code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowercase ( unittest.TestCase ): """simple docstring""" @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = XLMRobertaModel.from_pretrained('''xlm-roberta-base''' ) UpperCamelCase__ :Optional[Any] = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase__ :List[str] = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase__ :int = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase__ :Dict = model(__A )["""last_hidden_state"""].detach() self.assertEqual(output.shape , __A ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __A , atol=1e-3 ) ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = XLMRobertaModel.from_pretrained('''xlm-roberta-large''' ) UpperCamelCase__ :int = torch.tensor([[0, 581, 10269, 83, 99942, 136, 60742, 23, 70, 80583, 18276, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase__ :Optional[Any] = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase__ :Dict = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase__ :Dict = model(__A )["""last_hidden_state"""].detach() self.assertEqual(output.shape , __A ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , __A , atol=1e-3 ) )
189
import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __SCREAMING_SNAKE_CASE ( ) -> Tuple: __A : List[Any] = ArgumentParser( description=( """PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" ,type=a__ ,default=1 ,help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" ,type=a__ ,help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) ,) # rest from the training program parser.add_argument("""training_script_args""" ,nargs=a__ ) return parser.parse_args() def __SCREAMING_SNAKE_CASE ( ) -> str: __A : Union[str, Any] = parse_args() # Import training_script as a module. __A : List[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) __A : str = script_fpath.stem __A : int = importlib.import_module(a__ ) # Patch sys.argv __A : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn ,args=() ,nprocs=args.num_cores ) if __name__ == "__main__": main()
17
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available A : Any = { """configuration_altclip""": [ """ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """AltCLIPConfig""", """AltCLIPTextConfig""", """AltCLIPVisionConfig""", ], """processing_altclip""": ["""AltCLIPProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ """ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """AltCLIPPreTrainedModel""", """AltCLIPModel""", """AltCLIPTextModel""", """AltCLIPVisionModel""", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys A : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
163
'''simple docstring''' import unittest from transformers import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING, is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE: @staticmethod def snake_case__ ( *lowerCamelCase__ , **lowerCamelCase__ ) -> Optional[int]: """simple docstring""" pass @is_pipeline_test @require_torch @require_vision class SCREAMING_SNAKE_CASE( unittest.TestCase ): snake_case_ : Dict = MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: """simple docstring""" __lowercase = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) __lowercase = [ { """image""": Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """question""": """How many cats are there?""", }, { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """question""": """How many cats are there?""", }, ] return vqa_pipeline, examples def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" __lowercase = vqa_pipeline(lowerCamelCase__ , top_k=1 ) self.assertEqual( lowerCamelCase__ , [ [{"""score""": ANY(lowerCamelCase__ ), """answer""": ANY(lowerCamelCase__ )}], [{"""score""": ANY(lowerCamelCase__ ), """answer""": ANY(lowerCamelCase__ )}], ] , ) @require_torch def snake_case__ ( self ) -> Tuple: """simple docstring""" __lowercase = pipeline("""visual-question-answering""" , model="""hf-internal-testing/tiny-vilt-random-vqa""" ) __lowercase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __lowercase = """How many cats are there?""" __lowercase = vqa_pipeline(image=lowerCamelCase__ , question="""How many cats are there?""" , top_k=2 ) self.assertEqual( lowerCamelCase__ , [{"""score""": ANY(lowerCamelCase__ ), """answer""": ANY(lowerCamelCase__ )}, {"""score""": ANY(lowerCamelCase__ ), """answer""": ANY(lowerCamelCase__ )}] ) __lowercase = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( lowerCamelCase__ , [{"""score""": ANY(lowerCamelCase__ ), """answer""": ANY(lowerCamelCase__ )}, {"""score""": ANY(lowerCamelCase__ ), """answer""": ANY(lowerCamelCase__ )}] ) @slow @require_torch def snake_case__ ( self ) -> List[str]: """simple docstring""" __lowercase = pipeline("""visual-question-answering""" , model="""dandelin/vilt-b32-finetuned-vqa""" ) __lowercase = """./tests/fixtures/tests_samples/COCO/000000039769.png""" __lowercase = """How many cats are there?""" __lowercase = vqa_pipeline(image=lowerCamelCase__ , question=lowerCamelCase__ , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [{"""score""": 0.87_99, """answer""": """2"""}, {"""score""": 0.2_96, """answer""": """1"""}] ) __lowercase = vqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [{"""score""": 0.87_99, """answer""": """2"""}, {"""score""": 0.2_96, """answer""": """1"""}] ) __lowercase = vqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCamelCase__ , decimals=4 ) , [[{"""score""": 0.87_99, """answer""": """2"""}, {"""score""": 0.2_96, """answer""": """1"""}]] * 2 , ) @require_tf @unittest.skip("""Visual question answering not implemented in TF""" ) def snake_case__ ( self ) -> List[Any]: """simple docstring""" pass
163
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCamelCase : List[str] = torch.device("""cpu""") def __a ( ) -> str: SCREAMING_SNAKE_CASE : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' SCREAMING_SNAKE_CASE : int = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return im def __a ( __lowerCAmelCase ) -> Tuple: if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.17_03E00, 2.11_07E00, -2.08_11E00, 8.86_85E-01, 2.43_60E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.96_36E-01, 2.34_78E-01, -1.69_63E00, -1.73_81E00, -8.63_37E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.27_68E-01, -4.74_29E-01, -1.08_97E00, -1.02_48E00, 3.55_23E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.53_30E-01, 2.42_11E-01, -6.01_85E-01, -8.27_89E-01, -6.04_46E-02] ) def __a ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: SCREAMING_SNAKE_CASE : List[Any] = dct.pop(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Any = val def __a ( __lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE : Optional[Any] = [] for k in state_dict.keys(): SCREAMING_SNAKE_CASE : int = k if ".pwconv" in k: SCREAMING_SNAKE_CASE : int = k_new.replace('.pwconv' , '.point_wise_conv' ) if ".dwconv" in k: SCREAMING_SNAKE_CASE : Tuple = k_new.replace('.dwconv' , '.depth_wise_conv' ) if ".Proj." in k: SCREAMING_SNAKE_CASE : int = k_new.replace('.Proj.' , '.proj.' ) if "patch_embed" in k_new: SCREAMING_SNAKE_CASE : Dict = k_new.replace('patch_embed' , 'swiftformer.patch_embed.patch_embedding' ) if "network" in k_new: SCREAMING_SNAKE_CASE : List[Any] = k_new.split('.' ) if ls[2].isdigit(): SCREAMING_SNAKE_CASE : Optional[Any] = 'swiftformer.encoder.network.' + ls[1] + '.blocks.' + ls[2] + '.' + '.'.join(ls[3:] ) else: SCREAMING_SNAKE_CASE : Dict = k_new.replace('network' , 'swiftformer.encoder.network' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __a ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE : Optional[int] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size SCREAMING_SNAKE_CASE : List[Any] = 1000 SCREAMING_SNAKE_CASE : Any = 'huggingface/label-files' SCREAMING_SNAKE_CASE : List[str] = 'imagenet-1k-id2label.json' SCREAMING_SNAKE_CASE : Optional[int] = json.load(open(hf_hub_download(__lowerCAmelCase , __lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) SCREAMING_SNAKE_CASE : Any = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : str = idalabel SCREAMING_SNAKE_CASE : List[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": SCREAMING_SNAKE_CASE : Any = [3, 3, 6, 4] SCREAMING_SNAKE_CASE : int = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": SCREAMING_SNAKE_CASE : str = [3, 3, 9, 6] SCREAMING_SNAKE_CASE : Any = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": SCREAMING_SNAKE_CASE : List[str] = [4, 3, 10, 5] SCREAMING_SNAKE_CASE : Optional[int] = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": SCREAMING_SNAKE_CASE : List[Any] = [4, 4, 12, 6] SCREAMING_SNAKE_CASE : Tuple = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('https' ): SCREAMING_SNAKE_CASE : int = torch.hub.load_state_dict_from_url(__lowerCAmelCase , map_location='cpu' , check_hash=__lowerCAmelCase ) else: SCREAMING_SNAKE_CASE : str = torch.load(__lowerCAmelCase , map_location='cpu' ) SCREAMING_SNAKE_CASE : Optional[int] = checkpoint SCREAMING_SNAKE_CASE : List[Any] = create_rename_keys(__lowerCAmelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # load HuggingFace model SCREAMING_SNAKE_CASE : int = SwiftFormerForImageClassification(__lowerCAmelCase ).eval() hf_model.load_state_dict(__lowerCAmelCase ) # prepare test inputs SCREAMING_SNAKE_CASE : str = prepare_img() SCREAMING_SNAKE_CASE : Union[str, Any] = ViTImageProcessor.from_pretrained('preprocessor_config' ) SCREAMING_SNAKE_CASE : Union[str, Any] = processor(images=__lowerCAmelCase , return_tensors='pt' ) # compare outputs from both models SCREAMING_SNAKE_CASE : Optional[Any] = get_expected_output(__lowerCAmelCase ) SCREAMING_SNAKE_CASE : Any = hf_model(inputs['pixel_values'] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , __lowerCAmelCase , atol=1E-3 ) Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) print(F'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(__lowerCAmelCase ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--swiftformer_name""", default="""swiftformer_xs""", choices=["""swiftformer_xs""", """swiftformer_s""", """swiftformer_l1""", """swiftformer_l3"""], type=str, help="""Name of the SwiftFormer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""./converted_outputs/""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--original_ckpt""", default=None, type=str, help="""Path to the original model checkpoint.""") _lowerCamelCase : List[str] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
352
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A_ = logging.get_logger(__name__) A_ = "▁" A_ = {"vocab_file": "vocab.txt", "sentencepiece_model_ckpt": "sentencepiece.bpe.model"} A_ = { "sentencepiece_model_file": "sentencepiece.bpe.model", "vocab_file": "vocab.txt", } A_ = { "vocab_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt", }, "sentencepiece_model_file": { "ernie-m-base": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", "ernie-m-large": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model", }, } A_ = { "ernie-m-base": 514, "ernie-m-large": 514, } A_ = { "ernie-m-base": {"do_lower_case": False}, "ernie-m-large": {"do_lower_case": False}, } class __lowercase ( _A ): lowercase = ["input_ids"] lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_INIT_CONFIGURATION lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = RESOURCE_FILES_NAMES def __init__( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=False , __lowerCamelCase : int="utf8" , __lowerCamelCase : Union[str, Any]="[UNK]" , __lowerCamelCase : Tuple="[SEP]" , __lowerCamelCase : Union[str, Any]="[PAD]" , __lowerCamelCase : str="[CLS]" , __lowerCamelCase : List[Any]="[MASK]" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Optional[int] , ) -> None: '''simple docstring''' lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , pad_token=__lowerCamelCase , cls_token=__lowerCamelCase , mask_token=__lowerCamelCase , vocab_file=__lowerCamelCase , encoding=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) lowercase = do_lower_case lowercase = sentencepiece_model_ckpt lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCamelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: lowercase = self.load_vocab(filepath=__lowerCamelCase ) else: lowercase = {self.sp_model.id_to_piece(__lowerCamelCase ): id for id in range(self.sp_model.get_piece_size() )} lowercase = {v: k for k, v in self.vocab.items()} def __a ( self : int , __lowerCamelCase : List[str] ) -> str: '''simple docstring''' if text is None: return None lowercase = self.tokenize(__lowerCamelCase ) lowercase ,lowercase = '''''', [] for i, ch in enumerate(__lowerCamelCase ): if ch in self.SP_CHAR_MAPPING: lowercase = self.SP_CHAR_MAPPING.get(__lowerCamelCase ) else: lowercase = unicodedata.normalize('''NFKC''' , __lowerCamelCase ) if self.is_whitespace(__lowerCamelCase ): continue normalized_text += ch char_mapping.extend([i] * len(__lowerCamelCase ) ) lowercase ,lowercase ,lowercase = normalized_text, [], 0 if self.do_lower_case: lowercase = text.lower() for token in split_tokens: if token[:1] == "▁": lowercase = token[1:] lowercase = text[offset:].index(__lowerCamelCase ) + offset lowercase = start + len(__lowerCamelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) lowercase = end return token_mapping @property def __a ( self : str ) -> Tuple: '''simple docstring''' return len(self.vocab ) def __a ( self : Dict ) -> Optional[Any]: '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def __getstate__( self : Tuple ) -> Dict: '''simple docstring''' lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self : int , __lowerCamelCase : Optional[Any] ) -> Optional[int]: '''simple docstring''' lowercase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def __a ( self : Any , __lowerCamelCase : Dict ) -> Optional[int]: '''simple docstring''' return "".join((self.SP_CHAR_MAPPING.get(__lowerCamelCase , __lowerCamelCase ) for c in text) ) def __a ( self : Dict , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int]=False , __lowerCamelCase : Optional[Any]=64 , __lowerCamelCase : Any=0.1 ) -> int: '''simple docstring''' if self.sp_model_kwargs.get('''enable_sampling''' ) is True: lowercase = True if self.sp_model_kwargs.get('''alpha''' ) is not None: lowercase = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: lowercase = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: lowercase = self.sp_model.EncodeAsPieces(__lowerCamelCase ) else: lowercase = self.sp_model.SampleEncodeAsPieces(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase = [] for pi, piece in enumerate(__lowerCamelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__lowerCamelCase ) and pi != 0: new_pieces.append(__lowerCamelCase ) continue else: continue lowercase = 0 for i, chunk in enumerate(__lowerCamelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__lowerCamelCase ) or self.is_punct(__lowerCamelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__lowerCamelCase ) lowercase = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowercase = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) lowercase = i if len(__lowerCamelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def __a ( self : str , __lowerCamelCase : Tuple ) -> Optional[int]: '''simple docstring''' lowercase = ''''''.join(__lowerCamelCase ).replace(__lowerCamelCase , ''' ''' ).strip() return out_string def __a ( self : List[str] , __lowerCamelCase : Optional[Any] ) -> str: '''simple docstring''' lowercase = self.convert_ids_to_tokens(__lowerCamelCase ) lowercase = ''''''.join(__lowerCamelCase ).replace(__lowerCamelCase , ''' ''' ).strip() return out_string def __a ( self : List[Any] , __lowerCamelCase : List[str] ) -> Dict: '''simple docstring''' return self.vocab.get(__lowerCamelCase , self.vocab.get(self.unk_token ) ) def __a ( self : int , __lowerCamelCase : Optional[Any] ) -> int: '''simple docstring''' return self.reverse_vocab.get(__lowerCamelCase , self.unk_token ) def __a ( self : Optional[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : List[Any]=None ) -> str: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase = [self.cls_token_id] lowercase = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def __a ( self : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int=None ) -> Any: '''simple docstring''' if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def __a ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : int=None , __lowerCamelCase : Optional[int]=False ) -> Optional[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1] def __a ( self : Tuple , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: # [CLS] X [SEP] return (len(__lowerCamelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__lowerCamelCase ) + 1) + [1] * (len(__lowerCamelCase ) + 3) def __a ( self : Union[str, Any] , __lowerCamelCase : Dict ) -> str: '''simple docstring''' if "\u4e00" <= char <= "\u9fff": return True return False def __a ( self : Tuple , __lowerCamelCase : Union[str, Any] ) -> List[str]: '''simple docstring''' if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def __a ( self : Dict , __lowerCamelCase : str ) -> Optional[Any]: '''simple docstring''' if char in ",;:.?!~,;:。?!《》【】": return True return False def __a ( self : Optional[Any] , __lowerCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__lowerCamelCase ) == 1: lowercase = unicodedata.category(__lowerCamelCase ) if cat == "Zs": return True return False def __a ( self : Tuple , __lowerCamelCase : Optional[Any] ) -> Any: '''simple docstring''' lowercase = {} with io.open(__lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f: for index, line in enumerate(__lowerCamelCase ): lowercase = line.rstrip('''\n''' ) lowercase = int(__lowerCamelCase ) return token_to_idx def __a ( self : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' lowercase = 0 if os.path.isdir(__lowerCamelCase ): lowercase = os.path.join( __lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: lowercase = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__lowerCamelCase , '''w''' , encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items() , key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.' ''' Please check that the vocabulary is not corrupted!''' ) lowercase = token_index writer.write(token + '''\n''' ) index += 1 lowercase = os.path.join(__lowerCamelCase , '''sentencepiece.bpe.model''' ) with open(__lowerCamelCase , '''wb''' ) as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (vocab_file,)
604
0
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" _a : List[Any] = nn.Parameter(UpperCamelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" _a : List[Any] = nn.Parameter(UpperCamelCase_ ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): # set torch weights for 1-to-1 comparison _a : Dict = np.asarray(weights[0] ) _a : List[Any] = np.asarray(weights[1] ) _a : Optional[int] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(UpperCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCamelCase_ ).view(-1 , UpperCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): # set torch weights for 1-to-1 comparison _a : Any = np.asarray(weights[0] ) _a : Union[str, Any] = np.asarray(weights[1] ) _a : List[str] = np.asarray(weights[2] ) _a : Dict = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(UpperCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(UpperCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(UpperCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , UpperCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(UpperCamelCase_ ).view(-1 , UpperCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): # layernorm 1 _a : List[Any] = weights[0][0][0] _a : Dict = np.asarray(layer_norm_a[0] ) _a : int = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(UpperCamelCase_ ) , torch.tensor(UpperCamelCase_ ) , ) # lsh weights + output _a : int = weights[0][1] if len(UpperCamelCase_ ) < 4: set_layer_weights_in_torch_lsh(UpperCamelCase_ , torch_block.attention , UpperCamelCase_ ) else: set_layer_weights_in_torch_local(UpperCamelCase_ , torch_block.attention , UpperCamelCase_ ) # intermediate weighs _a : Union[str, Any] = weights[2][0][1][2] # Chunked Feed Forward if len(UpperCamelCase_ ) == 4: _a : Tuple = intermediate_weights[2] # layernorm 2 _a : str = np.asarray(intermediate_weights[0][0] ) _a : List[str] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(UpperCamelCase_ ) , torch.tensor(UpperCamelCase_ ) , ) # intermediate dense _a : str = np.asarray(intermediate_weights[1][0] ) _a : Optional[Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(UpperCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase_ ) , ) # intermediate out _a : Dict = np.asarray(intermediate_weights[4][0] ) _a : List[Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(UpperCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase_ ) , ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): # reformer model _a : Dict = torch_model.reformer # word embeds _a : Any = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(UpperCamelCase_ ) , ) if isinstance(weights[3] , UpperCamelCase_ ): _a : List[Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): _a : int = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" _a : str = nn.Parameter(torch.tensor(UpperCamelCase_ ) ) _a : Union[str, Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( UpperCamelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): _a : List[str] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # output layer norm _a : Optional[Any] = np.asarray(weights[7][0] ) _a : int = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(UpperCamelCase_ ) , torch.tensor(UpperCamelCase_ ) , ) # output embeddings _a : Tuple = np.asarray(weights[9][0] ) _a : Optional[Any] = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(UpperCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(UpperCamelCase_ ) , ) def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): # Initialise PyTorch model _a : Tuple = ReformerConfig.from_json_file(UpperCamelCase_ ) print(f"""Building PyTorch model from configuration: {config}""" ) _a : Optional[int] = ReformerModelWithLMHead(UpperCamelCase_ ) with open(UpperCamelCase_ , '''rb''' ) as f: _a : int = pickle.load(UpperCamelCase_ )['''weights'''] set_model_weights_in_torch(UpperCamelCase_ , UpperCamelCase_ , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCamelCase_ ) if __name__ == "__main__": __UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __UpperCAmelCase : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
249
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def lowerCamelCase_ ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): _a : Optional[Any] = AutoConfig.from_pretrained(UpperCamelCase_ ) _a : Optional[int] = FlaxAutoModelForSeqaSeqLM.from_config(config=UpperCamelCase_ ) _a : List[str] = checkpoints.load_tax_checkpoint(UpperCamelCase_ ) _a : str = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": _a : str = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": _a : str = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _a : int = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): _a : int = f"""layers_{str(UpperCamelCase_ )}""" # Self-Attention _a : Dict = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] _a : Union[str, Any] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] _a : Optional[Any] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] _a : Union[str, Any] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _a : Union[str, Any] = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization _a : Tuple = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: _a : Union[str, Any] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] _a : Union[str, Any] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: _a : List[str] = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] _a : str = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization _a : Tuple = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning _a : List[str] = flax_model.params['''encoder''']['''block'''][str(UpperCamelCase_ )]['''layer'''] _a : Optional[Any] = tax_attention_key _a : List[str] = tax_attention_out _a : Union[str, Any] = tax_attention_query _a : Tuple = tax_attention_value _a : int = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _a : str = tax_global_layer_norm if split_mlp_wi: _a : Tuple = tax_mlp_wi_a _a : Optional[Any] = tax_mlp_wi_a else: _a : Tuple = tax_mlp_wi _a : Dict = tax_mlp_wo _a : Optional[Any] = tax_mlp_layer_norm _a : Dict = flax_model_encoder_layer_block # Only for layer 0: _a : Dict = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T _a : Any = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": _a : Union[str, Any] = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T _a : Union[str, Any] = tax_encoder_global_rel_embedding # Assigning _a : List[str] = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] _a : Optional[int] = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): _a : int = f"""layers_{str(UpperCamelCase_ )}""" # Self-Attention _a : Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] _a : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] _a : Any = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] _a : Optional[int] = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization _a : int = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention _a : Tuple = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] _a : Union[str, Any] = tax_enc_dec_attention_module['''key''']['''kernel'''] _a : List[Any] = tax_enc_dec_attention_module['''out''']['''kernel'''] _a : int = tax_enc_dec_attention_module['''query''']['''kernel'''] _a : Any = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization _a : int = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: _a : str = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] _a : Tuple = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: _a : Union[str, Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] _a : Optional[Any] = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization _a : str = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning _a : List[Any] = flax_model.params['''decoder''']['''block'''][str(UpperCamelCase_ )]['''layer'''] _a : List[Any] = tax_attention_key _a : List[Any] = tax_attention_out _a : Optional[Any] = tax_attention_query _a : List[Any] = tax_attention_value _a : Optional[int] = tax_pre_attention_layer_norm _a : List[Any] = tax_enc_dec_attention_key _a : Any = tax_enc_dec_attention_out _a : Tuple = tax_enc_dec_attention_query _a : Any = tax_enc_dec_attention_value _a : Optional[int] = tax_cross_layer_norm if split_mlp_wi: _a : Dict = tax_mlp_wi_a _a : Union[str, Any] = tax_mlp_wi_a else: _a : Dict = tax_mlp_wi _a : str = tax_mlp_wo _a : int = txa_mlp_layer_norm _a : int = flax_model_decoder_layer_block # Decoder Normalization _a : List[str] = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] _a : int = txa_decoder_norm # Only for layer 0: _a : int = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T _a : Tuple = tax_decoder_rel_embedding # Token Embeddings _a : str = tax_model['''target''']['''token_embedder''']['''embedding'''] _a : Tuple = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: _a : Optional[int] = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(UpperCamelCase_ ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) __UpperCAmelCase : Union[str, Any] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
249
1
'''simple docstring''' import sys UpperCamelCase_ = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def _lowerCAmelCase ( __magic_name__ : str = N ) -> int: lowercase : Dict =-sys.maxsize - 1 for i in range(len(__magic_name__ ) - 12 ): lowercase : Any =1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: lowercase : int =product return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
92
lowerCamelCase__ = { 'Pillow': 'Pillow<10.0.0', 'accelerate': 'accelerate>=0.20.3', 'av': 'av==9.2.0', 'beautifulsoup4': 'beautifulsoup4', 'black': 'black~=23.1', 'codecarbon': 'codecarbon==1.2.0', 'cookiecutter': 'cookiecutter==1.7.3', 'dataclasses': 'dataclasses', 'datasets': 'datasets!=2.5.0', 'decord': 'decord==0.6.0', 'deepspeed': 'deepspeed>=0.9.3', 'diffusers': 'diffusers', 'dill': 'dill<0.3.5', 'evaluate': 'evaluate>=0.2.0', 'fairscale': 'fairscale>0.3', 'faiss-cpu': 'faiss-cpu', 'fastapi': 'fastapi', 'filelock': 'filelock', 'flax': 'flax>=0.4.1,<=0.7.0', 'ftfy': 'ftfy', 'fugashi': 'fugashi>=1.0', 'GitPython': 'GitPython<3.1.19', 'hf-doc-builder': 'hf-doc-builder>=0.3.0', 'huggingface-hub': 'huggingface-hub>=0.14.1,<1.0', 'importlib_metadata': 'importlib_metadata', 'ipadic': 'ipadic>=1.0.0,<2.0', 'isort': 'isort>=5.5.4', 'jax': 'jax>=0.2.8,!=0.3.2,<=0.4.13', 'jaxlib': 'jaxlib>=0.1.65,<=0.4.13', 'jieba': 'jieba', 'kenlm': 'kenlm', 'keras-nlp': 'keras-nlp>=0.3.1', 'librosa': 'librosa', 'nltk': 'nltk', 'natten': 'natten>=0.14.6', 'numpy': 'numpy>=1.17', 'onnxconverter-common': 'onnxconverter-common', 'onnxruntime-tools': 'onnxruntime-tools>=1.4.2', 'onnxruntime': 'onnxruntime>=1.4.0', 'opencv-python': 'opencv-python', 'optuna': 'optuna', 'optax': 'optax>=0.0.8,<=0.1.4', 'packaging': 'packaging>=20.0', 'parameterized': 'parameterized', 'phonemizer': 'phonemizer', 'protobuf': 'protobuf', 'psutil': 'psutil', 'pyyaml': 'pyyaml>=5.1', 'pydantic': 'pydantic<2', 'pytest': 'pytest>=7.2.0', 'pytest-timeout': 'pytest-timeout', 'pytest-xdist': 'pytest-xdist', 'python': 'python>=3.8.0', 'ray[tune]': 'ray[tune]', 'regex': 'regex!=2019.12.17', 'requests': 'requests', 'rhoknp': 'rhoknp>=1.1.0,<1.3.1', 'rjieba': 'rjieba', 'rouge-score': 'rouge-score!=0.0.7,!=0.0.8,!=0.1,!=0.1.1', 'ruff': 'ruff>=0.0.241,<=0.0.259', 'sacrebleu': 'sacrebleu>=1.4.12,<2.0.0', 'sacremoses': 'sacremoses', 'safetensors': 'safetensors>=0.3.1', 'sagemaker': 'sagemaker>=2.31.0', 'scikit-learn': 'scikit-learn', 'sentencepiece': 'sentencepiece>=0.1.91,!=0.1.92', 'sigopt': 'sigopt', 'starlette': 'starlette', 'sudachipy': 'sudachipy>=0.6.6', 'sudachidict_core': 'sudachidict_core>=20220729', 'tensorflow-cpu': 'tensorflow-cpu>=2.6,<2.14', 'tensorflow': 'tensorflow>=2.6,<2.14', 'tensorflow-text': 'tensorflow-text<2.14', 'tf2onnx': 'tf2onnx', 'timeout-decorator': 'timeout-decorator', 'timm': 'timm', 'tokenizers': 'tokenizers>=0.11.1,!=0.11.3,<0.14', 'torch': 'torch>=1.9,!=1.12.0', 'torchaudio': 'torchaudio', 'torchvision': 'torchvision', 'pyctcdecode': 'pyctcdecode>=0.4.0', 'tqdm': 'tqdm>=4.27', 'unidic': 'unidic>=1.0.2', 'unidic_lite': 'unidic_lite>=1.0.7', 'urllib3': 'urllib3<2.0.0', 'uvicorn': 'uvicorn', }
524
0
'''simple docstring''' def _a ( lowerCamelCase_ ): snake_case : Dict =1 snake_case : int =2 while i * i <= n: snake_case : Union[str, Any] =0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _a ( ): snake_case : List[str] =1 snake_case : Tuple =1 while True: i += 1 t_num += i if count_divisors(lowerCamelCase_ ) > 5_00: break return t_num if __name__ == "__main__": print(solution())
136
'''simple docstring''' from __future__ import annotations from collections.abc import Sequence from typing import Literal def _a ( lowerCamelCase_ , lowerCamelCase_ ): snake_case : Dict =list(lowerCamelCase_ ) snake_case : Optional[int] =list(lowerCamelCase_ ) snake_case : str =0 for i in range(len(lowerCamelCase_ ) ): if lista[i] != lista[i]: count += 1 snake_case : int ='''_''' if count > 1: return False else: return "".join(lowerCamelCase_ ) def _a ( lowerCamelCase_ ): snake_case : str =[] while True: snake_case : str =['''$'''] * len(lowerCamelCase_ ) snake_case : Optional[int] =[] for i in range(len(lowerCamelCase_ ) ): for j in range(i + 1 , len(lowerCamelCase_ ) ): snake_case : Optional[Any] =compare_string(binary[i] , binary[j] ) if k is False: snake_case : Any ='''*''' snake_case : Tuple ='''*''' temp.append('''X''' ) for i in range(len(lowerCamelCase_ ) ): if checka[i] == "$": pi.append(binary[i] ) if len(lowerCamelCase_ ) == 0: return pi snake_case : Optional[int] =list(set(lowerCamelCase_ ) ) def _a ( lowerCamelCase_ , lowerCamelCase_ ): snake_case : List[Any] =[] for minterm in minterms: snake_case : List[str] ='''''' for _ in range(lowerCamelCase_ ): snake_case : List[str] =str(minterm % 2 ) + string minterm //= 2 temp.append(lowerCamelCase_ ) return temp def _a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): snake_case : Tuple =list(lowerCamelCase_ ) snake_case : str =list(lowerCamelCase_ ) snake_case : List[str] =0 for i in range(len(lowerCamelCase_ ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def _a ( lowerCamelCase_ , lowerCamelCase_ ): snake_case : Union[str, Any] =[] snake_case : Dict =[0] * len(lowerCamelCase_ ) for i in range(len(chart[0] ) ): snake_case : Dict =0 snake_case : List[Any] =-1 for j in range(len(lowerCamelCase_ ) ): if chart[j][i] == 1: count += 1 snake_case : Tuple =j if count == 1: snake_case : List[Any] =1 for i in range(len(lowerCamelCase_ ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(lowerCamelCase_ ) ): snake_case : Any =0 temp.append(prime_implicants[i] ) while True: snake_case : Dict =0 snake_case : Optional[int] =-1 snake_case : Optional[int] =0 for i in range(len(lowerCamelCase_ ) ): snake_case : Dict =chart[i].count(1 ) if count_n > max_n: snake_case : Union[str, Any] =count_n snake_case : List[str] =i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(lowerCamelCase_ ) ): snake_case : str =0 def _a ( lowerCamelCase_ , lowerCamelCase_ ): snake_case : Union[str, Any] =[[0 for x in range(len(lowerCamelCase_ ) )] for x in range(len(lowerCamelCase_ ) )] for i in range(len(lowerCamelCase_ ) ): snake_case : Optional[int] =prime_implicants[i].count('''_''' ) for j in range(len(lowerCamelCase_ ) ): if is_for_table(prime_implicants[i] , binary[j] , lowerCamelCase_ ): snake_case : Optional[int] =1 return chart def _a ( ): snake_case : int =int(input('''Enter the no. of variables\n''' ) ) snake_case : Tuple =[ float(lowerCamelCase_ ) for x in input( '''Enter the decimal representation of Minterms \'Spaces Separated\'\n''' ).split() ] snake_case : Any =decimal_to_binary(lowerCamelCase_ , lowerCamelCase_ ) snake_case : Optional[Any] =check(lowerCamelCase_ ) print('''Prime Implicants are:''' ) print(lowerCamelCase_ ) snake_case : Any =prime_implicant_chart(lowerCamelCase_ , lowerCamelCase_ ) snake_case : Optional[int] =selection(lowerCamelCase_ , lowerCamelCase_ ) print('''Essential Prime Implicants are:''' ) print(lowerCamelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
136
1
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class a__ ( unittest.TestCase ): '''simple docstring''' lowercase__ : List[Any] = MODEL_FOR_CAUSAL_LM_MAPPING lowercase__ : str = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''pt''' ) # Using `do_sample=False` to force deterministic output lowerCAmelCase__ = text_generator('''This is a test''' , do_sample=lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ , [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ] , ) lowerCAmelCase__ = text_generator(['''This is a test''', '''This is a second test'''] ) self.assertEqual( lowerCamelCase_ , [ [ { '''generated_text''': ( '''This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.''' ''' oscope. FiliFili@@''' ) } ], [ { '''generated_text''': ( '''This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy''' ''' oscope. oscope. FiliFili@@''' ) } ], ] , ) lowerCAmelCase__ = text_generator('''This is a test''' , do_sample=lowerCamelCase_ , num_return_sequences=2 , return_tensors=lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ , [ {'''generated_token_ids''': ANY(lowerCamelCase_ )}, {'''generated_token_ids''': ANY(lowerCamelCase_ )}, ] , ) lowerCAmelCase__ = text_generator.model.config.eos_token_id lowerCAmelCase__ = '''<pad>''' lowerCAmelCase__ = text_generator( ['''This is a test''', '''This is a second test'''] , do_sample=lowerCamelCase_ , num_return_sequences=2 , batch_size=2 , return_tensors=lowerCamelCase_ , ) self.assertEqual( lowerCamelCase_ , [ [ {'''generated_token_ids''': ANY(lowerCamelCase_ )}, {'''generated_token_ids''': ANY(lowerCamelCase_ )}, ], [ {'''generated_token_ids''': ANY(lowerCamelCase_ )}, {'''generated_token_ids''': ANY(lowerCamelCase_ )}, ], ] , ) @require_tf def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = pipeline(task='''text-generation''' , model='''sshleifer/tiny-ctrl''' , framework='''tf''' ) # Using `do_sample=False` to force deterministic output lowerCAmelCase__ = text_generator('''This is a test''' , do_sample=lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ , [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ] , ) lowerCAmelCase__ = text_generator(['''This is a test''', '''This is a second test'''] , do_sample=lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ , [ [ { '''generated_text''': ( '''This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵''' ''' please,''' ) } ], [ { '''generated_text''': ( '''This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes''' ''' Cannes 閲閲Cannes Cannes Cannes 攵 please,''' ) } ], ] , ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: lowerCAmelCase__ = TextGenerationPipeline(model=lowerCamelCase_ , tokenizer=lowerCamelCase_ ) return text_generator, ["This is a test", "Another test"] def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = '''Hello I believe in''' lowerCAmelCase__ = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) lowerCAmelCase__ = text_generator(lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ , [{'''generated_text''': '''Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe'''}] , ) lowerCAmelCase__ = text_generator(lowerCamelCase_ , stop_sequence=''' fe''' ) self.assertEqual(lowerCamelCase_ , [{'''generated_text''': '''Hello I believe in fe'''}] ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Optional[Any]: lowerCAmelCase__ = text_generator.model lowerCAmelCase__ = text_generator.tokenizer lowerCAmelCase__ = text_generator('''This is a test''' ) self.assertEqual(lowerCamelCase_ , [{'''generated_text''': ANY(lowerCamelCase_ )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) lowerCAmelCase__ = text_generator('''This is a test''' , return_full_text=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , [{'''generated_text''': ANY(lowerCamelCase_ )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) lowerCAmelCase__ = pipeline(task='''text-generation''' , model=lowerCamelCase_ , tokenizer=lowerCamelCase_ , return_full_text=lowerCamelCase_ ) lowerCAmelCase__ = text_generator('''This is a test''' ) self.assertEqual(lowerCamelCase_ , [{'''generated_text''': ANY(lowerCamelCase_ )}] ) self.assertNotIn('''This is a test''' , outputs[0]['''generated_text'''] ) lowerCAmelCase__ = text_generator('''This is a test''' , return_full_text=lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , [{'''generated_text''': ANY(lowerCamelCase_ )}] ) self.assertTrue(outputs[0]['''generated_text'''].startswith('''This is a test''' ) ) lowerCAmelCase__ = text_generator(['''This is great !''', '''Something else'''] , num_return_sequences=2 , do_sample=lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ , [ [{'''generated_text''': ANY(lowerCamelCase_ )}, {'''generated_text''': ANY(lowerCamelCase_ )}], [{'''generated_text''': ANY(lowerCamelCase_ )}, {'''generated_text''': ANY(lowerCamelCase_ )}], ] , ) if text_generator.tokenizer.pad_token is not None: lowerCAmelCase__ = text_generator( ['''This is great !''', '''Something else'''] , num_return_sequences=2 , batch_size=2 , do_sample=lowerCamelCase_ ) self.assertEqual( lowerCamelCase_ , [ [{'''generated_text''': ANY(lowerCamelCase_ )}, {'''generated_text''': ANY(lowerCamelCase_ )}], [{'''generated_text''': ANY(lowerCamelCase_ )}, {'''generated_text''': ANY(lowerCamelCase_ )}], ] , ) with self.assertRaises(lowerCamelCase_ ): lowerCAmelCase__ = text_generator('''test''' , return_full_text=lowerCamelCase_ , return_text=lowerCamelCase_ ) with self.assertRaises(lowerCamelCase_ ): lowerCAmelCase__ = text_generator('''test''' , return_full_text=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) with self.assertRaises(lowerCamelCase_ ): lowerCAmelCase__ = text_generator('''test''' , return_text=lowerCamelCase_ , return_tensors=lowerCamelCase_ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): lowerCAmelCase__ = text_generator('''''' ) self.assertEqual(lowerCamelCase_ , [{'''generated_text''': ANY(lowerCamelCase_ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): lowerCAmelCase__ = text_generator('''''' ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. lowerCAmelCase__ = ['''RwkvForCausalLM''', '''XGLMForCausalLM''', '''GPTNeoXForCausalLM'''] if ( tokenizer.model_max_length < 1_00_00 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator('''This is a test''' * 5_00 , max_new_tokens=20 ) lowerCAmelCase__ = text_generator('''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(lowerCamelCase_ ): text_generator( '''This is a test''' * 5_00 , handle_long_generation='''hole''' , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self ) -> Any: import torch # Classic `model_kwargs` lowerCAmelCase__ = pipeline( model='''hf-internal-testing/tiny-random-bloom''' , model_kwargs={'''device_map''': '''auto''', '''torch_dtype''': torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCAmelCase__ = pipe('''This is a test''' ) self.assertEqual( lowerCamelCase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) lowerCAmelCase__ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) lowerCAmelCase__ = pipe('''This is a test''' ) self.assertEqual( lowerCamelCase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 lowerCAmelCase__ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) lowerCAmelCase__ = pipe('''This is a test''' ) self.assertEqual( lowerCamelCase_ , [ { '''generated_text''': ( '''This is a test test test test test test test test test test test test test test test test''' ''' test''' ) } ] , ) @require_torch @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: import torch lowerCAmelCase__ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device=0 , torch_dtype=torch.floataa ) pipe('''This is a test''' ) @require_torch @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE ( self ) -> Any: import torch lowerCAmelCase__ = pipeline(model='''hf-internal-testing/tiny-random-bloom''' , device_map='''auto''' , torch_dtype=torch.floataa ) pipe('''This is a test''' , do_sample=lowerCamelCase_ , top_p=0.5 ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: lowerCAmelCase__ = '''Hello world''' lowerCAmelCase__ = pipeline('''text-generation''' , model='''hf-internal-testing/tiny-random-gpt2''' ) if text_generator.model.framework == "tf": lowerCAmelCase__ = logging.get_logger('''transformers.generation.tf_utils''' ) else: lowerCAmelCase__ = logging.get_logger('''transformers.generation.utils''' ) lowerCAmelCase__ = '''Both `max_new_tokens`''' # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(lowerCamelCase_ ) as cl: lowerCAmelCase__ = text_generator(lowerCamelCase_ , max_length=10 , max_new_tokens=1 ) self.assertIn(lowerCamelCase_ , cl.out ) # The user only sets one -> no warning with CaptureLogger(lowerCamelCase_ ) as cl: lowerCAmelCase__ = text_generator(lowerCamelCase_ , max_new_tokens=1 ) self.assertNotIn(lowerCamelCase_ , cl.out ) with CaptureLogger(lowerCamelCase_ ) as cl: lowerCAmelCase__ = text_generator(lowerCamelCase_ , max_length=10 ) self.assertNotIn(lowerCamelCase_ , cl.out )
90
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCAmelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self :int , lowercase_ :str )-> Any: A__ = 3 A__ = 2_50 A__ = ids_tensor((batch_size, length) , lowercase_ ) A__ = torch.ones((batch_size, length) , device=lowercase_ , dtype=torch.float ) / length return input_ids, scores def UpperCAmelCase_ ( self :str )-> Dict: A__, A__ = self._get_tensors(5 ) A__ = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) A__, A__ = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) A__, A__ = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def UpperCAmelCase_ ( self :List[Any] )-> List[Any]: A__ = MaxLengthCriteria(max_length=10 ) A__, A__ = self._get_tensors(5 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) A__, A__ = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) A__, A__ = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def UpperCAmelCase_ ( self :Tuple )-> int: A__ = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) A__, A__ = self._get_tensors(5 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) A__, A__ = self._get_tensors(9 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) A__, A__ = self._get_tensors(10 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) A__ = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def UpperCAmelCase_ ( self :Dict )-> int: A__, A__ = self._get_tensors(5 ) A__ = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(lowercase_ , lowercase_ ) ) A__ = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(lowercase_ , lowercase_ ) ) def UpperCAmelCase_ ( self :Union[str, Any] )-> str: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(lowercase_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) A__ = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(lowercase_ ) , 1 )
440
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : int = logging.get_logger(__name__) __snake_case : List[Any] = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : str = 'gpt_bigcode' __lowercase : int = ['past_key_values'] __lowercase : Optional[int] = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , _SCREAMING_SNAKE_CASE=5_0257 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=768 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE="gelu_pytorch_tanh" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=1E-5 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=5_0256 , _SCREAMING_SNAKE_CASE=5_0256 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , **_SCREAMING_SNAKE_CASE , ) -> Optional[int]: A_ = vocab_size A_ = n_positions A_ = n_embd A_ = n_layer A_ = n_head A_ = n_inner A_ = activation_function A_ = resid_pdrop A_ = embd_pdrop A_ = attn_pdrop A_ = layer_norm_epsilon A_ = initializer_range A_ = scale_attn_weights A_ = use_cache A_ = attention_softmax_in_fpaa A_ = scale_attention_softmax_in_fpaa A_ = multi_query A_ = bos_token_id A_ = eos_token_id super().__init__(bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
712
'''simple docstring''' from timeit import timeit __snake_case : List[Any] = { 'MALAYALAM': True, 'String': False, 'rotor': True, 'level': True, 'A': True, 'BB': True, 'ABC': False, 'amanaplanacanalpanama': True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _UpperCAmelCase ( _UpperCamelCase : str ) -> bool: A_ = 0 A_ = len(_UpperCamelCase ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _UpperCAmelCase ( _UpperCamelCase : str ) -> bool: A_ = len(_UpperCamelCase ) // 2 A_ = len(_UpperCamelCase ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(_UpperCamelCase ) ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> bool: if len(_UpperCamelCase ) <= 2: return True if s[0] == s[len(_UpperCamelCase ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _UpperCAmelCase ( _UpperCamelCase : str ) -> bool: return s == s[::-1] def _UpperCAmelCase ( _UpperCamelCase : str ) -> None: A_ = F'''all({name}(key) is value for key, value in test_data.items())''' A_ = F'''from __main__ import test_data, {name}''' A_ = 50_00_00 A_ = timeit(stmt=_UpperCamelCase, setup=_UpperCamelCase, number=_UpperCamelCase ) print(F'''{name:<35} finished {number:,} runs in {result:.5f} seconds''' ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(F"""{key:21} {value}""") print('a man a plan a canal panama') # finished 500,000 runs in 0.46793 seconds benchmark_function('is_palindrome_slice') # finished 500,000 runs in 0.85234 seconds benchmark_function('is_palindrome') # finished 500,000 runs in 1.32028 seconds benchmark_function('is_palindrome_recursive') # finished 500,000 runs in 2.08679 seconds benchmark_function('is_palindrome_traversal')
174
0
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def lowerCAmelCase_ (*lowerCAmelCase__: Dict ): """simple docstring""" with open(lowerCAmelCase__ , """r""" ) as fh: fcntl.flock(lowerCAmelCase__ , fcntl.LOCK_EX ) try: print(*lowerCAmelCase__ ) finally: fcntl.flock(lowerCAmelCase__ , fcntl.LOCK_UN ) a : Tuple = int(os.environ['LOCAL_RANK']) torch.cuda.set_device(local_rank) a : Union[str, Any] = torch.device('cuda', local_rank) a : Any = socket.gethostname() a : Optional[Any] = F'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group('nccl') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank a : Optional[Any] = dist.get_rank() a : List[Any] = dist.get_world_size() printflock(F'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(F'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(F'''{gpu} is broken''') raise
556
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=99, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=36, SCREAMING_SNAKE_CASE_=6, SCREAMING_SNAKE_CASE_=6, SCREAMING_SNAKE_CASE_=6, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.0_2, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=None, ) -> Tuple: UpperCAmelCase_: Any = parent UpperCAmelCase_: Union[str, Any] = batch_size UpperCAmelCase_: int = seq_length UpperCAmelCase_: Any = is_training UpperCAmelCase_: str = use_input_mask UpperCAmelCase_: Dict = use_token_type_ids UpperCAmelCase_: Any = use_labels UpperCAmelCase_: Any = vocab_size UpperCAmelCase_: Dict = embedding_size UpperCAmelCase_: Dict = hidden_size UpperCAmelCase_: Dict = num_hidden_layers UpperCAmelCase_: Dict = num_hidden_groups UpperCAmelCase_: int = num_attention_heads UpperCAmelCase_: List[str] = intermediate_size UpperCAmelCase_: Any = hidden_act UpperCAmelCase_: Dict = hidden_dropout_prob UpperCAmelCase_: Any = attention_probs_dropout_prob UpperCAmelCase_: Tuple = max_position_embeddings UpperCAmelCase_: Tuple = type_vocab_size UpperCAmelCase_: List[Any] = type_sequence_label_size UpperCAmelCase_: Any = initializer_range UpperCAmelCase_: int = num_labels UpperCAmelCase_: Optional[int] = num_choices UpperCAmelCase_: Tuple = scope def __snake_case (self ) -> List[Any]: UpperCAmelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCAmelCase_: Tuple = None if self.use_input_mask: UpperCAmelCase_: Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_: Dict = None if self.use_token_type_ids: UpperCAmelCase_: int = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCAmelCase_: Tuple = None UpperCAmelCase_: Dict = None UpperCAmelCase_: Tuple = None if self.use_labels: UpperCAmelCase_: Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase_: Dict = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) UpperCAmelCase_: List[Any] = ids_tensor([self.batch_size], self.num_choices ) UpperCAmelCase_: Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case (self ) -> Optional[Any]: return AlbertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, num_hidden_groups=self.num_hidden_groups, ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: UpperCAmelCase_: int = AlbertModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Optional[int] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = model(SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> str: UpperCAmelCase_: Any = AlbertForPreTraining(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: List[Any] = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_, sentence_order_label=SCREAMING_SNAKE_CASE_, ) self.parent.assertEqual(result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape, (self.batch_size, config.num_labels) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[str]: UpperCAmelCase_: Optional[int] = AlbertForMaskedLM(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Optional[Any] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCAmelCase_: Optional[Any] = AlbertForQuestionAnswering(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: Any = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, start_positions=SCREAMING_SNAKE_CASE_, end_positions=SCREAMING_SNAKE_CASE_, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: UpperCAmelCase_: Optional[Any] = self.num_labels UpperCAmelCase_: List[Any] = AlbertForSequenceClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: str = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: UpperCAmelCase_: List[str] = self.num_labels UpperCAmelCase_: Union[str, Any] = AlbertForTokenClassification(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: List[str] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCAmelCase_: Dict = self.num_choices UpperCAmelCase_: Dict = AlbertForMultipleChoice(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: str = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase_: str = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase_: List[Any] = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() UpperCAmelCase_: Union[str, Any] = model( SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_, token_type_ids=SCREAMING_SNAKE_CASE_, labels=SCREAMING_SNAKE_CASE_, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: Optional[Any] = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ): List[str] = config_and_inputs UpperCAmelCase_: Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): A = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) A = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) A = True def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=False ) -> Any: UpperCAmelCase_: Tuple = super()._prepare_for_class(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, return_labels=SCREAMING_SNAKE_CASE_ ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE_ ): UpperCAmelCase_: Dict = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=SCREAMING_SNAKE_CASE_ ) return inputs_dict def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Any = AlbertModelTester(self ) UpperCAmelCase_: Union[str, Any] = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, hidden_size=37 ) def __snake_case (self ) -> List[Any]: self.config_tester.run_common_tests() def __snake_case (self ) -> List[Any]: UpperCAmelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Any: UpperCAmelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> str: UpperCAmelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Any: UpperCAmelCase_: List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> str: UpperCAmelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Dict: UpperCAmelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase_: Union[str, Any] = type self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) @slow def __snake_case (self ) -> List[Any]: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase_: Dict = AlbertModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_torch class _a ( unittest.TestCase ): @slow def __snake_case (self ) -> Dict: UpperCAmelCase_: str = AlbertModel.from_pretrained("""albert-base-v2""" ) UpperCAmelCase_: List[str] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) UpperCAmelCase_: List[str] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): UpperCAmelCase_: Union[str, Any] = model(SCREAMING_SNAKE_CASE_, attention_mask=SCREAMING_SNAKE_CASE_ )[0] UpperCAmelCase_: List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4], SCREAMING_SNAKE_CASE_, atol=1E-4 ) )
556
1
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers lowerCAmelCase_ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def snake_case ( ): A = os.path.dirname(os.path.realpath(UpperCAmelCase ) ) A = os.path.join(UpperCAmelCase, 'words.txt' ) A = '' with open(UpperCAmelCase ) as f: A = f.readline() A = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] A = [ word for word in [sum(ord(UpperCAmelCase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(UpperCAmelCase ) if __name__ == "__main__": print(solution())
700
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def snake_case ( UpperCAmelCase : List[Any] ): if "model" in orig_key: A = orig_key.replace('model.', '' ) if "norm1" in orig_key: A = orig_key.replace('norm1', 'attention.output.LayerNorm' ) if "norm2" in orig_key: A = orig_key.replace('norm2', 'output.LayerNorm' ) if "norm" in orig_key: A = orig_key.replace('norm', 'LayerNorm' ) if "transformer" in orig_key: A = orig_key.split('.' )[0].split('_' )[-1] A = orig_key.replace(f'transformer_{layer_num}', f'encoder.layer.{layer_num}' ) if "mha.attn" in orig_key: A = orig_key.replace('mha.attn', 'attention.self' ) if "mha" in orig_key: A = orig_key.replace('mha', 'attention' ) if "W_q" in orig_key: A = orig_key.replace('W_q', 'self.query' ) if "W_k" in orig_key: A = orig_key.replace('W_k', 'self.key' ) if "W_v" in orig_key: A = orig_key.replace('W_v', 'self.value' ) if "ff1" in orig_key: A = orig_key.replace('ff1', 'intermediate.dense' ) if "ff2" in orig_key: A = orig_key.replace('ff2', 'output.dense' ) if "ff" in orig_key: A = orig_key.replace('ff', 'output.dense' ) if "mlm_class" in orig_key: A = orig_key.replace('mlm.mlm_class', 'cls.predictions.decoder' ) if "mlm" in orig_key: A = orig_key.replace('mlm', 'cls.predictions.transform' ) if "cls" not in orig_key: A = 'yoso.' + orig_key return orig_key def snake_case ( UpperCAmelCase : Tuple, UpperCAmelCase : str ): for key in orig_state_dict.copy().keys(): A = orig_state_dict.pop(UpperCAmelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: A = val A = orig_state_dict['cls.predictions.decoder.bias'] A = torch.arange(UpperCAmelCase ).expand((1, -1) ) + 2 return orig_state_dict def snake_case ( UpperCAmelCase : int, UpperCAmelCase : Union[str, Any], UpperCAmelCase : str ): A = torch.load(UpperCAmelCase, map_location='cpu' )['model_state_dict'] A = YosoConfig.from_json_file(UpperCAmelCase ) A = YosoForMaskedLM(UpperCAmelCase ) A = convert_checkpoint_helper(config.max_position_embeddings, UpperCAmelCase ) print(model.load_state_dict(UpperCAmelCase ) ) model.eval() model.save_pretrained(UpperCAmelCase ) print(f'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--pytorch_model_path', default=None, type=str, required=True, help='Path to YOSO pytorch checkpoint.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The json file for YOSO model config.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowerCAmelCase_ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
110
0
