resnets.2',
}
UpperCamelCase__ = {
'skip': 'conv_skip',
'main.0': 'conv_1',
'main.1': 'group_norm_1',
'main.3': 'conv_2',
'main.4': 'group_norm_2',
}
UpperCamelCase__ = {
'norm': 'group_norm',
'qkv_proj': ['query', 'key', 'value'],
'out_proj': ['proj_attn'],
}
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
"""simple docstring"""
if name.startswith("skip" ):
return name.replace("skip" , RES_CONV_MAP["skip"] )
# name has to be of format main.{digit}
if not name.startswith("main." ):
raise ValueError(F"""ResConvBlock error with {name}""" )
return name.replace(name[:6] , RES_CONV_MAP[name[:6]] )
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
"""simple docstring"""
for key, value in ATTN_MAP.items():
if name.startswith(_UpperCamelCase ) and not isinstance(_UpperCamelCase , _UpperCamelCase ):
return name.replace(_UpperCamelCase , _UpperCamelCase )
elif name.startswith(_UpperCamelCase ):
return [name.replace(_UpperCamelCase , _UpperCamelCase ) for v in value]
raise ValueError(F"""Attn error with {name}""" )
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase=13 ):
"""simple docstring"""
lowercase_ : List[Any] = input_string
if string.split("." )[0] == "timestep_embed":
return string.replace("timestep_embed" , "time_proj" )
lowercase_ : Optional[int] = 0
if string.startswith("net.3." ):
depth += 1
lowercase_ : int = string[6:]
elif string.startswith("net." ):
lowercase_ : Optional[Any] = string[4:]
while string.startswith("main.7." ):
depth += 1
lowercase_ : Optional[int] = string[7:]
if string.startswith("main." ):
lowercase_ : int = string[5:]
# mid block
if string[:2].isdigit():
lowercase_ : Any = string[:2]
lowercase_ : Dict = string[2:]
else:
lowercase_ : Optional[Any] = string[0]
lowercase_ : List[str] = string[1:]
if depth == max_depth:
lowercase_ : List[str] = MID_NUM_TO_LAYER[layer_num]
lowercase_ : Any = "mid_block"
elif depth > 0 and int(_UpperCamelCase ) < 7:
lowercase_ : Optional[int] = DOWN_NUM_TO_LAYER[layer_num]
lowercase_ : List[str] = F"""down_blocks.{depth}"""
elif depth > 0 and int(_UpperCamelCase ) > 7:
lowercase_ : str = UP_NUM_TO_LAYER[layer_num]
lowercase_ : Any = F"""up_blocks.{max_depth - depth - 1}"""
elif depth == 0:
lowercase_ : int = DEPTH_0_TO_LAYER[layer_num]
lowercase_ : Optional[Any] = F"""up_blocks.{max_depth - 1}""" if int(_UpperCamelCase ) > 3 else "down_blocks.0"
if not string_left.startswith("." ):
raise ValueError(F"""Naming error with {input_string} and string_left: {string_left}.""" )
lowercase_ : Tuple = string_left[1:]
if "resnets" in new_layer:
lowercase_ : Tuple = convert_resconv_naming(_UpperCamelCase )
elif "attentions" in new_layer:
lowercase_ : Union[str, Any] = convert_attn_naming(_UpperCamelCase )
lowercase_ : Tuple = new_string_left
if not isinstance(_UpperCamelCase , _UpperCamelCase ):
lowercase_ : Optional[int] = prefix + "." + new_layer + "." + string_left
else:
lowercase_ : Any = [prefix + "." + new_layer + "." + s for s in string_left]
return new_string
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
"""simple docstring"""
lowercase_ : Any = {}
for k, v in state_dict.items():
if k.endswith("kernel" ):
# up- and downsample layers, don't have trainable weights
continue
lowercase_ : List[str] = rename(_UpperCamelCase )
# check if we need to transform from Conv => Linear for attention
if isinstance(_UpperCamelCase , _UpperCamelCase ):
lowercase_ : List[str] = transform_conv_attns(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
else:
lowercase_ : Tuple = v
return new_state_dict
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
"""simple docstring"""
if len(_UpperCamelCase ) == 1:
if len(v.shape ) == 3:
# weight
lowercase_ : List[Any] = v[:, :, 0]