'''simple docstring''' import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : Optional[int] = logging.get_logger(__name__) def lowercase (_A , _A , _A ): """simple docstring""" _lowerCAmelCase : Dict = os.path.abspath(_A ) logger.info(f'Converting TensorFlow checkpoint from {tf_path}' ) # Load weights from TF model _lowerCAmelCase : Union[str, Any] = tf.train.list_variables(_A ) _lowerCAmelCase : int = [] _lowerCAmelCase : str = [] _lowerCAmelCase : List[Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") _lowerCAmelCase : List[Any] = full_name.split('/' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'Skipping non-model layer {full_name}' ) continue if "optimizer" in full_name: logger.info(f'Skipping optimization layer {full_name}' ) continue if name[0] == "model": # ignore initial 'model' _lowerCAmelCase : Tuple = name[1:] # figure out how many levels deep the name is _lowerCAmelCase : List[Any] = 0 for _name in name: if _name.startswith('layer_with_weights' ): depth += 1 else: break layer_depth.append(_A ) # read data _lowerCAmelCase : Dict = tf.train.load_variable(_A , _A ) names.append('/'.join(_A ) ) arrays.append(_A ) logger.info(f'Read a total of {len(_A ):,} layers' ) # Sanity check if len(set(_A ) ) != 1: raise ValueError(f'Found layer names with different depths (layer depth {list(set(_A ) )})' ) _lowerCAmelCase : Union[str, Any] = list(set(_A ) )[0] if layer_depth != 1: raise ValueError( 'The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP' ' heads.' ) # convert layers logger.info('Converting weights...' ) for full_name, array in zip(_A , _A ): _lowerCAmelCase : Tuple = full_name.split('/' ) _lowerCAmelCase : Tuple = model _lowerCAmelCase : str = [] for i, m_name in enumerate(_A ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('layer_with_weights' ): _lowerCAmelCase : Any = int(m_name.split('-' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['embeddings', 'LayerNorm'] ) _lowerCAmelCase : List[Any] = getattr(_A , 'embeddings' ) _lowerCAmelCase : Union[str, Any] = getattr(_A , 'LayerNorm' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['encoder', 'layer', str(layer_num - 4 )] ) _lowerCAmelCase : List[Any] = getattr(_A , 'encoder' ) _lowerCAmelCase : int = getattr(_A , 'layer' ) _lowerCAmelCase : Union[str, Any] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['pooler', 'dense'] ) _lowerCAmelCase : Optional[int] = getattr(_A , 'pooler' ) _lowerCAmelCase : Union[str, Any] = getattr(_A , 'dense' ) elif m_name == "embeddings": trace.append('embeddings' ) _lowerCAmelCase : str = getattr(_A , 'embeddings' ) if layer_num == 0: trace.append('word_embeddings' ) _lowerCAmelCase : List[str] = getattr(_A , 'word_embeddings' ) elif layer_num == 1: trace.append('position_embeddings' ) _lowerCAmelCase : int = getattr(_A , 'position_embeddings' ) elif layer_num == 2: trace.append('token_type_embeddings' ) _lowerCAmelCase : List[Any] = getattr(_A , 'token_type_embeddings' ) else: raise ValueError(f'Unknown embedding layer with name {full_name}' ) trace.append('weight' ) _lowerCAmelCase : Optional[int] = getattr(_A , 'weight' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['attention', 'self'] ) _lowerCAmelCase : Optional[int] = getattr(_A , 'attention' ) _lowerCAmelCase : Any = getattr(_A , 'self' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['attention', 'output', 'LayerNorm'] ) _lowerCAmelCase : List[str] = getattr(_A , 'attention' ) _lowerCAmelCase : Optional[int] = getattr(_A , 'output' ) _lowerCAmelCase : Dict = getattr(_A , 'LayerNorm' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['attention', 'output', 'dense'] ) _lowerCAmelCase : Optional[int] = getattr(_A , 'attention' ) _lowerCAmelCase : List[Any] = getattr(_A , 'output' ) _lowerCAmelCase : int = getattr(_A , 'dense' ) elif m_name == "_output_dense": # output dense trace.extend(['output', 'dense'] ) _lowerCAmelCase : Optional[Any] = getattr(_A , 'output' ) _lowerCAmelCase : List[str] = getattr(_A , 'dense' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['output', 'LayerNorm'] ) _lowerCAmelCase : Optional[int] = getattr(_A , 'output' ) _lowerCAmelCase : Optional[Any] = getattr(_A , 'LayerNorm' ) elif m_name == "_key_dense": # attention key trace.append('key' ) _lowerCAmelCase : int = getattr(_A , 'key' ) elif m_name == "_query_dense": # attention query trace.append('query' ) _lowerCAmelCase : Union[str, Any] = getattr(_A , 'query' ) elif m_name == "_value_dense": # attention value trace.append('value' ) _lowerCAmelCase : Optional[int] = getattr(_A , 'value' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['intermediate', 'dense'] ) _lowerCAmelCase : int = getattr(_A , 'intermediate' ) _lowerCAmelCase : List[str] = getattr(_A , 'dense' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('output' ) _lowerCAmelCase : Tuple = getattr(_A , 'output' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('bias' ) _lowerCAmelCase : Any = getattr(_A , 'bias' ) elif m_name in ["kernel", "gamma"]: trace.append('weight' ) _lowerCAmelCase : str = getattr(_A , 'weight' ) else: logger.warning(f'Ignored {m_name}' ) # for certain layers reshape is necessary _lowerCAmelCase : List[Any] = '.'.join(_A ) if re.match(r'(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)' , _A ) or re.match( r'(\S+)\.attention\.output\.dense\.weight' , _A ): _lowerCAmelCase : List[str] = array.reshape(pointer.data.shape ) if "kernel" in full_name: _lowerCAmelCase : int = array.transpose() if pointer.shape == array.shape: _lowerCAmelCase : List[str] = torch.from_numpy(_A ) else: raise ValueError( f'Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:' f' {array.shape}' ) logger.info(f'Successfully set variable {full_name} to PyTorch layer {trace}' ) return model def lowercase (_A , _A , _A ): """simple docstring""" logger.info(f'Loading model based on config from {config_path}...' ) _lowerCAmelCase : int = BertConfig.from_json_file(_A ) _lowerCAmelCase : List[str] = BertModel(_A ) # Load weights from checkpoint logger.info(f'Loading weights from checkpoint {tf_checkpoint_path}...' ) load_tfa_weights_in_bert(_A , _A , _A ) # Save pytorch-model logger.info(f'Saving PyTorch model to {pytorch_dump_path}...' ) torch.save(model.state_dict() , _A ) if __name__ == "__main__": lowerCAmelCase : Dict = argparse.ArgumentParser() parser.add_argument( """--tf_checkpoint_path""", type=str, required=True, help="""Path to the TensorFlow 2.x checkpoint path.""" ) parser.add_argument( """--bert_config_file""", type=str, required=True, help="""The config json file corresponding to the BERT model. This specifies the model architecture.""", ) parser.add_argument( """--pytorch_dump_path""", type=str, required=True, help="""Path to the output PyTorch model (must include filename).""", ) lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
444
'''simple docstring''' from ..utils import DummyObject, requires_backends class UpperCamelCase__ ( metaclass=SCREAMING_SNAKE_CASE_ ): """simple docstring""" __magic_name__ = ["torch", "torchsde"] def __init__( self , *snake_case__ , **snake_case__ ): '''simple docstring''' requires_backends(self , ['torch', 'torchsde'] ) @classmethod def a ( cls , *snake_case__ , **snake_case__ ): '''simple docstring''' requires_backends(cls , ['torch', 'torchsde'] ) @classmethod def a ( cls , *snake_case__ , **snake_case__ ): '''simple docstring''' requires_backends(cls , ['torch', 'torchsde'] )
444
1
'''simple docstring''' import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __magic_name__( _A ): '''simple docstring''' return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __magic_name__( _A ): '''simple docstring''' UpperCamelCase__ = create_tensor(_A ) UpperCamelCase__ = gather(_A ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def __magic_name__( _A ): '''simple docstring''' UpperCamelCase__ = [state.process_index] UpperCamelCase__ = gather_object(_A ) assert len(_A ) == state.num_processes, f"{gathered_obj}, {len(_A )} != {state.num_processes}" assert gathered_obj == list(range(state.num_processes ) ), f"{gathered_obj} != {list(range(state.num_processes ) )}" def __magic_name__( _A ): '''simple docstring''' UpperCamelCase__ = create_tensor(_A ) UpperCamelCase__ = broadcast(_A ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def __magic_name__( _A ): '''simple docstring''' if state.is_main_process: UpperCamelCase__ = torch.arange(state.num_processes + 1 ).to(state.device ) else: UpperCamelCase__ = torch.arange(state.num_processes ).to(state.device ) UpperCamelCase__ = pad_across_processes(_A ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def __magic_name__( _A ): '''simple docstring''' if state.num_processes != 2: return UpperCamelCase__ = create_tensor(_A ) UpperCamelCase__ = reduce(_A , """sum""" ) UpperCamelCase__ = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(_A , _A ), f"{reduced_tensor} != {truth_tensor}" def __magic_name__( _A ): '''simple docstring''' if state.num_processes != 2: return UpperCamelCase__ = create_tensor(_A ) UpperCamelCase__ = reduce(_A , """mean""" ) UpperCamelCase__ = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(_A , _A ), f"{reduced_tensor} != {truth_tensor}" def __magic_name__( _A ): '''simple docstring''' main() def __magic_name__( ): '''simple docstring''' UpperCamelCase__ = PartialState() state.print(f"State: {state}" ) state.print("""testing gather""" ) test_gather(_A ) state.print("""testing gather_object""" ) test_gather_object(_A ) state.print("""testing broadcast""" ) test_broadcast(_A ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(_A ) state.print("""testing reduce_sum""" ) test_reduce_sum(_A ) state.print("""testing reduce_mean""" ) test_reduce_mean(_A ) if __name__ == "__main__": main()
705
'''simple docstring''' # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('''ignore''', category=UserWarning, module='''torch.optim.lr_scheduler''') class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Optional[int] , lowercase : Optional[int] , lowercase : Optional[Any] , lowercase : bool = True , lowercase : bool = False ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ = scheduler UpperCamelCase__ = optimizers if isinstance(lowercase , (list, tuple) ) else [optimizers] UpperCamelCase__ = split_batches UpperCamelCase__ = step_with_optimizer UpperCamelCase__ = GradientState() def A ( self : int , *lowercase : int , **lowercase : str ) -> str: '''simple docstring''' if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*lowercase , **lowercase ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*lowercase , **lowercase ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step UpperCamelCase__ = AcceleratorState().num_processes for _ in range(lowercase ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , """total_steps""" ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*lowercase , **lowercase ) else: self.scheduler.step(*lowercase , **lowercase ) def A ( self : List[str] ) -> Optional[Any]: '''simple docstring''' return self.scheduler.get_last_lr() def A ( self : Any ) -> int: '''simple docstring''' return self.scheduler.state_dict() def A ( self : Any , lowercase : int ) -> Optional[int]: '''simple docstring''' self.scheduler.load_state_dict(lowercase ) def A ( self : str ) -> int: '''simple docstring''' return self.scheduler.get_lr() def A ( self : Union[str, Any] , *lowercase : List[Any] , **lowercase : str ) -> str: '''simple docstring''' return self.scheduler.print_lr(*lowercase , **lowercase )
265
0
def a ( A__ = 1_0_0 ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = set() SCREAMING_SNAKE_CASE__ : Tuple = 0 SCREAMING_SNAKE_CASE__ : Union[str, Any] = n + 1 # maximum limit for a in range(2 , A__ ): for b in range(2 , A__ ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = a**b # calculates the current power collect_powers.add(A__ ) # adds the result to the set return len(A__ ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
35
"""simple docstring""" # Algorithm for the pigeonhole sorting def __a ( a ): """simple docstring""" _a = min(a ) # min() finds the minimum value _a = max(a ) # max() finds the maximum value _a = max_val - min_val + 1 # size is difference of max and min values plus one # list of pigeonholes of size equal to the variable size _a = [0] * size # Populate the pigeonholes. for x in a: assert isinstance(a, a ), "integers only please" holes[x - min_val] += 1 # Putting the elements back into the array in an order. _a = 0 for count in range(a ): while holes[count] > 0: holes[count] -= 1 _a = count + min_val i += 1 def __a ( ): """simple docstring""" _a = [8, 3, 2, 7, 4, 6, 8] pigeonhole_sort(a ) print("Sorted order is:", " ".join(a ) ) if __name__ == "__main__": main()
388
0
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) lowerCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase__ = """ Examples: ```py >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> zero_image_emb = out.negative_image_embeds >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\") >>> pipe.to(\"cuda\") >>> image = pipe( ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=50, ... ).images >>> image[0].save(\"cat.png\") ``` """ def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase , _UpperCamelCase=8 ): __lowerCAmelCase : List[Any] = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 __lowerCAmelCase : str = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class A__ ( __A): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): super().__init__() self.register_modules( unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , movq=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if latents is None: __lowerCAmelCase : Optional[Any] = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) __lowerCAmelCase : Optional[int] = latents.to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = latents * scheduler.init_noise_sigma return latents def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) __lowerCAmelCase : Optional[Any] = torch.device(f"cuda:{gpu_id}" ) __lowerCAmelCase : Union[str, Any] = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE=0 ): if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) __lowerCAmelCase : List[str] = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) __lowerCAmelCase : List[str] = None for cpu_offloaded_model in [self.unet, self.movq]: __lowerCAmelCase : List[str] = cpu_offload_with_hook(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prev_module_hook=_SCREAMING_SNAKE_CASE ) # We'll offload the last model manually. __lowerCAmelCase : List[str] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCamelCase ( self ): if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_SCREAMING_SNAKE_CASE , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 5_12 , _SCREAMING_SNAKE_CASE = 5_12 , _SCREAMING_SNAKE_CASE = 1_00 , _SCREAMING_SNAKE_CASE = 4.0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , ): __lowerCAmelCase : List[Any] = self._execution_device __lowerCAmelCase : Union[str, Any] = guidance_scale > 1.0 if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) __lowerCAmelCase : Union[str, Any] = image_embeds.shape[0] * num_images_per_prompt if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : List[Any] = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: __lowerCAmelCase : List[str] = image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) __lowerCAmelCase : Dict = negative_image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) __lowerCAmelCase : Union[str, Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_SCREAMING_SNAKE_CASE ) self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Union[str, Any] = self.scheduler.timesteps __lowerCAmelCase : Dict = self.unet.config.in_channels __lowerCAmelCase : int = downscale_height_and_width(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.movq_scale_factor ) # create initial latent __lowerCAmelCase : Optional[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.scheduler , ) for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance __lowerCAmelCase : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __lowerCAmelCase : Union[str, Any] = {'image_embeds': image_embeds} __lowerCAmelCase : Union[str, Any] = self.unet( sample=_SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , added_cond_kwargs=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] if do_classifier_free_guidance: __lowerCAmelCase : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) __lowerCAmelCase : Dict = noise_pred.chunk(2 ) __lowerCAmelCase : Tuple = variance_pred.chunk(2 ) __lowerCAmelCase : int = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) __lowerCAmelCase : List[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): __lowerCAmelCase : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 __lowerCAmelCase : Optional[int] = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , )[0] # post-processing __lowerCAmelCase : Optional[int] = self.movq.decode(_SCREAMING_SNAKE_CASE , force_not_quantize=_SCREAMING_SNAKE_CASE )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: __lowerCAmelCase : Optional[int] = image * 0.5 + 0.5 __lowerCAmelCase : Optional[int] = image.clamp(0 , 1 ) __lowerCAmelCase : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __lowerCAmelCase : Dict = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
704
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=[10, 20, 30, 40] , _SCREAMING_SNAKE_CASE=[1, 1, 2, 1] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu" , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=None , ): __lowerCAmelCase : Optional[Any] = parent __lowerCAmelCase : int = batch_size __lowerCAmelCase : Union[str, Any] = image_size __lowerCAmelCase : Optional[Any] = num_channels __lowerCAmelCase : List[Any] = embeddings_size __lowerCAmelCase : Dict = hidden_sizes __lowerCAmelCase : Optional[int] = depths __lowerCAmelCase : Optional[Any] = is_training __lowerCAmelCase : int = use_labels __lowerCAmelCase : List[Any] = hidden_act __lowerCAmelCase : Optional[Any] = num_labels __lowerCAmelCase : List[str] = scope __lowerCAmelCase : Optional[Any] = len(_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase : List[str] = None if self.use_labels: __lowerCAmelCase : Tuple = ids_tensor([self.batch_size] , self.num_labels ) __lowerCAmelCase : int = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = RegNetModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Any = model(_SCREAMING_SNAKE_CASE ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Optional[Any] = self.num_labels __lowerCAmelCase : str = RegNetForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() __lowerCAmelCase : Any = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase : Any = config_and_inputs __lowerCAmelCase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase): A_ : List[str] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () A_ : List[Any] = ( {'feature-extraction': RegNetModel, 'image-classification': RegNetForImageClassification} if is_torch_available() else {} ) A_ : Dict = False A_ : str = False A_ : int = False A_ : Union[str, Any] = False def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = RegNetModelTester(self ) __lowerCAmelCase : int = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCamelCase ( self ): return @unittest.skip(reason='RegNet does not use inputs_embeds' ) def __lowerCamelCase ( self ): pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Optional[int] = model_class(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase : Tuple = [*signature.parameters.keys()] __lowerCAmelCase : Optional[int] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase , __lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase : Union[str, Any] = model_class(config=_SCREAMING_SNAKE_CASE ) for name, module in model.named_modules(): if isinstance(_SCREAMING_SNAKE_CASE , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) def __lowerCamelCase ( self ): def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Any = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): __lowerCAmelCase : List[str] = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase : Any = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowerCAmelCase : List[str] = self.model_tester.num_stages self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) __lowerCAmelCase , __lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase : List[Any] = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: __lowerCAmelCase : List[Any] = layer_type __lowerCAmelCase : Tuple = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowerCAmelCase : Dict = True check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self ): __lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) @slow def __lowerCamelCase ( self ): for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase : Dict = RegNetModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __lowerCAmelCase (): __lowerCAmelCase : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase): @cached_property def __lowerCamelCase ( self ): return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCamelCase ( self ): __lowerCAmelCase : List[str] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : str = self.default_image_processor __lowerCAmelCase : Any = prepare_img() __lowerCAmelCase : Any = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): __lowerCAmelCase : List[str] = model(**_SCREAMING_SNAKE_CASE ) # verify the logits __lowerCAmelCase : Union[str, Any] = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = torch.tensor([-0.4180, -1.5051, -3.4836] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
549
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , a_ , a_=1_3 , a_=7 , a_=True , a_=True , a_=True , a_=True , a_=9_9 , a_=3_2 , a_=5 , a_=4 , a_=3_7 , a_="gelu" , a_=0.1 , a_=0.1 , a_=5_1_2 , a_=1_6 , a_=2 , a_=0.02 , a_=4 , ) -> int: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_attention_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_choices def snake_case_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_attention_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a_ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def snake_case_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = config_and_inputs UpperCAmelCase = True UpperCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase_ ( a , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase : str = True __lowerCAmelCase : Optional[Any] = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = FlaxRobertaModelTester(self ) @slow def snake_case_ ( self ) -> Dict: """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase = model_class_name.from_pretrained('roberta-base' , from_pt=a_ ) UpperCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(a_ )
447
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Tuple = logging.get_logger(__name__) _a : Optional[int] = '▁' _a : str = {'vocab_file': 'sentencepiece.bpe.model', 'monolingual_vocab_file': 'dict.txt'} _a : Optional[Any] = { 'vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model', }, 'monolingual_vocab_file': { 'vinai/bartpho-syllable': 'https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt', }, } _a : Union[str, Any] = {'vinai/bartpho-syllable': 1_024} class lowercase_ ( a ): '''simple docstring''' __lowerCAmelCase : Dict = VOCAB_FILES_NAMES __lowerCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self , a_ , a_ , a_="<s>" , a_="</s>" , a_="</s>" , a_="<s>" , a_="<unk>" , a_="<pad>" , a_="<mask>" , a_ = None , **a_ , ) -> None: """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , cls_token=a_ , pad_token=a_ , mask_token=a_ , sp_model_kwargs=self.sp_model_kwargs , **a_ , ) UpperCAmelCase = vocab_file UpperCAmelCase = monolingual_vocab_file UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(a_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility UpperCAmelCase = {} UpperCAmelCase = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(a_ ) not in self.fairseq_tokens_to_ids: UpperCAmelCase = cnt cnt += 1 with open(a_ , 'r' , encoding='utf-8' ) as f: for line in f.readlines(): UpperCAmelCase = line.strip().split()[0] UpperCAmelCase = len(self.fairseq_tokens_to_ids ) if str(a_ ) not in self.fairseq_tokens_to_ids: UpperCAmelCase = len(self.fairseq_tokens_to_ids ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Any: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , a_ ) -> int: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self , a_ , a_ = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def snake_case_ ( self , a_ , a_ = None , a_ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is None: return [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1, 1] + ([0] * len(a_ )) + [1] def snake_case_ ( self , a_ , a_ = None ) -> List[int]: """simple docstring""" UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def snake_case_ ( self ) -> int: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(a_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self , a_ ) -> List[str]: """simple docstring""" return self.sp_model.encode(a_ , out_type=a_ ) def snake_case_ ( self , a_ ) -> Any: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def snake_case_ ( self , a_ ) -> Dict: """simple docstring""" return self.fairseq_ids_to_tokens[index] def snake_case_ ( self , a_ ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = ''.join(a_ ).replace(a_ , ' ' ).strip() return out_string def snake_case_ ( self , a_ , a_ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(a_ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase = os.path.join( a_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) UpperCAmelCase = os.path.join( a_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , a_ ) elif not os.path.isfile(self.vocab_file ): with open(a_ , 'wb' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(a_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( a_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , a_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(a_ , 'w' , encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(a_ )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
447
1
'''simple docstring''' import os import pytest from attr import dataclass __A = '''us-east-1''' # defaults region @dataclass class a_ : _snake_case = 42 _snake_case = """arn:aws:iam::558105141721:role/sagemaker_execution_role""" _snake_case = { """task_name""": """mnli""", """per_device_train_batch_size""": 16, """per_device_eval_batch_size""": 16, """do_train""": True, """do_eval""": True, """do_predict""": True, """output_dir""": """/opt/ml/model""", """overwrite_output_dir""": True, """max_steps""": 500, """save_steps""": 5500, } _snake_case = {**hyperparameters, """max_steps""": 1000} @property def SCREAMING_SNAKE_CASE__ (self) -> Optional[int]: """simple docstring""" if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def SCREAMING_SNAKE_CASE__ (self) -> Dict: """simple docstring""" return F"""{self.framework}-transfromers-test""" @property def SCREAMING_SNAKE_CASE__ (self) -> Dict: """simple docstring""" return F"""./tests/sagemaker/scripts/{self.framework}""" @property def SCREAMING_SNAKE_CASE__ (self) -> List[Any]: """simple docstring""" if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope='class' ) def _SCREAMING_SNAKE_CASE ( A : Dict ) -> str: """simple docstring""" __snake_case : Optional[Any] = SageMakerTestEnvironment(framework=request.cls.framework )
712
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process __A = logging.getLogger(__name__) @dataclass class a_ : _snake_case = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) _snake_case = field( default=UpperCamelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) _snake_case = field( default="""NER""" , metadata={"""help""": """Task type to fine tune in training (e.g. NER, POS, etc)"""} ) _snake_case = field( default=UpperCamelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) _snake_case = field(default=UpperCamelCase_ , metadata={"""help""": """Set this flag to use fast tokenization."""} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _snake_case = field( default=UpperCamelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) @dataclass class a_ : _snake_case = field( metadata={"""help""": """The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."""} ) _snake_case = field( default=UpperCamelCase_ , metadata={"""help""": """Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."""} , ) _snake_case = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) _snake_case = field( default=UpperCamelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def _SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __snake_case : List[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __snake_case ,__snake_case ,__snake_case : List[str] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __snake_case ,__snake_case ,__snake_case : int = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) __snake_case : List[str] = import_module('tasks' ) try: __snake_case : Any = getattr(A , model_args.task_type ) __snake_case : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , A ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task __snake_case : Optional[Any] = token_classification_task.get_labels(data_args.labels ) __snake_case : Dict[int, str] = dict(enumerate(A ) ) __snake_case : Optional[Any] = len(A ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __snake_case : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=A , idalabel=A , labelaid={label: i for i, label in enumerate(A )} , cache_dir=model_args.cache_dir , ) __snake_case : List[str] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) __snake_case : Optional[int] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=A , cache_dir=model_args.cache_dir , ) # Get datasets __snake_case : List[Any] = ( TokenClassificationDataset( token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __snake_case : int = ( TokenClassificationDataset( token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(A : np.ndarray , A : np.ndarray ) -> Tuple[List[int], List[int]]: __snake_case : str = np.argmax(A , axis=2 ) __snake_case ,__snake_case : int = preds.shape __snake_case : Dict = [[] for _ in range(A )] __snake_case : Union[str, Any] = [[] for _ in range(A )] for i in range(A ): for j in range(A ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(A : EvalPrediction ) -> Dict: __snake_case ,__snake_case : Any = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(A , A ), "precision": precision_score(A , A ), "recall": recall_score(A , A ), "f1": fa_score(A , A ), } # Data collator __snake_case : Optional[int] = DataCollatorWithPadding(A , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __snake_case : Optional[Any] = Trainer( model=A , args=A , train_dataset=A , eval_dataset=A , compute_metrics=A , data_collator=A , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __snake_case : List[Any] = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) __snake_case : List[str] = trainer.evaluate() __snake_case : Tuple = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(A , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , A , A ) writer.write('%s = %s\n' % (key, value) ) results.update(A ) # Predict if training_args.do_predict: __snake_case : str = TokenClassificationDataset( token_classification_task=A , data_dir=data_args.data_dir , tokenizer=A , labels=A , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) __snake_case ,__snake_case ,__snake_case : str = trainer.predict(A ) __snake_case ,__snake_case : List[str] = align_predictions(A , A ) __snake_case : Optional[int] = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(A , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , A , A ) writer.write('%s = %s\n' % (key, value) ) # Save predictions __snake_case : List[str] = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(A , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(A , A , A ) return results def _SCREAMING_SNAKE_CASE ( A : int ) -> Any: """simple docstring""" # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
61
0
'''simple docstring''' import warnings from .generation import TFGenerationMixin class A ( _lowerCAmelCase ): warnings.warn( 'Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will ' 'be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead.' ,_lowerCAmelCase ,)
22
'''simple docstring''' UpperCAmelCase = { "joule": 1.0, "kilojoule": 1000, "megajoule": 100_0000, "gigajoule": 10_0000_0000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 360_0000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 418_6800.00, "electronvolt": 1.602_176_634e-19, "britishthermalunit_it": 1055.0_5585, "footpound": 1.35_5818, } def _snake_case ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : float ) -> float: """simple docstring""" if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCAmelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n' f'Valid values are: {", ".join(_SCREAMING_SNAKE_CASE )}' ) raise ValueError(_SCREAMING_SNAKE_CASE ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
433
0
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class A_ ( __a ): def __init__( self : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Tuple ): super().__init__() # make sure scheduler can always be converted to DDIM lowercase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=snake_case__ , scheduler=snake_case__ ) @torch.no_grad() def __call__( self : Any , snake_case__ : int = 1 , snake_case__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , snake_case__ : float = 0.0 , snake_case__ : int = 50 , snake_case__ : Optional[bool] = None , snake_case__ : Optional[str] = "pil" , snake_case__ : bool = True , ): # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , snake_case__ ): lowercase = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowercase = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) lowercase = randn_tensor(snake_case__ , generator=snake_case__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(snake_case__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase = self.unet(snake_case__ , snake_case__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowercase = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , eta=snake_case__ , use_clipped_model_output=snake_case__ , generator=snake_case__ ).prev_sample lowercase = (image / 2 + 0.5).clamp(0 , 1 ) lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
72
# using dfs for finding eulerian path traversal def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ): lowercase = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowercase , lowercase = True, True lowercase = dfs(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) return path def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowercase = 0 lowercase = -1 for i in range(lowerCAmelCase__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowercase = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowercase = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowercase , lowercase = check_circuit_or_path(lowerCAmelCase__ ,lowerCAmelCase__ ) if check == 3: print("""graph is not Eulerian""" ) print("""no path""" ) return lowercase = 1 if check == 2: lowercase = odd_node print("""graph has a Euler path""" ) if check == 1: print("""graph has a Euler cycle""" ) lowercase = dfs(lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ) print(lowerCAmelCase__ ) def UpperCamelCase__ ( ): lowercase = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowercase = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowercase = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowercase = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowercase = { 1: [], 2: [] # all degree is zero } lowercase = 10 check_euler(lowerCAmelCase__ ,lowerCAmelCase__ ) check_euler(lowerCAmelCase__ ,lowerCAmelCase__ ) check_euler(lowerCAmelCase__ ,lowerCAmelCase__ ) check_euler(lowerCAmelCase__ ,lowerCAmelCase__ ) check_euler(lowerCAmelCase__ ,lowerCAmelCase__ ) if __name__ == "__main__": main()
72
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable SCREAMING_SNAKE_CASE_ = {"configuration_gpt_neox": ["GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTNeoXConfig"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["GPTNeoXTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ "GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTNeoXForCausalLM", "GPTNeoXForQuestionAnswering", "GPTNeoXForSequenceClassification", "GPTNeoXForTokenClassification", "GPTNeoXLayer", "GPTNeoXModel", "GPTNeoXPreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_neox import GPT_NEOX_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_neox_fast import GPTNeoXTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox import ( GPT_NEOX_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXLayer, GPTNeoXModel, GPTNeoXPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
517
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig SCREAMING_SNAKE_CASE_ = { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/config.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/config.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/config.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/config.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/config.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/config.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json", } class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = '''albert''' def __init__( self : List[Any] , snake_case : str=30000 , snake_case : Optional[int]=128 , snake_case : List[Any]=4096 , snake_case : str=12 , snake_case : str=1 , snake_case : Dict=64 , snake_case : Optional[Any]=16384 , snake_case : int=1 , snake_case : Any="gelu_new" , snake_case : List[str]=0 , snake_case : Any=0 , snake_case : List[str]=512 , snake_case : Optional[Any]=2 , snake_case : int=0.02 , snake_case : Tuple=1e-12 , snake_case : str=0.1 , snake_case : Optional[Any]="absolute" , snake_case : List[str]=0 , snake_case : List[Any]=2 , snake_case : Optional[int]=3 , **snake_case : str , ): """simple docstring""" super().__init__(pad_token_id=snake_case , bos_token_id=snake_case , eos_token_id=snake_case , **snake_case ) _snake_case : Optional[Any] = vocab_size _snake_case : int = embedding_size _snake_case : List[str] = hidden_size _snake_case : Union[str, Any] = num_hidden_layers _snake_case : Optional[Any] = num_hidden_groups _snake_case : Tuple = num_attention_heads _snake_case : Any = inner_group_num _snake_case : Union[str, Any] = hidden_act _snake_case : Optional[int] = intermediate_size _snake_case : str = hidden_dropout_prob _snake_case : Optional[int] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : Dict = type_vocab_size _snake_case : Dict = initializer_range _snake_case : List[Any] = layer_norm_eps _snake_case : str = classifier_dropout_prob _snake_case : Union[str, Any] = position_embedding_type class SCREAMING_SNAKE_CASE ( lowercase_ ): '''simple docstring''' @property def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" if self.task == "multiple-choice": _snake_case : Any = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _snake_case : List[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
517
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __A : def __init__( self : Union[str, Any] , __snake_case : List[Any] , __snake_case : Optional[int]=1_3 , __snake_case : List[str]=3_2 , __snake_case : Optional[int]=3 , __snake_case : str=4 , __snake_case : Optional[int]=[1_0, 2_0, 3_0, 4_0] , __snake_case : Optional[int]=[2, 2, 3, 2] , __snake_case : Optional[int]=True , __snake_case : Union[str, Any]=True , __snake_case : Dict=3_7 , __snake_case : Any="gelu" , __snake_case : int=1_0 , __snake_case : Optional[int]=0.02 , __snake_case : Union[str, Any]=["stage2", "stage3", "stage4"] , __snake_case : Optional[Any]=[2, 3, 4] , __snake_case : str=None , ) -> List[Any]: __magic_name__: int = parent __magic_name__: int = batch_size __magic_name__: Union[str, Any] = image_size __magic_name__: Dict = num_channels __magic_name__: List[Any] = num_stages __magic_name__: Dict = hidden_sizes __magic_name__: Optional[Any] = depths __magic_name__: Dict = is_training __magic_name__: Union[str, Any] = use_labels __magic_name__: str = intermediate_size __magic_name__: List[str] = hidden_act __magic_name__: Tuple = num_labels __magic_name__: Any = initializer_range __magic_name__: Optional[int] = out_features __magic_name__: Optional[Any] = out_indices __magic_name__: Optional[int] = scope def lowerCamelCase__ ( self : str ) -> Tuple: __magic_name__: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __magic_name__: Any = None if self.use_labels: __magic_name__: Optional[int] = ids_tensor([self.batch_size] , self.num_labels ) __magic_name__: Any = self.get_config() return config, pixel_values, labels def lowerCamelCase__ ( self : int ) -> str: return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=__snake_case , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def lowerCamelCase__ ( self : Union[str, Any] , __snake_case : Union[str, Any] , __snake_case : Optional[Any] , __snake_case : int ) -> Dict: __magic_name__: Optional[int] = ConvNextVaModel(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__: Union[str, Any] = model(__snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def lowerCamelCase__ ( self : Any , __snake_case : Dict , __snake_case : Tuple , __snake_case : Optional[int] ) -> str: __magic_name__: int = ConvNextVaForImageClassification(__snake_case ) model.to(__snake_case ) model.eval() __magic_name__: Optional[Any] = model(__snake_case , labels=__snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : int , __snake_case : Any , __snake_case : Tuple , __snake_case : List[str] ) -> List[str]: __magic_name__: Optional[int] = ConvNextVaBackbone(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__: Tuple = model(__snake_case ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __magic_name__: Union[str, Any] = None __magic_name__: str = ConvNextVaBackbone(config=__snake_case ) model.to(__snake_case ) model.eval() __magic_name__: Dict = model(__snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]: __magic_name__: Optional[int] = self.prepare_config_and_inputs() __magic_name__, __magic_name__, __magic_name__: str = config_and_inputs __magic_name__: str = {"""pixel_values""": pixel_values} return config, inputs_dict def lowerCamelCase__ ( self : Tuple ) -> Dict: __magic_name__: str = self.prepare_config_and_inputs() __magic_name__, __magic_name__, __magic_name__: Union[str, Any] = config_and_inputs __magic_name__: List[Any] = {"""pixel_values""": pixel_values, """labels""": labels} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): UpperCAmelCase__ = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) UpperCAmelCase__ = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def lowerCamelCase__ ( self : Tuple ) -> int: __magic_name__: List[str] = ConvNextVaModelTester(self ) __magic_name__: int = ConfigTester(self , config_class=__snake_case , has_text_modality=__snake_case , hidden_size=3_7 ) def lowerCamelCase__ ( self : Optional[Any] ) -> Tuple: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase__ ( self : Any ) -> int: return @unittest.skip(reason="""ConvNextV2 does not use inputs_embeds""" ) def lowerCamelCase__ ( self : Union[str, Any] ) -> List[Any]: pass @unittest.skip(reason="""ConvNextV2 does not support input and output embeddings""" ) def lowerCamelCase__ ( self : int ) -> List[str]: pass @unittest.skip(reason="""ConvNextV2 does not use feedforward chunking""" ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: pass def lowerCamelCase__ ( self : Tuple ) -> Dict: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __magic_name__, __magic_name__: str = self.model_tester.prepare_config_and_inputs_with_labels() __magic_name__: List[str] = True if model_class.__name__ in [ *get_values(__snake_case ), *get_values(__snake_case ), ]: continue __magic_name__: int = model_class(__snake_case ) model.to(__snake_case ) model.train() __magic_name__: str = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) __magic_name__: Optional[Any] = model(**__snake_case ).loss loss.backward() def lowerCamelCase__ ( self : int ) -> Tuple: if not self.model_tester.is_training: return for model_class in self.all_model_classes: __magic_name__, __magic_name__: Optional[int] = self.model_tester.prepare_config_and_inputs_with_labels() __magic_name__: Any = False __magic_name__: int = True if ( model_class.__name__ in [*get_values(__snake_case ), *get_values(__snake_case )] or not model_class.supports_gradient_checkpointing ): continue __magic_name__: Optional[Any] = model_class(__snake_case ) model.to(__snake_case ) model.gradient_checkpointing_enable() model.train() __magic_name__: int = self._prepare_for_class(__snake_case , __snake_case , return_labels=__snake_case ) __magic_name__: List[Any] = model(**__snake_case ).loss loss.backward() def lowerCamelCase__ ( self : Dict ) -> Tuple: __magic_name__, __magic_name__: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__: Dict = model_class(__snake_case ) __magic_name__: Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __magic_name__: Dict = [*signature.parameters.keys()] __magic_name__: List[Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __snake_case ) def lowerCamelCase__ ( self : Optional[int] ) -> int: __magic_name__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def lowerCamelCase__ ( self : List[Any] ) -> Any: def check_hidden_states_output(__snake_case : Union[str, Any] , __snake_case : Tuple , __snake_case : Optional[int] ): __magic_name__: Optional[Any] = model_class(__snake_case ) model.to(__snake_case ) model.eval() with torch.no_grad(): __magic_name__: List[Any] = model(**self._prepare_for_class(__snake_case , __snake_case ) ) __magic_name__: List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __magic_name__: int = self.model_tester.num_stages self.assertEqual(len(__snake_case ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __magic_name__, __magic_name__: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __magic_name__: List[Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __magic_name__: Union[str, Any] = True check_hidden_states_output(__snake_case , __snake_case , __snake_case ) def lowerCamelCase__ ( self : List[Any] ) -> Optional[Any]: __magic_name__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def lowerCamelCase__ ( self : List[Any] ) -> Any: for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__: List[Any] = ConvNextVaModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def a ( ) -> Any: __magic_name__: int = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __A ( unittest.TestCase ): @cached_property def lowerCamelCase__ ( self : int ) -> Dict: return AutoImageProcessor.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ) if is_vision_available() else None @slow def lowerCamelCase__ ( self : int ) -> int: __magic_name__: Union[str, Any] = ConvNextVaForImageClassification.from_pretrained("""facebook/convnextv2-tiny-1k-224""" ).to(__snake_case ) __magic_name__: Any = self.default_image_processor __magic_name__: str = prepare_img() __magic_name__: List[str] = preprocessor(images=__snake_case , return_tensors="""pt""" ).to(__snake_case ) # forward pass with torch.no_grad(): __magic_name__: int = model(**__snake_case ) # verify the logits __magic_name__: Any = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , __snake_case ) __magic_name__: Union[str, Any] = torch.tensor([0.9996, 0.1966, -0.4386] ).to(__snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __snake_case , atol=1E-4 ) )
213
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = "dpr" def __init__( self : str , __snake_case : Any=3_0_5_2_2 , __snake_case : Any=7_6_8 , __snake_case : Any=1_2 , __snake_case : Any=1_2 , __snake_case : int=3_0_7_2 , __snake_case : List[Any]="gelu" , __snake_case : int=0.1 , __snake_case : Dict=0.1 , __snake_case : List[str]=5_1_2 , __snake_case : Optional[int]=2 , __snake_case : Any=0.02 , __snake_case : Tuple=1E-12 , __snake_case : int=0 , __snake_case : List[Any]="absolute" , __snake_case : int = 0 , **__snake_case : Optional[int] , ) -> List[str]: super().__init__(pad_token_id=__snake_case , **__snake_case ) __magic_name__: int = vocab_size __magic_name__: Tuple = hidden_size __magic_name__: Optional[Any] = num_hidden_layers __magic_name__: Dict = num_attention_heads __magic_name__: Any = hidden_act __magic_name__: Tuple = intermediate_size __magic_name__: int = hidden_dropout_prob __magic_name__: Any = attention_probs_dropout_prob __magic_name__: Any = max_position_embeddings __magic_name__: Optional[Any] = type_vocab_size __magic_name__: Optional[Any] = initializer_range __magic_name__: Optional[Any] = layer_norm_eps __magic_name__: int = projection_dim __magic_name__: Optional[int] = position_embedding_type
213
1
'''simple docstring''' from math import pi def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> float: return 2 * pi * radius * (angle / 3_60) if __name__ == "__main__": print(arc_length(90, 10))
69
'''simple docstring''' import json import os import torch from diffusers import UNetaDModel os.makedirs('''hub/hopper-medium-v2/unet/hor32''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/unet/hor128''', exist_ok=True) os.makedirs('''hub/hopper-medium-v2/value_function''', exist_ok=True) def __UpperCAmelCase ( _UpperCAmelCase : List[str] ) -> str: if hor == 1_28: __snake_case = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") __snake_case = (32, 1_28, 2_56) __snake_case = ("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: __snake_case = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") __snake_case = (32, 64, 1_28, 2_56) __snake_case = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") __snake_case = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) __snake_case = model.state_dict() __snake_case = { "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 6_55_36, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } __snake_case = UNetaDModel(**_UpperCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) __snake_case = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __snake_case = state_dict.pop(_UpperCAmelCase ) hf_value_function.load_state_dict(_UpperCAmelCase ) torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , "w" ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( ) -> List[Any]: __snake_case = { "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 1_28, 2_56), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 6_55_36, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } __snake_case = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" ) __snake_case = model __snake_case = UNetaDModel(**_UpperCAmelCase ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) __snake_case = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): __snake_case = state_dict.pop(_UpperCAmelCase ) hf_value_function.load_state_dict(_UpperCAmelCase ) torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" ) with open("hub/hopper-medium-v2/value_function/config.json" , "w" ) as f: json.dump(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
69
1
'''simple docstring''' from maths.prime_check import is_prime def _SCREAMING_SNAKE_CASE ( snake_case_ ): if not isinstance(snake_case_ , snake_case_ ): _lowercase = F"""Input value of [number={number}] must be an integer""" raise TypeError(snake_case_ ) if is_prime(snake_case_ ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_=() , snake_case_=None , snake_case_="no" , snake_case_="29500" ): _lowercase = False _lowercase = False if any(key.startswith("""KAGGLE""" ) for key in os.environ.keys() ): _lowercase = True elif "IPython" in sys.modules: _lowercase = """google.colab""" in str(sys.modules["""IPython"""].get_ipython() ) try: _lowercase = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get("""TPU_NAME""" , snake_case_ ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside """ """your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if num_processes is None: _lowercase = 8 _lowercase = PrepareForLaunch(snake_case_ , distributed_type="""TPU""" ) print(F"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(snake_case_ , args=snake_case_ , nprocs=snake_case_ , start_method="""fork""" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on one CPU.""" ) function(*snake_case_ ) else: if num_processes is None: raise ValueError( """You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call.""" ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( """To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized """ """inside your training function. Restart your notebook and make sure no cells initializes an """ """`Accelerator`.""" ) if torch.cuda.is_initialized(): raise ValueError( """To launch a multi-GPU training from your notebook, you need to avoid running any instruction """ """using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA """ """function.""" ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=snake_case_ , master_addr="""127.0.01""" , master_port=snake_case_ , mixed_precision=snake_case_ ): _lowercase = PrepareForLaunch(snake_case_ , distributed_type="""MULTI_GPU""" ) print(F"""Launching training on {num_processes} GPUs.""" ) try: start_processes(snake_case_ , args=snake_case_ , nprocs=snake_case_ , start_method="""fork""" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( """CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. """ """This likely stems from an outside import causing issues once the `notebook_launcher()` is called. """ """Please review your imports and test them when running the `notebook_launcher()` to identify """ """which one is problematic.""" ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _lowercase = """1""" print("""Launching training on MPS.""" ) elif torch.cuda.is_available(): print("""Launching training on one GPU.""" ) else: print("""Launching training on CPU.""" ) function(*snake_case_ ) def _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_=() , snake_case_=2 ): from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=snake_case_ , master_addr="""127.0.01""" , master_port="""29500""" , accelerate_mixed_precision="""no""" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="""yes""" , ): _lowercase = PrepareForLaunch(snake_case_ , debug=snake_case_ ) start_processes(snake_case_ , args=snake_case_ , nprocs=snake_case_ , start_method="""fork""" )
572
0
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE_ = { 'tokenizer_file': { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE_ = { 'gpt-neox-20b': 2048, } class snake_case_ ( lowerCamelCase_ ): """simple docstring""" A_ = VOCAB_FILES_NAMES A_ = PRETRAINED_VOCAB_FILES_MAP A_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ = ['''input_ids''', '''attention_mask'''] def __init__( self , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_=None , lowerCamelCase_="<|endoftext|>" , lowerCamelCase_="<|endoftext|>" , lowerCamelCase_="<|endoftext|>" , lowerCamelCase_=False , **lowerCamelCase_ , ) -> List[str]: super().__init__( lowerCamelCase_ , lowerCamelCase_ , tokenizer_file=lowerCamelCase_ , unk_token=lowerCamelCase_ , bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , add_prefix_space=lowerCamelCase_ , **lowerCamelCase_ , ) UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , lowerCamelCase_) != add_prefix_space: UpperCamelCase = getattr(lowerCamelCase_ , pre_tok_state.pop('''type''')) UpperCamelCase = add_prefix_space UpperCamelCase = pre_tok_class(**lowerCamelCase_) UpperCamelCase = add_prefix_space def UpperCAmelCase__ ( self , lowerCamelCase_ , lowerCamelCase_ = None) -> Tuple[str]: UpperCamelCase = self._tokenizer.model.save(lowerCamelCase_ , name=lowerCamelCase_) return tuple(lowerCamelCase_) def UpperCAmelCase__ ( self , lowerCamelCase_) -> List[int]: UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_) + [self.eos_token_id]) if len(lowerCamelCase_) > self.model_max_length: UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
34
'''simple docstring''' import argparse from collections import defaultdict import yaml _UpperCamelCase = 'docs/source/en/_toctree.yml' def a_ ( _lowerCAmelCase ) -> Any: __lowerCamelCase : Optional[int] = defaultdict(_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = [] __lowerCamelCase : Union[str, Any] = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(_lowerCAmelCase ) __lowerCamelCase : Dict = new_doc_list __lowerCamelCase : Optional[Any] = [key for key, value in counts.items() if value > 1] __lowerCamelCase : int = [] for duplicate_key in duplicates: __lowerCamelCase : int = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(_lowerCAmelCase ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) __lowerCamelCase : Dict = sorted(_lowerCAmelCase ,key=lambda _lowerCAmelCase : s["title"].lower() ) # "overview" gets special treatment and is always first if len(_lowerCAmelCase ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(_lowerCAmelCase ) # Sort return overview_doc def a_ ( _lowerCAmelCase=False ) -> Optional[Any]: with open(_lowerCAmelCase ,encoding='utf-8' ) as f: __lowerCamelCase : str = yaml.safe_load(f.read() ) # Get to the API doc __lowerCamelCase : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 __lowerCamelCase : List[str] = content[api_idx]['sections'] # Then to the model doc __lowerCamelCase : List[Any] = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 __lowerCamelCase : List[Any] = api_doc[scheduler_idx]['sections'] __lowerCamelCase : Optional[Any] = clean_doc_toc(_lowerCAmelCase ) __lowerCamelCase : str = False if new_scheduler_doc != scheduler_doc: __lowerCamelCase : int = True if overwrite: __lowerCamelCase : Any = new_scheduler_doc if diff: if overwrite: __lowerCamelCase : Tuple = api_doc with open(_lowerCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(yaml.dump(_lowerCAmelCase ,allow_unicode=_lowerCAmelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def a_ ( _lowerCAmelCase=False ) -> List[Any]: with open(_lowerCAmelCase ,encoding='utf-8' ) as f: __lowerCamelCase : List[str] = yaml.safe_load(f.read() ) # Get to the API doc __lowerCamelCase : List[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 __lowerCamelCase : Optional[Any] = content[api_idx]['sections'] # Then to the model doc __lowerCamelCase : List[Any] = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 __lowerCamelCase : int = False __lowerCamelCase : str = api_doc[pipeline_idx]['sections'] __lowerCamelCase : Optional[Any] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: __lowerCamelCase : str = pipeline_doc['section'] __lowerCamelCase : Optional[Any] = clean_doc_toc(_lowerCAmelCase ) if overwrite: __lowerCamelCase : Union[str, Any] = new_sub_pipeline_doc new_pipeline_docs.append(_lowerCAmelCase ) # sort overall pipeline doc __lowerCamelCase : int = clean_doc_toc(_lowerCAmelCase ) if new_pipeline_docs != pipeline_docs: __lowerCamelCase : Tuple = True if overwrite: __lowerCamelCase : int = new_pipeline_docs if diff: if overwrite: __lowerCamelCase : Tuple = api_doc with open(_lowerCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(yaml.dump(_lowerCAmelCase ,allow_unicode=_lowerCAmelCase ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _UpperCamelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
459
0
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __magic_name__ = 16 __magic_name__ = 32 def _A ( __lowercase , __lowercase = 16 ): """simple docstring""" lowerCamelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCamelCase__ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__lowercase ): # max_length=None => use the model max length (it's actually the default) lowerCamelCase__ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowercase , max_length=__lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCamelCase__ = datasets.map( __lowercase , batched=__lowercase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCamelCase__ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCamelCase__ = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCamelCase__ = 16 elif accelerator.mixed_precision != "no": lowerCamelCase__ = 8 else: lowerCamelCase__ = None return tokenizer.pad( __lowercase , padding="""longest""" , max_length=__lowercase , pad_to_multiple_of=__lowercase , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCamelCase__ = DataLoader( tokenized_datasets["""train"""] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase ) lowerCamelCase__ = DataLoader( tokenized_datasets["""validation"""] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders __magic_name__ = mocked_dataloaders # noqa: F811 def _A ( __lowercase , __lowercase ): """simple docstring""" if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __lowercase ) == "1": lowerCamelCase__ = 2 # New Code # lowerCamelCase__ = int(args.gradient_accumulation_steps ) lowerCamelCase__ = int(args.local_sgd_steps ) # Initialize accelerator lowerCamelCase__ = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowercase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase__ = config["""lr"""] lowerCamelCase__ = int(config["""num_epochs"""] ) lowerCamelCase__ = int(config["""seed"""] ) lowerCamelCase__ = int(config["""batch_size"""] ) lowerCamelCase__ = evaluate.load("""glue""" , """mrpc""" ) set_seed(__lowercase ) lowerCamelCase__ , lowerCamelCase__ = get_dataloaders(__lowercase , __lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase__ = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase__ = model.to(accelerator.device ) # Instantiate optimizer lowerCamelCase__ = AdamW(params=model.parameters() , lr=__lowercase ) # Instantiate scheduler lowerCamelCase__ = get_linear_schedule_with_warmup( optimizer=__lowercase , num_warmup_steps=100 , num_training_steps=(len(__lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = accelerator.prepare( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # Now we train the model for epoch in range(__lowercase ): model.train() with LocalSGD( accelerator=__lowercase , model=__lowercase , local_sgd_steps=__lowercase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__lowercase ): lowerCamelCase__ = model(**__lowercase ) lowerCamelCase__ = output.loss accelerator.backward(__lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCamelCase__ = model(**__lowercase ) lowerCamelCase__ = outputs.logits.argmax(dim=-1 ) lowerCamelCase__ , lowerCamelCase__ = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__lowercase , references=__lowercase , ) lowerCamelCase__ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __lowercase ) def _A ( ): """simple docstring""" lowerCamelCase__ = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__lowercase , default=__lowercase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__lowercase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=__lowercase , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowerCamelCase__ = parser.parse_args() lowerCamelCase__ = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__lowercase , __lowercase ) if __name__ == "__main__": main()
258
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __magic_name__ = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
258
1
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase = "isbn/0140328726" ): snake_case__ = olid.strip().strip("/" ) # Remove leading/trailing whitespace & slashes if new_olid.count("/" ) != 1: snake_case__ = F"""{olid} is not a valid Open Library olid""" raise ValueError(__lowerCAmelCase ) return requests.get(F"""https://openlibrary.org/{new_olid}.json""" ).json() def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): snake_case__ = { "title": "Title", "publish_date": "Publish date", "authors": "Authors", "number_of_pages": "Number of pages:", "first_sentence": "First sentence", "isbn_10": "ISBN (10)", "isbn_13": "ISBN (13)", } snake_case__ = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} snake_case__ = [ get_openlibrary_data(author["key"] )["name"] for author in data["Authors"] ] snake_case__ = data["First sentence"]["value"] for key, value in data.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ = ", ".join(__lowerCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: __magic_name__ = input('''\nEnter the ISBN code to search (or \'quit\' to stop): ''').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(F'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(F'''\nSearching Open Library for ISBN: {isbn}...\n''') try: __magic_name__ = summarize_book(get_openlibrary_data(F'''isbn/{isbn}''')) print('''\n'''.join(F'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(F'''Sorry, there are no results for ISBN: {isbn}.''')
276
import math __magic_name__ = 10 __magic_name__ = 7 __magic_name__ = BALLS_PER_COLOUR * NUM_COLOURS def SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase = 20 ): snake_case__ = math.comb(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ = math.comb(NUM_BALLS - BALLS_PER_COLOUR , __lowerCAmelCase ) snake_case__ = NUM_COLOURS * (1 - missing_colour / total) return F"""{result:.9f}""" if __name__ == "__main__": print(solution(20))
276
1
class lowerCAmelCase__ : """simple docstring""" def __init__( self ): lowerCamelCase_ : Tuple = {} def _UpperCamelCase ( self ): print(self.vertex ) for i in self.vertex: print(a_ , " -> " , " -> ".join([str(a_ ) for j in self.vertex[i]] ) ) def _UpperCamelCase ( self , a_ , a_ ): # check if vertex is already present, if from_vertex in self.vertex: self.vertex[from_vertex].append(a_ ) else: # else make a new vertex lowerCamelCase_ : Any = [to_vertex] def _UpperCamelCase ( self ): # visited array for storing already visited nodes lowerCamelCase_ : Optional[Any] = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(a_ , a_ ) def _UpperCamelCase ( self , a_ , a_ ): # mark start vertex as visited lowerCamelCase_ : Dict = True print(a_ , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(a_ , a_ ) if __name__ == "__main__": __magic_name__ = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print('''DFS:''') g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
73
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase ( self ): lowerCamelCase_ : int = ["a", "b", "c"] # Defaults to last layer if both are None lowerCamelCase_ ,lowerCamelCase_ : Tuple = get_aligned_output_features_output_indices(a_ , a_ , a_ ) self.assertEqual(a_ , ["c"] ) self.assertEqual(a_ , [2] ) # Out indices set to match out features lowerCamelCase_ ,lowerCamelCase_ : Optional[int] = get_aligned_output_features_output_indices(["a", "c"] , a_ , a_ ) self.assertEqual(a_ , ["a", "c"] ) self.assertEqual(a_ , [0, 2] ) # Out features set to match out indices lowerCamelCase_ ,lowerCamelCase_ : Tuple = get_aligned_output_features_output_indices(a_ , [0, 2] , a_ ) self.assertEqual(a_ , ["a", "c"] ) self.assertEqual(a_ , [0, 2] ) # Out features selected from negative indices lowerCamelCase_ ,lowerCamelCase_ : Dict = get_aligned_output_features_output_indices(a_ , [-3, -1] , a_ ) self.assertEqual(a_ , ["a", "c"] ) self.assertEqual(a_ , [-3, -1] ) def _UpperCamelCase ( self ): # Stage names must be set with self.assertRaises(a_ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , a_ ) # Out features must be a list with self.assertRaises(a_ ): verify_out_features_out_indices(("a", "b") , (0, 1) , ["a", "b"] ) # Out features must be a subset of stage names with self.assertRaises(a_ ): verify_out_features_out_indices(["a", "b"] , (0, 1) , ["a"] ) # Out indices must be a list or tuple with self.assertRaises(a_ ): verify_out_features_out_indices(a_ , 0 , ["a", "b"] ) # Out indices must be a subset of stage names with self.assertRaises(a_ ): verify_out_features_out_indices(a_ , (0, 1) , ["a"] ) # Out features and out indices must be the same length with self.assertRaises(a_ ): verify_out_features_out_indices(["a", "b"] , (0,) , ["a", "b", "c"] ) # Out features should match out indices with self.assertRaises(a_ ): verify_out_features_out_indices(["a", "b"] , (0, 2) , ["a", "b", "c"] ) # Out features and out indices should be in order with self.assertRaises(a_ ): verify_out_features_out_indices(["b", "a"] , (0, 1) , ["a", "b"] ) # Check passes with valid inputs verify_out_features_out_indices(["a", "b", "d"] , (0, 1, -1) , ["a", "b", "c", "d"] ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[Any] = BackboneMixin() lowerCamelCase_ : List[Any] = ["a", "b", "c"] lowerCamelCase_ : Optional[int] = ["a", "c"] lowerCamelCase_ : Dict = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly lowerCamelCase_ : Union[str, Any] = ["a", "b"] self.assertEqual(backbone.out_features , ["a", "b"] ) self.assertEqual(backbone.out_indices , [0, 1] ) lowerCamelCase_ : str = [-3, -1] self.assertEqual(backbone.out_features , ["a", "c"] ) self.assertEqual(backbone.out_indices , [-3, -1] )
73
1
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : str ): '''simple docstring''' lowerCamelCase__: List[str] = ["a", "b", "c"] # Defaults to last layer if both are None lowerCamelCase__: List[Any] = get_aligned_output_features_output_indices(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , ["""c"""] ) self.assertEqual(UpperCamelCase__ , [2] ) # Out indices set to match out features lowerCamelCase__: Optional[int] = get_aligned_output_features_output_indices(["""a""", """c"""] , UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , ["""a""", """c"""] ) self.assertEqual(UpperCamelCase__ , [0, 2] ) # Out features set to match out indices lowerCamelCase__: Optional[Any] = get_aligned_output_features_output_indices(UpperCamelCase__ , [0, 2] , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , ["""a""", """c"""] ) self.assertEqual(UpperCamelCase__ , [0, 2] ) # Out features selected from negative indices lowerCamelCase__: Any = get_aligned_output_features_output_indices(UpperCamelCase__ , [-3, -1] , UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , ["""a""", """c"""] ) self.assertEqual(UpperCamelCase__ , [-3, -1] ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , UpperCamelCase__ ) # Out features must be a list with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(("""a""", """b""") , (0, 1) , ["""a""", """b"""] ) # Out features must be a subset of stage names with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(["""a""", """b"""] , (0, 1) , ["""a"""] ) # Out indices must be a list or tuple with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(UpperCamelCase__ , 0 , ["""a""", """b"""] ) # Out indices must be a subset of stage names with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(UpperCamelCase__ , (0, 1) , ["""a"""] ) # Out features and out indices must be the same length with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(["""a""", """b"""] , (0,) , ["""a""", """b""", """c"""] ) # Out features should match out indices with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(["""a""", """b"""] , (0, 2) , ["""a""", """b""", """c"""] ) # Out features and out indices should be in order with self.assertRaises(UpperCamelCase__ ): verify_out_features_out_indices(["""b""", """a"""] , (0, 1) , ["""a""", """b"""] ) # Check passes with valid inputs verify_out_features_out_indices(["""a""", """b""", """d"""] , (0, 1, -1) , ["""a""", """b""", """c""", """d"""] ) def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowerCamelCase__: Optional[int] = BackboneMixin() lowerCamelCase__: List[Any] = ["a", "b", "c"] lowerCamelCase__: List[Any] = ["a", "c"] lowerCamelCase__: Union[str, Any] = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly lowerCamelCase__: Any = ["a", "b"] self.assertEqual(backbone.out_features , ["""a""", """b"""] ) self.assertEqual(backbone.out_indices , [0, 1] ) lowerCamelCase__: Optional[int] = [-3, -1] self.assertEqual(backbone.out_features , ["""a""", """c"""] ) self.assertEqual(backbone.out_indices , [-3, -1] )
306
import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCamelCase__ (lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase_ : Optional[Any] = (KDPMaDiscreteScheduler,) lowerCamelCase_ : str = 1_0 def _lowercase ( self , **UpperCamelCase__ ) -> int: lowerCamelCase : Optional[Any] = { "num_train_timesteps": 1100, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**UpperCamelCase__ ) return config def _lowercase ( self ) -> List[Any]: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=UpperCamelCase__ ) def _lowercase ( self ) -> Dict: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=UpperCamelCase__ , beta_end=UpperCamelCase__ ) def _lowercase ( self ) -> str: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCamelCase__ ) def _lowercase ( self ) -> Any: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCamelCase__ ) def _lowercase ( self ) -> str: lowerCamelCase : Optional[Any] = self.scheduler_classes[0] lowerCamelCase : Union[str, Any] = self.get_scheduler_config(prediction_type="v_prediction" ) lowerCamelCase : Optional[Any] = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase : Tuple = self.dummy_model() lowerCamelCase : List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase : Union[str, Any] = sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase : List[str] = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : List[str] = model(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[Any] = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[int] = output.prev_sample lowerCamelCase : Tuple = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase : Optional[Any] = torch.mean(torch.abs(UpperCamelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6934e-07 ) < 1e-2 assert abs(result_mean.item() - 6.1112e-10 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 4.693428650170972e-07 ) < 1e-2 assert abs(result_mean.item() - 0.0002 ) < 1e-3 def _lowercase ( self ) -> str: if torch_device == "mps": return lowerCamelCase : Any = self.scheduler_classes[0] lowerCamelCase : Union[str, Any] = self.get_scheduler_config() lowerCamelCase : Optional[int] = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCamelCase : Optional[Any] = self.dummy_model() lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCamelCase : int = sample.to(UpperCamelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCamelCase : Union[str, Any] = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Tuple = model(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : int = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Optional[Any] = output.prev_sample lowerCamelCase : Tuple = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase : Dict = torch.mean(torch.abs(UpperCamelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 def _lowercase ( self ) -> Optional[int]: if torch_device == "mps": return lowerCamelCase : Any = self.scheduler_classes[0] lowerCamelCase : Any = self.get_scheduler_config() lowerCamelCase : str = scheduler_class(**UpperCamelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCamelCase__ ) lowerCamelCase : List[Any] = self.dummy_model() lowerCamelCase : List[str] = self.dummy_sample_deter.to(UpperCamelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCamelCase : Union[str, Any] = scheduler.scale_model_input(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Dict = model(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Tuple = scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase : Tuple = output.prev_sample lowerCamelCase : Dict = torch.sum(torch.abs(UpperCamelCase__ ) ) lowerCamelCase : Dict = torch.mean(torch.abs(UpperCamelCase__ ) ) if str(UpperCamelCase__ ).startswith("cpu" ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3 else: # CUDA assert abs(result_sum.item() - 20.4125 ) < 1e-2 assert abs(result_mean.item() - 0.0266 ) < 1e-3
311
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING snake_case_ : Any = logging.get_logger(__name__) snake_case_ : Tuple = { """Salesforce/instruct-blip-flan-t5""": """https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json""", } class snake_case__ ( _lowerCAmelCase ): SCREAMING_SNAKE_CASE__ = 'instructblip_vision_model' def __init__( self : str , lowercase : Optional[int]=14_08 , lowercase : Any=61_44 , lowercase : Dict=39 , lowercase : Optional[int]=16 , lowercase : Optional[Any]=2_24 , lowercase : List[Any]=14 , lowercase : Optional[Any]="gelu" , lowercase : List[str]=1E-6 , lowercase : int=0.0 , lowercase : Tuple=1E-10 , lowercase : List[Any]=True , **lowercase : Tuple , ): '''simple docstring''' super().__init__(**_lowerCAmelCase ) UpperCAmelCase : Tuple = hidden_size UpperCAmelCase : Union[str, Any] = intermediate_size UpperCAmelCase : Tuple = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : Union[str, Any] = patch_size UpperCAmelCase : Any = image_size UpperCAmelCase : str = initializer_range UpperCAmelCase : Tuple = attention_dropout UpperCAmelCase : str = layer_norm_eps UpperCAmelCase : int = hidden_act UpperCAmelCase : Dict = qkv_bias @classmethod def __lowerCAmelCase ( cls : Tuple , lowercase : Union[str, os.PathLike] , **lowercase : Optional[int] ): '''simple docstring''' cls._set_token_in_kwargs(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase : List[Any] = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": UpperCAmelCase : List[Any] = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class snake_case__ ( _lowerCAmelCase ): SCREAMING_SNAKE_CASE__ = 'instructblip_qformer' def __init__( self : Dict , lowercase : Optional[Any]=3_05_22 , lowercase : Union[str, Any]=7_68 , lowercase : Dict=12 , lowercase : int=12 , lowercase : Optional[Any]=30_72 , lowercase : str="gelu" , lowercase : Union[str, Any]=0.1 , lowercase : str=0.1 , lowercase : Any=5_12 , lowercase : List[str]=0.0_2 , lowercase : int=1E-12 , lowercase : Any=0 , lowercase : Tuple="absolute" , lowercase : Optional[int]=2 , lowercase : List[Any]=14_08 , **lowercase : str , ): '''simple docstring''' super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) UpperCAmelCase : List[str] = vocab_size UpperCAmelCase : str = hidden_size UpperCAmelCase : List[str] = num_hidden_layers UpperCAmelCase : Any = num_attention_heads UpperCAmelCase : int = hidden_act UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : int = hidden_dropout_prob UpperCAmelCase : Dict = attention_probs_dropout_prob UpperCAmelCase : List[str] = max_position_embeddings UpperCAmelCase : Any = initializer_range UpperCAmelCase : List[str] = layer_norm_eps UpperCAmelCase : Optional[Any] = position_embedding_type UpperCAmelCase : Optional[int] = cross_attention_frequency UpperCAmelCase : int = encoder_hidden_size @classmethod def __lowerCAmelCase ( cls : Optional[Any] , lowercase : Union[str, os.PathLike] , **lowercase : List[Any] ): '''simple docstring''' cls._set_token_in_kwargs(_lowerCAmelCase ) UpperCAmelCase , UpperCAmelCase : Tuple = cls.get_config_dict(_lowerCAmelCase , **_lowerCAmelCase ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": UpperCAmelCase : List[Any] = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(_lowerCAmelCase , **_lowerCAmelCase ) class snake_case__ ( _lowerCAmelCase ): SCREAMING_SNAKE_CASE__ = 'instructblip' SCREAMING_SNAKE_CASE__ = True def __init__( self : Optional[Any] , lowercase : str=None , lowercase : Union[str, Any]=None , lowercase : Optional[int]=None , lowercase : Dict=32 , **lowercase : List[str] ): '''simple docstring''' super().__init__(**_lowerCAmelCase ) if vision_config is None: UpperCAmelCase : Optional[Any] = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: UpperCAmelCase : Union[str, Any] = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: UpperCAmelCase : Tuple = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) UpperCAmelCase : Union[str, Any] = InstructBlipVisionConfig(**_lowerCAmelCase ) UpperCAmelCase : Tuple = InstructBlipQFormerConfig(**_lowerCAmelCase ) UpperCAmelCase : Optional[int] = text_config["model_type"] if "model_type" in text_config else "opt" UpperCAmelCase : Dict = CONFIG_MAPPING[text_model_type](**_lowerCAmelCase ) UpperCAmelCase : List[Any] = self.text_config.tie_word_embeddings UpperCAmelCase : List[str] = self.text_config.is_encoder_decoder UpperCAmelCase : int = num_query_tokens UpperCAmelCase : Dict = self.vision_config.hidden_size UpperCAmelCase : List[str] = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES UpperCAmelCase : Tuple = 1.0 UpperCAmelCase : Dict = 0.0_2 @classmethod def __lowerCAmelCase ( cls : Optional[Any] , lowercase : InstructBlipVisionConfig , lowercase : InstructBlipQFormerConfig , lowercase : PretrainedConfig , **lowercase : Any , ): '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_lowerCAmelCase , ) def __lowerCAmelCase ( self : Dict ): '''simple docstring''' UpperCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) UpperCAmelCase : int = self.vision_config.to_dict() UpperCAmelCase : str = self.qformer_config.to_dict() UpperCAmelCase : Union[str, Any] = self.text_config.to_dict() UpperCAmelCase : Optional[int] = self.__class__.model_type return output
709
"""simple docstring""" snake_case_ : List[str] = 6_5_5_2_1 def lowercase_ ( _lowercase : str ): '''simple docstring''' UpperCAmelCase : Dict = 1 UpperCAmelCase : Optional[int] = 0 for plain_chr in plain_text: UpperCAmelCase : int = (a + ord(_lowercase )) % MOD_ADLER UpperCAmelCase : str = (b + a) % MOD_ADLER return (b << 16) | a
292
0
"""simple docstring""" import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def _snake_case ( lowercase__ ): _lowerCamelCase : Any = filter(lambda lowercase__ : p.requires_grad , model.parameters() ) _lowerCamelCase : Dict = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowercase__ = logging.getLogger(__name__) def _snake_case ( lowercase__ , lowercase__ ): if metric == "rouge2": _lowerCamelCase : str = '{val_avg_rouge2:.4f}-{step_count}' elif metric == "bleu": _lowerCamelCase : int = '{val_avg_bleu:.4f}-{step_count}' elif metric == "em": _lowerCamelCase : int = '{val_avg_em:.4f}-{step_count}' elif metric == "loss": _lowerCamelCase : List[str] = '{val_avg_loss:.4f}-{step_count}' else: raise NotImplementedError( f'''seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this''' ' function.' ) _lowerCamelCase : List[Any] = ModelCheckpoint( dirpath=_SCREAMING_SNAKE_CASE , filename=_SCREAMING_SNAKE_CASE , monitor=f'''val_{metric}''' , mode='max' , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def _snake_case ( lowercase__ , lowercase__ ): return EarlyStopping( monitor=f'''val_{metric}''' , mode='min' if 'loss' in metric else 'max' , patience=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , ) class lowerCAmelCase__ ( pl.Callback ): '''simple docstring''' def A_ ( self , lowercase , lowercase ): _lowerCamelCase : List[str] = {F'''lr_group_{i}''': param['lr'] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(A_ ) @rank_zero_only def A_ ( self , lowercase , lowercase , lowercase , lowercase=True ): logger.info(F'''***** {type_path} results at step {trainer.global_step:05d} *****''' ) _lowerCamelCase : Tuple = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ['log', 'progress_bar', 'preds']} ) # Log results _lowerCamelCase : int = Path(pl_module.hparams.output_dir ) if type_path == "test": _lowerCamelCase : Optional[Any] = od / 'test_results.txt' _lowerCamelCase : List[Any] = od / 'test_generations.txt' else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _lowerCamelCase : Any = od / F'''{type_path}_results/{trainer.global_step:05d}.txt''' _lowerCamelCase : int = od / F'''{type_path}_generations/{trainer.global_step:05d}.txt''' results_file.parent.mkdir(exist_ok=A_ ) generations_file.parent.mkdir(exist_ok=A_ ) with open(A_ , 'a+' ) as writer: for key in sorted(A_ ): if key in ["log", "progress_bar", "preds"]: continue _lowerCamelCase : Tuple = metrics[key] if isinstance(A_ , torch.Tensor ): _lowerCamelCase : str = val.item() _lowerCamelCase : Optional[Any] = F'''{key}: {val:.6f}\n''' writer.write(A_ ) if not save_generations: return if "preds" in metrics: _lowerCamelCase : Optional[Any] = '\n'.join(metrics['preds'] ) generations_file.open('w+' ).write(A_ ) @rank_zero_only def A_ ( self , lowercase , lowercase ): try: _lowerCamelCase : Dict = pl_module.model.model.num_parameters() except AttributeError: _lowerCamelCase : List[str] = pl_module.model.num_parameters() _lowerCamelCase : Optional[int] = count_trainable_parameters(A_ ) # mp stands for million parameters trainer.logger.log_metrics({'n_params': npars, 'mp': npars / 1E6, 'grad_mp': n_trainable_pars / 1E6} ) @rank_zero_only def A_ ( self , lowercase , lowercase ): save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(A_ , A_ , 'test' ) @rank_zero_only def A_ ( self , lowercase , lowercase ): save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
630
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __snake_case( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = tempfile.mkdtemp() lowerCAmelCase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """的""", """价""", """格""", """是""", """15""", """便""", """alex""", """##andra""", """,""", """。""", """-""", """t""", """shirt""", ] lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCAmelCase = { """do_resize""": True, """size""": {"""height""": 224, """width""": 224}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], """do_convert_rgb""": True, } lowerCAmelCase = os.path.join(self.tmpdirname , A_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(A_ , A_ ) def __snake_case ( self , **A_ ) -> List[Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **A_ ) def __snake_case ( self , **A_ ) -> Dict: return BertTokenizerFast.from_pretrained(self.tmpdirname , **A_ ) def __snake_case ( self , **A_ ) -> List[Any]: return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **A_ ) def __snake_case ( self ) -> str: shutil.rmtree(self.tmpdirname ) def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCAmelCase = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = self.get_rust_tokenizer() lowerCAmelCase = self.get_image_processor() lowerCAmelCase = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=A_ ) lowerCAmelCase = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , A_ ) self.assertIsInstance(processor_fast.tokenizer , A_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , A_ ) self.assertIsInstance(processor_fast.image_processor , A_ ) def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase = self.get_tokenizer(cls_token="""(CLS)""" , sep_token="""(SEP)""" ) lowerCAmelCase = self.get_image_processor(do_normalize=A_ ) lowerCAmelCase = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="""(CLS)""" , sep_token="""(SEP)""" , do_normalize=A_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A_ ) def __snake_case ( self ) -> str: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = image_processor(A_ , return_tensors="""np""" ) lowerCAmelCase = processor(images=A_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __snake_case ( self ) -> List[str]: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) lowerCAmelCase = """Alexandra,T-shirt的价格是15便士。""" lowerCAmelCase = processor(text=A_ ) lowerCAmelCase = tokenizer(A_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __snake_case ( self ) -> int: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) lowerCAmelCase = """Alexandra,T-shirt的价格是15便士。""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(A_ ): processor() def __snake_case ( self ) -> Tuple: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase = processor.batch_decode(A_ ) lowerCAmelCase = tokenizer.batch_decode(A_ ) self.assertListEqual(A_ , A_ ) def __snake_case ( self ) -> int: lowerCAmelCase = self.get_image_processor() lowerCAmelCase = self.get_tokenizer() lowerCAmelCase = ChineseCLIPProcessor(tokenizer=A_ , image_processor=A_ ) lowerCAmelCase = """Alexandra,T-shirt的价格是15便士。""" lowerCAmelCase = self.prepare_image_inputs() lowerCAmelCase = processor(text=A_ , images=A_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
433
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { "microsoft/swin-tiny-patch4-window7-224": ( "https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json" ), # See all Swin models at https://huggingface.co/models?filter=swin } class _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] ="swin" SCREAMING_SNAKE_CASE_ : Tuple ={ "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str]=2_24 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : List[Any]=3 , SCREAMING_SNAKE_CASE__ : Dict=96 , SCREAMING_SNAKE_CASE__ : Any=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE__ : Any=[3, 6, 12, 24] , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Tuple=4.0 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Tuple=0.0 , SCREAMING_SNAKE_CASE__ : Any=0.0 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.1 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : str=0.02 , SCREAMING_SNAKE_CASE__ : Dict=1e-5 , SCREAMING_SNAKE_CASE__ : List[str]=32 , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : List[Any]=None , **SCREAMING_SNAKE_CASE__ : List[Any] , ): """simple docstring""" super().__init__(**_UpperCamelCase ) UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = embed_dim UpperCamelCase = depths UpperCamelCase = len(_UpperCamelCase ) UpperCamelCase = num_heads UpperCamelCase = window_size UpperCamelCase = mlp_ratio UpperCamelCase = qkv_bias UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = drop_path_rate UpperCamelCase = hidden_act UpperCamelCase = use_absolute_embeddings UpperCamelCase = layer_norm_eps UpperCamelCase = initializer_range UpperCamelCase = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model UpperCamelCase = int(embed_dim * 2 ** (len(_UpperCamelCase ) - 1) ) UpperCamelCase = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(_UpperCamelCase ) + 1 )] UpperCamelCase = get_aligned_output_features_output_indices( out_features=_UpperCamelCase , out_indices=_UpperCamelCase , stage_names=self.stage_names ) class _lowerCAmelCase ( __lowerCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict =version.parse("1.11" ) @property def __lowerCAmelCase ( self : Tuple ): """simple docstring""" return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" return 1e-4
715
import cva import numpy as np class _lowerCAmelCase : """simple docstring""" def __init__( self : List[str] , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : int ): """simple docstring""" if k in (0.04, 0.06): UpperCamelCase = k UpperCamelCase = window_size else: raise ValueError('invalid k value' ) def __str__( self : Any ): """simple docstring""" return str(self.k ) def __lowerCAmelCase ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str ): """simple docstring""" UpperCamelCase = cva.imread(SCREAMING_SNAKE_CASE__ , 0 ) UpperCamelCase , UpperCamelCase = img.shape UpperCamelCase = [] UpperCamelCase = img.copy() UpperCamelCase = cva.cvtColor(SCREAMING_SNAKE_CASE__ , cva.COLOR_GRAY2RGB ) UpperCamelCase , UpperCamelCase = np.gradient(SCREAMING_SNAKE_CASE__ ) UpperCamelCase = dx**2 UpperCamelCase = dy**2 UpperCamelCase = dx * dy UpperCamelCase = 0.04 UpperCamelCase = self.window_size // 2 for y in range(SCREAMING_SNAKE_CASE__ , h - offset ): for x in range(SCREAMING_SNAKE_CASE__ , w - offset ): UpperCamelCase = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() UpperCamelCase = (wxx * wyy) - (wxy**2) UpperCamelCase = wxx + wyy UpperCamelCase = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": _snake_case = HarrisCorner(0.04, 3) _snake_case , _snake_case = edge_detect.detect('''path_to_image''') cva.imwrite('''detect.png''', color_img)
170
0
'''simple docstring''' def __UpperCAmelCase (lowercase__ ) -> List[Any]: '''simple docstring''' if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True a_ = 4 a_ = (1 << p) - 1 for _ in range(p - 2 ): a_ = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
685
"""simple docstring""" from timeit import timeit def UpperCAmelCase ( snake_case : int ): if number < 0: raise ValueError('''the value of input must not be negative''' ) _lowerCAmelCase:str = 0 while number: number &= number - 1 result += 1 return result def UpperCAmelCase ( snake_case : int ): if number < 0: raise ValueError('''the value of input must not be negative''' ) _lowerCAmelCase:Optional[Any] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def UpperCAmelCase ( ): def do_benchmark(snake_case : int ) -> None: _lowerCAmelCase:Optional[int] = '''import __main__ as z''' print(F'Benchmark when {number = }:' ) print(F'{get_set_bits_count_using_modulo_operator(snake_case ) = }' ) _lowerCAmelCase:List[Any] = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=snake_case ) print(F'timeit() runs in {timing} seconds' ) print(F'{get_set_bits_count_using_brian_kernighans_algorithm(snake_case ) = }' ) _lowerCAmelCase:List[str] = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=snake_case , ) print(F'timeit() runs in {timing} seconds' ) for number in (25, 37, 58, 0): do_benchmark(snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
227
0
def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : int ): if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) __lowercase : Union[str, Any] = str(bin(lowerCAmelCase_ ) )[2:] # remove the leading "0b" __lowercase : Tuple = str(bin(lowerCAmelCase_ ) )[2:] __lowercase : List[str] = max(len(lowerCAmelCase_ ) , len(lowerCAmelCase_ ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowerCAmelCase_ ) , b_binary.zfill(lowerCAmelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
721
import fire from utils import calculate_rouge, save_json def snake_case_ ( lowerCAmelCase_ : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : str=None , **lowerCAmelCase_ : str ): __lowercase : Tuple = [x.strip() for x in open(lowerCAmelCase_ ).readlines()] __lowercase : Dict = [x.strip() for x in open(lowerCAmelCase_ ).readlines()][: len(lowerCAmelCase_ )] __lowercase : Tuple = calculate_rouge(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) if save_path is not None: save_json(lowerCAmelCase_ , lowerCAmelCase_ , indent=lowerCAmelCase_ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
649
0
import argparse from collections import defaultdict import yaml __A = "docs/source/en/_toctree.yml" def lowerCAmelCase_ ( __a ) -> List[Any]: """simple docstring""" lowerCamelCase__: Dict =defaultdict(UpperCamelCase__ ) lowerCamelCase__: Dict =[] lowerCamelCase__: Union[str, Any] =[] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"local": doc["local"], "title": doc["title"]} ) else: new_doc_list.append(UpperCamelCase__ ) lowerCamelCase__: int =new_doc_list lowerCamelCase__: List[str] =[key for key, value in counts.items() if value > 1] lowerCamelCase__: Any =[] for duplicate_key in duplicates: lowerCamelCase__: Union[str, Any] =list({doc["title"] for doc in doc_list if doc["local"] == duplicate_key} ) if len(UpperCamelCase__ ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ "`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the " "others." ) # Only add this once new_doc.append({"local": duplicate_key, "title": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if "local" not in counts or counts[doc["local"]] == 1] ) lowerCamelCase__: Optional[int] =sorted(UpperCamelCase__ , key=lambda __a : s["title"].lower() ) # "overview" gets special treatment and is always first if len(UpperCamelCase__ ) > 1: raise ValueError("{doc_list} has two 'overview' docs which is not allowed." ) overview_doc.extend(UpperCamelCase__ ) # Sort return overview_doc def lowerCAmelCase_ ( __a=False ) -> Optional[int]: """simple docstring""" with open(UpperCamelCase__ , encoding="utf-8" ) as f: lowerCamelCase__: Dict =yaml.safe_load(f.read() ) # Get to the API doc lowerCamelCase__: Any =0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCamelCase__: Union[str, Any] =content[api_idx]["""sections"""] # Then to the model doc lowerCamelCase__: Any =0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 lowerCamelCase__: Any =api_doc[scheduler_idx]["""sections"""] lowerCamelCase__: Union[str, Any] =clean_doc_toc(UpperCamelCase__ ) lowerCamelCase__: Union[str, Any] =False if new_scheduler_doc != scheduler_doc: lowerCamelCase__: int =True if overwrite: lowerCamelCase__: Union[str, Any] =new_scheduler_doc if diff: if overwrite: lowerCamelCase__: str =api_doc with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(UpperCamelCase__ , allow_unicode=UpperCamelCase__ ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) def lowerCAmelCase_ ( __a=False ) -> Tuple: """simple docstring""" with open(UpperCamelCase__ , encoding="utf-8" ) as f: lowerCamelCase__: Any =yaml.safe_load(f.read() ) # Get to the API doc lowerCamelCase__: Tuple =0 while content[api_idx]["title"] != "API": api_idx += 1 lowerCamelCase__: List[Any] =content[api_idx]["""sections"""] # Then to the model doc lowerCamelCase__: int =0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 lowerCamelCase__: Optional[Any] =False lowerCamelCase__: Optional[int] =api_doc[pipeline_idx]["""sections"""] lowerCamelCase__: Dict =[] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: lowerCamelCase__: Dict =pipeline_doc["""section"""] lowerCamelCase__: Optional[int] =clean_doc_toc(UpperCamelCase__ ) if overwrite: lowerCamelCase__: int =new_sub_pipeline_doc new_pipeline_docs.append(UpperCamelCase__ ) # sort overall pipeline doc lowerCamelCase__: Union[str, Any] =clean_doc_toc(UpperCamelCase__ ) if new_pipeline_docs != pipeline_docs: lowerCamelCase__: List[Any] =True if overwrite: lowerCamelCase__: int =new_pipeline_docs if diff: if overwrite: lowerCamelCase__: Dict =api_doc with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(yaml.dump(UpperCamelCase__ , allow_unicode=UpperCamelCase__ ) ) else: raise ValueError( "The model doc part of the table of content is not properly sorted, run `make style` to fix this." ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __A = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
59
'''simple docstring''' # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() __A =2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model __A ={ # fairseq: 'wmt19-ru-en': {'length_penalty': 1.1}, 'wmt19-en-ru': {'length_penalty': 1.1_5}, 'wmt19-en-de': {'length_penalty': 1.0}, 'wmt19-de-en': {'length_penalty': 1.1}, # allenai: 'wmt16-en-de-dist-12-1': {'length_penalty': 0.6}, 'wmt16-en-de-dist-6-1': {'length_penalty': 0.6}, 'wmt16-en-de-12-1': {'length_penalty': 0.8}, 'wmt19-de-en-6-6-base': {'length_penalty': 0.6}, 'wmt19-de-en-6-6-big': {'length_penalty': 0.6}, } # this remaps the different models to their organization names __A ={} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __A ='facebook' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: __A ='allenai' def _UpperCamelCase ( UpperCamelCase__ ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} UpperCAmelCase__ : Union[str, Any] = dict((re.sub(R"""@@$""" , """""" , UpperCamelCase__ ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , UpperCamelCase__ ), v) for k, v in d.items() ) UpperCAmelCase__ : Optional[int] = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] UpperCAmelCase__ : str = d[k] # restore return da def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): # prep assert os.path.exists(UpperCamelCase__ ) os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models UpperCAmelCase__ : str = basename(UpperCamelCase__ ) UpperCAmelCase__ : Optional[int] = dirname(UpperCamelCase__ ) UpperCAmelCase__ : List[str] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel UpperCAmelCase__ : Optional[int] = cls.hub_models() UpperCAmelCase__ : Optional[int] = {"""bpe""": """fastbpe""", """tokenizer""": """moses"""} UpperCAmelCase__ : Union[str, Any] = """.""" # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) UpperCAmelCase__ : int = hub_utils.from_pretrained( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , archive_map=UpperCamelCase__ , **UpperCamelCase__ ) UpperCAmelCase__ : List[Any] = vars(chkpt["""args"""]["""model"""] ) UpperCAmelCase__ : Dict = args["""source_lang"""] UpperCAmelCase__ : int = args["""target_lang"""] UpperCAmelCase__ : Dict = dirname(UpperCamelCase__ ) UpperCAmelCase__ : Any = basename(UpperCamelCase__ ) # dicts UpperCAmelCase__ : Any = os.path.join(UpperCamelCase__ , f'''dict.{src_lang}.txt''' ) UpperCAmelCase__ : List[str] = os.path.join(UpperCamelCase__ , f'''dict.{tgt_lang}.txt''' ) UpperCAmelCase__ : str = Dictionary.load(UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = rewrite_dict_keys(src_dict.indices ) UpperCAmelCase__ : List[Any] = len(UpperCamelCase__ ) UpperCAmelCase__ : Tuple = os.path.join(UpperCamelCase__ , """vocab-src.json""" ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab UpperCAmelCase__ : List[str] = True for k in src_vocab.keys(): if not k.islower(): UpperCAmelCase__ : Optional[int] = False break UpperCAmelCase__ : Tuple = Dictionary.load(UpperCamelCase__ ) UpperCAmelCase__ : Any = rewrite_dict_keys(tgt_dict.indices ) UpperCAmelCase__ : Tuple = len(UpperCamelCase__ ) UpperCAmelCase__ : Any = os.path.join(UpperCamelCase__ , """vocab-tgt.json""" ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # merges_file (bpecodes) UpperCAmelCase__ : List[str] = os.path.join(UpperCamelCase__ , VOCAB_FILES_NAMES["""merges_file"""] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" UpperCAmelCase__ : int = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) if os.path.exists(UpperCamelCase__ ): break with open(UpperCamelCase__ , encoding="""utf-8""" ) as fin: UpperCAmelCase__ : int = fin.read() UpperCAmelCase__ : Union[str, Any] = re.sub(R""" \d+$""" , """""" , UpperCamelCase__ , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as fout: fout.write(UpperCamelCase__ ) # model config UpperCAmelCase__ : Tuple = os.path.join(UpperCamelCase__ , """config.json""" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' UpperCAmelCase__ : int = { """architectures""": ["""FSMTForConditionalGeneration"""], """model_type""": """fsmt""", """activation_dropout""": args["""activation_dropout"""], """activation_function""": """relu""", """attention_dropout""": args["""attention_dropout"""], """d_model""": args["""decoder_embed_dim"""], """dropout""": args["""dropout"""], """init_std""": 0.02, """max_position_embeddings""": args["""max_source_positions"""], """num_hidden_layers""": args["""encoder_layers"""], """src_vocab_size""": src_vocab_size, """tgt_vocab_size""": tgt_vocab_size, """langs""": [src_lang, tgt_lang], """encoder_attention_heads""": args["""encoder_attention_heads"""], """encoder_ffn_dim""": args["""encoder_ffn_embed_dim"""], """encoder_layerdrop""": args["""encoder_layerdrop"""], """encoder_layers""": args["""encoder_layers"""], """decoder_attention_heads""": args["""decoder_attention_heads"""], """decoder_ffn_dim""": args["""decoder_ffn_embed_dim"""], """decoder_layerdrop""": args["""decoder_layerdrop"""], """decoder_layers""": args["""decoder_layers"""], """bos_token_id""": 0, """pad_token_id""": 1, """eos_token_id""": 2, """is_encoder_decoder""": True, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_all_embeddings"""], } # good hparam defaults to start with UpperCAmelCase__ : List[Any] = 5 UpperCAmelCase__ : str = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: UpperCAmelCase__ : Any = best_score_hparams[model_dir]["""length_penalty"""] else: UpperCAmelCase__ : Dict = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # tokenizer config UpperCAmelCase__ : List[Any] = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = { """langs""": [src_lang, tgt_lang], """model_max_length""": 1_0_2_4, """do_lower_case""": do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) ) # model UpperCAmelCase__ : Dict = chkpt["""models"""][0] UpperCAmelCase__ : int = model.state_dict() # rename keys to start with 'model.' UpperCAmelCase__ : List[Any] = OrderedDict(("""model.""" + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys UpperCAmelCase__ : Dict = [ """model.model""", """model.encoder.version""", """model.decoder.version""", """model.encoder_embed_tokens.weight""", """model.decoder_embed_tokens.weight""", """model.encoder.embed_positions._float_tensor""", """model.decoder.embed_positions._float_tensor""", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase__ , UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = FSMTConfig.from_pretrained(UpperCamelCase__ ) UpperCAmelCase__ : Union[str, Any] = FSMTForConditionalGeneration(UpperCamelCase__ ) # check that it loads ok model_new.load_state_dict(UpperCamelCase__ , strict=UpperCamelCase__ ) # save UpperCAmelCase__ : Optional[int] = os.path.join(UpperCamelCase__ , UpperCamelCase__ ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(UpperCamelCase__ , UpperCamelCase__ ) print("""Conversion is done!""" ) print("""\nLast step is to upload the files to s3""" ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": __A =argparse.ArgumentParser() # Required parameters parser.add_argument( '--fsmt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A =parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
407
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" @staticmethod @abstractmethod def A ( __snake_case : ArgumentParser ) -> int: raise NotImplementedError() @abstractmethod def A ( self : str ) -> Union[str, Any]: raise NotImplementedError()
700
'''simple docstring''' from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class SCREAMING_SNAKE_CASE: """simple docstring""" lowerCamelCase__ = LEDConfig lowerCamelCase__ = {} lowerCamelCase__ = """gelu""" def __init__( self : List[str] , __snake_case : int , __snake_case : Dict=13 , __snake_case : Dict=7 , __snake_case : Union[str, Any]=True , __snake_case : Dict=False , __snake_case : List[str]=99 , __snake_case : str=32 , __snake_case : Optional[int]=2 , __snake_case : int=4 , __snake_case : str=37 , __snake_case : Optional[int]=0.1 , __snake_case : Any=0.1 , __snake_case : int=20 , __snake_case : List[str]=2 , __snake_case : List[str]=1 , __snake_case : str=0 , __snake_case : List[str]=4 , ) -> Optional[Any]: UpperCAmelCase : List[str] = parent UpperCAmelCase : Optional[int] = batch_size UpperCAmelCase : int = seq_length UpperCAmelCase : Optional[Any] = is_training UpperCAmelCase : List[Any] = use_labels UpperCAmelCase : int = vocab_size UpperCAmelCase : Optional[int] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : str = num_attention_heads UpperCAmelCase : Optional[int] = intermediate_size UpperCAmelCase : Any = hidden_dropout_prob UpperCAmelCase : int = attention_probs_dropout_prob UpperCAmelCase : Union[str, Any] = max_position_embeddings UpperCAmelCase : List[Any] = eos_token_id UpperCAmelCase : Dict = pad_token_id UpperCAmelCase : List[str] = bos_token_id UpperCAmelCase : Tuple = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after UpperCAmelCase : Optional[int] = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests UpperCAmelCase : Union[str, Any] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def A ( self : int ) -> Optional[int]: UpperCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCAmelCase : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCAmelCase : Any = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) UpperCAmelCase : Optional[Any] = prepare_led_inputs_dict(__snake_case , __snake_case , __snake_case ) UpperCAmelCase : Any = tf.concat( [tf.zeros_like(__snake_case )[:, :-1], tf.ones_like(__snake_case )[:, -1:]] , axis=-1 , ) UpperCAmelCase : Any = global_attention_mask return config, inputs_dict def A ( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> Any: UpperCAmelCase : Optional[int] = TFLEDModel(config=__snake_case ).get_decoder() UpperCAmelCase : List[str] = inputs_dict['''input_ids'''] UpperCAmelCase : Any = input_ids[:1, :] UpperCAmelCase : Tuple = inputs_dict['''attention_mask'''][:1, :] UpperCAmelCase : str = 1 # first forward pass UpperCAmelCase : Dict = model(__snake_case , attention_mask=__snake_case , use_cache=__snake_case ) UpperCAmelCase , UpperCAmelCase : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : Any = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCAmelCase : int = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCAmelCase : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCAmelCase : Optional[Any] = model(__snake_case , attention_mask=__snake_case )[0] UpperCAmelCase : List[str] = model(__snake_case , attention_mask=__snake_case , past_key_values=__snake_case )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCAmelCase : Dict = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCAmelCase : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__snake_case , __snake_case , rtol=1E-3 ) def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Dict=None , ) -> Optional[int]: if attention_mask is None: UpperCAmelCase : Dict = tf.cast(tf.math.not_equal(_lowerCAmelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCAmelCase : int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCAmelCase : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class SCREAMING_SNAKE_CASE( A__ , A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowerCamelCase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowerCamelCase__ = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowerCamelCase__ = True lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def A ( self : str ) -> Tuple: UpperCAmelCase : Optional[Any] = TFLEDModelTester(self ) UpperCAmelCase : Tuple = ConfigTester(self , config_class=__snake_case ) def A ( self : Any ) -> Tuple: self.config_tester.run_common_tests() def A ( self : int ) -> List[str]: UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__snake_case ) def A ( self : Any ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[Any] = tf.zeros_like(inputs_dict['''attention_mask'''] ) UpperCAmelCase : Optional[int] = 2 UpperCAmelCase : Dict = tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) UpperCAmelCase : Optional[int] = True UpperCAmelCase : str = self.model_tester.seq_length UpperCAmelCase : Optional[Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__snake_case : List[Any] ): UpperCAmelCase : List[str] = outputs.decoder_attentions self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__snake_case : int ): UpperCAmelCase : List[Any] = [t.numpy() for t in outputs.encoder_attentions] UpperCAmelCase : str = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(__snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: UpperCAmelCase : Tuple = True UpperCAmelCase : Optional[int] = False UpperCAmelCase : int = False UpperCAmelCase : Tuple = model_class(__snake_case ) UpperCAmelCase : Tuple = model(self._prepare_for_class(__snake_case , __snake_case ) ) UpperCAmelCase : Optional[int] = len(__snake_case ) self.assertEqual(config.output_hidden_states , __snake_case ) check_encoder_attentions_output(__snake_case ) if self.is_encoder_decoder: UpperCAmelCase : Optional[Any] = model_class(__snake_case ) UpperCAmelCase : Optional[int] = model(self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(config.output_hidden_states , __snake_case ) check_decoder_attentions_output(__snake_case ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase : Optional[int] = True UpperCAmelCase : Union[str, Any] = model_class(__snake_case ) UpperCAmelCase : Optional[Any] = model(self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(config.output_hidden_states , __snake_case ) check_encoder_attentions_output(__snake_case ) # Check attention is always last and order is fine UpperCAmelCase : Any = True UpperCAmelCase : Any = True UpperCAmelCase : List[str] = model_class(__snake_case ) UpperCAmelCase : Dict = model(self._prepare_for_class(__snake_case , __snake_case ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__snake_case ) ) self.assertEqual(model.config.output_hidden_states , __snake_case ) check_encoder_attentions_output(__snake_case ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def A ( self : Any ) -> Union[str, Any]: pass def A ( self : str ) -> Any: # TODO: Head-masking not yet implement pass def snake_case_ ( _lowerCAmelCase : str ) -> Tuple: return tf.constant(_lowerCAmelCase , dtype=tf.intaa ) UpperCamelCase__: Tuple = 1E-4 @slow @require_tf class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def A ( self : Any ) -> Optional[int]: UpperCAmelCase : Optional[Any] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here UpperCAmelCase : Optional[int] = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase : Dict = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase : Dict = prepare_led_inputs_dict(model.config , __snake_case , __snake_case ) UpperCAmelCase : Optional[Any] = model(**__snake_case )[0] UpperCAmelCase : Optional[int] = (1, 1024, 768) self.assertEqual(output.shape , __snake_case ) # change to expected output here UpperCAmelCase : List[str] = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , __snake_case , atol=1E-3 ) def A ( self : Dict ) -> Union[str, Any]: UpperCAmelCase : Dict = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here UpperCAmelCase : Optional[int] = _long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase : Optional[Any] = _long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) UpperCAmelCase : Optional[int] = prepare_led_inputs_dict(model.config , __snake_case , __snake_case ) UpperCAmelCase : Any = model(**__snake_case )[0] UpperCAmelCase : Union[str, Any] = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , __snake_case ) # change to expected output here UpperCAmelCase : Dict = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , __snake_case , atol=1E-3 , rtol=1E-3 )
528
0
"""simple docstring""" from __future__ import annotations from functools import lru_cache from math import ceil lowerCamelCase__ : Dict = 1_00 lowerCamelCase__ : Optional[Any] = set(range(3, NUM_PRIMES, 2)) primes.add(2) lowerCamelCase__ : int for prime in range(3, ceil(NUM_PRIMES**0.5), 2): if prime not in primes: continue primes.difference_update(set(range(prime * prime, NUM_PRIMES, prime))) @lru_cache(maxsize=100 ) def UpperCamelCase ( _lowerCAmelCase : int ) -> set[int]: if number_to_partition < 0: return set() elif number_to_partition == 0: return {1} _UpperCAmelCase : set[int] = set() _UpperCAmelCase : int _UpperCAmelCase : int for prime in primes: if prime > number_to_partition: continue for sub in partition(number_to_partition - prime ): ret.add(sub * prime ) return ret def UpperCamelCase ( _lowerCAmelCase : int = 5000 ) -> int | None: for number_to_partition in range(1, _lowerCAmelCase ): if len(partition(_lowerCAmelCase ) ) > number_unique_partitions: return number_to_partition return None if __name__ == "__main__": print(F'''{solution() = }''')
238
"""simple docstring""" import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/text-classification/requirements.txt''') lowerCamelCase__ : Any = logging.getLogger(__name__) @dataclass class _UpperCAmelCase : __a : Optional[int] = field( default=1_2_8 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __a : bool = field( default=__a , metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""}) __a : bool = field( default=__a , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) __a : Optional[int] = field( default=__a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) __a : Optional[int] = field( default=__a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) __a : Optional[int] = field( default=__a , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) } , ) @dataclass class _UpperCAmelCase : __a : str = field( default=__a , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""}) __a : str = field( default=__a , metadata={"""help""": """Evaluation language. Also train language if `train_language` is set to None."""}) __a : Optional[str] = field( default=__a , metadata={"""help""": """Train language if it is different from the evaluation language."""}) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""}) __a : Optional[str] = field( default=__a , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""}) __a : Optional[str] = field( default=__a , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) __a : Optional[bool] = field( default=__a , metadata={"""help""": """arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"""} , ) __a : bool = field( default=__a , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) __a : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) __a : bool = field( default=__a , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) __a : bool = field( default=__a , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def UpperCamelCase ( ) -> str: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _UpperCAmelCase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_xnli""", _lowerCAmelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCAmelCase : List[str] = training_args.get_process_log_level() logger.setLevel(_lowerCAmelCase ) datasets.utils.logging.set_verbosity(_lowerCAmelCase ) transformers.utils.logging.set_verbosity(_lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _UpperCAmelCase : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCAmelCase : List[str] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: _UpperCAmelCase : Union[str, Any] = load_dataset( """xnli""", model_args.language, split="""train""", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) else: _UpperCAmelCase : Tuple = load_dataset( """xnli""", model_args.train_language, split="""train""", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Dict = train_dataset.features["""label"""].names if training_args.do_eval: _UpperCAmelCase : Any = load_dataset( """xnli""", model_args.language, split="""validation""", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Union[str, Any] = eval_dataset.features["""label"""].names if training_args.do_predict: _UpperCAmelCase : Tuple = load_dataset( """xnli""", model_args.language, split="""test""", cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : str = predict_dataset.features["""label"""].names # Labels _UpperCAmelCase : str = len(_lowerCAmelCase ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _UpperCAmelCase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=_lowerCAmelCase, idalabel={str(_lowerCAmelCase ): label for i, label in enumerate(_lowerCAmelCase )}, labelaid={label: i for i, label in enumerate(_lowerCAmelCase )}, finetuning_task="""xnli""", cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Any = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, do_lower_case=model_args.do_lower_case, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) _UpperCAmelCase : Optional[Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(""".ckpt""" in model_args.model_name_or_path ), config=_lowerCAmelCase, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: _UpperCAmelCase : Union[str, Any] = """max_length""" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _UpperCAmelCase : List[Any] = False def preprocess_function(_lowerCAmelCase : Dict ): # Tokenize the texts return tokenizer( examples["""premise"""], examples["""hypothesis"""], padding=_lowerCAmelCase, max_length=data_args.max_seq_length, truncation=_lowerCAmelCase, ) if training_args.do_train: if data_args.max_train_samples is not None: _UpperCAmelCase : Tuple = min(len(_lowerCAmelCase ), data_args.max_train_samples ) _UpperCAmelCase : Optional[int] = train_dataset.select(range(_lowerCAmelCase ) ) with training_args.main_process_first(desc="""train dataset map pre-processing""" ): _UpperCAmelCase : Union[str, Any] = train_dataset.map( _lowerCAmelCase, batched=_lowerCAmelCase, load_from_cache_file=not data_args.overwrite_cache, desc="""Running tokenizer on train dataset""", ) # Log a few random samples from the training set: for index in random.sample(range(len(_lowerCAmelCase ) ), 3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: _UpperCAmelCase : Tuple = min(len(_lowerCAmelCase ), data_args.max_eval_samples ) _UpperCAmelCase : int = eval_dataset.select(range(_lowerCAmelCase ) ) with training_args.main_process_first(desc="""validation dataset map pre-processing""" ): _UpperCAmelCase : int = eval_dataset.map( _lowerCAmelCase, batched=_lowerCAmelCase, load_from_cache_file=not data_args.overwrite_cache, desc="""Running tokenizer on validation dataset""", ) if training_args.do_predict: if data_args.max_predict_samples is not None: _UpperCAmelCase : List[Any] = min(len(_lowerCAmelCase ), data_args.max_predict_samples ) _UpperCAmelCase : Dict = predict_dataset.select(range(_lowerCAmelCase ) ) with training_args.main_process_first(desc="""prediction dataset map pre-processing""" ): _UpperCAmelCase : Any = predict_dataset.map( _lowerCAmelCase, batched=_lowerCAmelCase, load_from_cache_file=not data_args.overwrite_cache, desc="""Running tokenizer on prediction dataset""", ) # Get the metric function _UpperCAmelCase : Dict = evaluate.load("""xnli""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowerCAmelCase : EvalPrediction ): _UpperCAmelCase : Union[str, Any] = p.predictions[0] if isinstance(p.predictions, _lowerCAmelCase ) else p.predictions _UpperCAmelCase : Tuple = np.argmax(_lowerCAmelCase, axis=1 ) return metric.compute(predictions=_lowerCAmelCase, references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _UpperCAmelCase : Tuple = default_data_collator elif training_args.fpaa: _UpperCAmelCase : Optional[Any] = DataCollatorWithPadding(_lowerCAmelCase, pad_to_multiple_of=8 ) else: _UpperCAmelCase : str = None # Initialize our Trainer _UpperCAmelCase : List[Any] = Trainer( model=_lowerCAmelCase, args=_lowerCAmelCase, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=_lowerCAmelCase, tokenizer=_lowerCAmelCase, data_collator=_lowerCAmelCase, ) # Training if training_args.do_train: _UpperCAmelCase : Tuple = None if training_args.resume_from_checkpoint is not None: _UpperCAmelCase : Dict = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCAmelCase : Union[str, Any] = last_checkpoint _UpperCAmelCase : Optional[int] = trainer.train(resume_from_checkpoint=_lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = train_result.metrics _UpperCAmelCase : Any = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowerCAmelCase ) ) _UpperCAmelCase : int = min(_lowerCAmelCase, len(_lowerCAmelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("""train""", _lowerCAmelCase ) trainer.save_metrics("""train""", _lowerCAmelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _UpperCAmelCase : List[str] = trainer.evaluate(eval_dataset=_lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = min(_lowerCAmelCase, len(_lowerCAmelCase ) ) trainer.log_metrics("""eval""", _lowerCAmelCase ) trainer.save_metrics("""eval""", _lowerCAmelCase ) # Prediction if training_args.do_predict: logger.info("""*** Predict ***""" ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = trainer.predict(_lowerCAmelCase, metric_key_prefix="""predict""" ) _UpperCAmelCase : List[str] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(_lowerCAmelCase ) ) _UpperCAmelCase : Tuple = min(_lowerCAmelCase, len(_lowerCAmelCase ) ) trainer.log_metrics("""predict""", _lowerCAmelCase ) trainer.save_metrics("""predict""", _lowerCAmelCase ) _UpperCAmelCase : str = np.argmax(_lowerCAmelCase, axis=1 ) _UpperCAmelCase : Any = os.path.join(training_args.output_dir, """predictions.txt""" ) if trainer.is_world_process_zero(): with open(_lowerCAmelCase, """w""" ) as writer: writer.write("""index\tprediction\n""" ) for index, item in enumerate(_lowerCAmelCase ): _UpperCAmelCase : Optional[int] = label_list[item] writer.write(f'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
238
1
'''simple docstring''' from __future__ import annotations _UpperCamelCase = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class lowerCamelCase__ : '''simple docstring''' def __init__( self : Union[str, Any] , __A : dict[str, list[str]] , __A : str ) -> None: '''simple docstring''' lowerCAmelCase__ = graph # mapping node to its parent in resulting breadth first tree lowerCAmelCase__ = {} lowerCAmelCase__ = source_vertex def lowercase__ ( self : Any ) -> None: '''simple docstring''' lowerCAmelCase__ = {self.source_vertex} lowerCAmelCase__ = None lowerCAmelCase__ = [self.source_vertex] # first in first out queue while queue: lowerCAmelCase__ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__A ) lowerCAmelCase__ = vertex queue.append(__A ) def lowercase__ ( self : str , __A : str ) -> str: '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex lowerCAmelCase__ = self.parent.get(__A ) if target_vertex_parent is None: lowerCAmelCase__ = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(__A ) return self.shortest_path(__A ) + f'''->{target_vertex}''' if __name__ == "__main__": _UpperCamelCase = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
211
'''simple docstring''' from sklearn.metrics import fa_score import datasets _UpperCamelCase = """ The F1 score is the harmonic mean of the precision and recall. It can be computed with the equation: F1 = 2 * (precision * recall) / (precision + recall) """ _UpperCamelCase = """ Args: predictions (`list` of `int`): Predicted labels. references (`list` of `int`): Ground truth labels. labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None. pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1. average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary. - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives. - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall. - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). sample_weight (`list` of `float`): Sample weights Defaults to None. Returns: f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better. Examples: Example 1-A simple binary example >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0]) >>> print(results) {'f1': 0.5} Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0) >>> print(round(results['f1'], 2)) 0.67 Example 3-The same simple binary example as in Example 1, but with `sample_weight` included. >>> f1_metric = datasets.load_metric(\"f1\") >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3]) >>> print(round(results['f1'], 2)) 0.35 Example 4-A multiclass example, with different values for the `average` input. >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\") >>> print(round(results['f1'], 2)) 0.33 >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\") >>> print(round(results['f1'], 2)) 0.27 >>> results = f1_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'f1': array([0.8, 0. , 0. ])} """ _UpperCamelCase = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def lowercase__ ( self : Optional[int] , __A : str , __A : Optional[Any] , __A : Dict=None , __A : Union[str, Any]=1 , __A : Tuple="binary" , __A : str=None ) -> str: '''simple docstring''' lowerCAmelCase__ = fa_score( __A , __A , labels=__A , pos_label=__A , average=__A , sample_weight=__A ) return {"f1": float(__A ) if score.size == 1 else score}
211
1
"""simple docstring""" from math import ceil def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> Any: """simple docstring""" lowerCAmelCase_ : List[str] = list(range(0 , _UpperCAmelCase ) ) lowerCAmelCase_ : Optional[int] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check lowerCAmelCase_ : int = [] for i in device_map_blocks: if device_map_blocks.count(_UpperCAmelCase ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(_UpperCAmelCase ) # Missing blocks lowerCAmelCase_ : Optional[Any] = [i for i in blocks if i not in device_map_blocks] lowerCAmelCase_ : Any = [i for i in device_map_blocks if i not in blocks] if len(_UpperCAmelCase ) != 0: raise ValueError( "Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device." " These attention blocks were specified more than once: " + str(_UpperCAmelCase ) ) if len(_UpperCAmelCase ) != 0: raise ValueError( "There are attention blocks for this model that are not specified in the device_map. Add these attention " "blocks to a device on the device_map: " + str(_UpperCAmelCase ) ) if len(_UpperCAmelCase ) != 0: raise ValueError( "The device_map contains more attention blocks than this model has. Remove these from the device_map:" + str(_UpperCAmelCase ) ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> List[Any]: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = list(range(_UpperCAmelCase ) ) lowerCAmelCase_ : Tuple = int(ceil(n_layers / len(_UpperCAmelCase ) ) ) lowerCAmelCase_ : Tuple = [layers[i : i + n_blocks] for i in range(0 , _UpperCAmelCase , _UpperCAmelCase )] return dict(zip(_UpperCAmelCase , _UpperCAmelCase ) )
610
from __future__ import annotations from collections.abc import Iterator from typing import Any class __lowercase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : Any): SCREAMING_SNAKE_CASE_: Any = data SCREAMING_SNAKE_CASE_: Node | None = None class __lowercase : """simple docstring""" def __init__( self : int): SCREAMING_SNAKE_CASE_: Dict = None SCREAMING_SNAKE_CASE_: str = None def __iter__( self : List[str]): SCREAMING_SNAKE_CASE_: Tuple = self.head while self.head: yield node.data SCREAMING_SNAKE_CASE_: List[str] = node.next if node == self.head: break def __len__( self : Dict): return sum(1 for _ in self) def __repr__( self : Dict): return "->".join(str(lowerCAmelCase__) for item in iter(self)) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any): self.insert_nth(len(self) , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Any): self.insert_nth(0 , lowerCAmelCase__) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : int , lowerCAmelCase__ : Any): if index < 0 or index > len(self): raise IndexError("list index out of range.") SCREAMING_SNAKE_CASE_: Any = Node(lowerCAmelCase__) if self.head is None: SCREAMING_SNAKE_CASE_: str = new_node # first node points itself SCREAMING_SNAKE_CASE_: Optional[Any] = new_node elif index == 0: # insert at head SCREAMING_SNAKE_CASE_: Optional[Any] = self.head SCREAMING_SNAKE_CASE_: str = new_node else: SCREAMING_SNAKE_CASE_: int = self.head for _ in range(index - 1): SCREAMING_SNAKE_CASE_: Optional[Any] = temp.next SCREAMING_SNAKE_CASE_: List[str] = temp.next SCREAMING_SNAKE_CASE_: int = new_node if index == len(self) - 1: # insert at tail SCREAMING_SNAKE_CASE_: Any = new_node def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): return self.delete_nth(0) def _SCREAMING_SNAKE_CASE ( self : Any): return self.delete_nth(len(self) - 1) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : int = 0): if not 0 <= index < len(self): raise IndexError("list index out of range.") SCREAMING_SNAKE_CASE_: Optional[Any] = self.head if self.head == self.tail: # just one node SCREAMING_SNAKE_CASE_: List[str] = None elif index == 0: # delete head node SCREAMING_SNAKE_CASE_: int = self.tail.next.next SCREAMING_SNAKE_CASE_: Tuple = self.head.next else: SCREAMING_SNAKE_CASE_: Optional[int] = self.head for _ in range(index - 1): SCREAMING_SNAKE_CASE_: Any = temp.next SCREAMING_SNAKE_CASE_: Optional[Any] = temp.next SCREAMING_SNAKE_CASE_: int = temp.next.next if index == len(self) - 1: # delete at tail SCREAMING_SNAKE_CASE_: int = temp return delete_node.data def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): return len(self) == 0 def A_ ( ): SCREAMING_SNAKE_CASE_: Dict = CircularLinkedList() assert len(_UpperCAmelCase ) == 0 assert circular_linked_list.is_empty() is True assert str(_UpperCAmelCase ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(_UpperCAmelCase ) == i circular_linked_list.insert_nth(_UpperCAmelCase , i + 1 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(_UpperCAmelCase ) == "->".join(str(_UpperCAmelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
671
0
'''simple docstring''' import json import logging import os import sys from time import time from unittest.mock import patch from transformers.testing_utils import TestCasePlus, require_torch_tpu logging.basicConfig(level=logging.DEBUG) a : Dict = logging.getLogger() def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = {} UpperCAmelCase : Optional[Any] = os.path.join(__magic_name__ , "all_results.json" ) if os.path.exists(__magic_name__ ): with open(__magic_name__ , "r" ) as f: UpperCAmelCase : List[Any] = json.load(__magic_name__ ) else: raise ValueError(F"can't find {path}" ) return results a : Dict = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) @require_torch_tpu class UpperCamelCase__ ( lowercase__ ): """simple docstring""" def A_ ( self ): '''simple docstring''' import xla_spawn UpperCAmelCase : Optional[int] = self.get_auto_remove_tmp_dir() UpperCAmelCase : Tuple = f"\n ./examples/pytorch/text-classification/run_glue.py\n --num_cores=8\n ./examples/pytorch/text-classification/run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --do_train\n --do_eval\n --debug tpu_metrics_debug\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --max_steps=10\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(snake_case , "argv" , snake_case ): UpperCAmelCase : List[str] = time() xla_spawn.main() UpperCAmelCase : Dict = time() UpperCAmelCase : Any = get_results(snake_case ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) # Assert that the script takes less than 500 seconds to make sure it doesn't hang. self.assertLess(end - start , 5_0_0 ) def A_ ( self ): '''simple docstring''' import xla_spawn UpperCAmelCase : Optional[Any] = "\n ./tests/test_trainer_tpu.py\n --num_cores=8\n ./tests/test_trainer_tpu.py\n ".split() with patch.object(snake_case , "argv" , snake_case ): xla_spawn.main()
609
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case , snake_case=1_3 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=False , snake_case=False , snake_case=False , snake_case=2 , snake_case=9_9 , snake_case=0 , snake_case=3_2 , snake_case=5 , snake_case=4 , snake_case=0.1 , snake_case=0.1 , snake_case=5_1_2 , snake_case=2 , snake_case=0.02 , snake_case=2 , snake_case=4 , snake_case="last" , snake_case=True , snake_case=None , snake_case=0 , ): '''simple docstring''' UpperCAmelCase : str = parent UpperCAmelCase : str = batch_size UpperCAmelCase : Union[str, Any] = seq_length UpperCAmelCase : int = is_training UpperCAmelCase : Any = use_input_lengths UpperCAmelCase : str = use_token_type_ids UpperCAmelCase : List[str] = use_labels UpperCAmelCase : Any = gelu_activation UpperCAmelCase : str = sinusoidal_embeddings UpperCAmelCase : List[Any] = causal UpperCAmelCase : Union[str, Any] = asm UpperCAmelCase : List[str] = n_langs UpperCAmelCase : Optional[int] = vocab_size UpperCAmelCase : str = n_special UpperCAmelCase : str = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : Dict = num_attention_heads UpperCAmelCase : List[Any] = hidden_dropout_prob UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase : str = max_position_embeddings UpperCAmelCase : Optional[int] = type_sequence_label_size UpperCAmelCase : Optional[int] = initializer_range UpperCAmelCase : Union[str, Any] = num_labels UpperCAmelCase : Union[str, Any] = num_choices UpperCAmelCase : Dict = summary_type UpperCAmelCase : Dict = use_proj UpperCAmelCase : List[Any] = scope UpperCAmelCase : Optional[int] = bos_token_id def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_input_lengths: UpperCAmelCase : Dict = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) UpperCAmelCase : Any = None UpperCAmelCase : Optional[Any] = None UpperCAmelCase : Tuple = None if self.use_labels: UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Dict = ids_tensor([self.batch_size] , 2 ).float() UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : List[str] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def A_ ( self ): '''simple docstring''' return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): '''simple docstring''' UpperCAmelCase : Any = XLMModel(config=snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : Any = model(snake_case , lengths=snake_case , langs=snake_case ) UpperCAmelCase : Any = model(snake_case , langs=snake_case ) UpperCAmelCase : Union[str, Any] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): '''simple docstring''' UpperCAmelCase : int = XLMWithLMHeadModel(snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : Tuple = model(snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): '''simple docstring''' UpperCAmelCase : Optional[int] = XLMForQuestionAnsweringSimple(snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : List[str] = model(snake_case ) UpperCAmelCase : List[str] = model(snake_case , start_positions=snake_case , end_positions=snake_case ) UpperCAmelCase : List[str] = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = XLMForQuestionAnswering(snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : Union[str, Any] = model(snake_case ) UpperCAmelCase : List[str] = model( snake_case , start_positions=snake_case , end_positions=snake_case , cls_index=snake_case , is_impossible=snake_case , p_mask=snake_case , ) UpperCAmelCase : Optional[Any] = model( snake_case , start_positions=snake_case , end_positions=snake_case , cls_index=snake_case , is_impossible=snake_case , ) ((UpperCAmelCase) , ) : str = result_with_labels.to_tuple() UpperCAmelCase : List[str] = model(snake_case , start_positions=snake_case , end_positions=snake_case ) ((UpperCAmelCase) , ) : str = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): '''simple docstring''' UpperCAmelCase : Any = XLMForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : Optional[int] = model(snake_case ) UpperCAmelCase : int = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.num_labels UpperCAmelCase : Optional[int] = XLMForTokenClassification(snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : List[Any] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.num_choices UpperCAmelCase : Tuple = XLMForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() UpperCAmelCase : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase : Tuple = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase : List[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths} return config, inputs_dict @require_torch class UpperCamelCase__ ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ : str = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable SCREAMING_SNAKE_CASE__ : Tuple = ( { "feature-extraction": XLMModel, "fill-mask": XLMWithLMHeadModel, "question-answering": XLMForQuestionAnsweringSimple, "text-classification": XLMForSequenceClassification, "text-generation": XLMWithLMHeadModel, "token-classification": XLMForTokenClassification, "zero-shot": XLMForSequenceClassification, } if is_torch_available() else {} ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def A_ ( self , snake_case , snake_case , snake_case=False ): '''simple docstring''' UpperCAmelCase : Any = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": UpperCAmelCase : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) UpperCAmelCase : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) return inputs_dict def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = XLMModelTester(self ) UpperCAmelCase : str = ConfigTester(self , config_class=snake_case , emb_dim=3_7 ) def A_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*snake_case ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=False , snake_case=1 ): '''simple docstring''' self.assertIsInstance(snake_case , snake_case ) self.assertListEqual( [isinstance(snake_case , snake_case ) for iter_attentions in attentions] , [True] * len(snake_case ) ) self.assertEqual(len(snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(snake_case ): # adds PAD dummy token UpperCAmelCase : str = min_length + idx + 1 UpperCAmelCase : List[Any] = min_length + idx + 1 UpperCAmelCase : List[Any] = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(snake_case ) ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=False , snake_case=1 ): '''simple docstring''' self.assertIsInstance(snake_case , snake_case ) self.assertListEqual( [isinstance(snake_case , snake_case ) for iter_hidden_states in hidden_states] , [True] * len(snake_case ) , ) self.assertEqual(len(snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(snake_case ): # adds PAD dummy token UpperCAmelCase : List[Any] = min_length + idx + 1 UpperCAmelCase : Dict = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(snake_case ) , ) pass @slow def A_ ( self ): '''simple docstring''' for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = XLMModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = XLMWithLMHeadModel.from_pretrained("xlm-mlm-en-2048" ) model.to(snake_case ) UpperCAmelCase : Optional[int] = torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=snake_case ) # the president UpperCAmelCase : Tuple = [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference UpperCAmelCase : Dict = model.generate(snake_case , do_sample=snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , snake_case )