else:
# bias
lowercase_ : Any = v
else:
# qkv matrices
lowercase_ : str = v.shape[0]
lowercase_ : Optional[int] = trippled_shape // 3
for i in range(3 ):
if len(v.shape ) == 3:
lowercase_ : Any = v[i * single_shape : (i + 1) * single_shape, :, 0]
else:
lowercase_ : List[str] = v[i * single_shape : (i + 1) * single_shape]
return new_state_dict
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
"""simple docstring"""
lowercase_ : Optional[int] = torch.device("cuda" if torch.cuda.is_available() else "cpu" )
lowercase_ : List[Any] = args.model_path.split("/" )[-1].split("." )[0]
if not os.path.isfile(args.model_path ):
assert (
model_name == args.model_path
), F"""Make sure to provide one of the official model names {MODELS_MAP.keys()}"""
lowercase_ : Optional[Any] = download(_UpperCamelCase )
lowercase_ : Any = MODELS_MAP[model_name]["sample_rate"]
lowercase_ : List[str] = MODELS_MAP[model_name]["sample_size"]
lowercase_ : str = Object()
lowercase_ : List[str] = sample_size
lowercase_ : List[Any] = sample_rate
lowercase_ : Any = 0
lowercase_ : Any = UNetaDModel(sample_size=_UpperCamelCase , sample_rate=_UpperCamelCase )
lowercase_ : Any = diffusers_model.state_dict()
lowercase_ : int = DiffusionUncond(_UpperCamelCase )
orig_model.load_state_dict(torch.load(args.model_path , map_location=_UpperCamelCase )["state_dict"] )
lowercase_ : Dict = orig_model.diffusion_ema.eval()
lowercase_ : Dict = orig_model.state_dict()
lowercase_ : str = rename_orig_weights(_UpperCamelCase )
lowercase_ : int = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() )
lowercase_ : int = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() )
assert len(_UpperCamelCase ) == 0, F"""Problem with {renamed_minus_diffusers}"""
assert all(k.endswith("kernel" ) for k in list(_UpperCamelCase ) ), F"""Problem with {diffusers_minus_renamed}"""
for key, value in renamed_state_dict.items():
assert (
diffusers_state_dict[key].squeeze().shape == value.squeeze().shape
), F"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}"""
if key == "time_proj.weight":
lowercase_ : int = value.squeeze()
lowercase_ : List[Any] = value
diffusers_model.load_state_dict(_UpperCamelCase )
lowercase_ : int = 100
lowercase_ : List[Any] = 33
lowercase_ : Union[str, Any] = IPNDMScheduler(num_train_timesteps=_UpperCamelCase )
lowercase_ : List[Any] = torch.manual_seed(_UpperCamelCase )
lowercase_ : Any = torch.randn([1, 2, config.sample_size] , generator=_UpperCamelCase ).to(_UpperCamelCase )
lowercase_ : int = torch.linspace(1 , 0 , steps + 1 , device=_UpperCamelCase )[:-1]
lowercase_ : int = get_crash_schedule(_UpperCamelCase )
lowercase_ : str = DanceDiffusionPipeline(unet=_UpperCamelCase , scheduler=_UpperCamelCase )
lowercase_ : Optional[Any] = torch.manual_seed(33 )
lowercase_ : List[Any] = pipe(num_inference_steps=_UpperCamelCase , generator=_UpperCamelCase ).audios
lowercase_ : int = sampling.iplms_sample(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , {} )
lowercase_ : Any = generated.clamp(-1 , 1 )
lowercase_ : Tuple = (generated - audio).abs().sum()
lowercase_ : Tuple = (generated - audio).abs().max()
if args.save:
pipe.save_pretrained(args.checkpoint_path )
print("Diff sum" , _UpperCamelCase )
print("Diff max" , _UpperCamelCase )
assert diff_max < 1e-3, F"""Diff max: {diff_max} is too much :-/"""
print(F"""Conversion for {model_name} successful!""" )
if __name__ == "__main__":
UpperCamelCase__ = argparse.ArgumentParser()
parser.add_argument('--model_path', default=None, type=str, required=True, help='Path to the model to convert.')
parser.add_argument(
'--save', default=True, type=bool, required=False, help='Whether to save the converted model or not.'