609
1
"""simple docstring""" import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __SCREAMING_SNAKE_CASE ( *lowerCamelCase_: Any ): """simple docstring""" if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): snake_case : List[Any] = list(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): snake_case : List[Any] = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: int ): """simple docstring""" snake_case : str = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __SCREAMING_SNAKE_CASE ( lowerCamelCase_: Optional[Any] = None , lowerCamelCase_: Dict = 1_2_8 ): """simple docstring""" if function is None: return functools.partial(__UpperCAmelCase , starting_batch_size=__UpperCAmelCase ) snake_case : Optional[Any] = starting_batch_size def decorator(*lowerCamelCase_: List[Any] , **lowerCamelCase_: Optional[int] ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() snake_case : Optional[int] = list(inspect.signature(__UpperCAmelCase ).parameters.keys() ) # Guard against user error if len(__UpperCAmelCase ) < (len(__UpperCAmelCase ) + 1): snake_case : List[str] = """, """.join([f'''{arg}={value}''' for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f'''Batch size was passed into `{function.__name__}` as the first argument when called.''' f'''Remove this as the decorator already does so: `{function.__name__}({arg_str})`''' ) while True: if batch_size == 0: raise RuntimeError("No executable batch size found, reached zero." ) try: return function(__UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ) except Exception as e: if should_reduce_batch_size(__UpperCAmelCase ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
449
"""simple docstring""" import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 _A = get_tests_dir("""fixtures/dummy_feature_extractor_config.json""") _A = get_tests_dir("""fixtures/vocab.json""") _A = get_tests_dir("""fixtures""") class _lowerCamelCase ( unittest.TestCase ): _lowerCamelCase :Union[str, Any] = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] def _lowerCAmelCase ( self : Any ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ : Optional[int] = 0 def _lowerCAmelCase ( self : Tuple ) -> List[Any]: """simple docstring""" lowerCAmelCase__ : Tuple = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def _lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Any = WavaVecaConfig() lowerCAmelCase__ : str = AutoProcessor.from_pretrained("""facebook/wav2vec2-base-960h""" ) # save in new folder model_config.save_pretrained(UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) lowerCAmelCase__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def _lowerCAmelCase ( self : Optional[int] ) -> int: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(UpperCamelCase , os.path.join(UpperCamelCase , UpperCamelCase ) ) copyfile(UpperCamelCase , os.path.join(UpperCamelCase , """vocab.json""" ) ) lowerCAmelCase__ : Optional[int] = AutoProcessor.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Optional[int] = WavaVecaFeatureExtractor() lowerCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowerCAmelCase__ : List[str] = WavaVecaProcessor(UpperCamelCase , UpperCamelCase ) # save in new folder processor.save_pretrained(UpperCamelCase ) # drop `processor_class` in tokenizer with open(os.path.join(UpperCamelCase , UpperCamelCase ) , """r""" ) as f: lowerCAmelCase__ : Optional[int] = json.load(UpperCamelCase ) config_dict.pop("""processor_class""" ) with open(os.path.join(UpperCamelCase , UpperCamelCase ) , """w""" ) as f: f.write(json.dumps(UpperCamelCase ) ) lowerCAmelCase__ : Dict = AutoProcessor.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def _lowerCAmelCase ( self : Dict ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : int = WavaVecaFeatureExtractor() lowerCAmelCase__ : int = AutoTokenizer.from_pretrained("""facebook/wav2vec2-base-960h""" ) lowerCAmelCase__ : List[str] = WavaVecaProcessor(UpperCamelCase , UpperCamelCase ) # save in new folder processor.save_pretrained(UpperCamelCase ) # drop `processor_class` in feature extractor with open(os.path.join(UpperCamelCase , UpperCamelCase ) , """r""" ) as f: lowerCAmelCase__ : Any = json.load(UpperCamelCase ) config_dict.pop("""processor_class""" ) with open(os.path.join(UpperCamelCase , UpperCamelCase ) , """w""" ) as f: f.write(json.dumps(UpperCamelCase ) ) lowerCAmelCase__ : List[Any] = AutoProcessor.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def _lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : List[str] = WavaVecaConfig(processor_class="""Wav2Vec2Processor""" ) model_config.save_pretrained(UpperCamelCase ) # copy relevant files copyfile(UpperCamelCase , os.path.join(UpperCamelCase , """vocab.json""" ) ) # create emtpy sample processor with open(os.path.join(UpperCamelCase , UpperCamelCase ) , """w""" ) as f: f.write("""{}""" ) lowerCAmelCase__ : List[str] = AutoProcessor.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) def _lowerCAmelCase ( self : List[Any] ) -> Optional[Any]: """simple docstring""" # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(UpperCamelCase ): lowerCAmelCase__ : int = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(UpperCamelCase ): lowerCAmelCase__ : Any = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=UpperCamelCase ) lowerCAmelCase__ : Tuple = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" , trust_remote_code=UpperCamelCase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) lowerCAmelCase__ : str = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , """NewFeatureExtractor""" ) lowerCAmelCase__ : Dict = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizerFast""" ) # Test we can also load the slow version lowerCAmelCase__ : Tuple = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=UpperCamelCase , use_fast=UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , """NewTokenizer""" ) else: self.assertEqual(tokenizer.__class__.__name__ , """NewTokenizer""" ) def _lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" try: AutoConfig.register("""custom""" , UpperCamelCase ) AutoFeatureExtractor.register(UpperCamelCase , UpperCamelCase ) AutoTokenizer.register(UpperCamelCase , slow_tokenizer_class=UpperCamelCase ) AutoProcessor.register(UpperCamelCase , UpperCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(UpperCamelCase ): AutoProcessor.register(UpperCamelCase , UpperCamelCase ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase__ : str = CustomFeatureExtractor.from_pretrained(UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ : List[Any] = os.path.join(UpperCamelCase , """vocab.txt""" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowerCAmelCase__ : Union[str, Any] = CustomTokenizer(UpperCamelCase ) lowerCAmelCase__ : List[str] = CustomProcessor(UpperCamelCase , UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(UpperCamelCase ) lowerCAmelCase__ : str = AutoProcessor.from_pretrained(UpperCamelCase ) self.assertIsInstance(UpperCamelCase , UpperCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowerCAmelCase ( self : str ) -> Union[str, Any]: """simple docstring""" class _lowerCamelCase ( a_ ): _lowerCamelCase :Union[str, Any] = False class _lowerCamelCase ( a_ ): _lowerCamelCase :List[str] = False class _lowerCamelCase ( a_ ): _lowerCamelCase :List[str] = "AutoFeatureExtractor" _lowerCamelCase :Tuple = "AutoTokenizer" _lowerCamelCase :Union[str, Any] = False try: AutoConfig.register("""custom""" , UpperCamelCase ) AutoFeatureExtractor.register(UpperCamelCase , UpperCamelCase ) AutoTokenizer.register(UpperCamelCase , slow_tokenizer_class=UpperCamelCase ) AutoProcessor.register(UpperCamelCase , UpperCamelCase ) # If remote code is not set, the default is to use local classes. lowerCAmelCase__ : str = AutoProcessor.from_pretrained("""hf-internal-testing/test_dynamic_processor""" ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. lowerCAmelCase__ : Dict = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=UpperCamelCase ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. lowerCAmelCase__ : Tuple = AutoProcessor.from_pretrained( """hf-internal-testing/test_dynamic_processor""" , trust_remote_code=UpperCamelCase ) self.assertEqual(processor.__class__.__name__ , """NewProcessor""" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def _lowerCAmelCase ( self : List[str] ) -> Any: """simple docstring""" lowerCAmelCase__ : List[str] = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) self.assertEqual(processor.__class__.__name__ , """BertTokenizerFast""" ) def _lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" lowerCAmelCase__ : Optional[Any] = AutoProcessor.from_pretrained("""hf-internal-testing/tiny-random-convnext""" ) self.assertEqual(processor.__class__.__name__ , """ConvNextImageProcessor""" ) @is_staging_test class _lowerCamelCase ( unittest.TestCase ): _lowerCamelCase :Tuple = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def _lowerCAmelCase ( cls : Any ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Optional[Any] = TOKEN HfFolder.save_token(UpperCamelCase ) @classmethod def _lowerCAmelCase ( cls : Dict ) -> Tuple: """simple docstring""" try: delete_repo(token=cls._token , repo_id="""test-processor""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""valid_org/test-processor-org""" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="""test-dynamic-processor""" ) except HTTPError: pass def _lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase__ : Dict = WavaVecaProcessor.from_pretrained(UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase , """test-processor""" ) , push_to_hub=UpperCamelCase , use_auth_token=self._token ) lowerCAmelCase__ : Optional[int] = WavaVecaProcessor.from_pretrained(f"""{USER}/test-processor""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase , getattr(new_processor.feature_extractor , UpperCamelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _lowerCAmelCase ( self : List[str] ) -> str: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = WavaVecaProcessor.from_pretrained(UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(UpperCamelCase , """test-processor-org""" ) , push_to_hub=UpperCamelCase , use_auth_token=self._token , organization="""valid_org""" , ) lowerCAmelCase__ : List[Any] = WavaVecaProcessor.from_pretrained("""valid_org/test-processor-org""" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(UpperCamelCase , getattr(new_processor.feature_extractor , UpperCamelCase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def _lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() lowerCAmelCase__ : int = CustomFeatureExtractor.from_pretrained(UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ : List[str] = os.path.join(UpperCamelCase , """vocab.txt""" ) with open(UpperCamelCase , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in self.vocab_tokens] ) ) lowerCAmelCase__ : int = CustomTokenizer(UpperCamelCase ) lowerCAmelCase__ : List[Any] = CustomProcessor(UpperCamelCase , UpperCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f"""{USER}/test-dynamic-processor""" , token=self._token ) lowerCAmelCase__ : List[str] = Repository(UpperCamelCase , clone_from=f"""{USER}/test-dynamic-processor""" , token=self._token ) processor.save_pretrained(UpperCamelCase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { """AutoFeatureExtractor""": """custom_feature_extraction.CustomFeatureExtractor""", """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(UpperCamelCase , """tokenizer_config.json""" ) ) as f: lowerCAmelCase__ : List[Any] = json.load(UpperCamelCase ) self.assertDictEqual( tokenizer_config["""auto_map"""] , { """AutoTokenizer""": ["""custom_tokenization.CustomTokenizer""", None], """AutoProcessor""": """custom_processing.CustomProcessor""", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase , """custom_feature_extraction.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase , """custom_tokenization.py""" ) ) ) self.assertTrue(os.path.isfile(os.path.join(UpperCamelCase , """custom_processing.py""" ) ) ) repo.push_to_hub() lowerCAmelCase__ : List[Any] = AutoProcessor.from_pretrained(f"""{USER}/test-dynamic-processor""" , trust_remote_code=UpperCamelCase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , """CustomProcessor""" )
299
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline UpperCAmelCase_ : int = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__ ( _snake_case ): '''simple docstring''' def __init__( self : Dict , lowercase_ : Optional[Any] , lowercase_ : List[Any]): '''simple docstring''' super().__init__() self.register_modules(unet=lowercase_ , scheduler=lowercase_) @torch.no_grad() def __call__( self : List[Any] , lowercase_ : int = 1 , lowercase_ : int = 100 , lowercase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowercase_ : Optional[float] = None , lowercase_ : bool = True , ): '''simple docstring''' if audio_length_in_s is None: SCREAMING_SNAKE_CASE_ : Optional[int] = self.unet.config.sample_size / self.unet.config.sample_rate SCREAMING_SNAKE_CASE_ : int = audio_length_in_s * self.unet.config.sample_rate SCREAMING_SNAKE_CASE_ : Optional[int] = 2 ** len(self.unet.up_blocks) if sample_size < 3 * down_scale_factor: raise ValueError( F'{audio_length_in_s} is too small. Make sure it\'s bigger or equal to' F' {3 * down_scale_factor / self.unet.config.sample_rate}.') SCREAMING_SNAKE_CASE_ : List[str] = int(lowercase_) if sample_size % down_scale_factor != 0: SCREAMING_SNAKE_CASE_ : Optional[int] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled' F' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising' ''' process.''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = int(lowercase_) SCREAMING_SNAKE_CASE_ : Any = next(iter(self.unet.parameters())).dtype SCREAMING_SNAKE_CASE_ : Optional[int] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowercase_ , lowercase_) and len(lowercase_) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(lowercase_)}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.') SCREAMING_SNAKE_CASE_ : List[str] = randn_tensor(lowercase_ , generator=lowercase_ , device=self.device , dtype=lowercase_) # set step values self.scheduler.set_timesteps(lowercase_ , device=audio.device) SCREAMING_SNAKE_CASE_ : List[str] = self.scheduler.timesteps.to(lowercase_) for t in self.progress_bar(self.scheduler.timesteps): # 1. predict noise model_output SCREAMING_SNAKE_CASE_ : Tuple = self.unet(lowercase_ , lowercase_).sample # 2. compute previous image: x_t -> t_t-1 SCREAMING_SNAKE_CASE_ : List[str] = self.scheduler.step(lowercase_ , lowercase_ , lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : List[str] = audio.clamp(-1 , 1).float().cpu().numpy() SCREAMING_SNAKE_CASE_ : Optional[Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowercase_)
713
"""simple docstring""" import pickle import numpy as np from matplotlib import pyplot as plt class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Optional[Any] , lowercase_ : int , lowercase_ : List[str] , lowercase_ : List[str] , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : List[Any]=0.2 , lowercase_ : Dict=0.2): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = bp_numa SCREAMING_SNAKE_CASE_ : Union[str, Any] = bp_numa SCREAMING_SNAKE_CASE_ : List[Any] = bp_numa SCREAMING_SNAKE_CASE_ : List[Any] = conva_get[:2] SCREAMING_SNAKE_CASE_ : Optional[int] = conva_get[2] SCREAMING_SNAKE_CASE_ : Union[str, Any] = size_pa SCREAMING_SNAKE_CASE_ : Tuple = rate_w SCREAMING_SNAKE_CASE_ : List[Any] = rate_t SCREAMING_SNAKE_CASE_ : Tuple = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0]) + 0.5) for i in range(self.conva[1]) ] SCREAMING_SNAKE_CASE_ : Optional[int] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) SCREAMING_SNAKE_CASE_ : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa) + 0.5) SCREAMING_SNAKE_CASE_ : Optional[int] = -2 * np.random.rand(self.conva[1]) + 1 SCREAMING_SNAKE_CASE_ : Optional[int] = -2 * np.random.rand(self.num_bpa) + 1 SCREAMING_SNAKE_CASE_ : Any = -2 * np.random.rand(self.num_bpa) + 1 def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(lowercase_ , '''wb''') as f: pickle.dump(lowercase_ , lowercase_) print(F'Model saved: {save_path}') @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[int] , lowercase_ : Optional[int]): '''simple docstring''' with open(lowercase_ , '''rb''') as f: SCREAMING_SNAKE_CASE_ : Optional[Any] = pickle.load(lowercase_) # noqa: S301 SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_dic.get('''conv1''') conv_get.append(model_dic.get('''step_conv1''')) SCREAMING_SNAKE_CASE_ : Optional[int] = model_dic.get('''size_pooling1''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_dic.get('''num_bp1''') SCREAMING_SNAKE_CASE_ : List[str] = model_dic.get('''num_bp2''') SCREAMING_SNAKE_CASE_ : List[Any] = model_dic.get('''num_bp3''') SCREAMING_SNAKE_CASE_ : Any = model_dic.get('''rate_weight''') SCREAMING_SNAKE_CASE_ : str = model_dic.get('''rate_thre''') # create model instance SCREAMING_SNAKE_CASE_ : str = CNN(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) # modify model parameter SCREAMING_SNAKE_CASE_ : List[Any] = model_dic.get('''w_conv1''') SCREAMING_SNAKE_CASE_ : Optional[Any] = model_dic.get('''wkj''') SCREAMING_SNAKE_CASE_ : Optional[Any] = model_dic.get('''vji''') SCREAMING_SNAKE_CASE_ : Tuple = model_dic.get('''thre_conv1''') SCREAMING_SNAKE_CASE_ : Dict = model_dic.get('''thre_bp2''') SCREAMING_SNAKE_CASE_ : Any = model_dic.get('''thre_bp3''') return conv_ins def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[Any]): '''simple docstring''' return 1 / (1 + np.exp(-1 * x)) def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[str]): '''simple docstring''' return round(lowercase_ , 3) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : List[str] , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Optional[Any] , lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = convs[0] SCREAMING_SNAKE_CASE_ : Optional[int] = convs[1] SCREAMING_SNAKE_CASE_ : List[str] = np.shape(lowercase_)[0] # get the data slice of original image data, data_focus SCREAMING_SNAKE_CASE_ : Dict = [] for i_focus in range(0 , size_data - size_conv + 1 , lowercase_): for j_focus in range(0 , size_data - size_conv + 1 , lowercase_): SCREAMING_SNAKE_CASE_ : int = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(lowercase_) # calculate the feature map of every single kernel, and saved as list of matrix SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Union[str, Any] = int((size_data - size_conv) / conv_step + 1) for i_map in range(lowercase_): SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for i_focus in range(len(lowercase_)): SCREAMING_SNAKE_CASE_ : Dict = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map])) - thre_convs[i_map] ) featuremap.append(self.sig(lowercase_)) SCREAMING_SNAKE_CASE_ : List[Any] = np.asmatrix(lowercase_).reshape( lowercase_ , lowercase_) data_featuremap.append(lowercase_) # expanding the data slice to One dimenssion SCREAMING_SNAKE_CASE_ : Dict = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(lowercase_)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.asarray(lowercase_) return focus_list, data_featuremap def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : str , lowercase_ : str , lowercase_ : Any="average_pool"): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(featuremaps[0]) SCREAMING_SNAKE_CASE_ : Any = int(size_map / size_pooling) SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for i_map in range(len(lowercase_)): SCREAMING_SNAKE_CASE_ : int = featuremaps[i_map] SCREAMING_SNAKE_CASE_ : List[str] = [] for i_focus in range(0 , lowercase_ , lowercase_): for j_focus in range(0 , lowercase_ , lowercase_): SCREAMING_SNAKE_CASE_ : Optional[Any] = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(lowercase_)) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(lowercase_)) SCREAMING_SNAKE_CASE_ : str = np.asmatrix(lowercase_).reshape(lowercase_ , lowercase_) featuremap_pooled.append(lowercase_) return featuremap_pooled def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowercase_ : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = [] for i in range(len(lowercase_)): SCREAMING_SNAKE_CASE_ : List[str] = np.shape(data[i]) SCREAMING_SNAKE_CASE_ : Dict = data[i].reshape(1 , shapes[0] * shapes[1]) SCREAMING_SNAKE_CASE_ : List[str] = data_listed.getA().tolist()[0] data_expanded.extend(lowercase_) SCREAMING_SNAKE_CASE_ : Any = np.asarray(lowercase_) return data_expanded def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = np.asarray(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.shape(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = data_mat.reshape(1 , shapes[0] * shapes[1]) return data_expanded def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Tuple , lowercase_ : Union[str, Any] , lowercase_ : List[str] , lowercase_ : Optional[int] , lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = [] SCREAMING_SNAKE_CASE_ : List[Any] = 0 for i_map in range(lowercase_): SCREAMING_SNAKE_CASE_ : int = np.ones((size_map, size_map)) for i in range(0 , lowercase_ , lowercase_): for j in range(0 , lowercase_ , lowercase_): SCREAMING_SNAKE_CASE_ : Any = pd_pool[ i_pool ] SCREAMING_SNAKE_CASE_ : List[str] = i_pool + 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.multiply( lowercase_ , np.multiply(out_map[i_map] , (1 - out_map[i_map]))) pd_all.append(lowercase_) return pd_all def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : Dict=bool): '''simple docstring''' print('''----------------------Start Training-------------------------''') print((''' - - Shape: Train_Data ''', np.shape(lowercase_))) print((''' - - Shape: Teach_Data ''', np.shape(lowercase_))) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE_ : Dict = [] SCREAMING_SNAKE_CASE_ : Optional[int] = 10000 while rp < n_repeat and mse >= error_accuracy: SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 print(F'-------------Learning Time {rp}--------------') for p in range(len(lowercase_)): # print('------------Learning Image: %d--------------'%p) SCREAMING_SNAKE_CASE_ : Tuple = np.asmatrix(datas_train[p]) SCREAMING_SNAKE_CASE_ : Optional[Any] = np.asarray(datas_teach[p]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.convolute( lowercase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE_ : int = self.pooling(lowercase_ , self.size_poolinga) SCREAMING_SNAKE_CASE_ : Optional[int] = np.shape(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._expand(lowercase_) SCREAMING_SNAKE_CASE_ : int = data_bp_input SCREAMING_SNAKE_CASE_ : int = np.dot(lowercase_ , self.vji.T) - self.thre_bpa SCREAMING_SNAKE_CASE_ : Dict = self.sig(lowercase_) SCREAMING_SNAKE_CASE_ : str = np.dot(lowercase_ , self.wkj.T) - self.thre_bpa SCREAMING_SNAKE_CASE_ : List[str] = self.sig(lowercase_) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- SCREAMING_SNAKE_CASE_ : Tuple = np.multiply( (data_teach - bp_outa) , np.multiply(lowercase_ , (1 - bp_outa))) SCREAMING_SNAKE_CASE_ : Tuple = np.multiply( np.dot(lowercase_ , self.wkj) , np.multiply(lowercase_ , (1 - bp_outa))) SCREAMING_SNAKE_CASE_ : Optional[int] = np.dot(lowercase_ , self.vji) SCREAMING_SNAKE_CASE_ : Optional[Any] = pd_i_all / (self.size_poolinga * self.size_poolinga) SCREAMING_SNAKE_CASE_ : Tuple = pd_conva_pooled.T.getA().tolist() SCREAMING_SNAKE_CASE_ : Optional[int] = self._calculate_gradient_from_pool( lowercase_ , lowercase_ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1]): SCREAMING_SNAKE_CASE_ : List[Any] = self._expand_mat(pd_conva_all[k_conv]) SCREAMING_SNAKE_CASE_ : int = self.rate_weight * np.dot(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0])) SCREAMING_SNAKE_CASE_ : Optional[int] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv]) * self.rate_thre ) # all connected layer SCREAMING_SNAKE_CASE_ : Optional[int] = self.wkj + pd_k_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE_ : Optional[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight SCREAMING_SNAKE_CASE_ : Optional[int] = self.thre_bpa - pd_k_all * self.rate_thre SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image SCREAMING_SNAKE_CASE_ : Optional[Any] = np.sum(abs(data_teach - bp_outa)) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) SCREAMING_SNAKE_CASE_ : Union[str, Any] = rp + 1 SCREAMING_SNAKE_CASE_ : Tuple = error_count / patterns all_mse.append(lowercase_) def draw_error(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2))] plt.plot(lowercase_ , '''+-''') plt.plot(lowercase_ , '''r--''') plt.xlabel('''Learning Times''') plt.ylabel('''All_mse''') plt.grid(lowercase_ , alpha=0.5) plt.show() print('''------------------Training Complished---------------------''') print((''' - - Training epoch: ''', rp, F' - - Mse: {mse:.6f}')) if draw_e: draw_error() return mse def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = [] print('''-------------------Start Testing-------------------------''') print((''' - - Shape: Test_Data ''', np.shape(lowercase_))) for p in range(len(lowercase_)): SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.asmatrix(datas_test[p]) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.convolute( lowercase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE_ : Dict = self.pooling(lowercase_ , self.size_poolinga) SCREAMING_SNAKE_CASE_ : List[Any] = self._expand(lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = data_bp_input SCREAMING_SNAKE_CASE_ : Dict = bp_outa * self.vji.T - self.thre_bpa SCREAMING_SNAKE_CASE_ : str = self.sig(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = bp_outa * self.wkj.T - self.thre_bpa SCREAMING_SNAKE_CASE_ : Dict = self.sig(lowercase_) produce_out.extend(bp_outa.getA().tolist()) SCREAMING_SNAKE_CASE_ : Optional[Any] = [list(map(self.do_round , lowercase_)) for each in produce_out] return np.asarray(lowercase_) def _SCREAMING_SNAKE_CASE ( self : str , lowercase_ : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = np.asmatrix(lowercase_) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = self.convolute( lowercase_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) SCREAMING_SNAKE_CASE_ : int = self.pooling(lowercase_ , self.size_poolinga) return data_conveda, data_pooleda if __name__ == "__main__": pass
176
0
import itertools import string from collections.abc import Generator, Iterable def UpperCamelCase_( __magic_name__ : Iterable[str] , __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :Optional[Any] = iter(__magic_name__ ) while True: _lowerCAmelCase :List[Any] = tuple(itertools.islice(__magic_name__ , __magic_name__ ) ) if not chunk: return yield chunk def UpperCamelCase_( __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[Any] = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) _lowerCAmelCase :Union[str, Any] = '' if len(__magic_name__ ) < 2: return dirty for i in range(len(__magic_name__ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(__magic_name__ ) & 1: clean += "X" return clean def UpperCamelCase_( __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :List[Any] = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler _lowerCAmelCase :List[str] = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(__magic_name__ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(__magic_name__ ) return table def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Tuple = generate_table(__magic_name__ ) _lowerCAmelCase :List[str] = prepare_input(__magic_name__ ) _lowerCAmelCase :List[Any] = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__magic_name__ , 2 ): _lowerCAmelCase , _lowerCAmelCase :int = divmod(table.index(__magic_name__ ) , 5 ) _lowerCAmelCase , _lowerCAmelCase :List[str] = divmod(table.index(__magic_name__ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :List[Any] = generate_table(__magic_name__ ) _lowerCAmelCase :str = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(__magic_name__ , 2 ): _lowerCAmelCase , _lowerCAmelCase :List[str] = divmod(table.index(__magic_name__ ) , 5 ) _lowerCAmelCase , _lowerCAmelCase :List[str] = divmod(table.index(__magic_name__ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
687
import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self: int , _UpperCAmelCase: Any , _UpperCAmelCase: Tuple=13 , _UpperCAmelCase: Optional[Any]=32 , _UpperCAmelCase: List[Any]=2 , _UpperCAmelCase: Optional[int]=3 , _UpperCAmelCase: Optional[int]=16 , _UpperCAmelCase: Optional[Any]=[32, 64, 128] , _UpperCAmelCase: Optional[int]=[1, 2, 1] , _UpperCAmelCase: int=[2, 2, 4] , _UpperCAmelCase: List[str]=2 , _UpperCAmelCase: Dict=2.0 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: str=0.0 , _UpperCAmelCase: int=0.0 , _UpperCAmelCase: str=0.1 , _UpperCAmelCase: Dict="gelu" , _UpperCAmelCase: Optional[Any]=False , _UpperCAmelCase: Union[str, Any]=True , _UpperCAmelCase: Union[str, Any]=0.0_2 , _UpperCAmelCase: Optional[int]=1e-5 , _UpperCAmelCase: Optional[int]=True , _UpperCAmelCase: Optional[Any]=None , _UpperCAmelCase: Tuple=True , _UpperCAmelCase: str=10 , _UpperCAmelCase: int=8 , _UpperCAmelCase: List[Any]=["stage1", "stage2"] , _UpperCAmelCase: List[Any]=[1, 2] , ): _lowerCAmelCase :Optional[int] = parent _lowerCAmelCase :Dict = batch_size _lowerCAmelCase :Optional[Any] = image_size _lowerCAmelCase :Optional[Any] = patch_size _lowerCAmelCase :List[Any] = num_channels _lowerCAmelCase :Optional[int] = embed_dim _lowerCAmelCase :List[str] = hidden_sizes _lowerCAmelCase :Union[str, Any] = depths _lowerCAmelCase :int = num_heads _lowerCAmelCase :Any = window_size _lowerCAmelCase :List[Any] = mlp_ratio _lowerCAmelCase :Optional[int] = qkv_bias _lowerCAmelCase :Union[str, Any] = hidden_dropout_prob _lowerCAmelCase :Optional[int] = attention_probs_dropout_prob _lowerCAmelCase :Dict = drop_path_rate _lowerCAmelCase :List[Any] = hidden_act _lowerCAmelCase :Tuple = use_absolute_embeddings _lowerCAmelCase :Optional[int] = patch_norm _lowerCAmelCase :Optional[Any] = layer_norm_eps _lowerCAmelCase :Union[str, Any] = initializer_range _lowerCAmelCase :List[str] = is_training _lowerCAmelCase :str = scope _lowerCAmelCase :Optional[int] = use_labels _lowerCAmelCase :List[Any] = type_sequence_label_size _lowerCAmelCase :Union[str, Any] = encoder_stride _lowerCAmelCase :Optional[int] = out_features _lowerCAmelCase :List[str] = out_indices def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase :Dict = None if self.use_labels: _lowerCAmelCase :List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase :str = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self: int ): return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Tuple , _UpperCAmelCase: Tuple ): _lowerCAmelCase :List[Any] = FocalNetModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) _lowerCAmelCase :List[Any] = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Union[str, Any] = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None _lowerCAmelCase :Optional[int] = None _lowerCAmelCase :Dict = FocalNetBackbone(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Any = model(_UpperCAmelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def SCREAMING_SNAKE_CASE__ ( self: Tuple , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: int , _UpperCAmelCase: Optional[Any] ): _lowerCAmelCase :Any = FocalNetForMaskedImageModeling(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :str = model(_UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _lowerCAmelCase :List[Any] = 1 _lowerCAmelCase :List[Any] = FocalNetForMaskedImageModeling(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :int = model(_UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] , _UpperCAmelCase: int , _UpperCAmelCase: Dict , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = self.type_sequence_label_size _lowerCAmelCase :Dict = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Union[str, Any] = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCAmelCase :Optional[int] = 1 _lowerCAmelCase :Tuple = FocalNetForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() _lowerCAmelCase :Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCAmelCase :List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :str = config_and_inputs _lowerCAmelCase :List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ (snake_case__ , snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : Optional[int] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowerCamelCase : Optional[Any] = ( {'feature-extraction': FocalNetModel, 'image-classification': FocalNetForImageClassification} if is_torch_available() else {} ) lowerCamelCase : Tuple = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Union[str, Any] = False lowerCamelCase : Any = False lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Tuple = FocalNetModelTester(self ) _lowerCAmelCase :str = ConfigTester(self , config_class=_UpperCAmelCase , embed_dim=37 , has_text_modality=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): return def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: List[str] ): _lowerCAmelCase :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: str ): _lowerCAmelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) @unittest.skip(reason='FocalNet does not use inputs_embeds' ) def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): pass @unittest.skip(reason='FocalNet does not use feedforward chunking' ) def SCREAMING_SNAKE_CASE__ ( self: str ): pass def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[Any] = model_class(_UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCAmelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCAmelCase , nn.Linear ) ) def SCREAMING_SNAKE_CASE__ ( self: Optional[int] ): _lowerCAmelCase , _lowerCAmelCase :Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Tuple = model_class(_UpperCAmelCase ) _lowerCAmelCase :Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase :int = [*signature.parameters.keys()] _lowerCAmelCase :List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Any , _UpperCAmelCase: int , _UpperCAmelCase: Union[str, Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[int] ): _lowerCAmelCase :Union[str, Any] = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): _lowerCAmelCase :Optional[Any] = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _lowerCAmelCase :List[Any] = outputs.hidden_states _lowerCAmelCase :str = getattr( self.model_tester , 'expected_num_hidden_layers' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) # FocalNet has a different seq_length _lowerCAmelCase :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :List[Any] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) _lowerCAmelCase :List[str] = outputs.reshaped_hidden_states self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase :int = reshaped_hidden_states[0].shape _lowerCAmelCase :Optional[int] = ( reshaped_hidden_states[0].view(_UpperCAmelCase , _UpperCAmelCase , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase , _lowerCAmelCase :Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :List[str] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :Optional[int] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Dict = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase , _lowerCAmelCase :str = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :str = 3 _lowerCAmelCase :Union[str, Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) _lowerCAmelCase :int = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) _lowerCAmelCase :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _lowerCAmelCase :Any = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: _lowerCAmelCase :List[str] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase :Union[str, Any] = True self.check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , (padded_height, padded_width) ) @slow def SCREAMING_SNAKE_CASE__ ( self: int ): for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase :List[Any] = FocalNetModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase , _lowerCAmelCase :int = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase :Optional[int] = _config_zero_init(_UpperCAmelCase ) for model_class in self.all_model_classes: _lowerCAmelCase :str = model_class(config=_UpperCAmelCase ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE__ ( self: Dict ): # TODO update organization return AutoImageProcessor.from_pretrained('microsoft/focalnet-tiny' ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self: Any ): _lowerCAmelCase :Tuple = FocalNetForImageClassification.from_pretrained('microsoft/focalnet-tiny' ).to(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.default_image_processor _lowerCAmelCase :Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) _lowerCAmelCase :Any = image_processor(images=_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): _lowerCAmelCase :Dict = model(**_UpperCAmelCase ) # verify the logits _lowerCAmelCase :str = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) _lowerCAmelCase :Dict = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 281 ) @require_torch class UpperCAmelCase_ (snake_case__ , unittest.TestCase ): """simple docstring""" lowerCamelCase : int = (FocalNetBackbone,) if is_torch_available() else () lowerCamelCase : str = FocalNetConfig lowerCamelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): _lowerCAmelCase :Any = FocalNetModelTester(self )
687
1
"""simple docstring""" from __future__ import annotations import queue class lowercase : def __init__( self , lowercase ) -> List[Any]: lowerCAmelCase = data lowerCAmelCase = None lowerCAmelCase = None def UpperCAmelCase__ ( ): '''simple docstring''' print("""\n********Press N to stop entering at any point of time********\n""" ) lowerCAmelCase = input("""Enter the value of the root node: """ ).strip().lower() lowerCAmelCase = queue.Queue() lowerCAmelCase = TreeNode(int(snake_case__ ) ) q.put(snake_case__ ) while not q.empty(): lowerCAmelCase = q.get() lowerCAmelCase = F'Enter the left node of {node_found.data}: ' lowerCAmelCase = input(snake_case__ ).strip().lower() or """n""" if check == "n": return tree_node lowerCAmelCase = TreeNode(int(snake_case__ ) ) lowerCAmelCase = left_node q.put(snake_case__ ) lowerCAmelCase = F'Enter the right node of {node_found.data}: ' lowerCAmelCase = input(snake_case__ ).strip().lower() or """n""" if check == "n": return tree_node lowerCAmelCase = TreeNode(int(snake_case__ ) ) lowerCAmelCase = right_node q.put(snake_case__ ) raise def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : TreeNode ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : TreeNode ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : TreeNode ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : TreeNode ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or not node: return lowerCAmelCase = queue.Queue() q.put(snake_case__ ) while not q.empty(): lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : TreeNode ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or not node: return lowerCAmelCase = queue.Queue() q.put(snake_case__ ) while not q.empty(): lowerCAmelCase = [] while not q.empty(): lowerCAmelCase = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case__ ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : TreeNode ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or not node: return lowerCAmelCase = [] lowerCAmelCase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(snake_case__ ) lowerCAmelCase = n.left # end of while means current node doesn't have left child lowerCAmelCase = stack.pop() # start to traverse its right child lowerCAmelCase = n.right def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : TreeNode ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or not node: return lowerCAmelCase = [] lowerCAmelCase = node while n or stack: while n: stack.append(snake_case__ ) lowerCAmelCase = n.left lowerCAmelCase = stack.pop() print(n.data , end=""",""" ) lowerCAmelCase = n.right def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : TreeNode ): '''simple docstring''' if not isinstance(snake_case__ , snake_case__ ) or not node: return lowerCAmelCase = [], [] lowerCAmelCase = node stacka.append(snake_case__ ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCAmelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case__ ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str = "" , SCREAMING_SNAKE_CASE : List[str]=50 , SCREAMING_SNAKE_CASE : str="*" ): '''simple docstring''' if not s: return "\n" + width * char lowerCAmelCase = divmod(width - len(snake_case__ ) - 2 , 2 ) return F'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) SCREAMING_SNAKE_CASE__ = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 50 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
706
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = 'ibert' def __init__( self , lowercase=30_522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3_072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1e-12 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase="absolute" , lowercase=False , lowercase="none" , **lowercase , ) -> str: super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = quant_mode lowerCAmelCase = force_dequant class lowercase ( _UpperCAmelCase ): @property def _snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
393
0
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def _lowerCAmelCase ( lowercase : int , lowercase : Optional[int] , lowercase : Any=None , lowercase : str=None ) ->List[Any]: """simple docstring""" if attention_mask is None: lowercase__ = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class __A : """simple docstring""" A_ = OPTConfig A_ = {} A_ = 'gelu' def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=9_9 , _lowerCamelCase=1_6 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=2_0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , _lowerCamelCase=1_6 , _lowerCamelCase=1_6 , )-> Optional[Any]: lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_labels lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = eos_token_id lowercase__ = pad_token_id lowercase__ = bos_token_id lowercase__ = embed_dim lowercase__ = word_embed_proj_dim lowercase__ = False def snake_case_( self )-> str: lowercase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowercase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowercase__ = tf.concat([input_ids, eos_tensor] , axis=1 ) lowercase__ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=_lowerCamelCase , **self.config_updates , ) lowercase__ = prepare_opt_inputs_dict(_lowerCamelCase , _lowerCamelCase ) return config, inputs_dict def snake_case_( self , _lowerCamelCase , _lowerCamelCase )-> Union[str, Any]: lowercase__ = TFOPTModel(config=_lowerCamelCase ) lowercase__ = inputs_dict['''input_ids'''] lowercase__ = input_ids[:1, :] lowercase__ = inputs_dict['''attention_mask'''][:1, :] lowercase__ = 1 # first forward pass lowercase__ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , use_cache=_lowerCamelCase ) lowercase__ , lowercase__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowercase__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowercase__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowercase__ = tf.concat([input_ids, next_tokens] , axis=-1 ) lowercase__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowercase__ = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] lowercase__ = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowercase__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowercase__ = output_from_no_past[:, -3:, random_slice_idx] lowercase__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1e-3 ) @require_tf class __A ( a , a , unittest.TestCase ): """simple docstring""" A_ = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () A_ = (TFOPTForCausalLM,) if is_tf_available() else () A_ = ( {'feature-extraction': TFOPTModel, 'text-generation': TFOPTForCausalLM} if is_tf_available() else {} ) A_ = False A_ = False A_ = False A_ = 1_0 def snake_case_( self )-> Dict: lowercase__ = TFOPTModelTester(self ) lowercase__ = ConfigTester(self , config_class=_lowerCamelCase ) def snake_case_( self )-> List[str]: self.config_tester.run_common_tests() def snake_case_( self )-> List[str]: lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase ) def snake_case_( self )-> Tuple: lowercase__ , lowercase__ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(_lowerCamelCase , _lowerCamelCase ): if hasattr(_lowerCamelCase , '''weight''' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(_lowerCamelCase , '''weight''' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 1_0, config.vocab_size + 1_0]: # build the embeddings lowercase__ = model_class(config=_lowerCamelCase ) lowercase__ = _get_word_embedding_weight(_lowerCamelCase , model.get_input_embeddings() ) lowercase__ = _get_word_embedding_weight(_lowerCamelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(_lowerCamelCase ) lowercase__ = _get_word_embedding_weight(_lowerCamelCase , model.get_input_embeddings() ) lowercase__ = _get_word_embedding_weight(_lowerCamelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowercase__ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , _lowerCamelCase ) # check that weights remain the same after resizing lowercase__ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowercase__ = False self.assertTrue(_lowerCamelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , _lowerCamelCase ) lowercase__ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowercase__ = False self.assertTrue(_lowerCamelCase ) def _lowerCAmelCase ( lowercase : Any ) ->Optional[Any]: """simple docstring""" return tf.constant(lowercase , dtype=tf.intaa ) @require_tf class __A ( unittest.TestCase ): """simple docstring""" A_ = 9_9 def snake_case_( self )-> Any: lowercase__ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowercase__ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowercase__ = input_ids.shape[0] lowercase__ = OPTConfig( vocab_size=self.vocab_size , hidden_size=2_4 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=3_2 , max_position_embeddings=4_8 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class __A ( unittest.TestCase ): """simple docstring""" @slow def snake_case_( self )-> Optional[int]: lowercase__ = TFOPTModel.from_pretrained('''facebook/opt-350m''' ) lowercase__ = _long_tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) lowercase__ = tf.not_equal(_lowerCamelCase , model.config.pad_token_id ) with tf.GradientTape(): lowercase__ = model(input_ids=_lowerCamelCase , attention_mask=_lowerCamelCase ).last_hidden_state lowercase__ = (1, 1_1, 5_1_2) self.assertEqual(output.shape , _lowerCamelCase ) lowercase__ = tf.constant( [[-0.2_8_7_3, -1.9_2_1_8, -0.3_0_3_3], [-1.2_7_1_0, -0.1_3_3_8, -0.1_9_0_2], [0.4_0_9_5, 0.1_2_1_4, -1.3_1_2_1]] ) self.assertTrue(np.allclose(output[:, :3, :3] , _lowerCamelCase , atol=4e-3 ) ) lowercase__ = tf.function(_lowerCamelCase , jit_compile=_lowerCamelCase ) lowercase__ = xla_generate(_lowerCamelCase , _lowerCamelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , _lowerCamelCase , atol=4e-2 ) ) @require_tf @slow class __A ( unittest.TestCase ): """simple docstring""" def snake_case_( self )-> Optional[int]: super().setUp() lowercase__ = '''facebook/opt-350m''' def snake_case_( self )-> str: lowercase__ = TFOPTForCausalLM.from_pretrained(self.path_model ) lowercase__ = GPTaTokenizer.from_pretrained(self.path_model ) lowercase__ = [ '''Today is a beautiful day and I want to''', '''In the city of''', '''Paris is the capital of France and''', '''Computers and mobile phones have taken''', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowercase__ = tokenizer(_lowerCamelCase , return_tensors='''tf''' , padding=_lowerCamelCase , add_special_tokens=_lowerCamelCase ) lowercase__ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowercase__ = tf.constant( [ [1.3_8_5_1, -1_3.8_9_2_3, -1_0.5_2_2_9, -1_0.7_5_3_3, -0.2_3_0_9, -1_0.2_3_8_4, -0.5_3_6_5, -9.0_9_4_7, -5.1_6_7_0], [-4.7_0_7_3, -1_0.6_2_7_6, -3.9_4_1_5, -2_1.5_2_4_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2, -0.2_8_2_2], [0.6_2_4_7, -3.4_2_2_9, -8.9_1_7_9, -1.4_2_9_7, -1_4.1_6_5_0, 1.4_1_4_6, -9.0_2_1_8, -0.2_7_0_3, -0.2_7_0_3], [6.4_7_8_3, -1.9_9_1_3, -1_0.7_9_2_6, -2.3_3_3_6, 1.5_0_9_2, -0.9_9_7_4, -6.8_2_1_3, 1.3_4_7_7, 1.3_4_7_7], ] ) self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-4 ) ) lowercase__ = tf.function(_lowerCamelCase , jit_compile=_lowerCamelCase ) lowercase__ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-4 ) ) @require_tf @slow class __A ( unittest.TestCase ): """simple docstring""" @property def snake_case_( self )-> Optional[int]: return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def snake_case_( self )-> List[Any]: lowercase__ = '''facebook/opt-125m''' lowercase__ = [ '''Today is a beautiful day and I want to''', '''In the city of New York, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] lowercase__ = [] lowercase__ = GPTaTokenizer.from_pretrained(_lowerCamelCase ) lowercase__ = TFOPTForCausalLM.from_pretrained(_lowerCamelCase ) for prompt in self.prompts: lowercase__ = tokenizer(_lowerCamelCase , return_tensors='''tf''' ).input_ids lowercase__ = model.generate(_lowerCamelCase , max_length=1_0 ) lowercase__ = tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def snake_case_( self )-> Dict: lowercase__ = '''facebook/opt-350m''' lowercase__ = GPTaTokenizer.from_pretrained(_lowerCamelCase ) lowercase__ = TFOPTForCausalLM.from_pretrained(_lowerCamelCase ) lowercase__ = '''left''' # use different length sentences to test batching lowercase__ = [ '''Hello, my dog is a little''', '''Today, I''', ] lowercase__ = tokenizer(_lowerCamelCase , return_tensors='''tf''' , padding=_lowerCamelCase ) lowercase__ = inputs['''input_ids'''] lowercase__ = model.generate(input_ids=_lowerCamelCase , attention_mask=inputs['''attention_mask'''] ) lowercase__ = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids lowercase__ = model.generate(input_ids=_lowerCamelCase ) lowercase__ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['''attention_mask'''][-1] , tf.intaa ) ) lowercase__ = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids lowercase__ = model.generate(input_ids=_lowerCamelCase , max_length=model.config.max_length - num_paddings ) lowercase__ = tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) lowercase__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_lowerCamelCase ) lowercase__ = tokenizer.decode(output_padded[0] , skip_special_tokens=_lowerCamelCase ) lowercase__ = [ '''Hello, my dog is a little bit of a dork.\nI\'m a little bit''', '''Today, I was in the middle of a conversation with a friend about the''', ] self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) self.assertListEqual(_lowerCamelCase , [non_padded_sentence, padded_sentence] ) def snake_case_( self )-> int: lowercase__ = '''facebook/opt-350m''' lowercase__ = [ '''Today is a beautiful day and I want to''', '''In the city of San Francisco, the city''', '''Paris is the capital of France and the capital''', '''Computers and mobile phones have taken over the''', ] lowercase__ = [] lowercase__ = GPTaTokenizer.from_pretrained(_lowerCamelCase ) lowercase__ = TFOPTForCausalLM.from_pretrained(_lowerCamelCase ) for prompt in self.prompts: lowercase__ = tokenizer(_lowerCamelCase , return_tensors='''tf''' ).input_ids lowercase__ = model.generate(_lowerCamelCase , max_length=1_0 ) lowercase__ = tokenizer.batch_decode(_lowerCamelCase , skip_special_tokens=_lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(_lowerCamelCase , _lowerCamelCase )
161
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _lowerCAmelCase = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" _lowerCAmelCase = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" _lowerCAmelCase = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): """simple docstring""" def snake_case_( self )-> Dict: if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def snake_case_( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = False , )-> List[Any]: lowercase__ = len(references[0] ) if any(len(_lowerCamelCase ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) lowercase__ = [[refs[i] for refs in references] for i in range(_lowerCamelCase )] lowercase__ = TER( normalized=_lowerCamelCase , no_punct=_lowerCamelCase , asian_support=_lowerCamelCase , case_sensitive=_lowerCamelCase , ) lowercase__ = sb_ter.corpus_score(_lowerCamelCase , _lowerCamelCase ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
161
1
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): _snake_case = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: _snake_case = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def _A ( __magic_name__ ): lowercase__ = (images / 2 + 0.5).clamp(0 , 1 ) lowercase__ = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase__ = numpy_to_pil(__magic_name__ ) return images def _A ( __magic_name__ ): if images.ndim == 3: lowercase__ = images[None, ...] lowercase__ = (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase__ = [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: lowercase__ = [Image.fromarray(__magic_name__ ) for image in images] return pil_images
720
import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor _snake_case = logging.get_logger(__name__) class lowerCAmelCase ( lowercase_ ): def __init__( self :Optional[int] , *_lowercase :Tuple , **_lowercase :Optional[Any] ): '''simple docstring''' warnings.warn( "The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use DPTImageProcessor instead." , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
611
0
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __lowercase (_SCREAMING_SNAKE_CASE :Dict ): SCREAMING_SNAKE_CASE : str = 3_84 if "tiny" in model_name: SCREAMING_SNAKE_CASE : int = [3, 3, 9, 3] SCREAMING_SNAKE_CASE : Any = [96, 1_92, 3_84, 7_68] if "small" in model_name: SCREAMING_SNAKE_CASE : Optional[Any] = [3, 3, 27, 3] SCREAMING_SNAKE_CASE : int = [96, 1_92, 3_84, 7_68] if "base" in model_name: SCREAMING_SNAKE_CASE : Optional[Any] = [3, 3, 27, 3] SCREAMING_SNAKE_CASE : Dict = [1_28, 2_56, 5_12, 10_24] SCREAMING_SNAKE_CASE : Any = 5_12 if "large" in model_name: SCREAMING_SNAKE_CASE : Union[str, Any] = [3, 3, 27, 3] SCREAMING_SNAKE_CASE : Union[str, Any] = [1_92, 3_84, 7_68, 15_36] SCREAMING_SNAKE_CASE : Tuple = 7_68 if "xlarge" in model_name: SCREAMING_SNAKE_CASE : Dict = [3, 3, 27, 3] SCREAMING_SNAKE_CASE : List[Any] = [2_56, 5_12, 10_24, 20_48] SCREAMING_SNAKE_CASE : int = 10_24 # set label information SCREAMING_SNAKE_CASE : List[Any] = 1_50 SCREAMING_SNAKE_CASE : str = '''huggingface/label-files''' SCREAMING_SNAKE_CASE : Optional[Any] = '''ade20k-id2label.json''' SCREAMING_SNAKE_CASE : Optional[int] = json.load(open(hf_hub_download(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , repo_type='''dataset''' ) , '''r''' ) ) SCREAMING_SNAKE_CASE : List[Any] = {int(_SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Tuple = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE : Dict = ConvNextConfig( depths=_SCREAMING_SNAKE_CASE , hidden_sizes=_SCREAMING_SNAKE_CASE , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] ) SCREAMING_SNAKE_CASE : List[Any] = UperNetConfig( backbone_config=_SCREAMING_SNAKE_CASE , auxiliary_in_channels=_SCREAMING_SNAKE_CASE , num_labels=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , labelaid=_SCREAMING_SNAKE_CASE , ) return config def __lowercase (_SCREAMING_SNAKE_CASE :Any ): SCREAMING_SNAKE_CASE : Tuple = [] # fmt: off # stem rename_keys.append(('''backbone.downsample_layers.0.0.weight''', '''backbone.embeddings.patch_embeddings.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.0.bias''', '''backbone.embeddings.patch_embeddings.bias''') ) rename_keys.append(('''backbone.downsample_layers.0.1.weight''', '''backbone.embeddings.layernorm.weight''') ) rename_keys.append(('''backbone.downsample_layers.0.1.bias''', '''backbone.embeddings.layernorm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F'''backbone.stages.{i}.{j}.gamma''', F'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.depthwise_conv.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.norm.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((F'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', F'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((F'''backbone.downsample_layers.{i}.0.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.0.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.weight''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((F'''backbone.downsample_layers.{i}.1.bias''', F'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((F'''backbone.norm{i}.weight''', F'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((F'''backbone.norm{i}.bias''', F'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ('''decode_head.conv_seg.weight''', '''decode_head.classifier.weight'''), ('''decode_head.conv_seg.bias''', '''decode_head.classifier.bias'''), ('''auxiliary_head.conv_seg.weight''', '''auxiliary_head.classifier.weight'''), ('''auxiliary_head.conv_seg.bias''', '''auxiliary_head.classifier.bias'''), ] ) # fmt: on return rename_keys def __lowercase (_SCREAMING_SNAKE_CASE :Union[str, Any] , _SCREAMING_SNAKE_CASE :Any , _SCREAMING_SNAKE_CASE :Any ): SCREAMING_SNAKE_CASE : Dict = dct.pop(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Tuple = val def __lowercase (_SCREAMING_SNAKE_CASE :List[str] , _SCREAMING_SNAKE_CASE :Optional[Any] , _SCREAMING_SNAKE_CASE :List[str] ): SCREAMING_SNAKE_CASE : Optional[Any] = { '''upernet-convnext-tiny''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth''', '''upernet-convnext-small''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth''', '''upernet-convnext-base''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth''', '''upernet-convnext-large''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth''', '''upernet-convnext-xlarge''': '''https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth''', } SCREAMING_SNAKE_CASE : List[Any] = model_name_to_url[model_name] SCREAMING_SNAKE_CASE : Dict = torch.hub.load_state_dict_from_url(_SCREAMING_SNAKE_CASE , map_location='''cpu''' )['''state_dict'''] SCREAMING_SNAKE_CASE : Tuple = get_upernet_config(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[Any] = UperNetForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Tuple = state_dict.pop(_SCREAMING_SNAKE_CASE ) if "bn" in key: SCREAMING_SNAKE_CASE : str = key.replace('''bn''' , '''batch_norm''' ) SCREAMING_SNAKE_CASE : List[str] = val # rename keys SCREAMING_SNAKE_CASE : Optional[Any] = create_rename_keys(_SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) model.load_state_dict(_SCREAMING_SNAKE_CASE ) # verify on image SCREAMING_SNAKE_CASE : int = '''https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg''' SCREAMING_SNAKE_CASE : Dict = Image.open(requests.get(_SCREAMING_SNAKE_CASE , stream=_SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) SCREAMING_SNAKE_CASE : Dict = SegformerImageProcessor() SCREAMING_SNAKE_CASE : Any = processor(_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).pixel_values with torch.no_grad(): SCREAMING_SNAKE_CASE : Optional[int] = model(_SCREAMING_SNAKE_CASE ) if model_name == "upernet-convnext-tiny": SCREAMING_SNAKE_CASE : Any = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": SCREAMING_SNAKE_CASE : List[str] = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": SCREAMING_SNAKE_CASE : Dict = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('''Logits:''' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_SCREAMING_SNAKE_CASE ) print(F'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_SCREAMING_SNAKE_CASE ) if push_to_hub: print(F'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(F'''openmmlab/{model_name}''' ) processor.push_to_hub(F'''openmmlab/{model_name}''' ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""upernet-convnext-tiny""", type=str, choices=[f'''upernet-convnext-{size}''' for size in ["""tiny""", """small""", """base""", """large""", """xlarge"""]], help="""Name of the ConvNext UperNet model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case_ = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
507
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
507
1
'''simple docstring''' from collections import defaultdict from graphs.minimum_spanning_tree_prims import prisms_algorithm as mst def __lowerCAmelCase ( ): '''simple docstring''' __snake_case , __snake_case : Any = 9, 1_4 # noqa: F841 __snake_case : Any = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 1_4], [3, 4, 9], [5, 4, 1_0], [1, 7, 1_1], ] __snake_case : List[Any] = defaultdict(SCREAMING_SNAKE_CASE_ ) for nodea, nodea, cost in edges: adjancency[nodea].append([nodea, cost] ) adjancency[nodea].append([nodea, cost] ) __snake_case : Optional[int] = mst(SCREAMING_SNAKE_CASE_ ) __snake_case : int = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] for answer in expected: __snake_case : str = tuple(answer[:2] ) __snake_case : Optional[int] = tuple(edge[::-1] ) assert edge in result or reverse in result
715
def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' __snake_case : int = 1 __snake_case : Any = 2 while i * i <= n: __snake_case : Tuple = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : str = 1 __snake_case : Dict = 1 while True: i += 1 t_num += i if count_divisors(__SCREAMING_SNAKE_CASE ) > 5_0_0: break return t_num if __name__ == "__main__": print(solution())
390
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = OrderedDict( [ ("audio-spectrogram-transformer", "ASTFeatureExtractor"), ("beit", "BeitFeatureExtractor"), ("chinese_clip", "ChineseCLIPFeatureExtractor"), ("clap", "ClapFeatureExtractor"), ("clip", "CLIPFeatureExtractor"), ("clipseg", "ViTFeatureExtractor"), ("conditional_detr", "ConditionalDetrFeatureExtractor"), ("convnext", "ConvNextFeatureExtractor"), ("cvt", "ConvNextFeatureExtractor"), ("data2vec-audio", "Wav2Vec2FeatureExtractor"), ("data2vec-vision", "BeitFeatureExtractor"), ("deformable_detr", "DeformableDetrFeatureExtractor"), ("deit", "DeiTFeatureExtractor"), ("detr", "DetrFeatureExtractor"), ("dinat", "ViTFeatureExtractor"), ("donut-swin", "DonutFeatureExtractor"), ("dpt", "DPTFeatureExtractor"), ("encodec", "EncodecFeatureExtractor"), ("flava", "FlavaFeatureExtractor"), ("glpn", "GLPNFeatureExtractor"), ("groupvit", "CLIPFeatureExtractor"), ("hubert", "Wav2Vec2FeatureExtractor"), ("imagegpt", "ImageGPTFeatureExtractor"), ("layoutlmv2", "LayoutLMv2FeatureExtractor"), ("layoutlmv3", "LayoutLMv3FeatureExtractor"), ("levit", "LevitFeatureExtractor"), ("maskformer", "MaskFormerFeatureExtractor"), ("mctct", "MCTCTFeatureExtractor"), ("mobilenet_v1", "MobileNetV1FeatureExtractor"), ("mobilenet_v2", "MobileNetV2FeatureExtractor"), ("mobilevit", "MobileViTFeatureExtractor"), ("nat", "ViTFeatureExtractor"), ("owlvit", "OwlViTFeatureExtractor"), ("perceiver", "PerceiverFeatureExtractor"), ("poolformer", "PoolFormerFeatureExtractor"), ("regnet", "ConvNextFeatureExtractor"), ("resnet", "ConvNextFeatureExtractor"), ("segformer", "SegformerFeatureExtractor"), ("sew", "Wav2Vec2FeatureExtractor"), ("sew-d", "Wav2Vec2FeatureExtractor"), ("speech_to_text", "Speech2TextFeatureExtractor"), ("speecht5", "SpeechT5FeatureExtractor"), ("swiftformer", "ViTFeatureExtractor"), ("swin", "ViTFeatureExtractor"), ("swinv2", "ViTFeatureExtractor"), ("table-transformer", "DetrFeatureExtractor"), ("timesformer", "VideoMAEFeatureExtractor"), ("tvlt", "TvltFeatureExtractor"), ("unispeech", "Wav2Vec2FeatureExtractor"), ("unispeech-sat", "Wav2Vec2FeatureExtractor"), ("van", "ConvNextFeatureExtractor"), ("videomae", "VideoMAEFeatureExtractor"), ("vilt", "ViltFeatureExtractor"), ("vit", "ViTFeatureExtractor"), ("vit_mae", "ViTFeatureExtractor"), ("vit_msn", "ViTFeatureExtractor"), ("wav2vec2", "Wav2Vec2FeatureExtractor"), ("wav2vec2-conformer", "Wav2Vec2FeatureExtractor"), ("wavlm", "Wav2Vec2FeatureExtractor"), ("whisper", "WhisperFeatureExtractor"), ("xclip", "CLIPFeatureExtractor"), ("yolos", "YolosFeatureExtractor"), ] ) lowerCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowercase__ ( lowercase_ ) -> Dict: """simple docstring""" for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _UpperCamelCase : Union[str, Any] = model_type_to_module_name(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase : Any = importlib.import_module(F'''.{module_name}''' ,"transformers.models" ) try: return getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE__ ,"__name__" ,SCREAMING_SNAKE_CASE__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _UpperCamelCase : Tuple = importlib.import_module("transformers" ) if hasattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): return getattr(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) return None def lowercase__ ( lowercase_ ,lowercase_ = None ,lowercase_ = False ,lowercase_ = False ,lowercase_ = None ,lowercase_ = None ,lowercase_ = None ,lowercase_ = False ,**lowercase_ ,) -> Optional[Any]: """simple docstring""" _UpperCamelCase : int = get_file_from_repo( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,cache_dir=SCREAMING_SNAKE_CASE__ ,force_download=SCREAMING_SNAKE_CASE__ ,resume_download=SCREAMING_SNAKE_CASE__ ,proxies=SCREAMING_SNAKE_CASE__ ,use_auth_token=SCREAMING_SNAKE_CASE__ ,revision=SCREAMING_SNAKE_CASE__ ,local_files_only=SCREAMING_SNAKE_CASE__ ,) if resolved_config_file is None: logger.info( "Could not locate the feature extractor configuration file, will try to use the model config instead." ) return {} with open(SCREAMING_SNAKE_CASE__ ,encoding="utf-8" ) as reader: return json.load(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : str ) -> Optional[int]: raise EnvironmentError( "AutoFeatureExtractor is designed to be instantiated " "using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( cls : str , __a : List[Any] , **__a : Optional[int] ) -> List[str]: _UpperCamelCase : List[Any] = kwargs.pop("config" , _UpperCamelCase ) _UpperCamelCase : List[str] = kwargs.pop("trust_remote_code" , _UpperCamelCase ) _UpperCamelCase : Tuple = True _UpperCamelCase, _UpperCamelCase : List[str] = FeatureExtractionMixin.get_feature_extractor_dict(_UpperCamelCase , **_UpperCamelCase ) _UpperCamelCase : Any = config_dict.get("feature_extractor_type" , _UpperCamelCase ) _UpperCamelCase : List[str] = None if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): _UpperCamelCase : List[str] = config_dict["auto_map"]["AutoFeatureExtractor"] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(_UpperCamelCase , _UpperCamelCase ): _UpperCamelCase : Optional[Any] = AutoConfig.from_pretrained(_UpperCamelCase , **_UpperCamelCase ) # It could be in `config.feature_extractor_type`` _UpperCamelCase : Tuple = getattr(_UpperCamelCase , "feature_extractor_type" , _UpperCamelCase ) if hasattr(_UpperCamelCase , "auto_map" ) and "AutoFeatureExtractor" in config.auto_map: _UpperCamelCase : List[Any] = config.auto_map["AutoFeatureExtractor"] if feature_extractor_class is not None: _UpperCamelCase : List[Any] = feature_extractor_class_from_name(_UpperCamelCase ) _UpperCamelCase : Any = feature_extractor_auto_map is not None _UpperCamelCase : str = feature_extractor_class is not None or type(_UpperCamelCase ) in FEATURE_EXTRACTOR_MAPPING _UpperCamelCase : Optional[int] = resolve_trust_remote_code( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) if has_remote_code and trust_remote_code: _UpperCamelCase : Optional[int] = get_class_from_dynamic_module( _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ) _UpperCamelCase : Optional[Any] = kwargs.pop("code_revision" , _UpperCamelCase ) if os.path.isdir(_UpperCamelCase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(_UpperCamelCase , **_UpperCamelCase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(_UpperCamelCase , **_UpperCamelCase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(_UpperCamelCase ) in FEATURE_EXTRACTOR_MAPPING: _UpperCamelCase : List[str] = FEATURE_EXTRACTOR_MAPPING[type(_UpperCamelCase )] return feature_extractor_class.from_dict(_UpperCamelCase , **_UpperCamelCase ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def __SCREAMING_SNAKE_CASE ( __a : Optional[int] , __a : Optional[int] ) -> Dict: FEATURE_EXTRACTOR_MAPPING.register(_UpperCamelCase , _UpperCamelCase )
624
import argparse import json import os import sys import tempfile import unittest from argparse import Namespace from dataclasses import dataclass, field from enum import Enum from pathlib import Path from typing import List, Literal, Optional import yaml from transformers import HfArgumentParser, TrainingArguments from transformers.hf_argparser import make_choice_type_function, string_to_bool # Since Python 3.10, we can use the builtin `|` operator for Union types # See PEP 604: https://peps.python.org/pep-0604 lowerCAmelCase_ = sys.version_info >= (3, 10) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ): return field(default_factory=lambda: default , metadata=SCREAMING_SNAKE_CASE__ ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : float SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : bool @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int = 42 SCREAMING_SNAKE_CASE : str = field(default="toto" , metadata={"help": "help message"} ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : Optional[bool] = None class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = "titi" SCREAMING_SNAKE_CASE : Any = "toto" class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = "titi" SCREAMING_SNAKE_CASE : Optional[Any] = "toto" SCREAMING_SNAKE_CASE : Any = 42 @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : BasicEnum = "toto" def snake_case__( self : Tuple ) ->List[str]: snake_case_ = BasicEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : MixedTypeEnum = "toto" def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = MixedTypeEnum(self.foo ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[float] = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : Optional[str] = None SCREAMING_SNAKE_CASE : Optional[List[str]] = list_field(default=[] ) SCREAMING_SNAKE_CASE : Optional[List[int]] = list_field(default=[] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = list_field(default=[] ) SCREAMING_SNAKE_CASE : List[int] = list_field(default=[1, 2, 3] ) SCREAMING_SNAKE_CASE : List[str] = list_field(default=["Hallo", "Bonjour", "Hello"] ) SCREAMING_SNAKE_CASE : List[float] = list_field(default=[0.1, 0.2, 0.3] ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : List[int] = field() SCREAMING_SNAKE_CASE : str = field() SCREAMING_SNAKE_CASE : BasicEnum = field() def snake_case__( self : Optional[Any] ) ->Tuple: snake_case_ = BasicEnum(self.required_enum ) @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : "BasicEnum" = field() SCREAMING_SNAKE_CASE : "Optional[bool]" = None SCREAMING_SNAKE_CASE : "str" = field(default="toto" , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : "List[str]" = list_field(default=["Hallo", "Bonjour", "Hello"] ) if is_python_no_less_than_3_10: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : bool = False SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : bool | None = None @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : int | None = None SCREAMING_SNAKE_CASE : float | None = field(default=__A , metadata={"help": "help message"} ) SCREAMING_SNAKE_CASE : str | None = None SCREAMING_SNAKE_CASE : list[str] | None = list_field(default=[] ) SCREAMING_SNAKE_CASE : list[int] | None = list_field(default=[] ) class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Dict , _UpperCamelCase : argparse.ArgumentParser , _UpperCamelCase : argparse.ArgumentParser ) ->str: self.assertEqual(len(a._actions ) , len(b._actions ) ) for x, y in zip(a._actions , b._actions ): snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} snake_case_ = {k: v for k, v in vars(_UpperCamelCase ).items() if k != '''container'''} # Choices with mixed type have custom function as "type" # So we need to compare results directly for equality if xx.get('''choices''' , _UpperCamelCase ) and yy.get('''choices''' , _UpperCamelCase ): for expected_choice in yy["choices"] + xx["choices"]: self.assertEqual(xx['''type'''](_UpperCamelCase ) , yy['''type'''](_UpperCamelCase ) ) del xx["type"], yy["type"] self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[Any] ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--bar''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--baz''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--flag''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = ['''--foo''', '''1''', '''--baz''', '''quux''', '''--bar''', '''0.5'''] ((snake_case_), ) = parser.parse_args_into_dataclasses(_UpperCamelCase , look_for_args_file=_UpperCamelCase ) self.assertFalse(example.flag ) def snake_case__( self : Tuple ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=4_2 , type=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) expected.add_argument('''--baz''' , type=_UpperCamelCase , default=_UpperCamelCase , const=_UpperCamelCase , nargs='''?''' ) # A boolean no_* argument always has to come after its "default: True" regular counter-part # and its default must be set to False expected.add_argument('''--no_baz''' , action='''store_false''' , default=_UpperCamelCase , dest='''baz''' ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) snake_case_ = [WithDefaultBoolExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--no_baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''--baz'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''True''', '''--baz''', '''True''', '''--opt''', '''True'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) snake_case_ = parser.parse_args(['''--foo''', '''False''', '''--baz''', '''False''', '''--opt''', '''False'''] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , baz=_UpperCamelCase , opt=_UpperCamelCase ) ) def snake_case__( self : Tuple ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=['''titi''', '''toto''', 4_2] , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args_into_dataclasses([] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.toto ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''titi'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.titi ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) snake_case_ = parser.parse_args_into_dataclasses(['''--foo''', '''42'''] )[0] self.assertEqual(enum_ex.foo , MixedTypeEnum.fourtytwo ) def snake_case__( self : Tuple ) ->Union[str, Any]: @dataclass class snake_case_ : '''simple docstring''' SCREAMING_SNAKE_CASE : Literal["titi", "toto", 42] = "toto" snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument( '''--foo''' , default='''toto''' , choices=('''titi''', '''toto''', 4_2) , type=make_choice_type_function(['''titi''', '''toto''', 4_2] ) , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(args.foo , '''toto''' ) snake_case_ = parser.parse_args(['''--foo''', '''titi'''] ) self.assertEqual(args.foo , '''titi''' ) snake_case_ = parser.parse_args(['''--foo''', '''42'''] ) self.assertEqual(args.foo , 4_2 ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo_int''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--bar_int''' , nargs='''+''' , default=[1, 2, 3] , type=_UpperCamelCase ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) expected.add_argument('''--foo_float''' , nargs='''+''' , default=[0.1, 0.2, 0.3] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual( _UpperCamelCase , Namespace(foo_int=[] , bar_int=[1, 2, 3] , foo_str=['''Hallo''', '''Bonjour''', '''Hello'''] , foo_float=[0.1, 0.2, 0.3] ) , ) snake_case_ = parser.parse_args('''--foo_int 1 --bar_int 2 3 --foo_str a b c --foo_float 0.1 0.7'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo_int=[1] , bar_int=[2, 3] , foo_str=['''a''', '''b''', '''c'''] , foo_float=[0.1, 0.7] ) ) def snake_case__( self : Optional[Any] ) ->List[Any]: snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--bar''' , default=_UpperCamelCase , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--baz''' , default=_UpperCamelCase , type=_UpperCamelCase ) expected.add_argument('''--ces''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) expected.add_argument('''--des''' , nargs='''+''' , default=[] , type=_UpperCamelCase ) snake_case_ = [OptionalExample] if is_python_no_less_than_3_10: dataclass_types.append(_UpperCamelCase ) for dataclass_type in dataclass_types: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_args([] ) self.assertEqual(_UpperCamelCase , Namespace(foo=_UpperCamelCase , bar=_UpperCamelCase , baz=_UpperCamelCase , ces=[] , des=[] ) ) snake_case_ = parser.parse_args('''--foo 12 --bar 3.14 --baz 42 --ces a b c --des 1 2 3'''.split() ) self.assertEqual(_UpperCamelCase , Namespace(foo=1_2 , bar=3.14 , baz='''42''' , ces=['''a''', '''b''', '''c'''] , des=[1, 2, 3] ) ) def snake_case__( self : Union[str, Any] ) ->Optional[int]: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--required_list''' , nargs='''+''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument('''--required_str''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : List[str] ) ->int: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = argparse.ArgumentParser() expected.add_argument('''--foo''' , type=_UpperCamelCase , required=_UpperCamelCase ) expected.add_argument( '''--required_enum''' , type=make_choice_type_function(['''titi''', '''toto'''] ) , choices=['''titi''', '''toto'''] , required=_UpperCamelCase , ) expected.add_argument('''--opt''' , type=_UpperCamelCase , default=_UpperCamelCase ) expected.add_argument('''--baz''' , default='''toto''' , type=_UpperCamelCase , help='''help message''' ) expected.add_argument('''--foo_str''' , nargs='''+''' , default=['''Hallo''', '''Bonjour''', '''Hello'''] , type=_UpperCamelCase ) self.argparsersEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Dict ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } snake_case_ = parser.parse_dict(_UpperCamelCase )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : int ) ->Dict: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, '''extra''': 4_2, } self.assertRaises(_UpperCamelCase , parser.parse_dict , _UpperCamelCase , allow_extra_keys=_UpperCamelCase ) def snake_case__( self : str ) ->Tuple: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_json''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.json''' , '''w+''' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.json''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Optional[int] ) ->str: snake_case_ = HfArgumentParser(_UpperCamelCase ) snake_case_ = { '''foo''': 1_2, '''bar''': 3.14, '''baz''': '''42''', '''flag''': True, } with tempfile.TemporaryDirectory() as tmp_dir: snake_case_ = os.path.join(_UpperCamelCase , '''temp_yaml''' ) os.mkdir(_UpperCamelCase ) with open(temp_local_path + '''.yaml''' , '''w+''' ) as f: yaml.dump(_UpperCamelCase , _UpperCamelCase ) snake_case_ = parser.parse_yaml_file(Path(temp_local_path + '''.yaml''' ) )[0] snake_case_ = BasicExample(**_UpperCamelCase ) self.assertEqual(_UpperCamelCase , _UpperCamelCase ) def snake_case__( self : Any ) ->Any: snake_case_ = HfArgumentParser(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase )
39
0
import warnings from ...utils import logging from .image_processing_deformable_detr import DeformableDetrImageProcessor UpperCAmelCase_ : Any = logging.get_logger(__name__) class lowercase__ ( __A ): def __init__( self , *_lowercase , **_lowercase ): warnings.warn( """The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use DeformableDetrImageProcessor instead.""" , _lowercase , ) super().__init__(*_lowercase , **_lowercase )
709
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures UpperCAmelCase_ : str = logging.get_logger(__name__) @dataclass class lowercase__ : __UpperCamelCase = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) __UpperCamelCase = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) __UpperCamelCase = field( default=128 , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } , ) __UpperCamelCase = field( default=__A , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def UpperCAmelCase__ ( self ): lowerCAmelCase_ : List[str] = self.task_name.lower() class lowercase__ ( __A ): __UpperCamelCase = """train""" __UpperCamelCase = """dev""" __UpperCamelCase = """test""" class lowercase__ ( __A ): __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__( self , _lowercase , _lowercase , _lowercase = None , _lowercase = Split.train , _lowercase = None , ): warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , _lowercase , ) lowerCAmelCase_ : Any = args lowerCAmelCase_ : List[str] = glue_processors[args.task_name]() lowerCAmelCase_ : Tuple = glue_output_modes[args.task_name] if isinstance(_lowercase , _lowercase ): try: lowerCAmelCase_ : Dict = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) # Load data features from cache or dataset file lowerCAmelCase_ : Optional[int] = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}' , ) lowerCAmelCase_ : List[str] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) lowerCAmelCase_ , lowerCAmelCase_ : List[str] = label_list[2], label_list[1] lowerCAmelCase_ : int = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase_ : Optional[int] = cached_features_file + """.lock""" with FileLock(_lowercase ): if os.path.exists(_lowercase ) and not args.overwrite_cache: lowerCAmelCase_ : Dict = time.time() lowerCAmelCase_ : str = torch.load(_lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]' , time.time() - start ) else: logger.info(F'Creating features from dataset file at {args.data_dir}' ) if mode == Split.dev: lowerCAmelCase_ : List[Any] = self.processor.get_dev_examples(args.data_dir ) elif mode == Split.test: lowerCAmelCase_ : Dict = self.processor.get_test_examples(args.data_dir ) else: lowerCAmelCase_ : List[str] = self.processor.get_train_examples(args.data_dir ) if limit_length is not None: lowerCAmelCase_ : Optional[int] = examples[:limit_length] lowerCAmelCase_ : Any = glue_convert_examples_to_features( _lowercase , _lowercase , max_length=args.max_seq_length , label_list=_lowercase , output_mode=self.output_mode , ) lowerCAmelCase_ : str = time.time() torch.save(self.features , _lowercase ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self ): return len(self.features ) def __getitem__( self , _lowercase ): return self.features[i] def UpperCAmelCase__ ( self ): return self.label_list
440
0
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , _snake_case : List[Any] , _snake_case : Optional[int]=13 , _snake_case : List[Any]=7 , _snake_case : Tuple=True , _snake_case : Union[str, Any]=True , _snake_case : List[str]=True , _snake_case : int=True , _snake_case : int=99 , _snake_case : Tuple=32 , _snake_case : str=5 , _snake_case : List[Any]=4 , _snake_case : Dict=37 , _snake_case : Tuple="gelu" , _snake_case : Dict=0.1 , _snake_case : str=0.1 , _snake_case : Tuple=512 , _snake_case : Any=16 , _snake_case : List[str]=2 , _snake_case : Optional[Any]=0.02 , _snake_case : Optional[Any]=4 , ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = parent SCREAMING_SNAKE_CASE__ = batch_size SCREAMING_SNAKE_CASE__ = seq_length SCREAMING_SNAKE_CASE__ = is_training SCREAMING_SNAKE_CASE__ = use_attention_mask SCREAMING_SNAKE_CASE__ = use_token_type_ids SCREAMING_SNAKE_CASE__ = use_labels SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = num_hidden_layers SCREAMING_SNAKE_CASE__ = num_attention_heads SCREAMING_SNAKE_CASE__ = intermediate_size SCREAMING_SNAKE_CASE__ = hidden_act SCREAMING_SNAKE_CASE__ = hidden_dropout_prob SCREAMING_SNAKE_CASE__ = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ = max_position_embeddings SCREAMING_SNAKE_CASE__ = type_vocab_size SCREAMING_SNAKE_CASE__ = type_sequence_label_size SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = num_choices def lowerCAmelCase_ ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE__ = None if self.use_attention_mask: SCREAMING_SNAKE_CASE__ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE__ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE__ = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase_ ( self : str ) -> List[Any]: SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ = config_and_inputs SCREAMING_SNAKE_CASE__ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCamelCase (__snake_case , unittest.TestCase ): '''simple docstring''' a = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase_ ( self : Tuple ) -> Dict: SCREAMING_SNAKE_CASE__ = FlaxAlbertModelTester(self ) @slow def lowerCAmelCase_ ( self : Dict ) -> Optional[Any]: for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE__ = model_class_name.from_pretrained("albert-base-v2" ) SCREAMING_SNAKE_CASE__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_snake_case ) @require_flax class lowerCamelCase (unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : Optional[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ = FlaxAlbertModel.from_pretrained("albert-base-v2" ) SCREAMING_SNAKE_CASE__ = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) SCREAMING_SNAKE_CASE__ = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) SCREAMING_SNAKE_CASE__ = model(_snake_case , attention_mask=_snake_case )[0] SCREAMING_SNAKE_CASE__ = (1, 11, 768) self.assertEqual(output.shape , _snake_case ) SCREAMING_SNAKE_CASE__ = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _snake_case , atol=1e-4 ) )
159
import copy from dataclasses import dataclass from pathlib import Path from typing import Dict, Optional, Union @dataclass class __lowercase : _A = None _A = False _A = False _A = False _A = None _A = None _A = False _A = False _A = False _A = True _A = None _A = 1 _A = None _A = False _A = None _A = None def _a(self : str ) -> "DownloadConfig": return self.__class__(**{k: copy.deepcopy(snake_case ) for k, v in self.__dict__.items()} )
461
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : Union[str, Any] = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Union[str, Any] = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
704
import collections import os import re from pathlib import Path __lowerCAmelCase : Tuple = 'src/transformers' # Matches is_xxx_available() __lowerCAmelCase : Union[str, Any] = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} __lowerCAmelCase : Dict = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] __lowerCAmelCase : Union[str, Any] = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available __lowerCAmelCase : Optional[Any] = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") __lowerCAmelCase : str = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] __lowerCAmelCase : List[str] = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", __lowerCAmelCase : Optional[int] = re.compile(R'^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], __lowerCAmelCase : Optional[int] = re.compile(R'^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo __lowerCAmelCase : Dict = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: __lowerCAmelCase : Optional[int] = re.compile(R'^\s*try:') # Catches a line with else: __lowerCAmelCase : Optional[int] = re.compile(R'^\s*else:') def a_ (_lowerCAmelCase : str )-> Optional[int]: if _re_test_backend.search(_lowerCAmelCase ) is None: return None snake_case: Optional[Any] = [b[0] for b in _re_backend.findall(_lowerCAmelCase )] backends.sort() return "_and_".join(_lowerCAmelCase ) def a_ (_lowerCAmelCase : Union[str, Any] )-> Union[str, Any]: with open(_lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: snake_case: Dict = f.readlines() snake_case: Optional[int] = 0 while line_index < len(_lowerCAmelCase ) and not lines[line_index].startswith("""_import_structure = {""" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_lowerCAmelCase ): return None # First grab the objects without a specific backend in _import_structure snake_case: Optional[Any] = [] while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None: snake_case: Any = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_lowerCAmelCase ): snake_case: int = _re_one_line_import_struct.search(_lowerCAmelCase ).groups()[0] snake_case: Any = re.findall(R"""\[([^\]]+)\]""" , _lowerCAmelCase ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """ )] ) line_index += 1 continue snake_case: Union[str, Any] = _re_import_struct_key_value.search(_lowerCAmelCase ) if single_line_import_search is not None: snake_case: Optional[int] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(_lowerCAmelCase ) > 0] objects.extend(_lowerCAmelCase ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) line_index += 1 snake_case: int = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING""" ): # If the line is an if not is_backend_available, we grab all objects associated. snake_case: Optional[int] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case: str = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case: List[str] = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ): snake_case: Union[str, Any] = lines[line_index] if _re_import_struct_add_one.search(_lowerCAmelCase ) is not None: objects.append(_re_import_struct_add_one.search(_lowerCAmelCase ).groups()[0] ) elif _re_import_struct_add_many.search(_lowerCAmelCase ) is not None: snake_case: Optional[int] = _re_import_struct_add_many.search(_lowerCAmelCase ).groups()[0].split(""", """ ) snake_case: str = [obj[1:-1] for obj in imports if len(_lowerCAmelCase ) > 0] objects.extend(_lowerCAmelCase ) elif _re_between_brackets.search(_lowerCAmelCase ) is not None: snake_case: Union[str, Any] = _re_between_brackets.search(_lowerCAmelCase ).groups()[0].split(""", """ ) snake_case: int = [obj[1:-1] for obj in imports if len(_lowerCAmelCase ) > 0] objects.extend(_lowerCAmelCase ) elif _re_quote_object.search(_lowerCAmelCase ) is not None: objects.append(_re_quote_object.search(_lowerCAmelCase ).groups()[0] ) elif line.startswith(""" """ * 8 + """\"""" ): objects.append(line[9:-3] ) elif line.startswith(""" """ * 12 + """\"""" ): objects.append(line[13:-3] ) line_index += 1 snake_case: List[str] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend snake_case: Optional[Any] = [] while ( line_index < len(_lowerCAmelCase ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("""else""" ) ): snake_case: int = lines[line_index] snake_case: str = _re_import.search(_lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 8 ): objects.append(line[8:-2] ) line_index += 1 snake_case: Union[str, Any] = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(_lowerCAmelCase ): # If the line is an if is_backend_available, we grab all objects associated. snake_case: Union[str, Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: snake_case: List[str] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 snake_case: Tuple = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ): snake_case: List[str] = lines[line_index] snake_case: str = _re_import.search(_lowerCAmelCase ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """ ) ) elif line.startswith(""" """ * 12 ): objects.append(line[12:-2] ) line_index += 1 snake_case: Tuple = objects else: line_index += 1 return import_dict_objects, type_hint_objects def a_ (_lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] )-> Optional[int]: def find_duplicates(_lowerCAmelCase : Union[str, Any] ): return [k for k, v in collections.Counter(_lowerCAmelCase ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] snake_case: Optional[Any] = [] for key in import_dict_objects.keys(): snake_case: List[str] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"Duplicate _import_structure definitions for: {duplicate_imports}" ) snake_case: Optional[int] = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): snake_case: Optional[Any] = """base imports""" if key == """none""" else F"{key} backend" errors.append(F"Differences for {name}:" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F" {a} in TYPE_HINT but not in _import_structure." ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F" {a} in _import_structure but not in TYPE_HINT." ) return errors def a_ ()-> int: snake_case: Optional[int] = [] for root, _, files in os.walk(_lowerCAmelCase ): if "__init__.py" in files: snake_case: Optional[int] = os.path.join(_lowerCAmelCase , """__init__.py""" ) snake_case: Any = parse_init(_lowerCAmelCase ) if objects is not None: snake_case: List[str] = analyze_results(*_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: snake_case: Optional[int] = F"Problem in {fname}, both halves do not define the same objects.\n{errors[0]}" failures.append("""\n""".join(_lowerCAmelCase ) ) if len(_lowerCAmelCase ) > 0: raise ValueError("""\n\n""".join(_lowerCAmelCase ) ) def a_ ()-> Dict: snake_case: Any = [] for path, directories, files in os.walk(_lowerCAmelCase ): for folder in directories: # Ignore private modules if folder.startswith("""_""" ): directories.remove(_lowerCAmelCase ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_lowerCAmelCase ) / folder).glob("""*.py""" ) ) ) == 0: continue snake_case: Optional[int] = str((Path(_lowerCAmelCase ) / folder).relative_to(_lowerCAmelCase ) ) snake_case: str = short_path.replace(os.path.sep , """.""" ) submodules.append(_lowerCAmelCase ) for fname in files: if fname == "__init__.py": continue snake_case: Union[str, Any] = str((Path(_lowerCAmelCase ) / fname).relative_to(_lowerCAmelCase ) ) snake_case: List[Any] = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" ) if len(submodule.split(""".""" ) ) == 1: submodules.append(_lowerCAmelCase ) return submodules __lowerCAmelCase : Optional[int] = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', 'models.esm.openfold_utils', ] def a_ ()-> Dict: # This is to make sure the transformers module imported is the one in the repo. from transformers.utils import direct_transformers_import snake_case: Union[str, Any] = direct_transformers_import(_lowerCAmelCase ) snake_case: str = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_lowerCAmelCase , """__init__.py""" ) , """r""" ) as f: snake_case: Optional[int] = f.read() import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , _lowerCAmelCase ) ) ) snake_case: Any = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_lowerCAmelCase ) > 0: snake_case: Any = """\n""".join(F"- {module}" for module in module_not_registered ) raise ValueError( """The following submodules are not properly registed in the main init of Transformers:\n""" F"{list_of_modules}\n" """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" ) if __name__ == "__main__": check_all_inits() check_submodules()
164
0
"""simple docstring""" from __future__ import annotations UpperCAmelCase = [] def __magic_name__ ( _lowerCamelCase: list[list[int]], _lowerCamelCase: int, _lowerCamelCase: int ) -> bool: '''simple docstring''' for i in range(len(_lowerCamelCase ) ): if board[row][i] == 1: return False for i in range(len(_lowerCamelCase ) ): if board[i][column] == 1: return False for i, j in zip(range(_lowerCamelCase, -1, -1 ), range(_lowerCamelCase, -1, -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(_lowerCamelCase, -1, -1 ), range(_lowerCamelCase, len(_lowerCamelCase ) ) ): if board[i][j] == 1: return False return True def __magic_name__ ( _lowerCamelCase: list[list[int]], _lowerCamelCase: int ) -> bool: '''simple docstring''' if row >= len(_lowerCamelCase ): solution.append(_lowerCamelCase ) printboard(_lowerCamelCase ) print() return True for i in range(len(_lowerCamelCase ) ): if is_safe(_lowerCamelCase, _lowerCamelCase, _lowerCamelCase ): lowerCAmelCase = 1 solve(_lowerCamelCase, row + 1 ) lowerCAmelCase = 0 return False def __magic_name__ ( _lowerCamelCase: list[list[int]] ) -> None: '''simple docstring''' for i in range(len(_lowerCamelCase ) ): for j in range(len(_lowerCamelCase ) ): if board[i][j] == 1: print('''Q''', end=''' ''' ) else: print('''.''', end=''' ''' ) print() # n=int(input("The no. of queens")) UpperCAmelCase = 8 UpperCAmelCase = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
535
"""simple docstring""" def __magic_name__ ( _lowerCamelCase: Tuple, _lowerCamelCase: Any ) -> Optional[Any]: '''simple docstring''' lowerCAmelCase = [1] for i in range(2, _lowerCamelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" lowerCAmelCase = [] lowerCAmelCase = list(range(_lowerCamelCase ) ) # Find permutation while factorials: lowerCAmelCase = factorials.pop() lowerCAmelCase , lowerCAmelCase = divmod(_lowerCamelCase, _lowerCamelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
535
1
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def __lowerCamelCase ( __snake_case : List[Any] ) -> List[str]: """simple docstring""" A__ : Optional[Any] =args.pruning_method A__ : Any =args.threshold A__ : Dict =args.model_name_or_path.rstrip("""/""" ) A__ : List[Any] =args.target_model_path print(f"Load fine-pruned model from {model_name_or_path}" ) A__ : Any =torch.load(os.path.join(_snake_case, """pytorch_model.bin""" ) ) A__ : Union[str, Any] ={} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: A__ : Any =tensor print(f"Copied layer {name}" ) elif "classifier" in name or "qa_output" in name: A__ : List[Any] =tensor print(f"Copied layer {name}" ) elif "bias" in name: A__ : Optional[int] =tensor print(f"Copied layer {name}" ) else: if pruning_method == "magnitude": A__ : List[str] =MagnitudeBinarizer.apply(inputs=_snake_case, threshold=_snake_case ) A__ : Any =tensor * mask print(f"Pruned layer {name}" ) elif pruning_method == "topK": if "mask_scores" in name: continue A__ : Union[str, Any] =name[:-6] A__ : str =model[f"{prefix_}mask_scores"] A__ : Tuple =TopKBinarizer.apply(_snake_case, _snake_case ) A__ : Optional[int] =tensor * mask print(f"Pruned layer {name}" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue A__ : Optional[int] =name[:-6] A__ : List[Any] =model[f"{prefix_}mask_scores"] A__ : int =ThresholdBinarizer.apply(_snake_case, _snake_case, _snake_case ) A__ : Optional[int] =tensor * mask print(f"Pruned layer {name}" ) elif pruning_method == "l0": if "mask_scores" in name: continue A__ : Optional[int] =name[:-6] A__ : List[Any] =model[f"{prefix_}mask_scores"] A__ , A__ : Optional[int] =-0.1, 1.1 A__ : Dict =torch.sigmoid(_snake_case ) A__ : Union[str, Any] =s * (r - l) + l A__ : Any =s_bar.clamp(min=0.0, max=1.0 ) A__ : Union[str, Any] =tensor * mask print(f"Pruned layer {name}" ) else: raise ValueError("""Unknown pruning method""" ) if target_model_path is None: A__ : Optional[int] =os.path.join( os.path.dirname(_snake_case ), f"bertarized_{os.path.basename(_snake_case )}" ) if not os.path.isdir(_snake_case ): shutil.copytree(_snake_case, _snake_case ) print(f"\nCreated folder {target_model_path}" ) torch.save(_snake_case, os.path.join(_snake_case, """pytorch_model.bin""" ) ) print("""\nPruned model saved! See you later!""" ) if __name__ == "__main__": __snake_case : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--pruning_method', choices=['l0', 'magnitude', 'topK', 'sigmoied_threshold'], type=str, required=True, help=( 'Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,' ' sigmoied_threshold = Soft movement pruning)' ), ) parser.add_argument( '--threshold', type=float, required=False, help=( 'For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.' 'For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.' 'Not needed for `l0`' ), ) parser.add_argument( '--model_name_or_path', type=str, required=True, help='Folder containing the model that was previously fine-pruned', ) parser.add_argument( '--target_model_path', default=None, type=str, required=False, help='Folder containing the model that was previously fine-pruned', ) __snake_case : Optional[int] = parser.parse_args() main(args)
711
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __snake_case : int = { 'configuration_trajectory_transformer': [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrajectoryTransformerConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrajectoryTransformerModel', 'TrajectoryTransformerPreTrainedModel', 'load_tf_weights_in_trajectory_transformer', ] if TYPE_CHECKING: from .configuration_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TrajectoryTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trajectory_transformer import ( TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TrajectoryTransformerModel, TrajectoryTransformerPreTrainedModel, load_tf_weights_in_trajectory_transformer, ) else: import sys __snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
687
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class snake_case_ : '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str=3 , _UpperCamelCase : List[Any]=3_2 , _UpperCamelCase : Union[str, Any]=3 , _UpperCamelCase : Union[str, Any]=1_0 , _UpperCamelCase : Any=[8, 1_6, 3_2, 6_4] , _UpperCamelCase : Any=[1, 1, 2, 1] , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Any=True , _UpperCamelCase : Any="relu" , _UpperCamelCase : List[Any]=3 , _UpperCamelCase : Any=None , _UpperCamelCase : Dict=["stage2", "stage3", "stage4"] , _UpperCamelCase : str=[2, 3, 4] , _UpperCamelCase : List[str]=1 , ) ->Dict: snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = num_channels snake_case_ = embeddings_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_act snake_case_ = num_labels snake_case_ = scope snake_case_ = len(_UpperCamelCase ) snake_case_ = out_features snake_case_ = out_indices snake_case_ = num_groups def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def snake_case__( self : Tuple ) ->List[str]: return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def snake_case__( self : Dict , _UpperCamelCase : Tuple , _UpperCamelCase : str , _UpperCamelCase : Any ) ->Tuple: snake_case_ = BitModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def snake_case__( self : int , _UpperCamelCase : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : List[str] ) ->Optional[Any]: snake_case_ = self.num_labels snake_case_ = BitForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__( self : List[str] , _UpperCamelCase : int , _UpperCamelCase : Tuple , _UpperCamelCase : str ) ->Optional[Any]: snake_case_ = BitBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case_ = None snake_case_ = BitBackbone(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() snake_case_ = model(_UpperCamelCase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def snake_case__( self : str ) ->Optional[Any]: snake_case_ = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_ = config_and_inputs snake_case_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class snake_case_ ( __A , __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () SCREAMING_SNAKE_CASE : List[str] = ( {"feature-extraction": BitModel, "image-classification": BitForImageClassification} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Any = False SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Tuple = False SCREAMING_SNAKE_CASE : Dict = False def snake_case__( self : Union[str, Any] ) ->List[Any]: snake_case_ = BitModelTester(self ) snake_case_ = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase ) def snake_case__( self : List[Any] ) ->Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__( self : Any ) ->Union[str, Any]: return @unittest.skip(reason='''Bit does not output attentions''' ) def snake_case__( self : int ) ->Tuple: pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def snake_case__( self : str ) ->Optional[Any]: pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def snake_case__( self : Union[str, Any] ) ->Optional[Any]: pass def snake_case__( self : Optional[Any] ) ->Optional[int]: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(_UpperCamelCase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def snake_case__( self : Tuple ) ->str: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def snake_case__( self : str ) ->Optional[Any]: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_UpperCamelCase ) def snake_case__( self : Tuple ) ->int: snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(config=_UpperCamelCase ) for name, module in model.named_modules(): if isinstance(_UpperCamelCase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) def snake_case__( self : Union[str, Any] ) ->str: def check_hidden_states_output(_UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] ): snake_case_ = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case_ = self.model_tester.num_stages self.assertEqual(len(_UpperCamelCase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case_, snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case_ = layer_type snake_case_ = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def snake_case__( self : str ) ->Optional[Any]: pass def snake_case__( self : Dict ) ->Dict: snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) @slow def snake_case__( self : Optional[int] ) ->Any: for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = BitModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __SCREAMING_SNAKE_CASE (): snake_case_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class snake_case_ ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__( self : Optional[Any] ) ->int: return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def snake_case__( self : str ) ->Optional[int]: snake_case_ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_UpperCamelCase ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=_UpperCamelCase , return_tensors='''pt''' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): snake_case_ = model(**_UpperCamelCase ) # verify the logits snake_case_ = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) snake_case_ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) @require_torch class snake_case_ ( __A , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = (BitBackbone,) if is_torch_available() else () SCREAMING_SNAKE_CASE : Optional[Any] = BitConfig SCREAMING_SNAKE_CASE : Optional[int] = False def snake_case__( self : Optional[Any] ) ->Tuple: snake_case_ = BitModelTester(self )
39
import unittest from transformers import DonutProcessor lowerCAmelCase_ = '''naver-clova-ix/donut-base''' class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Union[str, Any] ) ->Any: snake_case_ = DonutProcessor.from_pretrained(_UpperCamelCase ) def snake_case__( self : Dict ) ->str: snake_case_ = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } snake_case_ = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) snake_case_ = self.processor.tokenajson(_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , _UpperCamelCase )
39
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowercase( SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" UpperCamelCase_ = ShapEPipeline UpperCamelCase_ = ['''prompt'''] UpperCamelCase_ = ['''prompt'''] UpperCamelCase_ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] UpperCamelCase_ = False @property def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Optional[Any]: return 32 @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Dict: return 32 @property def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> Optional[int]: return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[int]: return 8 @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[str]: _lowerCAmelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) return tokenizer @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> Any: torch.manual_seed(0 ) _lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(_lowerCAmelCase ) @property def SCREAMING_SNAKE_CASE_ ( self : str ) -> List[str]: torch.manual_seed(0 ) _lowerCAmelCase = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } _lowerCAmelCase = PriorTransformer(**_lowerCAmelCase ) return model @property def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] ) -> List[str]: torch.manual_seed(0 ) _lowerCAmelCase = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } _lowerCAmelCase = ShapERenderer(**_lowerCAmelCase ) return model def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> Any: _lowerCAmelCase = self.dummy_prior _lowerCAmelCase = self.dummy_text_encoder _lowerCAmelCase = self.dummy_tokenizer _lowerCAmelCase = self.dummy_renderer _lowerCAmelCase = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1024 , prediction_type='sample' , use_karras_sigmas=_lowerCAmelCase , clip_sample=_lowerCAmelCase , clip_sample_range=1.0 , ) _lowerCAmelCase = { 'prior': prior, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'renderer': renderer, 'scheduler': scheduler, } return components def SCREAMING_SNAKE_CASE_ ( self : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=0 ) -> Optional[Any]: if str(_lowerCAmelCase ).startswith('mps' ): _lowerCAmelCase = torch.manual_seed(_lowerCAmelCase ) else: _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(_lowerCAmelCase ) _lowerCAmelCase = { 'prompt': 'horse', 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[Any]: _lowerCAmelCase = 'cpu' _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase ) _lowerCAmelCase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = pipe(**self.get_dummy_inputs(_lowerCAmelCase ) ) _lowerCAmelCase = output.images[0] _lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _lowerCAmelCase = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE_ ( self : List[str] ) -> List[Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> List[Any]: _lowerCAmelCase = torch_device == 'cpu' _lowerCAmelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_lowerCAmelCase , relax_max_difference=_lowerCAmelCase , ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> int: _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_lowerCAmelCase ) _lowerCAmelCase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = self.get_dummy_inputs(_lowerCAmelCase ) for key in inputs.keys(): if key in self.batch_params: _lowerCAmelCase = batch_size * [inputs[key]] _lowerCAmelCase = pipe(**_lowerCAmelCase , num_images_per_prompt=_lowerCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowercase( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Any ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self : int ) -> int: _lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_np_out.npy' ) _lowerCAmelCase = ShapEPipeline.from_pretrained('openai/shap-e' ) _lowerCAmelCase = pipe.to(_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) _lowerCAmelCase = torch.Generator(device=_lowerCAmelCase ).manual_seed(0 ) _lowerCAmelCase = pipe( 'a shark' , generator=_lowerCAmelCase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_lowerCAmelCase , _lowerCAmelCase )
585
from PIL import Image def _a ( __SCREAMING_SNAKE_CASE : Image ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = image.size _lowerCAmelCase = 0 _lowerCAmelCase = image.load() for i in range(__SCREAMING_SNAKE_CASE ): for j in range(__SCREAMING_SNAKE_CASE ): _lowerCAmelCase = pixels[j, i] mean += pixel mean //= width * height for j in range(__SCREAMING_SNAKE_CASE ): for i in range(__SCREAMING_SNAKE_CASE ): _lowerCAmelCase = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": _UpperCamelCase: List[Any] =mean_threshold(Image.open('path_to_image').convert('L')) image.save('output_image_path')
585
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class _lowerCAmelCase ( unittest.TestCase ): def __init__( self : int , __snake_case : List[Any] , __snake_case : Union[str, Any]=7 , __snake_case : List[Any]=3 , __snake_case : Tuple=18 , __snake_case : Any=30 , __snake_case : Optional[int]=400 , __snake_case : Any=True , __snake_case : int=None , __snake_case : Dict=True , __snake_case : Tuple=None , __snake_case : Dict=True , __snake_case : str=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , __snake_case : Any=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , __snake_case : List[str]=True , ): lowerCamelCase :Dict = size if size is not None else {'''height''': 224, '''width''': 224} lowerCamelCase :List[Any] = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} lowerCamelCase :Optional[Any] = parent lowerCamelCase :Union[str, Any] = batch_size lowerCamelCase :Any = num_channels lowerCamelCase :List[str] = image_size lowerCamelCase :Union[str, Any] = min_resolution lowerCamelCase :str = max_resolution lowerCamelCase :Optional[int] = do_resize lowerCamelCase :Dict = size lowerCamelCase :Dict = do_center_crop lowerCamelCase :List[Any] = crop_size lowerCamelCase :Optional[Any] = do_normalize lowerCamelCase :List[str] = image_mean lowerCamelCase :List[str] = image_std lowerCamelCase :Any = do_convert_rgb def snake_case ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def snake_case ( self : List[Any] , __snake_case : List[Any]=False , __snake_case : List[Any]=False , __snake_case : Optional[Any]=False ): assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: lowerCamelCase :List[str] = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: lowerCamelCase :str = [] for i in range(self.batch_size ): lowerCamelCase , lowerCamelCase :Optional[int] = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension lowerCamelCase :Union[str, Any] = [Image.fromarray(np.moveaxis(__snake_case , 0 , -1 ) ) for x in image_inputs] if torchify: lowerCamelCase :int = [torch.from_numpy(__snake_case ) for x in image_inputs] return image_inputs @require_torch @require_vision class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = ChineseCLIPImageProcessor if is_vision_available() else None def snake_case ( self : Tuple ): lowerCamelCase :Optional[Any] = ChineseCLIPImageProcessingTester(self , do_center_crop=__snake_case ) @property def snake_case ( self : Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self : int ): lowerCamelCase :Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) self.assertTrue(hasattr(__snake_case , '''do_center_crop''' ) ) self.assertTrue(hasattr(__snake_case , '''center_crop''' ) ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(__snake_case , '''image_std''' ) ) self.assertTrue(hasattr(__snake_case , '''do_convert_rgb''' ) ) def snake_case ( self : str ): lowerCamelCase :int = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 224, '''width''': 224} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) lowerCamelCase :str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def snake_case ( self : Dict ): pass def snake_case ( self : Union[str, Any] ): # Initialize image_processing lowerCamelCase :str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase :List[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input lowerCamelCase :int = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCamelCase :str = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case ( self : Union[str, Any] ): # Initialize image_processing lowerCamelCase :List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase :str = self.image_processor_tester.prepare_inputs(equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input lowerCamelCase :Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCamelCase :Optional[int] = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def snake_case ( self : str ): # Initialize image_processing lowerCamelCase :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase :List[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input lowerCamelCase :str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCamelCase :int = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) @require_torch @require_vision class _lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _UpperCAmelCase = ChineseCLIPImageProcessor if is_vision_available() else None def snake_case ( self : List[Any] ): lowerCamelCase :List[Any] = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=__snake_case ) lowerCamelCase :Optional[Any] = 3 @property def snake_case ( self : int ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self : List[Any] ): lowerCamelCase :Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , '''do_resize''' ) ) self.assertTrue(hasattr(__snake_case , '''size''' ) ) self.assertTrue(hasattr(__snake_case , '''do_center_crop''' ) ) self.assertTrue(hasattr(__snake_case , '''center_crop''' ) ) self.assertTrue(hasattr(__snake_case , '''do_normalize''' ) ) self.assertTrue(hasattr(__snake_case , '''image_mean''' ) ) self.assertTrue(hasattr(__snake_case , '''image_std''' ) ) self.assertTrue(hasattr(__snake_case , '''do_convert_rgb''' ) ) def snake_case ( self : List[Any] ): pass def snake_case ( self : List[str] ): # Initialize image_processing lowerCamelCase :str = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase :Optional[Any] = self.image_processor_tester.prepare_inputs(equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input lowerCamelCase :str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched lowerCamelCase :int = image_processing(__snake_case , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
166
A__ = range(2, 20 + 1) A__ = [10**k for k in range(ks[-1] + 1)] A__ = {} def _lowerCamelCase ( a_ : Optional[Any] , a_ : Optional[int] , a_ : Optional[int] , a_ : str): lowerCamelCase :Optional[Any] = sum(a_i[j] for j in range(a_ , len(a_))) lowerCamelCase :Union[str, Any] = sum(a_i[j] * base[j] for j in range(min(len(a_) , a_))) lowerCamelCase , lowerCamelCase :Optional[int] = 0, 0 lowerCamelCase :int = n - i lowerCamelCase :Optional[Any] = memo.get(a_) if sub_memo is not None: lowerCamelCase :List[Any] = sub_memo.get(a_) if jumps is not None and len(a_) > 0: # find and make the largest jump without going over lowerCamelCase :Any = -1 for _k in range(len(a_) - 1 , -1 , -1): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: lowerCamelCase :Union[str, Any] = _k break if max_jump >= 0: lowerCamelCase , lowerCamelCase , lowerCamelCase :str = jumps[max_jump] # since the difference between jumps is cached, add c lowerCamelCase :List[Any] = diff + c for j in range(min(a_ , len(a_))): lowerCamelCase , lowerCamelCase :Tuple = divmod(a_ , 10) if new_c > 0: add(a_ , a_ , a_) else: lowerCamelCase :Optional[int] = [] else: lowerCamelCase :List[Any] = {c: []} lowerCamelCase :Any = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps lowerCamelCase , lowerCamelCase :Union[str, Any] = next_term(a_ , k - 1 , i + dn , a_) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead lowerCamelCase , lowerCamelCase :List[str] = compute(a_ , a_ , i + dn , a_) diff += _diff dn += terms_jumped lowerCamelCase :Any = sub_memo[c] # keep jumps sorted by # of terms skipped lowerCamelCase :Optional[int] = 0 while j < len(a_): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(a_ , (diff, dn, k)) return (diff, dn) def _lowerCamelCase ( a_ : Union[str, Any] , a_ : List[str] , a_ : int , a_ : Union[str, Any]): if i >= n: return 0, i if k > len(a_): a_i.extend([0 for _ in range(k - len(a_))]) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) lowerCamelCase :int = i lowerCamelCase , lowerCamelCase , lowerCamelCase :List[str] = 0, 0, 0 for j in range(len(a_)): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 lowerCamelCase :Optional[Any] = ds_c + ds_b diff += addend lowerCamelCase :int = 0 for j in range(a_): lowerCamelCase :Dict = a_i[j] + addend lowerCamelCase , lowerCamelCase :int = divmod(a_ , 10) ds_c += a_i[j] if addend > 0: break if addend > 0: add(a_ , a_ , a_) return diff, i - start_i def _lowerCamelCase ( a_ : int , a_ : str , a_ : str): for j in range(a_ , len(a_)): lowerCamelCase :Tuple = digits[j] + addend if s >= 10: lowerCamelCase , lowerCamelCase :Union[str, Any] = divmod(a_ , 10) lowerCamelCase :Tuple = addend // 10 + quotient else: lowerCamelCase :Optional[Any] = s lowerCamelCase :Tuple = addend // 10 if addend == 0: break while addend > 0: lowerCamelCase , lowerCamelCase :int = divmod(a_ , 10) digits.append(a_) def _lowerCamelCase ( a_ : int = 10**15): lowerCamelCase :Optional[int] = [1] lowerCamelCase :Optional[Any] = 1 lowerCamelCase :Dict = 0 while True: lowerCamelCase , lowerCamelCase :Optional[Any] = next_term(a_ , 20 , i + dn , a_) dn += terms_jumped if dn == n - i: break lowerCamelCase :Optional[Any] = 0 for j in range(len(a_)): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F'{solution() = }')
166
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = """naver-clova-ix/donut-base-finetuned-docvqa""" lowerCAmelCase_ = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) lowerCAmelCase_ = """document_qa""" lowerCAmelCase_ = AutoProcessor lowerCAmelCase_ = VisionEncoderDecoderModel lowerCAmelCase_ = ["""image""", """text"""] lowerCAmelCase_ = ["""text"""] def __init__( self , *A_ , **A_ )-> str: '''simple docstring''' if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*A_ , **A_ ) def UpperCAmelCase_ ( self , A_ , A_ )-> List[str]: '''simple docstring''' UpperCamelCase = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' UpperCamelCase = task_prompt.replace('{user_input}' , A_ ) UpperCamelCase = self.pre_processor.tokenizer( A_ , add_special_tokens=A_ , return_tensors='pt' ).input_ids UpperCamelCase = self.pre_processor(A_ , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def UpperCAmelCase_ ( self , A_ )-> Dict: '''simple docstring''' return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=A_ , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=A_ , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=A_ , ).sequences def UpperCAmelCase_ ( self , A_ )-> List[Any]: '''simple docstring''' UpperCamelCase = self.pre_processor.batch_decode(A_ )[0] UpperCamelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) UpperCamelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) UpperCamelCase = re.sub(R'<.*?>' , '' , A_ , count=1 ).strip() # remove first task start token UpperCamelCase = self.pre_processor.tokenajson(A_ ) return sequence["answer"]
432
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase : int = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Dict = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowerCAmelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
432
1
from math import isqrt def A__ ( SCREAMING_SNAKE_CASE_ : int ) -> list[int]: """simple docstring""" _UpperCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = False return [i for i in range(2 , SCREAMING_SNAKE_CASE_ ) if is_prime[i]] def A__ ( SCREAMING_SNAKE_CASE_ : int = 10**8 ) -> int: """simple docstring""" _UpperCAmelCase = calculate_prime_numbers(max_number // 2 ) _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = len(SCREAMING_SNAKE_CASE_ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(f'''{solution() = }''')
32
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
309
0
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar snake_case : Optional[Any] = TypeVar('T') snake_case : List[Any] = TypeVar('U') class lowerCAmelCase__ ( Generic[T, U] ): def __init__( self : Optional[Any] , _A : T | None , _A : U | None): A__ : Union[str, Any] = key A__ : Dict = val A__ : DoubleLinkedListNode[T, U] | None = None A__ : DoubleLinkedListNode[T, U] | None = None def __repr__( self : Union[str, Any]): return ( F'Node: key: {self.key}, val: {self.val}, ' F'has next: {bool(self.next)}, has prev: {bool(self.prev)}' ) class lowerCAmelCase__ ( Generic[T, U] ): def __init__( self : Union[str, Any]): A__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(_A , _A) A__ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(_A , _A) A__ , A__ : Tuple = self.rear, self.head def __repr__( self : List[str]): A__ : Union[str, Any] = ["DoubleLinkedList"] A__ : int = self.head while node.next is not None: rep.append(str(_A)) A__ : str = node.next rep.append(str(self.rear)) return ",\n ".join(_A) def _lowercase ( self : List[Any] , _A : DoubleLinkedListNode[T, U]): A__ : str = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None A__ : Dict = node A__ : int = previous A__ : Dict = node A__ : List[Any] = self.rear def _lowercase ( self : int , _A : DoubleLinkedListNode[T, U]): if node.prev is None or node.next is None: return None A__ : List[str] = node.next A__ : Union[str, Any] = node.prev A__ : Optional[Any] = None A__ : List[str] = None return node class lowerCAmelCase__ ( Generic[T, U] ): __A : dict[Callable[[T], U], LRUCache[T, U]] = {} def __init__( self : List[Any] , _A : int): A__ : DoubleLinkedList[T, U] = DoubleLinkedList() A__ : Union[str, Any] = capacity A__ : List[str] = 0 A__ : Any = 0 A__ : int = 0 A__ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self : Optional[int]): return ( F'CacheInfo(hits={self.hits}, misses={self.miss}, ' F'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self : str , _A : T): return key in self.cache def _lowercase ( self : Dict , _A : T): # Note: pythonic interface would throw KeyError rather than return None if key in self.cache: self.hits += 1 A__ : DoubleLinkedListNode[T, U] = self.cache[key] A__ : str = self.list.remove(self.cache[key]) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(_A) return node.val self.miss += 1 return None def _lowercase ( self : List[str] , _A : T , _A : U): if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity A__ : str = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(_A) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 A__ : Optional[int] = DoubleLinkedListNode(_A , _A) self.list.add(self.cache[key]) self.num_keys += 1 else: # bump node to the end of the list, update value A__ : str = self.list.remove(self.cache[key]) assert node is not None # node guaranteed to be in list A__ : int = value self.list.add(_A) @classmethod def _lowercase ( cls : Dict , _A : int = 128): def cache_decorator_inner(_A : Callable[[T], U]) -> Callable[..., U]: def cache_decorator_wrapper(*_A : T) -> U: if func not in cls.decorator_function_to_instance_map: A__ : str = LRUCache(_A) A__ : Optional[int] = cls.decorator_function_to_instance_map[func].get(args[0]) if result is None: A__ : Tuple = func(*_A) cls.decorator_function_to_instance_map[func].put(args[0] , _A) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(_A , "cache_info" , _A) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
182
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCAmelCase__ ( UpperCamelCase ): def __init__( self : Dict , _A : NestedDataStructureLike[PathLike] , _A : Optional[NamedSplit] = None , _A : Optional[Features] = None , _A : str = None , _A : bool = False , _A : bool = False , _A : Optional[str] = None , _A : Optional[int] = None , **_A : Dict , ): super().__init__( _A , split=_A , features=_A , cache_dir=_A , keep_in_memory=_A , streaming=_A , num_proc=_A , **_A , ) A__ : Optional[int] = field A__ : Dict = path_or_paths if isinstance(_A , _A) else {self.split: path_or_paths} A__ : int = Json( cache_dir=_A , data_files=_A , features=_A , field=_A , **_A , ) def _lowercase ( self : Dict): # Build iterable dataset if self.streaming: A__ : Union[str, Any] = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: A__ : Optional[Any] = None A__ : Any = None A__ : Tuple = None A__ : Tuple = None self.builder.download_and_prepare( download_config=_A , download_mode=_A , verification_mode=_A , base_path=_A , num_proc=self.num_proc , ) A__ : Any = self.builder.as_dataset( split=self.split , verification_mode=_A , in_memory=self.keep_in_memory) return dataset class lowerCAmelCase__ : def __init__( self : Union[str, Any] , _A : Dataset , _A : Union[PathLike, BinaryIO] , _A : Optional[int] = None , _A : Optional[int] = None , **_A : Any , ): if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.') A__ : Tuple = dataset A__ : Tuple = path_or_buf A__ : int = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A__ : Tuple = num_proc A__ : Any = "utf-8" A__ : Optional[int] = to_json_kwargs def _lowercase ( self : Union[str, Any]): A__ : Any = self.to_json_kwargs.pop("path_or_buf" , _A) A__ : Union[str, Any] = self.to_json_kwargs.pop("orient" , "records") A__ : List[Any] = self.to_json_kwargs.pop("lines" , True if orient == "records" else False) A__ : List[Any] = self.to_json_kwargs.pop("index" , False if orient in ["split", "table"] else True) A__ : int = self.to_json_kwargs.pop("compression" , _A) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , "wb" , compression=_A) as buffer: A__ : int = self._write(file_obj=_A , orient=_A , lines=_A , index=_A , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' " was passed. Please provide a local path instead.") A__ : Optional[Any] = self._write( file_obj=self.path_or_buf , orient=_A , lines=_A , index=_A , **self.to_json_kwargs) return written def _lowercase ( self : List[Any] , _A : int): A__ , A__ , A__ , A__ , A__ : Union[str, Any] = args A__ : Dict = query_table( table=self.dataset.data , key=slice(_A , offset + self.batch_size) , indices=self.dataset._indices , ) A__ : Dict = batch.to_pandas().to_json( path_or_buf=_A , orient=_A , lines=_A , index=_A , **_A) if not json_str.endswith("\n"): json_str += "\n" return json_str.encode(self.encoding) def _lowercase ( self : List[str] , _A : BinaryIO , _A : str , _A : List[Any] , _A : Optional[Any] , **_A : Optional[Any] , ): A__ : Any = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): A__ : List[str] = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(_A) else: A__ , A__ : Union[str, Any] = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , _A , _A)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="ba" , disable=not logging.is_progress_bar_enabled() , desc="Creating json from Arrow format" , ): written += file_obj.write(_A) return written
182
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''adapter_layer''': '''encoder.layers.*.adapter_layer''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', '''pooling_layer.linear''': '''projector''', '''pooling_layer.projection''': '''classifier''', } __snake_case = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''projector''', '''classifier''', ] def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" __UpperCamelCase = {} with open(_lowercase , 'r' ) as file: for line_number, line in enumerate(_lowercase ): __UpperCamelCase = line.strip() if line: __UpperCamelCase = line.split() __UpperCamelCase = line_number __UpperCamelCase = words[0] __UpperCamelCase = value return result def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[str]: """simple docstring""" for attribute in key.split('.' ): __UpperCamelCase = getattr(_lowercase , _lowercase ) __UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowercase ): __UpperCamelCase = PARAM_MAPPING[full_name.split('.' )[-1]] __UpperCamelCase = 'param' if weight_type is not None and weight_type != "param": __UpperCamelCase = getattr(_lowercase , _lowercase ).shape elif weight_type is not None and weight_type == "param": __UpperCamelCase = hf_pointer for attribute in hf_param_name.split('.' ): __UpperCamelCase = getattr(_lowercase , _lowercase ) __UpperCamelCase = shape_pointer.shape # let's reduce dimension __UpperCamelCase = value[0] else: __UpperCamelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __UpperCamelCase = value elif weight_type == "weight_g": __UpperCamelCase = value elif weight_type == "weight_v": __UpperCamelCase = value elif weight_type == "bias": __UpperCamelCase = value elif weight_type == "param": for attribute in hf_param_name.split('.' ): __UpperCamelCase = getattr(_lowercase , _lowercase ) __UpperCamelCase = value else: __UpperCamelCase = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> List[Any]: """simple docstring""" __UpperCamelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(_lowercase ): __UpperCamelCase = PARAM_MAPPING[full_name.split('.' )[-1]] __UpperCamelCase = 'param' if weight_type is not None and weight_type != "param": __UpperCamelCase = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": __UpperCamelCase = '.'.join([key, hf_param_name] ) else: __UpperCamelCase = key __UpperCamelCase = value if 'lm_head' in full_key else value[0] __snake_case = { '''W_a''': '''linear_1.weight''', '''W_b''': '''linear_2.weight''', '''b_a''': '''linear_1.bias''', '''b_b''': '''linear_2.bias''', '''ln_W''': '''norm.weight''', '''ln_b''': '''norm.bias''', } def _A ( _lowercase , _lowercase , _lowercase=None , _lowercase=None ) -> List[Any]: """simple docstring""" __UpperCamelCase = False for key, mapped_key in MAPPING.items(): __UpperCamelCase = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __UpperCamelCase = True if "*" in mapped_key: __UpperCamelCase = name.split(_lowercase )[0].split('.' )[-2] __UpperCamelCase = mapped_key.replace('*' , _lowercase ) if "weight_g" in name: __UpperCamelCase = 'weight_g' elif "weight_v" in name: __UpperCamelCase = 'weight_v' elif "bias" in name: __UpperCamelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj __UpperCamelCase = 'weight' else: __UpperCamelCase = None if hf_dict is not None: rename_dict(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) else: set_recursively(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) return is_used return is_used def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" __UpperCamelCase = [] __UpperCamelCase = fairseq_model.state_dict() __UpperCamelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): __UpperCamelCase = False if "conv_layers" in name: load_conv_layer( _lowercase , _lowercase , _lowercase , _lowercase , hf_model.config.feat_extract_norm == 'group' , ) __UpperCamelCase = True else: __UpperCamelCase = load_wavaveca_layer(_lowercase , _lowercase , _lowercase ) if not is_used: unused_weights.append(_lowercase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Any: """simple docstring""" __UpperCamelCase = full_name.split('conv_layers.' )[-1] __UpperCamelCase = name.split('.' ) __UpperCamelCase = int(items[0] ) __UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __UpperCamelCase = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __UpperCamelCase = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowercase ) @torch.no_grad() def _A ( _lowercase , _lowercase , _lowercase=None , _lowercase=None , _lowercase=True , _lowercase=False ) -> Dict: """simple docstring""" if config_path is not None: __UpperCamelCase = WavaVecaConfig.from_pretrained(_lowercase ) else: __UpperCamelCase = WavaVecaConfig() if is_seq_class: __UpperCamelCase = read_txt_into_dict(_lowercase ) __UpperCamelCase = idalabel __UpperCamelCase = WavaVecaForSequenceClassification(_lowercase ) __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , ) feature_extractor.save_pretrained(_lowercase ) elif is_finetuned: if dict_path: __UpperCamelCase = Dictionary.load(_lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __UpperCamelCase = target_dict.pad_index __UpperCamelCase = target_dict.bos_index __UpperCamelCase = target_dict.eos_index __UpperCamelCase = len(target_dict.symbols ) __UpperCamelCase = os.path.join(_lowercase , 'vocab.json' ) if not os.path.isdir(_lowercase ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(_lowercase ) ) return os.makedirs(_lowercase , exist_ok=_lowercase ) __UpperCamelCase = target_dict.indices # fairseq has the <pad> and <s> switched __UpperCamelCase = 0 __UpperCamelCase = 1 with open(_lowercase , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(_lowercase , _lowercase ) __UpperCamelCase = WavaVecaCTCTokenizer( _lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=_lowercase , ) __UpperCamelCase = True if config.feat_extract_norm == 'layer' else False __UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowercase , return_attention_mask=_lowercase , ) __UpperCamelCase = WavaVecaProcessor(feature_extractor=_lowercase , tokenizer=_lowercase ) processor.save_pretrained(_lowercase ) __UpperCamelCase = WavaVecaForCTC(_lowercase ) else: __UpperCamelCase = WavaVecaForPreTraining(_lowercase ) if is_finetuned or is_seq_class: __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: __UpperCamelCase = argparse.Namespace(task='audio_pretraining' ) __UpperCamelCase = fairseq.tasks.setup_task(_lowercase ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowercase ) __UpperCamelCase = model[0].eval() recursively_load_weights(_lowercase , _lowercase , not is_finetuned ) hf_wavavec.save_pretrained(_lowercase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) parser.add_argument( '''--is_seq_class''', action='''store_true''', help='''Whether the model to convert is a fine-tuned sequence classification model or not''', ) __snake_case = parser.parse_args() __snake_case = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
1
"""simple docstring""" import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class a__ : def __init__( self : List[Any] ,a__ : str ,a__ : Optional[Any]=13 ,a__ : Union[str, Any]=7 ,a__ : str=True ,a__ : Union[str, Any]=True ,a__ : Dict=True ,a__ : Optional[int]=True ,a__ : Optional[int]=99 ,a__ : Dict=64 ,a__ : Union[str, Any]=32 ,a__ : Union[str, Any]=5 ,a__ : Union[str, Any]=4 ,a__ : str=37 ,a__ : int="gelu" ,a__ : str=0.1 ,a__ : int=0.1 ,a__ : Optional[int]=512 ,a__ : Dict=16 ,a__ : Any=2 ,a__ : str=0.02 ,a__ : List[str]=3 ,a__ : Dict=4 ,a__ : Optional[Any]=None ,) -> int: """simple docstring""" _lowerCAmelCase:Tuple = parent _lowerCAmelCase:Union[str, Any] = batch_size _lowerCAmelCase:Dict = seq_length _lowerCAmelCase:Union[str, Any] = is_training _lowerCAmelCase:Any = use_input_mask _lowerCAmelCase:Dict = use_token_type_ids _lowerCAmelCase:Optional[int] = use_labels _lowerCAmelCase:List[Any] = vocab_size _lowerCAmelCase:int = hidden_size _lowerCAmelCase:Optional[int] = embedding_size _lowerCAmelCase:List[Any] = num_hidden_layers _lowerCAmelCase:Optional[Any] = num_attention_heads _lowerCAmelCase:List[str] = intermediate_size _lowerCAmelCase:List[str] = hidden_act _lowerCAmelCase:Any = hidden_dropout_prob _lowerCAmelCase:int = attention_probs_dropout_prob _lowerCAmelCase:Tuple = max_position_embeddings _lowerCAmelCase:Optional[Any] = type_vocab_size _lowerCAmelCase:Any = type_sequence_label_size _lowerCAmelCase:Optional[int] = initializer_range _lowerCAmelCase:List[str] = num_labels _lowerCAmelCase:List[str] = num_choices _lowerCAmelCase:int = scope def __UpperCamelCase ( self : Union[str, Any]) -> List[str]: """simple docstring""" _lowerCAmelCase:Tuple = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size) _lowerCAmelCase:Optional[int] = None if self.use_input_mask: _lowerCAmelCase:int = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase:str = None if self.use_token_type_ids: _lowerCAmelCase:Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size) _lowerCAmelCase:Tuple = None _lowerCAmelCase:Optional[Any] = None _lowerCAmelCase:Optional[Any] = None if self.use_labels: _lowerCAmelCase:List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size) _lowerCAmelCase:Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels) _lowerCAmelCase:Dict = ids_tensor([self.batch_size] ,self.num_choices) _lowerCAmelCase:Union[str, Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" return MegatronBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=a__ ,initializer_range=self.initializer_range ,) def __UpperCamelCase ( self : Any ,a__ : int ,a__ : Optional[Any] ,a__ : Dict ,a__ : Optional[Any] ,a__ : Dict ,a__ : int ,a__ : int) -> Optional[Any]: """simple docstring""" _lowerCAmelCase:List[str] = MegatronBertModel(config=a__) model.to(a__) model.eval() _lowerCAmelCase:Optional[Any] = model(a__ ,attention_mask=a__ ,token_type_ids=a__) _lowerCAmelCase:int = model(a__ ,token_type_ids=a__) _lowerCAmelCase:Dict = model(a__) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size)) def __UpperCamelCase ( self : Union[str, Any] ,a__ : Tuple ,a__ : str ,a__ : List[str] ,a__ : Tuple ,a__ : List[Any] ,a__ : List[str] ,a__ : Dict) -> Optional[Any]: """simple docstring""" _lowerCAmelCase:Any = MegatronBertForMaskedLM(config=a__) model.to(a__) model.eval() _lowerCAmelCase:List[Any] = model(a__ ,attention_mask=a__ ,token_type_ids=a__ ,labels=a__) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size)) def __UpperCamelCase ( self : Any ,a__ : Any ,a__ : Optional[Any] ,a__ : Tuple ,a__ : List[Any] ,a__ : Dict ,a__ : Tuple ,a__ : Any) -> str: """simple docstring""" _lowerCAmelCase:List[Any] = MegatronBertForCausalLM(config=a__) model.to(a__) model.eval() _lowerCAmelCase:int = model(a__ ,attention_mask=a__ ,token_type_ids=a__ ,labels=a__) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size)) def __UpperCamelCase ( self : List[Any] ,a__ : Union[str, Any] ,a__ : Any ,a__ : int ,a__ : Any ,a__ : int ,a__ : List[str] ,a__ : List[Any]) -> Dict: """simple docstring""" _lowerCAmelCase:Tuple = MegatronBertForNextSentencePrediction(config=a__) model.to(a__) model.eval() _lowerCAmelCase:Dict = model( a__ ,attention_mask=a__ ,token_type_ids=a__ ,labels=a__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2)) def __UpperCamelCase ( self : Optional[int] ,a__ : Optional[int] ,a__ : List[Any] ,a__ : Tuple ,a__ : Optional[int] ,a__ : Any ,a__ : Optional[int] ,a__ : Optional[Any]) -> List[Any]: """simple docstring""" _lowerCAmelCase:str = MegatronBertForPreTraining(config=a__) model.to(a__) model.eval() _lowerCAmelCase:Optional[Any] = model( a__ ,attention_mask=a__ ,token_type_ids=a__ ,labels=a__ ,next_sentence_label=a__ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2)) def __UpperCamelCase ( self : Dict ,a__ : Any ,a__ : Any ,a__ : Optional[Any] ,a__ : Tuple ,a__ : Tuple ,a__ : Optional[Any] ,a__ : Union[str, Any]) -> Tuple: """simple docstring""" _lowerCAmelCase:Optional[int] = MegatronBertForQuestionAnswering(config=a__) model.to(a__) model.eval() _lowerCAmelCase:Union[str, Any] = model( a__ ,attention_mask=a__ ,token_type_ids=a__ ,start_positions=a__ ,end_positions=a__ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length)) def __UpperCamelCase ( self : Optional[Any] ,a__ : Dict ,a__ : Dict ,a__ : List[Any] ,a__ : int ,a__ : List[str] ,a__ : Union[str, Any] ,a__ : List[Any]) -> int: """simple docstring""" _lowerCAmelCase:Union[str, Any] = self.num_labels _lowerCAmelCase:str = MegatronBertForSequenceClassification(a__) model.to(a__) model.eval() _lowerCAmelCase:Tuple = model(a__ ,attention_mask=a__ ,token_type_ids=a__ ,labels=a__) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels)) def __UpperCamelCase ( self : Dict ,a__ : Tuple ,a__ : Union[str, Any] ,a__ : List[str] ,a__ : Optional[Any] ,a__ : List[Any] ,a__ : Tuple ,a__ : str) -> List[str]: """simple docstring""" _lowerCAmelCase:Union[str, Any] = self.num_labels _lowerCAmelCase:Optional[int] = MegatronBertForTokenClassification(config=a__) model.to(a__) model.eval() _lowerCAmelCase:Optional[Any] = model(a__ ,attention_mask=a__ ,token_type_ids=a__ ,labels=a__) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels)) def __UpperCamelCase ( self : Tuple ,a__ : Tuple ,a__ : List[str] ,a__ : List[Any] ,a__ : List[Any] ,a__ : Any ,a__ : List[str] ,a__ : int) -> int: """simple docstring""" _lowerCAmelCase:str = self.num_choices _lowerCAmelCase:Optional[int] = MegatronBertForMultipleChoice(config=a__) model.to(a__) model.eval() _lowerCAmelCase:List[Any] = input_ids.unsqueeze(1).expand(-1 ,self.num_choices ,-1).contiguous() _lowerCAmelCase:Union[str, Any] = token_type_ids.unsqueeze(1).expand(-1 ,self.num_choices ,-1).contiguous() _lowerCAmelCase:Tuple = input_mask.unsqueeze(1).expand(-1 ,self.num_choices ,-1).contiguous() _lowerCAmelCase:List[Any] = model( a__ ,attention_mask=a__ ,token_type_ids=a__ ,labels=a__ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices)) def __UpperCamelCase ( self : int) -> List[str]: """simple docstring""" _lowerCAmelCase:List[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ):Union[str, Any] = config_and_inputs _lowerCAmelCase:List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a__ ( UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ): snake_case__ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) snake_case__ = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) snake_case__ = True # test_resize_embeddings = False snake_case__ = False def __UpperCamelCase ( self : Tuple ,a__ : str ,a__ : Any ,a__ : Tuple=False) -> int: """simple docstring""" _lowerCAmelCase:List[Any] = super()._prepare_for_class(a__ ,a__ ,return_labels=a__) if return_labels: if model_class in get_values(a__): _lowerCAmelCase:Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=a__) _lowerCAmelCase:Optional[Any] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=a__) return inputs_dict def __UpperCamelCase ( self : Optional[Any]) -> Dict: """simple docstring""" _lowerCAmelCase:Any = MegatronBertModelTester(self) _lowerCAmelCase:List[str] = ConfigTester(self ,config_class=a__ ,hidden_size=37) def __UpperCamelCase ( self : str) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def __UpperCamelCase ( self : Any) -> Union[str, Any]: """simple docstring""" _lowerCAmelCase:Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*a__) def __UpperCamelCase ( self : Optional[int]) -> Optional[int]: """simple docstring""" _lowerCAmelCase:Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*a__) def __UpperCamelCase ( self : List[str]) -> str: """simple docstring""" _lowerCAmelCase:Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*a__) def __UpperCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" _lowerCAmelCase:Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*a__) def __UpperCamelCase ( self : Tuple) -> Optional[int]: """simple docstring""" _lowerCAmelCase:int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*a__) def __UpperCamelCase ( self : Any) -> Dict: """simple docstring""" _lowerCAmelCase:List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*a__) def __UpperCamelCase ( self : int) -> List[str]: """simple docstring""" _lowerCAmelCase:Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*a__) def __UpperCamelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" _lowerCAmelCase:Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*a__) def UpperCAmelCase ( snake_case : Any ): return torch.tensor( snake_case , dtype=torch.long , device=snake_case , ) UpperCamelCase__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class a__ ( unittest.TestCase ): @slow @unittest.skip('''Model is not available.''') def __UpperCamelCase ( self : List[str]) -> Optional[Any]: """simple docstring""" _lowerCAmelCase:Any = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: _lowerCAmelCase:List[str] = os.path.join(os.environ['''MYDIR'''] ,a__) _lowerCAmelCase:Optional[Any] = MegatronBertModel.from_pretrained(a__) model.to(a__) model.half() _lowerCAmelCase:int = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]]) with torch.no_grad(): _lowerCAmelCase:List[Any] = model(a__)[0] _lowerCAmelCase:Dict = torch.Size((1, 9, 1024)) self.assertEqual(output.shape ,a__) _lowerCAmelCase:Tuple = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3): for jj in range(3): _lowerCAmelCase:int = output[0, ii, jj] _lowerCAmelCase:List[Any] = expected[3 * ii + jj] _lowerCAmelCase:str = '''ii={} jj={} a={} b={}'''.format(a__ ,a__ ,a__ ,a__) self.assertTrue(math.isclose(a__ ,a__ ,rel_tol=a__ ,abs_tol=a__) ,msg=a__)