)
parser.add_argument('--checkpoint_path', default=None, type=str, required=True, help='Path to the output model.')
UpperCamelCase__ = parser.parse_args()
main(args)
| 640 |
'''simple docstring'''
from pathlib import Path
from typing import List
from transformers import is_torch_available, is_vision_available
from transformers.testing_utils import get_tests_dir, is_tool_test
from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
UpperCamelCase__ = ['text', 'image', 'audio']
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
"""simple docstring"""
lowercase_ : List[Any] = []
for input_type in input_types:
if input_type == "text":
inputs.append("Text input" )
elif input_type == "image":
inputs.append(
Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" ).resize((512, 512) ) )
elif input_type == "audio":
inputs.append(torch.ones(3000 ) )
elif isinstance(_UpperCamelCase , _UpperCamelCase ):
inputs.append(create_inputs(_UpperCamelCase ) )
else:
raise ValueError(F"""Invalid type requested: {input_type}""" )
return inputs
def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
"""simple docstring"""
lowercase_ : Optional[int] = []
for output in outputs:
if isinstance(_UpperCamelCase , (str, AgentText) ):
output_types.append("text" )
elif isinstance(_UpperCamelCase , (Image.Image, AgentImage) ):
output_types.append("image" )
elif isinstance(_UpperCamelCase , (torch.Tensor, AgentAudio) ):
output_types.append("audio" )
else:
raise ValueError(F"""Invalid output: {output}""" )
return output_types
@is_tool_test
class _UpperCAmelCase :
def lowerCAmelCase__ ( self : List[Any] ):
'''simple docstring'''
self.assertTrue(hasattr(self.tool , "inputs" ) )
self.assertTrue(hasattr(self.tool , "outputs" ) )
lowercase_ : Optional[Any] = self.tool.inputs
for _input in inputs:
if isinstance(_input , a ):
for __input in _input:
self.assertTrue(__input in authorized_types )
else:
self.assertTrue(_input in authorized_types )
lowercase_ : Any = self.tool.outputs
for _output in outputs:
self.assertTrue(_output in authorized_types )
def lowerCAmelCase__ ( self : Any ):
'''simple docstring'''
lowercase_ : List[str] = create_inputs(self.tool.inputs )
lowercase_ : List[str] = self.tool(*a )
# There is a single output
if len(self.tool.outputs ) == 1:
lowercase_ : Union[str, Any] = [outputs]
self.assertListEqual(output_types(a ) , self.tool.outputs )
def lowerCAmelCase__ ( self : List[str] ):
'''simple docstring'''
self.assertTrue(hasattr(self.tool , "description" ) )
self.assertTrue(hasattr(self.tool , "default_checkpoint" ) )
self.assertTrue(self.tool.description.startswith("This is a tool that" ) )
def lowerCAmelCase__ ( self : Any ):
'''simple docstring'''
lowercase_ : Any = create_inputs(self.tool.inputs )
lowercase_ : str = self.tool(*a )
if not isinstance(a , a ):
lowercase_ : List[Any] = [outputs]
self.assertEqual(len(a ) , len(self.tool.outputs ) )
for output, output_type in zip(a , self.tool.outputs ):
lowercase_ : int = AGENT_TYPE_MAPPING[output_type]
self.assertTrue(isinstance(a , a ) )
def lowerCAmelCase__ ( self : Tuple ):
'''simple docstring'''
lowercase_ : Dict = create_inputs(self.tool.inputs )
lowercase_ : Optional[int] = []
for _input, input_type in zip(a , self.tool.inputs ):
if isinstance(a , a ):
_inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] )
else:
_inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) )
# Should not raise an error
lowercase_ : Any = self.tool(*a )
if not isinstance(a , a ):
lowercase_ : Any = [outputs]
self.assertEqual(len(a ) , len(self.tool.outputs ) )
| 640 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.