227
0
import numpy as np def snake_case_ ( _SCREAMING_SNAKE_CASE ): return 1 / (1 + np.exp(-vector )) def snake_case_ ( _SCREAMING_SNAKE_CASE ): return vector * sigmoid(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
655
import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : '''simple docstring''' def _snake_case ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __lowercase = TaEncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5" ) torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ "ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D", ] , mid_block_type="UNetMidBlock2DSimpleCrossAttn" , up_block_types=["SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="text" , addition_embed_type_num_heads=2 , cross_attention_norm="group_norm" , resnet_time_scale_shift="scale_shift" , act_fn="gelu" , class_embed_type="timestep" , mid_block_scale_factor=1.414 , time_embedding_act_fn="gelu" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , thresholding=lowerCamelCase , dynamic_thresholding_ratio=0.95 , sample_max_value=1.0 , prediction_type="epsilon" , variance_type="learned_range" , ) torch.manual_seed(0 ) __lowercase = DDPMScheduler( num_train_timesteps=1_000 , beta_schedule="squaredcos_cap_v2" , beta_start=0.0001 , beta_end=0.02 , ) torch.manual_seed(0 ) __lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def _snake_case ( self : str ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["prompt"] __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] if "image" in inputs: __lowercase = inputs["image"] else: __lowercase = None if "mask_image" in inputs: __lowercase = inputs["mask_image"] else: __lowercase = None if "original_image" in inputs: __lowercase = inputs["original_image"] else: __lowercase = None __lowercase , __lowercase = pipe.encode_prompt(lowerCamelCase ) # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(lowerCamelCase , lowerCamelCase ) is None , f"""`{optional_component}` did not stay set to None after loading.""" , ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = inputs["generator"] __lowercase = inputs["num_inference_steps"] __lowercase = inputs["output_type"] # inputs with prompt converted to embeddings __lowercase = { "prompt_embeds": prompt_embeds, "negative_prompt_embeds": negative_prompt_embeds, "generator": generator, "num_inference_steps": num_inference_steps, "output_type": output_type, } if image is not None: __lowercase = image if mask_image is not None: __lowercase = mask_image if original_image is not None: __lowercase = original_image __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 ) def _snake_case ( self : Optional[Any] ): '''simple docstring''' __lowercase = self.get_dummy_components() __lowercase = self.pipeline_class(**lowerCamelCase ) pipe.to(lowerCamelCase ) pipe.set_progress_bar_config(disable=lowerCamelCase ) __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe(**lowerCamelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(lowerCamelCase ) __lowercase = self.pipeline_class.from_pretrained(lowerCamelCase ) pipe_loaded.to(lowerCamelCase ) pipe_loaded.set_progress_bar_config(disable=lowerCamelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests __lowercase = self.get_dummy_inputs(lowerCamelCase ) __lowercase = pipe_loaded(**lowerCamelCase )[0] __lowercase = np.abs(to_np(lowerCamelCase ) - to_np(lowerCamelCase ) ).max() self.assertLess(lowerCamelCase , 1e-4 )
655
1
"""simple docstring""" import sys from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers _UpperCamelCase : Union[str, Any] = "python tqdm regex requests packaging filelock numpy tokenizers".split() if sys.version_info < (3, 7): pkgs_to_check_at_runtime.append("dataclasses") if sys.version_info < (3, 8): pkgs_to_check_at_runtime.append("importlib_metadata") for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def a_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any]=None ): '''simple docstring''' require_version(deps[pkg] , _lowerCAmelCase )
599
"""simple docstring""" _UpperCamelCase : Any = {str(digit): digit**5 for digit in range(10)} def a_ ( _lowerCAmelCase : int ): '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_lowerCAmelCase ) ) def a_ ( ): '''simple docstring''' return sum( number for number in range(1000 , 100_0000 ) if number == digits_fifth_powers_sum(_lowerCAmelCase ) ) if __name__ == "__main__": print(solution())
599
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase__ :Tuple = { "configuration_biogpt": ["BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BioGptConfig"], "tokenization_biogpt": ["BioGptTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :Union[str, Any] = [ "BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST", "BioGptForCausalLM", "BioGptForTokenClassification", "BioGptForSequenceClassification", "BioGptModel", "BioGptPreTrainedModel", ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowercase__ :Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
633
from pathlib import Path import numpy as np from PIL import Image def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase , lowercase , lowercase = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' return (gray > 127) & (gray <= 255) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = np.zeros_like(lowerCAmelCase__ ) lowercase = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image lowercase = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): lowercase = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() lowercase = int(summation > 0 ) return output if __name__ == "__main__": # read original image lowercase__ :str = Path(__file__).resolve().parent / "image_data" / "lena.jpg" lowercase__ :List[str] = np.array(Image.open(lena_path)) # kernel to be applied lowercase__ :Union[str, Any] = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) lowercase__ :Optional[int] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image lowercase__ :str = Image.fromarray(output).convert("RGB") pil_img.save("result_dilation.png")
633
1
"""simple docstring""" from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def lowercase__ ( ): _SCREAMING_SNAKE_CASE : Any = { 'repo_name': ['test_repo1', 'test_repo2', 'test_repo3'], 'path': ['test_1.py', 'test_2.py', 'unit_test.py'], 'content': ['a ' * 20, 'a ' * 30, 'b ' * 7], } _SCREAMING_SNAKE_CASE : Dict = Dataset.from_dict(lowerCamelCase ) return dataset class _lowerCAmelCase ( __UpperCAmelCase ): def A ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = get_dataset() _SCREAMING_SNAKE_CASE : List[str] = make_duplicate_clusters(lowerCAmelCase_ , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def A ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : List[str] = get_dataset() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = deduplicate_dataset(lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , 2 ) print(lowerCAmelCase_ ) self.assertEqual(duplicate_clusters[0][0]['copies'] , 2 ) self.assertEqual(duplicate_clusters[0][0]['is_extreme'] , lowerCAmelCase_ )
621
"""simple docstring""" import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _lowerCAmelCase ( unittest.TestCase ): def A ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() def A ( self ) -> int: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Optional[int] = FlaxStableDiffusionPipeline.from_pretrained( 'stabilityai/stable-diffusion-2' , revision='bf16' , dtype=jnp.bfloataa , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = 'A painting of a squirrel eating a burger' _SCREAMING_SNAKE_CASE : Optional[Any] = jax.device_count() _SCREAMING_SNAKE_CASE : List[Any] = num_samples * [prompt] _SCREAMING_SNAKE_CASE : Any = sd_pipe.prepare_inputs(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : List[Any] = replicate(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = shard(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Any = jax.random.PRNGKey(0 ) _SCREAMING_SNAKE_CASE : Optional[int] = jax.random.split(lowerCAmelCase_ , jax.device_count() ) _SCREAMING_SNAKE_CASE : Optional[Any] = sd_pipe(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , num_inference_steps=2_5 , jit=lowerCAmelCase_ )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) _SCREAMING_SNAKE_CASE : int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _SCREAMING_SNAKE_CASE : Optional[Any] = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _SCREAMING_SNAKE_CASE : Tuple = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _SCREAMING_SNAKE_CASE : List[Any] = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def A ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : str = 'stabilityai/stable-diffusion-2' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = FlaxDPMSolverMultistepScheduler.from_pretrained(lowerCAmelCase_ , subfolder='scheduler' ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = FlaxStableDiffusionPipeline.from_pretrained( lowerCAmelCase_ , scheduler=lowerCAmelCase_ , revision='bf16' , dtype=jnp.bfloataa , ) _SCREAMING_SNAKE_CASE : Any = scheduler_params _SCREAMING_SNAKE_CASE : int = 'A painting of a squirrel eating a burger' _SCREAMING_SNAKE_CASE : Tuple = jax.device_count() _SCREAMING_SNAKE_CASE : Union[str, Any] = num_samples * [prompt] _SCREAMING_SNAKE_CASE : Any = sd_pipe.prepare_inputs(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Dict = replicate(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Any = shard(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Any = jax.random.PRNGKey(0 ) _SCREAMING_SNAKE_CASE : Optional[Any] = jax.random.split(lowerCAmelCase_ , jax.device_count() ) _SCREAMING_SNAKE_CASE : int = sd_pipe(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , num_inference_steps=2_5 , jit=lowerCAmelCase_ )[0] assert images.shape == (jax.device_count(), 1, 7_6_8, 7_6_8, 3) _SCREAMING_SNAKE_CASE : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) _SCREAMING_SNAKE_CASE : str = images[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] _SCREAMING_SNAKE_CASE : int = jnp.asarray(jax.device_get(image_slice.flatten() ) ) _SCREAMING_SNAKE_CASE : Optional[int] = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
621
1
def UpperCAmelCase_( a__ ) -> Optional[Any]: """simple docstring""" return 10 - x * x def UpperCAmelCase_( a__ , a__ ) -> int: """simple docstring""" if equation(a__ ) * equation(a__ ) >= 0: raise ValueError('''Wrong space!''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = a while (b - a) >= 0.01: # Find middle point SCREAMING_SNAKE_CASE : Optional[Any] = (a + b) / 2 # Check if middle point is root if equation(a__ ) == 0.0: break # Decide the side to repeat the steps if equation(a__ ) * equation(a__ ) < 0: SCREAMING_SNAKE_CASE : Optional[int] = c else: SCREAMING_SNAKE_CASE : int = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
711
def UpperCAmelCase_( a__ , a__ , a__ , a__ , a__ , a__ ): """simple docstring""" if index == r: for j in range(a__ ): print(data[j] , end=''' ''' ) print(''' ''' ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location SCREAMING_SNAKE_CASE : Union[str, Any] = arr[i] combination_util(a__ , a__ , a__ , index + 1 , a__ , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(a__ , a__ , a__ , a__ , a__ , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def UpperCAmelCase_( a__ , a__ , a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [0] * r # Print all combination using temporary array 'data[]' combination_util(a__ , a__ , a__ , 0 , a__ , 0 ) if __name__ == "__main__": # Driver code to check the function above a__ : Dict = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
333
0
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]: # Initialise PyTorch model UpperCamelCase_: Dict = FunnelConfig.from_json_file(UpperCAmelCase__ ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase_: int = FunnelBaseModel(UpperCAmelCase__ ) if base_model else FunnelModel(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase__ ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) A_ : int = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
57
from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _lowerCAmelCase: """simple docstring""" a : int =PegasusConfig a : List[str] ={} a : Optional[int] ='''gelu''' def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=4_0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , ): UpperCamelCase_: List[Any] = parent UpperCamelCase_: Dict = batch_size UpperCamelCase_: List[str] = seq_length UpperCamelCase_: List[str] = is_training UpperCamelCase_: Any = use_labels UpperCamelCase_: Optional[Any] = vocab_size UpperCamelCase_: Tuple = hidden_size UpperCamelCase_: List[Any] = num_hidden_layers UpperCamelCase_: Any = num_attention_heads UpperCamelCase_: Optional[Any] = intermediate_size UpperCamelCase_: Optional[int] = hidden_dropout_prob UpperCamelCase_: int = attention_probs_dropout_prob UpperCamelCase_: Union[str, Any] = max_position_embeddings UpperCamelCase_: Dict = eos_token_id UpperCamelCase_: Union[str, Any] = pad_token_id UpperCamelCase_: List[Any] = bos_token_id def _a ( self ): UpperCamelCase_: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_: int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_: List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_: Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: Tuple = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_: Optional[Any] = prepare_pegasus_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, inputs_dict def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Optional[Any] = TFPegasusModel(config=_lowerCamelCase ).get_decoder() UpperCamelCase_: Optional[int] = inputs_dict['input_ids'] UpperCamelCase_: Optional[int] = input_ids[:1, :] UpperCamelCase_: int = inputs_dict['attention_mask'][:1, :] UpperCamelCase_: Optional[int] = inputs_dict['head_mask'] UpperCamelCase_: Optional[int] = 1 # first forward pass UpperCamelCase_: Union[str, Any] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , use_cache=_lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_: int = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_: int = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_: List[Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase_: int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase_: Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] UpperCamelCase_: int = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase_: Optional[int] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase_: Any = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase_: Union[str, Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1e-3 ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> str: if attention_mask is None: UpperCamelCase_: Optional[Any] = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase_: int = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_: str = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase_: Any = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase_: int = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Tuple =(TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () a : int =(TFPegasusForConditionalGeneration,) if is_tf_available() else () a : Tuple =( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) a : List[str] =True a : List[str] =False a : Tuple =False def _a ( self ): UpperCamelCase_: Dict = TFPegasusModelTester(self ) UpperCamelCase_: Any = ConfigTester(self , config_class=_lowerCamelCase ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): UpperCamelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase ) @require_sentencepiece @require_tokenizers @require_tf class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" a : Dict =[ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] a : int =[ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers a : Union[str, Any] ='''google/pegasus-xsum''' @cached_property def _a ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def _a ( self ): UpperCamelCase_: Optional[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def _a ( self , **_lowerCamelCase ): UpperCamelCase_: Dict = self.translate_src_text(**_lowerCamelCase ) assert self.expected_text == generated_words def _a ( self , **_lowerCamelCase ): UpperCamelCase_: Union[str, Any] = self.tokenizer(self.src_text , **_lowerCamelCase , padding=_lowerCamelCase , return_tensors='tf' ) UpperCamelCase_: Any = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_lowerCamelCase , ) UpperCamelCase_: str = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCamelCase ) return generated_words @slow def _a ( self ): self._assert_generated_batch_equal_expected()
57
1
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch __magic_name__ : Optional[int] = 'sshleifer/bart-tiny-random' __magic_name__ : Any = 'patrickvonplaten/t5-tiny-random' @require_torch class lowerCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowercase_ ( self ): return AutoConfig.from_pretrained(__UpperCamelCase ) def lowercase_ ( self ): A_ , *A_ = create_student_by_copying_alternating_layers(__UpperCamelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def lowercase_ ( self ): A_ , *A_ = create_student_by_copying_alternating_layers(__UpperCamelCase , tempfile.mkdtemp() , e=1 , d=__UpperCamelCase ) def lowercase_ ( self ): A_ , *A_ = create_student_by_copying_alternating_layers(__UpperCamelCase , tempfile.mkdtemp() , e=1 , d=__UpperCamelCase ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def lowercase_ ( self ): A_ , *A_ = create_student_by_copying_alternating_layers(__UpperCamelCase , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def lowercase_ ( self ): with self.assertRaises(__UpperCamelCase ): create_student_by_copying_alternating_layers(__UpperCamelCase , tempfile.mkdtemp() , e=__UpperCamelCase , d=__UpperCamelCase )
608
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __magic_name__ : Dict = {'configuration_glpn': ['GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GLPNConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Union[str, Any] = ['GLPNFeatureExtractor'] __magic_name__ : Tuple = ['GLPNImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : int = [ 'GLPN_PRETRAINED_MODEL_ARCHIVE_LIST', 'GLPNForDepthEstimation', 'GLPNLayer', 'GLPNModel', 'GLPNPreTrainedModel', ] if TYPE_CHECKING: from .configuration_glpn import GLPN_PRETRAINED_CONFIG_ARCHIVE_MAP, GLPNConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_glpn import GLPNFeatureExtractor from .image_processing_glpn import GLPNImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_glpn import ( GLPN_PRETRAINED_MODEL_ARCHIVE_LIST, GLPNForDepthEstimation, GLPNLayer, GLPNModel, GLPNPreTrainedModel, ) else: import sys __magic_name__ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
608
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) UpperCAmelCase_ : Dict = { "configuration_convnext": ["CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvNextConfig", "ConvNextOnnxConfig"] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = ["ConvNextFeatureExtractor"] UpperCAmelCase_ : Any = ["ConvNextImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = [ "CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvNextForImageClassification", "ConvNextModel", "ConvNextPreTrainedModel", "ConvNextBackbone", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[int] = [ "TFConvNextForImageClassification", "TFConvNextModel", "TFConvNextPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys UpperCAmelCase_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure)
491
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file UpperCAmelCase_ : List[Any] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def UpperCamelCase ( _A : Optional[Any]=None )-> Union[str, Any]: """simple docstring""" if subparsers is not None: A__ = subparsers.add_parser("tpu-config" , description=_description ) else: A__ = argparse.ArgumentParser("Accelerate tpu-config command" , description=_description ) # Core arguments A__ = parser.add_argument_group( "Config Arguments" , "Arguments that can be configured through `accelerate config`." ) config_args.add_argument( "--config_file" , type=_A , default=_A , help="Path to the config file to use for accelerate." , ) config_args.add_argument( "--tpu_name" , default=_A , help="The name of the TPU to use. If not specified, will use the TPU specified in the config file." , ) config_args.add_argument( "--tpu_zone" , default=_A , help="The zone of the TPU to use. If not specified, will use the zone specified in the config file." , ) A__ = parser.add_argument_group("TPU Arguments" , "Arguments for options ran inside the TPU." ) pod_args.add_argument( "--use_alpha" , action="store_true" , help="Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`." , ) pod_args.add_argument( "--command_file" , default=_A , help="The path to the file containing the commands to run on the pod on startup." , ) pod_args.add_argument( "--command" , action="append" , nargs="+" , help="A command to run on the pod. Can be passed multiple times." , ) pod_args.add_argument( "--install_accelerate" , action="store_true" , help="Whether to install accelerate on the pod. Defaults to False." , ) pod_args.add_argument( "--accelerate_version" , default="latest" , help="The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub." , ) pod_args.add_argument( "--debug" , action="store_true" , help="If set, will print the command that would be run instead of running it." ) if subparsers is not None: parser.set_defaults(func=_A ) return parser def UpperCamelCase ( _A : Optional[Any] )-> Optional[int]: """simple docstring""" A__ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_A ): A__ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: A__ = defaults.command_file if not args.command and defaults.commands is not None: A__ = defaults.commands if not args.tpu_name: A__ = defaults.tpu_name if not args.tpu_zone: A__ = defaults.tpu_zone if args.accelerate_version == "dev": A__ = "git+https://github.com/huggingface/accelerate.git" elif args.accelerate_version == "latest": A__ = "accelerate -U" elif isinstance(parse(args.accelerate_version ) , _A ): A__ = f"""accelerate=={args.accelerate_version}""" if not args.command_file and not args.command: raise ValueError("You must specify either a command file or a command to run on the pod." ) if args.command_file: with open(args.command_file , "r" ) as f: A__ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _A ): A__ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate A__ = ["cd /usr/share"] if args.install_accelerate: new_cmd += [f"""pip install {args.accelerate_version}"""] new_cmd += args.command A__ = "; ".join(_A ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess A__ = ["gcloud"] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f"""Running {" ".join(_A )}""" ) return subprocess.run(_A ) print("Successfully setup pod." ) def UpperCamelCase ( )-> Optional[int]: """simple docstring""" A__ = tpu_command_parser() A__ = parser.parse_args() tpu_command_launcher(_A )
491
1
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case_ ( _lowerCamelCase ): """simple docstring""" def __init__( self , __a , __a , __a ): """simple docstring""" super().__init__() self.register_modules(vqvae=__a , unet=__a , scheduler=__a ) @torch.no_grad() def __call__( self , __a = 1 , __a = None , __a = 0.0 , __a = 50 , __a = "pil" , __a = True , **__a , ): """simple docstring""" A__ = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=__a , ) A__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler A__ = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(__a ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature A__ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) A__ = {} if accepts_eta: A__ = eta for t in self.progress_bar(self.scheduler.timesteps ): A__ = self.scheduler.scale_model_input(__a , __a ) # predict the noise residual A__ = self.unet(__a , __a ).sample # compute the previous noisy sample x_t -> x_t-1 A__ = self.scheduler.step(__a , __a , __a , **__a ).prev_sample # decode the image latents with the VAE A__ = self.vqvae.decode(__a ).sample A__ = (image / 2 + 0.5).clamp(0 , 1 ) A__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": A__ = self.numpy_to_pil(__a ) if not return_dict: return (image,) return ImagePipelineOutput(images=__a )
554
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter SCREAMING_SNAKE_CASE : Dict = '''Create a default config file for Accelerate with only a few flags set.''' def __lowerCamelCase ( lowerCAmelCase__="no" ,lowerCAmelCase__ = default_json_config_file ,lowerCAmelCase__ = False ): A__ = Path(lowerCAmelCase__ ) path.parent.mkdir(parents=lowerCAmelCase__ ,exist_ok=lowerCAmelCase__ ) if path.exists(): print( f'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False A__ = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) A__ = { 'compute_environment': 'LOCAL_MACHINE', 'mixed_precision': mixed_precision, } if torch.cuda.is_available(): A__ = torch.cuda.device_count() A__ = num_gpus A__ = False if num_gpus > 1: A__ = 'MULTI_GPU' else: A__ = 'NO' elif is_xpu_available() and use_xpu: A__ = torch.xpu.device_count() A__ = num_xpus A__ = False if num_xpus > 1: A__ = 'MULTI_XPU' else: A__ = 'NO' elif is_npu_available(): A__ = torch.npu.device_count() A__ = num_npus A__ = False if num_npus > 1: A__ = 'MULTI_NPU' else: A__ = 'NO' else: A__ = 0 A__ = True A__ = 1 A__ = 'NO' A__ = ClusterConfig(**lowerCAmelCase__ ) config.to_json_file(lowerCAmelCase__ ) return path def __lowerCamelCase ( lowerCAmelCase__ ,lowerCAmelCase__ ): A__ = parser.add_parser('default' ,parents=lowerCAmelCase__ ,help=lowerCAmelCase__ ,formatter_class=lowerCAmelCase__ ) parser.add_argument( '--config_file' ,default=lowerCAmelCase__ ,help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) ,dest='save_location' ,) parser.add_argument( '--mixed_precision' ,choices=['no', 'fp16', 'bf16'] ,type=lowerCAmelCase__ ,help='Whether or not to use mixed precision training. ' 'Choose between FP16 and BF16 (bfloat16) training. ' 'BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.' ,default='no' ,) parser.set_defaults(func=lowerCAmelCase__ ) return parser def __lowerCamelCase ( lowerCAmelCase__ ): A__ = write_basic_config(args.mixed_precision ,args.save_location ) if config_file: print(f'''accelerate configuration saved at {config_file}''' )
554
1
def __magic_name__ ( lowercase ) -> List[str]: """simple docstring""" if collection == []: return [] # get some information about the collection lowercase_ : Optional[int] = len(lowercase ) lowercase_ : int = max(lowercase ) lowercase_ : Dict = min(lowercase ) # create the counting array lowercase_ : Optional[int] = coll_max + 1 - coll_min lowercase_ : Union[str, Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase ): lowercase_ : Union[str, Any] = counting_arr[i] + counting_arr[i - 1] # create the output collection lowercase_ : Union[str, Any] = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase ) ): lowercase_ : Optional[Any] = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def __magic_name__ ( lowercase ) -> str: """simple docstring""" return "".join([chr(lowercase ) for i in counting_sort([ord(lowercase ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" UpperCAmelCase_ = input("""Enter numbers separated by a comma:\n""").strip() UpperCAmelCase_ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
458
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL UpperCAmelCase_ = logging.get_logger(__name__) def __magic_name__ ( lowercase ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(lowercase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class UpperCamelCase__ ( lowerCamelCase__ ): '''simple docstring''' __a : List[Any] = ["""pixel_values"""] def __init__( self, snake_case__ = True, snake_case__ = None, snake_case__ = PILImageResampling.BILINEAR, snake_case__ = True, snake_case__ = None, snake_case__ = True, snake_case__ = 1 / 2_55, snake_case__ = True, snake_case__ = True, snake_case__ = None, snake_case__ = None, **snake_case__, ) -> None: """simple docstring""" super().__init__(**snake_case__ ) lowercase_ : str = size if size is not None else {"""shortest_edge""": 2_56} lowercase_ : int = get_size_dict(snake_case__, default_to_square=snake_case__ ) lowercase_ : int = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24} lowercase_ : Optional[int] = get_size_dict(snake_case__, param_name="""crop_size""" ) lowercase_ : List[Any] = do_resize lowercase_ : int = size lowercase_ : int = do_center_crop lowercase_ : Optional[Any] = crop_size lowercase_ : str = resample lowercase_ : Any = do_rescale lowercase_ : Dict = rescale_factor lowercase_ : List[Any] = offset lowercase_ : int = do_normalize lowercase_ : str = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase_ : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self, snake_case__, snake_case__, snake_case__ = PILImageResampling.BILINEAR, snake_case__ = None, **snake_case__, ) -> np.ndarray: """simple docstring""" lowercase_ : int = get_size_dict(snake_case__, default_to_square=snake_case__ ) if "shortest_edge" in size: lowercase_ : Union[str, Any] = get_resize_output_image_size(snake_case__, size["""shortest_edge"""], default_to_square=snake_case__ ) elif "height" in size and "width" in size: lowercase_ : Dict = (size["""height"""], size["""width"""]) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(snake_case__, size=snake_case__, resample=snake_case__, data_format=snake_case__, **snake_case__ ) def snake_case__ ( self, snake_case__, snake_case__, snake_case__ = None, **snake_case__, ) -> np.ndarray: """simple docstring""" lowercase_ : List[Any] = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(snake_case__, size=(size["""height"""], size["""width"""]), data_format=snake_case__, **snake_case__ ) def snake_case__ ( self, snake_case__, snake_case__, snake_case__ = True, snake_case__ = None, **snake_case__, ) -> str: """simple docstring""" lowercase_ : Dict = image.astype(np.floataa ) if offset: lowercase_ : Optional[Any] = image - (scale / 2) return rescale(snake_case__, scale=snake_case__, data_format=snake_case__, **snake_case__ ) def snake_case__ ( self, snake_case__, snake_case__, snake_case__, snake_case__ = None, **snake_case__, ) -> np.ndarray: """simple docstring""" return normalize(snake_case__, mean=snake_case__, std=snake_case__, data_format=snake_case__, **snake_case__ ) def snake_case__ ( self, snake_case__, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = ChannelDimension.FIRST, ) -> np.ndarray: """simple docstring""" if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) if offset and not do_rescale: raise ValueError("""For offset, do_rescale must also be set to True.""" ) # All transformations expect numpy arrays. lowercase_ : Optional[int] = to_numpy_array(snake_case__ ) if do_resize: lowercase_ : Dict = self.resize(image=snake_case__, size=snake_case__, resample=snake_case__ ) if do_center_crop: lowercase_ : Optional[int] = self.center_crop(snake_case__, size=snake_case__ ) if do_rescale: lowercase_ : Dict = self.rescale(image=snake_case__, scale=snake_case__, offset=snake_case__ ) if do_normalize: lowercase_ : Optional[Any] = self.normalize(image=snake_case__, mean=snake_case__, std=snake_case__ ) lowercase_ : Tuple = to_channel_dimension_format(snake_case__, snake_case__ ) return image def snake_case__ ( self, snake_case__, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = None, snake_case__ = ChannelDimension.FIRST, **snake_case__, ) -> PIL.Image.Image: """simple docstring""" lowercase_ : Any = do_resize if do_resize is not None else self.do_resize lowercase_ : str = resample if resample is not None else self.resample lowercase_ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowercase_ : Optional[Any] = do_rescale if do_rescale is not None else self.do_rescale lowercase_ : str = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase_ : List[Any] = offset if offset is not None else self.offset lowercase_ : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize lowercase_ : Any = image_mean if image_mean is not None else self.image_mean lowercase_ : Optional[Any] = image_std if image_std is not None else self.image_std lowercase_ : Optional[Any] = size if size is not None else self.size lowercase_ : Dict = get_size_dict(snake_case__, default_to_square=snake_case__ ) lowercase_ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size lowercase_ : Tuple = get_size_dict(snake_case__, param_name="""crop_size""" ) if not valid_images(snake_case__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) lowercase_ : Optional[Any] = make_batched(snake_case__ ) lowercase_ : Optional[Any] = [ [ self._preprocess_image( image=snake_case__, do_resize=snake_case__, size=snake_case__, resample=snake_case__, do_center_crop=snake_case__, crop_size=snake_case__, do_rescale=snake_case__, rescale_factor=snake_case__, offset=snake_case__, do_normalize=snake_case__, image_mean=snake_case__, image_std=snake_case__, data_format=snake_case__, ) for img in video ] for video in videos ] lowercase_ : List[str] = {"""pixel_values""": videos} return BatchFeature(data=snake_case__, tensor_type=snake_case__ )
458
1
'''simple docstring''' def __lowerCamelCase (): return 1 def __lowerCamelCase (UpperCAmelCase__ : int ): return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def __lowerCamelCase (UpperCAmelCase__ : int ): return 0 if x < 0 else five_pence(x - 5 ) + two_pence(UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : int ): return 0 if x < 0 else ten_pence(x - 1_0 ) + five_pence(UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : int ): return 0 if x < 0 else twenty_pence(x - 2_0 ) + ten_pence(UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : int ): return 0 if x < 0 else fifty_pence(x - 5_0 ) + twenty_pence(UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : int ): return 0 if x < 0 else one_pound(x - 1_0_0 ) + fifty_pence(UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : int ): return 0 if x < 0 else two_pound(x - 2_0_0 ) + one_pound(UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : int = 2_0_0 ): return two_pound(UpperCAmelCase__ ) if __name__ == "__main__": print(solution(int(input().strip())))
713
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase : def __init__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Dict=13 , _UpperCamelCase : List[Any]=64 , _UpperCamelCase : Union[str, Any]=2 , _UpperCamelCase : int=3 , _UpperCamelCase : Union[str, Any]=True , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : Tuple=32 , _UpperCamelCase : str=5 , _UpperCamelCase : Tuple=4 , _UpperCamelCase : Any=37 , _UpperCamelCase : List[str]="gelu" , _UpperCamelCase : int=0.1 , _UpperCamelCase : int=0.1 , _UpperCamelCase : Optional[int]=10 , _UpperCamelCase : Tuple=0.0_2 , _UpperCamelCase : Union[str, Any]=[1, 16, 4, 4] , _UpperCamelCase : Optional[Any]=None , ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size SCREAMING_SNAKE_CASE = (self.image_size // 32) ** 2 SCREAMING_SNAKE_CASE = num_patches + 1 def __snake_case( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def __snake_case( self : Dict ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [4, 8, 16, 32], "num_groups": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_UpperCamelCase , ) def __snake_case( self : Dict , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Optional[int] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case( self : Any , _UpperCamelCase : List[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.type_sequence_label_size SCREAMING_SNAKE_CASE = ViTHybridForImageClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() SCREAMING_SNAKE_CASE = model(_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __snake_case( self : str ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = config_and_inputs SCREAMING_SNAKE_CASE = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowercase ( a , a , unittest.TestCase ): lowercase__ : Optional[int] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () lowercase__ : List[Any] = ( {"""feature-extraction""": ViTHybridModel, """image-classification""": ViTHybridForImageClassification} if is_torch_available() else {} ) lowercase__ : int = False lowercase__ : Any = False lowercase__ : Optional[int] = False def __snake_case( self : Union[str, Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=37 ) def __snake_case( self : Optional[Any] ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViT does not use inputs_embeds" ) def __snake_case( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' pass def __snake_case( self : List[Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) SCREAMING_SNAKE_CASE = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def __snake_case( self : Optional[int] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(_UpperCamelCase ) SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE = ["pixel_values"] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __snake_case( self : List[str] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __snake_case( self : Dict ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCamelCase ) def __snake_case( self : Optional[int] ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE = _config_zero_init(_UpperCamelCase ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class(config=_UpperCamelCase ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": SCREAMING_SNAKE_CASE = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def __snake_case( self : Any ) -> List[Any]: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = ViTHybridModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def __lowerCamelCase (): SCREAMING_SNAKE_CASE = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def __snake_case( self : List[Any] ) -> Any: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __snake_case( self : Tuple ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _UpperCamelCase ) SCREAMING_SNAKE_CASE = self.default_image_processor SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) # verify the logits SCREAMING_SNAKE_CASE = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) SCREAMING_SNAKE_CASE = torch.tensor([-1.9_0_9_0, -0.4_9_9_3, -0.2_3_8_9] ).to(_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow @require_accelerate def __snake_case( self : Optional[Any] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384" ) SCREAMING_SNAKE_CASE = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384" , device_map="auto" ) SCREAMING_SNAKE_CASE = prepare_img() SCREAMING_SNAKE_CASE = image_processor(images=_UpperCamelCase , return_tensors="pt" ) SCREAMING_SNAKE_CASE = model(**_UpperCamelCase ) SCREAMING_SNAKE_CASE = outputs.logits # model predicts one of the 1000 ImageNet classes SCREAMING_SNAKE_CASE = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , "tabby, tabby cat" )
647
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() _lowercase : str = logging.get_logger(__name__) _lowercase : Optional[int] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''adapter_layer''': '''encoder.layers.*.adapter_layer''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', '''pooling_layer.linear''': '''projector''', '''pooling_layer.projection''': '''classifier''', } _lowercase : Optional[int] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', '''projector''', '''classifier''', ] def lowerCamelCase__ ( A : Tuple ): '''simple docstring''' UpperCAmelCase = {} with open(__SCREAMING_SNAKE_CASE , '''r''' ) as file: for line_number, line in enumerate(__SCREAMING_SNAKE_CASE ): UpperCAmelCase = line.strip() if line: UpperCAmelCase = line.split() UpperCAmelCase = line_number UpperCAmelCase = words[0] UpperCAmelCase = value return result def lowerCamelCase__ ( A : List[str] , A : Union[str, Any] , A : List[str] , A : Tuple , A : str ): '''simple docstring''' for attribute in key.split('''.''' ): UpperCAmelCase = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__SCREAMING_SNAKE_CASE ): UpperCAmelCase = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase = 'param' if weight_type is not None and weight_type != "param": UpperCAmelCase = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).shape elif weight_type is not None and weight_type == "param": UpperCAmelCase = hf_pointer for attribute in hf_param_name.split('''.''' ): UpperCAmelCase = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCAmelCase = shape_pointer.shape # let's reduce dimension UpperCAmelCase = value[0] else: UpperCAmelCase = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase = value elif weight_type == "weight_g": UpperCAmelCase = value elif weight_type == "weight_v": UpperCAmelCase = value elif weight_type == "bias": UpperCAmelCase = value elif weight_type == "param": for attribute in hf_param_name.split('''.''' ): UpperCAmelCase = getattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCAmelCase = value else: UpperCAmelCase = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCamelCase__ ( A : Optional[Any] , A : List[Any] , A : Any , A : List[str] , A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__SCREAMING_SNAKE_CASE ): UpperCAmelCase = PARAM_MAPPING[full_name.split('''.''' )[-1]] UpperCAmelCase = 'param' if weight_type is not None and weight_type != "param": UpperCAmelCase = '.'.join([key, weight_type] ) elif weight_type is not None and weight_type == "param": UpperCAmelCase = '.'.join([key, hf_param_name] ) else: UpperCAmelCase = key UpperCAmelCase = value if 'lm_head' in full_key else value[0] _lowercase : Optional[int] = { '''W_a''': '''linear_1.weight''', '''W_b''': '''linear_2.weight''', '''b_a''': '''linear_1.bias''', '''b_b''': '''linear_2.bias''', '''ln_W''': '''norm.weight''', '''ln_b''': '''norm.bias''', } def lowerCamelCase__ ( A : List[Any] , A : Optional[int] , A : Optional[int]=None , A : str=None ): '''simple docstring''' UpperCAmelCase = False for key, mapped_key in MAPPING.items(): UpperCAmelCase = 'wav2vec2.' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCAmelCase = True if "*" in mapped_key: UpperCAmelCase = name.split(__SCREAMING_SNAKE_CASE )[0].split('''.''' )[-2] UpperCAmelCase = mapped_key.replace('''*''' , __SCREAMING_SNAKE_CASE ) if "weight_g" in name: UpperCAmelCase = 'weight_g' elif "weight_v" in name: UpperCAmelCase = 'weight_v' elif "bias" in name: UpperCAmelCase = 'bias' elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase = 'weight' else: UpperCAmelCase = None if hf_dict is not None: rename_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else: set_recursively(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return is_used return is_used def lowerCamelCase__ ( A : List[str] , A : Union[str, Any] , A : List[str] ): '''simple docstring''' UpperCAmelCase = [] UpperCAmelCase = fairseq_model.state_dict() UpperCAmelCase = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase = False if "conv_layers" in name: load_conv_layer( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == '''group''' , ) UpperCAmelCase = True else: UpperCAmelCase = load_wavaveca_layer(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if not is_used: unused_weights.append(__SCREAMING_SNAKE_CASE ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCamelCase__ ( A : List[Any] , A : Any , A : Any , A : Union[str, Any] , A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = full_name.split('''conv_layers.''' )[-1] UpperCAmelCase = name.split('''.''' ) UpperCAmelCase = int(items[0] ) UpperCAmelCase = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__SCREAMING_SNAKE_CASE ) @torch.no_grad() def lowerCamelCase__ ( A : Tuple , A : str , A : Dict=None , A : int=None , A : Dict=True , A : Union[str, Any]=False ): '''simple docstring''' if config_path is not None: UpperCAmelCase = WavaVecaConfig.from_pretrained(__SCREAMING_SNAKE_CASE ) else: UpperCAmelCase = WavaVecaConfig() if is_seq_class: UpperCAmelCase = read_txt_into_dict(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = idalabel UpperCAmelCase = WavaVecaForSequenceClassification(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , ) feature_extractor.save_pretrained(__SCREAMING_SNAKE_CASE ) elif is_finetuned: if dict_path: UpperCAmelCase = Dictionary.load(__SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase = target_dict.pad_index UpperCAmelCase = target_dict.bos_index UpperCAmelCase = target_dict.eos_index UpperCAmelCase = len(target_dict.symbols ) UpperCAmelCase = os.path.join(__SCREAMING_SNAKE_CASE , '''vocab.json''' ) if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(__SCREAMING_SNAKE_CASE ) ) return os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase = 0 UpperCAmelCase = 1 with open(__SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCAmelCase = WavaVecaCTCTokenizer( __SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=__SCREAMING_SNAKE_CASE , ) UpperCAmelCase = True if config.feat_extract_norm == 'layer' else False UpperCAmelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__SCREAMING_SNAKE_CASE , return_attention_mask=__SCREAMING_SNAKE_CASE , ) UpperCAmelCase = WavaVecaProcessor(feature_extractor=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE ) processor.save_pretrained(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = WavaVecaForCTC(__SCREAMING_SNAKE_CASE ) else: UpperCAmelCase = WavaVecaForPreTraining(__SCREAMING_SNAKE_CASE ) if is_finetuned or is_seq_class: UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: UpperCAmelCase = argparse.Namespace(task='''audio_pretraining''' ) UpperCAmelCase = fairseq.tasks.setup_task(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = model[0].eval() recursively_load_weights(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , not is_finetuned ) hf_wavavec.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--not_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) parser.add_argument( """--is_seq_class""", action="""store_true""", help="""Whether the model to convert is a fine-tuned sequence classification model or not""", ) _lowercase : Optional[int] = parser.parse_args() _lowercase : Optional[Any] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
210
import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def _lowercase ( __SCREAMING_SNAKE_CASE ) -> Optional[int]: UpperCamelCase__ : Optional[Any] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _lowercase ( __SCREAMING_SNAKE_CASE ) -> Dict: UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = emb.weight.shape UpperCamelCase__ : Optional[int] = nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = emb.weight.data return lin_layer def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="facebook/mbart-large-en-ro" , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=False ) -> Optional[Any]: UpperCamelCase__ : int = torch.load(__SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] remove_ignore_keys_(__SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = state_dict['encoder.embed_tokens.weight'].shape[0] UpperCamelCase__ : str = MBartConfig.from_pretrained(__SCREAMING_SNAKE_CASE , vocab_size=__SCREAMING_SNAKE_CASE ) if mbart_aa and finetuned: UpperCamelCase__ : List[Any] = 'relu' UpperCamelCase__ : int = state_dict['decoder.embed_tokens.weight'] UpperCamelCase__ : Optional[int] = MBartForConditionalGeneration(__SCREAMING_SNAKE_CASE ) model.model.load_state_dict(__SCREAMING_SNAKE_CASE ) if finetuned: UpperCamelCase__ : Union[str, Any] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default='''facebook/mbart-large-cc25''', type=str, help='''Which huggingface architecture to use: mbart-large''', ) parser.add_argument('''--mbart_50''', action='''store_true''', help='''whether the model is mMART-50 checkpoint''') parser.add_argument('''--finetuned''', action='''store_true''', help='''whether the model is a fine-tuned checkpoint''') UpperCAmelCase__ : int = parser.parse_args() UpperCAmelCase__ : Dict = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
410
0
'''simple docstring''' # using dfs for finding eulerian path traversal def _A ( A__ , A__ , A__ , A__=None ): """simple docstring""" __lowercase = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: __lowercase , __lowercase = True, True __lowercase = dfs(A__ , A__ , A__ , A__ ) return path def _A ( A__ , A__ ): """simple docstring""" __lowercase = 0 __lowercase = -1 for i in range(A__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 __lowercase = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def _A ( A__ , A__ ): """simple docstring""" __lowercase = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] __lowercase , __lowercase = check_circuit_or_path(A__ , A__ ) if check == 3: print('''graph is not Eulerian''' ) print('''no path''' ) return __lowercase = 1 if check == 2: __lowercase = odd_node print('''graph has a Euler path''' ) if check == 1: print('''graph has a Euler cycle''' ) __lowercase = dfs(A__ , A__ , A__ ) print(A__ ) def _A ( ): """simple docstring""" __lowercase = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} __lowercase = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} __lowercase = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} __lowercase = {1: [2, 3], 2: [1, 3], 3: [1, 2]} __lowercase = { 1: [], 2: [] # all degree is zero } __lowercase = 10 check_euler(A__ , A__ ) check_euler(A__ , A__ ) check_euler(A__ , A__ ) check_euler(A__ , A__ ) check_euler(A__ , A__ ) if __name__ == "__main__": main()
624
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class lowercase_ : """simple docstring""" @staticmethod def SCREAMING_SNAKE_CASE ( *lowercase__ : Union[str, Any] ,**lowercase__ : Tuple ): pass def _A ( A__ ): """simple docstring""" __lowercase = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class lowercase_ (unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : int ,lowercase__ : List[str] ,lowercase__ : int ): __lowercase = DepthEstimationPipeline(model=lowercase__ ,image_processor=lowercase__ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : List[str] ,lowercase__ : List[str] ): __lowercase = depth_estimator('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) self.assertEqual({'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )} ,lowercase__ ) import datasets __lowercase = datasets.load_dataset('''hf-internal-testing/fixtures_image_utils''' ,'''image''' ,split='''test''' ) __lowercase = depth_estimator( [ Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ), '''http://images.cocodataset.org/val2017/000000039769.jpg''', # RGBA dataset[0]['''file'''], # LA dataset[1]['''file'''], # L dataset[2]['''file'''], ] ) self.assertEqual( [ {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, {'''predicted_depth''': ANY(torch.Tensor ), '''depth''': ANY(Image.Image )}, ] ,lowercase__ ,) @require_tf @unittest.skip('''Depth estimation is not implemented in TF''' ) def SCREAMING_SNAKE_CASE ( self : Dict ): pass @slow @require_torch def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = '''Intel/dpt-large''' __lowercase = pipeline('''depth-estimation''' ,model=lowercase__ ) __lowercase = depth_estimator('''http://images.cocodataset.org/val2017/000000039769.jpg''' ) __lowercase = hashimage(outputs['''depth'''] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs['''predicted_depth'''].max().item() ) ,2_9.3_0_4 ) self.assertEqual(nested_simplify(outputs['''predicted_depth'''].min().item() ) ,2.6_6_2 ) @require_torch def SCREAMING_SNAKE_CASE ( self : List[Any] ): # This is highly irregular to have no small tests. self.skipTest('''There is not hf-internal-testing tiny model for either GLPN nor DPT''' )
624
1
'''simple docstring''' import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def lowerCAmelCase_ ( _lowerCamelCase: int ): if "model" in orig_key: __SCREAMING_SNAKE_CASE : Optional[Any] = orig_key.replace("""model.""" , """""" ) if "norm1" in orig_key: __SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace("""norm1""" , """attention.output.LayerNorm""" ) if "norm2" in orig_key: __SCREAMING_SNAKE_CASE : Optional[int] = orig_key.replace("""norm2""" , """output.LayerNorm""" ) if "norm" in orig_key: __SCREAMING_SNAKE_CASE : Dict = orig_key.replace("""norm""" , """LayerNorm""" ) if "transformer" in orig_key: __SCREAMING_SNAKE_CASE : Any = orig_key.split(""".""" )[0].split("""_""" )[-1] __SCREAMING_SNAKE_CASE : List[Any] = orig_key.replace(F"transformer_{layer_num}" , F"encoder.layer.{layer_num}" ) if "mha.attn" in orig_key: __SCREAMING_SNAKE_CASE : Tuple = orig_key.replace("""mha.attn""" , """attention.self""" ) if "mha" in orig_key: __SCREAMING_SNAKE_CASE : Dict = orig_key.replace("""mha""" , """attention""" ) if "W_q" in orig_key: __SCREAMING_SNAKE_CASE : Optional[Any] = orig_key.replace("""W_q""" , """self.query""" ) if "W_k" in orig_key: __SCREAMING_SNAKE_CASE : Any = orig_key.replace("""W_k""" , """self.key""" ) if "W_v" in orig_key: __SCREAMING_SNAKE_CASE : Tuple = orig_key.replace("""W_v""" , """self.value""" ) if "ff1" in orig_key: __SCREAMING_SNAKE_CASE : int = orig_key.replace("""ff1""" , """intermediate.dense""" ) if "ff2" in orig_key: __SCREAMING_SNAKE_CASE : Dict = orig_key.replace("""ff2""" , """output.dense""" ) if "ff" in orig_key: __SCREAMING_SNAKE_CASE : int = orig_key.replace("""ff""" , """output.dense""" ) if "mlm_class" in orig_key: __SCREAMING_SNAKE_CASE : Any = orig_key.replace("""mlm.mlm_class""" , """cls.predictions.decoder""" ) if "mlm" in orig_key: __SCREAMING_SNAKE_CASE : Any = orig_key.replace("""mlm""" , """cls.predictions.transform""" ) if "cls" not in orig_key: __SCREAMING_SNAKE_CASE : List[Any] = """yoso.""" + orig_key return orig_key def lowerCAmelCase_ ( _lowerCamelCase: int , _lowerCamelCase: int ): for key in orig_state_dict.copy().keys(): __SCREAMING_SNAKE_CASE : Dict = orig_state_dict.pop(snake_case_ ) if ("pooler" in key) or ("sen_class" in key): continue else: __SCREAMING_SNAKE_CASE : Union[str, Any] = val __SCREAMING_SNAKE_CASE : Dict = orig_state_dict["""cls.predictions.decoder.bias"""] __SCREAMING_SNAKE_CASE : Optional[Any] = torch.arange(snake_case_ ).expand((1, -1) ) + 2 return orig_state_dict def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] , _lowerCamelCase: str , _lowerCamelCase: int ): __SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(snake_case_ , map_location="""cpu""" )["""model_state_dict"""] __SCREAMING_SNAKE_CASE : str = YosoConfig.from_json_file(snake_case_ ) __SCREAMING_SNAKE_CASE : int = YosoForMaskedLM(snake_case_ ) __SCREAMING_SNAKE_CASE : Tuple = convert_checkpoint_helper(config.max_position_embeddings , snake_case_ ) print(model.load_state_dict(snake_case_ ) ) model.eval() model.save_pretrained(snake_case_ ) print(F"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) if __name__ == "__main__": UpperCamelCase__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--pytorch_model_path''', default=None, type=str, required=True, help='''Path to YOSO pytorch checkpoint.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The json file for YOSO model config.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCamelCase__ : List[str] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
578
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
387
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_5_0, "eval_accuracy": 0.6, "eval_loss": 0.9}, }, { "framework": "tensorflow", "script": "run_tf.py", "model_name_or_path": "distilbert-base-cased", "instance_type": "ml.g4dn.xlarge", "results": {"train_runtime": 6_0_0, "eval_accuracy": 0.3, "eval_loss": 0.9}, }, ] ) class a__ ( unittest.TestCase ): def a_ ( self : Any): """simple docstring""" if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding="utf-8" , check=UpperCamelCase_ , ) assert hasattr(self , "env") def a_ ( self : Optional[Any] , UpperCamelCase_ : int=1): """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"{self.env.base_job_name}-single" , instance_count=UpperCamelCase_ , instance_type=self.instance_type , debugger_hook_config=UpperCamelCase_ , hyperparameters={**self.env.hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="py36" , ) def a_ ( self : List[str] , UpperCamelCase_ : str): """simple docstring""" TrainingJobAnalytics(UpperCamelCase_).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv") def a_ ( self : List[Any]): """simple docstring""" __UpperCAmelCase : List[str] = self.create_estimator() # run training estimator.fit() # result dataframe __UpperCAmelCase : Any = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis __UpperCAmelCase : Dict = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"]) __UpperCAmelCase : Dict = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"]) # get train time from SageMaker job, this includes starting, preprocessing, stopping __UpperCAmelCase : Any = ( Session().describe_training_job(estimator.latest_training_job.name).get("TrainingTimeInSeconds" , 999999) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy) assert all(t <= self.results["eval_loss"] for t in eval_loss) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json" , "w") as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , UpperCamelCase_)
711
"""simple docstring""" def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Tuple: """simple docstring""" global f # a global dp table for knapsack if f[i][j] < 0: if j < wt[i - 1]: __UpperCAmelCase : Optional[int] = mf_knapsack(i - 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) else: __UpperCAmelCase : Any = max( mf_knapsack(i - 1 , UpperCamelCase , UpperCamelCase , UpperCamelCase ) , mf_knapsack(i - 1 , UpperCamelCase , UpperCamelCase , j - wt[i - 1] ) + val[i - 1] , ) __UpperCAmelCase : str = val return f[i][j] def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[Any]: """simple docstring""" __UpperCAmelCase : List[Any] = [[0] * (w + 1) for _ in range(n + 1 )] for i in range(1 , n + 1 ): for w_ in range(1 , w + 1 ): if wt[i - 1] <= w_: __UpperCAmelCase : Tuple = max(val[i - 1] + dp[i - 1][w_ - wt[i - 1]] , dp[i - 1][w_] ) else: __UpperCAmelCase : int = dp[i - 1][w_] return dp[n][w_], dp def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> int: """simple docstring""" if not (isinstance(UpperCamelCase , (list, tuple) ) and isinstance(UpperCamelCase , (list, tuple) )): raise ValueError( "Both the weights and values vectors must be either lists or tuples" ) __UpperCAmelCase : List[Any] = len(UpperCamelCase ) if num_items != len(UpperCamelCase ): __UpperCAmelCase : int = ( "The number of weights must be the same as the number of values.\n" f"But got {num_items} weights and {len(UpperCamelCase )} values" ) raise ValueError(UpperCamelCase ) for i in range(UpperCamelCase ): if not isinstance(wt[i] , UpperCamelCase ): __UpperCAmelCase : Tuple = ( "All weights must be integers but got weight of " f"type {type(wt[i] )} at index {i}" ) raise TypeError(UpperCamelCase ) __UpperCAmelCase , __UpperCAmelCase : Tuple = knapsack(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : set = set() _construct_solution(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) return optimal_val, example_optional_set def _UpperCamelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Dict: """simple docstring""" # for the current item i at a maximum weight j to be part of an optimal subset, # the optimal value at (i, j) must be greater than the optimal value at (i-1, j). # where i - 1 means considering only the previous items at the given maximum weight if i > 0 and j > 0: if dp[i - 1][j] == dp[i][j]: _construct_solution(UpperCamelCase , UpperCamelCase , i - 1 , UpperCamelCase , UpperCamelCase ) else: optimal_set.add(UpperCamelCase ) _construct_solution(UpperCamelCase , UpperCamelCase , i - 1 , j - wt[i - 1] , UpperCamelCase ) if __name__ == "__main__": A = [3, 2, 4, 4] A = [4, 3, 2, 3] A = 4 A = 6 A = [[0] * (w + 1)] + [[0] + [-1] * (w + 1) for _ in range(n + 1)] A , A = knapsack(w, wt, val, n) print(optimal_solution) print(mf_knapsack(n, wt, val, w)) # switched the n and w # testing the dynamic programming problem with example # the optimal subset for the above example are items 3 and 4 A , A = knapsack_with_example_solution(w, wt, val) assert optimal_solution == 8 assert optimal_subset == {3, 4} print("""optimal_value = """, optimal_solution) print("""An optimal subset corresponding to the optimal value""", optimal_subset)
487
0
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase_ ( self : Optional[int] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = torch.nn.Linear(10 , 10 ) SCREAMING_SNAKE_CASE : int = torch.optim.SGD(model.parameters() , 0.1 ) SCREAMING_SNAKE_CASE : int = Accelerator() SCREAMING_SNAKE_CASE : int = accelerator.prepare(lowerCamelCase_ ) try: pickle.loads(pickle.dumps(lowerCamelCase_ ) ) except Exception as e: self.fail(f'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
379
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset __UpperCAmelCase = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class UpperCamelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Union[str, Any] = torchvision.models.resnetaaa(pretrained=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Any = list(model.children() )[:-2] SCREAMING_SNAKE_CASE : Any = nn.Sequential(*lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : List[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = self.pool(self.model(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE : int = torch.flatten(lowerCamelCase_ , start_dim=2 ) SCREAMING_SNAKE_CASE : List[Any] = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : str , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = [json.loads(lowerCamelCase_ ) for l in open(lowerCamelCase_ )] SCREAMING_SNAKE_CASE : Optional[Any] = os.path.dirname(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = tokenizer SCREAMING_SNAKE_CASE : Union[str, Any] = labels SCREAMING_SNAKE_CASE : str = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = max_seq_length SCREAMING_SNAKE_CASE : List[Any] = transforms def __len__( self : Any ): '''simple docstring''' return len(self.data ) def __getitem__( self : Optional[int] , lowerCamelCase_ : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Tuple = sentence[0], sentence[1:-1], sentence[-1] SCREAMING_SNAKE_CASE : int = sentence[: self.max_seq_length] SCREAMING_SNAKE_CASE : List[Any] = torch.zeros(self.n_classes ) SCREAMING_SNAKE_CASE : List[str] = 1 SCREAMING_SNAKE_CASE : int = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) SCREAMING_SNAKE_CASE : str = self.transforms(lowerCamelCase_ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def __A ( lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = [len(row["""sentence"""] ) for row in batch] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ), max(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : int = torch.zeros(lowerCamelCase_ , lowerCamelCase_ , dtype=torch.long ) SCREAMING_SNAKE_CASE : Any = torch.zeros(lowerCamelCase_ , lowerCamelCase_ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(lowerCamelCase_ , lowerCamelCase_ ) ): SCREAMING_SNAKE_CASE : Union[str, Any] = input_row["""sentence"""] SCREAMING_SNAKE_CASE : Union[str, Any] = 1 SCREAMING_SNAKE_CASE : List[str] = torch.stack([row["""image"""] for row in batch] ) SCREAMING_SNAKE_CASE : int = torch.stack([row["""label"""] for row in batch] ) SCREAMING_SNAKE_CASE : str = torch.stack([row["""image_start_token"""] for row in batch] ) SCREAMING_SNAKE_CASE : Any = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def __A ( ): """simple docstring""" return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def __A ( ): """simple docstring""" return transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
379
1
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class _lowercase : """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Any=14 , __lowerCamelCase : Any=7 , __lowerCamelCase : List[str]=True , __lowerCamelCase : List[str]=True , __lowerCamelCase : Union[str, Any]=True , __lowerCamelCase : int=True , __lowerCamelCase : Any=True , __lowerCamelCase : Union[str, Any]=99 , __lowerCamelCase : Union[str, Any]=32 , __lowerCamelCase : int=5 , __lowerCamelCase : Optional[Any]=4 , __lowerCamelCase : List[str]=37 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : str=512 , __lowerCamelCase : int=16 , __lowerCamelCase : List[Any]=2 , __lowerCamelCase : int=0.0_2 , __lowerCamelCase : int=3 , __lowerCamelCase : Dict=4 , __lowerCamelCase : Optional[int]=None , ): '''simple docstring''' lowerCamelCase__ : List[Any] = parent lowerCamelCase__ : Dict = batch_size lowerCamelCase__ : Union[str, Any] = seq_length lowerCamelCase__ : List[str] = is_training lowerCamelCase__ : int = use_token_type_ids lowerCamelCase__ : Dict = use_input_mask lowerCamelCase__ : Any = use_labels lowerCamelCase__ : List[str] = use_mc_token_ids lowerCamelCase__ : str = vocab_size lowerCamelCase__ : int = hidden_size lowerCamelCase__ : Union[str, Any] = num_hidden_layers lowerCamelCase__ : Dict = num_attention_heads lowerCamelCase__ : Union[str, Any] = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_act lowerCamelCase__ : List[str] = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Tuple = max_position_embeddings lowerCamelCase__ : Any = type_vocab_size lowerCamelCase__ : List[str] = type_sequence_label_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : str = num_labels lowerCamelCase__ : str = num_choices lowerCamelCase__ : Tuple = scope lowerCamelCase__ : str = self.vocab_size - 1 def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : Dict = None if self.use_input_mask: lowerCamelCase__ : str = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : int = None if self.use_token_type_ids: lowerCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : Tuple = None if self.use_mc_token_ids: lowerCamelCase__ : int = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : List[Any] = None lowerCamelCase__ : int = None if self.use_labels: lowerCamelCase__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : Tuple = self.get_config() lowerCamelCase__ : Dict = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def lowerCAmelCase ( self : int , __lowerCamelCase : List[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , __lowerCamelCase : Any , *__lowerCamelCase : Tuple ): '''simple docstring''' lowerCamelCase__ : Dict = CTRLModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() model(__lowerCamelCase , token_type_ids=__lowerCamelCase , head_mask=__lowerCamelCase ) model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def lowerCAmelCase ( self : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] , *__lowerCamelCase : str ): '''simple docstring''' lowerCamelCase__ : int = CTRLLMHeadModel(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Any = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase ( self : str ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : Tuple = config_and_inputs lowerCamelCase__ : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict def lowerCAmelCase ( self : int , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple , *__lowerCamelCase : Dict ): '''simple docstring''' lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : List[Any] = CTRLForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Dict = model(__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class _lowercase ( lowercase__ , lowercase__ , lowercase__ , unittest.TestCase): """simple docstring""" A__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () A__ = (CTRLLMHeadModel,) if is_torch_available() else () A__ = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) A__ = True A__ = False A__ = False def lowerCAmelCase ( self : Tuple , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : int , __lowerCamelCase : Union[str, Any] ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = CTRLModelTester(self ) lowerCamelCase__ : str = ConfigTester(self , config_class=__lowerCamelCase , n_embd=37 ) def lowerCAmelCase ( self : Any ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__lowerCamelCase ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCamelCase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' pass @slow def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : str = CTRLModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' pass @require_torch class _lowercase ( unittest.TestCase): """simple docstring""" def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowerCAmelCase ( self : Tuple ): '''simple docstring''' lowerCamelCase__ : int = CTRLLMHeadModel.from_pretrained("ctrl" ) model.to(__lowerCamelCase ) lowerCamelCase__ : Optional[int] = torch.tensor( [[11859, 0, 1611, 8]] , dtype=torch.long , device=__lowerCamelCase ) # Legal the president is lowerCamelCase__ : Optional[Any] = [ 11859, 0, 1611, 8, 5, 150, 26449, 2, 19, 348, 469, 3, 2595, 48, 20740, 246533, 246533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowerCamelCase__ : List[Any] = model.generate(__lowerCamelCase , do_sample=__lowerCamelCase ) self.assertListEqual(output_ids[0].tolist() , __lowerCamelCase )
5
def lowercase_ ( _A : int , _A : int ): """simple docstring""" if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) lowerCamelCase__ : List[str] = str(bin(_A ) )[2:] # remove the leading "0b" lowerCamelCase__ : List[Any] = str(bin(_A ) )[2:] # remove the leading "0b" lowerCamelCase__ : List[Any] = max(len(_A ) , len(_A ) ) return "0b" + "".join( str(int(char_a != char_b ) ) for char_a, char_b in zip(a_binary.zfill(_A ) , b_binary.zfill(_A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
5
1
"""simple docstring""" from scipy.stats import spearmanr import datasets __SCREAMING_SNAKE_CASE = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' __SCREAMING_SNAKE_CASE = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' __SCREAMING_SNAKE_CASE = R'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def UpperCAmelCase__ ( self : Any ) -> Union[str, Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def UpperCAmelCase__ ( self : Union[str, Any] , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[str]=False ) -> Any: lowerCAmelCase :str = spearmanr(UpperCAmelCase , UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
553
"""simple docstring""" def UpperCAmelCase ( a__ , a__ ): '''simple docstring''' lowerCAmelCase :Tuple = len(a__ ) print('The following activities are selected:' ) # The first activity is always selected lowerCAmelCase :Dict = 0 print(a__ , end=',' ) # Consider rest of the activities for j in range(a__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(a__ , end=',' ) lowerCAmelCase :List[str] = j if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE = [1, 3, 0, 5, 8, 5] __SCREAMING_SNAKE_CASE = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
553
1
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __SCREAMING_SNAKE_CASE = 'pt' elif is_tf_available(): __SCREAMING_SNAKE_CASE = 'tf' else: __SCREAMING_SNAKE_CASE = 'jax' class lowerCAmelCase__ ( lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = PerceiverTokenizer __UpperCamelCase = False def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' super().setUp() a__ : Union[str, Any] = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __lowerCAmelCase ( self : Any ) -> List[str]: '''simple docstring''' return PerceiverTokenizer.from_pretrained('''deepmind/language-perceiver''' ) def __lowerCAmelCase ( self : str , **A__ : List[str] ) -> PerceiverTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **A__ ) def __lowerCAmelCase ( self : Optional[Any] , A__ : Tuple , A__ : Optional[Any]=False , A__ : List[str]=2_0 , A__ : Optional[int]=5 ) -> Tuple[str, list]: '''simple docstring''' a__ : List[Any] = [] for i in range(len(A__ ) ): try: a__ : Union[str, Any] = tokenizer.decode([i] , clean_up_tokenization_spaces=A__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) a__ : Tuple = list(filter(lambda A__ : re.match(r'''^[ a-zA-Z]+$''' , t[1] ) , A__ ) ) a__ : Dict = list(filter(lambda A__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=A__ ) , A__ ) ) if max_length is not None and len(A__ ) > max_length: a__ : Optional[int] = toks[:max_length] if min_length is not None and len(A__ ) < min_length and len(A__ ) > 0: while len(A__ ) < min_length: a__ : Any = toks + toks # toks_str = [t[1] for t in toks] a__ : Union[str, Any] = [t[0] for t in toks] # Ensure consistency a__ : List[str] = tokenizer.decode(A__ , clean_up_tokenization_spaces=A__ ) if " " not in output_txt and len(A__ ) > 1: a__ : Optional[Any] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=A__ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=A__ ) ) if with_prefix_space: a__ : List[Any] = ''' ''' + output_txt a__ : Union[str, Any] = tokenizer.encode(A__ , add_special_tokens=A__ ) return output_txt, output_ids def __lowerCAmelCase ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' a__ : Dict = self.perceiver_tokenizer a__ : List[str] = '''Unicode €.''' a__ : Optional[int] = tokenizer(A__ ) a__ : Tuple = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['''input_ids'''] , A__ ) # decoding a__ : Optional[int] = tokenizer.decode(A__ ) self.assertEqual(A__ , '''[CLS]Unicode €.[SEP]''' ) a__ : Optional[Any] = tokenizer('''e è é ê ë''' ) a__ : Dict = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['''input_ids'''] , A__ ) # decoding a__ : Optional[int] = tokenizer.decode(A__ ) self.assertEqual(A__ , '''[CLS]e è é ê ë[SEP]''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''[CLS]e è é ê ë[SEP]''' ) def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' a__ : Tuple = self.perceiver_tokenizer a__ : Union[str, Any] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off a__ : List[str] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on a__ : List[Any] = tokenizer(A__ , padding=A__ , return_tensors=A__ ) self.assertIsInstance(A__ , A__ ) if FRAMEWORK != "jax": a__ : Union[str, Any] = list(batch.input_ids.numpy()[0] ) else: a__ : Optional[Any] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(A__ , A__ ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def __lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' a__ : List[str] = self.perceiver_tokenizer a__ : List[str] = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] a__ : Any = tokenizer(A__ , padding=A__ , return_tensors=A__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , A__ ) self.assertIn('''attention_mask''' , A__ ) self.assertNotIn('''decoder_input_ids''' , A__ ) self.assertNotIn('''decoder_attention_mask''' , A__ ) def __lowerCAmelCase ( self : str ) -> str: '''simple docstring''' a__ : List[str] = self.perceiver_tokenizer a__ : Dict = [ '''Summary of the text.''', '''Another summary.''', ] a__ : Any = tokenizer( text_target=A__ , max_length=3_2 , padding='''max_length''' , truncation=A__ , return_tensors=A__ ) self.assertEqual(3_2 , targets['''input_ids'''].shape[1] ) def __lowerCAmelCase ( self : str ) -> Any: '''simple docstring''' a__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test a__ : Optional[int] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc a__ : int = tempfile.mkdtemp() a__ : Optional[Any] = ''' He is very happy, UNwant\u00E9d,running''' a__ : List[str] = tokenizer.encode(A__ , add_special_tokens=A__ ) tokenizer.save_pretrained(A__ ) a__ : str = tokenizer.__class__.from_pretrained(A__ ) a__ : Union[str, Any] = after_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) shutil.rmtree(A__ ) a__ : int = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): # Isolate this from the other tests because we save additional tokens/etc a__ : int = tempfile.mkdtemp() a__ : Tuple = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) a__ : List[str] = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) a__ : List[str] = tokenizer.encode(A__ , add_special_tokens=A__ ) tokenizer.save_pretrained(A__ ) a__ : Tuple = tokenizer.__class__.from_pretrained(A__ ) a__ : Optional[Any] = after_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) a__ : Optional[Any] = tokenizer.__class__.from_pretrained(A__ , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(A__ ) def __lowerCAmelCase ( self : List[Any] ) -> Optional[int]: '''simple docstring''' a__ : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(A__ ) with open(os.path.join(A__ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: a__ : List[str] = json.load(A__ ) with open(os.path.join(A__ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: a__ : int = json.load(A__ ) a__ : Dict = [F'<extra_id_{i}>' for i in range(1_2_5 )] a__ : str = added_tokens_extra_ids + [ '''an_additional_special_token''' ] a__ : List[str] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(A__ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(A__ , A__ ) with open(os.path.join(A__ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(A__ , A__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files a__ : Any = tokenizer_class.from_pretrained( A__ , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained a__ : Dict = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=A__ )] a__ : Dict = tokenizer_class.from_pretrained( A__ , additional_special_tokens=A__ , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def __lowerCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' a__ : Dict = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '''�''' ) def __lowerCAmelCase ( self : Optional[int] ) -> Tuple: '''simple docstring''' pass def __lowerCAmelCase ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' pass def __lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' pass def __lowerCAmelCase ( self : Dict ) -> str: '''simple docstring''' pass def __lowerCAmelCase ( self : Optional[Any] ) -> Dict: '''simple docstring''' a__ : Tuple = self.get_tokenizers(fast=A__ , do_lower_case=A__ ) for tokenizer in tokenizers: with self.subTest(F'{tokenizer.__class__.__name__}' ): a__ : Optional[Any] = ['''[CLS]''', '''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''s''', '''t''', '''[SEP]'''] a__ : Optional[int] = tokenizer.convert_tokens_to_string(A__ ) self.assertIsInstance(A__ , A__ )
701
'''simple docstring''' from __future__ import annotations def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): if b == 0: return (1, 0) ((a__) , (a__)) : int = extended_euclid(lowerCAmelCase__ , a % b ) a__ : Optional[int] = a // b return (y, x - k * y) def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ): ((a__) , (a__)) : int = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : int = na * na a__ : Dict = ra * x * na + ra * y * na return (n % m + m) % m def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ): ((a__) , (a__)) : Union[str, Any] = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) if b < 0: a__ : Optional[Any] = (b % n + n) % n return b def __a ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ): a__ , a__ : Union[str, Any] = invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ), invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Tuple = na * na a__ : str = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='chinese_remainder_theorem', verbose=True) testmod(name='chinese_remainder_theorem2', verbose=True) testmod(name='invert_modulo', verbose=True) testmod(name='extended_euclid', verbose=True)
340
0
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class _lowerCAmelCase : """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str]=1_3 , UpperCamelCase__ : Optional[Any]=7 , UpperCamelCase__ : Optional[int]=True , UpperCamelCase__ : Any=True , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : str=9_9 , UpperCamelCase__ : Optional[Any]=6_4 , UpperCamelCase__ : Union[str, Any]=3_2 , UpperCamelCase__ : int=5 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : Tuple=3_7 , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Optional[int]=5_1_2 , UpperCamelCase__ : str=1_6 , UpperCamelCase__ : Optional[int]=2 , UpperCamelCase__ : Tuple=0.02 , UpperCamelCase__ : Optional[int]=3 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : str=None , ): '''simple docstring''' snake_case__ = parent snake_case__ = batch_size snake_case__ = seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = embedding_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope def __magic_name__ ( self : str): '''simple docstring''' snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.seq_length]) snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) snake_case__ = None snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) snake_case__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) snake_case__ = ids_tensor([self.batch_size] , self.num_choices) snake_case__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __magic_name__ ( self : str): '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , ) def __magic_name__ ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int]): '''simple docstring''' snake_case__ = MegatronBertModel(config=UpperCamelCase__) model.to(UpperCamelCase__) model.eval() snake_case__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__) snake_case__ = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__) snake_case__ = model(UpperCamelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def __magic_name__ ( self : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[Any]): '''simple docstring''' snake_case__ = MegatronBertForMaskedLM(config=UpperCamelCase__) model.to(UpperCamelCase__) model.eval() snake_case__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __magic_name__ ( self : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any]): '''simple docstring''' snake_case__ = MegatronBertForCausalLM(config=UpperCamelCase__) model.to(UpperCamelCase__) model.eval() snake_case__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __magic_name__ ( self : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : List[str]): '''simple docstring''' snake_case__ = MegatronBertForNextSentencePrediction(config=UpperCamelCase__) model.to(UpperCamelCase__) model.eval() snake_case__ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def __magic_name__ ( self : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str]): '''simple docstring''' snake_case__ = MegatronBertForPreTraining(config=UpperCamelCase__) model.to(UpperCamelCase__) model.eval() snake_case__ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , next_sentence_label=UpperCamelCase__ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def __magic_name__ ( self : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : int , UpperCamelCase__ : int): '''simple docstring''' snake_case__ = MegatronBertForQuestionAnswering(config=UpperCamelCase__) model.to(UpperCamelCase__) model.eval() snake_case__ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def __magic_name__ ( self : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any): '''simple docstring''' snake_case__ = self.num_labels snake_case__ = MegatronBertForSequenceClassification(UpperCamelCase__) model.to(UpperCamelCase__) model.eval() snake_case__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def __magic_name__ ( self : Any , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any]): '''simple docstring''' snake_case__ = self.num_labels snake_case__ = MegatronBertForTokenClassification(config=UpperCamelCase__) model.to(UpperCamelCase__) model.eval() snake_case__ = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def __magic_name__ ( self : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple): '''simple docstring''' snake_case__ = self.num_choices snake_case__ = MegatronBertForMultipleChoice(config=UpperCamelCase__) model.to(UpperCamelCase__) model.eval() snake_case__ = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() snake_case__ = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() snake_case__ = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() snake_case__ = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def __magic_name__ ( self : Optional[int]): '''simple docstring''' snake_case__ = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) = config_and_inputs snake_case__ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( lowercase_ , lowercase_ , unittest.TestCase ): """simple docstring""" _lowercase : List[Any] = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _lowercase : int = ( { '''feature-extraction''': MegatronBertModel, '''fill-mask''': MegatronBertForMaskedLM, '''question-answering''': MegatronBertForQuestionAnswering, '''text-classification''': MegatronBertForSequenceClassification, '''text-generation''': MegatronBertForCausalLM, '''token-classification''': MegatronBertForTokenClassification, '''zero-shot''': MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _lowercase : Tuple = True # test_resize_embeddings = False _lowercase : Optional[Any] = False def __magic_name__ ( self : List[str] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any]=False): '''simple docstring''' snake_case__ = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__) if return_labels: if model_class in get_values(UpperCamelCase__): snake_case__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=UpperCamelCase__) snake_case__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__) return inputs_dict def __magic_name__ ( self : Tuple): '''simple docstring''' snake_case__ = MegatronBertModelTester(self) snake_case__ = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=3_7) def __magic_name__ ( self : Any): '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self : Optional[int]): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*UpperCamelCase__) def __magic_name__ ( self : str): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*UpperCamelCase__) def __magic_name__ ( self : Optional[int]): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*UpperCamelCase__) def __magic_name__ ( self : Dict): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*UpperCamelCase__) def __magic_name__ ( self : Tuple): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*UpperCamelCase__) def __magic_name__ ( self : int): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*UpperCamelCase__) def __magic_name__ ( self : List[Any]): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*UpperCamelCase__) def __magic_name__ ( self : Tuple): '''simple docstring''' snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*UpperCamelCase__) def _UpperCAmelCase ( a : str ): return torch.tensor( a , dtype=torch.long , device=a , ) a__ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow @unittest.skip("""Model is not available.""") def __magic_name__ ( self : Optional[int]): '''simple docstring''' snake_case__ = """nvidia/megatron-bert-uncased-345m""" if "MYDIR" in os.environ: snake_case__ = os.path.join(os.environ["""MYDIR"""] , UpperCamelCase__) snake_case__ = MegatronBertModel.from_pretrained(UpperCamelCase__) model.to(UpperCamelCase__) model.half() snake_case__ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]]) with torch.no_grad(): snake_case__ = model(UpperCamelCase__)[0] snake_case__ = torch.Size((1, 9, 1_0_2_4)) self.assertEqual(output.shape , UpperCamelCase__) snake_case__ = [-0.60_40, -0.25_17, -0.10_25, 0.34_20, -0.67_58, -0.00_17, -0.10_89, -0.19_90, 0.57_28] for ii in range(3): for jj in range(3): snake_case__ = output[0, ii, jj] snake_case__ = expected[3 * ii + jj] snake_case__ = """ii={} jj={} a={} b={}""".format(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) self.assertTrue(math.isclose(UpperCamelCase__ , UpperCamelCase__ , rel_tol=UpperCamelCase__ , abs_tol=UpperCamelCase__) , msg=UpperCamelCase__)
654
import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy a__ = logging.get_logger(__name__) a__ = { """artists_file""": """artists.json""", """lyrics_file""": """lyrics.json""", """genres_file""": """genres.json""", } a__ = { """artists_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json""", }, """genres_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json""", }, """lyrics_file""": { """jukebox""": """https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json""", }, } a__ = { """jukebox""": 5_1_2, } class _lowerCAmelCase ( lowercase_ ): """simple docstring""" _lowercase : str = VOCAB_FILES_NAMES _lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _lowercase : str = PRETRAINED_LYRIC_TOKENS_SIZES _lowercase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int=["v3", "v2", "v2"] , UpperCamelCase__ : List[str]=5_1_2 , UpperCamelCase__ : Union[str, Any]=5 , UpperCamelCase__ : List[Any]="<|endoftext|>" , **UpperCamelCase__ : List[Any] , ): '''simple docstring''' snake_case__ = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__) if isinstance(UpperCamelCase__ , UpperCamelCase__) else unk_token super().__init__( unk_token=UpperCamelCase__ , n_genres=UpperCamelCase__ , version=UpperCamelCase__ , max_n_lyric_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) snake_case__ = version snake_case__ = max_n_lyric_tokens snake_case__ = n_genres with open(UpperCamelCase__ , encoding="""utf-8""") as vocab_handle: snake_case__ = json.load(UpperCamelCase__) with open(UpperCamelCase__ , encoding="""utf-8""") as vocab_handle: snake_case__ = json.load(UpperCamelCase__) with open(UpperCamelCase__ , encoding="""utf-8""") as vocab_handle: snake_case__ = json.load(UpperCamelCase__) snake_case__ = R"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""" # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder) == 7_9: snake_case__ = oov.replace(R"""\-'""" , R"""\-+'""") snake_case__ = regex.compile(UpperCamelCase__) snake_case__ = {v: k for k, v in self.artists_encoder.items()} snake_case__ = {v: k for k, v in self.genres_encoder.items()} snake_case__ = {v: k for k, v in self.lyrics_encoder.items()} @property def __magic_name__ ( self : List[str]): '''simple docstring''' return len(self.artists_encoder) + len(self.genres_encoder) + len(self.lyrics_encoder) def __magic_name__ ( self : Union[str, Any]): '''simple docstring''' return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder) def __magic_name__ ( self : Tuple , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int): '''simple docstring''' snake_case__ = [self.artists_encoder.get(UpperCamelCase__ , 0) for artist in list_artists] for genres in range(len(UpperCamelCase__)): snake_case__ = [self.genres_encoder.get(UpperCamelCase__ , 0) for genre in list_genres[genres]] snake_case__ = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres])) snake_case__ = [[self.lyrics_encoder.get(UpperCamelCase__ , 0) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def __magic_name__ ( self : Optional[int] , UpperCamelCase__ : Optional[int]): '''simple docstring''' return list(UpperCamelCase__) def __magic_name__ ( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any , **UpperCamelCase__ : List[str]): '''simple docstring''' snake_case__ , snake_case__ , snake_case__ = self.prepare_for_tokenization(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) snake_case__ = self._tokenize(UpperCamelCase__) return artist, genre, lyrics def __magic_name__ ( self : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : str , UpperCamelCase__ : bool = False): '''simple docstring''' for idx in range(len(self.version)): if self.version[idx] == "v3": snake_case__ = artists[idx].lower() snake_case__ = [genres[idx].lower()] else: snake_case__ = self._normalize(artists[idx]) + """.v2""" snake_case__ = [ self._normalize(UpperCamelCase__) + """.v2""" for genre in genres[idx].split("""_""") ] # split is for the full dictionary with combined genres if self.version[0] == "v2": snake_case__ = regex.compile(R"""[^A-Za-z0-9.,:;!?\-'\"()\[\] \t\n]+""") snake_case__ = """ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+'\"()[] \t\n""" snake_case__ = {vocab[index]: index + 1 for index in range(len(UpperCamelCase__))} snake_case__ = 0 snake_case__ = len(UpperCamelCase__) + 1 snake_case__ = self.vocab snake_case__ = {v: k for k, v in self.vocab.items()} snake_case__ = """""" else: snake_case__ = regex.compile(R"""[^A-Za-z0-9.,:;!?\-+'\"()\[\] \t\n]+""") snake_case__ = self._run_strip_accents(UpperCamelCase__) snake_case__ = lyrics.replace("""\\""" , """\n""") snake_case__ = self.out_of_vocab.sub("""""" , UpperCamelCase__), [], [] return artists, genres, lyrics def __magic_name__ ( self : Union[str, Any] , UpperCamelCase__ : str): '''simple docstring''' snake_case__ = unicodedata.normalize("""NFD""" , UpperCamelCase__) snake_case__ = [] for char in text: snake_case__ = unicodedata.category(UpperCamelCase__) if cat == "Mn": continue output.append(UpperCamelCase__) return "".join(UpperCamelCase__) def __magic_name__ ( self : List[str] , UpperCamelCase__ : str): '''simple docstring''' snake_case__ = ( [chr(UpperCamelCase__) for i in range(ord("""a""") , ord("""z""") + 1)] + [chr(UpperCamelCase__) for i in range(ord("""A""") , ord("""Z""") + 1)] + [chr(UpperCamelCase__) for i in range(ord("""0""") , ord("""9""") + 1)] + ["""."""] ) snake_case__ = frozenset(UpperCamelCase__) snake_case__ = re.compile(R"""_+""") snake_case__ = """""".join([c if c in accepted else """_""" for c in text.lower()]) snake_case__ = pattern.sub("""_""" , UpperCamelCase__).strip("""_""") return text def __magic_name__ ( self : List[Any] , UpperCamelCase__ : List[str]): '''simple docstring''' return " ".join(UpperCamelCase__) def __magic_name__ ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Union[str, TensorType]] = None , UpperCamelCase__ : bool = False): '''simple docstring''' if not isinstance(UpperCamelCase__ , UpperCamelCase__): snake_case__ = TensorType(UpperCamelCase__) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""") import tensorflow as tf snake_case__ = tf.constant snake_case__ = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""") import torch snake_case__ = torch.tensor snake_case__ = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""") import jax.numpy as jnp # noqa: F811 snake_case__ = jnp.array snake_case__ = _is_jax else: snake_case__ = np.asarray snake_case__ = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: snake_case__ = [inputs] if not is_tensor(UpperCamelCase__): snake_case__ = as_tensor(UpperCamelCase__) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with 'padding=True' 'truncation=True' to have batched tensors with the same length.""") return inputs def __call__( self : str , UpperCamelCase__ : Any , UpperCamelCase__ : Dict , UpperCamelCase__ : Any="" , UpperCamelCase__ : Dict="pt"): '''simple docstring''' snake_case__ = [0, 0, 0] snake_case__ = [artist] * len(self.version) snake_case__ = [genres] * len(self.version) snake_case__ , snake_case__ , snake_case__ = self.tokenize(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) snake_case__ , snake_case__ , snake_case__ = self._convert_token_to_id(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) snake_case__ = [-INFINITY] * len(full_tokens[-1]) snake_case__ = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=UpperCamelCase__) for i in range(len(self.version)) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks}) def __magic_name__ ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None): '''simple docstring''' if not os.path.isdir(UpperCamelCase__): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''') return snake_case__ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""]) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.artists_encoder , ensure_ascii=UpperCamelCase__)) snake_case__ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""]) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.genres_encoder , ensure_ascii=UpperCamelCase__)) snake_case__ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""]) with open(UpperCamelCase__ , """w""" , encoding="""utf-8""") as f: f.write(json.dumps(self.lyrics_encoder , ensure_ascii=UpperCamelCase__)) return (artists_file, genres_file, lyrics_file) def __magic_name__ ( self : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]): '''simple docstring''' snake_case__ = self.artists_decoder.get(UpperCamelCase__) snake_case__ = [self.genres_decoder.get(UpperCamelCase__) for genre in genres_index] snake_case__ = [self.lyrics_decoder.get(UpperCamelCase__) for character in lyric_index] return artist, genres, lyrics
654
1
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def lowercase__ ( __UpperCamelCase )-> float: return np.dot(__UpperCamelCase , __UpperCamelCase ) class a_ : def __init__( self , *, _SCREAMING_SNAKE_CASE = np.inf , _SCREAMING_SNAKE_CASE = "linear" , _SCREAMING_SNAKE_CASE = 0.0 , ) -> None: """simple docstring""" UpperCamelCase = regularization UpperCamelCase = gamma if kernel == "linear": UpperCamelCase = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("""rbf kernel requires gamma""" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("""gamma must be float or int""" ) if not self.gamma > 0: raise ValueError("""gamma must be > 0""" ) UpperCamelCase = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase = F"Unknown kernel: {kernel}" raise ValueError(_SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return np.dot(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> float: """simple docstring""" return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" UpperCamelCase = observations UpperCamelCase = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase) ,) = np.shape(_SCREAMING_SNAKE_CASE ) def to_minimize(_SCREAMING_SNAKE_CASE ) -> float: UpperCamelCase = 0 ((UpperCamelCase) ,) = np.shape(_SCREAMING_SNAKE_CASE ) for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(_SCREAMING_SNAKE_CASE ) UpperCamelCase = LinearConstraint(_SCREAMING_SNAKE_CASE , 0 , 0 ) UpperCamelCase = Bounds(0 , self.regularization ) UpperCamelCase = minimize( _SCREAMING_SNAKE_CASE , np.ones(_SCREAMING_SNAKE_CASE ) , bounds=_SCREAMING_SNAKE_CASE , constraints=[ly_contraint] ).x UpperCamelCase = l_star # calculating mean offset of separation plane to points UpperCamelCase = 0 for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) UpperCamelCase = s / n def A__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , _SCREAMING_SNAKE_CASE ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration SCREAMING_SNAKE_CASE__ = 'facebook/wmt19-en-de' SCREAMING_SNAKE_CASE__ = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model SCREAMING_SNAKE_CASE__ = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) SCREAMING_SNAKE_CASE__ = FSMTForConditionalGeneration(config) print(f'num of params {tiny_model.num_parameters()}') # Test SCREAMING_SNAKE_CASE__ = tokenizer(['Making tiny model'], return_tensors='pt') SCREAMING_SNAKE_CASE__ = tiny_model(**batch) print('test output:', len(outputs.logits[0])) # Save SCREAMING_SNAKE_CASE__ = 'tiny-wmt19-en-de' tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'Generated {mname_tiny}') # Upload # transformers-cli upload tiny-wmt19-en-de
35
0
"""simple docstring""" import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A = logging.get_logger(__name__) A = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class _a ( SCREAMING_SNAKE_CASE__): __magic_name__ = """segformer""" def __init__( self : int , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=4 , _lowercase : Optional[int]=[2, 2, 2, 2] , _lowercase : Union[str, Any]=[8, 4, 2, 1] , _lowercase : Optional[int]=[32, 64, 160, 256] , _lowercase : int=[7, 3, 3, 3] , _lowercase : int=[4, 2, 2, 2] , _lowercase : Tuple=[1, 2, 5, 8] , _lowercase : Any=[4, 4, 4, 4] , _lowercase : Any="gelu" , _lowercase : Optional[Any]=0.0 , _lowercase : Optional[int]=0.0 , _lowercase : str=0.1 , _lowercase : int=0.02 , _lowercase : int=0.1 , _lowercase : int=1E-6 , _lowercase : Tuple=256 , _lowercase : int=255 , **_lowercase : Union[str, Any] , ) -> Optional[Any]: super().__init__(**_lowercase ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( "Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be" " removed, as the behaviour will default to that of reshape_last_stage = True." , _lowercase , ) snake_case : Any = num_channels snake_case : List[str] = num_encoder_blocks snake_case : str = depths snake_case : Dict = sr_ratios snake_case : Tuple = hidden_sizes snake_case : Any = patch_sizes snake_case : Any = strides snake_case : Any = mlp_ratios snake_case : Any = num_attention_heads snake_case : int = hidden_act snake_case : Optional[int] = hidden_dropout_prob snake_case : str = attention_probs_dropout_prob snake_case : str = classifier_dropout_prob snake_case : str = initializer_range snake_case : int = drop_path_rate snake_case : List[Any] = layer_norm_eps snake_case : Tuple = decoder_hidden_size snake_case : List[Any] = kwargs.get("reshape_last_stage" , _lowercase ) snake_case : str = semantic_loss_ignore_index class _a ( SCREAMING_SNAKE_CASE__): __magic_name__ = version.parse("""1.11""") @property def __lowercase ( self : Tuple ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def __lowercase ( self : List[Any] ) -> float: return 1E-4 @property def __lowercase ( self : str ) -> int: return 12
449
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _a ( SCREAMING_SNAKE_CASE__ , unittest.TestCase): __magic_name__ = RobertaTokenizer __magic_name__ = RobertaTokenizerFast __magic_name__ = True __magic_name__ = {"""cls_token""": """<s>"""} def __lowercase ( self : Any ) -> int: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case : int = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] snake_case : Optional[int] = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) snake_case : int = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] snake_case : Union[str, Any] = {"unk_token": "<unk>"} snake_case : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_lowercase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_lowercase ) ) def __lowercase ( self : Optional[Any] , **_lowercase : Union[str, Any] ) -> Dict: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_lowercase ) def __lowercase ( self : List[str] , **_lowercase : Union[str, Any] ) -> str: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **_lowercase ) def __lowercase ( self : Union[str, Any] , _lowercase : str ) -> Optional[Any]: snake_case : Any = "lower newer" snake_case : Union[str, Any] = "lower newer" return input_text, output_text def __lowercase ( self : Optional[int] ) -> Any: snake_case : Any = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case : Dict = "lower newer" snake_case : Dict = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] snake_case : Any = tokenizer.tokenize(_lowercase ) # , add_prefix_space=True) self.assertListEqual(_lowercase , _lowercase ) snake_case : List[str] = tokens + [tokenizer.unk_token] snake_case : List[Any] = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowercase ) , _lowercase ) def __lowercase ( self : int ) -> str: snake_case : List[str] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=_lowercase ) , [0, 31414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=_lowercase ) , [0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2] , ) @slow def __lowercase ( self : Dict ) -> Optional[int]: snake_case : Tuple = self.tokenizer_class.from_pretrained("roberta-base" ) snake_case : Tuple = tokenizer.encode("sequence builders" , add_special_tokens=_lowercase ) snake_case : Optional[int] = tokenizer.encode("multi-sequence build" , add_special_tokens=_lowercase ) snake_case : Optional[Any] = tokenizer.encode( "sequence builders" , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) snake_case : Optional[int] = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) snake_case : Optional[Any] = tokenizer.build_inputs_with_special_tokens(_lowercase ) snake_case : Any = tokenizer.build_inputs_with_special_tokens(_lowercase , _lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __lowercase ( self : int ) -> Any: snake_case : Any = self.get_tokenizer() snake_case : Optional[Any] = "Encode this sequence." snake_case : List[Any] = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments snake_case : Any = tokenizer.encode(_lowercase , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) snake_case : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(_lowercase , _lowercase ) snake_case : Dict = tokenizer.encode(_lowercase , add_special_tokens=_lowercase , add_prefix_space=_lowercase ) snake_case : Any = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(_lowercase , _lowercase ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) snake_case : Union[str, Any] = tokenizer.encode(_lowercase , add_special_tokens=_lowercase ) snake_case : List[str] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(_lowercase , _lowercase ) # Testing spaces after special tokens snake_case : Optional[int] = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase )} ) # mask token has a left space snake_case : Optional[int] = tokenizer.convert_tokens_to_ids(_lowercase ) snake_case : Tuple = "Encode <mask> sequence" snake_case : Union[str, Any] = "Encode <mask>sequence" snake_case : Union[str, Any] = tokenizer.encode(_lowercase ) snake_case : Optional[int] = encoded.index(_lowercase ) snake_case : int = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(_lowercase , _lowercase ) snake_case : int = tokenizer.encode(_lowercase ) snake_case : Optional[int] = encoded.index(_lowercase ) snake_case : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(_lowercase , _lowercase ) def __lowercase ( self : Dict ) -> Union[str, Any]: pass def __lowercase ( self : List[str] ) -> str: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained(_lowercase , **_lowercase ) snake_case : Optional[int] = self.tokenizer_class.from_pretrained(_lowercase , **_lowercase ) snake_case : Optional[int] = "A, <mask> AllenNLP sentence." snake_case : Tuple = tokenizer_r.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase ) snake_case : Optional[Any] = tokenizer_p.encode_plus(_lowercase , add_special_tokens=_lowercase , return_token_type_ids=_lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) snake_case : List[str] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) snake_case : List[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( _lowercase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( _lowercase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def __lowercase ( self : Tuple ) -> List[Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) snake_case : Optional[int] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) snake_case : Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , _lowercase ) self.assertEqual(post_processor_state["add_prefix_space"] , _lowercase ) self.assertEqual(post_processor_state["trim_offsets"] , _lowercase ) def __lowercase ( self : int ) -> List[str]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case : List[Any] = "hello" # `hello` is a token in the vocabulary of `pretrained_name` snake_case : List[str] = F'''{text_of_1_token} {text_of_1_token}''' snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) snake_case : Union[str, Any] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowercase ) + 1, len(_lowercase ) + 1 + len(_lowercase )) , ) snake_case : List[Any] = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) snake_case : Tuple = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowercase ) + 1, len(_lowercase ) + 1 + len(_lowercase )) , ) snake_case : Dict = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) snake_case : int = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowercase ), len(_lowercase ) + 1 + len(_lowercase )) , ) snake_case : Optional[int] = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) snake_case : Optional[int] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(_lowercase ), len(_lowercase ) + 1 + len(_lowercase )) , ) snake_case : Dict = F''' {text}''' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) snake_case : List[str] = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) snake_case : List[str] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowercase ) + 1, 1 + len(_lowercase ) + 1 + len(_lowercase )) , ) snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) snake_case : Optional[int] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowercase ), 1 + len(_lowercase ) + 1 + len(_lowercase )) , ) snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained( _lowercase , use_fast=_lowercase , add_prefix_space=_lowercase , trim_offsets=_lowercase ) snake_case : Union[str, Any] = tokenizer_r(_lowercase , return_offsets_mapping=_lowercase , add_special_tokens=_lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(_lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(_lowercase ), 1 + len(_lowercase ) + 1 + len(_lowercase )) , )
449
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCAmelCase__: '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=1_6 , __lowerCamelCase=3_6 , __lowerCamelCase=6 , __lowerCamelCase=6 , __lowerCamelCase=6 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=3 , __lowerCamelCase=4 , __lowerCamelCase=None , ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Optional[int] = parent _SCREAMING_SNAKE_CASE : List[Any] = batch_size _SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length _SCREAMING_SNAKE_CASE : Optional[int] = is_training _SCREAMING_SNAKE_CASE : Optional[Any] = use_input_mask _SCREAMING_SNAKE_CASE : Tuple = use_token_type_ids _SCREAMING_SNAKE_CASE : Any = use_labels _SCREAMING_SNAKE_CASE : List[str] = vocab_size _SCREAMING_SNAKE_CASE : Dict = embedding_size _SCREAMING_SNAKE_CASE : List[str] = hidden_size _SCREAMING_SNAKE_CASE : List[Any] = num_hidden_layers _SCREAMING_SNAKE_CASE : List[str] = num_hidden_groups _SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads _SCREAMING_SNAKE_CASE : Dict = intermediate_size _SCREAMING_SNAKE_CASE : List[Any] = hidden_act _SCREAMING_SNAKE_CASE : int = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : str = max_position_embeddings _SCREAMING_SNAKE_CASE : Union[str, Any] = type_vocab_size _SCREAMING_SNAKE_CASE : Dict = type_sequence_label_size _SCREAMING_SNAKE_CASE : int = initializer_range _SCREAMING_SNAKE_CASE : Tuple = num_labels _SCREAMING_SNAKE_CASE : Union[str, Any] = num_choices _SCREAMING_SNAKE_CASE : Dict = scope def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : Optional[Any] = None if self.use_input_mask: _SCREAMING_SNAKE_CASE : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE : Dict = None if self.use_token_type_ids: _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _SCREAMING_SNAKE_CASE : Dict = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Tuple = None if self.use_labels: _SCREAMING_SNAKE_CASE : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self ) -> List[str]: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : Optional[int] = AlbertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : Optional[int] = AlbertForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : Optional[Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : Tuple = AlbertForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : Dict = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int: _SCREAMING_SNAKE_CASE : Dict = AlbertForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : Dict = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels _SCREAMING_SNAKE_CASE : List[Any] = AlbertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : Optional[Any] = self.num_labels _SCREAMING_SNAKE_CASE : str = AlbertForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : Optional[Any] = model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : List[Any] = self.num_choices _SCREAMING_SNAKE_CASE : Optional[Any] = AlbertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _SCREAMING_SNAKE_CASE : str = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _SCREAMING_SNAKE_CASE : Union[str, Any] = model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Any = self.prepare_config_and_inputs() ( _SCREAMING_SNAKE_CASE ) : List[Any] = config_and_inputs _SCREAMING_SNAKE_CASE : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) __snake_case = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) __snake_case = True def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=False ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Optional[int] = super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): _SCREAMING_SNAKE_CASE : int = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Tuple = AlbertModelTester(self ) _SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 ) def UpperCamelCase_ ( self ) -> Optional[int]: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _SCREAMING_SNAKE_CASE : Any = type self.model_tester.create_and_check_model(*__lowerCamelCase ) @slow def UpperCamelCase_ ( self ) -> Dict: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE : Dict = AlbertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> Dict: _SCREAMING_SNAKE_CASE : str = AlbertModel.from_pretrained("albert-base-v2" ) _SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _SCREAMING_SNAKE_CASE : Any = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : Tuple = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
712
from __future__ import annotations import requests def lowerCamelCase__ (__lowerCamelCase ): _SCREAMING_SNAKE_CASE : Dict = f"""https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty""" return requests.get(__lowerCamelCase ).json() def lowerCamelCase__ (__lowerCamelCase = 10 ): _SCREAMING_SNAKE_CASE : List[Any] = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" _SCREAMING_SNAKE_CASE : Optional[Any] = requests.get(__lowerCamelCase ).json()[:max_stories] return [get_hackernews_story(__lowerCamelCase ) for story_id in story_ids] def lowerCamelCase__ (__lowerCamelCase = 10 ): _SCREAMING_SNAKE_CASE : List[str] = hackernews_top_stories(__lowerCamelCase ) return "\n".join("* [{title}]({url})".format(**__lowerCamelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
381
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[str] = logging.get_logger(__name__) lowercase__ : int = { 'EleutherAI/gpt-neox-20b': 'https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : List[Any] = 'gpt_neox' def __init__( self : str , lowerCAmelCase__ : Optional[int]=50432 , lowerCAmelCase__ : Optional[int]=6144 , lowerCAmelCase__ : Optional[Any]=44 , lowerCAmelCase__ : Optional[Any]=64 , lowerCAmelCase__ : List[str]=24576 , lowerCAmelCase__ : Any="gelu" , lowerCAmelCase__ : Any=0.25 , lowerCAmelCase__ : str=10000 , lowerCAmelCase__ : Any=0.0 , lowerCAmelCase__ : Optional[Any]=0.0 , lowerCAmelCase__ : Tuple=0.1 , lowerCAmelCase__ : Dict=2048 , lowerCAmelCase__ : Optional[Any]=0.02 , lowerCAmelCase__ : Tuple=1e-5 , lowerCAmelCase__ : Tuple=True , lowerCAmelCase__ : Dict=0 , lowerCAmelCase__ : Union[str, Any]=2 , lowerCAmelCase__ : int=False , lowerCAmelCase__ : Union[str, Any]=True , lowerCAmelCase__ : int=None , **lowerCAmelCase__ : int , ) -> Tuple: '''simple docstring''' super().__init__(bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = vocab_size _UpperCamelCase = max_position_embeddings _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = rotary_pct _UpperCamelCase = rotary_emb_base _UpperCamelCase = attention_dropout _UpperCamelCase = hidden_dropout _UpperCamelCase = classifier_dropout _UpperCamelCase = initializer_range _UpperCamelCase = layer_norm_eps _UpperCamelCase = use_cache _UpperCamelCase = tie_word_embeddings _UpperCamelCase = use_parallel_residual _UpperCamelCase = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def snake_case__ ( self : str ) -> Tuple: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , lowerCAmelCase__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) _UpperCamelCase = self.rope_scaling.get('''type''' , lowerCAmelCase__ ) _UpperCamelCase = self.rope_scaling.get('''factor''' , lowerCAmelCase__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
98
from __future__ import annotations def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ , lowercase__ = position lowercase__ = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowercase__ = [] for position in positions: lowercase__ , lowercase__ = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(SCREAMING_SNAKE_CASE ) return permissible_positions def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" return not any(elem == 0 for row in board for elem in row ) def _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if is_complete(SCREAMING_SNAKE_CASE ): return True for position in get_valid_pos(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): lowercase__ , lowercase__ = position if board[y][x] == 0: lowercase__ = curr + 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , curr + 1 ): return True lowercase__ = 0 return False def _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase__ = [[0 for i in range(SCREAMING_SNAKE_CASE )] for j in range(SCREAMING_SNAKE_CASE )] for i in range(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE ): lowercase__ = 1 if open_knight_tour_helper(SCREAMING_SNAKE_CASE , (i, j) , 1 ): return board lowercase__ = 0 lowercase__ = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
43
0
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class UpperCamelCase_ ( __magic_name__ ): def __get__( self , A , A=None ) -> List[Any]: if obj is None: return self if self.fget is None: raise AttributeError("""unreadable attribute""" ) UpperCAmelCase : List[Any] = """__cached_""" + self.fget.__name__ UpperCAmelCase : Optional[Any] = getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if cached is None: UpperCAmelCase : str = self.fget(__lowerCAmelCase ) setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) return cached def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: UpperCAmelCase : str = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'''invalid truth value {val!r}''' ) def __lowerCamelCase ( _lowercase ) -> List[str]: if is_torch_fx_proxy(__snake_case ): return True if is_torch_available(): import torch if isinstance(__snake_case , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__snake_case , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__snake_case , (jnp.ndarray, Tracer) ): return True return isinstance(__snake_case , np.ndarray ) def __lowerCamelCase ( _lowercase ) -> Any: return isinstance(__snake_case , np.ndarray ) def __lowerCamelCase ( _lowercase ) -> Dict: return _is_numpy(__snake_case ) def __lowerCamelCase ( _lowercase ) -> int: import torch return isinstance(__snake_case , torch.Tensor ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: return False if not is_torch_available() else _is_torch(__snake_case ) def __lowerCamelCase ( _lowercase ) -> str: import torch return isinstance(__snake_case , torch.device ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: return False if not is_torch_available() else _is_torch_device(__snake_case ) def __lowerCamelCase ( _lowercase ) -> List[Any]: import torch if isinstance(__snake_case , __snake_case ): if hasattr(__snake_case , __snake_case ): UpperCAmelCase : int = getattr(__snake_case , __snake_case ) else: return False return isinstance(__snake_case , torch.dtype ) def __lowerCamelCase ( _lowercase ) -> Any: return False if not is_torch_available() else _is_torch_dtype(__snake_case ) def __lowerCamelCase ( _lowercase ) -> Optional[Any]: import tensorflow as tf return isinstance(__snake_case , tf.Tensor ) def __lowerCamelCase ( _lowercase ) -> Union[str, Any]: return False if not is_tf_available() else _is_tensorflow(__snake_case ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__snake_case , """is_symbolic_tensor""" ): return tf.is_symbolic_tensor(__snake_case ) return type(__snake_case ) == tf.Tensor def __lowerCamelCase ( _lowercase ) -> str: return False if not is_tf_available() else _is_tf_symbolic_tensor(__snake_case ) def __lowerCamelCase ( _lowercase ) -> List[str]: import jax.numpy as jnp # noqa: F811 return isinstance(__snake_case , jnp.ndarray ) def __lowerCamelCase ( _lowercase ) -> str: return False if not is_flax_available() else _is_jax(__snake_case ) def __lowerCamelCase ( _lowercase ) -> Optional[Any]: if isinstance(__snake_case , (dict, UserDict) ): return {k: to_py_obj(__snake_case ) for k, v in obj.items()} elif isinstance(__snake_case , (list, tuple) ): return [to_py_obj(__snake_case ) for o in obj] elif is_tf_tensor(__snake_case ): return obj.numpy().tolist() elif is_torch_tensor(__snake_case ): return obj.detach().cpu().tolist() elif is_jax_tensor(__snake_case ): return np.asarray(__snake_case ).tolist() elif isinstance(__snake_case , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def __lowerCamelCase ( _lowercase ) -> Any: if isinstance(__snake_case , (dict, UserDict) ): return {k: to_numpy(__snake_case ) for k, v in obj.items()} elif isinstance(__snake_case , (list, tuple) ): return np.array(__snake_case ) elif is_tf_tensor(__snake_case ): return obj.numpy() elif is_torch_tensor(__snake_case ): return obj.detach().cpu().numpy() elif is_jax_tensor(__snake_case ): return np.asarray(__snake_case ) else: return obj class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self ) -> Any: UpperCAmelCase : Optional[Any] = fields(self ) # Safety and consistency checks if not len(__lowerCAmelCase ): raise ValueError(f'''{self.__class__.__name__} has no fields.''' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'''{self.__class__.__name__} should not have more than one required field.''' ) UpperCAmelCase : int = getattr(self , class_fields[0].name ) UpperCAmelCase : List[str] = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(__lowerCAmelCase ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : Optional[Any] = first_field.items() UpperCAmelCase : int = True else: try: UpperCAmelCase : Optional[Any] = iter(__lowerCAmelCase ) UpperCAmelCase : Any = True except TypeError: UpperCAmelCase : int = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(__lowerCAmelCase ): if ( not isinstance(__lowerCAmelCase , (list, tuple) ) or not len(__lowerCAmelCase ) == 2 or not isinstance(element[0] , __lowerCAmelCase ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute UpperCAmelCase : Any = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'''Cannot set key/value for {element}. It needs to be a tuple (key, value).''' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: UpperCAmelCase : int = element[1] elif first_field is not None: UpperCAmelCase : int = first_field else: for field in class_fields: UpperCAmelCase : Optional[Any] = getattr(self , field.name ) if v is not None: UpperCAmelCase : Union[str, Any] = v def __delitem__( self , *A , **A ) -> Dict: raise Exception(f'''You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.''' ) def _lowercase( self , *A , **A ) -> List[Any]: raise Exception(f'''You cannot use ``setdefault`` on a {self.__class__.__name__} instance.''' ) def _lowercase( self , *A , **A ) -> Union[str, Any]: raise Exception(f'''You cannot use ``pop`` on a {self.__class__.__name__} instance.''' ) def _lowercase( self , *A , **A ) -> Any: raise Exception(f'''You cannot use ``update`` on a {self.__class__.__name__} instance.''' ) def __getitem__( self , A ) -> str: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCAmelCase : Tuple = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , A , A ) -> Dict: if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(__lowerCAmelCase , __lowerCAmelCase ) super().__setattr__(__lowerCAmelCase , __lowerCAmelCase ) def __setitem__( self , A , A ) -> Optional[int]: super().__setitem__(__lowerCAmelCase , __lowerCAmelCase ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(__lowerCAmelCase , __lowerCAmelCase ) def _lowercase( self ) -> str: return tuple(self[k] for k in self.keys() ) class UpperCamelCase_ ( __magic_name__ , __magic_name__ ): @classmethod def _lowercase( cls , A ) -> int: raise ValueError( f'''{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}''' ) class UpperCamelCase_ ( __magic_name__ ): lowercase = 'longest' lowercase = 'max_length' lowercase = 'do_not_pad' class UpperCamelCase_ ( __magic_name__ ): lowercase = 'pt' lowercase = 'tf' lowercase = 'np' lowercase = 'jax' class UpperCamelCase_ : def __init__( self , A ) -> Optional[int]: UpperCAmelCase : List[Any] = context_managers UpperCAmelCase : Optional[int] = ExitStack() def __enter__( self ) -> str: for context_manager in self.context_managers: self.stack.enter_context(__lowerCAmelCase ) def __exit__( self , *A , **A ) -> Dict: self.stack.__exit__(*__lowerCAmelCase , **__lowerCAmelCase ) def __lowerCamelCase ( _lowercase ) -> str: UpperCAmelCase : List[str] = infer_framework(__snake_case ) if framework == "tf": UpperCAmelCase : Tuple = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : str = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : str = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def __lowerCamelCase ( _lowercase ) -> Optional[Any]: UpperCAmelCase : Optional[Any] = model_class.__name__ UpperCAmelCase : Union[str, Any] = infer_framework(__snake_case ) if framework == "tf": UpperCAmelCase : Dict = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": UpperCAmelCase : Optional[int] = inspect.signature(model_class.forward ) # PyTorch models else: UpperCAmelCase : List[Any] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def __lowerCamelCase ( _lowercase , _lowercase = "" , _lowercase = "." ) -> Union[str, Any]: def _flatten_dict(_lowercase , _lowercase="" , _lowercase="." ): for k, v in d.items(): UpperCAmelCase : str = str(__snake_case ) + delimiter + str(__snake_case ) if parent_key else k if v and isinstance(__snake_case , __snake_case ): yield from flatten_dict(__snake_case , __snake_case , delimiter=__snake_case ).items() else: yield key, v return dict(_flatten_dict(__snake_case , __snake_case , __snake_case ) ) @contextmanager def __lowerCamelCase ( _lowercase , _lowercase = False ) -> List[Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def __lowerCamelCase ( _lowercase , _lowercase=None ) -> List[Any]: if is_numpy_array(__snake_case ): return np.transpose(__snake_case , axes=__snake_case ) elif is_torch_tensor(__snake_case ): return array.T if axes is None else array.permute(*__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.transpose(__snake_case , perm=__snake_case ) elif is_jax_tensor(__snake_case ): return jnp.transpose(__snake_case , axes=__snake_case ) else: raise ValueError(F'''Type not supported for transpose: {type(__snake_case )}.''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> List[str]: if is_numpy_array(__snake_case ): return np.reshape(__snake_case , __snake_case ) elif is_torch_tensor(__snake_case ): return array.reshape(*__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.reshape(__snake_case , __snake_case ) elif is_jax_tensor(__snake_case ): return jnp.reshape(__snake_case , __snake_case ) else: raise ValueError(F'''Type not supported for reshape: {type(__snake_case )}.''' ) def __lowerCamelCase ( _lowercase , _lowercase=None ) -> Union[str, Any]: if is_numpy_array(__snake_case ): return np.squeeze(__snake_case , axis=__snake_case ) elif is_torch_tensor(__snake_case ): return array.squeeze() if axis is None else array.squeeze(dim=__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.squeeze(__snake_case , axis=__snake_case ) elif is_jax_tensor(__snake_case ): return jnp.squeeze(__snake_case , axis=__snake_case ) else: raise ValueError(F'''Type not supported for squeeze: {type(__snake_case )}.''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> int: if is_numpy_array(__snake_case ): return np.expand_dims(__snake_case , __snake_case ) elif is_torch_tensor(__snake_case ): return array.unsqueeze(dim=__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.expand_dims(__snake_case , axis=__snake_case ) elif is_jax_tensor(__snake_case ): return jnp.expand_dims(__snake_case , axis=__snake_case ) else: raise ValueError(F'''Type not supported for expand_dims: {type(__snake_case )}.''' ) def __lowerCamelCase ( _lowercase ) -> Optional[int]: if is_numpy_array(__snake_case ): return np.size(__snake_case ) elif is_torch_tensor(__snake_case ): return array.numel() elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.size(__snake_case ) elif is_jax_tensor(__snake_case ): return array.size else: raise ValueError(F'''Type not supported for expand_dims: {type(__snake_case )}.''' ) def __lowerCamelCase ( _lowercase , _lowercase ) -> Optional[Any]: for key, value in auto_map.items(): if isinstance(__snake_case , (tuple, list) ): UpperCAmelCase : Dict = [F'''{repo_id}--{v}''' if (v is not None and """--""" not in v) else v for v in value] elif value is not None and "--" not in value: UpperCAmelCase : str = F'''{repo_id}--{value}''' return auto_map def __lowerCamelCase ( _lowercase ) -> Dict: for base_class in inspect.getmro(__snake_case ): UpperCAmelCase : int = base_class.__module__ UpperCAmelCase : List[Any] = base_class.__name__ if module.startswith("""tensorflow""" ) or module.startswith("""keras""" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("""torch""" ) or name == "PreTrainedModel": return "pt" elif module.startswith("""flax""" ) or module.startswith("""jax""" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'''Could not infer framework from class {model_class}.''' )
707
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: a : int = None a : List[Any] = logging.get_logger(__name__) a : Dict = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a : Union[str, Any] = { """vocab_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """moussaKam/mbarthez""": """https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json""", """moussaKam/barthez""": """https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json""", """moussaKam/barthez-orangesum-title""": ( """https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json""" ), }, } a : List[Any] = { """moussaKam/mbarthez""": 1_0_2_4, """moussaKam/barthez""": 1_0_2_4, """moussaKam/barthez-orangesum-title""": 1_0_2_4, } a : int = """▁""" class UpperCamelCase_ ( __magic_name__ ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ['input_ids', 'attention_mask'] lowercase = BarthezTokenizer def __init__( self , A=None , A=None , A="<s>" , A="</s>" , A="</s>" , A="<s>" , A="<unk>" , A="<pad>" , A="<mask>" , **A , ) -> List[Any]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Tuple = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token super().__init__( A , tokenizer_file=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , cls_token=A , pad_token=A , mask_token=A , **A , ) UpperCAmelCase : Union[str, Any] = vocab_file UpperCAmelCase : int = False if not self.vocab_file else True def _lowercase( self , A , A = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase : Optional[int] = [self.cls_token_id] UpperCAmelCase : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _lowercase( self , A , A = None ) -> List[int]: UpperCAmelCase : Optional[int] = [self.sep_token_id] UpperCAmelCase : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowercase( self , A , A = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : str = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
672
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A : Any = { 'configuration_chinese_clip': [ 'CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ChineseCLIPConfig', 'ChineseCLIPOnnxConfig', 'ChineseCLIPTextConfig', 'ChineseCLIPVisionConfig', ], 'processing_chinese_clip': ['ChineseCLIPProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ['ChineseCLIPFeatureExtractor'] A : List[Any] = ['ChineseCLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ChineseCLIPModel', 'ChineseCLIPPreTrainedModel', 'ChineseCLIPTextModel', 'ChineseCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys A : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
140
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __a :Dict = logging.get_logger(__name__) def __snake_case ( __UpperCamelCase : Dict ,__UpperCamelCase : Tuple=False ): """simple docstring""" A_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" A_ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __snake_case ( __UpperCamelCase : Optional[int] ,__UpperCamelCase : Tuple ,__UpperCamelCase : Any=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: A_ = "" else: A_ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) A_ = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict A_ = in_proj_weight[ : config.hidden_size, : ] A_ = in_proj_bias[: config.hidden_size] A_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ = in_proj_weight[ -config.hidden_size :, : ] A_ = in_proj_bias[-config.hidden_size :] def __snake_case ( __UpperCamelCase : List[Any] ): """simple docstring""" A_ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(__UpperCamelCase ,__UpperCamelCase ) def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : Optional[int] ,__UpperCamelCase : List[str] ): """simple docstring""" A_ = dct.pop(__UpperCamelCase ) A_ = val def __snake_case ( ): """simple docstring""" A_ = "http://images.cocodataset.org/val2017/000000039769.jpg" A_ = Image.open(requests.get(__UpperCamelCase ,stream=__UpperCamelCase ).raw ) return im @torch.no_grad() def __snake_case ( __UpperCamelCase : Union[str, Any] ,__UpperCamelCase : Optional[int] ): """simple docstring""" A_ = ViTConfig() A_ = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": A_ = True A_ = int(vit_name[-12:-10] ) A_ = int(vit_name[-9:-6] ) else: A_ = 1000 A_ = "huggingface/label-files" A_ = "imagenet-1k-id2label.json" A_ = json.load(open(hf_hub_download(__UpperCamelCase ,__UpperCamelCase ,repo_type="dataset" ) ,"r" ) ) A_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} A_ = idalabel A_ = {v: k for k, v in idalabel.items()} A_ = int(vit_name[-6:-4] ) A_ = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): A_ = 192 A_ = 768 A_ = 12 A_ = 3 elif vit_name[9:].startswith("small" ): A_ = 384 A_ = 1536 A_ = 12 A_ = 6 else: pass else: if vit_name[4:].startswith("small" ): A_ = 768 A_ = 2304 A_ = 8 A_ = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): A_ = 1024 A_ = 4096 A_ = 24 A_ = 16 elif vit_name[4:].startswith("huge" ): A_ = 1280 A_ = 5120 A_ = 32 A_ = 16 # load original model from timm A_ = timm.create_model(__UpperCamelCase ,pretrained=__UpperCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys A_ = timm_model.state_dict() if base_model: remove_classification_head_(__UpperCamelCase ) A_ = create_rename_keys(__UpperCamelCase ,__UpperCamelCase ) for src, dest in rename_keys: rename_key(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) read_in_q_k_v(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # load HuggingFace model if vit_name[-5:] == "in21k": A_ = ViTModel(__UpperCamelCase ).eval() else: A_ = ViTForImageClassification(__UpperCamelCase ).eval() model.load_state_dict(__UpperCamelCase ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: A_ = DeiTImageProcessor(size=config.image_size ) else: A_ = ViTImageProcessor(size=config.image_size ) A_ = image_processor(images=prepare_img() ,return_tensors="pt" ) A_ = encoding["pixel_values"] A_ = model(__UpperCamelCase ) if base_model: A_ = timm_model.forward_features(__UpperCamelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(__UpperCamelCase ,outputs.pooler_output ,atol=1E-3 ) else: A_ = timm_model(__UpperCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__UpperCamelCase ,outputs.logits ,atol=1E-3 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __a :str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_patch16_224', type=str, help='Name of the ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) __a :Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
86
0
def lowerCamelCase_ ( UpperCamelCase__ : str ): '''simple docstring''' UpperCamelCase__ = 0 for ch in input_str: UpperCamelCase__ = ord(UpperCamelCase__ ) UpperCamelCase__ = pow(2, UpperCamelCase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
591
from __future__ import annotations def lowerCamelCase_ ( UpperCamelCase__ : list[float], UpperCamelCase__ : int ): '''simple docstring''' print(F"""Vertex\tShortest Distance from vertex {src}""" ) for i, d in enumerate(UpperCamelCase__ ): print(F"""{i}\t\t{d}""" ) def lowerCamelCase_ ( UpperCamelCase__ : list[dict[str, int]], UpperCamelCase__ : list[float], UpperCamelCase__ : int ): '''simple docstring''' for j in range(UpperCamelCase__ ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: return True return False def lowerCamelCase_ ( UpperCamelCase__ : list[dict[str, int]], UpperCamelCase__ : int, UpperCamelCase__ : int, UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = [float('''inf''' )] * vertex_count UpperCamelCase__ = 0.0 for _ in range(vertex_count - 1 ): for j in range(UpperCamelCase__ ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = (graph[j][k] for k in ['''src''', '''dst''', '''weight''']) if distance[u] != float('''inf''' ) and distance[u] + w < distance[v]: UpperCamelCase__ = distance[u] + w UpperCamelCase__ = check_negative_cycle(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) if negative_cycle_exists: raise Exception('''Negative cycle found''' ) return distance if __name__ == "__main__": import doctest doctest.testmod() lowercase = int(input("""Enter number of vertices: """).strip()) lowercase = int(input("""Enter number of edges: """).strip()) lowercase = [{} for _ in range(E)] for i in range(E): print("""Edge """, i + 1) lowercase , lowercase , lowercase = ( int(x) for x in input("""Enter source, destination, weight: """).strip().split(""" """) ) lowercase = {"""src""": src, """dst""": dest, """weight""": weight} lowercase = int(input("""\nEnter shortest path source:""").strip()) lowercase = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
591
1
'''simple docstring''' import os def A__ ( A : str = "input.txt"): '''simple docstring''' with open(os.path.join(os.path.dirname(A) , A)) as input_file: UpperCamelCase : str = [ [int(A) for element in line.split(",")] for line in input_file.readlines() ] UpperCamelCase : Tuple = len(A) UpperCamelCase : str = len(matrix[0]) UpperCamelCase : Union[str, Any] = [[-1 for _ in range(A)] for _ in range(A)] for i in range(A): UpperCamelCase : Dict = matrix[i][0] for j in range(1 , A): for i in range(A): UpperCamelCase : Union[str, Any] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , A): UpperCamelCase : str = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j]) for i in range(rows - 2 , -1 , -1): UpperCamelCase : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j]) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums) if __name__ == "__main__": print(f"""{solution() = }""")
173
'''simple docstring''' import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format='%(message)s') def A__ ( A : np.ndarray): '''simple docstring''' return input_array.reshape((input_array.size, 1)) def A__ ( A : np.ndarray , A : np.ndarray , A : int): '''simple docstring''' UpperCamelCase : Union[str, Any] = np.nan for i in range(A): UpperCamelCase : Union[str, Any] = features[:, labels == i] UpperCamelCase : Union[str, Any] = data.mean(1) # Centralize the data of class i UpperCamelCase : List[Any] = data - column_reshape(A) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(A , centered_data.T) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase : Tuple = np.dot(A , centered_data.T) return covariance_sum / features.shape[1] def A__ ( A : np.ndarray , A : np.ndarray , A : int): '''simple docstring''' UpperCamelCase : List[str] = features.mean(1) UpperCamelCase : Union[str, Any] = np.nan for i in range(A): UpperCamelCase : List[Any] = features[:, labels == i] UpperCamelCase : Optional[int] = data.shape[1] UpperCamelCase : Any = data.mean(1) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(A) - column_reshape(A) , (column_reshape(A) - column_reshape(A)).T , ) else: # If covariance_sum is np.nan (i.e. first loop) UpperCamelCase : List[Any] = device_data * np.dot( column_reshape(A) - column_reshape(A) , (column_reshape(A) - column_reshape(A)).T , ) return covariance_sum / features.shape[1] def A__ ( A : np.ndarray , A : int): '''simple docstring''' if features.any(): UpperCamelCase : List[str] = features.mean(1) # Center the dataset UpperCamelCase : List[Any] = features - np.reshape(A , (data_mean.size, 1)) UpperCamelCase : str = np.dot(A , centered_data.T) / features.shape[1] UpperCamelCase , UpperCamelCase : Dict = np.linalg.eigh(A) # Take all the columns in the reverse order (-1), and then takes only the first UpperCamelCase : int = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space UpperCamelCase : Tuple = np.dot(filtered_eigenvectors.T , A) logging.info("Principal Component Analysis computed") return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=A) logging.error("Dataset empty") raise AssertionError def A__ ( A : np.ndarray , A : np.ndarray , A : int , A : int): '''simple docstring''' assert classes > dimensions # Check if features have been already loaded if features.any: UpperCamelCase , UpperCamelCase : Tuple = eigh( covariance_between_classes(A , A , A) , covariance_within_classes(A , A , A) , ) UpperCamelCase : List[str] = eigenvectors[:, ::-1][:, :dimensions] UpperCamelCase , UpperCamelCase , UpperCamelCase : Dict = np.linalg.svd(A) UpperCamelCase : List[str] = svd_matrix[:, 0:dimensions] UpperCamelCase : str = np.dot(filtered_svd_matrix.T , A) logging.info("Linear Discriminant Analysis computed") return projected_data else: logging.basicConfig(level=logging.ERROR , format="%(message)s" , force=A) logging.error("Dataset empty") raise AssertionError def A__ ( ): '''simple docstring''' UpperCamelCase : Optional[int] = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]]) UpperCamelCase : List[str] = np.array([0, 0, 0, 1, 1]) UpperCamelCase : Tuple = 2 UpperCamelCase : Optional[Any] = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(A) as error_info: UpperCamelCase : Optional[int] = linear_discriminant_analysis( A , A , A , A) if isinstance(A , np.ndarray): raise AssertionError( "Did not raise AssertionError for dimensions > classes") assert error_info.type is AssertionError def A__ ( ): '''simple docstring''' UpperCamelCase : List[str] = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) UpperCamelCase : Dict = 2 UpperCamelCase : List[str] = np.array([[6.92820323, 8.66025404, 10.39230485], [3.0, 3.0, 3.0]]) with pytest.raises(A) as error_info: UpperCamelCase : Tuple = principal_component_analysis(A , A) if not np.allclose(A , A): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
173
1
from ...configuration_utils import PretrainedConfig from ...utils import logging A : Optional[int] = logging.get_logger(__name__) A : List[Any] = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class lowerCamelCase (SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCamelCase__ = '''gpt_neox''' def __init__( self : Optional[int] , __magic_name__ : Union[str, Any]=50_432 , __magic_name__ : Any=6_144 , __magic_name__ : Tuple=44 , __magic_name__ : Union[str, Any]=64 , __magic_name__ : Dict=24_576 , __magic_name__ : Optional[Any]="gelu" , __magic_name__ : Dict=0.25 , __magic_name__ : Any=10_000 , __magic_name__ : int=0.0 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : Optional[int]=0.1 , __magic_name__ : List[str]=2_048 , __magic_name__ : Any=0.02 , __magic_name__ : Tuple=1e-5 , __magic_name__ : List[str]=True , __magic_name__ : Tuple=0 , __magic_name__ : str=2 , __magic_name__ : Union[str, Any]=False , __magic_name__ : int=True , __magic_name__ : str=None , **__magic_name__ : Optional[int] , ) -> Union[str, Any]: super().__init__(bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = max_position_embeddings SCREAMING_SNAKE_CASE_ = hidden_size SCREAMING_SNAKE_CASE_ = num_hidden_layers SCREAMING_SNAKE_CASE_ = num_attention_heads SCREAMING_SNAKE_CASE_ = intermediate_size SCREAMING_SNAKE_CASE_ = hidden_act SCREAMING_SNAKE_CASE_ = rotary_pct SCREAMING_SNAKE_CASE_ = rotary_emb_base SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = hidden_dropout SCREAMING_SNAKE_CASE_ = classifier_dropout SCREAMING_SNAKE_CASE_ = initializer_range SCREAMING_SNAKE_CASE_ = layer_norm_eps SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = tie_word_embeddings SCREAMING_SNAKE_CASE_ = use_parallel_residual SCREAMING_SNAKE_CASE_ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def __A ( self : List[str] ) -> Dict: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __magic_name__ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F'''got {self.rope_scaling}''' ) SCREAMING_SNAKE_CASE_ = self.rope_scaling.get("type" , __magic_name__ ) SCREAMING_SNAKE_CASE_ = self.rope_scaling.get("factor" , __magic_name__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__magic_name__ , __magic_name__ ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
356
from collections.abc import Callable def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = a SCREAMING_SNAKE_CASE_ = b if function(__UpperCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(__UpperCamelCase ) == 0: return b elif ( function(__UpperCamelCase ) * function(__UpperCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval." ) else: SCREAMING_SNAKE_CASE_ = start + (end - start) / 2.0 while abs(start - mid ) > 1_0**-7: # until precisely equals to 10^-7 if function(__UpperCamelCase ) == 0: return mid elif function(__UpperCamelCase ) * function(__UpperCamelCase ) < 0: SCREAMING_SNAKE_CASE_ = mid else: SCREAMING_SNAKE_CASE_ = mid SCREAMING_SNAKE_CASE_ = start + (end - start) / 2.0 return mid def a__ ( __UpperCamelCase ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 10_00)) import doctest doctest.testmod()
356
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all MVP models at https://huggingface.co/models?filter=mvp __lowerCAmelCase = { 'vocab_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json', }, 'added_tokens.json': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json', }, 'merges_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt', }, 'tokenizer_file': { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json', }, } __lowerCAmelCase = { 'RUCAIBox/mvp': 1_0_2_4, } class lowerCamelCase ( __lowerCamelCase ): UpperCamelCase_ : Optional[Any] = VOCAB_FILES_NAMES UpperCamelCase_ : Any = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : Any = ['input_ids', 'attention_mask'] UpperCamelCase_ : Union[str, Any] = MvpTokenizer def __init__( self :int , lowercase :Dict=None , lowercase :Any=None , lowercase :Optional[Any]=None , lowercase :List[str]="replace" , lowercase :Any="<s>" , lowercase :Dict="</s>" , lowercase :Union[str, Any]="</s>" , lowercase :int="<s>" , lowercase :Union[str, Any]="<unk>" , lowercase :List[Any]="<pad>" , lowercase :Optional[Any]="<mask>" , lowercase :Any=False , lowercase :int=True , **lowercase :Dict , ) -> Any: """simple docstring""" super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , lowercase ) != add_prefix_space: SCREAMING_SNAKE_CASE = getattr(lowercase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = pre_tok_class(**lowercase ) SCREAMING_SNAKE_CASE = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE = '''post_processor''' SCREAMING_SNAKE_CASE = getattr(self.backend_tokenizer , lowercase , lowercase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE = False if state.get('''add_prefix_space''' , lowercase ) != add_prefix_space: SCREAMING_SNAKE_CASE = add_prefix_space SCREAMING_SNAKE_CASE = True if state.get('''trim_offsets''' , lowercase ) != trim_offsets: SCREAMING_SNAKE_CASE = trim_offsets SCREAMING_SNAKE_CASE = True if changes_to_apply: SCREAMING_SNAKE_CASE = getattr(lowercase , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE = component_class(**lowercase ) setattr(self.backend_tokenizer , lowercase , lowercase ) @property def snake_case__ ( self :str ) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def snake_case__ ( self :List[str] , lowercase :Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else value SCREAMING_SNAKE_CASE = value def snake_case__ ( self :Union[str, Any] , *lowercase :Optional[int] , **lowercase :str ) -> BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('''is_split_into_words''' , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*lowercase , **lowercase ) def snake_case__ ( self :Any , *lowercase :List[Any] , **lowercase :Optional[int] ) -> BatchEncoding: """simple docstring""" SCREAMING_SNAKE_CASE = kwargs.get('''is_split_into_words''' , lowercase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*lowercase , **lowercase ) def snake_case__ ( self :List[Any] , lowercase :str , lowercase :Optional[str] = None ) -> Tuple[str]: """simple docstring""" SCREAMING_SNAKE_CASE = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase ) def snake_case__ ( self :Optional[Any] , lowercase :List[Any] , lowercase :Optional[Any]=None ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def snake_case__ ( self :List[str] , lowercase :List[int] , lowercase :Optional[List[int]] = None ) -> List[int]: """simple docstring""" SCREAMING_SNAKE_CASE = [self.sep_token_id] SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
201
import unittest from transformers import SqueezeBertConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, ) class lowerCamelCase ( __lowerCamelCase ): def __init__( self :int , lowercase :Optional[Any] , lowercase :Optional[int]=1_3 , lowercase :Any=7 , lowercase :Tuple=True , lowercase :Optional[int]=True , lowercase :Any=False , lowercase :Any=True , lowercase :Dict=9_9 , lowercase :Dict=3_2 , lowercase :Any=5 , lowercase :Optional[Any]=4 , lowercase :List[str]=6_4 , lowercase :Optional[int]="gelu" , lowercase :int=0.1 , lowercase :str=0.1 , lowercase :List[str]=5_1_2 , lowercase :int=1_6 , lowercase :Any=2 , lowercase :Union[str, Any]=0.02 , lowercase :Optional[int]=3 , lowercase :Optional[Any]=4 , lowercase :Tuple=None , lowercase :int=2 , lowercase :Tuple=2 , lowercase :List[Any]=2 , lowercase :Optional[int]=2 , lowercase :Tuple=4 , lowercase :int=1 , ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_input_mask SCREAMING_SNAKE_CASE = use_token_type_ids SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = type_sequence_label_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = num_labels SCREAMING_SNAKE_CASE = num_choices SCREAMING_SNAKE_CASE = scope SCREAMING_SNAKE_CASE = q_groups SCREAMING_SNAKE_CASE = k_groups SCREAMING_SNAKE_CASE = v_groups SCREAMING_SNAKE_CASE = post_attention_groups SCREAMING_SNAKE_CASE = intermediate_groups SCREAMING_SNAKE_CASE = output_groups def snake_case__ ( self :str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE = None if self.use_input_mask: SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None if self.use_labels: SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self :str ) -> Dict: """simple docstring""" return SqueezeBertConfig( embedding_size=self.hidden_size , vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , attention_probs_dropout_prob=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , q_groups=self.q_groups , k_groups=self.k_groups , v_groups=self.v_groups , post_attention_groups=self.post_attention_groups , intermediate_groups=self.intermediate_groups , output_groups=self.output_groups , ) def snake_case__ ( self :Optional[Any] , lowercase :Optional[Any] , lowercase :int , lowercase :Any , lowercase :List[str] , lowercase :Optional[Any] , lowercase :List[str] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = SqueezeBertModel(config=lowercase ) model.to(lowercase ) model.eval() SCREAMING_SNAKE_CASE = model(lowercase , lowercase ) SCREAMING_SNAKE_CASE = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case__ ( self :Dict , lowercase :Dict , lowercase :List[Any] , lowercase :str , lowercase :Union[str, Any] , lowercase :Dict , lowercase :List[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = SqueezeBertForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() SCREAMING_SNAKE_CASE = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self :List[str] , lowercase :Optional[Any] , lowercase :Optional[int] , lowercase :str , lowercase :int , lowercase :Optional[Any] , lowercase :int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = SqueezeBertForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() SCREAMING_SNAKE_CASE = model( lowercase , attention_mask=lowercase , start_positions=lowercase , end_positions=lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case__ ( self :Any , lowercase :Optional[Any] , lowercase :List[str] , lowercase :int , lowercase :Any , lowercase :Optional[int] , lowercase :List[str] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = SqueezeBertForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() SCREAMING_SNAKE_CASE = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self :str , lowercase :List[Any] , lowercase :List[str] , lowercase :Optional[int] , lowercase :Tuple , lowercase :Tuple , lowercase :str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = self.num_labels SCREAMING_SNAKE_CASE = SqueezeBertForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() SCREAMING_SNAKE_CASE = model(lowercase , attention_mask=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case__ ( self :int , lowercase :List[str] , lowercase :List[Any] , lowercase :Tuple , lowercase :str , lowercase :Optional[Any] , lowercase :Optional[int] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.num_choices SCREAMING_SNAKE_CASE = SqueezeBertForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() SCREAMING_SNAKE_CASE = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() SCREAMING_SNAKE_CASE = model( lowercase , attention_mask=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def snake_case__ ( self :List[str] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE) , (SCREAMING_SNAKE_CASE)) = config_and_inputs SCREAMING_SNAKE_CASE = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): UpperCamelCase_ : int = ( ( SqueezeBertModel, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, ) if is_torch_available() else None ) UpperCamelCase_ : int = ( { 'feature-extraction': SqueezeBertModel, 'fill-mask': SqueezeBertForMaskedLM, 'question-answering': SqueezeBertForQuestionAnswering, 'text-classification': SqueezeBertForSequenceClassification, 'token-classification': SqueezeBertForTokenClassification, 'zero-shot': SqueezeBertForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase_ : Tuple = False UpperCamelCase_ : int = True UpperCamelCase_ : List[Any] = False def snake_case__ ( self :Tuple ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = SqueezeBertModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=lowercase , dim=3_7 ) def snake_case__ ( self :Optional[Any] ) -> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() def snake_case__ ( self :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_model(*lowercase ) def snake_case__ ( self :Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_masked_lm(*lowercase ) def snake_case__ ( self :List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_question_answering(*lowercase ) def snake_case__ ( self :Any ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_sequence_classification(*lowercase ) def snake_case__ ( self :Union[str, Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_token_classification(*lowercase ) def snake_case__ ( self :Union[str, Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_squeezebert_for_multiple_choice(*lowercase ) @slow def snake_case__ ( self :Dict ) -> str: """simple docstring""" for model_name in SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE = SqueezeBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_sentencepiece @require_tokenizers @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def snake_case__ ( self :Any ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE = SqueezeBertForSequenceClassification.from_pretrained('''squeezebert/squeezebert-mnli''' ) SCREAMING_SNAKE_CASE = torch.tensor([[1, 2_9_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 1_3, 1_5_8_8, 2]] ) SCREAMING_SNAKE_CASE = model(lowercase )[0] SCREAMING_SNAKE_CASE = torch.Size((1, 3) ) self.assertEqual(output.shape , lowercase ) SCREAMING_SNAKE_CASE = torch.tensor([[0.64_01, -0.03_49, -0.60_41]] ) self.assertTrue(torch.allclose(lowercase , lowercase , atol=1e-4 ) )
201
1
"""simple docstring""" import argparse from collections import defaultdict import yaml _a = """docs/source/en/_toctree.yml""" def lowerCamelCase__ ( __snake_case ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = defaultdict(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'''local''': doc['''local'''], '''title''': doc['''title''']} ) else: new_doc_list.append(__snake_case ) _UpperCamelCase = new_doc_list _UpperCamelCase = [key for key, value in counts.items() if value > 1] _UpperCamelCase = [] for duplicate_key in duplicates: _UpperCamelCase = list({doc['''title'''] for doc in doc_list if doc['''local'''] == duplicate_key} ) if len(__snake_case ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if '''local''' not in counts or counts[doc['''local''']] == 1] ) _UpperCamelCase = sorted(__snake_case, key=lambda __snake_case : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__snake_case ) > 1: raise ValueError('''{doc_list} has two \'overview\' docs which is not allowed.''' ) overview_doc.extend(__snake_case ) # Sort return overview_doc def lowerCamelCase__ ( __snake_case=False ) -> List[str]: """simple docstring""" with open(__snake_case, encoding='''utf-8''' ) as f: _UpperCamelCase = yaml.safe_load(f.read() ) # Get to the API doc _UpperCamelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _UpperCamelCase = content[api_idx]['''sections'''] # Then to the model doc _UpperCamelCase = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _UpperCamelCase = api_doc[scheduler_idx]['''sections'''] _UpperCamelCase = clean_doc_toc(__snake_case ) _UpperCamelCase = False if new_scheduler_doc != scheduler_doc: _UpperCamelCase = True if overwrite: _UpperCamelCase = new_scheduler_doc if diff: if overwrite: _UpperCamelCase = api_doc with open(__snake_case, '''w''', encoding='''utf-8''' ) as f: f.write(yaml.dump(__snake_case, allow_unicode=__snake_case ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) def lowerCamelCase__ ( __snake_case=False ) -> List[Any]: """simple docstring""" with open(__snake_case, encoding='''utf-8''' ) as f: _UpperCamelCase = yaml.safe_load(f.read() ) # Get to the API doc _UpperCamelCase = 0 while content[api_idx]["title"] != "API": api_idx += 1 _UpperCamelCase = content[api_idx]['''sections'''] # Then to the model doc _UpperCamelCase = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _UpperCamelCase = False _UpperCamelCase = api_doc[pipeline_idx]['''sections'''] _UpperCamelCase = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _UpperCamelCase = pipeline_doc['''section'''] _UpperCamelCase = clean_doc_toc(__snake_case ) if overwrite: _UpperCamelCase = new_sub_pipeline_doc new_pipeline_docs.append(__snake_case ) # sort overall pipeline doc _UpperCamelCase = clean_doc_toc(__snake_case ) if new_pipeline_docs != pipeline_docs: _UpperCamelCase = True if overwrite: _UpperCamelCase = new_pipeline_docs if diff: if overwrite: _UpperCamelCase = api_doc with open(__snake_case, '''w''', encoding='''utf-8''' ) as f: f.write(yaml.dump(__snake_case, allow_unicode=__snake_case ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") _a = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
78
"""simple docstring""" import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# _a = [ # (stable-diffusion, HF Diffusers) ("""time_embed.0.weight""", """time_embedding.linear_1.weight"""), ("""time_embed.0.bias""", """time_embedding.linear_1.bias"""), ("""time_embed.2.weight""", """time_embedding.linear_2.weight"""), ("""time_embed.2.bias""", """time_embedding.linear_2.bias"""), ("""input_blocks.0.0.weight""", """conv_in.weight"""), ("""input_blocks.0.0.bias""", """conv_in.bias"""), ("""out.0.weight""", """conv_norm_out.weight"""), ("""out.0.bias""", """conv_norm_out.bias"""), ("""out.2.weight""", """conv_out.weight"""), ("""out.2.bias""", """conv_out.bias"""), ] _a = [ # (stable-diffusion, HF Diffusers) ("""in_layers.0""", """norm1"""), ("""in_layers.2""", """conv1"""), ("""out_layers.0""", """norm2"""), ("""out_layers.3""", """conv2"""), ("""emb_layers.1""", """time_emb_proj"""), ("""skip_connection""", """conv_shortcut"""), ] _a = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks _a = F"""down_blocks.{i}.resnets.{j}.""" _a = F"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 _a = F"""down_blocks.{i}.attentions.{j}.""" _a = F"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks _a = F"""up_blocks.{i}.resnets.{j}.""" _a = F"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 _a = F"""up_blocks.{i}.attentions.{j}.""" _a = F"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 _a = F"""down_blocks.{i}.downsamplers.0.conv.""" _a = F"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 _a = F"""up_blocks.{i}.upsamplers.0.""" _a = F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) _a = """mid_block.attentions.0.""" _a = """middle_block.1.""" unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): _a = F"""mid_block.resnets.{j}.""" _a = F"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def lowerCamelCase__ ( __snake_case ) -> str: """simple docstring""" _UpperCamelCase = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: _UpperCamelCase = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: _UpperCamelCase = v.replace(__snake_case, __snake_case ) _UpperCamelCase = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: _UpperCamelCase = v.replace(__snake_case, __snake_case ) _UpperCamelCase = v _UpperCamelCase = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# _a = [ # (stable-diffusion, HF Diffusers) ("""nin_shortcut""", """conv_shortcut"""), ("""norm_out""", """conv_norm_out"""), ("""mid.attn_1.""", """mid_block.attentions.0."""), ] for i in range(4): # down_blocks have two resnets for j in range(2): _a = F"""encoder.down_blocks.{i}.resnets.{j}.""" _a = F"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: _a = F"""down_blocks.{i}.downsamplers.0.""" _a = F"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) _a = F"""up_blocks.{i}.upsamplers.0.""" _a = F"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): _a = F"""decoder.up_blocks.{i}.resnets.{j}.""" _a = F"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): _a = F"""mid_block.resnets.{i}.""" _a = F"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) _a = [ # (stable-diffusion, HF Diffusers) ("""norm.""", """group_norm."""), ("""q.""", """query."""), ("""k.""", """key."""), ("""v.""", """value."""), ("""proj_out.""", """proj_attn."""), ] def lowerCamelCase__ ( __snake_case ) -> List[str]: """simple docstring""" return w.reshape(*w.shape, 1, 1 ) def lowerCamelCase__ ( __snake_case ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: _UpperCamelCase = v.replace(__snake_case, __snake_case ) _UpperCamelCase = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: _UpperCamelCase = v.replace(__snake_case, __snake_case ) _UpperCamelCase = v _UpperCamelCase = {v: vae_state_dict[k] for k, v in mapping.items()} _UpperCamelCase = ['''q''', '''k''', '''v''', '''proj_out'''] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if F'''mid.attn_1.{weight_name}.weight''' in k: print(F'''Reshaping {k} for SD format''' ) _UpperCamelCase = reshape_weight_for_sd(__snake_case ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# _a = [ # (stable-diffusion, HF Diffusers) ("""resblocks.""", """text_model.encoder.layers."""), ("""ln_1""", """layer_norm1"""), ("""ln_2""", """layer_norm2"""), (""".c_fc.""", """.fc1."""), (""".c_proj.""", """.fc2."""), (""".attn""", """.self_attn"""), ("""ln_final.""", """transformer.text_model.final_layer_norm."""), ("""token_embedding.weight""", """transformer.text_model.embeddings.token_embedding.weight"""), ("""positional_embedding""", """transformer.text_model.embeddings.position_embedding.weight"""), ] _a = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} _a = re.compile("""|""".join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp _a = {"""q""": 0, """k""": 1, """v""": 2} def lowerCamelCase__ ( __snake_case ) -> Any: """simple docstring""" _UpperCamelCase = {} _UpperCamelCase = {} _UpperCamelCase = {} for k, v in text_enc_dict.items(): if ( k.endswith('''.self_attn.q_proj.weight''' ) or k.endswith('''.self_attn.k_proj.weight''' ) or k.endswith('''.self_attn.v_proj.weight''' ) ): _UpperCamelCase = k[: -len('''.q_proj.weight''' )] _UpperCamelCase = k[-len('''q_proj.weight''' )] if k_pre not in capture_qkv_weight: _UpperCamelCase = [None, None, None] _UpperCamelCase = v continue if ( k.endswith('''.self_attn.q_proj.bias''' ) or k.endswith('''.self_attn.k_proj.bias''' ) or k.endswith('''.self_attn.v_proj.bias''' ) ): _UpperCamelCase = k[: -len('''.q_proj.bias''' )] _UpperCamelCase = k[-len('''q_proj.bias''' )] if k_pre not in capture_qkv_bias: _UpperCamelCase = [None, None, None] _UpperCamelCase = v continue _UpperCamelCase = textenc_pattern.sub(lambda __snake_case : protected[re.escape(m.group(0 ) )], __snake_case ) _UpperCamelCase = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) _UpperCamelCase = textenc_pattern.sub(lambda __snake_case : protected[re.escape(m.group(0 ) )], __snake_case ) _UpperCamelCase = torch.cat(__snake_case ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception('''CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing''' ) _UpperCamelCase = textenc_pattern.sub(lambda __snake_case : protected[re.escape(m.group(0 ) )], __snake_case ) _UpperCamelCase = torch.cat(__snake_case ) return new_state_dict def lowerCamelCase__ ( __snake_case ) -> Tuple: """simple docstring""" return text_enc_dict if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument("""--model_path""", default=None, type=str, required=True, help="""Path to the model to convert.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--use_safetensors""", action="""store_true""", help="""Save weights use safetensors, default is ckpt.""" ) _a = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors _a = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.safetensors""") _a = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.safetensors""") _a = osp.join(args.model_path, """text_encoder""", """model.safetensors""") # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): _a = load_file(unet_path, device="""cpu""") else: _a = osp.join(args.model_path, """unet""", """diffusion_pytorch_model.bin""") _a = torch.load(unet_path, map_location="""cpu""") if osp.exists(vae_path): _a = load_file(vae_path, device="""cpu""") else: _a = osp.join(args.model_path, """vae""", """diffusion_pytorch_model.bin""") _a = torch.load(vae_path, map_location="""cpu""") if osp.exists(text_enc_path): _a = load_file(text_enc_path, device="""cpu""") else: _a = osp.join(args.model_path, """text_encoder""", """pytorch_model.bin""") _a = torch.load(text_enc_path, map_location="""cpu""") # Convert the UNet model _a = convert_unet_state_dict(unet_state_dict) _a = {"""model.diffusion_model.""" + k: v for k, v in unet_state_dict.items()} # Convert the VAE model _a = convert_vae_state_dict(vae_state_dict) _a = {"""first_stage_model.""" + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper _a = """text_model.encoder.layers.22.layer_norm2.bias""" in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm _a = {"""transformer.""" + k: v for k, v in text_enc_dict.items()} _a = convert_text_enc_state_dict_vaa(text_enc_dict) _a = {"""cond_stage_model.model.""" + k: v for k, v in text_enc_dict.items()} else: _a = convert_text_enc_state_dict(text_enc_dict) _a = {"""cond_stage_model.transformer.""" + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint _a = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: _a = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: _a = {"""state_dict""": state_dict} torch.save(state_dict, args.checkpoint_path)
78
1
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _snake_case : List[str] = get_tests_dir('fixtures/spiece.model') @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): SCREAMING_SNAKE_CASE__ =AlbertTokenizer SCREAMING_SNAKE_CASE__ =AlbertTokenizerFast SCREAMING_SNAKE_CASE__ =True SCREAMING_SNAKE_CASE__ =True SCREAMING_SNAKE_CASE__ =True def __lowerCAmelCase ( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = AlbertTokenizer(_a ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self, _a ) -> Dict: __SCREAMING_SNAKE_CASE = "this is a test" __SCREAMING_SNAKE_CASE = "this is a test" return input_text, output_text def __lowerCAmelCase ( self ) -> Optional[Any]: __SCREAMING_SNAKE_CASE = "<pad>" __SCREAMING_SNAKE_CASE = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_a ), _a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_a ), _a ) def __lowerCAmelCase ( self ) -> List[Any]: __SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], "<pad>" ) self.assertEqual(vocab_keys[1], "<unk>" ) self.assertEqual(vocab_keys[-1], "▁eloquent" ) self.assertEqual(len(_a ), 3_00_00 ) def __lowerCAmelCase ( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size, 3_00_00 ) def __lowerCAmelCase ( self ) -> Any: if not self.test_rust_tokenizer: return __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = "I was born in 92000, and this is falsé." __SCREAMING_SNAKE_CASE = tokenizer.tokenize(_a ) __SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(_a ) self.assertListEqual(_a, _a ) __SCREAMING_SNAKE_CASE = tokenizer.encode(_a, add_special_tokens=_a ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(_a, add_special_tokens=_a ) self.assertListEqual(_a, _a ) __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = tokenizer.encode(_a ) __SCREAMING_SNAKE_CASE = rust_tokenizer.encode(_a ) self.assertListEqual(_a, _a ) def __lowerCAmelCase ( self ) -> Optional[int]: __SCREAMING_SNAKE_CASE = AlbertTokenizer(_a, keep_accents=_a ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("This is a test" ) self.assertListEqual(_a, ["▁this", "▁is", "▁a", "▁test"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ), [48, 25, 21, 12_89] ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( _a, ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", "."] ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(_a ) self.assertListEqual(_a, [31, 23, 3_86, 19, 5_61, 30_50, 15, 17, 48, 25, 82_56, 18, 1, 9] ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(_a ) self.assertListEqual( _a, ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "."], ) def __lowerCAmelCase ( self ) -> Optional[int]: __SCREAMING_SNAKE_CASE = AlbertTokenizer(_a ) __SCREAMING_SNAKE_CASE = tokenizer.encode("sequence builders" ) __SCREAMING_SNAKE_CASE = tokenizer.encode("multi-sequence build" ) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(_a ) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(_a, _a ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def __lowerCAmelCase ( self ) -> Optional[int]: # fmt: off __SCREAMING_SNAKE_CASE = {"attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "input_ids": [[2, 2_19_70, 13, 5, 60_92, 1_67, 28, 71_03, 21_53, 6_73, 8, 70_28, 1_20_51, 18, 17, 71_03, 21_53, 6_73, 8, 35_15, 1_86_84, 8, 44_61, 6, 19_27, 2_97, 8, 1_20_60, 26_07, 18, 13, 5, 44_61, 15, 1_05_38, 38, 8, 1_35, 15, 8_22, 58, 15, 9_93, 1_03_63, 15, 14_60, 80_05, 44_61, 15, 9_93, 2_55, 23_28, 9, 9, 9, 6, 26, 11_12, 8_16, 32_60, 13, 5, 1_03, 23_77, 6, 17, 11_12, 8_16, 27_82, 13, 5, 1_03, 1_06_41, 6, 29, 84, 25_12, 24_30, 7_82, 1_86_84, 27_61, 19, 8_08, 24_30, 25_56, 17, 8_55, 14_80, 94_77, 40_91, 1_28, 1_17_12, 15, 71_03, 21_53, 6_73, 17, 2_48_83, 99_90, 9, 3], [2, 1_15_02, 25, 10_06, 20, 7_82, 8, 1_18_09, 8_55, 17_32, 1_93_93, 1_86_67, 37, 3_67, 2_10_18, 69, 18_54, 34, 1_18_60, 1_91_24, 27, 1_56, 2_25, 17, 1_93, 41_41, 19, 65, 91_24, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 14, 22_31, 8_86, 23_85, 1_76_59, 84, 14, 1_67_92, 19_52, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_a, model_name="albert-base-v2", revision="6b6560eaf5ff2e250b00c50f380c5389a9c2d82e", )
693
def _A ( __snake_case :int ) -> int: """simple docstring""" assert isinstance(__snake_case , __snake_case ), f'''The input value of [n={number}] is not an integer''' if number == 1: return 2 elif number < 1: __SCREAMING_SNAKE_CASE = f'''The input value of [n={number}] has to be > 0''' raise ValueError(__snake_case ) else: __SCREAMING_SNAKE_CASE = sylvester(number - 1 ) __SCREAMING_SNAKE_CASE = num - 1 __SCREAMING_SNAKE_CASE = num return lower * upper + 1 if __name__ == "__main__": print(F"""The 8th number in Sylvester's sequence: {sylvester(8)}""")
693
1
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _a ( SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A :List[str] = CpmAntTokenizer A :Optional[int] = False def _A ( self ): """simple docstring""" super().setUp() a__ : Tuple = [ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] a__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) @tooslow def _A ( self ): """simple docstring""" a__ : Any = CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b" ) a__ : List[str] = "今天天气真好!" a__ : Any = ["今天", "天气", "真", "好", "!"] a__ : int = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) a__ : Union[str, Any] = "今天天气真好!" a__ : Optional[Any] = [tokenizer.bos_token] + tokens a__ : Union[str, Any] = [6, 9802, 1_4962, 2082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) a__ : Tuple = tokenizer.decode(__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
207
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_informer""": [ """INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """InformerConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """InformerForPrediction""", """InformerModel""", """InformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
207
1
'''simple docstring''' import os import sys import transformers _lowerCAmelCase = "3" print("Python version:", sys.version) print("transformers version:", transformers.__version__) try: import torch print("Torch version:", torch.__version__) print("Cuda available:", torch.cuda.is_available()) print("Cuda version:", torch.version.cuda) print("CuDNN version:", torch.backends.cudnn.version()) print("Number of GPUs available:", torch.cuda.device_count()) print("NCCL version:", torch.cuda.nccl.version()) except ImportError: print("Torch version:", None) try: import deepspeed print("DeepSpeed version:", deepspeed.__version__) except ImportError: print("DeepSpeed version:", None) try: import tensorflow as tf print("TensorFlow version:", tf.__version__) print("TF GPUs available:", bool(tf.config.list_physical_devices("GPU"))) print("Number of TF GPUs available:", len(tf.config.list_physical_devices("GPU"))) except ImportError: print("TensorFlow version:", None)
161
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
539
0
from importlib import import_module from .logging import get_logger __snake_case = get_logger(__name__) class UpperCAmelCase : def __init__( self : List[str] , __magic_name__ : Optional[int] , __magic_name__ : Optional[int]=None ): """simple docstring""" UpperCamelCase = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith("""__""" ): setattr(self , __magic_name__ , getattr(__magic_name__ , __magic_name__ ) ) UpperCamelCase = module._original_module if isinstance(__magic_name__ , _PatchedModuleObj ) else module class UpperCAmelCase : lowercase = [] def __init__( self : List[Any] , __magic_name__ : str , __magic_name__ : str , __magic_name__ : Tuple , __magic_name__ : Dict=None ): """simple docstring""" UpperCamelCase = obj UpperCamelCase = target UpperCamelCase = new UpperCamelCase = target.split(""".""" )[0] UpperCamelCase = {} UpperCamelCase = attrs or [] def __enter__( self : Any ): """simple docstring""" *UpperCamelCase , UpperCamelCase = self.target.split(""".""" ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(__magic_name__ ) ): try: UpperCamelCase = import_module(""".""".join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): UpperCamelCase = getattr(self.obj , __magic_name__ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(__magic_name__ , _PatchedModuleObj ) and obj_attr._original_module is submodule) ): UpperCamelCase = obj_attr # patch at top level setattr(self.obj , __magic_name__ , _PatchedModuleObj(__magic_name__ , attrs=self.attrs ) ) UpperCamelCase = getattr(self.obj , __magic_name__ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(__magic_name__ , __magic_name__ , _PatchedModuleObj(getattr(__magic_name__ , __magic_name__ , __magic_name__ ) , attrs=self.attrs ) ) UpperCamelCase = getattr(__magic_name__ , __magic_name__ ) # finally set the target attribute setattr(__magic_name__ , __magic_name__ , self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: UpperCamelCase = getattr(import_module(""".""".join(__magic_name__ ) ) , __magic_name__ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj , __magic_name__ ) is attr_value: UpperCamelCase = getattr(self.obj , __magic_name__ ) setattr(self.obj , __magic_name__ , self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" UpperCamelCase = globals()["""__builtins__"""][target_attr] setattr(self.obj , __magic_name__ , self.new ) else: raise RuntimeError(F'Tried to patch attribute {target_attr} instead of a submodule.' ) def __exit__( self : Union[str, Any] , *__magic_name__ : List[str] ): """simple docstring""" for attr in list(self.original ): setattr(self.obj , __magic_name__ , self.original.pop(__magic_name__ ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" self.__enter__() self._active_patches.append(self ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
181
import math def _lowercase ( SCREAMING_SNAKE_CASE_ : int = 100 ): """simple docstring""" UpperCamelCase = sum(i * i for i in range(1 , n + 1 ) ) UpperCamelCase = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F'''{solution() = }''')
181
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging __lowercase : Optional[int] = logging.get_logger(__name__) if is_vision_available(): import PIL class _A ( snake_case ): '''simple docstring''' __lowerCamelCase : Optional[Any] = ['''pixel_values'''] def __init__( self ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = 1 / 255 ,SCREAMING_SNAKE_CASE_ = True ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = True ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' super().__init__(**SCREAMING_SNAKE_CASE_ ) snake_case : Any = size if size is not None else {"""shortest_edge""": 224} snake_case : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ,default_to_square=SCREAMING_SNAKE_CASE_ ) snake_case : str = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} snake_case : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ,default_to_square=SCREAMING_SNAKE_CASE_ ,param_name="""crop_size""" ) snake_case : Tuple = do_resize snake_case : int = size snake_case : int = resample snake_case : int = do_center_crop snake_case : Any = crop_size snake_case : Optional[int] = do_rescale snake_case : Dict = rescale_factor snake_case : Dict = do_normalize snake_case : Optional[int] = image_mean if image_mean is not None else OPENAI_CLIP_MEAN snake_case : Any = image_std if image_std is not None else OPENAI_CLIP_STD snake_case : Any = do_convert_rgb def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = PILImageResampling.BICUBIC ,SCREAMING_SNAKE_CASE_ = None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : List[str] = get_size_dict(SCREAMING_SNAKE_CASE_ ,default_to_square=SCREAMING_SNAKE_CASE_ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) snake_case : Any = get_resize_output_image_size(SCREAMING_SNAKE_CASE_ ,size=size["""shortest_edge"""] ,default_to_square=SCREAMING_SNAKE_CASE_ ) return resize(SCREAMING_SNAKE_CASE_ ,size=SCREAMING_SNAKE_CASE_ ,resample=SCREAMING_SNAKE_CASE_ ,data_format=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : List[Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(SCREAMING_SNAKE_CASE_ ,size=(size["""height"""], size["""width"""]) ,data_format=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' return rescale(SCREAMING_SNAKE_CASE_ ,scale=SCREAMING_SNAKE_CASE_ ,data_format=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' return normalize(SCREAMING_SNAKE_CASE_ ,mean=SCREAMING_SNAKE_CASE_ ,std=SCREAMING_SNAKE_CASE_ ,data_format=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = None ,SCREAMING_SNAKE_CASE_ = ChannelDimension.FIRST ,**SCREAMING_SNAKE_CASE_ ,): '''simple docstring''' snake_case : Any = do_resize if do_resize is not None else self.do_resize snake_case : Optional[int] = size if size is not None else self.size snake_case : Union[str, Any] = get_size_dict(SCREAMING_SNAKE_CASE_ ,param_name="""size""" ,default_to_square=SCREAMING_SNAKE_CASE_ ) snake_case : int = resample if resample is not None else self.resample snake_case : int = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case : Tuple = crop_size if crop_size is not None else self.crop_size snake_case : List[str] = get_size_dict(SCREAMING_SNAKE_CASE_ ,param_name="""crop_size""" ,default_to_square=SCREAMING_SNAKE_CASE_ ) snake_case : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale snake_case : List[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case : List[Any] = image_mean if image_mean is not None else self.image_mean snake_case : Optional[Any] = image_std if image_std is not None else self.image_std snake_case : Optional[Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case : Dict = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case : List[str] = [convert_to_rgb(SCREAMING_SNAKE_CASE_ ) for image in images] # All transformations expect numpy arrays. snake_case : int = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for image in images] if do_resize: snake_case : str = [self.resize(image=SCREAMING_SNAKE_CASE_ ,size=SCREAMING_SNAKE_CASE_ ,resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_center_crop: snake_case : Optional[int] = [self.center_crop(image=SCREAMING_SNAKE_CASE_ ,size=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: snake_case : int = [self.rescale(image=SCREAMING_SNAKE_CASE_ ,scale=SCREAMING_SNAKE_CASE_ ) for image in images] if do_normalize: snake_case : str = [self.normalize(image=SCREAMING_SNAKE_CASE_ ,mean=SCREAMING_SNAKE_CASE_ ,std=SCREAMING_SNAKE_CASE_ ) for image in images] snake_case : Optional[Any] = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) for image in images] snake_case : List[Any] = {"""pixel_values""": images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ ,tensor_type=SCREAMING_SNAKE_CASE_ )
36
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[str]: __UpperCAmelCase =multiprocessing.Manager() __UpperCAmelCase =manager.list() __UpperCAmelCase =multiprocessing.Process(target=snake_case__ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append('''timed out''' ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def SCREAMING_SNAKE_CASE ( snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil __UpperCAmelCase =shutil.rmtree __UpperCAmelCase =os.rmdir __UpperCAmelCase =os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: __UpperCAmelCase ={} with swallow_io(): with time_limit(snake_case__ ): exec(snake_case__ , snake_case__ ) result.append('''passed''' ) except TimeoutException: result.append('''timed out''' ) except BaseException as e: result.append(f"""failed: {e}""" ) # Needed for cleaning up. __UpperCAmelCase =rmtree __UpperCAmelCase =rmdir __UpperCAmelCase =chdir @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( snake_case__ ) -> Tuple: def signal_handler(snake_case__ , snake_case__ ): raise TimeoutException('''Timed out!''' ) signal.setitimer(signal.ITIMER_REAL , snake_case__ ) signal.signal(signal.SIGALRM , snake_case__ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( ) -> List[Any]: __UpperCAmelCase =WriteOnlyStringIO() with contextlib.redirect_stdout(snake_case__ ): with contextlib.redirect_stderr(snake_case__ ): with redirect_stdin(snake_case__ ): yield @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( ) -> Dict: with tempfile.TemporaryDirectory() as dirname: with chdir(snake_case__ ): yield dirname class _SCREAMING_SNAKE_CASE ( _lowerCAmelCase ): pass class _SCREAMING_SNAKE_CASE ( io.StringIO ): def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' raise OSError def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' raise OSError def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' raise OSError def A__ (self , *UpperCAmelCase , **UpperCAmelCase): '''simple docstring''' return False class _SCREAMING_SNAKE_CASE ( contextlib._RedirectStream ): # type: ignore a_ : Dict = '''stdin''' @contextlib.contextmanager def SCREAMING_SNAKE_CASE ( snake_case__ ) -> List[str]: if root == ".": yield return __UpperCAmelCase =os.getcwd() os.chdir(snake_case__ ) try: yield except BaseException as exc: raise exc finally: os.chdir(snake_case__ ) def SCREAMING_SNAKE_CASE ( snake_case__=None ) -> Tuple: if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins __UpperCAmelCase =None __UpperCAmelCase =None import os __UpperCAmelCase ='''1''' __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None import shutil __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None import subprocess __UpperCAmelCase =None # type: ignore __UpperCAmelCase =None import sys __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None __UpperCAmelCase =None
132
0
from ..utils import DummyObject, requires_backends class lowercase ( metaclass=lowercase__ ): lowerCamelCase : List[Any] = ['''note_seq'''] def __init__( self : Union[str, Any] , *_lowercase : Any , **_lowercase : int ): requires_backends(self , ['''note_seq'''] ) @classmethod def lowercase__ ( cls : Union[str, Any] , *_lowercase : Tuple , **_lowercase : Union[str, Any] ): requires_backends(cls , ['''note_seq'''] ) @classmethod def lowercase__ ( cls : Tuple , *_lowercase : Tuple , **_lowercase : str ): requires_backends(cls , ['''note_seq'''] )
705
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin a_ :Optional[Any] = get_tests_dir('fixtures/test_sentencepiece.model') if is_sentencepiece_available(): import sentencepiece as sp a_ :Union[str, Any] = 5 a_ :int = 10 @require_sentencepiece @require_tokenizers class lowercase ( _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : List[str] = SpeechaTextTokenizer lowerCamelCase : Union[str, Any] = False lowerCamelCase : List[str] = True def lowercase__ ( self : int ): super().setUp() SCREAMING_SNAKE_CASE__ : Any = sp.SentencePieceProcessor() spm_model.Load(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ['''<s>''', '''<pad>''', '''</s>''', '''<unk>'''] vocab += [spm_model.IdToPiece(id_ ) for id_ in range(len(_lowercase ) )] SCREAMING_SNAKE_CASE__ : Union[str, Any] = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = Path(self.tmpdirname ) save_json(_lowercase , save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(_lowercase , save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) SCREAMING_SNAKE_CASE__ : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : str = '''<pad>''' SCREAMING_SNAKE_CASE__ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowercase ) , _lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowercase ) , _lowercase ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : int = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''j''' ) self.assertEqual(len(_lowercase ) , 10_01 ) def lowercase__ ( self : Dict ): self.assertEqual(self.get_tokenizer().vocab_size , 10_01 ) def lowercase__ ( self : List[str] ): SCREAMING_SNAKE_CASE__ : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowercase ) , [2_89, 50, 14, 1_74, 3_86] , ) SCREAMING_SNAKE_CASE__ : Any = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.convert_tokens_to_ids(_lowercase ) self.assertListEqual(_lowercase , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8] ) SCREAMING_SNAKE_CASE__ : int = tokenizer.convert_ids_to_tokens(_lowercase ) self.assertListEqual( _lowercase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def lowercase__ ( self : List[str] ): # fmt: off SCREAMING_SNAKE_CASE__ : List[Any] = {'''input_ids''': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowercase , model_name='''facebook/s2t-small-mustc-en-de-st''' , revision='''a14f04cf0776c02f62a8cb800cf7909e15ea23ad''' , ) @require_sentencepiece class lowercase ( unittest.TestCase ): lowerCamelCase : Union[str, Any] = '''valhalla/s2t_mustc_multilinguial_medium''' lowerCamelCase : List[Any] = '''C\'est trop cool''' lowerCamelCase : Any = '''Esto es genial''' @classmethod def lowercase__ ( cls : Union[str, Any] ): SCREAMING_SNAKE_CASE__ : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name ) return cls def lowercase__ ( self : str ): self.assertEqual(self.tokenizer.lang_code_to_id['''pt'''] , 4 ) self.assertEqual(self.tokenizer.lang_code_to_id['''ru'''] , 6 ) self.assertEqual(self.tokenizer.lang_code_to_id['''it'''] , 9 ) self.assertEqual(self.tokenizer.lang_code_to_id['''de'''] , 11 ) def lowercase__ ( self : Tuple ): self.assertEqual(self.tokenizer.vocab_size , 1_00_00 ) def lowercase__ ( self : Optional[int] ): self.assertIn(_lowercase , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE__ : Tuple = [ES_CODE, 4, 16_01, 47, 76_47, 2] SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=_lowercase ) self.assertEqual(_lowercase , _lowercase ) self.assertNotIn(self.tokenizer.eos_token , _lowercase ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = '''fr''' SCREAMING_SNAKE_CASE__ : int = self.tokenizer(self.french_text ).input_ids self.assertEqual(encoded[0] , _lowercase ) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[Any] = '''fr''' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE] ) SCREAMING_SNAKE_CASE__ : int = '''es''' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE] )
250
0
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class __magic_name__ : def __init__( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any=13 , UpperCamelCase__ : Union[str, Any]=7 , UpperCamelCase__ : int=True , UpperCamelCase__ : Union[str, Any]=True , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Optional[Any]=99 , UpperCamelCase__ : List[str]=32 , UpperCamelCase__ : int=2 , UpperCamelCase__ : List[str]=4 , UpperCamelCase__ : List[str]=37 , UpperCamelCase__ : Optional[int]="gelu" , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : int=0.1 , UpperCamelCase__ : int=5_12 , UpperCamelCase__ : Optional[int]=16 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : int=0.02 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : List[str]=4 , UpperCamelCase__ : Optional[Any]=None , ) -> List[Any]: '''simple docstring''' UpperCAmelCase = parent UpperCAmelCase = 13 UpperCAmelCase = 7 UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = True UpperCAmelCase = 99 UpperCAmelCase = 32 UpperCAmelCase = 2 UpperCAmelCase = 4 UpperCAmelCase = 37 UpperCAmelCase = "gelu" UpperCAmelCase = 0.1 UpperCAmelCase = 0.1 UpperCAmelCase = 5_12 UpperCAmelCase = 16 UpperCAmelCase = 2 UpperCAmelCase = 0.02 UpperCAmelCase = 3 UpperCAmelCase = 4 UpperCAmelCase = None def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__a , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase = TFRoFormerModel(config=__a ) UpperCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCAmelCase = [input_ids, input_mask] UpperCAmelCase = model(__a ) UpperCAmelCase = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] ) -> List[str]: '''simple docstring''' UpperCAmelCase = True UpperCAmelCase = TFRoFormerForCausalLM(config=__a ) UpperCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase = model(__a )["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : str , UpperCamelCase__ : List[str] , UpperCamelCase__ : List[str] ) -> int: '''simple docstring''' UpperCAmelCase = TFRoFormerForMaskedLM(config=__a ) UpperCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[int] ) -> Tuple: '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = TFRoFormerForSequenceClassification(config=__a ) UpperCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Union[str, Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase = self.num_choices UpperCAmelCase = TFRoFormerForMultipleChoice(config=__a ) UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = tf.tile(tf.expand_dims(__a , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase = self.num_labels UpperCAmelCase = TFRoFormerForTokenClassification(config=__a ) UpperCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple ) -> str: '''simple docstring''' UpperCAmelCase = TFRoFormerForQuestionAnswering(config=__a ) UpperCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase = model(__a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __magic_name__ ( A__, A__, unittest.TestCase ): lowercase : List[Any] =( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowercase : str =( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowercase : Optional[Any] =False lowercase : str =False def SCREAMING_SNAKE_CASE_ ( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] ) -> List[str]: '''simple docstring''' if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def SCREAMING_SNAKE_CASE_ ( self : int ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase = TFRoFormerModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=__a , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self : Any ) -> str: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) def SCREAMING_SNAKE_CASE_ ( self : Dict ) -> Any: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a ) def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__a ) def SCREAMING_SNAKE_CASE_ ( self : str ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[str]: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Tuple: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__a ) @slow def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]: '''simple docstring''' UpperCAmelCase = TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base" ) self.assertIsNotNone(__a ) @require_tf class __magic_name__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> str: '''simple docstring''' UpperCAmelCase = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) UpperCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase = model(__a )[0] # TODO Replace vocab size UpperCAmelCase = 5_00_00 UpperCAmelCase = [1, 6, vocab_size] self.assertEqual(output.shape , __a ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. UpperCAmelCase = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __a , atol=1e-4 ) @require_tf class __magic_name__ ( unittest.TestCase ): lowercase : Any =1E-4 def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' UpperCAmelCase = tf.constant([[4, 10]] ) UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) UpperCAmelCase = emba(input_ids.shape ) UpperCAmelCase = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(__a , __a , atol=self.tolerance ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ) -> Dict: '''simple docstring''' UpperCAmelCase = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 ) emba([2, 16, 5_12] ) UpperCAmelCase = emba.weight[:3, :5] tf.debugging.assert_near(__a , __a , atol=self.tolerance ) @require_tf class __magic_name__ ( unittest.TestCase ): lowercase : int =1E-4 def SCREAMING_SNAKE_CASE_ ( self : Tuple ) -> List[Any]: '''simple docstring''' UpperCAmelCase = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 UpperCAmelCase = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 UpperCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) UpperCAmelCase = embed_positions([2, 16, 7_68] )[None, None, :, :] UpperCAmelCase , UpperCAmelCase = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __a , __a , __a ) UpperCAmelCase = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) UpperCAmelCase = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __a , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __a , atol=self.tolerance )
323
"""simple docstring""" from collections.abc import Callable import numpy as np def lowerCamelCase__ ( __snake_case, __snake_case, __snake_case, __snake_case, __snake_case ) -> np.array: """simple docstring""" _UpperCamelCase = int(np.ceil((x_end - xa) / step_size ) ) _UpperCamelCase = np.zeros((n + 1,) ) _UpperCamelCase = ya _UpperCamelCase = xa for k in range(__snake_case ): _UpperCamelCase = y[k] + step_size * ode_func(__snake_case, y[k] ) _UpperCamelCase = y[k] + ( (step_size / 2) * (ode_func(__snake_case, y[k] ) + ode_func(x + step_size, __snake_case )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
19
0
import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowercase : Optional[Any] = logging.get_logger(__name__) class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : List[str] = ['input_features', 'is_longer'] def __init__( self , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=4_8000 , _SCREAMING_SNAKE_CASE=480 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=1024 , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = 1_4000 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "fusion" , _SCREAMING_SNAKE_CASE = "repeatpad" , **_SCREAMING_SNAKE_CASE , ) -> Tuple: super().__init__( feature_size=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , padding_value=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) snake_case_ : List[str] = top_db snake_case_ : List[str] = truncation snake_case_ : Optional[int] = padding snake_case_ : List[Any] = fft_window_size snake_case_ : Dict = (fft_window_size >> 1) + 1 snake_case_ : Union[str, Any] = hop_length snake_case_ : int = max_length_s snake_case_ : Any = max_length_s * sampling_rate snake_case_ : int = sampling_rate snake_case_ : List[Any] = frequency_min snake_case_ : str = frequency_max snake_case_ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_SCREAMING_SNAKE_CASE , min_frequency=_SCREAMING_SNAKE_CASE , max_frequency=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , norm=_SCREAMING_SNAKE_CASE , mel_scale="htk" , ) snake_case_ : List[str] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=_SCREAMING_SNAKE_CASE , min_frequency=_SCREAMING_SNAKE_CASE , max_frequency=_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , norm="slaney" , mel_scale="slaney" , ) def _lowerCAmelCase ( self ) -> Dict[str, Any]: snake_case_ : str = copy.deepcopy(self.__dict__ ) snake_case_ : List[str] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> np.ndarray: snake_case_ : str = spectrogram( _SCREAMING_SNAKE_CASE , window_function(self.fft_window_size , "hann" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=_SCREAMING_SNAKE_CASE , log_mel="dB" , ) return log_mel_spectrogram.T def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: snake_case_ : Dict = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk snake_case_ : int = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk snake_case_ : Optional[int] = [0] # randomly choose index for each part snake_case_ : str = np.random.choice(ranges[0] ) snake_case_ : Tuple = np.random.choice(ranges[1] ) snake_case_ : List[Any] = np.random.choice(ranges[2] ) snake_case_ : Optional[int] = mel[idx_front : idx_front + chunk_frames, :] snake_case_ : str = mel[idx_middle : idx_middle + chunk_frames, :] snake_case_ : int = mel[idx_back : idx_back + chunk_frames, :] snake_case_ : Tuple = torch.tensor(mel[None, None, :] ) snake_case_ : Optional[Any] = torch.nn.functional.interpolate( _SCREAMING_SNAKE_CASE , size=[chunk_frames, 64] , mode="bilinear" , align_corners=_SCREAMING_SNAKE_CASE ) snake_case_ : Any = mel_shrink[0][0].numpy() snake_case_ : List[Any] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> np.array: if waveform.shape[0] > max_length: if truncation == "rand_trunc": snake_case_ : Any = True # random crop to max_length (for compatibility) -> this should be handled by self.pad snake_case_ : Dict = len(_SCREAMING_SNAKE_CASE ) - max_length snake_case_ : List[str] = np.random.randint(0 , overflow + 1 ) snake_case_ : str = waveform[idx : idx + max_length] snake_case_ : Any = self._np_extract_fbank_features(_SCREAMING_SNAKE_CASE , self.mel_filters_slaney )[None, :] elif truncation == "fusion": snake_case_ : Union[str, Any] = self._np_extract_fbank_features(_SCREAMING_SNAKE_CASE , self.mel_filters ) snake_case_ : List[str] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed snake_case_ : Any = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. snake_case_ : Union[str, Any] = np.stack([mel, mel, mel, mel] , axis=0 ) snake_case_ : Optional[int] = False else: snake_case_ : Union[str, Any] = self._random_mel_fusion(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : List[Any] = True else: raise NotImplementedError(f'''data_truncating {truncation} not implemented''' ) else: snake_case_ : str = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": snake_case_ : str = int(max_length / len(_SCREAMING_SNAKE_CASE ) ) snake_case_ : Tuple = np.stack(np.tile(_SCREAMING_SNAKE_CASE , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": snake_case_ : List[str] = int(max_length / len(_SCREAMING_SNAKE_CASE ) ) snake_case_ : List[str] = np.stack(np.tile(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) snake_case_ : int = np.pad(_SCREAMING_SNAKE_CASE , (0, max_length - waveform.shape[0]) , mode="constant" , constant_values=0 ) if truncation == "fusion": snake_case_ : int = self._np_extract_fbank_features(_SCREAMING_SNAKE_CASE , self.mel_filters ) snake_case_ : List[str] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: snake_case_ : Dict = self._np_extract_fbank_features(_SCREAMING_SNAKE_CASE , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> BatchFeature: snake_case_ : List[str] = truncation if truncation is not None else self.truncation snake_case_ : Union[str, Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) snake_case_ : List[str] = isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) snake_case_ : List[str] = is_batched_numpy or ( isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: snake_case_ : Optional[int] = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): snake_case_ : List[str] = np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): snake_case_ : Any = raw_speech.astype(np.floataa ) # always return batch if not is_batched: snake_case_ : Tuple = [np.asarray(_SCREAMING_SNAKE_CASE )] # convert to mel spectrogram, truncate and pad if needed. snake_case_ : Tuple = [ self._get_input_mel(_SCREAMING_SNAKE_CASE , max_length if max_length else self.nb_max_samples , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for waveform in raw_speech ] snake_case_ : Union[str, Any] = [] snake_case_ : List[Any] = [] for mel, longer in padded_inputs: input_mel.append(_SCREAMING_SNAKE_CASE ) is_longer.append(_SCREAMING_SNAKE_CASE ) if truncation == "fusion" and sum(_SCREAMING_SNAKE_CASE ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer snake_case_ : Tuple = np.random.randint(0 , len(_SCREAMING_SNAKE_CASE ) ) snake_case_ : Dict = True if isinstance(input_mel[0] , _SCREAMING_SNAKE_CASE ): snake_case_ : Optional[Any] = [np.asarray(_SCREAMING_SNAKE_CASE , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool snake_case_ : str = [[longer] for longer in is_longer] snake_case_ : Optional[Any] = {"input_features": input_mel, "is_longer": is_longer} snake_case_ : Tuple = BatchFeature(_SCREAMING_SNAKE_CASE ) if return_tensors is not None: snake_case_ : Tuple = input_features.convert_to_tensors(_SCREAMING_SNAKE_CASE ) return input_features
114
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Optional[int] = { '''configuration_nllb_moe''': [ '''NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''NllbMoeConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ '''NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''NllbMoeForConditionalGeneration''', '''NllbMoeModel''', '''NllbMoePreTrainedModel''', '''NllbMoeTop2Router''', '''NllbMoeSparseMLP''', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys lowercase : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
114
1
from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: UpperCamelCase__ : List[str] = k_size // 2 UpperCamelCase__ : Tuple = mgrid[0 - center : k_size - center, 0 - center : k_size - center] UpperCamelCase__ : int = 1 / (2 * pi * sigma) * exp(-(square(lowerCamelCase__ ) + square(lowerCamelCase__ )) / (2 * square(lowerCamelCase__ )) ) return g def _lowercase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[int]: UpperCamelCase__ : str = image.shape[0], image.shape[1] # dst image height and width UpperCamelCase__ : int = height - k_size + 1 UpperCamelCase__ : List[str] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows UpperCamelCase__ : Tuple = zeros((dst_height * dst_width, k_size * k_size) ) UpperCamelCase__ : Any = 0 for i, j in product(range(lowerCamelCase__ ) , range(lowerCamelCase__ ) ): UpperCamelCase__ : str = ravel(image[i : i + k_size, j : j + k_size] ) UpperCamelCase__ : int = window row += 1 # turn the kernel into shape(k*k, 1) UpperCamelCase__ : Tuple = gen_gaussian_kernel(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase__ : str = ravel(lowerCamelCase__ ) # reshape and get the dst image UpperCamelCase__ : int = dot(lowerCamelCase__ , lowerCamelCase__ ).reshape(lowerCamelCase__ , lowerCamelCase__ ).astype(lowerCamelCase__ ) return dst if __name__ == "__main__": # read original image UpperCAmelCase__ : Tuple = imread(r'''../image_data/lena.jpg''') # turn image in gray scale value UpperCAmelCase__ : List[str] = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size UpperCAmelCase__ : int = gaussian_filter(gray, 3, sigma=1) UpperCAmelCase__ : Dict = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
410
from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : Union[List[PIL.Image.Image], np.ndarray] _UpperCAmelCase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
652
0
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any] ): if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] ): for char in word: __SCREAMING_SNAKE_CASE : Optional[int] = ord(_A ) if not _is_chinese_char(_A ): return 0 return 1 def lowerCAmelCase_ ( _lowerCamelCase: List[Any] ): __SCREAMING_SNAKE_CASE : str = set() for token in tokens: __SCREAMING_SNAKE_CASE : Optional[int] = len(_A ) > 1 and is_chinese(_A ) if chinese_word: word_set.add(_A ) __SCREAMING_SNAKE_CASE : str = list(_A ) return word_list def lowerCAmelCase_ ( _lowerCamelCase: int , _lowerCamelCase: List[str] ): if not chinese_word_set: return bert_tokens __SCREAMING_SNAKE_CASE : List[str] = max([len(_A ) for w in chinese_word_set] ) __SCREAMING_SNAKE_CASE : Optional[Any] = bert_tokens __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = 0, len(_A ) while start < end: __SCREAMING_SNAKE_CASE : Tuple = True if is_chinese(bert_word[start] ): __SCREAMING_SNAKE_CASE : Any = min(end - start , _A ) for i in range(_A , 1 , -1 ): __SCREAMING_SNAKE_CASE : List[Any] = """""".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __SCREAMING_SNAKE_CASE : Tuple = """##""" + bert_word[j] __SCREAMING_SNAKE_CASE : int = start + i __SCREAMING_SNAKE_CASE : Tuple = False break if single_word: start += 1 return bert_word def lowerCAmelCase_ ( _lowerCamelCase: Optional[int] , _lowerCamelCase: str , _lowerCamelCase: str ): __SCREAMING_SNAKE_CASE : Optional[int] = [] for i in range(0 , len(_A ) , 1_00 ): __SCREAMING_SNAKE_CASE : Union[str, Any] = ltp_tokenizer.pipeline(lines[i : i + 1_00] , tasks=["""cws"""] ).cws __SCREAMING_SNAKE_CASE : Dict = [get_chinese_word(_A ) for r in res] ltp_res.extend(_A ) assert len(_A ) == len(_A ) __SCREAMING_SNAKE_CASE : Dict = [] for i in range(0 , len(_A ) , 1_00 ): __SCREAMING_SNAKE_CASE : Any = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=_A , truncation=_A , max_length=5_12 ) bert_res.extend(res["""input_ids"""] ) assert len(_A ) == len(_A ) __SCREAMING_SNAKE_CASE : Dict = [] for input_ids, chinese_word in zip(_A , _A ): __SCREAMING_SNAKE_CASE : Any = [] for id in input_ids: __SCREAMING_SNAKE_CASE : Dict = bert_tokenizer._convert_id_to_token(_A ) input_tokens.append(_A ) __SCREAMING_SNAKE_CASE : str = add_sub_symbol(_A , _A ) __SCREAMING_SNAKE_CASE : Optional[Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_A ): if token[:2] == "##": __SCREAMING_SNAKE_CASE : Union[str, Any] = token[2:] # save chinese tokens' pos if len(_A ) == 1 and _is_chinese_char(ord(_A ) ): ref_id.append(_A ) ref_ids.append(_A ) assert len(_A ) == len(_A ) return ref_ids def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] ): with open(args.file_name , """r""" , encoding="""utf-8""" ) as f: __SCREAMING_SNAKE_CASE : List[str] = f.readlines() __SCREAMING_SNAKE_CASE : List[str] = [line.strip() for line in data if len(_A ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __SCREAMING_SNAKE_CASE : Union[str, Any] = LTP(args.ltp ) # faster in GPU device __SCREAMING_SNAKE_CASE : Tuple = BertTokenizer.from_pretrained(args.bert ) __SCREAMING_SNAKE_CASE : Union[str, Any] = prepare_ref(_A , _A , _A ) with open(args.save_path , """w""" , encoding="""utf-8""" ) as f: __SCREAMING_SNAKE_CASE : str = [json.dumps(_A ) + """\n""" for ref in ref_ids] f.writelines(_A ) if __name__ == "__main__": UpperCamelCase__ : Dict = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) UpperCamelCase__ : Union[str, Any] = parser.parse_args() main(args)
719
'''simple docstring''' import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase__ : Any = '''▁''' UpperCamelCase__ : Dict = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class _UpperCamelCase ( lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' _A : Dict = BertGenerationTokenizer _A : List[Any] = False _A : Union[str, Any] = True def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" super().setUp() __SCREAMING_SNAKE_CASE : Dict = BertGenerationTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = """<s>""" __SCREAMING_SNAKE_CASE : Optional[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def UpperCamelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(lowerCAmelCase__ ) , 1_0_0_2 ) def UpperCamelCase__ ( self : Optional[int] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_0 ) def UpperCamelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = BertGenerationTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2] , ) __SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __SCREAMING_SNAKE_CASE : Any = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 0, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 0, 4] , ) __SCREAMING_SNAKE_CASE : Any = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def UpperCamelCase__ ( self : List[str] ): """simple docstring""" return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def UpperCamelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = """Hello World!""" __SCREAMING_SNAKE_CASE : Dict = [1_8_5_3_6, 2_2_6_0, 1_0_1] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @slow def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) __SCREAMING_SNAKE_CASE : Optional[int] = [ 8_7_1, 4_1_9, 3_5_8, 9_4_6, 9_9_1, 2_5_2_1, 4_5_2, 3_5_8, 1_3_5_7, 3_8_7, 7_7_5_1, 3_5_3_6, 1_1_2, 9_8_5, 4_5_6, 1_2_6, 8_6_5, 9_3_8, 5_4_0_0, 5_7_3_4, 4_5_8, 1_3_6_8, 4_6_7, 7_8_6, 2_4_6_2, 5_2_4_6, 1_1_5_9, 6_3_3, 8_6_5, 4_5_1_9, 4_5_7, 5_8_2, 8_5_2, 2_5_5_7, 4_2_7, 9_1_6, 5_0_8, 4_0_5, 3_4_3_2_4, 4_9_7, 3_9_1, 4_0_8, 1_1_3_4_2, 1_2_4_4, 3_8_5, 1_0_0, 9_3_8, 9_8_5, 4_5_6, 5_7_4, 3_6_2, 1_2_5_9_7, 3_2_0_0, 3_1_2_9, 1_1_7_2, ] self.assertListEqual(lowerCAmelCase__ , self.big_tokenizer.encode(lowerCAmelCase__ ) ) @require_torch @slow def UpperCamelCase__ ( self : str ): """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence __SCREAMING_SNAKE_CASE : List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:1_0] __SCREAMING_SNAKE_CASE : int = """ """.join(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.big_tokenizer.encode_plus(lowerCAmelCase__ , return_tensors="""pt""" , return_token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Tuple = BertGenerationConfig() __SCREAMING_SNAKE_CASE : Any = BertGenerationEncoder(lowerCAmelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCAmelCase__ ) model(**lowerCAmelCase__ ) @slow def UpperCamelCase__ ( self : List[str] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = {"""input_ids""": [[3_9_2_8_6, 4_5_8, 3_6_3_3_5, 2_0_0_1, 4_5_6, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 7_7_4_6, 1_7_4_1, 1_1_1_5_7, 3_9_1, 1_3_0_7_3, 1_3_2_6_6, 4_5_5, 1_1_3, 3_9_6_7, 3_5_4_1_2, 1_1_3, 4_9_3_6, 1_0_9, 3_8_7_0, 2_3_7_7, 1_1_3, 3_0_0_8_4, 4_5_7_2_0, 4_5_8, 1_3_4, 1_7_4_9_6, 1_1_2, 5_0_3, 1_1_6_7_2, 1_1_3, 1_1_8, 1_1_2, 5_6_6_5, 1_3_3_4_7, 3_8_6_8_7, 1_1_2, 1_4_9_6, 3_1_3_8_9, 1_1_2, 3_2_6_8, 4_7_2_6_4, 1_3_4, 9_6_2, 1_1_2, 1_6_3_7_7, 8_0_3_5, 2_3_1_3_0, 4_3_0, 1_2_1_6_9, 1_5_5_1_8, 2_8_5_9_2, 4_5_8, 1_4_6, 4_1_6_9_7, 1_0_9, 3_9_1, 1_2_1_6_9, 1_5_5_1_8, 1_6_6_8_9, 4_5_8, 1_4_6, 4_1_3_5_8, 1_0_9, 4_5_2, 7_2_6, 4_0_3_4, 1_1_1, 7_6_3, 3_5_4_1_2, 5_0_8_2, 3_8_8, 1_9_0_3, 1_1_1, 9_0_5_1, 3_9_1, 2_8_7_0, 4_8_9_1_8, 1_9_0_0, 1_1_2_3, 5_5_0, 9_9_8, 1_1_2, 9_5_8_6, 1_5_9_8_5, 4_5_5, 3_9_1, 4_1_0, 2_2_9_5_5, 3_7_6_3_6, 1_1_4], [4_4_8, 1_7_4_9_6, 4_1_9, 3_6_6_3, 3_8_5, 7_6_3, 1_1_3, 2_7_5_3_3, 2_8_7_0, 3_2_8_3, 1_3_0_4_3, 1_6_3_9, 2_4_7_1_3, 5_2_3, 6_5_6, 2_4_0_1_3, 1_8_5_5_0, 2_5_2_1, 5_1_7, 2_7_0_1_4, 2_1_2_4_4, 4_2_0, 1_2_1_2, 1_4_6_5, 3_9_1, 9_2_7, 4_8_3_3, 3_8_8, 5_7_8, 1_1_7_8_6, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_8_4, 2_1_6_9, 7_6_8_7, 2_1_9_3_2, 1_8_1_4_6, 7_2_6, 3_6_3, 1_7_0_3_2, 3_3_9_1, 1_1_4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
178
0